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Preface 
 
This thesis is the result of three years research on seismic depth imaging of complex structures of 

thrust and fold belts with example from the Iranian Zagros fold belt. I left National Iranian Oil 

Company after more than 10 years of working to the University of Bergen in order to strengthen 

my scientific background in one of the subjects that is a hot topic in the exploration seismology. 

 

The thesis is organized according to the regulations of the University of Bergen and consists of 

two separate and complementary parts: 

 

Part I: Monograph or summary that includes 7 chapters and 64 pages. This part includes a 

summary of the research results presented in the papers in part II, and is meant to provide the 

overview of the entire research conducted and the relations between the papers. In this sense there 

is inevitably some repetitions between part I and II, however there is also additional information 

and some elaborations on the individual results that are presented in the papers in part II. 

 

In the first chapter (Introduction) the objectives of the thesis, seismic imaging problems in 

complex structures of thrust and fold belts with special reference to Zagros fold belt and the state 

of the art solution presented. This chapter continued with a brief summary of the geologic setting 

of the Zagros fold belt and the data specifications (a regional 2D time migrated seismic line and a 

3D preprocessed time gathers from mountainous area in the Zagros fold belt) used in this 

research.  

 

The second chapter is about the 2D regional asymptotic interface based modeling (first paper of 

part II) in the Zagros fold belt. This is for the first time that seismic forward modeling has been 

applied in the Zagros fold belt.  

 

The third chapter is a short but necessary section about additional pre-processing for seismic 

depth imaging purposes especially in areas of poor quality reflection seismic data. 

The fourth chapter includes the proposed procedure for depth migration velocity analysis using 

tomographic updates (the second paper of part II) constrained with different a priori information. 

The procedure has been applied on a 3D dataset from Zagros fold belt and the results also briefly 

presented in this chapter. 
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The fifth chapter is about single arrival Kirchhoff prestack depth migration (The third paper of 

part II). In this chapter the results of 4 different single arrival Kirchhoff prestack depth migration 

is presented.  

 

In the sixth chapter the effect of detailed modelling in complex structures has been investigated 

(The fourth paper of part II). The complexity of seismic wavefield has been revealed with detailed 

geological modelling of the overburden and target intervals. Finite difference forward realization 

has been used at this part of the research.  

The seventh (last) chapter is the conclusion. This includes the concluding remarks for the whole 

research. 

 

Part II: This part consists of the four papers out of which three are already published in relevant 

scientific journals and the fourth one is in peer-review. Following is a list summarizing the state 

of each paper.  

 

Paper 1: Alaei, B., 2005. Seismic forward modelling of two fault-related folds from the  

Dezful embayment of the Iranian Zagros Mountains. Journal of seismic exploration,  

vol. 14, Number 1, 13-30. 

 

Paper 2:  Alaei, B., 2005. An Integrated procedure for Migration Velocity Analysis in  

complex Structures of thrust- belts. Journal of Applied Geophysics xx (2005) xxx–    

xxx (available online from December 20, 2005). 

 

Paper 3: Alaei, B., and J., Pajchel, 2006. Single Arrival Kirchhoff prestack depth  

      migration of complex structures from Zagros fold belt. CSEG Recorder vol. 31,   

      January 2006, pp 41-48. 

 

Paper 4: Alaei, B., and S., A., Petersen. Detail geological modelling and finite difference  

forward realization of a regional section from the Zagros fold belt (Submitted to The 

Petroleum Geoscience). 

 

 

Page numbers are continuous for part I however for part two they are different, where the page 

numbers of the first three papers are the numbers assigned by the journals 
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Most of the figures presented in part I do not have their exact locations. This is due to the 

limitations posed by the confidentiality of the data used in this research which is in accordance 

with the terms and conditions stated in the confidentiality agreement that has been signed between 

the institute and the Oil Company. Although the exact locations of the seismic lines are not shown 

(i.e. the horizontal axes information is either too small to read or not shown), the horizontal scale 

is indicated by a scale bar allowing the reader to understand the lateral extent.  

 

Behzad Alaei  

      January 31, 2006 
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Abstract 
 
The ultimate goal of seismic data processing is to recover an image of the subsurface geological 

structure. Seismic forward modelling has been applied in a regional 2D section from the Zagros 

Fold and Thrust belt (FTB) in order to evaluate the seismic response and quantify the imaging 

problems in the Zagros type setting. Both asymptotic and finite difference forward realization 

methods have been applied. The shared earth modelling strategy has been used in the model 

building process for finite difference realization. The method represents the subsurface 

independent of the input requirements of the forward algorithms. The structural and stratigraphic 

detail included in the model is completely consistent with the real geological details. The finite 

difference seismic response shows several non-hyperbolic events, and diffractions. Poor 

illumination occurs under the thrust fault planes and thick overburden (salt and shale units). 

 

In areas of complex geology, such as subsalt structures or fold thrust belts (for example Zagros 

FTB), prestack depth imaging is the only way to produce an accurate image of the subsurface. 

Seismic depth imaging includes velocity estimation and migration. Velocities are needed for 

depth migration, the process that converts seismic data, recorded as functions of time, into a depth 

image of the subsurface.  

 

Conventional velocity analysis methods generally assume flat-layered geology with small lateral 

velocity variations. In areas of complex geology, the velocity structure is correspondingly 

complex, with significant lateral variations, so conventional velocity estimation methods fail, and 

more sophisticated techniques are required. One of these methods, seismic reflection tomography, 

compares observed traveltimes, measured for each source-receiver, with modelled traveltimes 

computed by ray tracing through a pre-defined velocity model. The differences are projected back 

over the traced ray paths to generate the updated velocity model. Reflection tomography often 

converges slowly. When pre-stack depth migration is performed with incorrect velocity model 

reflectors in depth migrated gathers are not flat. The degree of non-flatness is a measurement of 

the error in the model. Tomography uses this measurement of non-flatness (residual moveout) as 

input and attempts to find an alternative model, which will minimize the errors. One of the most 

common and also practical ways to constrain the velocity determination process is through 

seismic interpretation. Velocity model building is far more effective when strongly linked to an 

interpreted structure. An interpretational velocity analysis approach in seismic exploration ensures 

the development of accurate results. 

 

An integrated velocity estimation method based on hybrid tomographic methods (grid-based and 

layer-based) is presented for a complex structure. In the proposed workflow, seismic 
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interpretation and geological controls are involved in the tomographic interval velocity analysis 

from the very first stage of initial model building up to the final updated high-resolution velocity 

model. The integrated method has been applied on a real 3D dataset from the Iranian Zagros FTB. 

This is significant because of the paucity of published processing examples for the complex 

overthrust and mixed carbonate-clastic-evaporate typical of the Zagros setting. The final velocity 

obtained improves to a large extent the focusing of the migrated image.      

Strong topographic variations, and irregular spatial sampling in the Zagros, make the Kirchhoff 

prestack depth migration the method of choice. Single arrival Kirchhoff prestack depth migration 

method has been applied to the 3D dataset from mountainous area of the Zagros. Both minimum 

travel time and shortest path have been tested as criteria for the single arrival. Two different 

coordinate systems (rectangular and spherical) have been used in computing the travel times. The 

complex velocity structure of the overburden, intense faulting, significant thickness variation and 

folds with steep to overturned flanks were among the sources of complexity in the area. Around 

the flanks of folds with very steep limbs the single arrival with the shortest path and not the 

minimum travel time, gives better focusing. The spherical coordinate system for travel time 

computation gives better results. 
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1      Introduction 
 
1.1    Objectives of the thesis 
 
The ultimate goal of seismic data processing is to recover an image of the subsurface geological 

structure. Seismic imaging in general and seismic depth imaging in particular is the most 

computationally demanding part of seismic processing. Seismic depth imaging includes velocity 

estimation and migration as the two parts that are closely linked together. Velocity is needed in 

order to have proper focusing of the data during migration and migration itself removes the effects 

of the wave propagation from source to imaging point and back to the receiver. In complex 

geological situations such as subsalt structures or fold and thrust belts seismic depth imaging 

becomes difficult from the point of view of velocity estimation and of migration. Fold and thrust 

belts are an integral part of the orogenic belts in the world that have received great attention due 

to their high potential for hydrocarbon exploration. Therefore exploration seismologists have 

intensively investigated seismic depth imaging of these folds and thrust belts.  

 

The first oil discovery in Iran occurred on May 26th 1908 in Masjide Soliman in Asmari 

carbonates of the Iranian Zagros FTB. The first seismic refraction acquisition was acquired in the 

late 1920’s in the Zagros area and continued later by reflection methods. Structural complexities 

in the studied area were first seen in the late1940’s. For instance in Lali 11 some repeated 

intervals were observed and has been interpreted as reverse faulting in 1948 (Motiei, 1995). Later 

the structural complexities became more evident since the simple structural traps-anticlines, had 

already been explored. Reflection seismic data were quite useful in finding the crestal parts of 

structural traps but in most of the discovered oil fields the 2D high coverage seismic profiles 

failed to give a good and clear image from the flanks of the structures (particularly the southern 

one). This ambiguity in the structural definition made the interpretation difficult and more 

dependent on knowledge of structural styles (Bally, 1983, Mitra and Fisher, 1992).  The reliance 

on structural styles is necessary in view of the fact that the quality of the seismic images of fold 

and thrust structures is poor. Parts of the stratal geometry maybe clearly shown while other parts 

show either a lack or a confusing overabundance of reflection signals (Lingrey, 1991). Figure 1.1 

shows one example of the ambiguity in seismic images from the structures in the Zagros FTB. 

The northeast flank can easily be interpreted while the continuation of the structure towards the 

southwest is not clear. Therefore complexities in the structure are one of the main sources of the 

reduction in seismic image quality. So I had the question in mind, 

 

” Is there any possibility of improving the quality of the images to obtain a better understanding 

of the subsurface by seismic depth imaging?” 
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The sources of complexities are not sources of noise but they can be regarded as sources of our 

failure in data analysis. As Jon Claerbout (1985) has stated: “Noise in seismology can usually be 

regarded as a failure of analysis rather than something polluting the data “. So the main objective 

of this study is 3D seismic depth imaging of complex structures with an integrated approach. This 

includes forward modelling, depth migration velocity analysis, and prestack depth migration. The 

two parts of the seismic depth imaging- velocity estimation and migration will be looked at in 

detail in an integrated approach. The idea is to investigate the currently available methods in 

seismic depth imaging and combine them with the complexities explained above to derive a 

solution for seismic imaging in the Zagros FTB. 

 

 
 
 
 
1.2    Imaging Problems in Zagros FTB 
 
Most of the problems in seismic imaging are due to the complexities of fold thrust belts both in 

structure (structure dependent complexities) and rock types (structure independent). Figure 1.2 is 

a sketch cross-section through a typical thrust and fold belt from Jones, (1982). Some of the 

difficulties in fold and thrust belts are: steep dip of the beds, overturned beds, complex thrust fault 

geometry (along the bedding planes and cutting the beds), detachment levels, thrust vergence, 

repeated intervals, and asymmetric folds associated with thrusts. It is the task of seismic imaging 

in thrust and fold belts to reveal these types of structural complexities in seismic reflection data. 

Figure 1.1 2D migrated seismic profile (1200% coverage) from the Dezful 
embayment area. The seismic image quality in one flank of almost all of the 
structures (usually the southern flank) is poor. The yellow ellipse shows the 
complex flank. 
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 In the Zagros FTB these problems exists together with difficulties associated with a variable 

thickness, incompetent, internally faulted and folded shallow section which is deformed in a 

disharmonic style with respect to the deeper section. The complexities in the Zagros FTB can be 

summarized as follows: 

 

 There are two mega intervals in the Zagros FTB (Figure 1.3). The first one (shallow section) is 

consists of incompetent materials such as marl and salt and it will be called post-Asmari interval 

(it includes from top Aghajari, Mishan and Gachsaran formations). The second interval (deep 

section) is consists of competent materials mainly carbonates and will be called pre-Asmari 

interval. The velocity variation of the two formations above Gachsaran in the post-Asmari interval 

(Mishan and Aghajari) is more or less depth dependent.  

 

In the lower part of the post-Asmari section (Gachsaran formation right above the Asmari) there is 

large thickness variation over short distances with internal faulting and folding. This interval 

shows disharmonic deformation with the pre-Asmari interval. This thickness variation causes 

Figure 1.2 Typical thrust belt, showing thrust and listric normal faults, duplex structures, and   underthrust 
foreland margin (Jones, 1982). 

