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1 Introduction

Anomalous contributions to trilinear electroweak vector boson couplings have been thor-

oughly studied [1–5] and searched for, at LEP [6], at Fermilab [7–10] and at the LHC [11–

21]. Experimentally, the

VW+W−, V = γ, Z (1.1)

couplings are considered the more accessible, whereas the

V ZZ, V = γ, Z (1.2)
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couplings are considered more challenging. Both classes may have a CP-violating, as well

as a CP-conserving part.

In the Standard Model (SM), at the tree level, only the γWW and ZWW couplings

are non-zero, whereas all four receive contributions at the one-loop level. In the SM, CP-

violating effects can only be induced via the CKM matrix. However, at one-loop order,

there is no such contribution, since there might be only two relatively complex-conjugated

q̄q′W vertices, hence CP-violating phases of the CKM matrix would cancel. An extended

Higgs sector may naturally modify this at the one-loop level, since new sources of CP

violation could enter in a non-trivial way.

As is well known, the Two-Higgs-Doublet Model allows for CP violation, either explicit

or spontaneous [22]. Early work on CP violation in the Higgs sector related it to the

couplings of neutral scalars to the electroweak gauge bosons, as well as to the charged

scalars [23, 24]. The conditions for having CP violation in the model can be expressed in

terms of three invariants, in ref. [25] denoted Im J1, Im J2 and Im J3. If any one of them

is non-zero, then CP is violated [25] (see also ref. [26]). Further criteria would allow to

distinguish spontaneous and explicit CP violation [25, 27].

Standard-model contributions to the ZZZ and ZWW vertices have been studied in [28]

and [29], respectively. Since there is some scope for further constraining or even measuring

CP violation in these couplings, we present an updated review of these observables, and

also propose some new ones.

The paper is organized as follows. After a brief review of the model and the basic CP-

violating invariants in section 2, we discuss one-loop contributions to the ZZZ and ZWW

vertices in sections 3 and 4. Selected CP-violating asymmetries that could be measured in

e+e− collisions are discussed in section 5, and concluding remarks are given in section 6.

Technical details are relegated to appendices.

2 The model

We adopt a standard parametrization for the scalar potential of the 2HDM (see, for exam-

ple, [30]) with

Φi =

(
ϕ+
i

(vi + ηi + iχi)/
√

2

)
, i = 1, 2. (2.1)

In the general CP-violating case, the model contains three neutral scalars, which are linear

compositions of the ηi and χi: H1

H2

H3

 = R

η1

η2

η3

 , (2.2)

with η3 a linear combination of the χi that is orthogonal to the Goldstone field G0. Fur-

thermore, the 3× 3 rotation matrix R satisfies

RM2RT =M2
diag = diag(M2

1 ,M
2
2 ,M

2
3 ), (2.3)

where M2 is the neutral-sector mass-squared matrix, and with M1 ≤M2 ≤M3.

The weak-basis invariants revealing CP violation were originally expressed by Lavoura,

Silva and Botella [23, 24], in terms of couplings and rotation-matrix elements. The notation
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Figure 1. The general ZZZ vertex.

Im Ji, where the invariants were expressed in terms of potential parameters was introduced

by Gunion and Haber [25]. It was recently discussed in more detail by the present au-

thors [30] (where also Im J3 was replaced by another related invariant which we named

Im J30). The invariant Im J2, which represents CP violation in the mass matrix, can be

written as

Im J2 =
2e1e2e3

v9
(M2

1 −M2
2 )(M2

2 −M2
3 )(M2

3 −M2
1 )

=
2e1e2e3

v9

∑
i,j,k

εijkM
4
iM

2
k , (2.4)

where Mi are the neutral Higgs masses, and ei ≡ v1Ri1 +v2Ri2 represents their couplings to

a Z or a W (for a full dictionary of couplings determined by ei, see appendix B of ref. [30]).

We shall in this paper focus on processes in which Im J2 is responsible for the CP

violation. This invariant is the only one which does not involve charged scalars. Charged

scalars are involved in processes for which Im J1 and/or Im J30 are responsible for the CP

violation. For the explicit form of these invariants and processes to which they contribute,

we refer to ref. [30].

3 The ZZZ vertex

One of the simplest vertex functions to which Im J2 contributes, is the effective ZZZ vertex

discussed in appendix A. Since each ZHiHj vertex contains a factor εijk (see appendix B

of ref. [30]), it follows that i, j, k must be some permutation of 1, 2, 3 and thus an over-all

factor of e1e2e3 will emerge.

CP-violating form factors for triple gauge boson couplings have previously been studied

in the 2HDM in refs. [31–33].

3.1 Lorentz structure

Phenomenological discussions [2–5] of the ZZZ vertex have presented its most general

Lorentz structure. In ref. [4] the CP-violating vertex is analyzed, with all Z1, Z2, Z3 off-

shell. A total of 14 Lorentz structures are identified, all preserving parity. Some of these

vanish when one or more Z is on-shell. (For a detailed discussion of this structure, see

ref. [34].) We characterize them by momenta and Lorentz indices (p1, µ), (p2, α) and
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(p3, β), and let Z1 be off-shell while Z2 and Z3 are on-shell. In addition, we assume that

Z1 couples to a pair of leptons e+e− and neglect terms proportional to the lepton mass.

Then according to [3] the structure reduces to the form.1

eΓαβµZZZ = ie
p2

1 −M2
Z

M2
Z

[
fZ4 (pα1 g

µβ + pβ1g
µα) + fZ5 ε

µαβρ`ρ

]
, (3.1)

where

` ≡ p2 − p3 ≡ 2p2 − p1 (3.2)

with e being the proton charge, the momenta (p1 incoming and p2, p3 outgoing) and Lorentz

indices as defined in figure 1. The dimensionless form factor fZ4 violates CP while fZ5
conserves CP.

Our aim is to determine the CP-violating contributions to the ZZZ vertex, hence the

contributions to fZ4 . Let us here make some qualitative comments. Summing over i, j, k

(see figure 12 in appendix A) one might think that contributions to the triangle diagram

would pairwise cancel because of the factor εijk. Indeed, the scalar triangle diagrams

do sum to zero, but there are non-vanishing tensor contributions, due to the momentum

factors at the ZHiHj vertices.

Three classes of Feynman diagrams give contributions to the effective CP-violating

ZZZ vertex, all proportional to Im J2. They are triangle diagrams with HiHjHk along the

internal lines, as well as diagrams where one neutral Higgs boson is replaced by a neutral

Goldstone G0 field, or a Z,

fZ4 = fZ,HHH4 + fZ,HHG4 + fZ,HHZ4 . (3.3)

These three contributions are calculated in appendix A.

