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Preface

Abstract

We give an overview of different methods for solving highly heterogeneous
elliptic problems with multiscale structure and no intuitive scale separation.
We compare different finite element variational multiscale methods and prove
equivalence between the methods proposed by Larson et al. [LM07] and Nolen
et al [NPP08]. We also discuss properties of different multiscale methods
depending on the choice of scale separation and ways to represent the fine
scale correction. Additionally, in this work we give an overview of a posteriori
error estimates for the finite element method as well as newly proposed by
Larson et al. estimates for the variational multiscale method [LM07]. As an
illustration of the theory we show our numerical results for using theoretical
estimates to construct adaptive algorithms: adaptive refinement of finite
elements and adaptive overlap control for variational multiscale methods in
the formulation of Nolen et al. There is no known implementation of the
latter published at the moment.
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Chapter 1

Introduction

In the first part of this chapter we will discuss where multiscale problems
arise. We also give an overview of so-called multiscale methods, and how
and why they were developed. We discuss the motivation for this work and
challenges in the field.

The second part of this chapter gives some major applications of multi-
scale methods for problems of flow in porous media. We also comment on
how the methods, studied in this work, can be applied to those problems.

1.1 Motivation

Problems with highly oscillatory coefficients appear in many applications
such as quantum physics, composite materials, and fluid mechanics includ-
ing flow in porous media[LM07]. In many cases they have so-called multiscale
structure meaning that the features of parameters influencing coarse solution
cannot be represented on this scale and the problem is to be solved in mul-
tiple scales. Problems with multiscale nature are very expensive to solve
as the amount of variables on the fine scale can be too large for the mem-
ory of modern desktop computers. That is why during last decade there
was an increase of popularity of approximate, so-called, multiscale methods
that allowed achieving a rough but acceptable solution in short time even
on desktops and quite many papers describing them were published, such
as [HW97, HFMQ98, LM07, NPP08, Nor08]. The main idea of this class
of methods is to compute the fine scale correction also known as fine scale
Green’s functions on the preprocessing step. In the main part of the algo-
rithm they only perform a much cheaper work of solving a perturbed coarse
scale problem.

Though multiscale methods were introduced in nineties and were being

7



8 CHAPTER 1. INTRODUCTION

used for practical engineering applications they still remain controversial.
There are many ways of doing multiscale computations that were proposed
and implemented by different authors but there is not so much comparison
done. There is no knowledge of how to do it best, either. Another open
issue about approximate multiscale methods is whether they should be pre-
ferred to traditional exact multilevel methods such as domain decomposition
or multigrid. The ambition of this work is to overview some examples of
exact and inexact two-level methods for solving multiscale elliptically driven
problems and compare them in some aspects.

Another important thing during solving expensive problems is to opti-
mize the computational time that is required to achieve the result. In order
to improve the computational time, it is very important to use theoretical
knowledge available. In this work we discuss a posteriori error estimates and
their applications for creating adaptive algorithms.

1.2 Applications to flow in porous media

Here we will highlight the applications of multiscale methods to flow in porous
media and formulate related problems going from their physics as it is done
in [Bea88, Aav]. These problems are very important for a number of ap-
plications such as ground water flow, reservoir simulation and simulation of
geological storage of carbon dioxide.

1.2.1 Incompressible single phase flow in porous media

First we consider single phase flow. Mass conservation for any domain Ω
implies ∫

Ω

∂

∂t
(ϕρ)dτ +

∫
∂Ω

ρv · ndσ =

∫
Ω

Qdτ, (1.1)

where ϕ is porosity, ρ is density of fluid, v volumetric flow density, n is an
outer normal to the boundary of Ω and Q is mass source density.

For classical problems of flow in porous media the phenomenologically
derived Darcy’s law is valid

v = −K
µ

(∇p− ρg∇D), (1.2)

where µ is viscosity, K - the permeability tensor, p - pressure, g - gravitational
acceleration, D - depth. If we substitute the formula for flow density into the
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mass conservation equation (1.1) and apply Gauss-Green theorem [Eva98] to
its second term we will end up with a general law for flow in porous media∫

Ω

[
∂

∂t
(ϕρ)−∇ ·

(
K

µ
(∇p− ρg∇D)

)
−Q

]
dτ = 0. (1.3)

If the integrated functions are sufficiently smooth it is possible to rewrite (1.3)
in divergent form:

∂

∂t
(ϕρ)−∇ ·

(
K

µ
(∇p− ρg∇D)

)
−Q = 0. (1.4)

If we consider incompressible flow that is described by ϕ ≡ const and ρ ≡
const; and introduce a potential u = p− ρgD we will end up with an elliptic
equation:

−∇ ·
(
K

µ
∇u
)

=
Q

ρ
. (1.5)

In the later chapters considering this problem we will use the notations:

a(x) =
K(x)

µ
and f(x) =

Q(x)

ρ
.

Equation (1.5) and, especially, its weak form are very important for many
applications. In many cases of porous media we have that K is highly os-
cillatory and contains features that are not always captured on the scale of
discretization that is reasonable for performing simulations. This makes this
problem interesting for solving by multiscale or multilevel algorithms.

1.2.2 Weakly compressible fluid

In the case of weakly compressible fluid we introduce a parameter for com-
pressibility:

c =
1

ρ

dρ

dp
. (1.6)

We assume that flow is weakly compressible, which in the mathematical
model is equivalent to assuming that c is constant and it is small. c is small
in the following sense [Aav]:

c

(
∂p

∂xi

)2

�
∣∣∣∣∂2p

dx2
i

∣∣∣∣ . (1.7)

We also assume that we can neglect gravity. Applying these assumptions to
the divergence form of the flow equation (1.4) we get
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0 =
∂

∂t
(ϕρ)−∇ ·

(
ρ

µ
K∇p

)
−Q

= ϕcρ
∂p

∂t
− ρ∇ ·

(
K

µ
∇p
)
− cρ

µ
∇p · K

µ
∇p−Q

= ϕcρ
∂p

∂t
− ρ∇ ·

(
K

µ
∇p
)
−Q,

(1.8)

as
cρ

µ
∇p · K

µ
∇p is negligible due to our assumptions. After dividing this

equation by ρ we end up with parabolic equation with dominating elliptic
term [Aav]:

ϕc
∂p

∂t
= ∇ ·

(
K

µ
∇p
)

+
Q

ρ
, (1.9)

here ρ can be computed by integration of compressibility equation (1.6).
As the equation (1.9) is dominated by elliptic term the methods for solving

elliptic equations can be applied to it after introducing time discretization.
As K for this problems still behaves badly one needs to invent something
to solve them fast and efficiently. Here multiscale methods are even more
applicable than in purely elliptic problems as it is usually enough to compute
corrections only once or update them rarely.

1.2.3 Two-phase flow in porous media

Here we will consider a case of two-phase flow in porous media assuming that
fluids are incompressible and porosity is constant. In this case we will have
conservation equation for each phase, similar to (1.1):∫

Ω

∂

∂t
(ϕsi)dτ +

∫
∂Ω

vi · ndσ =

∫
Ω

Qi

ρi
dτ, i = 1, 2; (1.10)

where i represents the indices of two fluids e.g. oil and water and parameters
with i here and later correspond to fluid i; si is saturation of phase i. Then
we write Darcy’s law for each phase similarly to equation (1.2)

v = −Kr,i

µi
K(∇pi − ρig∇D), i = 1, 2; (1.11)

where Kr,i = Kr,i(si) denotes relative permeability dependent on saturation
of the phase for which the following inequalities should hold
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Kr,0(s0) +Kr,1(s1) ≤ 1, (1.12)

∂Kr,i

∂si
≥ 0, i = 1, 2. (1.13)

We introduce total volumetric flow density v = v0 + v1 and from mass con-
servation equation applying assumptions of incompressibility get∫

∂Ω

v · ndσ =

∫
Ω

(
Q0

ρ0

+
Q1

ρ1

)
dτ, (1.14)

that is an elliptic equation.
To come to final set of equations we need to introduce new variables and

parameters:

• mobility λi =
Kr,i

µi
,

• fractional flow function f1 =
λ1

λ0 + λ1

,

• capillary pressure pc = p0 − p1.

• h =
λ0λ1

λ0 + λ1

Computing the explicit formula for volumetric flow density of phase 1 from
Darcy’s law (1.11) and using the introduced parameters we get

v1 = f1 · v + hK(∇pc + (ρ1 − ρ0)g∇D). (1.15)

Inserting this expression for flow density into conservation equation with
i = 1 from (1.10) we have

∫
Ω

ϕ
∂s1

∂t
dτ+

∫
∂Ω

[f1 · v + hK(∇pc + (ρ1 − ρ0)g∇D)] ·ndσ =

∫
Ω

Q1

ρ1

dτ. (1.16)

Rewriting the equation in divergent form gives

ϕ
∂s1

∂t
+∇ · [f1 · v + hK(∇pc + (ρ1 − ρ0)g∇D)]− Q1

ρ1

= 0 (1.17)

where after simplifications we get
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ϕ
∂s1

∂t
+∇ · (fv) +∇ · [h(ρ0 + ρ1)gK∇D + hK∇pc)] =

Q1

ρ1

, (1.18)

that is a non-linear parabolic equation with hyperbolic term ∇vf1 coupled
with an elliptic equation (1.14) and algebraic equations for parameters that
are usually derived experimentally gives formulation of the problem for two-
phase incompressible flow in porous media. The methods for elliptic equa-
tions that are discussed in this work cannot be applied directly to solving
this type of problems however they can be useful for solving for elliptic part
of the problem or creating iterative method. When the hyperbolic nature
dominates equation (1.18), this implies that changes happen locally and not
all of the fine scale corrections should be recomputed on each step which
greatly saves computational time.

