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Abstract

The best estimate of liabilities is important in the Solvency II framework. The
best estimate of liabilities should be probability weighted average of future cash
flows discounted to its present value. Life insurance companies need stochastic
models to produce future paths for interest rates, bond returns and currency.
These paths should be risk-neutral, meaning that interest rate models is impor-
tant to consider in the Solvency II framework. In this thesis we have studied
three different interest rate models, namely; the Hull-White extended Vasicek
model, the CIR++ model and the G2++ model.

We calibrated our interest rate models to the same historical data and gener-
ated 10 000 simulations based on the yield curve and the parameter estimations.
Based on the interest rates simulated we presented a synthetic example for cal-
culating the best estimate of liabilities. In this example, the duration of the
liabilities turned out to be an important factor.
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Chapter 1

Introduction

1.1 Background

Insurance means protection of financial loss, used to hedge against the risk of
an uncertainty. The concept behind an insurance company is that many are
susceptible to the same risk, they equalize this risk by distributing losses. In-
surance works like a contract between a policyholder and an insurance company.
The insurance company commits to cover unexpected expenses that the poli-
cyholder may suffer, while the policyholder commits to pay a premium for this
contract. This way the financial products sold by an insurance company often
contain guarantees and options of numerous varieties.

We have two main types of insurance: life insurance and non-life insurance.
Life insurance consist mainly in managing savings on behalf of the policyholder.
This is policyholders funds and shall not be used to cover losses from e.g. non-life
insurance. Non-life insurance is a broad category. It is a short term agreement
that covers persons as well as things. When signing a contract with a non-life
insurance company, it may be for your car, house, travel etc. In this thesis
we will concentrate on life insurance. A life insurance company offers products
which will pay out in case of death or disability as well as pension products e.g.
occupational pension.

Occupational pension schemes are arrangements established by employers through
e.g life insurance companies to provide pension and related benefits for their em-
ployees. We can divide occupational pension into two main categories: Group
defined benefit pensions (DB) and Group defined contribution pensions (DC),
where the employer can choose between DB and DC. DB involves a previously
agreed pension benefit between the insurance company and the customer (em-
ployer). It guarantees pension payments from a specified age for as long as the
insured person lives. Alternatively, it can be agreed that the pension will end
at a specified age. Here, the the insurance company bears all the risk. In DC
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2 CHAPTER 1. INTRODUCTION

the premium is stated as a percentage of pay, while the pension payments are
unknown. The customer bears all the financial risk during the saving period.
In recent years, several companies have closed the defined benefit pension and
switched to a defined contribution pension for new employees.

Pricing and managing contracts and return guarantees is important for the
insurance companies, especially life insurance, and it is one of the most chal-
lenging problems faced by the companies today. The valuation of these policies
sometimes requires complex analytical methods, as well as great deal of com-
puter power and data. Moreover, life expectancy increase and interest rates are
low, resulting in existing contracts from e.g. DB pensions, written in a period
with higher interest rates, can be difficult to meet (Finanstilsynet, 2015a).

In light of current economic events and new legislation, insurance companies
have realized the importance of properly managing their options and guaran-
tees. For the company, the largest financial risk would be not to meet this
guarantee as it affects the solvency of the company. A large part of a life insur-
ance companies portfolios are invested in assets for which the returns depend on
the interest rate level. Furthermore, insurance firms operating in the European
Union started, from 2016, to use the Solvency II directive. This directive is
a set of regulatory requirements based on economic principles for valuation of
assets and liabilities. It is a risk-based system. The risk will be measured on
consistent principles, and capital requirements will depend directly on this

1.2 Solvency II and Computing Liabilities

Solvency II is a new legislation that took effect 01.01.2016. The EU have col-
lected all the central directives which covers the insurance and reinsurance busi-
nesses into one directive. Solvency II sets new demands on insurance compa-
nies regarding for example capital requirement, risk management processes and
transparency.

The Solvency II framework, like the Basel II directive for credit and bonds,
is based on three pillars.

• Pillar I covers the quantitative requirements, i.e. how assets and liabilities
should be valued and the capital that a company is required to hold.

• Pillar II covers all the qualitative capital requirement i.e. how risks should
be governed, managed and supervised. This covers the requirements for
governance and risk management of insurers, as well as for the effective
supervision of insurers. This pillar give supervisors greater power to chal-
lenge their firms on risk management issues.
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• Pillar III sets out the requirements for supervisory reporting and disclosure
of the information.

Pillar I defines two levels of capital requirements: Minimum Capital Re-
quirement (MCR) and Solvency Capital Requirements (SCR). The MCR is the
absolute minimum capital that an insurance company has to hold. If the capital
falls below this level the supervisory authorities will intervene. The SCR is the
required level of capital that an insurance company should hold. The SCR can
be calculated either through a standard formula, through the use of an internal
model or a combination of both. The internal model must be approved by the
supervisory authorities.

In order to determine the capital requirements one have to calculate the techni-
cal provisions. Technical provisions is the amount that an insurance company
must hold to ensure that it can meet its expected future obligations on insur-
ance contracts. The technical provisions consist of risks that can be hedged and
risks that cannot be hedged, and the value of the risks that can not be hedged
should be the sum of a best estimate of the expected liabilities and risk margin.

1.2.1 Best Estimate of Liabilities

We want to calculate the best estimate of liabilities. This estimate should be
probability weighted average of future cash-flows, discounted to its present value
using a ”risk-free” yield curve.

Methods for calculating the best estimate of the liabilities should be actuarial or
statistical methods that take into account the risks that affect the future cash
flow. There are different methods for calculating the best estimate including
deterministic techniques, analytical techniques and simulation techniques. Sim-
ulation methods means using a stochastic model to produce future paths, while
an analytical method means that the insurance company must be able to find a
closed form solution for calculating the best estimate and in the deterministic
approach the projection of the cash flows are based on a fixed set of assumptions.

For insurance contract with interest rate guarantee, a market consistent sim-
ulations or stochastic analysis is likely to be the most appropriate calculation
approach, since changes in present values of liability are often a result of move-
ments in economic variables.
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1.3 Aim and scope

The Norwegian supervisory authority, Finanstilsynet, have said that the tech-
nical provisions for a life insurance company constitutes a dominant share of
the balance sheet compared to a non-life insurance company (Finanstilsynet,
2015b). Even relatively small changes in the technical provisions can result in
big changes in the capital and further affect the companies’ solvency under the
new framework. Therefore, a key aspect to the Solvency II framework is to
compute the best estimate of liabilities.

The best estimate is the present value of expected future cash flows, discounting
using a risk-free yield curve. For life insurance companies with financial guaran-
tees and options, stochastic models help them produce future risk-neutral paths.
Risk-neutral is when the expected return of all assets is equal to the risk-neutral
rate used for discounting the cash-flows. Hence, interest rate models are a key
component to consider within the Solvency II framework, in particular for life
insurance products.

The aim with this thesis is to describe and calibrate interest rate models that
can be used to simulate interest rates in order to calculate the best estimate of
liabilities. We study three different models calibrated to data from the same
historical period.

This thesis is outlined as follows. Chapter 2 will give us theoretical background,
while Chapter 3 describes the interest rate models used in this thesis; the Hull-
White model, the CIR++ model and the G2++ model. In Chapter 4 we cal-
ibrate and simulate from the three different models and in Chapter 5 we will
present an example to calculate the best estimate of liabilities. Finally we will
conclude and present a summary in Chapter 6.



Chapter 2

Theoretical Background

The concept of interest rates is used in our every-day life, if we lend money to
the bank, we will expect this money to grow at some rate as time goes by. How-
ever expressing a such concept mathematically is more complex and we need to
introduce many definitions.

The first part of this chapter covers basic definitions, focusing on different kinds
of interest rates. We will use these definitions to look at a mathematical basis
for interest rate modelling in Sections 2.2 and 2.3. Further, we describe two es-
timation tecnicques in Section 2.4 and correlation in Section 2.5. The approach
is similar to Brigo and Mercurio (2007) and Björk (2004) with supplements from
Rutkowski and Musiela (1998) and Øksendal (2003).

2.1 Definitions and notations

2.1.1 Short-Term Interest Rate

The first term that we need to introduce is the notation of a bank account. A
bank account represents a risk-free security for which profit is accrued continu-
ously at a risk-free rate.