3.2 Results

The total one-loop contribution to fZ4 for the ZZZ vertex calculated in appendix A is

given by a linear combination of the three-point tensor coefficient functions C001 and C1

(we adopt the LoopTools notation [35]) of various arguments,

fZ4 (p2
1) =

2α

π sin3(2θW)

M2
Z

p2
1 −M2

Z

e1e2e3

v3

×
∑
i,j,k

εijk
[
C001(p2

1,M
2
Z ,M

2
Z ,M

2
i ,M

2
j ,M

2
Z) + C001(p2

1,M
2
Z ,M

2
Z ,M

2
Z ,M

2
j ,M

2
k )

+ C001(p2
1,M

2
Z ,M

2
Z ,M

2
i ,M

2
Z ,M

2
k )− C001(p2

1,M
2
Z ,M

2
Z ,M

2
i ,M

2
j ,M

2
k )

+M2
ZC1(p2

1,M
2
Z ,M

2
Z ,M

2
i ,M

2
Z ,M

2
k )
]
. (3.4)

This structure was identified 20 years ago by Chang, Keung and Pal [32], who studied

the set of diagrams presented in appendices A.1 and A.2. We find numerically that our

1Here, we follow the convention of Hagiwara et al. [2], which we also adopt in section 4 for the ZWW

vertex by putting ε0123 = −ε0123 = +1, whereas Gounaris et al. [3] have chosen the convention where

ε0123 = +1.
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Figure 2. Real (solid lines) and imaginary (dashed) part of the form factor fZ4 (divided by

e1e2e3/v
3) as a function of p21/M

2
Z , for p22 = p23 = M2

Z and four values of neutral-Higgs masses M2

of eq. (3.5), as indicated (in GeV). Below threshold, s1 = p21 = 4M2
Z , the function is not defined.

result for the sum of these diagrams is identical to their result. There are, however, also

diagrams with an internal Z line, arising from the ZZHi vertex which was not included

in their study. These contributions are calculated in appendix A.3, and numerical studies

show that these are actually the dominant contributions.

For the neutral-Higgs masses

M1 = 125 GeV, M2 = (200, 250, 300, 350) GeV, M3 = 400 GeV, (3.5)

we show in figure 2 the value of fZ4 (p2
1)v3/(e1e2e3) as a function of p2

1/M
2
Z . The normal-

ization factor, e1e2e3/v
3, is typically of O(0.1) (only small regions of the parameter space

are compatible with theoretical and experimental constraints [36, 37]). Defining δ as a

measure of deviation of the H1V V coupling from its SM strength, e1 = v(1 − δ), and

using e2
2 + e2

3 = v2 − e2
1, one can easily find [30] that for small δ, (e1e2e3)/v3 < δ, so it is

suppressed by the H1V V coupling approaching the SM limit.

The form factor fZ4 has been constrained by experiments at LEP, Fermilab and the

LHC. Recently, CMS [20] has presented an impressive bound on fZ4 (assumed real):

−0.0022 < fZ4 < 0.0026. This result is obtained in the 2`2ν channel from the 7 and

8 TeV data sets. It is still two orders of magnitude above what is generated in the 2HDM

by a non-zero Im J2.
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Figure 3. The general ZWW vertex.

4 The ZW+W− vertex

Contrary to the ZZZ vertex, the ZWW vertex is present at the tree level, with a well-

known, CP-conserving structure:

igZWWΓαβµtree = −ig cos θW [gαβ(p2 − p3)µ + gβµ(p1 + p3)α − gµα(p1 + p2)β ] (4.1a)

= −ig cos θW

[
gαβ`µ + gβµ

(
−1

2
`+

3

2
p1

)α
− gµα

(
1

2
`+

3

2
p1

)β]
, (4.1b)

where gZWW = −e cot θW , p1 is incoming while p2 and p3 are outgoing, and in the second

line, we make use of ` = p2 − p3.

Triangle diagrams discussed in appendix B contribute to the CP-violating ZW+W−

vertex. In fact, they give a contribution proportional to the invariant Im J2, which is one

measure of CP violation in the Two-Higgs-Doublet model [25] (referred to as J1 in earlier

work by Lavoura, Silva and Botella [23, 24]).

4.1 Lorentz structure

Phenomenological discussions [2] of the ZWW vertex have presented its most general

Lorentz structure. We let Z be off-shell while both W± are on-shell, again assuming that

Z couples to a pair of leptons e+e− so that we may neglect terms proportional to the lepton

mass. Then according to [2] the structure reads

ΓαβµZWW = fZ1 `
µgαβ − fZ2

M2
W

`µpα1 p
β
1 + fZ3

(
pα1 g

µβ − pβ1gµα
)

+ ifZ4

(
pα1 g

µβ + pβ1g
µα
)

+ ifZ5 ε
µαβρ`ρ

− fZ6 εµαβρp1ρ −
fZ7
M2
W

`µεαβρσp1ρ`σ. (4.2)

The tree-level vertex contributes to f1 and f3:

f tree
1 = 1, f tree

3 = 2. (4.3)

The dimensionless form factors fZ4 , fZ6 and fZ7 violate CP while the others conserve CP.

Recent LHC experiments [17, 19, 21] have constrained the CP-conserving anomalous cou-

plings, but not the CP-violating fZ4 .
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Figure 4. Real (solid lines) and imaginary (dashed) part of the form factor fZ4 (divided by

e1e2e3/v
3) as a function of s1/M

2
W , for p22 = p23 = M2

W and four values of neutral-Higgs M2 masses

of eq. (3.5), as indicated (in GeV).

Our aim is to determine the CP violating contributions to the ZWW vertex, hence

the contributions to fZ4 .

4.2 Results

The total one-loop contribution to fZ4 for the ZWW vertex calculated in appendix B is

given by a linear combination of the three-point tensor coefficient functions C001 of various

arguments,

fZ4
(
p2

1

)
=

−α
π sin2(2θW)

e1e2e3

v3

∑
i,j,k

εijk
[
C001(p2

1,M
2
W ,M

2
W ,M

2
i ,M

2
j ,M

2
W )

−C001(p2
1,M

2
W ,M

2
W ,M

2
i ,M

2
j ,M

2
H±)

]
. (4.4)

This quantity was also studied by He, Ma and McKellar [31]. Assuming that they have

used the (−iε) prescription in their eq. (5), we find numerical agreement apart from an

overall sign. Furthermore, the result for the imaginary part given in their eq. (6) is twice

as large as the one in eq. (5).