Figure 1.3 3D prestack time migrated section showing the significant thickness variation in the post-Asmari 
interval. The interval between the green horizon (Asmari formation) and the  surface represents the 
overburden interval. 
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rapid lateral velocity variation that is a challenge for most imaging methods. Internal faulting and 

folding form a complex geometry that causes severe problems for ray-based imaging methods. 

Figure 1.3 is a prestack time migrated seismic section that shows the thickness variation of the 

post-Asmari interval together with its structurally complex geometry (steep dips) The Gachsaran 

formation includes several layers of salt and anhydrite. The thickness of these salt intervals and of 

other incompetent intervals changes rapidly due to compression. There are also rapid lateral 

changes in rock types (due to the nature of deposition of these sediments) making this formation 

complex in terms of rock properties. There are several velocity inversions in the Gachsaran 

interval that make it difficult to obtain correct images especially when working with average 

velocities.  

 

Another problem generated by the Gachsaran formation is poor illumination of the intervals 

below. This happens particularly when the upper part of the formation is exposed at the surface. 

In such cases shots are located on this formation and experience has shown that there is a problem 

with energy penetration to deeper intervals. In these locations obtaining well-focused seismic data 

is very difficult due to poor illumination. In the Pre-Asmari interval the problems can be 

summarized as follows:   

Fold geometry: In the folds imaging the flanks is almost always a problem especially when the 

limbs have high dips. In such cases the ray-based imaging methods have difficulties in 

illuminating the flanks. Good offset distribution is a key factor in imaging  

these structures. In the Zagros FTB the flanks of the anticlines in the pre-Asmari interval are 

usually asymmetric. The unclear image from steep folds became the subject of discussion among 

geophysicists and geologists. Geophysicists put thrust in the flank of the folds to describe the 

geometry while geologists believed in overturned limbs of the folds (Motiei, 1995).  

 

The second main problem is the complex internal microstructure of folds in the pre-Asmari 

interval. Seismic data shows very roughly that the structural configuration of deeper levels in the 

pre-Asmari interval often conflicts with that defined at shallower parts. As a result of this 

ambiguity the wells drilled at apparently undisturbed parts of the anticlines (mainly crest of the 

folds) encountered structural complexity at deeper levels. In such cases any attempt to interpret 

the poor quality seismic profiles were based mainly on the structural styles not on what can be 

extracted from the data itself. 

 

 The third problem is the effect of major structural elements (so-called basement trends). This 

type of structures is quite important in terms of geology. Since these elements bring different 

types of rock units adjacent to each other they cause raypath bending and therefore it is not easy 
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to follow them in seismic data. The focusing around these structures is a difficult task. The 

important characteristic feature of these elements is their large vertical extent and limited lateral 

extent. 

 

The last problem of pre-Asmari interval is lithological variation within rock units. Velocity 

variation in carbonates is not depth dependent but it is dependent on depositional environment. 

Therefore it is difficult to derive a correct interval velocity for processing purposes. Velocity 

inversion also happens in shale units bounded between carbonate units. There are two such major 

velocity inversions in the pre-Asmari interval.  

 

 

1.3    State of the art solutions 
 
Understanding the complexities of the subsurface is a key factor in selecting the best strategy for 

seismic imaging. The other important aspect is to understand the limitations of the seismic data 

that is being imaged. The parameters of the input seismic data including sampling of the data, 

noise content, and pre-processing steps applied have a severe effect on the results of any seismic 

depth imaging. In particular understanding the limitations on resolving dip and velocity due to 

sampling is a key factor (Lines, et al., 2000). The State-of-the-art technology for velocity 

estimation is global tomographic methods that give structurally consistent results.  

 

Reflection tomography (Stork and Clayton, 1991, Stork, 1992, Clapp, et al., 2004, Van Trier, 

1990, Etgen, 1990) is one of the most effective and widely used velocity estimation methods. This 

is the best way to take into account the lateral variations of interval velocity as opposed to single 

station velocity analysis methods where any estimation is independent of surrounding points.  

 

Tomography of Common Reflection Point gathers is a method for refining the velocity - depth 

model when prestack depth migration is performed with an incorrect velocity model. Tomography 

uses the non-flatness measure of CRP gathers as input and searches for an alternative model, 

which will minimize the error. There are two methods available for reflection tomography called 

grid-based (Stork, 1992) and horizon-based (Kosloff, et al., 1996). 

 

There is no more important tool for a structural geophysicist than prestack depth imaging (Lines, 

et al., 2000). The current state-of-the-art in the migration part of seismic imaging uses wave-

equation prestack depth migration for the depth migration algorithm. With land seismic data with 

strong topographic variation due to the datum related problems these methods do not work as 

efficiently as with offshore data. Kirchhoff prestack depth migrations that run directly from 
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topography (Gray, et al., 1998, Gray and Marfurt, 1995, Lines, et al., 1996) have been successful 

in complex fold and thrust belts. 

 

The goal of this thesis is first to run forward modelling to see the possible problems of imaging in 

the studied area. This is an important step since there has been almost no attempt before to 

quantify the depth imaging problems in the Zagros FTB. Asymptotic and finite difference 2D 

seismic forward realizations on a regional profile crossing several oil fields with good well 

control provide the opportunity to make the velocity and density close enough to reality. The 

modelling results are important in understanding the complexities and choosing the best imaging 

method both for velocity estimation and migration. The second goal is to investigate migration 

velocity analysis in this complex fold and thrust belt with special reference to the depth 

tomographic method. The research will be carried out on a land 3D dataset from the Iranian 

Zagros Mountains with strong topographic variations. The idea is to estimate and modify the 

velocity in a sequence of processes with different tomographic methods and control the inversion 

by appropriate a priori information.  

 

Finally after derivation of a velocity model that yields more focused images single arrival 

Kirchhoff prestack depth migration will be applied with different travel-time calculation methods. 

Therefore in brief in this dissertation seismic forward modelling (asymptotic and finite 

difference), a hybrid tomographic migration velocity analysis and prestack depth migration 

algorithms will be analyzed for complex fold and thrust belts with strong topographic variations. 

 

1.4    Geologic settings 
 
The Zagros FTB is located in the south-southwest of Iran and forms the northern edge of the 

Arabian Plate trending NNW-SSE (Sepehr and Cosgrov, 2004, Sherkati and Letouzey, 2004). 

Northward movement of the Arabian plate accounts for the crustal shortening in the Zagros with 

its associated folding, thrusting, and large-scale strike-slip faulting (Sepehr, 2000). Figure 1.4 

shows the structural setting and tectonic sub-divisions of the Zagros FTB. Three major 

deformation fronts are shown in the figure. The regional structural elements bounding the major 

deformation fronts are the Zagros Main Thrust Fault in the northern part, then the High Zagros 

Fault, the Mountain Front Fault and finally the Zagros Front Fault in the south. The main tectonic 

units are the Thrust zone or Imbricate Zone and the Simply Folded Belt (Figure 1.4). In addition 

to the tectonic division parallel to the mountain belt, the Zagros FTB has some structural trends 

laterally dividing the whole mountain belt into geological provinces (Sepehr, 2000). These 

geological provinces from northwest are the Lurestan, the Dezful embayment and the Fars region 

(Figure 1.4). The Thrust Zone is between the Zagros Main Thrust and High Zagros Fault. Intense 
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faulting happened in this zone and the geological formations are heavily thrusted in a southwest 

trend. The Simply Folded Belt is characterized by relatively less intense tectonics. The intensity 

of folding varies from place to place and most of the folds are almost asymmetrical or overturned 

and/or overthrust to the southwest.  

The morphotectonic subdivisions that are mentioned for the Zagros FTB could be compared with 

other fold and thrust belts such as the southern Rockies. The foothills, middle range and main 

western range of the southern Rockies (Mitra, 1992) can be compared with the foothills and 

Simply Folded Belt and the Thrust Zone in the Zagros FTB. This comparison is good that it can 

provide some further evidences for subsurface interpretation. The Dezful embayment in the 

northern part of the Zagros FTB is a structural depression that is characterized by having only two 

outcrops of the Oligo-Miocene Asmari formation and is one of the geologic provinces inside the 

Simply Folded Belt that is the transitional zone between Thrust Zone in the north and more stable 

Khuzestan plain in the south that has experienced varying sedimentation through geological time 

(Patinson and Takin, 1971, Motiei, 1995). Some geologists (e.g. Favre, 1975) have thought that 

the style of folding in the Dezful embayment is more or less similar to the northern part of the 

mountain front and it is always not easy to distinguish the folds from two sides while others (e.g. 

Mapstone, 1978) have observed a distinct change in structural style across the mountain front 

fault. Northeast of the Mountain Front Fault structures are tight while southwest of the Mountain 

Front Fault in the Dezful embayment structures are normally open thrust faulted anticlines with 

obtuse interlimb angles widely spaced between sub horizontal planar synforms (Mapstone, 1978). 

 

The compressional folding commenced during or soon after the deposition of the Asmari 

formation. Evidence suggests that the Gachsaran formation was mainly deposited in the subsiding 

lows in such a way that the thickness variation of this formation is controlled both by deposition 

Figure 1.4 Structural setting and tectonic sub-divisions of the Zagros FTB. The three major deformation fronts of 
the Zagros and their intersection with strike-slip fault zones are shown in the figure (Sepehr, 2000). 
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and tectonics (e.g. Oswald, 1978). In late Pliocene times low angle thrusting together with folding 

had taken place to give a deep structural configuration very much as observed today (Mapstone, 

1978). 
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1.5    Data, parameters, complexities 
 
Two different types of data have been used for this research, seismic and non-seismic. The 

seismic datasets used were both 2D and 3D. The first one is a post stack time migrated 2D seismic 

line for regional forward modelling purposes and second one is 3D dataset (preprocessed data) 

from the mountainous area close to the Mountain Front Fault. The location of the 2D seismic line 

is shown in figure 1.5.  

The acquisition and processing parameters of the 2D regional line are listed in table 1:  

Table 1:  Acquisition parameters of the regional 2D line used in forward modelling 

RECORDING PARAMETERS RECORDING GEOMETRY 

02-12   to    20-12-1976 

Format         TI DFS V   

Record Length: 5seconds 

Sampling rate: 2ms 

Filters 8-128Hz 

 Dynamite reflection surface 

 shooting end on 

Spread: 0-1080-3900m (0-1200-4020 for shot points 751-803) 

Station interval: 60m 

Shot point interval: 120m 

Geophone pattern: 96 geophone G.S.C. 20 D, 

 8 rows of 12 

Shot point pattern: 100LBS (40 charges-4 rows of 10) and 150LBS 
(60charges –6rows of 10). 

 The processing parameters of the 2D regional line are in table 2: 

Table 2:  processing sequences of the regional 2D line used in forward modelling 

RECORDING PARAMETERS RECORDING GEOMETRY 

02-12   to 20-12-1976 

Format         TI DFS V   

Record Length: 5seconds 

Sampling rate: 2ms 

Filters 8-128Hz 

 Dynamite reflection surface shooting 
end on 

 

Spread: 0-1080-3900m (0-1200-4020 for shot points 751-803) 

Station interval: 60m 

Shot point interval: 120m 

Geophone pattern: 96 geophone G.S.C. 20 D, 

 8 rows of 12 

Shot point pattern: 100LBS (40 charges-4 rows of 10) and 150LBS (60charges 
–6rows of 10). 

This seismic line has been used during the forward modelling to compare the results with the 

results of modelling derived data with real data. No processing has been applied on the section in 

this research. The quality of the 2D seismic line varies from one place to another and from 

shallow horizons to deeper levels. Elevation varies from about 250m to as high as 1000m along 
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the line. This is a controlling factor of quality-higher elevation implies less coverage and as a 

result poor quality. At some parts of the section, reflectors  

 

 

 

 

 

 

 

 

 

 

can be  followed even as deep as 3 seconds but that is only for a small part of the section.I 

obtained a paper copy of the section. It has been scanned and converted to SEG-Y format by 

Hampton Data Services (Figure 1.6).The main dataset used is a 3D seismic survey acquired on 

two producing fields-Parsi and Karanj- located close to the Mountain Front Fault in the Dezful 

embayment. It is claimed that this is the biggest 3D project in the Middle East (Acquisition report, 

BGP, 2002). The area is situated in the south west of Iran some 210km southeast of Ahwaz city, 

one of the Iranian oil industry centres. The nearest city, Behbahan, is located 70 km away to the 

southeast. The range of the 3D survey is between 49º39'00" E and 50º08'00" E, and between 

30º48'00"N and 31º15'00" N. The 3D project is designed with a 40 km length and a width of 20 

km, the Receivers cover an area of 792.38 km2 and the shot points cover 779.11 km2. Fig. 1.7 

shows the location of the survey area in the Iranian Zagros Mountains. The summary of the 

acquisition parameters is given in table 3. 