Definition 2.1. Bank account We define B(t) to be the value of a bank
account at time t ≥ 0. We assume B(0) = 1 and that the bank account evolves
according to the following differential equation:

dB(t) = rtB(t)dt, B(0) = 1 (2.1)

where rt is the instantaneous rate, also referred to as instantaneous sport rate
or short rate. Consequently,

B(t) = exp

(∫ t

0

rs ds

)
. (2.2)

5
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This definition tells us that investing a unit at time 0 yields, at time t, the
value in Equation 2.2. In order to have one unit of currency at time T one has
to invest the amount 1/B(T ) at the beginning i.e. when t = 0. At time t > 0
the value of the initial investment is given by B(t)(1/B(T )), which leads to the
next definition.

Definition 2.2. Stochastic discount factor The stochastic discount factor
D(t, T ) is the value at time t of one unit of currency payable at time T > t.
This gives us

D(t, T ) =
B(t)

B(T )
= exp

(∫ T

t

rsds

)
. (2.3)

2.1.2 Zero-Coupon Bonds and Spot Interest Rates

Definition 2.3. Zero-Coupon Bond A zero-coupon bond with maturity T
is a contract that guarantees its holder the payment of one unit of currency at
time T, with no intermediate payments. The contract valued at time t < T is
denoted P (t, T ).

Remark. The bond prices is assumed to follow a strictly positive and adapted
process on a filtered probability space (Ω,F , Q0, (Ft)0≤t≤T∗) where the filtration
Ft is the Q0-compounded version of the filtration generated by the underlying
Browinan motion and T ∗ is the fixed horizon date for all market activities.

There is a close relationship between the discount factor D(t, T ) and P (t, T ).
If r is deterministic, then D is deterministic and we have D(t, T ) = P (t, T ) for
each pair (t, T ). However, in a more realistic case, the rates are stochastic,
and it follows that D(t, T ) will be stochastic, while the zero-coupon bond price
P (t, T ), has to be known.

Definition 2.4. Continuously-compounded spot interest rate The continuously-
compounded spot interest rate, R(t, T ), also referred to as the yield on the zero-
coupon bond P (t, T ), is the constant rate at which an investment of P (t, T )
units of currency at time t accrues continuously to yield one unit of currency at
maturity T . In formulas:

R(t, T ) = − lnP (t, T )

T − t
. (2.4)

The continuously-compounded interest rate is a constant rate that is consis-
tent with the the zero-coupon-bond price in that

eR(t,T )(T−t)P (T, t) = 1, (2.5)

from which we can express the bond price in terms of the continuously-compounded
rate R

P (t, T ) = e−R(t,T )(T−t). (2.6)
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Remark. The short term rate r(t) is obtained as a limit of R(t, T ), that is

r(t) = lim
T→t+

R(t, T ) = lim
T→t+

− lnP (t, T )

T − t
. (2.7)

An alternative to continuous compounding is simple compounding, which
applies when accruing occurs proportionally to time of the investment.

Definition 2.5. Simply-compounded spot interest rate The simply com-
pounded spot interest rate, L(t, T ), is the constant rate at which an investment
has to be made to produce an amount on one unit of currency at maturity T,
starting from P (t, T ) units of currency at time t, when accruing is proportional
to the investment time. In formulas:

L(t, T ) =
1− P (t, T )

(T − t)P (t, T )
. (2.8)

The market LIBOR rates are an example of simply-compounded rates. The
LIBOR rates are typically linked to zero-coupon-bond prices by Actual/360
day-count1. The bond price can be expressed in terms of L as:

P (t, T ) =
1

1 + L(t, T )(T − t)
.

Definition 2.6. Zero-coupon curve The zero-coupon curve, also referred to
as a yield-curve, at time t is the graph of the function

T 7→ R(t, T ), T > t. (2.9)

Such a zero-coupon curve shows the relation between the interest rate and
the time to maturity. An example of such a curve is shown in Figure 2.1.

2.1.3 Forward rates

Forward rates are interest rates that can be locked today for an investment in a
future time period. Their value can be derived directly from zero-coupon-bond
prices. Forward rates are characterized by three time instants, the time t where
the rate is considered, the expiry T , and the maturity S, t ≤ T ≤ S.

Definition 2.7. Continuously-compounded forward rate The continuously-
compounded forward rate f(t, T, S), at time t for the expiry T and maturity S
is defined as

f(t, T, S) =
1

S − T
ln
P (t, T )

P (t, S)
. (2.10)

1Actual/360 day-count means that a year is assumed to be 360 days long, and the corre-
sponding year fraction is the actual number of days between two dates divided by 360.
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Figure 2.1: A Zero-coupon curve

Definition 2.8. Instantaneous forward rate Instantaneous forward rate,
f(t, T ), at time t for maturity T is given by

f(t, T ) = lim
S→T+

f(t, T, S) = −∂ lnP (t, T )

∂T
, (2.11)

so that

P (t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
. (2.12)

Definition 2.9. Simply-compounded forward interest rate The simply-
compounded forward rate is denoted F (t, T, S), and is defined by

F (t, T, S) =
1

S − T

(
P (t, T )

P (t, S)
− 1

)
. (2.13)
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2.1.4 Interest Rate Swaps

An interest rate swap (IRS) is a contract that exchanges interest rate payments
between two differently indexed legs. Here, one leg is fixed whereas the other
one is floating. When the fixed leg is paid and the floating leg is received the IRS
is termed Payer IRS, while in the other case we have Receiver IRS. Borrowing
one unit at a fixed rate K with coupons paid at time Ti, i = 1, ..., n and where
τi = Ti − Ti−1 gives the present value (PV):

PVfixed =

n∑
i=1

P (t, Ti)τiK + P (t, Tn), (2.14)

where t = T0
2. The present value of a stream of floating rate cash flows is

PVfloating =

n∑
i=1

P (t, Ti)τiL(Ti−1, Ti) + P (t, Tn). (2.15)

The present value of a Payer IRS is thus given by

PVPayerIRS =

n∑
i=1

P (t, Ti)τi(L(Ti−1, Ti)−K). (2.16)

A typical interest rate swap in the market has a fixed leg with annual pay-
ments and a floating leg with quarterly or semiannual payments, for simplicity
we have assumed that the tenors of the floating and fixed legs are the same. The
value of the swap at the initiation date will be zero to both parties. For this
statement to be true, the values of the cash flow streams that the swap parties
are going to exchange must be equal, i.e.

PVfixed = PVfloating. (2.17)

We can express the swap rate in terms of bond prices by first simplifying the
value of the floating leg to 1 and then by using Equation 2.14. More specifically:

PVfloating =

n∑
i=1

(P (t, Ti)τiL(Ti−1, Ti)) + P (t, Tn)

=

n∑
i=1

(
P (t, Ti)τi

1− P (Ti−1, Ti)

τiP (Ti−1, Ti)

)
+ P (t, Tn)

=

n∑
i=1

(P (t, Ti−1)− P (t, Ti)) + P (t, Tn) = 1. (2.18)

2T0 is the first reset date
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Here, L(Ti−1, Ti) is defined in 2.8. Further, we insert S for K in Equation 2.14
and we can express the swap rate S(t, Tn) in terms of bond prices

S(t, Tn) =
1− P (t, Tn)∑n
i−1 τiP (t, Ti)

, (2.19)

If t < T0 cash flows are exchanged starting at a future time and thus we
have forward start swap rate. The value of the floating leg must be discounted
and is therefore P (t, T0). The forward start swap rate is when present value of
the payer forward start swap is equal 0, i.e.

P (t, T0)−
n∑
i=1

P (t, Ti)τiK + P (t, Tn) = 0. (2.20)

Replacing K with S(t, T0, Tn), we obtain

S(t, T0, Tn) =
P (t, T0)− P (t, Tn)∑n

i=1 P (t, Ti)
. (2.21)

2.2 No-Arbitrage pricing

The absence of arbitrage opportunities in the market is a fundamental economi-
cal assumption. Absence of arbitrage is equivalent to the impossibility to invest
zero today and receive a non negative amount tomorrow, with a positive prob-
ability. Future considerations are based on this assumption.