For the neutral-Higgs masses given by equation (3.5), we show in figure 4 the value of

fZ4 (p2
1)v3/(e1e2e3) as a function of s1/M

2
W .

5 Asymmetries

We are going to discuss the possibility of testing CP violation at future e+e− colliders [38,

39]. It is assumed that polarizations of the final-state vector bosons could be determined

– 7 –
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experimentally.2 We adopt CP-sensitive observables defined for W+W− and ZZ in [33, 40],

and [32], respectively. Below, we present some predictions for those and other asymmetries

for the 2HDM.

5.1 e+e− → ZZ

Helicities of the ZZ (and W+W−) pairs can be measured statistically by studying decay

products of the final vector bosons. Therefore, we will define a number of differential

asymmetries assuming that both the momenta and helicities of the ZZ pair could be

determined. Since our goal is to measure the CP-violating form factor fZ4 , our asymmetries

will (to leading order) be proportional to fZ4 . Let us first start by considering

AZZ1 ≡ σ+,0 − σ0,−
σ+,0 + σ0,−

, (5.1)

AZZ2 ≡ σ0,+ − σ−,0
σ0,+ + σ−,0

, (5.2)

where σλ,λ̄ are unpolarized-beam cross sections for the production of ZZ with helicities λ

and λ̄, respectively. The cross sections can be expressed through the helicity amplitudes

for e+(σ)e−(σ̄)→ Z(λ)Z(λ̄) as follows

σλ,λ̄ =
∑
σ,σ̄

Mσ,σ̄;λλ̄(Θ)M?
σ,σ̄;λλ̄(Θ), (5.3)

where σ and σ̄ are the helicities of e− and e+, respectively. Expressions for these cross

sections can readily be written out using the results from Chang, Keung and Pal [32].

Letting Θ be the angle between the e− beam direction and the Z whose helicity is given

by the first index λ, and defining γ =
√
s1/(2MZ) and β2 = 1 − γ−2, we find to lowest

order in fZ4
AZZ1 = −4βγ4

[
(1 + β2)2 − (2β cos Θ)2

]
F1(β,Θ) Im fZ4 , (5.4)

with F1(β,Θ) given in appendix D.

In the low-energy limit (β → 0) this simplifies to

AZZ1 =
−4β

[
ξ1 − 3ξ1 cos2 Θ + 2 (ξ1 − ξ2) cos3 Θ

]
Im fZ4

(ξ3 + ξ4) + 2ξ3 cos Θ− 3 (ξ3 + ξ4) cos2 Θ− 4ξ3 cos3 Θ + 4 (ξ3 + ξ4) cos4 Θ
, (5.5)

where the ξi are given in appendix D. Furthermore, we find

AZZ2 = AZZ1 (cos Θ→ − cos Θ) . (5.6)

These asymmetries are both shown in figure 5. The sharp peaks near the forward and

backward directions are due to an interplay of three factors: (1) the near-divergence of the

t-channel propagator, (2) the factor [∆σ∆λ(1 +β2)− 2 cos Θ] of the amplitude (see eq. (5)

in ref. [32]) and (3) the Wigner functions proportional to 1 ± cos Θ.

2Investigating angular distributions of the vector boson decay products one can indeed measure their

polarizations.
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Figure 5. The asymmetries AZZ
1 (Θ) of eq. (5.4) and AZZ

2 (Θ) of eq. (5.6)(both divided by γ4 Im fZ4 )

as functions of Θ for three beam energies E as indicated (in GeV).

Introducing the abbreviations

ξ =
2 sin θW cos θW (1− 6 sin2 θW + 12 sin4 θW )

1− 8 sin2 θW + 24 sin4 θW − 32 sin6 θW + 32 sin8 θW
' 1.65, (5.7)

ξ̃ =
−4 sin θW cos θW

(
1− 6 sin2 θW + 12 sin4 θW − 16 sin6 θW

)
1− 8 sin2 θW + 24 sin4 θW − 32 sin6 θW + 32 sin8 θW

' −0.78, (5.8)

the following asymmetries can be defined and calculated to leading order in fZ4 :

AZZ ≡ σ+,0 + σ0,+ − σ0,− − σ−,0
σ+,0 + σ0,+ + σ0,− + σ−,0

=
−2βγ4[(1 + β2)2 − (2β cos Θ)2][1 + β2 − (3− β2) cos2 Θ]ξ Im fZ4

(1 + β2)2 − (3 + 6β2 − β4) cos2 Θ + 4 cos4 Θ
, (5.9)

ÃZZ ≡ σ+,0 − σ0,+ − σ0,− + σ−,0
σ+,0 + σ0,+ + σ0,− + σ−,0

=
−2βγ4 cos Θ[(1 + β2)2 − (2β cos Θ)2]

(
β2 − cos2 Θ

)
ξ̃Im fZ4

(1 + β2)2 − (3 + 6β2 − β4) cos2 Θ + 4 cos4 Θ
. (5.10)

The asymmetries AZZ and ÃZZ are both shown in figure 6 for three values of the energy.

Since the former is defined symmetrically with respect to the two Z bosons, the expres-

sion is forward-backward symmetric. At high energies and intermediate angles, it is well

approximated by AZZ ' −4γ4ξ Im fZ4 .

In the low-energy limit, these become

AZZ → −2β(1− 3 cos2 Θ)ξ Im fZ4
1− 3 cos2 Θ + 4 cos4 Θ

, (5.11)

ÃZZ → 2β cos3 Θξ̃ Im fZ4
1− 3 cos2 Θ + 4 cos4 Θ

. (5.12)

– 9 –
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Figure 7. The asymmetry A′′(Θ) of eq. (5.15) (divided by βγ2ξRe fZ4 /π) as a function of Θ for

three beam energies E as indicated (in GeV).