The source was explosive with two patterns: pattern (1) 2m X 8Holes X 0.75Kg and pattern (2) 

6m X 3Holes X 2Kg.  The records quality varies from place to place but generally is poor 

particularly around Gachsaran outcrops. Figure 1.8 shows an example of the shot records. The 

instrument parameters is given in table 4. 

Figure 1.5 Location map of the regional structural cross section used in forward modelling 
together with a general stratigraphic table (Huber, 1976). 
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    Table 3: The summary of the acquisition parameters of the 3D dataset used in the research. 

Patch parameters  
Receiver interval: 40m 
Source interval 80m 
Receiver line interval 320m 
Source line interval 400m 
Number of channels per receiver line 160 
Number of channels 960 
Patch 6 x 160 
Number of shots per salvo 12 
Calculated parameters 
Bin size 20m x 40m 
Full fold 3 x 8 
In-line roll Rolling 10 stations for one salvo, roll on, roll off 
X-line roll (after shooting one swath) Rolling three lines  
Maximum offset - in line 3180m 
Minimum offset - in line 20m 
Maximum offset - X line 1240m 
Xmax 3413m 
Xmin 465m 
Aspect Ratio 0.39 

   Table 4: The instrument parameters of the 3D dataset 

Sampling rate 2 ms 

Recording length 7 sec 

Preamplifier Gain 24 dB 

Notch Out 

Low frequency cut out 

High Frequency cut 128 Hz 

 

Figure 1.6 The 2D migrated seismic line (R1173). Data has been recorded and processed by C.F.P.S (1976,1977). The 
profile includes several faulted anticlines with poor image quality. 
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Figure 1.7 The location of the Parsi and Karanj oil fields in the Dezful embayment of 
the  Zagros FTB. 

 

 Figure 1.8  A sample raw shot gather from swath 30 (1 
geophone line). The background and ground roll noise is 
significant (CGG, 2003). 
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2      Seismic forward modelling (Asymptotic approach) of a 
regional section from the Dezful embayment of the Zagros FTB 
 
2.1    Overview 
 

In mountainous areas, such as the Iranian Zagros FTB, the seismic modelling technique is a 

valuable tool for seismic acquisition design, processing and reliable interpretation. There are 

many approaches to seismic modelling. Ray tracing is the one most applicable for structural 

purposes (Fagin, 1990). However, ray-tracing methods are approximate and they do not take the 

complete wave field into account.  

 

Structural interpretations of reflection seismic data in foreland fold belts are dependent on 

structural styles (Bally, 1983, Mitra and Fisher, 1992).  The quality of reflection seismic profiles 

from the Zagros foreland fold thrust belt of southwest Iran, and from other mountain belts (e.g. 

Canadian Rockies) is typically not good enough to draw the complete configuration of thrusted 

folds especially in deeper levels. The reliance on structural styles is necessary in view of the fact 

that the quality of the seismic images of fold and thrust structures is poor. One of the major 

problems in seismic imaging of fault related folds are revealing the detail internal geometry of the 

structures. The complexity of the structures may generate wavefield singularities that are not 

sufficiently accounted for, in standard processing.  

 

A 2D regional cross section (trending northeast-southwest) from the Dezful embayment has been 

selected. The location of this section is shown in figure 1.5. It crosses four drilled faulted 

anticlines and extends towards the northeast crossing the Mountain Front Fault. The section has 

been constructed and balanced by Mapstone, (1978). The section provides a good opportunity to 

investigate imaging problems in the Zagros FTB because it includes near surface complexities 

(topographic variations), overburden complexities (thickness variations, strong lateral velocity 

changes), and reservoir horizon complexities (folds steep flanks, and intensive faulting). It has 

also several well controls so any forward realization response can be verified based on the direct 

information from wells.  

 

2.2    Model building 
 
The model has been built in two stages: First a regional macro model definition and second a 

detailed structural model building. The generated section dimension is 81x17 km. It includes 70 

interfaces with different lengths and curvatures. Figure 2.1a shows the geometry of the 

interface-based model. The colour spectrum represents the time processing derived velocity 
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model. The profile orientation is from southwest (left) to northeast (right), perpendicular to the 

main structural trend of the Zagros FTB.The selected surfaces are stratigraphic surfaces derived 

from the drilled wells in the area and structural surfaces representing faults. Faults have been 

defined as discrete surfaces. 

 

Along with defined geometry, ray-tracing models require the interval velocities between modelled 

surfaces. There are two sources of velocity data available; processing-derived velocities and 

well-derived velocities (check shots, vertical seismic profiling data and logs). Therefore two 

different velocity models have been built. The rectangles in the figure 2.1a show the location of 

two faulted anticline with doubtful interpretation (Mapstone, 1978). Figure 2.1b and c shows the 

poststack time- migrated 2D seismic profiles of two faulted anticlines. The two structures have 

been named ‘A’ and ‘B’. Structure ‘A’ is Par-e-Siah faulted anticline and structure ‘B’ is 

Masjede-e-Soleyman faulted anticline. In Par-e-Siah structure the top reservoir repeated as a 

result of faulting. The red line in figure 2.1c shows the fault between repeated top reservoir. In 

Masjede-e-Soleyman faulted anticline the idea is to follow the subthrust (the red line in figure 

2.1b) roll over and test the proposed subthrust play by Mapstone, (1978).  

 

2.3    Ray tracing results 
 
The seismic response of the regional macro model has been generated and analyzed first. Then the 

detailed seismic response of the structures ‘A’ and ‘B’ have been investigated. Three types of ray 

tracing modes have been applied including normal incidence, image ray and shot gather ray 

tracing.  

 

Normal Incidence ray tracing (NIP) is one of the important methods in modelling structural 

complexities (Sukaramongkol, 1993, Fagin, 1991). It can simulate a CMP stacked section. This is 

a zero offset mode where the rays have been traced with normal incidence paths with respect to 

selected interfaces. The travel times of each ray are stored and have been used to generate the 

stacked unmigrated section. NIP modelling has been applied in a window (25th km to 80th km and 

whole depth range) (Fig. 2.1a) to obtain the stacked unmigrated seismic response of the macro 

model. Different source-receiver distances have been tested (200, 120 and 60 m). All of the 

interfaces shown in figure 2.1a have been included in the realization. Missing energy in 

geometrical and caustic shadows (diffracted rays) has not been accounted for. Figure 2.2 shows 

the TWT of the interfaces derived from NIP modelling. The continuity of the deep horizons is not 

preserved. The reflection from the exposed fault around x = 68km (figure 2.1a) has reflections 

from its plane that extend towards the northeast to 1.5 seconds. The other important horizon is the 

thrust fault plane coming from the northeast (the ramp part is located between x = 40 km, z = 5 
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km to x = 55 km, z = 10 km of Figure 2.1a). Understanding the proper configuration of this fault 

will led us to a better understanding of the structural style. In Figure 2.2, the reflection of the same 

thrust fault appears between x = 42 km, t = 2.5 s and x = 53 km, t = 5.7 s. This thrust geometry 

may support the interpretation of fault bend folding style (Suppe, 1983, Mitra and Mount, 1998) 

for the structure ‘B’.  

 

In the next step, zero offset modelling has been applied to structure À' and B̀' separately. At this 

stage, two types of velocity models have been used in forward realizations. Time processing-

derived velocity model and well-derived velocity model. The source-receiver spacing is 60 

meters, and for display purposes, the travel times of the rays were convolved with a Ricker zero 

phase wavelet of 35 Hz. Figure 2.3a and b shows the result of NIP ray-tracing for structures À', 

Par-e-Siah faulted anticline. The crestal part of the structure ‘A’ is not imaged properly (figure 

2.3a). The reflector marked as number1 in the figure represents the folded top reservoir and the 

reflector number 2 is the faulted-repeated top reservoir. 

 

The reflector marked as number 1 in the figure represents the folded top reservoir and the 

reflector number 2 is the faulted-repeated top reservoir. It is clear that the seismic response of the 

model with time-processing derived velocities (figure 2.3a) has failed to give a complete and 

correct image from the crestal part of the faulted anticline whereas in the seismic response from 

the velocity model controlled and guided by well information the folded (reflector 1, figure 2.3b) 

and faulted part of the top reservoir (reflector 2, figure 2.3b) are clear. 

 

The horizons of interest in structure ‘B’, Masjede-e-Soleyman is the steeply dipping thrust plane 

and the roll over of younger strata under the thrust plane when it flattens towards southeast 

(Figure 2.1).  The imaged thrust, places the older rock units over the younger units.   Figure 2.4a 

and b show the results of NIP ray tracing for both processing derived velocity and well derived 

velocity models. The arrow in both figures shows the thrust plane reflector and it is possible to 

follow it in both velocity models. The geometry of a wedge shaped generated by the thrust plane 

reflector on top and another reflector immediately below that (to the left of the arrow in figures 

2.4a and b) represents the subthrust play originally proposed by Mapstone, (1978) with less 

confidence.  

 

Therefore the modelling results confirm the velocity used in the processing of the structure ‘B’ to 

a great extent, while the velocities applied in the processing of structure ‘A’ are wrong.  
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The velocity model derived from wells used at the next step for NIP ray tracing and the results for 

structure ‘A’ represents top of the structure clearly (figure 2.3b).  

The second ray-tracing mode applied is image ray tracing. Image ray tracing is an approximation 

of migrated data that can be called simulated time migration (Hubral, 1977). The ray path that 

represents the minimum on the time reflection surface emerges perpendicular to the recording 

surface.  Image Ray tracing has been applied both for structures À' and B̀', with two different 

velocity models derived from processing data and well data. 

 
 
 
 
 
 
 

 Figure 2.1 a) Geometry of the macro-model (81km by 17km) together with P-wave velocity variation. The 
velocity model is derived from time processing velocity data. The blue zone above the surface is air velocity. 
Locations A and B are the detailed studied areas. (In all figures of chapter 2 the right side is northeast and the 
left side is southwest). b) 2D poststack time migrated seismic section showing structure ‘B’, the arrow shows the 
location of a possible subthrust play. The picked horizon right above the arrow is believed to be a thrust plane  
reflection. c) 2D poststack time Migrated seismic section of structure ‘A’. The picked event is the repeated top 
reservoir as a result of faulting.
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The travel times of Image Ray tracing were then convolved with a Ricker 35 Hz zero-phase 

wavelet. Figure 2.5a and b shows the results of image ray tracing for structure ‘A’. It is clear that 

the crestal part of the structure ‘A’ shows a gap in the processing-derived velocity model (figure 

2.5a), while in the well-derived velocity model (figure 2.5b), there is no gap and the structure top 

is imaged clearly. The two different velocity models give more or less the same results for 

structure ‘B’. Imaging the steeply dipping (towards the northeast) part of the thrust plane (ramp 

part) is particularly important. In order to improve the image and to get more consistent data, 

different migration apertures (from 2 to 10 km) have been tested during image ray tracing of 

structure ‘B’. The result shows that the aperture used in the processing of the real data (less than 

3km) was not sufficient to image the steep northeast flank of the structure properly. 

Figure 2.2   Normal Incidence ray Tracing results (TWT section) of the macro model from the 25th to the 80th 
km. The location of structures A and B is marked by rectangles.  

a) b) 

Figure 2.3 a) Normal Incidence Ray Tracing of structure ‘A’ with processing derived velocity model b)  Normal 
Incidence Ray Tracing of structure ‘A’ with well derived velocity model, Reflectors 1 and 2 are folded and 
faulted top reservoir respectively.  
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 This is one of the reasons for poor quality image in the real migrated seismic data (Figure 2.1b). 

Figure 2.6a shows the results of image ray tracing with 4 km migration aperture and figure 2.6b 

shows the results of image ray tracing with 8 km migration aperture. As can be seen from the 

results by increasing the migration aperture the steeply dipping hanging wall block become 

clearer.  