From Rutkowski and Musiela (1998) we have the following definition:

Definition 2.10. A family P (t, T ), t ≤ T ≤ T ∗, of adopted processes is called
an arbitrage-free family of bond prices relative to r if the following conditions
hold:

• P (T, T ) = 1 for all T ∈ [0, T ∗]

• There exists a probability measure Q on Ω,F∗T equivalent to Q0
3, such

that the discounted bond price, P̃ (t, T ) for all t ∈ [0, T ] is given by:

P̃ (t, T ) = D(0, t)P (t, T ) =
B(0)

B(t)
P (t, T ) =

P (t, T )

B(t)
. (2.22)

Here, P̃ (t, T ) is a martingale under Q.

Any probability measure that satisfies these conditions are in fact a martin-
gale measure for the family P (t, T ). As P̃ (t, T ) follows a martingale under Q
we have:

P̃ (t, T ) = EQ(P̃ (T, T )|Ft), t ≤ T. (2.23)

3Q0 and Q are equivalent, that is Q(A) = 0 if and only if Q0(A) = 0 for every A ∈ F∗
T
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Where EQ denotes the expectation under the risk-neutral measure. We can use
this to show that P (t, T ) is equal to the expectation of the stochastic discount
factor D(t, T ) under Q. From Equations 2.22 and 2.23 we have:

D(0, t)P (t, T ) = EQ[D(0, T )P (T, T )|Ft] = EQ[D(0, t)|Ft],

which leads to the following for the bond price

P (t, T ) =D(0, t)−1EQ[D(0, T )|Ft]

= exp

(∫ t

0

rsds

)
EQ

[
exp

(
−
∫ T

0

rsds

)∣∣∣∣∣Ft
]

=EQ

[
exp

(
−
∫ T

t

rsds

)∣∣∣∣∣Ft
]

=EQ[D(t, T )|Ft]. (2.24)

This means that we can directly obtain the unique no-arbitrage price for
bonds.

2.3 Factor models of the Term Structure

As we have seen, the zero-coupon bond price can be viewed as the expectation
of the random variable D(t, T ) under probability measure Q. This means that

whenever we are able to characterize the distribution of exp(−
∫ T
t
rsds), we are

able to compute bond prices. Since the price P (t, T ) should in some sense de-
pend on the behaviour of the rate over the interval [t, T ], a natural starting
point is the dynamics of interest rates.

We model the evolution of interest rate as a stochastic differential equation(SDE).
An SDE is a differential equation where one or more terms are stochastic, re-
sulting in a stochastic solution. The general form is

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, X(0) = x0, (2.25)

where the function µ is called drift term, the function σ is the diffusion coefficient
and W is a Brownian motion.

Remark. Equation 2.25 is a short form of the integrated representation

Xt = x0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWt, (2.26)
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A Brownian motion is a stationary stochastic process with independent in-
crements that follows a normal distribution, i.e

Definition 2.11. Brownian Motion. A Brownian motion is a stochastic
process where the following conditions hold:

• X(0) = 0,

• X(t1)−X(t0), .., X(tk)−X(tk−1) are independent for t0 < t1, .., < tk−1 <
tk, and

• X(t+ s)−X(s) ∼ N(0, tσ2).

In order to guarantee the existence of a unique solution let T > 0 and
µ : [0, T ]×Rn 7→ Rn, σ : [0, T ]×Rn 7→ Rn×m be measurable functions satisfying

|µ(x, t)|+ |σ(x, t)| ≤ C(1 + |x|)
|µ(x, t)− µ(y, t)|+ |σ(x, t)− σ(y, t)| ≤ D|x− y| (2.27)

for some constants C and D, where |σ2| =
∑
|σij |2, (Øksendal, 2003).

If we consider a time-homogenous Itô process, the functions µ and σ will only
depend on X and not t, and equation 2.25 will be on the form

dXt = µ(Xt)dt+ σ(Xt)dWt (2.28)

where µ and σ satisfy the conditions in 2.27, which in this case can be simplified
to

|µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ D|x− y| (2.29)

The importance property of these processes is the Markov property :

Definition 2.12. Markov Process The stochastic processXt is called Markov,
if for every n and t1 < t2 < .. < tn,

P (Xtn |Xtn−1 , .., Xt1) = P (Xtn |Xtn−1). (2.30)

From Øksendal (2003) we have the following theorem:

Theorem 2.1. The Markov property for Itô processes Let Xx
t be a time

homogeneous Itô process of the form

dXx
t = µ(Xx

t )dt+ σ(Xx
t )dWt, (2.31)

and let f be a bounded Borel function from Rn to R. Then, for t ≤ s

E[f(Xx
t+s|Fs)] = E[f(Xy

t )]|y=Xx
s

(2.32)

However, interest rate models may depend on time. In fact, in a no-arbitrage
model the drift is, in general, dependent on time. Øksendal (2003) describes how
the general case from Equation 2.25 can be reduced to the time-homogeneous
situation and thus we can use the Markov property to calculate the price of the
zero-coupon bond P (t, T ) given in Equation 2.24.
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2.3.1 Dynamics under risk-neutral measure Q

We are now interested in the dynamics of 2.25 under an equivalent martingale
measure Q. The first approach for interest rate models, proposed by Vasicek
(1977), was based on defining the instantaneous spot-rate dynamics under the
real-world measure, Q0, however construction of a locally-risk less portfolio leads
to the existence of a stochastic process that only depend on the current time
and instantaneous spot rate, not maturity of the claims. Such a process is com-
monly referred to as the market price of risk, when deriving such process we
follow Björk (2004), and further we follow Brigo and Mercurio (2007) and use
this process to define a Girsanov change of measure from the real-world to the
risk-neutral world.

For a fixed maturity date T , the zero-coupon bond price P (t, T ) is a func-
tion of Xt and t, that is P (t, T ) = F (Xt, t) t ≤ T. By applying the Itô formula
we get the following dynamics

dP (t, T ) = α(Xt, t)dt+ β(Xt, t)dWt, (2.33)

where

α(Xt, t) =
∂F (Xt, t)

∂t
+
∂F (Xt, t)

∂X
µ(xt, t)

+
1

2

∂2F (Xt, t)

∂X2
σ(Xt, t)

2,

β(Xt, t) =
∂F (Xt, t)

∂t
σ(Xt, t)., (2.34)

where ∂F
∂X = ( ∂F∂X1

, ..., ∂F
∂Xn

). We consider a portfolio consisting of uT units of

the zero-coupon bond PT with maturity T , and uS units of the zero-coupon
bond PS with maturity S. The value process of this portfolio is given by

Vt(u) = uTt P
T (t, T ) + uSt P

S(t, S). (2.35)

We assume a self-financing portfolio, hence

dVt(u) = uTt dP
T (t, T ) + uSt dP

S(t, S).

Inserting the differential for both maturity T and S, and after some reshuffling
we obtain

dVt(u) = (uTt α(Xt, t) + uSt α(Xt, t))dt+ (uTt β(Xt, t) + uSt β(Xt, t))dWt. (2.36)

In order to guarantee a risk-less portfolio we have that

uTt β
T (Xt, t) + uSt β

S(Xt, t) = 0. (2.37)
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With this the dW -term in 2.36 will disappear so the value dynamics reduce to:

dVt(u) = uTt α(Xt, t) + uSt α(Xt, t))dt (2.38)

Further, in order to avoid arbitrage, the portfolio must have a rate of return
equal to the short rate of interest. We have the condition:

dVt(u) = r(t)Vtdt,

where r(t) is the instantaneous spot rate, and Vt is defined in Equation 2.35.
These two conditions leads us to the following linear system of equations:

uTt (αT (Xt, t)− r(t)PT (t, T )) + uSt (αS(Xt, t)− r(t)PS(t, T )) = 0

uTt β
T (Xt, t) + uSt β

S(Xt, t) = 0, (2.39)

where the unknowns are uTt and uSt .

After some calculations the linear system solves as:

αT (Xt, t)− r(t)PT (Xt, t)

βT (t, T )
=
αS(Xt, t)− r(t)PS(t, S)

βT (Xt, t)
. (2.40)

From Equation 2.40 we see that we on the left-hand side have a stochastic
process which does not depend on the choice of S, while on the right-hand
side we have a process that does not depend on the choice of T . The common
quotient will thus not depend on the choice of either T or S, which leads us to
the stochastic process λ:

λ(t) =
αT (Xt, t)− r(t)PT (Xt, t)

βT (t, T )
(2.41)

for each maturity T , thus λ that may depend on r but not T .