Other possibilities of testing CP violation in e+e− → ZZ have been investigated by

Chang, Keung and Pal [32], who note that the angular distribution of `− from a Z decay

is determined by the spin-density matrix of the Z (see eq. (10) of ref. [32]):

ρ(Θ)λ1λ2 = N−1(Θ)
∑
σ,σ̄,λ̄

Mσ,σ̄,λ1,λ̄
(Θ)M∗σ,σ̄,λ2,λ̄(Θ). (5.13)

where again, σ and σ̄ are helicities of e− and e+, respectively, and the λ and λ̄ refer to

the two Z helicities. They advocate a certain difference of cross sections, integrated over
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azimuthal quadrants of the final-state leptons, which is not suppressed by the approximate

C-symmetry. They have thus defined such a “folded” asymmetry A′′(Θ) in their eq. (15),

and shown that it equals

A′′(Θ) = − 1

π
[Im ρ(Θ)+,− − Im ρ(π −Θ)−,+] . (5.14)

To lowest order in fZ4 , this quantity is proportional to Re fZ4 :

A′′(Θ) =
β(1 + β2)γ2[(1 + β2)2 − (2β cos Θ)2] sin2 Θ ξRe fZ4

π[2 + 3β2 − β6 − β2(9− 10β2 + β4) cos2 Θ− 4β4 cos4 Θ]
. (5.15)

This asymmetry is shown in figure 7 for three values of the energy. Superficially, it looks

like this asymmetry might be unbounded at high energies. This is not the case, since at

high energies (see appendix C) fZ4 falls off like (1/γ6) log γ.

In the low-energy limit (β → 0), it simplifies:

A′′(Θ)→ β sin2 Θ ξRe fZ4
2π

. (5.16)

5.2 e+e− →W+W−

Let us follow the same approach as for e+e− → ZZ in the e+e− →W+W− case by forming

the asymmetries [33]:

AWW
1 ≡ σ+,0 − σ0,−

σ+,0 + σ0,−
, (5.17)

AWW
2 ≡ σ0,+ − σ−,0

σ0,+ + σ−,0
, (5.18)

where σλ,λ̄ are unpolarized-beam cross sections for the production of W− and W+ with

helicities λ and λ̄, respectively. The cross sections can be expressed through the helicity

amplitudes for e+(σ)e−(σ̄) → W−(λ)W+(λ̄) like in eq. (5.3), where σ and σ̄ are the

helicities of e− and e+, respectively. The amplitudes Mσ,σ̄;λλ̄(Θ) were first calculated

in [2]. Here, Θ is the angle between the e− and the W− momenta.

Following the notation of [33], we find for the case of polarized initial beams (σ, σ̄),

and to lowest order in fZ4 :

(σ, σ̄) = (+−) : AWW
1 =

s1

M2
Z

Im fZ4 , (5.19a)

(σ, σ̄) = (−+) : AWW
1 =

−β2(1− 2 sin2 θW)s1

β2(2 sin2 θWM2
Z − s1) + (s1 −M2

Z)Y
Im fZ4 , (5.19b)

where

Y ≡ 1− (1 + β)

γ2(1 + β2 − 2β cos Θ)
. (5.20)

with γ =
√
s1/(2MW ) and β2 = 1− γ−2.

For the unpolarized case, we find (still to lowest order in fZ4 ):

AWW
1 =

N
(a)
1 (1− cos Θ)2 +N

(b)
1 (1 + cos2 Θ)

D
(a)
1 (1− cos Θ)2 +D

(b)
1 (1 + cos2 Θ)

βs1 Im fZ4 (5.21)
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Figure 8. The asymmetries AWW
1 and AWW

2 vs Θ for three values of the beam (or W ) energy E,

150 GeV, 500 GeV and 1500 GeV, as indicated.

with the following abbreviations:

N
(a)
1 = (1 + β2 − 2β cos Θ){X1 − 2 sin2 θW[(1− β2)(1− β + 2 cos Θ)s1

− (1− 3β − β2 + 2β2 cos Θ− β3 + 2 cos Θ)M2
Z ]}, (5.22a)

N
(b)
1 = 8 sin4 θWβ(1 + β2 − 2β cos Θ)2M2

Z , (5.22b)

D
(a)
1 = X2

1 − 4 sin2 θWβ(1 + β2 − 2β cos Θ)X1M
2
Z , (5.22c)

D
(b)
1 = 8 sin4 θWβ

2(1 + β2 − 2β cos Θ)2M4
Z , (5.22d)

X1 = (1− β2)(1− β + 2 cos Θ)s1 − (1− 2β − β2 + 2 cos Θ)M2
Z . (5.22e)

In the low-energy limit (β → 0), this simplifies:

AWW
1 →


4M2

W

M2
Z

2M2
W−M

2
Z

(4M2
W−M

2
Z)(1+2 cos Θ)

β Im fZ4 , β <∼ |1 + 2 cos Θ|, β � 1,

−2M2
W (16M4

W−5M2
WM2

Z−2M4
Z)

M2
Z(10M4

W−2M2
WM2

Z+M4
Z)

Im fZ4 , |1 + 2 cos Θ| <∼ β � 1,
(5.23)

where we have also substituted the tree-level relation sin2 θW = 1−M2
W /M

2
Z .

Furthermore, we find

AWW
2 = −AWW

1 (cos Θ→ − cos Θ;β → −β) . (5.24)

We display these asymmetries AWW
1 and AWW

2 in figure 8. An overall factor γ2 Im fZ4
is factored out, and hence for AWW

1 , the graphs for 500 GeV and 1500 GeV are practically

indistinguishable. The main structure is due to the first term in the numerator of eq. (5.17)

passing through zero close to a minimum of the denominator.

We may also combine these two asymmetries into one, either by addition or subtraction.

Again calculating to lowest order in fZ4 :

AWW ≡ σ+,0 + σ0,+ − σ0,− − σ−,0
σ+,0 + σ0,+ + σ0,− + σ−,0

= β
(
1 + β2 − 2β cos Θ

)
FWW Im fZ4 , (5.25)
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Figure 9. The asymmetries AWW and ÃWW (divided by γ2 Im fZ4 ) vs Θ for three values of the

beam (or W ) energy E, 150 GeV, 500 GeV and 1500 GeV, as indicated.

ÃWW ≡ σ+,0 − σ0,+ + σ0,− − σ−,0
σ+,0 + σ0,+ + σ0,− + σ−,0

= β
(
1 + β2 − 2β cos Θ

)
F̃WW Im fZ4 , (5.26)

where the functions FWW and F̃WW , given in appendix D, can be expressed as ratios of

polynomials in cos Θ.