 

The final ray-tracing mode applied is shot gather offset modelling. This resembles the real 

acquisition. Shot gathers, or common shot gathers are traces recorded at a series of receivers 

propagating from a single source. This is the way data are collected and its results could be useful 

in evaluation and design of seismic surveys. One of the important applications of asymptotic 

methods or ray-tracing methods is the modelling and identification of specific events on seismic 

records (Carcione, et al., 2002). An off-end source-receiver array has been used to acquire the real 

seismic dataset. The same source-receiver array has been selected for modelling. From the 35th to 

the 75th km (Figure 2.1a), a series of shots have been generated with 200 m near offset, 144 

channels, and 50 meters trace spacing. Layers with opposite dip-direction cause events to be 

recorded in two opposite dip-direction (up-dip events). For example events representing the 

folded (reflector 1 figures 2.4 and 2.5) and faulted (reflector 2 in figures 2.4 and 2.5) top reservoir 

a) b) 

a) b

Figure 2.4 a) Normal Incidence Ray Tracing of structure ‘B’ with processing derived velocity model b) Normal 
Incidence Ray Tracing of structure ‘B’ with well derived velocity model, The arrow shows the thrust plane 
reflector. The truncation of the reflector below the thrust plane forming wedge shape geometry interpreted as a 
subthrust play. 

Figure 2.5 a) Image ray Tracing of structure ‘A’ with processing derived velocity model, The folded top 
reservoir (reflector 1) is not continuous, and b) Image ray Tracing of structure ‘A’ with well derived velocity 
model, The folded top reservoir (reflector 1) is continuous.  
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in structure ‘A’ have been recorded in completely opposite direction. The faulted leg which is 

shallower have been recorded much earlier in the shots around x=49km. This observation 

increases the role of offset in recoding the important events from the faulted anticlines with 

complex overburden. The off-end source-receiver array provides larger offset than split-spread 

array. These complex events cause severe problems for conventional 

(NMO/DMO/stacking/Migration) seismic data analysis (Yan et al., 2001).  

 

Due to velocity and structural complexity, rays are bent and there are non-hyperbolic arrival times 

(Farm, et al., 1993). The shot gather modelling results show that strong lateral velocity variation 

in the overburden cause poor illumination at deeper target intervals. Further to the northeast of the 

section (figure 2.1a) where the high velocity carbonate units exposed at the surface high velocity 

behaviour of the near surface rocks cause complexity. These facts (strong lateral velocity 

variation, steep dips folded and faulted beds, high velocity rock units near surface) clearly show 

that poststack imaging methods will not give a correct image of the subsurface. The ray coverage 

in steeply faulted flanks of structures and in places with thick overburden (with strong lateral 

velocity variation) is not enough so other seismic modelling methods such as finite difference 

methods should be tested. 

 

In mountainous areas such as the Iranian Zagros FTB, that have structural complexities at target 

level and heterogeneities in the overburden, seismic forward modelling is an important method to 

help in all steps of seismic study including acquisition, processing and interpretation. Since this is 

the first time seismic forward modelling has been applied to the fault related folds in the Iranian 

Zagros FTB, the results show the necessity of modelling itself for the area of study, as well as the 

need to plan more detailed modelling studies. Structures are complex and velocity does not have a 

simple gradient, but is changing laterally and there is also some velocity inversion, so special 

Figure 2.6 Image ray tracing of structure  ‘B’ with well-derived velocity model, a) migration aperture 4km, b) 
migration aperture 8km. Increasing the aperture improves the continuity of events in the steep flanks of the 
faulted anticline.

 

a) b) 
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processing procedures, such as prestack Depth Migration, are becoming more important, and for 

such kinds of imaging methods modelling is essential. 
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3      Pre processing for prestack depth imaging 
 
3.1    Conventional time processing 
 
Prestack depth imaging is a more theoretically accurate technique than prestack time migration in 

areas of significant velocity variations. When correctly applied, prestack depth migration should 

improve imaging and the alignment of events in depth. Much effort is needed to produce results 

and the quality of the output does not consistently meet expectations. The theoretical advantages 

of depth migration over conventional time processing have been known for quite some time 

(Larner, et al., 1981, Schultz, et al., 1980). Pre-processing steps are crucial to reduce seismic 

depth migration to a depth-imaging problem.  In order to achieve this, critical parts of the 

conventional pre-processing flow need to be reworked and specifically tuned to depth imaging 

constraints (Schmid, et al., 1996).   

 

The 3D dataset acquired over Karanj and Parsi oil fields in the mountainous part of the Iranian 

Zagros FTB was significantly affected by the surface geology. In some areas, high levels of 

coherent and random noise contaminated data. This may have been due to the difficulty of using 

deep shot holes and also poor geophone coupling. In fold and thrust belts with strong topographic 

variation the main pre processing steps are: 

 

1-Exact handling of topography; 

2-noise attenuation including source noise, 

3-amplitude processing. 

 

Processing tests need to be run for choosing optimized parameters at each of the above steps. A 

brief summary of the pre-processing jobs that have been applied on the data is as follows (CGG 

Final processing report): 

• Reading from CGG format to SDS (Seismic Data Server);  

• Trace geometry updating control;  

• Spherical divergence correction. Each sample is multiplied by T x V2 (T is the two-way 

time; V is an average velocity function); 

•  Instrument compensation;  

• Primary static application to floating datum plane (FDP), Computation from the 3D near-

surface model derived from upholes, Correction velocity: 3000 m/s Datum elevation 1300 

m;  

• 3D FK conical filter (FKx-Ky) in Cross spread domain, - velocity cut-off: 2600 m/s – 

attenuation: 24 dB;  
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• Additional gain versus time (3 dB per second);  

• Gain versus offset correction;  

• Automatic editing of noisy traces, Statistical editing based on average amplitude 

comparison;  

• 3D surface consistent amplitude correction (source and receiver) computed in window 

500 – 2000 ms;  

• 3D surface consistent spiking deconvolution (zero phase output), multi-channel phase 

deconvolution (leading to a zero phase output), multi-channel amplitude deconvolution 

performed in two windows: 400 – 1800 ms, 1200 – 3000 ms, operator length: 200ms, 

white noise 5 %, spectral replacement of the low frequency part (6 Hz, 36 dB per Oct.). 

 

This 3D dataset is the first three-dimensional seismic data acquisition in the Zagros Mountains. 

This is a region of great topographic variation and the elevation in the survey area varies between 

200m up to more than 800m above mean sea level. Figure 3.1 shows the elevation map for the 

floating datum (a smooth version of the real topography) of the survey area. Proper surface 

referencing is necessary when processing of fold and thrust belt seismic data. The near surface is 

complex and can vary rapidly.  

 

Corrections are applied to seismic data to compensate for the effects of variations in elevation, 

weathering thickness, weathering velocity, or reference to a datum. The main goal is to determine 

the reflection arrival times which would have been observed if all measurements had been made 

on a plane with no weathering or low velocity material present (Cox, 1999). To solve the problem 

of static corrections, the GLI3D (Generalized linear inversion) refraction method from Hampson 

Russel, based on first break inversion, was tested and compared with field static and elevation 

static. Figure 3.2 shows the field static map for the survey. The average visible refractor velocity 

is 3300 m/s on the first breaks retrieved from the 3D seismic data. The field statics provided by 

the acquisition contractor BGP are supposed to include vertical time for shot points and 

interpretation of the low velocity layer (LVL) survey (up-hole shots and refraction shots). 

Difference between the field statics and the brute elevation statics was computed. The brute 

elevation static has been calculated with the following equation: 

R

d

V
ZZr

Ts
−

=  

where Zr is the elevation of receivers and sources, Zd is the final datum elevation, 1300 m above 

mean sea level in this project, and VR is replacement velocity, 3000m/s. The average difference is 

–5 ms for both receivers and sources. A first break based method has been applied (generalized 

linear inversion). The results are worse than the field static correction method. Cox, (1999) has 
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also recommended uphole-based static corrections as first priority. Actually due to poor quality 

records in some parts methods based on first break picking are more subject to error. The output 

at this stage (after the 11th step explained above) has been the input for prestack depth imaging. 

 

3.2 Additional Noise suppression 
 
Noise in seismology can usually be regarded as a failure of analysis rather than as something 

polluting the data (Claerbout, 1985). Pre-processing for prestack depth migration as in time 

processing can have a dramatic effect on the final results. Since the data will be analyzed   before 

stack, it is very important to have the data as clean and noise free as possible. There were many 

spikes in the data that will make the migration results noisy. A main reason that prestack time 

migration techniques produce good signal quality is that they have great leverage in the choice of 

velocities used to produce a good stack. They have this leverage because the positioning of events 

in time migration is less sensitive to the errors in velocity than depth migration.  Furthermore, in 

some implementations of prestack time migration, separate velocities are used for stacking from 

those used for imaging. This separation gives prestack time migration greater leverage to produce 

a good stack. Therefore for prestack depth imaging more noise suppression should be done on 

input seismic data. In order to see the effect of spikes in the image quality a test prestack depth 

migration has been run. Figure 3.3 shows an inline example from this test migration. The image is 

dominated by migration-related noise and the spikes have also generated specific noises that have 

been marked in the figure.  

 

For depth imaging purposes I have run the following job to reduce the noise contents. The job 

detail is as follows: 

 

• Band pass frequency filter (5,15,60,75 Hz for T0-T1000 and 5,15,40,60Hz for T2500-

T6000); 

• Specific frequency noise removal. This was done by mono-frequency attenuation (noise 

       estimated adaptively and then the estimated noise subtracted from the traces). The       

       selected frequencies are: 22, 33, 44, 50, 55 and 61.  
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Figure 3.2  Field static map (CGG, 2003) 

 

Figure 3.1 Floating datum elevation map of Parsi and Karanj 3D 
survey. The elevation ranges from 200 up to more than 800m above seal 
level. 
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• Inner and outer mute application allows attenuating effect of remaining multiples and 

also avoids migration of noises of far offsets. The inner mute values were (X, T; 0, 800; 

400, 1300; 450, 5000). The outer mute values were (X, T; 0, 0; 3200, 700). 

• In order to improve the resolution of the upper part of the data a time variant 

Butterworth filter was applied to attenuate high frequency content in the lower part of 

the time gathers. 

 

Trace scaling with 50 percent overlapping. Figure 3.4a and 3.4b show a time gather before and 

after running the job explained above. Data are more uniform and the noise content has been 

reduced to a considerable degree.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 the results of a test PSDM with the time gathers before eliminating the remaining 
noise of the input data. 

 



                                                                                                                                                                   PhD thesis Behzad Alaei, 2006 
___________________________________________________________________________________________________________  

________________________________________________________________________   
                                                                   37 
 

 

 
 

 
 
 
 

Figure 3.4 a) prestack time gathers before running pre processing filtering job, b) the same   prestack time gathers after 
running the pre processing filtering job.   
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4      Migration velocity analysis using hybrid tomographic 
approaches 
 
4.1    Introduction 
 
In complex structures lateral velocity variations cause a nonhyperbolic component to be added to 

the CMP gathers therefore, accurate knowledge of seismic interval velocities is essential for 

imaging. In order to find the correct laterally varying velocity field, analysis in the prestack 

domain can resolve the nonhyperbolic moveout component. 

 

The State-of-the-art and widely used method for velocity estimation is global tomographic 

methods that give structurally consistent results and is (Stork and Clayton, 1991, Stork, 1992, 

Clapp, et al., 2004, Van Trier, 1990, Etgen, 1990). Prestack migration contributes far more than 

its ability to provide imaging results and it has been used to measure the quality of the estimated 

velocity (e.g. Al-Yahya, 1989, Faye and Jeannot, 1986, Van Trier, 1990, Woodward and Albertin, 

2004, Soazig, et al., 2004). Velocity determination by prestack imaging is an interactive method 

and analyzes CRP gathers and constant offset sections. 

 

 The main concept is that when the applied velocity is correct the migrated data from different 

domains such as different shots, different angles and different offsets will give an identical 

subsurface image. This is because they represent the same subsurface area. If the applied velocity 

is not correct then the images from different domains are not properly aligned. The difference can 

be used to correct the velocity. Tomography back projects these residual moveout on gathers to 

modify the input velocity model. An important part of any method is how effective the 

consistency of the results can be measured. Tomography is also useful because it updates the 

velocity globally. For depth imaging an estimate of the interval velocity at every point in the 

subsurface is needed, not only at every imaging point. In so called single station methods velocity 

analysis carried out at one CRP location using a small number of gathers around the location and 

it is assumed that the velocity changes are independent of the analysis in other points, i.e. that 

they are structure independent (Yilmaz, 2001).  