The process λ(t) is known as the market price of risk and can be interpreted as
follows: Equation 2.33 expresses how the bond price P (t, T ) evolves over time,
and r(t) is the instantaneous-return rate of a risk-free investment. The differ-
ence αT − r(t) represents the difference in returns with respect to a risk-free
case. The denominator, βT , represents the volatility and when we divide by βT ,
we are dividing the amount of risk we are subject to.

If λ(t) satisfies the Novikov’s condition, i.e.

EQ0

[
exp

(
1

2

∫ T

0

λ2(s)ds

)]
<∞ (2.42)

we are able to define a probability measure Q equivalent to Q0 by the Randon-
Nikodym derivative

∂Q

∂Q0

∣∣∣∣
Ft

= exp

(
1

2

∫ t

0

λ2(s)ds−
∫ t

0

λ(s)dW 0(s)

)
, (2.43)
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where Ft is generated by r up to t. As a consequence the process X evolves
under Q according to

dX(t) = [µ(t,X(t))− λ(t)σ(t,X(t))]dt+ σ(t, r(t))dW (t),

where the process

W (t) = W 0(t) +

∫ t

0

λ(s)ds (2.44)

is a Brownian motion under Q4.

Remark. Since we are using the no-arbitrage argument when constructing λ,
Q satisfies the conditions in Definition 2.10 and is therefore an equivalent mar-
tingale measure.

2.3.2 Term-Structure Equation

By inserting the definitions of α and β from Equation 2.34 into λ(t) we obtain:

∂F (Xt, t)

∂t
+
∂F (Xt, t)

∂X
(µ(Xt, t)− λ(t)σ(Xt, t))

+
1

2

(
∂2F (Xt, t)

∂X2
σ2(Xt, t)

)
− rF (Xt, t) = 0, (2.45)

with the terminal condition P (T, T ) = F (XT , T ) = 1. This is, as Björk (2004)
calls it, the term structure equation. It follows from Equations 2.34 and 2.41
that λ is of the form λ = λ(r, t) so this equation is a standard PDE. The problem
is that in order to solve the PDE we must specify λ, as it is not determined
within the model. However if we are just concerned with the pricing of the
interest derivatives, we can directly model the rate dynamics under Q, and λ
will be implicit in our dynamics. In fact, the term µ− λσ is precisely the drift
term of the short rate under the martingale measure Q (Björk, 2004). We define
the dynamics under the risk-neutral measure Q as

dXt = µ(Xt, t; θ)dt+ σ(Xt, t; θ)dWt, X(0) = x0

where µ and σ are given functions, and θ denotes the parameter vector. The
term structure equation from 2.45 is now

∂F (Xt, t)

∂t
+
∂F (Xt, t)

∂X
(µ(Xt, t; θ)) +

1

2

(
∂2F (Xt, t)

∂X2
σ2(Xt, t; θ)

)
− rF (Xt, t) =0,

F (XT , T ) =1.
(2.46)

It follows from the Feynman-Kac5 formula that the risk neutral calculation

formula for bond prices, EQ(exp(−
∫ T
t
r(s)ds)|Ft), solves the PDE in 2.46.

4See Øksendal (2003) for details about the Randon-Nikodyn derivative and the Girsanov
change of measure

5See Björk (2004) for details
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2.3.3 Affine Term Structure

Definition 2.13. Affine Term Structure If the term-structure has the form

P (t, T ) = A(t, T )e−B(t,T )r(t). (2.47)

where A(t, T ), and B(t, T ) are deterministic functions, then the model is said
to possess an affine term structure.

We assume that the risk-neutral dynamics for the short rate are given in
Equation 2.25. If the coefficients µ and σ are of the form

µ(x, t) = λ(t)x+ η(t), σ(x, t) =
√
γ(t)x+ δ, (2.48)

for suitable deterministic time functions λ, η, γ, and δ, then the model has an
affine term structure (Björk, 2004). The functions A and B can be obtained
from the coefficients λ, η, γ,and δ by solving the following differential equations:{

∂
∂tB(t, T ) + λ(t)B(t, T )− 1

2γ(t)B(t, T )2 + 1 = 0,

B(T, T ) = 0.
(2.49)

{
∂
∂t [lnA(t, T )]− η(t)B(t, T )− 1

2δ(t)B(t, T )2 = 0,

A(T, T ) = 1.
(2.50)

Note that the first equation is a Ricatti equation meaning that, in general, it
needs to be solved numerically. However, as we shall see, in some cases it can
be solved analytically.

2.4 Estimation

In order to estimate the parameters of the interest rate models, we need to
introduce some methods.

2.4.1 Maximum likelihood estimator

The idea is is to find a parameter value for which the actual outcome has the
maximum probability. Suppose we have a time series r(ti), i = 1, .., n, and that
the transition density

p(ti+1, r(ti); ti, r(ti)|θ) (2.51)

is known.

Remark. In general, the transition density at time t is conditional on Fti .
However our interest rate models are based on Markov processes, which means
that it is only conditional on values at time ti.
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The joint density of our observations is

p(r(t1), ..., r(tn)|θ) = p0(r(t1)|θ)
n∏
i=1

p(ti+1, r(ti); ti, r(ti)|θ), (2.52)

and the likelihood function is given by

L(θ) =

n∏
i=1

p(ti+1, r(ti); ti, r(ti)|θ). (2.53)

The maximum likelihood estimator of θ is the value θ̂ which maximizes the like-
lihood function, θ̂ = arg maxθ L(θ). Equivalently θ̂ is the value which maximizes
the log-likelihood function. Since the logarithmic function is monotonically in-
creasing, it is often easier to work with.

2.4.2 Svensson Model

The market interest rate curve is only observed at some discrete time points.
To obtain a finer resolution, we use the Svensson Model (Svensson, 1994):

f(0, τ) = β0 + β1 exp(− τ

λ1
) + β2

τ

λ1
exp(− τ

λ1
) + β3

τ

λ2
exp(− τ

λ2
). (2.54)

We use the following relationship between the yield curve and the forward rates
when determining the parameters β0, β1, β2, β3, λ1 and λ2:

R(t, T ) =

∫ T
τ=t

f(t, τ)dτ

T − t
(2.55)

which means that the current yield curve may be represented by the same
parameters as the forward rate:

R(0, τ) = β0 + β1

1− exp(− τ
λ1

)
τ
λ1

+ β2

[
1− exp(− τ

λ1
)

τ
λ1

− exp(− τ

λ1
)

]

+ β3

[
1− exp(− τ

λ2
)

τ
λ2

− exp(− τ

λ2
)

]

The parameters from Equation 2.54 can be estimated by minimizing the squared
difference between observed data and the theoretical yield curve.

2.5 Correlation

In Section 3.2 we say that interest rates tend to exhibit non-perfect correlation,
so in this section we will just give a quick review about correlation.



18 CHAPTER 2. THEORETICAL BACKGROUND

Correlation is a measure of the statistical relationship between two random
variables or observed data values. The most common measure of correlation
between two random variables, X and Y is the so-called Pearson’s correlation

ρ(X,Y ) =
Cov(X,Y )

σXσY
, (2.56)

where

−1 ≤ ρ ≤ 1.

The interest rates are perfectly correlated when ρ = 1, uncorrelated when ρ = 0
and negatively correlated when ρ = −1.



Chapter 3

Interest Rate Models

Interest rate modelling have been developed during the last decades to estimate
prices of interest rate derivatives. It is a branch of mathematical finance where
no general model has yet been accepted. There are different models suited to
different situations and products. Interest rate models can broadly be divided
into short rate models, forward rate models, and LIBOR and swap market mod-
els (Björk, 2004). They range from simple one-factor models to more complex
multi-factor models.

Short rate models describe the dynamics of the instantaneous spot rate, or short
rate, while the forward rate models chooses the forward rate as a fundamental
quantity to the model. The problem with both short rate models and forward
rate models is that neither the instantaneous short rate, nor the instantaneous
forward rate is observable in the market. The LIBOR and swap market models
on the other hand are a class of models that describes the evolution of rates that
are directly observable in the market. However, these models tend to be more
complicated in their setup. When selecting a particular model, it is important
to keep in mind the uncertainty principle of modeling: loosely speaking this
principle asserts that the more a model fits the given data, the less it explains
(Park, 2004).