A further possibility of testing CP violation in e+e− → WW has been investigated

in [33]. Adopting the helicity amplitudes obtained there, they have defined the up-down

asymmetry Aud(Θ) in their eq. (32), and shown that it equals

Aud(Θ) =
3

8

√
2 [Im ρ(Θ)+,0 − Im ρ̄(Θ)−,0 − Im ρ(Θ)−,0 + Im ρ̄(Θ)+,0] , (5.27)

with ρ(Θ) the spin-density matrix of the W− boson and ρ̄(Θ) the spin-density matrix of

the W+ boson, as defined by their eqs. (26) and (28). To lowest order in fZ4 , this quantity

is proportional to Re fZ4 . It is a rather complicated function, depending on the W velocity

β, the angle Θ, the ratio M2
Z/s1, as well as sin2 θW. We focus on the angular dependence,

and write it as

Aud = 3β
√

1− β2(1 + β2 − 2β cos Θ) sin ΘF(s1,Θ) Re fZ4 , (5.28)

with

F(s1,Θ) ≡ Nud
0 +Nud

1 cos Θ +Nud
2 cos2 Θ

Dud
0 +Dud

1 cos Θ +Dud
2 cos2 Θ +Dud

3 cos3 Θ +Dud
4 cos4 Θ

(5.29)

given in appendix D. The angular dependence of this asymmetry is shown in figure 10.

In the low-energy limit, β → 0, this reduces to

Aud → −3

4
β

(1− 2 sin2 θW )M2
W

4M2
W −M2

Z

sin Θ Re fZ4 . (5.30)

– 13 –



J
H
E
P
0
5
(
2
0
1
6
)
0
2
5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.14−

0.12−

0.1−

0.08−

0.06−

0.04−

0.02−

0
)

Z

4
 Re f2γ/(

ud
A

π/Θ

150

500

1500
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Figure 11. The asymmetries A′ud and A′′ud divided by γ2Re fZ4 and Re fZ4 , respectively, vs Θ for

three values of the beam (or W ) energy E, 150 GeV, 500 GeV and 1500 GeV, as indicated. Here,

E0 = 1
4

√
s1 has been used.

On the other hand, at high energies, the prefactor F(s1,Θ) grows as γ2 (see ap-

pendix D), but this is tempered by the high-energy fall-off of fZ4 .

Chang, Keung and Phillips [33] have also defined an asymmetry A′ud(Θ) in their

eq. (34), and shown that it equals

A′ud =
3
√

2

4π
{[a(E0)− b(E0)] [Im ρ(Θ)+,0 − Im ρ̄(Θ)−,0]

− [a(E0) + b(E0)] [Im ρ(Θ)−,0 − Im ρ̄(Θ)+,0]} , (5.31)
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with a(E0) and b(E0) defined in [33] following their eq. (34). To the lowest order in fZ4 we

find that

A′ud =
3β
√

1− β2(1 + β2 − 2β cos Θ) sin Θ s1 Re fZ4
π
(
Dud

0 +Dud
1 cos Θ +Dud

2 cos2 Θ +Dud
3 cos3 Θ +Dud

4 cos4 Θ
)

× {[a(E0)− b(E0)]N (β, cos Θ) + [a(E0) + b(E0)]N (−β,− cos Θ)} , (5.32)

where

N (β, cos Θ) = N ′ud0 +N ′ud1 cos Θ +N ′ud2 cos2 Θ (5.33)

and

N ′ud0 =
(
1− 2β2 − β3

)
(1− β)2

(
1− 2 sin2 θW

)
s1

−
(
1− 4β − β2 + 2β3 − 2

(
1− 6β − β2 + β3 + β5

)
sin2 θW

)
m2
Z , (5.34)

N ′ud1 =
(
1 + 3β + 2β2

)
(1− β)2

(
1− 2 sin2 θW

)
s1

−
[
(1 + β)2 − 2

(
1 + 3β + 5β2 + β3 − 2β4

)
sin2 θW

+8β
(
1 + β2

)
sin4 θW

]
m2
Z ,

N ′ud2 = 2β2
(
1− 4 sin2 θW + 8 sin4 θW

)
m2
Z . (5.35)

Finally, they have also defined

A′′ud = − 1

π
(Im ρ(Θ)+,− − Im ρ̄(Θ)−,+) , (5.36)

which to the lowest order in fZ4 equals

A′′ud =
4β
(
1− β2

)2 (
1− 2 sin2 θW

) (
1 + β2 − 2β cos Θ

)
sin2 Θ

(
s1 −m2

Z

)
s1 Re fZ4

π
(
Dud

0 +Dud
1 cos Θ +Dud

2 cos2 Θ +Dud
3 cos3 Θ +Dud

4 cos4 Θ
) .

(5.37)

In the low-energy limit these become:

A′ud = −3βm2
W

(
2m2

W −m2
Z

)
sin ΘRe fZ4

4πm2
Z

(
4m2

W −m2
Z

)
×{[a(E0)− b(E0)] (1 + cos Θ) + [a(E0) + b(E0)] (1− cos Θ)} , (5.38)

A′′ud = −βm
2
W

(
2m2

W −m2
Z

)
sin2 ΘRe fZ4

πm2
Z

(
4m2

W −m2
Z

) . (5.39)

The asymmetries A′ud and A′′ud are shown in figure 11. Like Aud, they vary rapidly near

the backward direction.

6 Discussion

The mixing of CP-even and odd components of the scalar fields lead to couplings among all

pairs of neutral mass eigenstates and the gauge particles, which in turn lead to loop-induced

trilinear couplings among the electroweak gauge particles, W and Z. The CP-violating part

of these couplings, which we have discussed here, are all proportional to the quantity Im J2.
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This quantity Im J2 is proportional to the product of couplings e1e2e3, as well as to the

product of differences of masses squared, (M2
2 −M2

1 )(M2
3 −M2

2 )(M2
1 −M2

3 ), see eq. (2.4).

Obviously, having all three masses different is a necessary, but not sufficient condition for

CP violation. Any one of the neutral Higgs particles could be odd under CP, with the

other two even. This would be reflected in a vanishing product e1e2e3.

Properties of the Higgs boson observed at the LHC [41–43] match those expected for the

SM. As has been discussed in [30, 44–46], the standard nature of the Higgs boson doesn’t

preclude the presence of interesting relatively low-scale BSM physics. This landscape is

being referred to as the alignment limit. If we take the discovered 125 GeV Higgs boson to

be the lightest one, H1, then the alignment limit implies

e1 → v, e2 → 0, e3 → 0, (6.1)

where v = 246 GeV. Hence, in this exact limit, Im J2 vanishes, and the CP-violating effects

discussed in this paper, would all vanish. (Actually, also Im J1 would vanish.) In general,

if we parametrize the deviation of the H1V V coupling from its SM value by δ, such that

e1 = v(1− δ), then one can show that for small δ

|Im J2| <
δ

v6
(M2

1 −M2
2 )(M2

2 −M2
3 )(M2

3 −M2
1 ). (6.2)

However, the scalar sector of the 2HDM might still offer CP violation in the align-

ment limit, represented by the remaining invariant Im J30 [30]. This quantity can only

be accessed via measurements involving pairs of charged Higgs bosons, and is thus not

easily studied. Thus, for the near future, the best prospects for finding CP violation in the

2HDM lie probably in these trilinear vector couplings, together with some deviation from

the alignment limit [36, 37, 47, 48].