Successful numerical experiments for multiscale solving of similar equa-
tions are presented by Nordbotten in [Nor08], that motivates further work
in the direction of more complicated problems. Also during the last years
there was a rapid development of multilevel methods for solving nonlinear
equations such as the additive Schwarz preconditioned inexact Newton al-
gorithm proposed by Cai et al. in [CK02] and generalization of variational
multiscale methods to nonlinear problems proposed by Nordbotten in [Nor].
Good understanding of abilities and restrictions of the algorithms for linear
equations lead to possibilities of applying similar techniques for solving more
challenging problems.



Chapter 2

Theory

In this chapter we first in section 2.1 state the model problem for this work,
that is an elliptic partial differential equation (PDE). This work focuses on
solving this equation by finite element method (FEM) that is also described
in section 2.1.

In section 2.2 we give an idea of a posteriori error estimates that can be
used to characterize how good is the numerical solution compare to the exact
solution. We also give an example of a classical estimate for finite element
method.

The rest of the chapter is devoted to theory of multilevel methods. In
section 2.3 we give an overview of multilevel solvers for elliptic equations and
some theory lying beyond them. And section 2.4 is devoted to the variational
multiscale method that is the main focus of this work. We show a derivation
of the method, different forms of it, and a posteriori estimates for the class
of multiscale methods.

2.1 Model problem

In this section we describe a numerical model that is the model problem of
this work. It consists of an elliptic partial differential equation in the weak
form that is described in the first part of the section, and the finite element
method that concludes the section.

2.1.1 Weak formulation

In this work we will primarily consider the Poisson equation - our model
problem:

Formulation 1 Find u(x), solving

13



14 CHAPTER 2. THEORY

−∇ · a(x)∇u(x) = f(x), ∀x ∈ Ω, (2.1)

with zero Dirichlet boundary conditions

u(x) = 0, x ∈ ∂Ω, (2.2)

where Ω ⊂ R2 is a domain of the problem and ∂Ω is its boundary; a is a
weight function, that will in general be a symmetric positive definite matrix;
f(x) is a load function.

Let us first reformulate (2.1) in the weak form. This can be easily ob-
tained by multiplying it by a test function v and integrating over the whole
domain Ω. ∫

Ω

(−∇ · a∇u) vdx =

∫
Ω

fvdx, (2.3)

and integration by part of the left hand side and applying boundary condi-
tions (2.2) gives us: ∫

Ω

a∇u · ∇vdx =

∫
Ω

fvdx. (2.4)

In many textbooks, for example [Joh87, Bra07], it is proved that both u and
v should lie in Sobolev space H1

0 (Ω).
It is easy to see that the integral on the right of (2.4) is a bilinear form

in u and v. From now on, we use the notation:

a(u, v) ≡
∫
Ω

a∇u · ∇vdx. (2.5)

We also notice that the right hand side of (2.4) is a linear functional in v. It
is also an L2 inner product over domain Ω

F (v) ≡ (f, v) ≡
∫
Ω

fvdx, (2.6)

(·, ·) here and later denotes the L2 inner product over default domain Ω; in the
case when not both functions f and v are in L2 we will still use this notation
for a functional applied to v. We can check 4 properties of the formulation
that are sufficient for existence uniqueness and stability of solution [Aav].
Let us list and check them.
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1. Symmetry of the bilinear form

a(u, v) = a(v, u), (2.7)

which is obvious.

2. Continuity of the bilinear form

∃γ = const, ∀u, v ∈ H1
0 , |a(u, v)| ≤ γ‖u‖H1‖v‖H1 . (2.8)

We perform a check:

|a(u, v)| = |(a∇u,∇v)| ≤ ‖au‖H1‖v‖H1 ≤
∥∥√a∥∥

L∞
‖u‖H1‖v‖H1 ;

(2.9)
this gives a finite constant γ while a is in L∞

3. V-ellipticity of the bilinear form

∃α = const, ∀v ∈ H1
0 , a(v, v) ≥ α ‖v‖2

H1 . (2.10)

Taking out the weight a from the bilinear form and applying Poincare-
Friedrich’s inequality (see for example [Bra07]) we have

a(v, v) ≥
∥∥a−1

∥∥
L∞

(∇v · ∇v) ≥ (1 +D)2
∥∥a−1

∥∥
L∞
‖v‖2

H1 , (2.11)

where D is the diameter of our domain. If the a−1 is bounded then
condition 3 is satisfied. If a is a tensor a similar argument should be
applied to its eigenvalues.

4. Continuity of F (v)

∃Λ = const, ∀v ∈ H1
0 , |F (v)| ≤ Λ ‖v‖H1 . (2.12)

This is also easy to check:

|F (v)| = (f, v) ≤ ‖fv‖L2
≤ Λ ‖v‖H1 , (2.13)

if the integral ‖fv‖L2
is finite. This condition is satisfied for all v ∈ H1

if f ∈ H−1.
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Figure 2.1: An example of triangular grid on a square domain.

2.1.2 Finite element method

The Ritz-Galerkin method suggests solving the problem (2.4) on a finite
dimensional space Vh that is a subspace of the original problem space H1.
In case of finite element method we introduce a grid on Ω and so cold finite
element basis. Let us give a precise mathematical definition of finite element
method [Joh87]:

Definition 1 Let

• K ⊂ Ω be a geometrical domain with piecewise smooth boundary,

• PK be a finite-dimensional linear space of functions on K,

• Σ be a set of degrees of freedom chosen for any v ∈ PK to be uniquely
defined by it;

then the triple (K,PK ,Σ) is called a finite element.

Usually the basis associated to Σ is chosen to be piecewise-polynomial with
support on the cells adjusted to one grid point.

In this work we stick to triangular grids (K is a triangle) as shown in
Figure 2.1 as it is well suited for resolving complex geometry. In general,
other types of grids can be used.

The example of a finite element basis that we use in numerical simula-
tions for this work is linear basis, which is sometimes called nodal [BS94],
constructed as follows
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Figure 2.2: Linear basis function

φi =


1, if x = xi
0, if x = xj, j 6= i

linearly interpolated, elsewhere.
(2.14)

One such basis function is demonstrated in Figure 2.2. The linear basis
provides enough smoothness of the solution on one hand and is simple on
the other. In cases with highly oscillatory coefficient a that we consider higher
smoothness is usually not necessary, so piecewise linear functions seem to be
a good choice.

Having a basis we can represent any function in the space Vh as

u =
∑
i

ziφi, (2.15)

If we put this expression into our equation (2.4) and use the basis functions
as test functions then we will get the system of linear equations

a

(∑
i

ziφi, φj

)
=
∑
i

a(φi, φj)zi = F (φj). (2.16)

If we take this for all j from the set of basis function we will end up with
linear system of equations with respect to vector z

Az = b, (2.17)

where A = (a)i,j =
∑
i

a(φi, φj) and bj = F (φj).

As the support of φi in case of our finite element method is local then, in
the sums forming (a)i,j from (2.16) almost all the terms will be equal to zero
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and hence the matrix A form (2.17) will be sparse. As our problem satisfies
properties 1-4 described by (2.7), (2.8), (2.10), (2.12) the resulting matrix
A is an M-matrix for the chosen basis on nice grids. A is symmetric and
positive definite as proved in [Aav], and the linear system can be solved by
the conjugate gradient (CG) method. The algorithm of the method and its
derivation can be found, for example, in [KC91] or later in this work. CG
method sets a number of assumptions on the system but is known to be the
most efficient solver when applicable.

2.2 A posteriori error estimates for the finite

element method

In this section we first give an overview of the error estimate concept and
main classes of them. Then we go through a derivation of a well known a
posteriori error estimate for the finite element method that will be used later
in numerical examples of this work.

2.2.1 Different types of error estimates

Repin in his book [Rep08] gives a good comparison of two main estimate
approaches that we will consider here: a priori and a posteriori error esti-
mates.

If we consider an abstract problem with some dataD we need to determine
what the accuracy of an approximate solution v is.

• An a priori estimate then tells us if we increase the resolution to some
extent, say α times, the error will decrees αβ times.

• An a posteriori estimate, in contrast gives a formula of the following
kind:

‖e‖V = ‖u− v‖V ≤M(D, v), (2.18)

where e stands for error; u is a correct unknown solution to the problem
and M is a majorant that limits the error from above.

If we are able to compute M exactly it is called an error bound, if it is also
dependent on parameter C independent of D that is not determined - it is
an estimate.
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Historically only direct, a priori estimates were used. They usually show
whether the method will converge to a solution, and with what rate of conver-
gence. The classical numerical analysis also studies uniqueness and existence
of solution. These studies are very important but are usually not enough, as
in many cases we know the problem and some solution, but we do not know
how good they are. This question is answered by a posteriori error estimates
that were developed in the last decades.