 

Irrespective of the method used to estimate velocity, there is unfortunately usually more than one 

model, which satisfies the observed data. In other words the velocity determination problem is 

non-unique or an ill-posed inverse problem (Sexton and Lemaistre, 2004, Tritel and Lines, 2001). 

Non-uniqueness of the inversion methods is due to such factors as: 
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limited seismic bandwidth, data acquisition limitations, e.g. energy penetration problems at deeper 

levels, and noise content of data. The reflection method itself is the main source of non-

uniqueness insofar as sources and receivers in surface seismic measurements do not surround the 

object we are attempting to image. The use of a simplified theory of wave propagation (e.g. not 

accounting for factors such as scattering, dispersion due to attenuation, high frequency 

assumptions etc.) also gives rise to non-uniqueness.  

 

The general solution is to impose some sort of a priori information or additional constraints to 

control the results of velocity determination methods and force convergence to the correct 

velocity field. There are at least two ways of imposing such a priori information on the inverse 

problem solution. In the first approach more emphasis is placed on modifying the back projection 

formulation with the a priori information. To control the accuracy of the results and produce the 

best model Stork and Layton, (1992) use the geologic constraints in the form of a variety of 

simple filters. Rowbotham, et al., (1997) incorporate the non-seismic information into the null-

space model singular vectors. The second approach is to control the results by some kind of a 

priori information. One of the most common and also practical ways to constrain the velocity 

determination process is through seismic interpretation. Velocity model building is far more 

effective when strongly linked to an interpreted structure (Fagin, 1999). The final goal of seismic 

imaging is to give an image of the subsurface and if the structural interpretation is involved during 

the process it will definitely provide better and more consistent results. An interpretational 

velocity analysis approach in seismic exploration ensures the development of accurate results. The 

general belief in the industry is that results of velocity analysis are geologically plausible when a 

sound interpretation effort is put to in the data analysis (Yilmaz, 2001). This means that the initial 

velocity model and the resultant seismic image must no longer be considered as the final output of 

seismic data processing but rather as intermediate steps in an iterative sequence, in which 

geological interpretation of the seismic image helps in obtaining a better velocity model.  

 

4.2 The integrated method 
 
In the present study an integrated velocity estimation method has been defined. The method 

includes depth tomography of prestack migrated gathers. The velocity analysis procedure is 

constrained by using different a priori information at different stages of the velocity estimation 

procedure The main a priori information consists of well logs, vertical seismic profiling data, 

knowledge of structural style in the studied area, and detailed seismic interpretation. The wells are 

used to control the vertical behaviour of velocity from the beginning of model building. The 

proposed procedure for migration velocity analysis is shown in figure 4.1.  
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Figure 4.1 The defined flow for migration velocity analysis in complex fault-related folded areas. The left 
column is the inversion detail including different tomographic methods applied at each stage (a) and the right 
column (b) is the a priori information used to constrain the inversion at each stage. The flow consists of 4 main 
stages: Initial model generation, regional velocity update, high-resolution velocity update and final model 
generation. 
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Stage 1   Initial model generation  

 
The common approaches for migration velocity analysis is migrating the data using a velocity 

model and sort the gathers (common offsets) and then look for any residuals since zero moveout 

is generally accepted as a measure of optimum velocity. It is recommended to start with a simple 

initial velocity model. A simple 1D velocity model can be derived from time processing steps. An 

initial interval velocity model can be built using velocities from pre-stack time migration, i.e. 

RMS velocities (Yilmaz et al., 2000) or stacking velocities. If the initial model is very different 

from the correct one it may need several iterations to obtain the final model or it may even not 

converge to the right answer. Therefore it is important to keep it simple and at the same time 

make it as close as possible to the correct model. In order to achieve this two following steps are 

suggested: 

 

1-Check the resultant velocity cube for any possible short wavelength anomaly that may be 

generated by the Dix conversion process. It is better to select coarser depth intervals during initial 

model generation and change to finer depth intervals later in the velocity estimation procedure. 

2-In order to obtain an estimate of the difference between the initial velocity model and the 

final correct one, vertical interval velocity functions derived from well data (wells with reliable 

logs) can be compared with vertical interval velocity functions extracted from the initial velocity 

model. These two different velocity functions from the same point in the data will provide a good 

quantitative measure of the difference between the initial velocity model from a correct model at 

well locations. This step should be done with caution since there are factors such as anisotropy 

that control the velocity function and the initial model has been built assuring isotropy. 

 

After this comparison the amount of updating needed for each interval becomes clearer. Therefore 

more effort can be put on intervals that require more updating. In the complex faulted folds that 

are the subject of this study it worth mentioning that there should be a minimum number of wells 

and any evaluation based on, for example, one well only will be subject to errors. If a well is 

located in a hanging wall block of a faulted-fold we cannot apply the exact velocity behaviour for 

the footwall block of that particular fold. So the application of well information should be in the 

context of the structural style of a complex geometry. 

 
Stage 2   Regional velocity update 

At this step that has been called regional velocity update or long wavelength velocity update the 

macro velocity model is obtained. Partial Kirchhoff prestack depth migration runs along selected 

inlines (coarse intervals for regional updating purposes) with the initial velocity field. The 

representation of the subsurface is important for type of tomographic velocity update to be used. 
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Two different tomographic methods are in common use now. Grid-Based or cell-based 

tomography and layer-based tomography. In the grid-based approach the subsurface is 

represented by a 3D velocity grid that has a velocity value each node and the interval velocity 

values of these nodes are updated in the tomographic iterations.  The important advantage of grid 

tomography (Koren, et al., 1999, Woodward and Albertin, 2004) is in areas of such complex 

geology that a detailed structural framework cannot be achieved in early iterations of the velocity 

updating from the existing depth images. In these cases, grid based tomography can be applied 

without the complete interpretation of reflecting events in the whole area. So, at this stage grid 

based tomography is applied.  

 

The interpretation is just used to pick some strong amplitude or coherent events from the migrated 

stack sections, not to make a complete depth model. Events that are not part of the depth model 

can serve as input to tomography. The residual depth moveout of the picked events is derived 

using semblance analysis. Semblance is calculated along the picked horizons using a residual 

moveout analysis technique and the ‘residual moveout’ has been picked where the semblance 

value is maximal. The residual depth moveout for the picked events is transformed to time 

moveout and using this better velocity can be found. The residual moveout is a measure of the 

non-flatness of the gathers after migration. The grid tomographic principle attributes an error in 

time to an error in velocity. The tomographic approach attributes the value of the time moveout to 

the accumulation of errors within that depth interval.  

 

At this stage, since the velocity volume is being updated regionally, it is not necessary to select 

dense grid spacing for tomography. It is important to know that at this stage the velocity update is 

mainly data driven. The resultant velocity after each update will be used to run another partial 

PSDM and the only way to control the results is to verify the image quality and general 

convergence towards the structural pattern of the complex faulted-folds. The residual velocity 

volume, which is the difference between two successive velocity updates, also gives an idea of 

convergence. The sequence of partial PSDM, seismic interpretation of coherent events, residual 

depth moveout analysis, and grid tomography is repeated until the regional structural framework 

is achieved. 

 
Stage 3   High resolution velocity estimation 

The updated velocity model can now be used for the next PSDM. Since the resultant velocity 

volume from the previous stage has improved the coherency of the seismic image, more horizons 

can be picked and some of them can also be picked with larger coverage than in the previous 

stage. Since the generation of an accurate depth model needs an accurate interpretation that 

includes the exact geometry of structures for obtaining high-resolution velocity update, I suggest 
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running grid tomography of both fully interpreted and partially interpreted horizons rather than 

using horizon based tomography. A priori information at this stage is: 1-From wells: vertical 

velocity functions, marker depths, and 2-Structural seismic interpretation in detail that includes 

thickness maps of interpreted horizons, detailed interpretation of internal structural elements in 

the overburden, and mapping the main thrust faults and related folds. The accuracy of the depth 

model generated at this stage is checked by all available well information and also knowledge of 

the structural style. The grid tomography of the depth migrated gathers modifies the velocity field 

with greater resolution at this stage. The resultant velocity field represents the main and detailed 

structural elements of the faulted folds. 

 
Stage 4 Final velocity update 

This is a stage that requires prior study of the interval velocity character of the geological 

formations using well logs. If there is not enough well control the third step could be the last one 

particularly when 3D seismic surveys are run for exploration purposes. There are some rock units, 

such as carbonates, that have little velocity variation vertically so the vertical velocity variation is 

more or less depth-independent. There are other rock units such as clastic rocks in which vertical 

velocity variation is more pronounced. The velocity variation in carbonates is more dependent on 

the environment of deposition (Anselmetti and Eberli, 1993, 2001). Carbonates are common in 

many geologic sections of the world’s hydrocarbon fields e.g. western Canada and the Middle 

East. In such cases interval velocity varies between the interfaces more than within layers. In 

these cases the abrupt changes of velocity at the interfaces cause ray path bending and therefore 

must be explicitly dealt with. This type of velocity variation (along the interfaces) is ideal for 

horizon-based tomography.  

 

Horizon based tomography is carried out in 3 steps: I) Performing residual depth moveout 

analysis, II) picking residual depth moveout and creating residual moveout models and III) 

performing tomography to update the velocity and interface depth globally. The horizon based 

tomographic (Koren, et al., 1999) principle attributes an error in time at one location to an error in 

velocity and depth (Kosloff et al., 1996, Biondi, 2004). For the selected interfaces of horizon-

based tomography the cross-plot of interval velocity derived from wells is a good measure for 

modifying the interval velocity map of the particular horizons. The velocity model generated at 

the end of this stage is the final one. In complex fault-related folds making a depth model is 

difficult and this is why I suggest running the horizon-based tomography at the last stage of 

velocity updating. 
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4.3    Field Example: Parsi and Karanj 3D, Zagros Mountains 
 
The proposed procedure for migration velocity analysis explained above has been applied to Parsi 

and Karanj 3D dataset from the Zagros FTB (figure 1.7). The main acquisition problem is poor 

illumination under plastic rock units. The energy of near vertical events below these thick 

sequences is not enough to reconstruct the correct image. A wide-angle reflection method has 

been tested in the Zagros FTB that showed a slight improvement. The global offset technique that 

has applied in the southern Apennine region southern Italy which consists of fixed geophone array 

every 90m with a maximum offset of 18km (Dell’Aversana, et al., 2003) can be tested in the 

Zagros FTB to investigate first the possibility of obtaining better illumination under the thick 

plastic sequences and second to obtain a better understanding of complex fault-related geometries 

in the deeper levels. 

 

Figure 4.2 shows a general interval velocity function of the studied area that is applicable for most 

of the structures located in the Dezful embayment. Units 1,2, and 3 are the overburden interval. 

Unit 1 is the shallowest part and includes Bakhtiari, Aghajari, and Mishan formations. The 

velocity variation in this interval is more or less depth dependent. Units 2 and 3 are representing 

Gachsaran formation. This is the most difficult interval (units 2 and 3) in the overburden in terms 

of velocity analysis. The higher velocity intervals in unit 3 are part of the Gachsaran formation 

that is mainly composed of salt. Units 4, 7 and 9 are the main carbonate layers (reservoir) in the 

Dezful embayment. Units 5 and 6 and 8 are the intervals with lower velocities surrounded by high 

velocity carbonates of units 4, 7 and 9. 

 

Stage 1   Initial model 

The initial model for interval Migration Velocity Analysis (MVA) has been generated from both 

stacking velocity and PSTM velocities (RMS velocities). Using RMS velocities of PSTM has 

been suggested (e.g. Yilmaz et al., 2001) because they are generated in migrated domain and take 

the advantage of the focusing capabilities of migration (Biondi, 2004). Figure 4.3a and figure 4.4a 

are two examples of initial models of two different lines generated from stacking velocity and 

RMS velocity respectively. Up to the end of regional velocity update I have not observed any 

difference between the results achieved by different initial velocity models.  
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Stage 2   Regional velocity update 
 
Figure 4.3b is an example of the result of the second stage of velocity updating (long wavelength 

velocity updating). The updated velocity model at this stage reflects the regional structural 

framework of the area. The red interval marked in figure 4.3b is the high velocity carbonate layer 

that is separated to two different blocks. These two blocks represents Parsi structure to the right 

and Karanj structure to the left.  The line drawn in the shallow part of the section shows how 

velocity reflects the structure in the overburden interval and also clearly shows the different 

Figure 4.2 Generalized vertical interval velocity function of the Dezful 
embayment. Units 1,2 and 3 form the overburden and unit 3 has   several 
internal complexities. Units 4, 7 and 9 are the main carbonate layers in 
the area. Depth is not in scale. 