These effects of CP violation might be worth looking for also at the LHC, where in

Drell-Yan processes a cut on rapidity makes it possible to statistically distinguish the quark

from the antiquark direction [49]. An efficiency study might be worthwhile.

Of course, if an effect were to be found in ZZZ or ZW+W− trilinear couplings, at a

level beyond that expected in the 2HDM, that would point to some other new physics.
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A The ZZZ vertex

A.1 The HHH triangle diagram

We show in figure 12 the triangle diagram in LoopTools notation [35]. Treating all momenta

p1, (−p2) and (−p3) as incoming: p1−p2−p3 = 0. Loop momenta along the three internal
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Figure 12. Triangle diagram contributing to the CP-violating ZZZ vertex.

lines are denoted q, q+ k1, q+ k2, whereas their masses are denoted m1, m2 and m3 (some

permutation of M1,M2,M3).

Assuming that Z couples to light fermions we may drop terms proportional to pµ1 , pα2
and pβ3 . Furthermore, we assume that Z2 and Z3 are on-shell, meaning p2

2 = p2
3 = M2

Z .

Under these assumptions, the contribution to fZ4 is given by the following sum over 6

permutations of i, j, k:

e
p2

1 −M2
Z

M2
Z

fZ,HHH4 = −8NHe1e2e3

∑
i,j,k

εijkC001(p2
1,M

2
Z ,M

2
Z ,M

2
i ,M

2
j ,M

2
k ), (A.1)

where

NH =
1

16π2

(
g

2v cos θW

)3

=
eα

4πv3 sin3(2θW)
. (A.2)

A.2 The HHG triangle diagrams

In the covariant gauge, there are also contributions from triangle diagrams with one of the

Higgs fields replaced by the Goldstone field G0. A representative case is shown in figure 13.

There are similar diagrams with a G0 along either of the other two internal lines, but no

diagram with two or three internal G0 lines due to the non-existence of a ZG0G0 coupling.

We add these three sets of diagrams, summing over permutations of i, j, k and make

the same assumptions as for the HHH triangle diagrams. We find that under these as-

sumptions the remaining contribution to fZ4 is given by

e
p2

1 −M2
Z

M2
Z

fZ,HHG4 = 8NHe1e2e3

∑
i,j,k

εijk
[
C001(p2

1,M
2
Z ,M

2
Z ,M

2
i ,M

2
j ,M

2
Z) (A.3)

+ C001(p2
1,M

2
Z ,M

2
Z ,M

2
Z ,M

2
j ,M

2
k )+C001(p2

1,M
2
Z ,M

2
Z ,M

2
i ,M

2
Z ,M

2
k )
]
.
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Figure 13. Triangle diagram contributing to the CP-violating ZZZ vertex.
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Figure 14. Triangle diagram contributing to the CP-violating ZZZ vertex.

A.3 The HHZ triangle diagrams

One of the lines in the triangle diagram could also be a Z, as indicated in figure 14. The

Z-line can of course also be inserted between Z3 and Z1, or between Z1 and Z2, but there

can not be more than one internal Z-line due to the absence of a tree-level ZZZ vertex.

Again, we add these three sets of diagrams, summing over permutations of i, j, k and make

the same assumptions as for the HHH and HHG triangle diagrams. We find that under

these assumptions the remaining contribution to fZ4 is given by

e
p2

1 −M2
Z

M2
Z

fZ,HHZ4 = 8M2
ZNHe1e2e3

∑
i,j,k

εijkC1(p2
1,M

2
Z ,M

2
Z ,M

2
i ,M

2
Z ,M

2
k ). (A.4)
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Figure 15. Bubble diagram contributing proportional to Im J2.
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ei

Figure 16. Tadpole diagram yielding a structure proportional to Im J2.

A.4 Bubble diagrams

There are diagrams with a bubble connecting a Za (a = 1, 2, 3) with an intermediate Hj ,

as shown in figure 15.

These diagrams contribute terms proportional to Im J2. There are also diagrams with

the internal Z replaced by a G0. However, these diagrams are all scalar, proportional to

pµ1g
αβ (and similarly for bubbles on the other legs) and will not be further discussed.

A.5 Tadpole diagrams

There are also tadpole diagrams yielding a structure proportional to Im J2. A representative

case is shown in figure 16. However, these are canceled by counter terms, in order to give

a vanishing expectation value for the Hj field at the one-loop order [50].

B The ZW+W− vertex

Triangle diagrams of the kind shown in figure 17 contribute to the CP-violating ZW+W−

vertex. In fact, they give a contribution proportional to the invariant Im J2.

We show in figure 17 the triangle diagrams contributing to the CP-violating form

factor in LoopTools notation [35]. The details of their calculations and the assumptions
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Figure 17. Triangle diagrams contributing to the CP-violating ZWW vertex.

made are similar to the calculations of the ZZZ vertex in the previous section, so we omit

the details.

For those diagrams with a W− line between W+ and W−, we find that their contri-

bution is proportional to pµ1g
αβ . We therefore neglect this contribution. Putting

N =
−1

16π2 cos θW

( g
2v

)3
=

−eα
32πv3 cos θW sin3(θW)

, (B.1)

we find that for the diagrams with a G− line between W+ and W−, their contribution is

igZWWΓαβµZWW,HHGch
= 8Ne1e2e3(pα1 g

µβ+pβ1g
µα)
∑
i,j,k

εijkC001(p2
1,M

2
W ,M

2
W ,M

2
i ,M

2
j ,M

2
W ).

(B.2)

As for the diagrams with an H− line between W+ and W−, there are contributions

to the CP-violating form factor as well as to CP-conserving ones. We present only the

contribution to the CP-violating form factor, which becomes

igZWWΓαβµZWW,HHHch
=−8Ne1e2e3(pα1 g

µβ+pβ1g
µα)
∑
i,j,k

εijkC001(p2
1,M

2
W ,M

2
W ,M

2
i ,M

2
j ,M

2
H±)

+ CP-conserving terms. (B.3)

Furthermore, at the SM level, there are contributions from fermion loops. But these

do not contribute to fZ4 and will be ignored.