2.2.2 Error estimate for the finite element method

The popularity of a posteriori error estimates grew during the last decade,
however some of the results in this theory are quite well-known. An example
of the latter is the energy norm estimate for the finite element method that
can be found in the textbooks [Joh87, BS94, EG04, Rep08]. It is also referred
to as the explicit residual method or a special case of Céa’s theorem. This
result, in the way it is described in this work and in the textbooks, is obtained
for the classical Poisson equation, for which a ≡ 1:

a(u∗, v) ≡
∫
Ω

∇u∗ · ∇vdx =

∫
Ω

fvdx, ∀v ∈ H1
0 ≡ V0. (2.19)

where u∗ denotes the exact solution.
Let us obtain the aforementioned estimate, following the derivation in

[Rep08, Chapter 2]. First observe that the difference between an approximate
solution u and the exact solution u∗ in equation (2.19) gives us:

a(u∗ − u, v) =

∫
Ω

(fv −∇u · ∇v) dx ≡ Gu(v), ∀v ∈ V0, (2.20)

where Gu(v) is a linear functional on V0 that we will call the error functional.
The norm of the functional is defined as

‖Gu‖ ≡ sup
v 6=0∈V0

|Gu(v)|
‖v‖a

, (2.21)

and is equal to zero, if u∗ = u; ‖·‖a is the norm induced by the bilinear form
a(·, ·).

We notice that applying (2.20) to v = u∗ − u gives

a(u∗ − u, u∗ − u) = Gu(u∗ − u) ≤ ‖Gu‖ ‖u∗ − u‖a , v ∈ V0, (2.22)
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and as a(u∗ − u, u∗ − u) ≡ ‖u∗ − u‖2
a, it follows that ‖u∗ − u‖a is bounded:

‖u∗ − u‖a ≤ ‖Gu‖ . (2.23)

From the definition of Gu we get an inequality that is opposite to (2.23):

|Gu(v)| = |(u∗ − u, v)| ≤ ‖u∗ − u‖a ‖v‖a , (2.24)

and applying the definition of the norm gives

‖Gu(v)‖ ≤ ‖u∗ − u‖a . (2.25)

Having two opposite inequalities (2.25) and (2.23) means that ‖u∗ − u‖a =
‖Gu‖, however it is practically impossible to compute ‖Gu‖ directly using its
definition (2.21). So to compute the norm of the error functional we need
to use some tricks. We introduce a Galerkin approximation of solution for
finite dimensional space Vh ⊂ V0 then for all functions from this subspace
the weak form of the equation will be satisfied

a(uh, vh) = F (vh), ∀vh ∈ Vh (2.26)

and the error u∗ − uh will be a-orthogonal to any vh ∈ Vh. For this choice of
space, G can be presented as

Guh
(v) = a(u∗ − uh, v) = a(u∗ − uh, v − πhv), (2.27)

where πh : V0 → Vh is an interpolant to the finite dimensional space. For
finite element spaces we can take Clément’s interpolant and use its properties
on each finite element as it is done in [Rep08]. We will finally arrive to the
following inequality

‖u∗ − uh‖2
a ≤ |Guh

|2 ≤ C
∑
k∈L

η2
k, (2.28)

where ηk represents the error on an individual element k and has the following
form

η2
k := diam(Ωk)

2‖∆uh + f‖2
Ωk

+
1

2

∑
l∈L

|Γk,l|

∥∥∥∥∥
[
∂uh
∂nk,l

]
Γk,l

∥∥∥∥∥
2

Γk,l

. (2.29)

Here Ωk stands for individual finite elements that are numbered by index
set L; Γk,l for the boundaries between two elements, diam is diameter of the
element, [·] represents jump. The first term of (2.29) represents the error
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accumulated by the approximation inside the element, and the second term,
that is sometimes called the flow term, is the error on the border between
the elements.

This well known estimate illustrates that finite element approximation,
actually makes sense and as it is shown in numerical results the estimate can
be used for adaptive error control.

2.3 Inexact solvers vs. fast solvers

In this section we give an overview of different approaches to solving partial
differential equations on large domains. We discuss both exact and inexact
methods and highlight their differences and similarities. In the second part of
this section we focus on domain decomposition methods in particular, since
they are important for the numerical part of this work.

2.3.1 Overview

Many areas of modern science and industry require solving partial differential
equations on large grids. Often the scale that is reasonable for numerical
simulation is many times larger than the scale of the involved parameters.
In these cases the fine solution is too expensive to be calculated directly but
the coarse solution is not good enough to capture complex behavior of the
exact solution. This leads to numerical problems with the large number of
unknowns. Such problems cannot be solved exactly with modern desktop
computers using classical solution methods. However, rapid development
of supercomputers during the last decades made this possible and gave a
new challenge of making efficient and preferably parallel algorithms that
take advantages of their computational power and use this power wisely and
efficiently.

In order to solve large problems several approaches have been developed

• upscaling,

• multigrid,

• domain decomposition,

• multiscale methods.

Let us discuss the main idea of each of them.
Upscaling is an inexact approach to problems with multiscale variability

of the parameters. It does not give a solution to the original problem but
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gives some approximation of associated coarse scale problem. The name of
the method is imposed by its principle which is taking the parameters from
the fine scale and somehow upscaling them to the coarse scale of the problem.
The coarse scale is chosen to fit in a computer memory or to satisfy similar
size requirements. There are several way to do the upscaling. One possibility
is heuristics rely upon an assumption of periodicity or nice behavior of a
parameter that gives a starting point for the mapping of the parameters to
coarse scale. The assumptions can be based on physics of the problem or
on the homogenization theory. The homogenization theory is based on the
principle of continuity of the media and hence possibility of scale separation
for the coefficients.

Multigrid is a mathematical approach to large problems. In contrast to
upscaling it is aimed to solve large complicated problems and corresponding
linear systems of equations rather then simplify them. The multigrid meth-
ods are based on properties of iterative solvers. The sharp oscillations of
residual are decaying rapidly but long “waves“ stay long. The idea of the
method is to consider halved grid together with the original; make a map-
ping of the residual between the grids and do this operation recurrently we
obtain a grid with only a few nodes. For many problems this purely algebraic
operation of mapping gives outstanding results. More information on multi-
grid methods can be found in [BHM00]. Multigrid algorithms are used in
many modern solvers and probably are the most efficient method for solving
large problems. However its efficient implementation requires fine tuning of
a number of parameters that are highly dependent on the problem.

As multigrid, domain decomposition is aimed at solving large problems
exactly. The idea of domain decomposition methods is to divide the original
domain of the problem into smaller sub domains, solve those local subdomain
problems, and use the local solutions to reconstruct the solution of the whole
problem. Modern algebraic approach to domain decomposition is to use the
information obtained from solving local problems to create a preconditioner
for original problem. More details on domain decomposition methods will
be given in the following section. Multilevel implementations of domain
decomposition show linear convergence and are relatively easy to implement,
that is why they are chosen as a benchmark in this work.

Finally we will discuss multiscale methods that are relatively new. They
form a large class of methods that are becoming popular during recent years.
Original concept of the methods was combining known techniques of upscal-
ing with the opposite operation called downscaling that transfers data back
to fine scale and hence improves the resulting solution.

A multiscale method is not a completely different approach compare to
the methods described above. Relation of special cases of multiscale methods
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to homogenization theory is discussed in detail by Nolen et al. in [NPP08]
and relationship with non-overlapping domain decomposition can be found
in [NB08]. As a conclusion we can say that multiscale methods are some kind
of compromise between inexact solvers and fast solvers which can provide
a nice control over error if used adaptively. Further, the reader can find
description of variational multiscale method and numerical result of adaptive
error control.

2.3.2 Domain decomposition

Domain decomposition methods are known to be a very efficient way of
solving elliptic equations. They are particularly interesting in this thesis
as they can work as a good benchmark for multiscale methods. Firstly,
they give the exact Galerkin solution to compare an approximate multiscale
solution to. Secondly, they give the time in which it is possible to compute
this correct solution. Exceeding this time asymptotically makes no sense for
an approximate algorithm.

The detailed description of this class of methods can be found in textbooks
such as [SBG96, TW05]. Here we give only a short overview of them. We
will discuss a two level overlapping domain decomposition method used as a
preconditioner. This method is very important as it is the simplest approach
to domain decomposition that provides linear scalability.

To solve the linear system obtained by the finite element (or in general
any other discrete) method (2.17) we need to find A−1b. Iterative method
will converge faster if we are able to find a matrix that approximates A−1

and use it as a preconditioner for original system.
Let us consider domain Ω and some triangulation of it as it is done in

model problem section. We then introduce a decomposition of it into sub-
domains Ωi so that Ω = ∪i∈IΩi. In the preferable case of matching grids
that we will stick to, Ωi have their borders along triangulation. Tests show
that in order to make a domain decomposition method more efficient, inter-
sections between Ωi should be non-empty but relatively small; nevertheless
non-overlapping methods are still possible. It is also known, that for optimal
performance of the algorithm number of subdomains should be proportional
to the unknowns in each of them.