Figure 4.3 a) Original velocity model derived from stacking velocity through Dix conversion, b) The same inline 
after the second stage of velocity update. Regional structural framework is revealed. The red interval is the high 
velocity carbonate. The line in the shallow part separates the low velocity interval (blue above the line) from the 
high velocity (salt beds) units below.  
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structural style with the carbonate unit below. The blue zone above the drawn line in the 

overburden is representing the low velocity layers in the Gachsaran formation (units between the 

salt beds). Figure 4.4a and b shows another example of regional velocity update along crossline. . 

The low velocity unit 5 is below the red interval of unit 4 (carbonate layer)(figure 4.4b). Unit 4 

and the interval below are divided into two parts by thrust faulting. This is represented by velocity 

update (figure 4.4b). The interpretation used at this stage has not controlled by wells and only the 

events with good continuity have been picked. The regional velocity structure was achieved after 

3 iterations of partial prestack depth migration, geologically independent seismic interpretation, 

and residual depth moveout analysis and grid tomographic velocity updating.  

 

 
Stage 3   Short wavelength velocity update 
 
At this stage interpretation is being checked by well information and the depth model was built. 

Grid based tomography have been applied again with improved parameters. Figure 4.5a shows an 

example of the high-resolution velocity function obtained at this stage. Unit 3 is separated from 

unit 2 above. The background is the PSDM section. Figure 4.5b is another example showing the 

structural consistency of the velocity field. The velocity model reveals a remarkable level of 

structural detail. For example the hanging wall and footwall blocks together with the geometry of 

the thrust plane are easily distinguished in the velocity model Lower velocity units 5 and 6 follow 

the high velocity carbonate unit 4. The red interval below unit 5 is the high velocity carbonate unit 

7. A structural style difference between the overburden (synclines of units 2 and 3 at the right side 

of the section) and the target interval (Anticlines of units 4,5, and deeper levels) is reflected in the 

velocity model. The velocity field is structurally consistent and reflects the structural detail as 

well as lateral velocity variations and velocity inversions. For the third stage the above sequence 

was repeated totally five times to obtain the high-resolution velocity model. 

 As stated earlier when the applied velocity for PSDM is correct the migrated data from 

different domains such as different shots, different angles and different offsets (CRP gathers) will 

give an identical subsurface image and will be flat. Figure 4.6a shows an example of the CRP 

gathers using the high-resolution velocity model. The events are flat. Figure 4.6b shows the 

horizon based residual move out analysis for two horizons. 
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Final velocity update 

 
The detail depth model is built using the horizon picks that is controlled by more than 90 wells. 

The faults also included in the model as well. Figure 4.7a shows the solid model built for horizon-

based tomography purposes. The velocity variation in carbonates (units 4, 7, and 9) is more 

dependent on the environment of deposition and vertically there is less or almost no depth 

dependent velocity variation in these units. But there are strong velocity changes in the boundaries 

of these units with the units above and below. This makes them good for horizon based 

tomographic velocity update. The last stage of tomographic velocity updating includes horizon 

based tomographic updating for the intervals explained above. The velocity model is reflecting 

Figure 4.4 a) Original velocity model derived from RMS velocity along a cross line (Karanj structure). No 
velocity inversion is included in the model. b) The same cross line after the regional velocity update. The main 
structural elements are included in the model. The high velocity carbonate unit 4 can be followed along the line. 
The effect of the thrust fault cutting the units 4 and deeper intervals is also evident in the velocity function. 

 

Figure 4.5 High-resolution velocity model resulted after the third stage of velocity update. The background is 
the migrated depth image. a) The wedge shape is representing unit 3.  The lateral velocity variation of the 
overburden is included in the velocity model. b) Inline showing the structural detail. Thrust fault and the 
hanging wall and footwall blocks of units 4 and 5, together with velocity inversion in unit 5 are included in the 
model. The different folding style of units 2 and 3 (overburden) with respect to units 4 and deeper is reflected in 
the velocity model. 

 



                                                                                                                                                                   PhD thesis Behzad Alaei, 2006 
___________________________________________________________________________________________________________  

________________________________________________________________________   
                                                                   48 
 

the stratigraphic detail as well as structural detail and makes proper focusing possible during 

migration. Figure 4.7b shows an example of the velocity update with horizon-based tomography. 

The different velocity units have been differentiated. When there is not enough well information 

and the subsurface is complex building a complete depth model is difficult so the horizon-based 

tomography become very unstable.  

 

 

 

 

 

Figure 4.7 a) The final depth solid model after third stage of velocity update. It includes horizons from units 3, 
4, 5, 6, and 7. The faults are also included in the depth model. b) The final velocity model after fourth stage of 
velocity update. This stage includes horizon-based tomographic velocity updating of certain carbonate 
intervals. The solid depth model is used in the tomographic velocity update. 

 

Figure 4.6 a) A sample Common Image Gather after the third stage of the velocity update. The events are flat 
and there is more or less no residual depth moveout. b) Horizontal semblances for two horizons, one in the 
overburden and the other in the target interval after the third stage of the migration velocity analysis. The 
residual depth moveout has decreased to very small values. 
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5      Single arrival Kirchhoff PSDM of complex faulted folds 
from Zagros FTB  
 
5.1    Prestack depth migration in complex faulted structures 
 
Migration is an important stage in seismic imaging that focuses the seismic recorded data and 

generates a true structural image from subsurface. It removes the effect of seismic wave 

propagation (e.g. diffraction from sharp edges) from data, therefore seismic events move towards 

their correct subsurface positions. In complex fault and fold thrust belts with rough topography, 

migration is difficult due to lateral velocity changes and also very steep dips. Prestack depth 

migration is the state of the art solution for seismic imaging in such situations (e.g. Yan, et al., 

2001). The geometry of acquisition in the complex geological situations with rough topography is 

seldom regular so the Kirchhoff prestack depth migration is the method of choice (e.g. Biondi, 

2004). Since it is less sensitive to irregular spatial sampling of 3D prestack data. It has also the 

possibility of target oriented processing and input/output flexibility and computation efficiency 

(Audebert, et al., 1997). Kirchhoff migration (Schneider, 1978, Docherty, 1991, French, 1975, 

Audebert, et al., 1997) is based on Green’s function theory and an integral solution to the wave 

equation. The summation surfaces are the basis of the Kirchhoff migration and in terms of 

physical interpretation they are diffraction surfaces for point scatterers located in the subsurface. 

In structurally complicated areas, seismic imaging is difficult and needs interpretation to be 

involved (Gray, 2000). 

 

The effects of different Green functions have been investigated on the Parsi and Karanj  3D data 

set from the Iranian Zagros FTB. Any correct depth imaging requires a correct interval velocity 

model. The acquisition parameters have been explained in chapter 1. The pre-processing 

procedure is important since it can improve the quality of input data for seismic imaging (both 

velocity analysis and migration). The main goal of pre-processing is to suppress the noise as much 

as possible while keeping signals untouched. The main steps of pre-processing applied on the 

input data before seismic depth imaging have been explained in chapter 3.     

 

The sources of complexity in the studied area are common to most mountainous areas of fold 

belts. First of all, the near surface problems cause data to be distorted. These include the effects of 

variation in elevation, near-surface low-velocity-layer (weathering) thickness, weathering 

velocity, and the reference to a datum. Figure 5.1 shows the poor coverage due to topographic 

variation. Irregular source and receiver points are shown in the figure as well. 
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The complexities below the near surface section have been explained in chapter 1 in detail. The 

main producing interval is the Asmari formation (unit 4 in figure 4.2) that consists of carbonate 

rock. There is a clear difference in structural style between the horizons above this formation 

(post-Asmari interval) and the horizons below it (pre-Asmari interval).  

      
5.2 Different travel time solutions 
 
The Kirchhoff 3D prestack depth migration is performed in two steps. In the first step travel times 

are calculated and then at the second step migration is performed. The travel time computation 

methods have a considerable impact on the result of Kirchhoff prestack depth migration in 

complex geological cases. Two different algorithms have been tested. One is based on ray tracing 

and the second is solving the eikonal equation. In the first algorithm the actual ray path between 

two points has been tracked through the complex velocity model. The traveltime along the raypath 

is computed by integrating the velocity function along the ray. In the second method instead of 

tracing the rays, traveltimes are calculated from the equation that describes the change in 

traveltime as a function of location for a given velocity function. Two types of coordinate system 

have been used: rectangular and spherical. System. The spherical grid is closer to the geometry of 

a real wavefront and provides a better image. Four different types of travel time computation 

method have been tested as follows:  

 

Figure 5.1 The fold coverage map. The black points are the source points. The 
planned source line interval is 400m but the source points location changes due to 
topographic variation. The longer arrow shows location with more than 800 m 
source line interval. 
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Method 1 Ray tracing of the single arrival with minimum traveltime in a rectangular 

coordinate system: This travel time computation is in a rectangular grid and is based on Fermat’s 

principle-the actual ray among several rays connecting two points (source and receiver at this 

case) is the one with minimum travel time (Meshbey, et al., 1996). The travel times of all these 

rays are calculated based on average slowness along each ray path. Then the minimum travel time 

assumption is applied to find the travel time of the selected ray. The accuracy of travel time 

computation is dependent on the thickness of the depth intervals chosen for ray tracing, the 

greater depth intervals imply a decrease in accuracy. In complex situations where the velocity 

varies both laterally and vertically it is better to select finer depth intervals for travel time 

computation.  This is the fastest method among the four tested methods.  

Method 2: ray tracing of the single arrival with the shortest path in a rectangular coordinate 

system: In most cases the direct ray is required by Kirchhoff migration. Sometimes the head wave 

arrives first and the direct ray is the one with shortest path and not minimum time. The problem of 

seismic depth imaging in complex media is characterized by the existence of triplications in ray 

tracing (Xu, et al., 1999) and as result multivalued travel times that put a limitation on single 

arrival travel time solvers (Geoltrain and Brac, 1993, Operto, et al., 2000, Xu and Lambare, 

2004). The seismic forward modelling results in the Dezful embayment (chapter 2) show the 

triplications around the crest of the structure ‘B’ that is similar to Parsi and Karanj structures. 

Geoltrain and Brac, (1993) have shown the failure of using first arrival travel time in complex 

media. This failure is due to the fact that both secondary arrivals and associated amplitudes of 

those arrivals are not taken into account. The amplitude will be better preserved if the strongest 

arrival is selected in the migration (Audebert, et al., 1997, Thierry, et al., 1999). The best solution 

is to use the travel times of multiple arrivals (total ray-field information) and weight them by their 

amplitudes depending on the geometrical spreading and ray angles. This is a difficult task and is 

highly sensitive to errors in the velocity model. However using the single strongest arrival 

improves the migration (Thierry et al., 1999, Xu, et al., 1999, Operto et al., 2000). The use of the 

most energetic arrival is a reasonable alternative solution to multivalued travel time computation.  

 
Method 3: eikonal-equation solver in a spherical coordinate system: In this method travel 

times are computed by solving the eikonal equation. Actually the travel time function is a solution 

to the eikonal equation (Cerveny, 2001): 

  
22 /1)( cT =∇  

This is a single arrival travel time solution and it can be either first arrival (minimum time) or the 

shortest path with the highest amplitude. The shortest path method has been tested in this study.  
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Method 4: ray tracing of first arrival in a spherical coordinate system: The spherical 

coordinate system in ray tracing is more time consuming than a Cartesian coordinate system but is 

closer to the real wavefront geometry.  

 
5.3   Results from Parsi and Karanj 3D, Zagros FTB 
 
The different travel time computations explained above have been tested on the 3D dataset from 

the Parsi and Karanj structures. The same interval velocity model has been used for all travel time 

solutions and the migration aperture for all migration tests was 300 inline and 300 crossline. In 

complex situations with steep dips the Kirchhoff migration for a given input seismic trace spacing 

is aliased. This generated some artefacts in the migrated image especially in the shallow section. 

Anti-alias filters are used to avoid generation of these artefacts. By using this filter migration can 

be performed with large apertures without degradation of data by aliasing noise. 