C Extracting Im J2 — a case study

We have claimed in sections 3 and 4 that the contributions to fZ4 from the diagrams

studied in appendices A and B are proportional to Im J2. However, Im J2 is not explicit in

the expressions (3.4) and (4.4). The expressions contain the factor e1e2e3, but the factor

(M2
1−M2

2 )(M2
2−M2

3 )(M2
3−M2

1 ) is not explicitly visible. This remaining factor is “hidden”
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in the linear combination of C-functions. One readily finds numerically that the expressions

for fZ4 vanish whenever two of the scalars have the same mass, but extracting the “hidden”

factor (M2
1 − M2

2 )(M2
2 − M2

3 )(M2
3 − M2

1 ) analytically is not easily done. Making some

assumptions makes this task easier.

Let us study the contribution from the triangle diagrams with HiHjHk in the loop.

The contribution is presented in (A.1). Let us focus on the expression

Σ =
∑
i,j,k

εijkC001(p2
1,M

2
Z ,M

2
Z ,M

2
i ,M

2
j ,M

2
k ) (C.1)

in the asymptotic limit (large s1 ≡ p2
1). The tensor coefficients C001 can all be re-expressed

in terms of scalar loop integrals A0, B0 and C0 [51]. The explicit forms of these scalar loop

integrals are all known [52]. They can be expressed in terms of logarithms and dilogarithms.

The resulting expression is very lengthy and complex, so we prepare to study the expression

in the asymptotic limit by introducing new variables:

x =
(M2

2 −M2
1 )

s1
(C.2)

y =
(M2

3 −M2
2 )

s1
(C.3)

As a consequence,

x+ y =
(M2

3 −M2
1 )

s1
, (C.4)

and

Im J2 = 2
e1e2e3

v9
s3

1xy(x+ y).

Both x and y are small in the asymptotic limit. Expanding Σ in power of x and y, we

find that the leading term indeed contains the product xy(x+ y),

fZ,HHH4 =
−2α

π sin3(2θW)

M2
Z

p2
1 −M2

Z

e1e2e3

v3

∑
i,j,k

εijkC001(p2
1,M

2
Z ,M

2
Z ,M

2
i ,M

2
j ,M

2
k )

' −α
4π sin3(2θW)

v6M2
Z

M2
1 s

2
1(s1 −M2

Z)
ImJ2

×

log

(
M2

1

s1

)
+

i
(
9M2

1 − 2M2
Z

)
log

(√
4M2

1−M2
Z−iMZ√

4M2
1−M2

Z+iMZ

)
MZ

√
4M2

1 −M2
Z

+ iπ


in the asymptotic limit. Here, both M2

2 and M2
3 have been represented by M2

1 , since x� 1

and y � 1.

D Some asymmetry prefactors F

D.1 The prefactor F1(β,Θ) of AZZ
1

We define the prefactor of eq. (5.4) as

F1(β,Θ) =
N0 +N1 cos Θ +N2 cos2 Θ +N3 cos3 Θ

D0 +D1 cos Θ +D2 cos2 Θ +D3 cos3 Θ +D4 cos4 Θ
. (D.1)
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These coefficients are given by

N0 =
(
1 + β2

)
ξ1, N1 = −2β2 (ξ1 − ξ2) , (D.2a)

N2 =
(
β2 − 3

)
ξ1, N3 = 2 (ξ1 − ξ2) , (D.2b)

D0 =
(
1 + β2

)2
(ξ3 + ξ4) , D1 = 2

(
1− β4

)
ξ3, (D.2c)

D2 = −
(
3 + 6β2 − β4

)
(ξ3 + ξ4) , D3 = −4

(
1− β2

)
ξ3, (D.2d)

D4 = 4 (ξ3 + ξ4) , (D.2e)

with

ξ1 = sin θW cos θW (1− 6 sin2 θW + 12 sin4 θW ), (D.3a)

ξ2 = 16 sin7 θW cos θW , (D.3b)

ξ3 = 1− 8 sin2 θW + 24 sin4 θW − 32 sin6 θW , (D.3c)

ξ4 = 32 sin8 θW . (D.3d)

D.2 The prefactor F(s1,Θ) of Aud

The prefactor of the asymmetry Aud of eq. (5.28) can be written as

F(s1,Θ) =
Nud

0 +Nud
1 cos Θ +Nud

2 cos2 Θ

Dud
0 +Dud

1 cos Θ +Dud
2 cos2 Θ +Dud

3 cos3 Θ +Dud
4 cos4 Θ

(D.4)

with

Nud
0 =

(
1− β2

) (
1− 2 sin2 θW

) (
s1 −m2

Z

)
, (D.5a)

Nud
1 = β

[(
1− β2

) (
1− 2 sin2 θW

)
s1

−
(
2− 2

(
3 + β2

)
sin2 θW + 8

(
1 + β2

)
sin4 θW

)
m2
Z

]
, (D.5b)

Nud
2 = 2β2

(
1− 4 sin2 θW + 8 sin4 θW

)
m2
Z , (D.5c)

and

Dud
0 = −

(
1− β2

)2 (
16 + 11β2 − 18β4 + 3β6

)
s2

1

+ 4
(
1− β2

) (
8 + 7β2 − 14β4 + 3β6 − β2

(
19 + β2 − 15β4 + 3β6

)
sin2 θW

)
m2
Zs1

− 4
(
4 + 9β2 − 10β4 + β6 − 2β2

(
19 + β2 − 15β4 + 3β6

)
sin2 θW

+2β2
(
1 + β2

)2 (
19− 18β2 + 3β4

)
sin4 θW

)
m4
Z , (D.6a)

Dud
1 = 4β

[(
1− β2

)2 (
8− 9β2 + 3β4

)
s2

1

− 4
(
1− β2

) (
6− 4β2 −

(
4 + 9β2 − 12β4 + 3β6

)
sin2 θW

)
m2
Zs1

+ 4
(
4 + β2 − 3β4 − 4

(
1 + 6β2 − 5β4

)
sin2 θW

+2β2
(
19 + β2 − 15β4 + 3β6

)
sin4 θW

)
m4
Z

]
, (D.6b)