We want to approximate the solution by a sum of solutions on subdo-
mains. To do so, we need to project the residual onto subdomains and have
a way to perform the opposite operation. We introduce so-called restriction
operators Ri : Ω → Ωi. For the case of matching grids these operators are
permutation matrices (Ri)k,j = 1, if node k in original numbering is pro-
jected to node j in Ωi. It is not hard to notice that matrix RT

i , called the
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Figure 2.3: Example of conformal grid partition

reconstruction matrix will project elements back from Ωi to Ω. Then we
approximate A−1 as

Ã−1 =
∗∑
i∈I

RT
i A
−1
i Ri, (2.30)

where Ai is a matrix that is generated by a discrete method on subdomain
Ωi. Algebraically, Ai can be obtained as Ai = RiAR

T
i . In case of our model

problem this is the finite element method on domain Ωi with zero Dirichlet
boundary condition.

In formula (2.30) summation with a star means that we may not want
to sum the repeated components. More precisely, if we have a non zero
component on position j, k in both (RT

i A
−1
i Ri)jk and (RT

l A
−1
l Rl)jk it is not

sensible to sum them, as they correspond to the same point of the actual
solution. Instead of summing, it is reasonable to take their average or just
neglect one of them. This smart summation is not a necessary condition for
the method to work but it often improves the preconditioner and hence the
rate of convergence.

The way of approximation of A−1 described above, is associated to one
level additive Schwarz method. We should note that the inverse matrix is
never found or stored explicitly and A−1 basically mean solving iteratively
associated linear system.

For the case of two level methods additionally to subdomains we introduce
so-called coarse domain. We consider another grid and construct a system
matrix by the method associated with it. In the simplest case we have
conforming grids meaning that the fine grid can be obtained from the coarse
grid by a refinement of the coarse grid. In general, this is not always true
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and an interested reader can find more information in [SBG96]. An example
of a subdomain partition can be found in Figure 2.3; one of the subdomains
in the partition is highlighted with gray, the overlap area is marked in light
gray, the points of the coarse grid are marked by black dots. In addition
to coarse domain we also need to have a way to project functions given in
original fine coordinate basis into the coarse basis. There exists a number
of possibilities to perform this operation. Here we will discuss only one
of them that is similar to projection and reconstruction used in multigrid
methods [BHM00].

If the grids are conforming, there is an intuitive way to interpolate a
function from the coarse grid onto the fine, that gives a matrix that we
will call the reconstruction matrix for coarse domain and denote as RT

0 . As
commonly done in multigrid methods to provide the opposite operation a
weighted average is used, that is equal to cR0. In our case, the resulting
matrix is used as a preconditioner, and hence the constant multiplier c can
be neglected, as it has no influence on the structure of the resulting matrix.

The two level preconditioner for the two-level domain decomposition ad-
ditive Schwarz method will look like

M−1 =
∗∑

i∈{0}∪I

RT
i A
−1
i Ri. (2.31)

where A0 as preciously Ai, is the matrix for the coarse discrete method. The
feature of the two level additive Schwarz method is that all the problems
Aizi = bi can be solved independently and in parallel which gives great ad-
vantage in case of multi-processor systems. As we use solutions to subdomain
problems only as a preconditioner, it is not necessary to solve them precisely
or to the same accuracy as the original system [SBG96].

The solution of the original system in case of domain decomposition meth-
ods can be obtained by Krylov subspace or other iterative methods using
M−1 as a preconditioner. In Figure 2.4 we give a preconditioned conjugate
gradient algorithm that converges for symmetric and positive definite matri-
ces. A matrix obtained from the model problem will satisfy these properties
under condition of regularity of grid that can be easily fulfilled [Aav]. In CG
algorithm given in Figure 2.4 uk is an approximation of solution, u0 is an
initial approximation, and M is a preconditioner matrix.
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Figure 2.4: Preconditioned conjugate gradient method. (Taken from Toselli
and Widlund [TW05].)

2.4 Variational multiscale method

In this section we discuss variational multiscale methods, which are the main
focus of this work. We give a derivation of the VMS, give formulations
described by Larson et al. and Nolen et al. and look at the relation between
them. We also describe possible choices of decompositions between the coarse
and the fine scale. Finally, we discuss approximations of the fine scale that
play an important role for a multiscale method and describe Larson et al.
error estimate that gives a clue of how good the approximations are.

2.4.1 Introducing scales

Let us consider the weak formulation of the model problem

a(u, v) = (f, v), ∀v ∈ V, (2.32)

where V is some finite-dimensional finite element subspace of the original
space H1

0 (Ω).
In order to formulate a variational multiscale method (VMS) as it is done

in many papers such as [HFMQ98, LM05, LM07, NPP08] we first introduce
spaces:

• Vc ⊂ V - the coarse space;

• Vf ⊂ V - the fine space;

with the requirement that any function in V is uniquely decomposed into
these subspaces:
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V = Vc ⊕ Vf . (2.33)

As the weak formulation holds for all functions in the original space V it
will also hold for both Vc and Vf . If we use the uniqueness of decomposition
and represent the solution as u = uc + uf , and test functions as v = vc + vf ,
where uc, vc ∈ Vc and uf , vf ∈ Vf , we end up with the following two equations:

a(uc, vc) + a(uf , vc) = (f, vc), ∀vc ∈ Vc,
a(uc, vf ) + a(uf , vf ) = (f, vf ), ∀vf ∈ Vf .

(2.34)

It is easy to notice that the equations are fully coupled and are to be solved
together. It is natural that we want to decouple them as this will reduce
computational cost. To do so we will use linear properties of the bilinear
forms and functionals that enter into the equations (2.34).

2.4.2 Decoupling by introducing coarse scale residual

In this subsection we consider the way of decoupling described by Larson and
Målqvist in [LM07]. We introduce a residual function R(v) in a weak sense
as follows

(R(v), w) = (f, w)− a(v, w), ∀w ∈ V. (2.35)

If we consider the residual of coarse scale, R(uc) and put it into the fine scale
equation from (2.34) we have

a(uf , vf ) = (R(uc), vf ), ∀vf ∈ Vf . (2.36)

We substitute MR(uc) ≡ uf , obtained by solving (2.36) into the coarse
equation from (2.34) and get

a(uc, vc) + a(MR(uc), vc) = (f, vc), ∀vc ∈ Vc,
MR(uc) ≡ uf .

(2.37)

M is an affine operator and has influence on both the right hand side and
the left hand side.

In order to reduce computational cost we would like to decrease the com-
plexity of the fine scale problem. One of the ways to obtain it is the divide and
conquer principle, that is to divide the original problem into sub-problems
and solve them separately. Following the derivation in [LM07] we introduce
a partition of unity {ψi}i∈I over the domain Ω. In this case we require that
functions ψi forming the partition of unity are non-negative and belong to
C∞ inside the elements, but we do not require C∞ continuity on the whole
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domain Ω. We apply functions from the partition of unity to localize the
test functions on the right hand side (2.36) and hence decompose it into
sub-problems as follows:

a(uf,i, vf ) = (R(uc), ψivf ), ∀vf ∈ Vf . (2.38)

If the functions from the chosen partition of unity ψi have local support we
can hope that the solutions for the corresponding problems ui either have
local support or decrease rapidly outside of support of ψi; more detailed
discussion can be found later in this chapter and in numerical experiments.

We obtain the fine scale solution as uf =
∑
i∈I

uf,i and notice that it is the

solution to (2.36) by the following computations

a(uf , vf ) = a

(∑
i∈I

uf,i, vf

)
=
∑
i∈I

(R(uc), ψivf ) = (R(uc), vf ). (2.39)

2.4.3 Decoupling by introducing basis corrections

In this section we will describe a way to decouple the multiscale problem
given in (2.34) as it is suggested by Nolen et al. in [NPP08].

First of all, we will treat the coarse scale residual given in (2.35) as two
separate terms: one coming from the remainder of right hand side that goes
to the fine scale and the other from the coarse solution. Then we rewrite the
fine scale equation from (2.34) and get two equations instead:

a(uf,0, vf ) = (f, vf ), ∀vf ∈ Vf , (2.40)

where uf,0 is the fine scale part corresponding to the right hand side, and

a(M0R(uc), vf ) = −a(uc, vf ), ∀vf ∈ Vf , (2.41)

where M0R(uc) is the part of fine scale corresponding to the coarse scale
error. M0 here is linear in uc and later we sometimes use notation M0uc
instead of M0R(uc) which is valid due to linearity. But in the latter case,
M0 is different and obtained from

a(M0uc, vf ) = −a(uc, vf ), ∀vf ∈ Vf , (2.42)

Function uf,0 is the part of the solution independent from uc that can be
treated separately and gives no coupling. Nolen et al. claim in [NPP08]
that for many practical problems this term can be negligible or of minor
importance. The reduced equation for the coarse scale can be written as:
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a(uc, vc) + a(M0R(uc), vc) = (f, vc), ∀vc ∈ Vc, (2.43)

and the solution is computed as

u = uc +M0R(uc) + uf,0. (2.44)

as M0R(uc) is linear in uc we can rewrite the equation for the fine scale as

a((I +M0)uc, vc) = (f, vc), ∀vc ∈ Vc, (2.45)

where I is the identity operator and M0 is the linear operator computed
from (2.42). We can think of (I + M0)vc, where vc ∈ Vc, as of a new
perturbed basis and solve the problem with respect to it. We should notice
that the span of this basis describes some subspace of V .