 

There are a number of structural elements that can be looked at in the different migration results 

in order to verify how effective the methods are. Imaging the steep flanks of the structures in pre-

Asmari interval, correct geometry of thrust surfaces, internal complex geometry of post-Asmari 

interval are issues that can be used to evaluate the goodness of prestack depth imaging results.  

 

Figure 5.2a shows the migration result using a travel time solution based on Fermat’s principle 

with rectangular coordinates (Method 1). This is the fastest travel time computation method and 

only the first arrival (minimum time) has been taken into account. The steep flank of the structure 

(southwest limb inside the circle) is missing. The upper picked reflector is the top of the pre-

Asmari depth interval. The two reflectors picked in the southwest part of the section are the 

possible location for another deep anticline, but the events are not coherent enough to draw the 

complete picture of this deep small anticline. The geometry of the thrust fault between two 

anticlines is not clear enough. Figure 5.2b shows the same section but the selected single arrival is 

the one with minimum path (shortest path) rather than minimum travel time. The top Asmari 

reflector extends more towards the southwest (the upper green picked horizon to the right of the 

section). The structure located to the left that was not clear in the previous migration is better 

imaged. This result shows that for certain structures, such as steep flanks that have strong lateral 

velocity variations in the post-Asmari depth interval using the minimum travel time assumption is 

not right. The strongest arrival at this part of the structure is the one with shortest path, which 

passes through a low velocity interval right above the Asmari reflector in the post-Asmari depth 

interval. The reflectors focusing in the deeper part of the pre-Asmari depth interval (for example 

the lower picked horizon to the right of the section in figure 5.2b have also been enhanced with 

respect to the previous migration. 
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Another example of the difference between first arrival based on minimum travel time (method 1) 

and shortest path (shortest path) is given in figure 5.3a and b. There are significant improvements 

in the focusing and image quality. The arrow shows the location of the deep structure. The thick 

overburden sequences with strong lateral heterogeneity make the correct imaging of this deep 

anticline very difficult. The improvement shown in figure 5.3b is remarkable. The structure can be 

picked with great confidence. The southern flank of the structure to the northeast is also imaged 

better with the shortest path travel time computation method (figure 5.3b). There are three 

structures shown in figure 5.3.b by the letters A (southern structure-Karanj), B (middle structure-

Paranj) and C (northern structure-Parsi). The reflector packages above the middle structure in 

figure 5.3b (the yellow arrow) are an excellent well-focused reflector package from the post-

Asmari interval. 

The purple arrow in figure 5.3b shows the position of a thrust plane where southwest dipping beds 

are juxtaposed against northeast dipping beds. Figure 5.4a shows the results of travel time 

solution in a rectangular coordinate system based on Fermat’s principle (method 2 explained 

above) and figure 5.4b shows the result of an eikonal solver for travel time computation (method 

3). The picked horizons are drawn just to show the reflector continuity in the northern and middle 

structure. The upper green horizon is close to the top of the pre-Asmari interval. As has been 

stated  earlier the poor quality of the images from the flanks led to two different thoughts among 

geologists and geophysicists (Motiei, 1995). Geologists believe that there should be continuous   

Figure 5.2 PSDM results using Fermat’s principle with rectangular coordinates for travel time computation a) 
minimum travel time, b) Shortest (minimum) path. The southern structure in the shortest path method is imaged 
better than minimum travel time method. The green horizon at the top is the Top Asmari reflector.   
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structures with steep to overturned dip while geophysicists put a reverse fault in the flanks of the 

structures. Figure 5.4b shows that the southern flank of the northern structure at the location of 

this inline is continuous and there is no evidence of reverse faulting in the flank. The thrust fault 

between the northern structure and the middle structure is also well focused.  

 

The results of the fourth travel time computation (Fermat’s principle in a spherical coordinate 

system) show better focusing and imaging compared with the 3 previous methods applied. Figure 

5.5a and b show a comparison between the eikonal solver (method 3) and the spherical Fermat 

(method 4). The southern flank of northern structure in figure 5.5b (spherical Fermat) is extended 

more than in figure 5.5a (eikonal solver). 

Figure 5.3 The difference between first arrival based on minimum travel time (a) and minimum path (b). The 
blue arrow shows the location of deep structure. The shortest path method gives clear image of the structure. 
The yellow arrow shows the improved focusing in the overburden interval. The purple arrow shows the 
position of a thrust plane where southwest dipping beds are juxtaposed against northeast dipping beds. 
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The arrows to the right of figure 5.5a and b show the improved imaging/focusing in the post-

Asmari (overburden) interval with a spherical Fermat’s travel time solution. Figure 5.6 is a 3D 

slice of the migrated data with a spherical Fermat travel time solution and it shows the clear image 

from the flanks of the northern structure both in cross section and depth slice view. In complex 

situations where the seismic migration objectives are to obtain a geologically consistent image 

seismic imaging is essentially interpretive (Lines, et al., 2000). Actually this prestack depth 

imaging is interpretation based so the results of migration is not only being evaluated by 

processing based methods such as common image gather quality check or stack quality control 

but also a comprehensive interpretation has been done to verify the results of depth migration. 

Figure 5.4 a) PSDM results using Fermat’s principle with rectangular coordinates (shortest path) and 
b) the result of an eikonal solver for travel time computation. The picked horizons are drawn just to 
show the reflector continuity in the structures. The upper green horizon is close to the Top Asmari. The 
trough has been picked so the peak can be followed. The southern flank of the northern structure (Parsi) 
is continuously imaged. Without introducing any fault the flanks of the structure can be picked. 
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The information from more than 90 well was included in the analysis. This study clearly shows 

that by incorporating detailed geologic interpretation, the single arrival Kirchhoff prestack  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
depth migration gives excellent results. By constraining the single arrival Kirchhoff PSDM with 

hard geological information I achieved results that are significantly more useable than by 

unconstrained PSDM alone. The results also show that the spherical coordinate system for travel 

time calculation gives better results than rectangular coordinate system. Around the flanks of 

folds with very steep limbs selecting the single arrival with shortest path rather than minimum 

arrival time gives better focusing than minimum time arrival.  

 

Figure 5.5.Comparison between a) the eikonal solver (method 3) and b) the spherical 
Fermat (method 4). The southern flank of northern structure in figure 5.5b (spherical 
Fermat) is extended more than in figure 5.5a (eikonal solver). The arrows to the right 
of figure 5.5a and b show the improved imaging in the post-Asmari (overburden) 
interval with spherical Fermat’s travel time solution. 
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Figure 5.6 3D volume of the migrated data with a spherical Fermat travel time solution (method 4). It  
shows the clear image from the flanks of the northern structure both in cross section and depth slice view. 
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6      Detailed geological modelling and finite difference 
forward realization of a 2D regional section from the Dezful 
embayment of Zagros FTB 
 
6.1    Role of Modelling  
 
There are a number of strategies for building geological models (e.g. Bryant, and Flint, 1993, 

Petersen, 1999, 2004, Fagin, 1999, Patel and McMechan, 2003). Any successful geological model 

must include both sedimentary related architecture (facies) and structural elements (for example 

faults and folds). Seismic modelling describes the forward process of propagating waves from 

sources to scatterers down in the subsurface and back to the receivers. It is the numerical 

computation of synthetic seismograms for a given geologic model of the subsurface (Santos, et 

al., 2000, Gray, et al., 2001, Krebes, 2004). In advanced modelling, the model units (geological 

units or structural elements) follow the genetic significance. They not only represent the simple 

geometry but also represent the sequence of geological events. A subsurface model that satisfies 

more than one set of observations (Petersen, 2004) is ideal for modelling purposes. In the Zagros 

FTB there are several complexities such as near surface related problems (severe topographic 

variation and static complications), complex folding, intense faulting and different structural style 

between the geologic units exposed at surface and the subsurface structures. These made the 

seismic acquisition, processing and also interpretation a difficult task.  

 

In such complex cases seismic modelling are useful for better acquisition design, improved 

processing sequences and reliable interpretation. It is useful in a wide range of applications in 

exploration seismology. In seismic acquisition, seismic forward modelling reduces the risk of 

seismic exploration by providing quantitative information to design better 3D surveys (Gain, et 

al., 1998). Illumination tests can be performed to obtain the best acquisition geometry in complex 

areas with poor illumination. In complex situations such as the Zagros FTB seismic acquisition 

has some difficulties in dealing with problems such as illumination and noise. By building a 

complex model and forward realization, different attributes (for example, arrival time, angle of 

incidence, and amplitude) can be collected and the acquisition optimized.  

 

Seismic modelling can be used in seismic processing and interpretation to optimize the processing 

sequences and check the validity of interpretation particularly in complex situations. An important 

role of seismic modelling is to calibrate migration methods (Gray et al., 2001). For example the 

Marmousi 2D model (Versteeg, 1994) that was generated by the French Petroleum Institute has 

been used for testing migration and velocity estimation methods.  
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Edwards, (1978) recommended the use of seismic modelling to the Oil Service Company of Iran 

(OSCO). He stated that the company’s special studies group in support of interpretation projects 

could arrange and carry out interval velocity studies for modelling purposes. He also mentioned 

that the interpretation staff should model their seismic and well data in areas where wells are 

located nearby. Nevertheless modelling has not been taken into account in the Zagros FTB for 

many years and I believe there are possibilities that seismic modelling can improve seismic data 

acquisition, processing and interpretation in this area. This is a first step although it comes rather 

late. 

 
6.2 COMPOUND Model Building of the Dezful embayment regional section 
 
One of the common problems in model building for structures in thrust and fold belts is complex 

internal geometry of the structures. Morse, et al., (1991) have modelled fault-related folds and 

analyzed the seismic unmigrated and migrated response. Sukaramongkol, (1993) has applied 

seismic forward modelling on a non-emergent thrust front in the Fallen Timber Creek area, 

southern Alberta foothills, and compared the results with the real seismic data. Johansen, et al., 

(1994) have modelled an outcrop analogue from imbricate fault-bend folds with steep forelimbs at 

the frontal part of the west Spitsbergen fold and thrust belt. Interface based model building and 

cell based model building approaches have been used to define the models (e.g. Fagin, 1991, 

Kirtland Grech, et al., 1997, Petersen, 1999,  2003, Bryant and Flint, 1993). The geological units 

are building blocks of the model and faults planes have been defined as either discrete planes or as 

the boundary between hanging wall and footwall blocks. In cell based or grid based representation 

(Bryant and Flint, 1993, Petersen, 1999, 2004, Patel and McMechan, 2003) the curves or surfaces 

are used to define the geometry of a complex model.  

 

In this study a 2D regional cross section from the Iranian Zagros FTB has been used for modelling 

with a shared earth strategy (Petersen, 2004). A finite difference realization has been applied to 

generate a number of shots around the complex structures to investigate the possibility of 

improving acquisition design and processing sequences.  

 

The integration of different data types for model definition in space and time is increasing. A 

commonly applied strategy for modelling clastic reservoirs has been explained by Bryant and 

Flint, (1993). It includes five major steps: definition of the space occupied by the modelled 

interval; recognition of geological units within the model space; assignment of geometries to the 

units; arrangement of the units within the model space (architecture); assignment of properties to 

the units. Patel and McMechan, (2003) used well log data and control horizons to build a girded 

model of physical properties such as seismic velocity. Inverse distance weighting or linear 
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interpolation has been used to extend the well log information into the 2D model. The method has 

been applied to build a model from an overthrust model of western Canada. 

 

 Petersen, (1999) proposed a modelling approach -COMPOUND model- to construct shared earth 

models. I have applied this approach on the same regional 2D section that has been used for ray-

based modelling (chapter2). The COMPOUND model is composed of compound cells and each 

cell occupies an area. Different physical property distributions are assigned to each cell. The cell 

hierarchy relates localized property distributions to each other in space. The model is consistent 

with the geological evolution since the final distribution of properties is the result of geological 

processes over time. In complex structural models where the sequence of events is important this 

possibility of COMPOUND modelling makes it possible to differentiate between different stages 

of deformation (faulting, folding or fault-related folding, erosion, etc.). If for example the result of 

a geological process such as a deformation phase, orogenic event or a sedimentation related 

process is overprinted by the result of another process, the properties belonging to the latest  (in 

‘time’) stage replace the previous one for a specific position in ‘space’. This ensures the time and 

space consistency of the geological model. The geometry is controlled by curves of parametric 

description and properties by 1D function.   