Dud
2 = β2

(
1− β2

) [(
1− β2

)2 (
11− 3β2

)
s2

1

+ 4
(
1− β2

) (
3
(
3 + β2

)
−
(
29− 8β2 + 3β4

)
sin2 θW

)
m2
Zs1

− 4
(
11 + 5β2 −

(
26 + 32β2 + 6β4

)
sin2 θW

−
(
6− 138β2 + 10β4 − 6β6

)
sin4 θW

)
m4
Z

]
, (D.6c)
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Dud
3 = 4β3

[(
1− β2

)2 (
1− 3β2

)
s2

1 + 4
(
1− β2

) (
2β2 −

(
1 + 3β4

)
sin2 θW

)
m2
Zs1

− 4
(
1 + β2 − 4

(
1 + β4

)
sin2 θW

+
(
6 + 2β2 + 2β4 + 6β6

)
sin4 θW

)
m4
Z

]
, (D.6d)

Dud
4 = 4β4

(
3
(
1− β2

)2
s2

1 − 4
(
1− β2

) (
1 +

(
1− 3β2

)
sin2 θW

)
m2
Zs1

+4
(
1− 2

(
1 + β2

)
sin2 θW +

(
6− 4β2 + 6β4

)
sin4 θW

)
m4
Z

)
. (D.6e)

At high energies (s1 � M2
Z), the prefactor grows as γ2. In the perpendicular direction,

cos Θ→ 0, it takes the form

F(s1,Θ)→ − γ2M4
W (2M2

W −M2
Z)

M2
Z(12M4

W − 8M2
WM

2
Z + 5M4

Z)
, (D.7)

whereas in the forward direction it is more singular. That singularity is however tamed by

the other factors of eq. (5.28).

D.3 The prefactors FWW and F̃WW of AWW and ÃWW

We define

FWW ≡ (N0 +N1 cos Θ +N2 cos2 Θ)s1

D0 +D1 cos Θ +D2 cos2 Θ +D3 cos3 Θ +D4 cos4 Θ
, (D.8)

and

F̃WW ≡ (Ñ0 + Ñ1 cos Θ + Ñ2 cos2 Θ + Ñ3 cos3 Θ)s1

D0 +D1 cos Θ +D2 cos2 Θ +D3 cos3 Θ +D4 cos4 Θ
. (D.9)

The coefficients are given by

N0 =
(
1−β2

) (
1−2 sin2 θW

) (
s1−m2

Z

)
, (D.10a)

N1 = 2β
[(

1−β2
) (

1−2 sin2 θW
)
s1−2

(
1−
(
3+β2

)
sin2 θW

)
m2
Z

]
, (D.10b)

N2 = −3
(
1−β2

) (
1−2 sin2 θW

)
s1+

(
3+β2−

(
6+10β2

)
sin2 θW

)
m2
Z , (D.10c)

Ñ0 = −β
(
1−β2

) (
1−2 sin2 θW

)
s1

+ 2β
(
1−
(
3+β2

)
sin2 θW +4

(
1+β2

)
sin4 θW

)
m2
Z , (D.10d)

Ñ1 = −2β2
(
1−4 sin2 θW +8 sin4 θW

)
m2
Z , (D.10e)

Ñ2 = −β
[(

1−β2
) (

1−2 sin2 θW
)
s1

−
(
2−2

(
3+β2

)
sin2 θW +8

(
1+β2

)
sin4 θW

)
m2
Z

]
, (D.10f)

Ñ3 = 2
(
1−β2

) (
1−2 sin2 θW

)
s1−2

(
1−2

(
1+β2

)
sin2 θW +8β2 sin4 θW

)
m2
Z , (D.10g)
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and

D0 =
(
1+β2

) [(
1−β2

)2
s2

1−2
(
1−β2

) (
1−2β2 sin2 θW

)
m2
Zs1

+
(
1+β2−8β2 sin2 θW +8β2

(
1+β2

)
sin4 θW

)
m4
Z

]
, (D.11a)

D1 = 4β3m2
Z

[(
1−β2

) (
1−2 sin2 θW

)
s1

−
(
2−2

(
3+β2

)
sin2 θW +8

(
1+β2

)
sin4 θW

)
m2
Z

]
, (D.11b)

D2 = −
(
3−β2

) (
1−β2

)2
s2

1+2
(
3−8β2+5β4+2β2

(
1−β4

)
sin2 θW

)
m2
Zs1

−
(
3−10β2−β4+8β2

(
1+3β2

)
sin2 θW−8β2

(
1+6β2+β4

)
sin4 θW

)
m4
Z , (D.11c)

D3 = −4β
[(

1−β2
)2
s2

1−
(
1−β2

) (
3−
(
2+4β2

)
sin2 θW

)
m2
Zs1

+
(
2−2

(
1+3β2

)
sin2 θW +8β2

(
1+β2

)
sin4 θW

)
m4
Z

]
, (D.11d)

D4 = 4
(
1−β2

)2
s2

1−8
(
1−β2

) (
1−2β2 sin2 θW

)
m2
Zs1

+ 4
(
1−4β2 sin2 θW +8β4 sin4 θW

)
m4
Z . (D.11e)
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[29] M. Böhm, A. Denner, T. Sack, W. Beenakker, F.A. Berends and H. Kuijf, Electroweak

Radiative Corrections to e+e− →W+W−, Nucl. Phys. B 304 (1988) 463 [INSPIRE].

[30] B. Grzadkowski, O.M. Ogreid and P. Osland, Measuring CP-violation in Two-Higgs-Doublet

models in light of the LHC Higgs data, JHEP 11 (2014) 084 [arXiv:1409.7265] [INSPIRE].

[31] X.G. He, J.P. Ma and B.H.J. McKellar, CP violating form-factors for three gauge boson

vertex in the two Higgs doublet and left-right symmetric models, Phys. Lett. B 304 (1993)

285 [hep-ph/9209260] [INSPIRE].

[32] D. Chang, W.-Y. Keung and P.B. Pal, CP violation in the cubic coupling of neutral gauge

bosons, Phys. Rev. D 51 (1995) 1326 [hep-ph/9407294] [INSPIRE].

[33] D. Chang, W.-Y. Keung and I. Phillips, CP violating observables in e−e+ →W−W+, Phys.

Rev. D 48 (1993) 4045 [hep-ph/9307232] [INSPIRE].

[34] J.F. Nieves and P.B. Pal, Electromagnetic properties of neutral and charged spin 1 particles,

Phys. Rev. D 55 (1997) 3118 [hep-ph/9611431] [INSPIRE].
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