As in the previous case we want to split the fine scale problem (2.42)
into sub-problems. In this case we stop on a particular case rather then on
some abstract choice of partition of unity. We pick out the corrections that
correspond to different basis functions from Vc as follows

a(uf,i, vf ) = −a(φizi, vf ), ∀vf ∈ Vf , (2.46)

where φi is a coarse basis function corresponding to variable zi. Using this
splitting we can easily compute the matrix for the finite element method by
introducing a new basis φ̃i = φi+z

−1
i uf,i, and putting ũc ≡

∑
i∈I

φ̃izi into (2.45)

instead of (I +M0)uc.

2.4.4 Comparison of formulations

Here we are interested in comparing the formulations discussed above. The
coarse scale equations are the same, so we need to study how different the
fine scale equations are.

For the formulation by Larson et al. we put the explicit representation of
residual R(uc) from its definition in (2.35) into the equation (2.38) and get

a(uf,i, vf ) = (f, ψivf )− a(uc, ψivf ), ∀vf ∈ Vf . (2.47)

In the formulation by Nolen et al. we have (2.46) and (2.40) that we
rewrite here for comparison purposes

a(uf,i, vf ) = −a(φizi, vf ), ∀vf ∈ Vf ,

and
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a(uf,0, vf ) = (f, vf ), ∀vf ∈ Vf .
In the Nolen formulation fine correction is treated separately and can also be
decomposed into several problems but so far we leave it alone. We compare
the basis correction (2.46) with the second term with (2.47). We notice that
choosing partition of unity ψi satisfying ψiuc = φizi ≡ uc,i will give us

a(uc,i, vf ) = a(ψiuc, vf ) = a(uc, ψivf ), (2.48)

due to bi-linearity of a(, ). It is not so easy to write out an explicit formula
for ψi, but it is not needed for any practical purposes.

If we add the right hand side correction from (2.40) to (2.46) we notice
that the Nolen et al. formulation, which is nicer for implementation and
understanding purposes, is equivalent to formulation used by Larson et al.
with a special choice of ψi.

2.4.5 Symmetric formulation

The derivation of the variational multiscale method that is given above ends
up with (2.45), which is referred to as the non-symmetric formulation. One
can also consider a symmetric form of the multiscale method that is consid-
ered for example in [NPP08]:

a((I +M0)uc + uf,0, (I +M0)vc + uf,0) = (f, (I +M0)vc + uf,0), ∀vc ∈ Vc.
(2.49)

This equation directly follows from the original problem formulation (2.32)
and the decomposition of Galerkin solution given by (2.44) and the fact that
(I +M0)vc + uf,0 lies in space V . In [NPP08] Nolen et al. notice that if we
replaceM =M0 + uf,0 byM0 in this equation it will still remain valid and
will take a form

a((I +M0)uc, (I +M0)vc) = (f, (I +M0)vc), ∀vc ∈ Vc. (2.50)

It can be proved by subtracting fine correction equation (2.40) with test
function uf,0, namely a(uf,i, uf,i) = (f, uf,i); and also noticing that due to
independence of uf,i from vc ∈ Vc,

a((I +M)vc, uf,0) = 0 = a(uf,0, (I +M)vc)

as noticed in [NPP08]. Depending on the requirements imposed by the prob-
lem we can either ignore uf,0 term or solve the equation for the right hand
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side correction (2.40) approximately. Computing the exact solution of (2.40)
makes no sense as it is at least as expensive as the original problem.

Solving the multiscale problem in symmetric formulation generally gives
a denser matrix on the fine scale, however the resulting matrix is symmetric.
This is important since using approximation of fine scale correctionsM0 gives
a well-posed problem on the coarse scale [NPP08] which for non-symmetric
formulation is not always the case.

2.4.6 Introducing approximations

So far, no approximations have been made, and if we solve the final system
in any of the two considered formulations exactly, we will get the best fit
solution in the chosen finite element space V . However the complexity of
the problem in its exact multiscale formulation is much higher then the com-
plexity of the original problem, and hence solving it exactly makes no sense.
Experiments [HW97, NPP08] show that if we solve some of the problems
approximately the results may still remain acceptable but the computational
time required will be much lower.

Though the partition of unity ψi is chosen so that the support of each
function is local, the solution of each sub-problem due to its elliptic nature
will be, generally non-local. It is rapidly decaying, however, outside of the
support of the load function. A reasonable way to make the problem less
complex is to solve the local problems on the patches, denoted by ωi, that
should at least contain the support of ψi. The size of the patches will be a
trade-off between the accuracy of the solution and the computational cost.
Example of how the correction decay can be found later in Figures 3.7 or 3.8.

A natural question that one may have is: “How do I choose the size of the
patches?”; and it is indeed important. It follows from the minimum principle
for elliptic equations (see [Eva98]) that if both the solution and its gradient
on the border of the patch come to zero, then the solution will not increase
any further and will stay equal to zero outside this patch. Some examples
of dependency of error on the patch size as well as an adaptive algorithm to
control it can be found in numerical results of this work.

2.4.7 Choice of space decomposition

In the formulation of VMS we mention that there is some space decomposi-
tion V = Vc ⊕ Vf . The properties of the method will be influenced greatly
by the choice of it. We will focus on two, probably most natural, choices:

• the hierarchical basis [LM05, LM07],
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• the fine space that is H1
0 orthogonal to the coarse space [NPP08].

By the hierarchical basis we mean that we exclude nodes of the coarse grid,
from the fine grid, constraining fine scale functions to be zero at those points.

H1
0 -orthogonal basis can be described as follows: we take vc ∈ Vc and

vf ∈ Vf , we require that their inner product in H1 is zero; (vc, vf )H1 = 0.
This can be obtained, for example, by solving a constrained system using
Lagrange multipliers as it is shown in the numerical part of the work.

It is hard to answer which choice of decomposition is better. One can
claim that the hierarchical basis is easier to implement end the associated
linear system has better properties. In contrast, H1

0 -orthogonal decomposi-
tion gives a natural property of fine scale correction of being zero in mean
and vanishes for homogeneous problem, but gives a non-symmetric linear
system representing saddle point problem. We conclude that the choice re-
mains problem-dependent and experiments are needed to compare effective-
ness these two approaches.

2.4.8 A posteriori error estimates for VMS

Larson et al. in [LM07] prove a theorem giving error estimates for variational
multiscale method. It states that the error in a(, ) norm, equal to ‖u‖a =√
a(u, u), will look like

‖e‖2
a ≤ C

∑
i∈L

(
‖HR(uc)‖2

ωi
+ ‖(a− ā)∇uc‖2

ωi

) ∥∥∥∥ 1√
a

∥∥∥∥2

L∞(ωi)

+ C
∑
i∈F

(∥∥∥√HΣ(uf,i)
∥∥∥2

∂ωi

+ ‖hRi(uf,i)‖2
ωi

)∥∥∥∥ 1√
a

∥∥∥∥2

L∞(ωi)

+ C
∑
i∈F

(
‖(a− ā)∇uc‖2

ωi
+ ‖(a− ā)∇uf,i‖2

ωi

)∥∥∥∥ 1√
a

∥∥∥∥2

L∞(ωi)

.

(2.51)

Let us describe all notation that appears in the error estimate (2.51) and
discuss the meaning of each term.

H and h are naturally the typical grid resolution for the coarse and the
fine grid respectively. In the general case, the parameter a that is associated
with permeability lies in L∞(Ω). As in many formulas we need to compute L2

norm containing a as a multiplier, we would like to approximate permeability
with ā that is piecewise polynomial in Ω and hence square integrable.

R(u) = |f +∇ · ā∇u|+ 1/2 max
∂K\Γ

H−1
k |[ā∂nu]| (2.52)
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is the residual on the element and on the element’s border where discontinuity
occurs. This formula is similar to formula (2.29) that appears when we study
classical a posteriori error estimates for the finite element formulation of the
problem.

Now let us discuss the sets that appear as enumeration for coefficients
in sums. Say, for our partition of unity ψi, index i lies in some set N . We
consider direct decomposition of N into two sets N = L t F , where L is an
index set for which we do not compute fine scale approximations and F is
an index set where we solve the fine scale problem on some sub-domain ωi.

Σ(uf,i) is computed by solving the problem

(−Σ(uf,i), vf )∂ωi
= (R(uc), ψivf )ωi

− a(uf,i, vf )ωi
, ∀vf ∈ Vf (ωi). (2.53)

In the equation above the problem is solved for the boundary of the con-
sidered patch ωi and test functions vf are taken from the space Vf (ωi) that
is Vf (ωi) without the requirement that the function is equal to zero on the
border of the patch not coinciding with the boundary of the domain Ω. For-
mally

ωi = ωi ∪ (∂ωi \ (∂Ω ∩ ∂ωi)) .

Let us shortly stop on the meaning of each term (sum of terms) of the
estimate (2.51). The first sum contains ‖HR(uc)‖2

ωi
that correspond to the

error caused by not solving the fine scale equations for i ∈ L and the term
associated with corresponding approximation of permeability a. The second
sum shows the main part of the error coming from the approximate solution
of fine problems. Its second term gives unavoidable error of Galerkin solution
on the fine mesh, or, in other words, approximation of replacing the original
problem by a finite dimensional one. The first term of the second sum is
associated with the remaining flux through the border of the patch ωi and
corresponds to the error from solving the sub-problems locally. And the third
sum gives the error from approximation of permeability for i ∈ L.