With this principle in mind, and the fact that our context and purpose is limited
to Solvency II, the following list contains the desired properties of the interest
rate models:

• Available in the literature

• An intuitive model for decision makers

• Ability to calibrate to market prices and/or historical data

• Ability to simulate the model

• Numerical stability

19
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• Reasonable results for use in Solvency II

We will concentrate on short rate models. They are very well documented
in the literature, and widely used. Furthermore, our three models are quite
intuitive and easy to calibrate and simulate. They all provide an exact fit to the
current yield curve. When it comes to reasonable results for use in Solvency II,
will we late see that the difference between the best estimate of the liabilities
computed using the different models are small. Hopefully, this indicates that
they all produce reasonable results. The following sections will explain the
dynamics, estimation and simulation for the one-factor Hull-White, the CIR++
models, and the two factor G2++-model. Throughout this chapter we follow
Brigo and Mercurio (2007) with supplements from Park (2004) and Dagıstan
(2010).

3.1 One Factor Models

Short rate models can be classified as either equilibrium or no-arbitrage models.
Equilibrium models are also referred to as endogenous term structure models.
The reason for this is that the term-structure of interest rates is an output for
these models. We start this section by introducing the first, simplest one-factor
models, but our main focus in this thesis is on the no-arbitrage models; the
Hull-White model and the CIR++-model.

3.1.1 Equilibrium models

The first short rate models that were introduced in the literature were time-
homogeneous, which means that the short rate dynamics were only dependent
on constant coefficients. Classical short rate models are the Vasicek model
(Vasicek, 1977), and the Cox, Ingersoll and Ross (CIR) model (Cox et al., 1985).
In these models the short term interest rate follows a mean-reverting process of
the form

dr(t) = (b− ar(t))dt+ σr(t)βdW (t). (3.1)

Here, b, a, σ and β are positive constants and W (t) is a standard Brownian mo-
tion.

The situation where β = 0 leads to the Vasicek model, i.e the dynamics,
defined under risk-neutral measure Q, is

dr(t) = [b− ar(t)]dt+ σdW (t), r(0) = r0. (3.2)

This dynamic makes the model attractive for several reasons. The equation is
linear and can be solved explicitly. The distribution of r(t) is Gaussian, and

since the bond price P (t, T ) = Et[e
−

∫ T
t
r(s)ds] can be calculated as an expression

dependent on b, a, σ, and r(t), we know the whole interest rate curve at time t.



3.1. ONE FACTOR MODELS 21

Traditionally it has been regarded as a major drawback that the Vasicek model
allows negative interest rate values, but this is no longer the case, since we now
know we might face negative interest rate values.

The CIR model consider the situation where β = 0.5, introducing the square
root in the diffusion coefficient, which together with a condition on the param-
eters ensure positive interest rates. In order to use the same notation for the
CIR and CIR++ model we define a = β, and b = µ. The CIR model has the
following dynamics:

dr(t) = β(µ− r(t))dt+ σ
√
x(t)dW (t) r(0) = r0, (3.3)

with 2βµ > σ2. This model will always produce positive interest rates, which
used to be a big advantage over the Vasicek model. The instantaneous rate is
characterized by a non-central chi square distribution, which is an advantage
over the Gaussian distribution as the chi-square distribution provides fatter
tails. Furthermore, the CIR model is analytically tractable, but less so than the
Vasicek model.

The main problem with both the Vasicek and the CIR model is their endogenous
nature. To improve this situation, no-arbitrage models were introduced. These
models are modified versions of the endogenous models, where the strategy is
to include a time-varying parameter.

3.1.2 The Hull-White Extended Vasicek model

The need for an exact fit to the currently observed yield curve led John C. Hull
and Alan White (Hull and White, 1990) to introduce a time-varying parameter
in the Vasicek model. This ensures that the model can match the current term
structure of interest rates exactly. Furthermore, the model implies a normal dis-
tribution for the short-rate process for any given time point. It is analytically
tractable and it allows negative interest rates.

Hull and White (1990) assumed that the instantaneous short-rate process, r,
under the risk-neutral measure Q has dynamics given by

dr(t) = [θ(t)− β(t)r(t)] + σ(t)dW (t), r(0) = r0, (3.4)

where r0 is a positive constant and θ(t), a(t) and σ(t) are deterministic functions
of time. This model can be fitted to the term-structure of interest rates and the
term structure of spot and forward rate volatility. However, future volatility
structures implied by 3.4 are likely to be unrealistic in that they do not conform
to typical market shapes (Brigo and Mercurio, 2002).

Therefore, one sets β(t) = β and σ(t) = σ and get the following extension
of the Vasicek model:

dr(t) = [θ(t)− βr(t)]dt+ σdW (t), r(0) = r0. (3.5)
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Here, β, σ and r0 are positive constants and θ(t) is chosen so that the model
exactly fit the current term structure of interest rates.

It can be shown that the following holds for θ1:

θ(t) =
δfM (0, t)

δT
+ βfM (0, t) +

σ2

2β
(1− e−2βt), (3.6)

where fM (0, t) is the market instantaneous forward rate at time 0 for maturity
T , which according to Definition 2.5 is:

fM (0, t) = −δ lnPM (0, T )

δT
. (3.7)

Here, PM (0, T ) is the market zero-coupon price for maturity T .

Solving for the instantaneous short rate, r(t):

d(eβtr) = eβtdr + βeβtrdt = θ(t)eβtdt+ σeβdW (t)

r(t)eβt = r(0) +

∫ t

0

θ(u)eβudu+ σ

∫ t

0

eβudW (u)

r(t) = r(0)e−βt +

∫ t

0

θ(u)eβ(t−u)du+ σ

∫ t

0

eβ(t−u)dW (u).

Since start time is arbitrary we get,

r(t) = r(s)e−β(t−s) +

∫ t

s

e−β(t−u)θ(u)du+ σ

∫ t

s

e−β(t−u)dW (u)

= r(s)e−β(t−s) + α(t)− α(s)e−β(t−s) + σ

∫ t

s

e−β(t−u)dW (u), (3.8)

as a solution for Equation 3.5, where

α(t) = fM (0, t) +
σ2

2β2
(1− e−βt)2. (3.9)

The Hull-White model, conditional on Ft, is Gaussian with mean and variance
given by

E[r(t)|Fs] = r(s)e−β(t−s) + α(t)− α(s)e−β(t−s), (3.10)

and

V ar[r(t)|Fs] =
σ2

2β
[1− e−2β(t−s)]. (3.11)

1see e.g. Björk (2004)
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Defining the process x by

dx(t) = −βx(t)dt+ σdW (t), x(0) = 0, (3.12)

i.e an Ornstein-Uhlenbeck process2, we see that for s < t

x(t) = x(s)e−β(t−s) + σ

∫ t

s

e−β(t−u)dW (u), (3.13)

which yields r(t) = x(t) + α(t) for each t.

The possibility of negative interest rates have previously been regarded as a
drawback for the Hull White model. The risk-neutral probability of negative
rates at time t is given by

Q(x(t) < 0) = Φ

− α(t)√
σ2

2β [1− e−2βt]

 , (3.14)

with Φ denoting the standard normal cumulative distribution function. Nor-
mally this probability has been very small, but in countries with low interest
rates this probability is no longer negligible.

Parameter estimation

Equations 3.6 and 3.7 show how θ(t) may be completely determined by the cur-
rent yield curve. We need to determine the remaining model parameters β and
σ. We can estimate these parameters based on historical data by minimizing
the sum of squares difference between theoretical and empirical volatilities of
monthly absolute spot rate changes, or we can use maximum likelihood esti-
mation. In the first approach we follow Park (2004). The stochastic dynamics
for the spot rate implied by a one-factor Hull-White model can be derived by a
application of the Itô’s rule and is given by:

dR(t, T ) =
1
2σ

2B2(t, T )− r(t)
T − t

dt+
σB(t, t)

T − t
dw, (3.15)

where

B(t, T ) =
1

β

(
1− e−β(T−t)

)
. (3.16)

Discretization of the spot rate dR(t, T ) leads to

Rk+1 −Rk =
1
2σ

2B2
k − rk

T − tk
∆t+

σBk
T − tk

√
∆tzk+1, (3.17)

2An Ornstein-Uhlenbeck process is a stationary stochastic process that satisfy the require-
ments for both a Gaussian process and a Markov process.
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where the discrete times are denoted t1, t2, .., and zk is assumed to be inde-
pendent standard zero-mean, unit standard deviation normal densities. We use
simplified notation where,

Rk = R(tk, T ),

Bk = B(tk, T ),

.