 

The property distribution in space is defined by property cells (P cells). The curves defining 

geometry and the property function are combined together in a P cell. The characteristics of the P 

cells are: the curve, the property values, and curve orientation. Sedimentary bodies are rarely 

equidimensioanl so for proper requires modelling knowledge of the orientation of the geological 

units. It is possible with curves and the hierarchy approach in COMPOUND to build any kind of 

internal geometry and orientation such as truncations, onlap, downlap, and complex small scale 

faulting and folding inside the geologic units. 

 

The selected cross section has been built based on all available information including 2D seismic 

profiles, well information and surface geology data from outcrops. The section has been restored 

and balanced (Mapstone, 1978).  Figure 1.5 shows the location of the line in the Zagros FTB. It 

crosses exposed anticlines in the northern part and deeply buried anticlines covered by recent 

sediments in the southern part. Therefore the reservoir horizons in the south are exposed at the 

surface further north. Figure 6.1 shows the cross section as it has been drawn by Mapstone, 

(1978). The seismic data in addition to usual geological well and surfaces data was used 

extensively in elucidating subsurface structure. The dimension of studied regional model is 

81kmx17km.  
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The section has been divided into 9 main building blocks. This is structurally consistent with the 

deformation history of the area crossed by the section. An important parameter in the Zagros FTB 

is the detachment level in the basal part of the Gachsaran formation that cause disharmony in 

deformation style of the intervals above the detachment (post-Asmari formations) with the rock 

units below (pre-Asmari formations). Units VI, VII, VIII, and IX in figure 6.1 represent the post-

Asmari interval or overburden. The units I to V represent the competent pre-Asmari interval. The 

thrust faults at boundary of units I, II, III, IV, and V show a sequence of thrusting from northeast 

to southwest. The dip of thrust decreases from northeast to southwest and this is an indication of 

the development of thrusts in the footwall of the existing thrusts. The boundary between units III 

and IV is another detachment level. The two thrusts in unit V flatten in this detachment level. So 

the tree like hierarchical model building strategy in COMPOUND makes it possible to construct 

the regional framework of the profile completely consistent with the structural evolution of the 

area. Deformation in unit III overprints the deformation in unit II and deformation of unit II 

overprints the deformation in unit I. The deformation in the overburden (units VI to IX) is 

separated from deeper competent intervals and is younger than them.  

 

The displacement distribution (from zero to maximum displacement) of faults inside each unit 

is organized by the curves and cell arrangement. It is possible to build different fault-related 

folding models by this method. The exact location of fault displacement vectors is controlled by 

the curves.  

 

Figure 6.1 The regional structural cross section from the Dezful embayment of the Zagros FTB. The 
section originally constructed and balanced by Mapstone, (1978). The numbers refer to units defined in 
the hierarchical modelling strategy used in the study. 
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6.3    Gachsaran formation-modelling the internal complexity  
 
After building the main mega-building blocks of the model the next attempt is to include the 

internal structural and stratigraphic detail in each unit. The overburden section (units VI to IX in 

figure 6.1) includes significant heterogeneity in structure and also rock types. The internal 

geometry of the Gachsaran formation (lower part of the overburden) shows significant variation 

from place to place. It is divided into seven members (Silinger and Crighton, 1959). The 

formation consists of alternating salt, anhydrite (gypsum at or near the surface), limestone, marl 

and shale (Favre, 1974). The formation shows great variation in thickness from well to well, 

particularly from crest to the flanks of the structures. A representative section was introduced by 

Oswald, (1978) with a total thickness of 1564.5m. The variations of thickness can be ascribed to 

the following causes:  

 

1- changes in bedding attitude;  

2- normal faulting;  

3- thrust faulting, contraction and parasitic folding; and 

4-depositional thickness changes (Oswald, 1978). 

 

Members VI and VII at the top of Gachsaran formation show more uniformity in thickness than 

the lower members. Around the southern edge of the studied profile the onlap geometry has 

already been reported (Oswald, 1978) for the lower members of the formation while for member 

IV, that is the main salt unit, salt moves from anticlines to adjacent synclines. The depositional 

Figure 6.2 Detail modelling of unit VIII (Figure 6.1). a) Modelling results before detail internal geometry 
definition. The internal geometry is parallel to the curve representing unit top and truncated by the curve 
representing the bottom of the unit. b) Modelling results after detailed internal geometry definition. Parallel 
bedding at the upper part of the unit, squeezing and thickening at the middle part, and onlap geometry at the lower 
part are included in the model.  The colour represents the scaled acoustic impedance. 
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differences in thickness continued until member V. Syn-sedimentary folding also reported in the 

Gachsaran formation further to the south of the studied profile (Sherkati and Letouzey, 2004).  

 
 
For modelling purposes the members of the Gachsaran formation have been included in the 

model and thickness variation at each location has been defined based on the possible causes 

explained above. For members II and III in the flanks of structures, onlap orientation has been 

built, for member IV thickness variation was modelled as plastic behaviour of salt and the upper 

members were kept more or less uniform in between the wells. A good example of application of 

all these geological facts for Gachsaran formation is in unit VIII. With COMPOUND modelling it 

is possible to define onlap geometry, truncation, squeezing and thickening proportionally. 

Therefore all the geometries that have been reported from the Gachsaran formation can be easily 

included in the model. Figure 6.2a and b shows the final detailed modelling of unit VIII. The 

colour in the figure represents the scaled acoustic impedance. The impedance variation in the 

whole depth range (17 km) is large so using the original impedance values we will not be able to 

chase the detail. So for display purpose I have scaled the acoustic impedance.  Therefore it is 

possible to distinguish the fine variations in the overburden at the same time follow the detail 

variations in the deeper part of the section. In figure6.2a the area inside the black line (unit VIII) 

is modelled by using three curves. A top curve, that is parallel to the geometry of the upper part of 

unit VIII. A lower curve that is parallel to the top curve and finally a controlling curve parallel to 

the top of unit I that is below unit VIII. This curve causes truncation of all uniform internal 

layering of unit VIII (Figure 6.2a). Figure 6.2b shows the results of detailed modelling for the 

same unit. The unit has been divided into six smaller units representing the members of 

Gachsaran formation (The lowest member, member 1, is a competent interval has been modelled 

as the topmost part of unit I). Onlap geometry has been defined for members 2 and 3. Thickening 

and squeezing have been included in the modelling of member 4. This interval is the main salt 

interval in the Gachsaran formation with great variation in thickness because of the high degree of 

incompetency exhibited during folding (Oswald, 1978). 

Figure 6.3 shows the final model after putting all detail in the model, which includes the regional 

structural framework as well as small-scale stratigraphic detail. Slowness and density are the main 

properties included in the model. The sonic logs and formation density logs were used to define 

the slowness and density variation in each cell of the model. In cases where there is no sonic log 

available (for the upper part of overburden and very deep rock units) the velocity function was 

derived from check shot surveys. A lithology dependent sonic-density relationship has been used 

to obtain density values for intervals where there was no density log available. The grid spacing is 

12.5mx5m.  
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6.4    Finite difference forward realization 
 
Finite difference forward modelling code has been used to generate a number of shots. First shot 

is located in the northeast flank of the anticline of unit 1 at x=20000m (figure 6.1). Two different 

model geometries have been used with the same velocity model (figure 6.2a and b).  Geological 

detail of the Gachsaran formation was honoured in the detailed model (figure 6.2b) while in the 

regional model the whole formation was modelled with uniform internal geometry. The main 

purpose of shooting at this location (x=20000m figure 6.1) is first to see the effect of thick 

overburden on the seismic wave field. The second objective is to compare the seismic response of 

detailed geometrical modelling (figure 6.2b) with regional geometrical modelling (figure 6.2a). A 

split-spread source/receiver array has been. Figure 6.4 shows a snapshot of the propagated seismic 

wavefield after 0.9 s for both models. The events called ‘A’ in the regional model (Figure 6.4a) 

are the reflections from the boundary between unit I and unit VIII. The events called ‘B’  (Figure 

6.4b) are the reflections from the internal parts of the unit VIII. These events are parallel 

representing parallel bedding defined in the regional model (Figure 6.2a). The same events (‘B’) 

in the detailed model response (figure 6.4b) are not parallel and reflect the internal complex 

geometry of unit VIII.  Figure 6.5a and b show the common shot gather for the two shots. It is 

clear that the seismic wave field in the detailed model (figure 6.5b) is more complex than the 

regional model response. Diffractions shown inside the rectangle in figure 6.5b are due to the 

complex geometry of salt beds of the Gachsaran formation (member 4). This single shot in the 

flank of the anticline located in unit I shows how the correct modelling of overburden geology 

affects the seismic response.  

 

It is recommended to build such regional-detailed models across the Zagros FTB (controlled by 

seismic interpretation and well information) in order to understand the seismic wavefield 

behaviour at different thrusted folds with complex overburden velocity structure.  
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Figure 6.4 Snapshots from a shot located at the northern flank of the unit I (figure 6.1  x=20000) 
anticline from two models shown in figure 6.2 after 1.1s. a) Response from regional model shown 
in figure 6.2a. b) Response from detailed model shown in figure 6.2b.  The results are different. 

 

Figure 6.5 Common shot gather results of the shots located in the northern 
flank of the anticline in unit I (figure 6.1, x=20000). A) The common shot 
gather of model shown in figure 6.2a. b) The common shot gather of model 
shown in figure 6.2b. 
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7      Conclusion 
 
The ultimate goal of seismic data processing is to recover an image of the subsurface geological 

structure. In this dissertation seismic forward modelling (asymptotic and finite difference), a 

hybrid migration velocity analysis and prestack depth migration algorithms have been applied to 

analyze complex fold and thrust belts with strong topographic variations. 

 

In mountainous areas such as the Iranian Zagros FTB that has structural complexities seismic 

forward modelling is a useful tool to help in all steps of seismic study including acquisition, 

processing and interpretation. Since this is the first time seismic forward modelling is applied to 

the fault related folds in the Iranian Zagros FTB, the results show the necessity of modelling itself 

for the area of study, as well as the need to plan more detailed modelling studies. Structures are 

complex and velocity does not have a simple gradient, but changes laterally and there is also some 

velocity inversion, so special processing procedures, such as Prestack Depth Migration, are 

becoming more important, and for such imaging methods modelling is essential. 

 

Asymptotic forward modelling results show  

• The conventional velocity analysis does not produce correct images and simple 

calibration with wells especially in high velocity carbonates considerably improves the     

image quality. 

 

• Non-hyperbolic events have been identified in the shot gather modelling. In order to 

obtain the correct image and include these events in the processing only prestack imaging 

methods should be applied. 

 

• The ray coverage is not sufficient in steeply faulted flanks of structures and in places with 

thick overburden (with strong lateral velocity variation) so other seismic modelling 

methods such as finite difference methods should be tested. 

 

Detail geological models have been built with the COMPOUND model builder.  

 

• This type of model building honours the geological detail as well as structural elements. 

Regional and small-scale detail is included in the model. The generated model is very 

close to the real geology.  
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• The seismic response of such model reflects the internal geometry of the geologic 

structures and facies. Finite difference shot gather modelling of the detail model shows 

the complexity of the seismic wave field generated by the thick overburden. 

 

For migration velocity analysis a model-based hybrid tomographic strategy has been introduced. 

The proposed procedure is based on tomography of common image gathers and has 4 main stages, 

initial model generation, regional velocity update, detailed high-resolution velocity update and 

final model generation.  

• It has the advantage of seismic interpretation at different stages of the velocity 

analysis, Well information is included in the procedure from the beginning, 

 

• The procedure can confidently be expected to converge to the right answer, because 

the updates of each stage are reflected in the partial prestack depth migration and 

controlled by hard geological information from wells, 

 

•  The results of migration velocity analysis were promising and provide much better 

focusing. The final interval velocity model was structurally consistent and reflects the 

lithological changes as well. 

 

The different single arrival Kirchhoff prestack depth migration tests clearly show that by 

incorporating detailed geological interpretation, the single arrival Kirchhoff prestack depth 

migration gives excellent results.  

 

• By constraining the single arrival Kirchhoff PSDM with hard geological information I 

achieved results that are significantly more usable than by unconstrained PSDM alone.  

 

• The results also show that the spherical coordinate system for travel time calculation 

gives better results than rectangular coordinate system. 

 

•  Around the flanks of folds with very steep limbs selecting the single arrival with shortest 

path rather than minimum arrival time gives better focusing than minimum time arrival.  
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