In this work we mainly consider a bit simplified version of the estimate.
We will assume that permeability a is given as a piecewise polynomial func-
tions which, is true for the most of the applications. Then in (2.51) a ≡ ā
and a simplified version of the estimate looks as follows
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(2.54)

As we have noticed above in Section 2.4.4, the formulation of Nolen et al.
is equivalent to formulation by Larson et al. with a special choice of partition
of unity. This means that the estimate can be used for both formulations.
We also notice that in the proof of the estimate in [LM07] the restrictions
are set only to the original finite dimensional space and coarse space, but
not on space decomposition so we conclude that the estimate (2.51) and
its simplified version (2.54) are applicable to a sufficient class of multiscale
methods. In the numerical results chapter we have examples of its practical
applications.



Chapter 3

Numerical results

In this chapter we present various numerical examples of the methods that are
described in this work. In the first part we present an adaptive refinement for
finite elements. In the rest of the chapter we focus on variational multiscale
methods: we formulate a numerical model, argue and give examples of typical
space decompositions and discuss convergence and performance of VMS with
and without adaptive overlap control.

3.1 Examples of adaptive refinement

In this section we discuss an example of using the estimates for the finite
element method that are discussed in section 2.2.2 for creating an adaptive
refinement algorithm.

For this section we will consider a test problem that is a special case
of the model problem for this work. The classical estimate derived for the
finite element method in Section 2.2.2 is given for the Poisson equation for
which a ≡ 1 and in this section we stick to it. As an example we will take a
problem given on an L-shaped domain with the right hand side equal to one
everywhere

a(u, v) = (1, v), ∀v ∈ V = H1
0 (Ω), (3.1)

where Ω is L-shaped domain as illustrated by Figure 3.1. This problem is
interesting as a benchmark for adaptive algorithm, as it has a singularity
at the corner (0.5, 0.5). The solution at this point is not in H2 but only in
H1 [Aav], and we expect that the error for an approximate solution will be
greater in this point. As there is only continuity in the first derivative, use
of more expensive high-order elements makes no sense and we will use linear
elements given by formula (2.14).

35
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Figure 3.1: L-shaped domain

For the choice of the right-hand side and the elements made in our ex-
ample, the estimate for the finite element method (2.28), (2.29) is slightly
simplified and can be written as

‖u∗ − uh‖2
a ≤ C

∑
k∈L

η2
k, (3.2)

η2
k := Cdiam(Ωk)

4 +
1

2

∑
l=L

|Γk,l|

∥∥∥∥∥
[
∂uh
∂nk,l

]
Γk,l

∥∥∥∥∥
2

Γk,l

. (3.3)

Since the diameter of an individual element Ωk is small we can, in practice,
neglect the fourth-order term Cdiam(Ωk)

4.
To make an adaptive refinement algorithm one can use the following argu-

ment: as the estimate (3.2) is split into terms corresponding to one element
each, it makes sense to refine elements for which the error is greater.

Knowing what element to refine one still needs a strategy of how to per-
form this operation. A common way of doing it on a triangular grid is to
split triangles for which the error is greater than some threshold, in four
parts as it is shown in Figure 3.2 in the center. After doing that, use split-
ting into two or three parts to remove vertices inside edges, as it is shown in
Figure 3.2 in triangles adjusted to the central. We choose splitting in two or
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Figure 3.2: Splitting triangles in four, two or three parts keeping their form.

Figure 3.3: Solution on a simple grid

three parts so that the edges proportion is preserved and the resulting grid
remains well-shaped.

Now let us consider some simple results of numerical simulations. In
Figure 3.3 we can see a solution on a simple coaxial triangular 12x12 grid,
and the structure of the grid itself. As it was mentioned above, we expect that
the biggest error occurs near the mid-point. If we then take 6x6 and 12x12
grids and run several steps of refinement we will get Figure 3.4. We notice
that only few new vertices (and hence degrees of freedom) are introduced.
However, as we can see further, the solution is improved greatly.

We now consider the point error that is computed with comparison to
the solution on a very fine grid in several points of the L-shaped domain, see
Figure 3.5. We notice that linear finite element method with refinement for
points closer to the singularity (plotted on the right) not only overtakes the
non-refined method, but performs almost as good as more computationally
expensive FEM with quadratic elements. Away from singularity, the results
for the refined grid are still much better than the results for non-refined grid,
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Figure 3.4: Grid and solution after several steps of refinement (6x6 in the
left and 12x12 in the right)

Figure 3.5: Error compared to the fine solution computed for different meth-
ods at several points
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Figure 3.6: Solution on a very fine refined grid

though they are no longer the match for smother quadratic methods. Finally
we look at a very fine solution on a grid built adaptively, see Figure 3.6;
we notice that the smallest sells are located around point of singularity,
confirming the theory.

3.2 Performance of variational multiscale method

In this section we describe some of numerical examples obtained for one
of possible formulations of variational multiscale algorithms from different
aspects using domain decomposition as a benchmark. We start with for-
mulating the problem for numerical simulation. Then we briefly stop on
comparison of the behavior of fine scale corrections. And finally we give ex-
amples of convergence and performance of the VMS in its non-adaptive and
adaptive formulations.

3.2.1 Model problem

The formulation that we focus on is a symmetric two level method with
decoupling of spaces by introducing basis corrections, as it is described in
Section 2.4.3. We use piecewise-linear hat functions (2.14) as the finite ele-
ment basis on the coarse scale and H1

0 orthogonal piecewise linear functions
for the fine scale corrections to both: coarse basis functions, and the right
hand side. Finally, the formulation looks as follows:
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Formulation 2 Find the solution u = (I +M0)uc + uf,0 by solving

a((I +M0)uc, (I +M0)vc) = (f, (I +M0)vc), ∀vc ∈ Vc; (3.4)

where parts of the correction M0uc,i =M0φizi are found from

{
a(M0φi, v) +

∑
j∈I

λj(∇φj,∇v) = −a(φi, v),

(∇φj,∇v) = 0, j ∈ I,
∀v ∈ Vh, i ∈ I,

(3.5)
where Vh is the fine solution space and I is the enumeration set for the coarse
scale basis φi; and uf,0 from

{
a(uf,0, v) +

∑
j∈I

λj(∇φj,∇v) = (f, v),

(∇φj,∇v) = 0, j ∈ I,
∀v ∈ Vh. (3.6)

The problems in (3.5) and (3.6) are constrained problems, and λj are the La-
grange multipliers [Bra07]. To force fine scale corrections to beH0

1 -orthogonal
to the coarse scale we instead solve a problem on fine scale with intro-
duced constrains on the test function v, (∇φj,∇v) = 0 which correspond
to H0

1 semi-norm. It is known [Eva98] that (∇φj,∇v) = 0 is equivalent to
(φj, v)H1

0
= 0, which denotes H1

0 inner product.
We take the symmetric formulation as it gives a symmetric and better

conditioned matrix. And, as it is noticed in [NPP08], the symmetric for-
mulation is well posed even if M0 is computed approximately. We choose
this way of space decomposition as it has zero average which is natural from
homogenization and there is no known results of adaptive algorithms for
them.

3.2.2 Fine scale corrections for different types of space
decomposition

As it was discussed before in Section 2.4.7, the choice of decomposition
between the coarse and the fine space is crucial for variational multiscale
methods. In this section we will present two computational examples that
correspond to different choices of decomposition.

Let us first introduce the notion of patch radius. We make an assumption
that the partition of unity ψi introduced in (2.38) is constructed so that for
each i it lies within one triangle from point j. In case of the formulation in
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the form of basis corrections, i will always be equal to j and the assumption
will be automatically fulfilled for the linear basis that we consider in the
model problem (2.14).

Definition 2 We give a recurrent definition:

1 A subdomain is called a patch with radius 1 around point j if it consists
of triangles adjusted to point j.

i A subdomain is called a patch with radius i around point j if it is
constructed as the intersection of the patch with radius i − 1 around
point j and all triangles around vertexes that lie inside that patch of
radius i− 1.

Under the assumptions that we have made, the right hand side for the lo-
calized fine scale equation (3.5) will be zero outside the patch of size greater
then 1 around corresponding point.

Let us consider two examples of localized solutions uf,i solved on different
size of patches, see Figures 3.8 and 3.7. We notice that for both choices of
space decomposition for the patch radius equal to one, we get steep gradi-
ent on border of the patch which is an unpleasant effect meaning that the
approximation is very inaccurate, so for oscillatory a in the model problem
the patch size should be at least of size 2, which we notice later applying
adaptive algorithm.

As to differences of space decompositions, we notice that in case of H1
0

orthogonal basis as shown in Figure 3.7 we, as expected, get zero average in
contrast to the other choice. In case of the hierarchical basis, the fine scale
correction has an overshoot near the border of a patch of radius one, see
Figure 3.8. The author’s experience as well as some early publications on
VMS show that the overshoot causes so-called resonance behavior that ruins
even coarse scale solutions.

As it was mentioned in the numerical model formulation, our choice of
space decomposition is the one implied by H0

1 orthogonality. The drawback
of it is that we have a more complicated saddle point problem (3.5) on the
fine scale. However it gives a great advantage as well. The second set of
equations from (3.5) implies that for homogeneous parts of the domain the
correction is always zero, as for this case the right-hand side

−a(uc,i, v) = −C(∇uc,i,∇v) = 0,

which follows directly from one of constrains. So, for i in homogeneous
regions we may not solve the problem (3.5) at all.
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Figure 3.7: A typical localized solution uf,i for fine scale correction with H1
0

orthogonality on patches with radius 1, 2, 3 and equal to entire domain.