.

.

and

rk = r(tk).

Equation 3.17 implies that, given rk andRk, the conditional density for ∆Rk+1 =

Rk+1 −Rk is normal with mean
1
2σ

2B2
k−rk

T−tk ∆t and standard deviation

σ∆R =
σBk
T − tk

√
∆t. (3.18)

Substituting T = tk + τ leads to

σ∆R(τ) =
σ(1− e−βτ )

βτ

√
∆t. (3.19)

Estimates of β and σ can be obtained by minimizing the objective function

J(β, σ) =

p∑
k=1

‖ σ∆R(τk)− σobs∆R(τk) ‖2 . (3.20)

Denoting the time series of daily spot rate changes for a given maturity τk by
∆R1, ..,∆RN , the associated sample variance, σobs∆R(τk) is determined from

E[∆R] =
1

N

N∑
j=1

∆Rj , (3.21)

σobs∆R(τk) =
1

N − 1

N∑
j=1

(∆Rj − E[∆R])2. (3.22)

We assume 12 trading months in a year, which gives ∆t = 1/12. The objective
function can then be expressed as

min J(β, σ) =

p∑
k=1

∣∣∣∣∣∣∣∣σ(1− e−βτk)

βτk
− σobs∆R ·

√
12

∣∣∣∣∣∣∣∣2 (3.23)



3.1. ONE FACTOR MODELS 25

Using the Maximum likelihood approach we utilize the fact that the Hull-White
model has the same short rate dynamics as the Vasicek model, it is only the
long-term mean parameter that is time-dependent in the Hull-White model.
Therefore, for the mean-reversion and volatility parameters for the Hull-White
model we will use the maximum likelihood estimates of these parameters in the
Vasicek model. We follow Brigo and Mercurio (2007) and define the Vasicek
model as in Equation 3.2. By integrating, between any instants s and t, we
obtain

r(t) = r(s)e−a(t−s) +
b

a
(1− e−a(t−s)) + σ

∫ t

s

e−a(t−sudW (u). (3.24)

The variable r(t), conditional on Fs, is normally distributed with mean

r(s)e−a(t−s) + b
a (1 − e−a(t− s)) and variance σ2

2a [1 − e−2a(t−s)]. Further, it is

natural to estimate the following functions of the parameters; µ = b
a , α = e−aδ

and V 2 = σ2

2a (1−e−2aδ), where δ is the time step r0, r1, ..., rn of r. The maximum
likelihood for α, µ and V 2 are

α̂ =
n
∑n
i=1 riri−1 −

∑n
i=1 ri

∑n
i=1 ri−1

n
∑n
i=1 r

2
i−1 − (

∑n
i=1 ri−1)2

,

µ̂ =

∑n
i=1[ri − α̂ri−1]

n(1− α̂)
,

V̂ 2 =
1

n

n∑
i=1

[
ri − α̂ri−1 − β̂(1− α̂)

]
,

meaning that

β̂ =
− log(α̂)

δ
,

σ̂ =
2βV̂ 2

(1− e−2β̂δ)
.

Simulation

The first thing we need to do when we want to simulate the spot interest rate
R(t, T ), is to generate r(t). We start by generating forward paths for x(t), from
Equation 3.13, according to the discretization

xk+1 = e−β∆txk + σ

√
1− e−2β∆t

2β
zk+1, (3.25)

where zk+1 ∼ N(0, 1) i.e. a standard zero-mean, unit-variance Gaussian (Park,
2004). Once x has been generated, the corresponding value for r(t) can be re-
covered from x(t)
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r(x(t), t) = x(t) + fM (0, t) +
σ2

2β2
(1− e−βt)2, (3.26)

where fM (0, t) is the market instantaneous forward rate given in Equation 3.7.

Given the short rate r(t), the spot interest rate R(t, T ) is a deterministic func-
tion of r(t). We simulate R(t, T ) by using the following relationship:

R(t, T ) = − lnP (t, T )

T − t
, (3.27)

where P (t, T ) is the price at time t of a zero-coupon bond with maturity T . For
the Hull-White model, P (t, T ) can be derived by computing the expectation
2.24. Using the Markov property for Itô processes, defined in Theorem 2.1, this
expression is equivalent to

EQ

(
exp

(
−
∫ T−t

0

r(s)yds

))∣∣∣∣∣
y=r(t)

, (3.28)

where Q is the risk-neural measure. First, we calculate
∫ T−t

0
(r(s)yds)|y=r(t):(∫ T−t

0

r(s)yds

)∣∣∣∣∣
y=r(t)

=

=
α

β
(T − t) +

(
r(t)− α

β

)(
1− e−β(T−t)

β

)
+ σ

∫ T−t

0

∫ s

0

eβ(u−s)dW (u)ds

=
α

β
(T − t)

(
r(t)− α

β

)(
1− e−β(T−t)

β

)
+ σ

∫ T−t

0

(∫ T−t

u

eβ(u−s)ds

)
dW (u)

=
α

β
(T − t)

(
r(t)− α

β

)(
1− e−β(T−t)

β

)
+ σ

∫ T−t

0

eβ(u−(T−t))

β
dW (u).

(3.29)

This integral is a Gaussian variable, and hence we can calculate the expec-
tation as

P (t, T ) = EQ

[
exp

(
−
∫ T−t

0

r(s)yds

))∣∣∣∣∣
y=r(t)

= exp

EQ (−∫ T−t

0

r(s)yds

)∣∣∣∣∣
y=r(t)

+
1

2
varQ

(
−
∫ T−t

0

r(s)ds

)]
,
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with

EQ

(
−
∫ T−t

0

r(s)yds

)∣∣∣∣∣
y=r(t)

=

(
α

β
(T − t) + (r(t)− α

β

1− e−β(T−t)

β

)

V arQ

(
−
∫ T−t

0

r(s)yds

)∣∣∣∣∣
y=r(t)

=
σ2

β2

∫ T−t

0

(1− eβ(u−(T−t)))2du.

Hence, the bond price can be expressed in the form

P (t, T ) = A(t, T )e−B(t,T )r(t), (3.30)

i.e. affine term structure, where B(t, T ) and A(t, T ) are defined respectively as

B(t, T ) =
1

β

(
1− e−β(T−t)

)
, (3.31)

A(t, T ) =
PM (0, T )

PM (0, t)
exp{B(t, T )fM (0, t)− σ2

4β
(1− e−2βt)B(t, T )2}. (3.32)

3.1.3 CIR++

Hull and White (1990) also proposed an extension of the CIR-model based on
the same idea considering time dependent coefficients like for the Vasicek (1977)
model:

dr(t) = [θ(t)− β(t)r(t)]dt+ σ(t)
√
r(t)dW (t), (3.33)

where β, σ and θ are deterministic functions of time. However, this model is not
analytically tractable. Indeed, no analytical solution exists for the zero-coupon
bond prices. The same drawback holds for the simplified dynamics where β and
σ are constant, and only θ is time dependent.