Figure 3.8: A typical localized solution uf,i for fine scale correction with
hierarchical orthogonality on patches with radius 1, 2, 3 and equal to entire
domain. (Taken from Larson and Målqvist [LM07].)
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Figure 3.9: Logarithm of piecewise constant random permeability field.

3.2.3 Convergence and performance of the variational
multiscale method

In this section we look at examples of how fast VMS converges and how accu-
rate it is for different patch sizes. The results are obtained from solving the
model problem presented in Section 3.2.1 and are compared to the solution
obtained by two-level domain decomposition method from Section 2.3.2 with
linear hat functions as bases on both the coarse and the fine scales.

Let us consider choices of parameters used for the following tests. We
take a square domain of size one. As permeability a in the model equation
we take highly oscillatory piecewise constant random field such as one shown
in Figure 3.9. As the right-hand side of the equation, we take the Dirac
δ-function at point (0.5, 0.5) that in case of reservoir interpretation of the
problem represents a point injection well. For these choices, Galerkin solution
looks as shown in Figure 3.10.

As mentioned above, we focus on the formulation by Nolen et al., for
which z−1

i uf,i is the correction for the basis. We also need to remember
about the correction for the right hand side uf0 that cannot be neglected in
general, but in many cases can be approximated. For the considered case the
right hand side correction is presented in Figure 3.11 and, as one can notice,
it is far from being zero but is mainly localized around the injection point.
As this work does not focus on approximating uf,0 we will assume we have
it a priori. We will not include the computation of it as being expensive but
will add it to solution umultiscale when comparing it to the Galerkin solution
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Figure 3.10: The solution for test problem.

Figure 3.11: Correction for the right-hand side with a point well.
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Figure 3.12: Convergence of the variational multiscale method to the
Galerkin solution with increase of patch diameter and time spent for solving
the problem, ms.

u∗. This assumption is very important as we need to filter out results for the
method being tested.

Theory implies that if we make no approximation such as localizing basis
functions’ corrections on patches or, in other words, take those patches equal
to the whole domain Ω, we should still get the exact Galerkin solution. We
also hope that the multiscale solution will converge monotonically to exact
solution with increase of patch radius.

Let us take a look at how the method converges (see Figure 3.12). We
notice that the error in both L2 and H1 decreases monotonically and consid-
erably fast with increase of patch diameter. The diameter 8 corresponds to
the discrete resolution of the coarse grid. We can also notice that the error
decreases in L2 up to residual tolerance, meaning that we actually get the
exact solution up to a computational error, which implies that the multiscale
method works correctly.

Also in Figure 3.12 we see the time needed for variational multiscale
method to compute the solution, and there is a similar plot of the time for
domain decomposition given for comparison. We notice that domain decom-
position for patch diameter greater than one is faster then VMS. The reason
why we consider elliptically dominant time dependent problems in introduc-
tion, is that for purely elliptic problems exact algorithms such as domain
decomposition perform better. The most of the time multiscale method
spends to compute corrections (3.5), but the time for solving coarse problem
with perturbed basis (3.4) for this problem is not greater then a millisecond
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Figure 3.13: Time performance of the methods, ms.

and is hard to compare. For small sizes of the problem time for the coarse
solution of VMS is almost equal to the time needed for the classical finite
element solution of the coarse problem, though the matrix is less sparse. So,
for problems with time dependency, where we can keep the corrections as in
the parabolic case or recompute only some of them as in case of coupling
with transport, a multiscale method can gain advantage over classical fast
solvers.

Another important aspect of performance is scalability. So, let us consider
how the VMS scales with increase of unknowns on the fine scale and compare
it to the result of domain decomposition. A correction on patches of different
sizes shown in Figure 3.7 studied by an “eye norm”implies that for patch
sizes greater then 2 the correction is small. So we will compare the speed
of domain decomposition to VMS with patch radius set to 3. The plot can
be found in Figure 3.13. We can again see that the domain decomposition
being an exact algorithm is faster then the variational multiscale, but we
need to remember that the most of the time to solve multiscale formulation
is spent on the phase of precalculation. This means that in time dependent
elliptically driven problems on each time step we only need to resolve for
the coarse scale, which is very cheap. And in Figure 3.13 we see that coarse
solution of VMS is many times faster then the domain decomposition and if
the number of steps, for which we can keep corrections is sufficiently large
the multiscale method will gain advantage over an exact solver.
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Together with plots of performance of the domain decomposition and the
multiscale algorithm in Figure 3.13 we see plot of the number of unknowns.
It is done to indicate linear scalability on logarithmic plot. We notice that all
three curves are almost parallel to this line, which means that both algorithms
have linear scalability.

Also we should notice that for the simulations described in this work no
preconditioning is used for acceleration of variational multiscale methods. So
in industrial applications if the preconditioner is applied the computational
time can be seriously reduced. There exist effective domain decomposition
methods for preconditioning saddle point problems involved in computation
of corrections, but their implementation can be quite complicated and they
are not studied in this particular work.

3.2.4 Examples of adaptive overlap control

As we have discussed above we have a Larson et al. a posteriori esti-
mate (2.51) for variational multiscale methods which is applicable to the
problem formulation that we are using. In this section we will discuss nu-
merical results for applying its simplified version (2.54):
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,

(3.7)

to control the diameter of the patches for the local correction functions.
In this work we will only consider adaptivity with respect to the size of

overlap or, in other words, the patch sizes of the local problems. To construct
an error indicator for the algorithm we will use the estimate (3.7). So, let us
point out main driving terms for our error indicator.

• For sub-problems that are not solved on the fine scale at all or, equiv-
alently, for i ∈ L, it is ‖HR(uc)‖2

ωi
.

• For those, that have a solution forM0φi ≡ z−1
i uf,i , it is

∥∥∥√HΣ(uf,i)
∥∥∥2

∂ωi

.

We also assume that constant C and

∥∥∥∥ 1√
a

∥∥∥∥2

L∞(ωi)

go into the limiting thresh-

old. We need to notice that

∥∥∥∥ 1√
a

∥∥∥∥2

L∞(ωi)

, that requires some effort to be
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computed, is not the main driving part of the estimate as the heterogeneity
influences the solution and comes into Σ(uf,i) term. So, we neglect it for
simplicity.

To compute Σ(uf,i) we need to solve problem (2.53) that can be rewritten
for the basis correction formulation as:

(−Σ(uf,i), vf )∂ωi
= −a(φiz

−1
i , vf )ωi

− a(M0φiz
−1
i , vf )ωi

, ∀vf ∈ Vf (ωi),

where ωi is a patch on which the corresponding problem is solved. For our
choice of space decomposition solving this problem is not quite straightfor-
ward so we solve a saddle point problem instead, as we did in formulation of
our numerical model:


(−Σ(uf,i), v)∂ωi

+
∑
j∈Ii

λj(∇φj,∇v)

= −a(φiz
−1
i , v)ωi

− a(uf,i, v)ωi
,

(∇φj,∇v) = 0, j ∈ Ii

∀v ∈ Vh(ωi), (3.8)

where Ii is the set of finite element coarse basis functions that lie inside
the patch ωi. We also notice that the problem in (3.8) is solved only on
the boundary of the patch and time to solve it is negligible compare to the
problems for M0φi on the same patch.

As earlier for adaptive refinement we argue that we can treat the estimate
separately for different parts of the domain which we call patches. We start
out with no multiscale corrections applied and increase the patches for parts
exceeding the threshold.

For testing of our adaptivity technique we used test cases similar to those
used by Nordbotten in [Nor08]. For the right hand side of our equation we
use two point wells located symmetrically from the center of the unit square
domain production and injection. From mathematical point of view they are
represented as −δ(xp) and δ(xi) respectively, where δ(x) is the Dirac delta.
This setup, from point of view of applications, is a model representing a
common production pattern.

Let us consider a domain with constant permeability first, where a ≡ 1
and the model equation becomes the Poisson equation. For this case the
adaptive algorithm even for very small thresholds finishes with the maximum
patch size equal to 1 and L2 error equal to eL2 ≈ 2.3E − 6 which is below
residual tolerance of the solver. This goes well with the theory: for the
homogeneous case we expected H0

1 orthogonal corrections to be zero and
hence no corrections are needed. The algorithm finds that the flux error Σ
on the boundary of any patch is zero and stops after first iteration.
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Figure 3.14: Logarithm of a partially homogeneous permeability field.

Another important numerical result is that the error indicator that we
are using does not suggest that we stop after the first iteration when subdo-
main problems are not solved, meaning that some study of constants in the
estimate (3.7) is still required.

Now we consider a more complicated case where the parameter a is piece-
wise constant and is equal to a1 ≡ 1 in all the domain except for one square
where it is a2 ≡ 1e − 4, see Figure 3.14. We consider the plot of L2 error
against the amount of computational effort needed to computed, where the
latter is expressed as fraction of fine scale needed to be solved, see Figure 3.15.
The plot shows that the adaptive strategy actually works well for domains
with local heterogeneity. With less then 10% of the fine correction being
used, it converges up to an accuracy close to numerical errors. However, we
also notice that the behavior is not monotone for small amount of overlap.
A possible reason is that for a certain choice of the threshold the corrections
computed approximately form a wrong system for the coarse problem.

A good illustration of how the adaptive algorithm decides on the choice
of patch sizes is shown in Figure 3.16. For corrections far from discontinuity
the radius is not greater then 1, and they are almost equal to zero. They are
not shown in the figure.

The corrections shown in Figures 3.7 and 3.16 as well as later in Fig-
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Figure 3.15: L2 error of the adaptive algorithm depending on computational
cost for the domain with local heterogeneity.

ure 3.20 require some comment. They show not correction to the solution
as it is done in Figure 3.8 in [LM07] but correction to the basis function as
described in the Nolen et al. formulation of the algorithm. The correction
z−1
i uf,i that is described in equation (2.46) should be understood as opera-

tor M0 for the basis function φi. In order to get correction to the solution,
one should simply multiply it by the corresponding value of the coarse scale
solution zi, computed from (2.45) or equivalently (2.50).

For highly oscillatory random data as shown in Figure 3.9 and discussed
in the previous section for the non-adaptive algorithm, the results of using
adaptive algorithm are not so impressive, see Figure 3.17. As expected, the
classical uniform refinement strategy gives results similar to adaptive one and
in order to have a good VMS approximation of the solution we need to pay big
computational cost as radiuses grow proportionally in all the domain. The
only advantage of adaptivity in this case is that the patches corresponding
to higher values of coarse solution increase first.

Finally we consider a more complicated case of realistically heterogeneous
media. As data for parameter a we take a square from layer 1 of well-
known SPE10 benchmark, that is shown in Figure 3.18. If we change the
threshold value for the adaptive algorithm we get a plot of error depending
on computational effort as shown in Figure 3.19. For this complicated test
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Figure 3.16: The form of some patches achieved by the adaptive algorithm
on the inhomogeneous case compared to logarithm of permeability.

Figure 3.17: L2 error of the adaptive algorithm depending on computational
cost for random permeability field.
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Figure 3.18: Base 10 logarithm of permeability for layer 1 of the SPE 10

Figure 3.19: L2 error of the adaptive algorithm depending on computational
cost for SPE10 layer 1.
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Figure 3.20: The form of some patches achieved by the adaptive algorithm
for SPE10 level 1 compared to base 10 logarithm of permeability and to the
finite element solution.
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we notice that there is a serious improvement of the multiscale algorithm
over the coarse solution even for small percentage of the fine scale being
solved. However we can notice that convergence to the finite element solution
is not monotone for smaller values of the overlap. This problem can be
explained by non-compensated corrections as in case with local heterogeneity.
As noticed in theoretical section, to compute a true multiscale solution we
need to solve fine scale corrections on the whole domain. Sometimes taking
one of corrections larger than its neighbors leads to getting extra error in the
final multiscale solution.

For 17% of fine scale solved, the corrections on adaptively constructed
subdomains look as it is shown in Figure 3.20. We notice that the largest
radius of subdomain where corrections are solved corresponds to areas where
the oscillations of parameter a are high or close to solution peaks. This choice
of the patch sizes is intuitively correct and goes well with theory.

We can conclude that adaptive patch control with the suggested error
indicator in many cases gives an improvement over non-adaptive methods.



Chapter 4

Conclusions

In this work we present a class of variational multiscale methods. This class
includes two methods of decoupling equations for the fine and the coarse
problems:

• by introducing residual (proposed by Larson and Målqvist [LM07]),

• by introducing correction to coarse basis (proposed by Nolen Papani-
colaou and Pironneau [NPP08]).

We prove, that the method used by Nolen et al. is equivalent to the special
case of the method used by Larson et al. We also consider two different
choices for splitting between the fine and the coarse space:

• the hierarchical basis,

• H1
0 -orthogonal spaces.

We adopt an a posteriori error estimate for the VMS method that was re-
cently proposed by Larson et al. in [LM07] and show that it is applicable to
the whole class of VMS methods discussed in this work.

For the numerical tests we use the Nolen et al. formulation with H1
0 or-

thogonality between the fine and the coarse space. We chose this formulation
because it is more intuitive for understanding and using. In this formulation
they suggest excluding the correction for the right-hand side from the multi-
scale solution. This is an important assumption for elliptically driven time-
dependent problems for which the right-hand side changes on each time step.
Computing this correction is expensive and according to [NPP08] is not im-
portant to many applications of multiscale methods. For the decomposition
between the spaces we use H1

0 orthogonality because it gives a natural zero

55
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average of the corrections and does not give an overshoot on the border of
support of a basis function. This decomposition also gives a trivial solution
for the case of homogeneous parameter.

We also demonstrate an implementation of adaptive patch size control
based on the error indicator induced by the estimate from [LM07]. Develop-
ing an adaptive algorithm for the considered problem is a new contribution of
this work. Numerical results show that the adaptive algorithm reduces com-
putational time for many cases. For the considered formulation notably good
results are achieved for the parameter fields with local heterogeneities. For
these cases adaptive strategy recognizes the patches for which the parameter
is constant and keep them minimal, which decreases the total computational
time.

However, for relatively big threshold values we notice that its decrease
does not imply decrease of the actual error will decrease. In other words, in-
creasing the patches does not always guarantee improvement in the resulting
multiscale solution. This issue does not mean that the error estimate does
not work, but points out that the estimate is rough. So in order to ensure
monotonic behavior of the error we should force the size of the patches to be
large.

4.1 Reflections on the method

Now, after discussing advantages of adaptive error control, let us summarize
how our numerical results characterize the behavior of the considered VMS
method. As we showed in Numerical results the method performs relatively
well for several test problems and shows close to linear scalability. It is not
efficient enough for purely elliptic problems, since the approximate compu-
tation of the corrections takes more time then the Galerkin solution for the
fine scale. However, for-time dependent problems this can be understood as
a precalculation which is done only once and pays off for a sufficient number
of time steps.

It is worth saying that there are numerical simulations, not included in
the work, for which the VMS method does not converge to the Galerkin
solution for a large number of unknowns. In these problems, distribution of
the parameter a has complicated non-local patterns with high jumps (e.g.,
layer 65 from SPE10, see Figure 4.1). For these problems small numerical
errors in fine scale corrections influence considerably the matrix of the coarse
scale, which, finally, results in large errors in the multiscale solution. In these
cases adaptive patch control does not help, either.

One of possible reasons for the poor performance is the choice of decom-
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Figure 4.1: Base 10 logarithm of permeability for layer 65 of the SPE 10.

position. In order to find the fine corrections for the H1
0 decomposition we

need to solve a saddle point problem. For this type of problems the associ-
ated linear system matrix is quite complicated and can have high dispersion
of its eigenvalues. This makes iterative methods slow to converge and also
increases the ratio between the solution error and the residual tolerance,
which cannot be totally avoided by preconditioning. Composed together,
errors in the solutions of the the fine scale effect the coarse scale which in the
end, for complicated problems, may ruin the multiscale solution. One of the
ways to avoid this is, for instance, to use hierarchical space decomposition.
We have not performed proper numerical simulations for this choice of de-
composition. Our early implementations show that for small patch sizes the
multiscale method with hierarchical decomposition seriously suffer from the
resonance effect due to the overshoot, and show poor results even for simple
tests.

Another issue of the algorithm is the assumption that the fine scale cor-
rection to the right hand side of the model equation is small or easy to
approximate, which is not true in general. For instance it is large for point
well injection, see Figure 3.11. This additionally limits the applicability of
the method.

Finally we need to notice that it is possible that the VMS for finite element
formulation is not the best idea for complicated cases. For complicated pa-
rameter fields the corrections have a strong non-local influence on the coarse
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system, regardless of the choice of decomposition, and hence for obtaining
accurate results the corrections cannot be localized. A possible solution to
this is to choose a different formulation for the model problem, which we
touch briefly in the following section.

4.2 Relation to other works

Let us look at the relation of this work to previous publications.

4.2.1 Adaptivity for variational multiscale methods

We have shown that the error estimate proposed by Larson et al. can be
successfully applied to a larger class of methods than was initially consid-
ered in in [LM07]. We see that for the H1

0 orthogonal space decomposition
the adaptive strategy works well for many test problems. Due to its zero
mean property the algorithm needs no refinement for problems with locally
homogeneous parameter in zones with homogeneity.

4.2.2 Behavior of the method for different problems

As noted above we have noticed poor performance of the finite element
VMS method for the problems with structured distribution of the param-
eter with high jumps of discontinuity in it. The numerical tests for the
finite element multiscale method were published in several papers includ-
ing [HW97, LM07, NPP08]. So, let us have a brief comparison of the results.
In all of these papers they claim good performance of the method, however
the tests performed are quite simple. They use either random or periodic
distribution of parameters, for which in our work we also see a good perfor-
mance of the method. None of these papers use realistic heterogeneous test
cases that are both challenging and needed in practical applications.

4.2.3 A different formulation of multiscale method

In conclusion we suggest trying different problem formulations for multi-
scale method to be applicable for more challenging problems as SPE10. For
instance Nordbotten in [Nor08] achieves good results using a problem for-
mulation with explicit formulation for the flux. This suggests that the finite
element method is not the best choice as the base for constructing VMS
methods for complicated cases.
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