A different approach was illustrated by Brigo and Mercurio (2007) as a method
to extend any time-homogenous short rate model, so as to exactly reproduce
any observed term structure while preserving the possible analytical tractabil-
ity of the original model. In this approach a deterministic shift function is
added to the short rate process. In the case of the Vasicek model, the extension
is equivalent to that of Hull and White (1990). However for the CIR model,
this extension is more analytically tractable, and avoids the problem concerning
numerical solutions.
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From Brigo and Mercurio (2007), this extension of the CIR model yields the
unique short-rate model featuring properties such as:

• Exact fit of any observed term structure

• Analytical formula for e.g bond prices

• The distribution of the instantaneous spot rates has fatter tails than in the
Gaussian case, and through restrictions it is possible to guarantee positive
interest rates

The extension of the CIR models is referred to as the CIR++-model. The
short rate dynamics, under the risk neutral measure, are given by

dx(t) = β(µ− x(t))dt+ σ
√
x(t)dW (t), x(0) = x0 (3.34)

r(t) = x(t) + ϕ(t), (3.35)

where x0, β, µ and σ are positive constants such that 2βµ > σ2, thus ensuring
that the process x remains positive. W (t) denotes a standard Brownian motion,
and ϕ(t) is the deterministic shift function chosen to fit the initial term struc-
ture. The CIR++ model provides an exact fit to the current term structure of
the interest rates by setting

ϕ(t) = ϕCIR(t) = fM (0, t)− fCIR(0, t), (3.36)

where

fCIR(0, t) =
2βµ(eth − 1)

2h+ (β + h)(eth − 1)
+ x0

4h2eth

[2h+ (β + h)(eth − 1)]2
. (3.37)

Here h =
√
β2 + 2σ2 and fM (0, t) is the instantaneous forward rate.

Parameter Estimation

The parameters β, µ and σ of the CIR++-model may be estimated using Max-
imum likelihood estimation. One then uses the fact that the increments of the
short rate follows a non-central chi-square distribution (Brigo and Mercurio,
2007).

To obtain the likelihood function for CIR++ we need the probability density to
the short rate in this model, which is given by

x(t) =
σ2(1− e−β(t−u))

4β
χ2
d

(
4βe−β(t−u)

σ2(1− e−β(t−u))
x(u)

)
, t > u. (3.38)

Here

d =
4µβ

σ2
, (3.39)
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This shows that, given r(u), r(t) is distributed as (σ2(1− e−β(t−u)))/(4β) times
a non-central chi-square random variable with d degrees of freedom and the
non-centrality parameter is given by

λ =
4βe−k(t−u)

σ2(1− e−β(t−u))
r(u) (3.40)

(Dagıstan, 2010). The likelihood function for an interest rate series with N
observations is:

L(β, µ, σ) =

N−1∏
t=1

p(rt+∆t|rt;β, µ, σ). (3.41)

It can be shown that for the CIR++-model

p(rt+∆t|rt) = 2 · c · g(2 · rt+∆t|2 · c · rt), (3.42)

where

c =
2β

σ2(1− e−β∆t)
, (3.43)

and g(·) is the non-central χ2 distribution with the degrees of freedom is defined
in Equation 3.39 and the non-central parameter is λ, defined in Equation 3.40.

Since the CIR++ model is non-gaussian, and follows a chi-square distribution
we need to use numerical optimization to find the MLEs. Furthermore, to de-
termine the instantaneous forward rate we use the Svensson model described in
Section 2.4.

Simulation

Simulations of the spot rate R(t, T ) are obtained by first simulating the short
rate, which again is generated by first simulating x using

x(tk+1) =
Y

2c
. (3.44)

Here Y is a variate from a non-central chi-squared distribution defined in the
”Parameter Estimation” section, and c is defined in Equation 3.43. The short
rate is then computed as

r(t) = x(t) + ϕ(t), (3.45)

where ϕ(t) is given in Equation 3.36.



30 CHAPTER 3. INTEREST RATE MODELS

Once we have simulated the short rate, we obtain the spot rate by using the
following relationship:

R(t, T ) = − lnP (t, T )

T − t
, (3.46)

where P (t, T ) is the price at time t of a zero-coupon bond with maturity T .

The CIR++ model is in the class of affine term structure models which will
help us to find P (t, T ). In Section 2.3.3 we described the affine term struc-
ture and that the differential equation solving B is a Riccati equation, meaning
that it, in general, needs to be solved numerically. However in case of CIR we
have that the equations are explicitly solvable for A and B since λ(t) = −θ,
η(t) = θβ, γ(t) = σ2 and δ(t) = 0. (Brigo and Mercurio, 2007). The Equations
2.50 and 2.49 become{

∂
∂tB(t, T ) + θB(t, T )− 1

2σ
2B2(t, T ) + 1 = 0,

B(T, T ) = 0.
(3.47)

{
∂
∂tA(t, T )− θβB(t, T ) = 0

A(T, T ) = 0.
(3.48)

Since dynamics of CIR++ is the dynamics of CIR model plus the deterministic
function ϕ, we can calculate the bond price from 3.47 and 3.48. From Brigo
and Mercurio (2007), the price at time t, maturing at T is given by

P (t, T ) = A(t, T )e−B(t,T )r(t), (3.49)

where

A(t, T ) =
PM (0, T )A(0, t)eB(0,t)x0

PM (0, t)A(0, T )eB(0,T )x0
A(t, T )eB(t,T )ϕCIR(t;α), (3.50)

A(t, T ) =

[
2he(β+h)(T−t)/2

2h+ (β + h)(e(T−t)h − 1)

]2βµ/σ2

(3.51)

and

B(t, T ) =
2(e(T−t)h − 1)

2h+ (β + h)(e(T−t)h − 1)
. (3.52)

PM (0, t) is the market discount factor for the maturity T and ϕCIR(t;α) is
defined as in Equation 3.36.
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3.2 Two Factor Models

The Hull-White- and CIR++ models are one-factor models, which means that
at every time step, interest rates for all maturities in the yield curve are per-
fectly correlated. However, interest rates tend to exhibit non-perfect correlation.
Therefore, when modelling interest rates we also want to study models with a
more realistic correlation pattern. This can be achieved using multi-factor mod-
els.

The choice of the number of factors involves a compromise between numeri-
cally efficient implementation and the capability of the model to represent a
realistic correlation pattern, and to give satisfactory fit market data. Historical
analysis of the yield curve suggests that one-factor models explain from 68% to
76% of the total variation, and two factor models 85% to 90% of variations in
the yield curve (Brigo and Mercurio, 2007). In this thesis the focus will be on
the two-factor Gaussian(G2++)-model.

3.2.1 The G2++-model

Gaussian models like the G2++ model is attractive since they are analytically
tractable, and the Gaussian distribution allows the derivation of explicit ex-
pression for the zero-coupon curve. Further, the G2++ model allows negative
interest rate which, according to Brigo and Mercurio (2007), is an unpleasant
feature. However, negative interest rates is no longer regarded as a drawback.

In the G2++ model, the short rate process is given by the sum of two correlated
Gaussian factors plus a deterministic function. The G2++-model bears many
similarities with the two-factor Hull-White model, however the G2++ model
leads to less complicated formula and is easier to implement. The dynamics of
the instantaneous-short rate process is given as

dx(t) = −αx(t)dt+ γdW1(t), x(0) = 0,

dy(t) = −βy(t)dt+ ηdW2(t), y(0) = 0,

r(t) = x(t) + y(t) + ϕ(t), (3.53)

where α and β are constants reflecting the rate of mean reversion, γ and η are
volatility constants, and W1 and W2 are standard Brownian motions with cor-
relation κ.

From Brigo and Mercurio (2007), integration of Equation 3.53 implies that
for each s < t

r(t) =x(s)e−α(t−s) + y(s)eβ(t−s)

+γ

∫ t

s

eα(t−u)dW1(u) + η

∫ t

s

eβ(t−u)dW2(u) + ϕ. (3.54)
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This means that r(t), conditional on Fs, is normally distributed with mean and
variance given respectively by

E[r(t)|Fs] =x(s)eα(t−s) + y(s)eβ(t−s) + ϕ, (3.55)

V ar[r(t)|Fs] =
γ2

2α

[
1− e−2α(t−s)

]
+

η

2β

[
1− e−2β(t−s)

]
+2κ

γη

α+ β

[
1− e−(α+β)(t−s)

]
. (3.56)

In particular

r(t) = σ

∫ t

0

e−α(t−u)dW1(u) + η

∫ t

0

e−β(t−u)dW2(u) + ϕ(t). (3.57)

Parameter Estimation

The G2++-model have five parameters that need to be estimated; α, β, γ, η
and κ. We estimate these parameters based on historical data, by minimizing
the sum of squared differences between theoretical and empirical volatilities of
monthly absolute spot rate changes. The approach is from Park (2004), and is
similar to the one for the Hull-White model, described in Section 3.1.2.

The spot rates can be expressed in terms of the state variables x(t) and y(t) as

R(t, t+ τ) = c1(τ)x(t) + c2(τ)y(t) + v(t), (3.58)

where

c1(τ) =
1− e−ατ

ατ
, (3.59)

c2(τ) =
1− e−βτ

βτ
, (3.60)

and

v(t) =− 1

2τ
[V (t, t+ τ)− V (0, t− τ) + V (0, t)]

− 1

τ
log

P (0, t+ τ)

0, t
. (3.61)

In Equation 3.61 V (t, T ) is given by:

V (t, T ) =
γ2

α2

[
T − t+

2

α
e−α(T−t) − 1

2α
e−2α(T−t) − 3

2α

]
+
η2

β2

[
T − t+

2

β
e−β(T−t) − 1

2β
e−2β(T−t) − 3

2β

]
+ 2κ

γη

αβ

[
T − t+

e−α(T−t) − 1

α
+
e−β(T−t) − 1

β
− e−(α+β)(T−t) − 1

α+ β

]
.

(3.62)
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Applying Itô’s rule, one obtains the following stochastic dynamics of R(t, T )

dR(t, t+ τ) =

(
δv(t)

δt
− c1(τ)αx(t)− c2(τ)βy(t)

)
dt

+ c1(τ)γdW1(t) + c2(τ)ηdW2(t), (3.63)

where dW1 · dW2 = κdt. Discretization leads to

∆Rk+1 =

(
δv(t)

δt
− c1(τ)αxk − c2(τ)βyk

)
∆t

+ c1(τ)γ
√

∆tε1k+1 + c2(τ)η
√

∆tε2k+1, (3.64)

where ∆Rk+1 = Rk+1 −Rk, and[
ε1k
ε2k

]
∼ N(0,

[
κ 1
1 κ

]
(3.65)

are independent and identically distributed(iid) over k. Given Rk, xk and yk, it
follows that ∆Rk+1 is normally distributed with variance

σ2
∆R(τ) = ∆t[(c1(τ)γ)2 + (c2(τ)η)2 + 2c1(τ)c2(τ)γηκ]. (3.66)

Inserting c1(τ) and c2(τ) from Equations 3.59 and 3.60, and preforming a little
bit of calculations, we see that standard deviation is

σ∆R(τ) =

√
∆t

αβτ

[
[βγ(1− e−ατ )]2[αη(1− e−βτ )]2 + 2αβγηκ(1− e−ατ )(1− e−βτ )

] 1
2 .

(3.67)

The spot rate volatility calibration for G2++ is identical to that for the Hull-
White model. The objective function to be minimized can be expressed as

min J(α, β, γ, η, κ) =

p∑
k=1

∥∥∥∥σ∆R(τk)√
∆t

− σobs∆R(τk) ·
√

12

∥∥∥∥2

. (3.68)

Simulation

Similar to the Hull-White model we want to simulate the spot interest rate
R(t, T ) by first generating r(t). To generate the forward paths for x and y, we
use the fact that (x(t), y(t)) is a two-dimensional Ornstein-Uhlenbeck process.
From Park (2004) we have the following iterations:

xk+1 = e−α∆txk + γ

√
1− e−2α∆t

2α
z1
k+1, (3.69)

yk+1 = e−β∆tyk + η

√
1− e−2β∆t

2β
z2
k+1. (3.70)

(3.71)
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Once x and y have been generated, the corresponding value for r can be recov-
ered from Equation 3.53, which we repeat here for convenience:

r(tk) = x(tk) + y(tk) + ϕ(tk). (3.72)

Here ϕ(tk) is given by

ϕ(tk) = fM (0, tk) +
γ2

2α2
(1− e−αtk)2 +

η2

2β2
(1− e−βtk)2 + κ

γη

αβ
(1− e−αtk)(1− e−βtk).

Furthermore, tk = k∆t, fM (0, tk) is the instantaneous market forward rate,
and each (z1

k, z
2
k) is a two-dimensional zero-mean Gaussian distribution with

covariance matrix equal to

Q =

[
1 κ
κ 1

]
. (3.73)

Simulations of spot rates R(t, T ) are obtained by using the following relation-
ships:

R(t, T ) = − lnP (t, T )

T − t
, (3.74)

where P(t,T) is the price at time t of a zero-coupon bond maturing at T so that

P (t, T ) = E
(
e−

∫ T
t
r(s)ds | Ft

)
. (3.75)

Here E denotes the expectation under the risk-adjusted measure Q. We follow
Brigo and Mercurio (2007) when deriving ϕ and P (t, T ). First, in order to
compute this expectation, we need the following lemma:

Lemma 3.1. For each t,T the random variable

I(t, T ) :=

∫ T

t

[x(u) + y(u)]du

conditional to the sigma-field Ft is normally distributed with mean M(t, T ) and
variance V (t, T ), respectively given by

M(t, T ) =
1− e−α(T−t)

α
x(t) +

1− e−β(T−t)

β
y(t), (3.76)

and

V (t, T ) =
γ

α2

[
T − t+

2

α
e−α(T−t) − 1

2α
e−2α(T−t) − 3

2α

]
+
η

β2

[
T − t+

2

β
e−β(T−t) − 1

2β
e−2β(T−t) − 3

2β

]
+2κ

γη

αβ

[
T − t+

e−α(T−t) − 1

α
− e−β(T−t) − 1

β
− e−(α+β)(T−t)

α+ β

]
.

(3.77)
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See Brigo and Mercurio (2007) for proof.
Applying Lemma 3.1 and the fact that r(t) is normally distributed, we have

Theorem 3.1. The price at time t of a zero-coupon bond maturing at time T
and with unit face value is

P (t, T ) = exp

[
−
∫ T

t

ϕ(u)du− 1− eα(T−t)

α
x(t)

− 1− eβ(T−t)

β
y(t) +

1

2
V (t, T )

]
. (3.78)

Further assume that the term structure of discount factors that is currently
observed in the market is given by the smooth function T 7→ PM (0, T ). Denote
the instantaneous forward rate at time 0 for a maturity by fM (0, T ), i.e

fM (0, T ) = −d lnPM (0, T )

dT
. (3.79)

The model 3.53 fits the currently-observed term structure of discount factors if
and only if, for each maturity T ≤ T ∗ the discount factor P (0, T ) produced by
3.53 agree with the one in the market, i.e if and only if

PM (0, T ) = exp

(
−
∫ T

0

ϕ(u)du+
1

2
V (0, T )

)
. (3.80)

To derive the ϕ so that the model fits the currently observed term structure we
take the logarithms of both sides and differentiate with respect to T , i.e.

d logPM (0, T )

dT
= −ϕ(T ) +

γ2

2α2
(1− e−αt)2 +

η2

2β2
(1− e−βt)2κγη

αβ
(1− e−αt)(1− e−βt).

(3.81)

We solve for ϕ and let fM (0, T ) defined as in Equation 3.79:

ϕ(t) = fM (0, t) +
γ2

2α2
(1− e−αt)2 +

η2

2β2
(1− e−βt)2κγη

αβ
(1− e−αt)(1− e−βt).

(3.82)

Note that

V (t, T ) =
γ

α

∫ T

t

[1− e−α(T−u)]2du+
η2

β2

∫ T

t

[1− e−β(T−t)]2du

+2κ
γη

αβ

∫ T

t

[1− e−α(T−u)][1− e−β(T−u)]du. (3.83)

Finally, in order to get an expression for the zero-coupon prices, we have

exp

[
−
∫ T

t

ϕ(u)du

]
=exp

[
−
∫ T

0

ϕ(u)du

]
exp

[
−
∫ t

0

ϕ(u)du

]
=
PM (0, T ) exp[− 1

2V (0, T )]

PM (0, t) exp[− 1
2V (0, t)]

. (3.84)
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The corresponding zero-coupon bond price at time t follows from Equations 3.80
and 3.84:

P (t, T ) =
PM (0, T )

PM (0, t)
eA(t,T ), (3.85)

where

A(t, T ) =
1

2
[V (t, T )− V (0, T ) + V (0, t)]− 1− e−α(T−t)

α
x(t)− 1− e−β(T−t)

β
y(t).

Here V (t, T ) is given by Equation 3.62.



Chapter 4

Estimation and Simulation

4.1 Parameter Estimation

When using the interest rate models in Solvency II framework one has to use
a risk free term structure specified by European Insurance an Occupational
Pension Authority (EIOPA). The term structure of interest rate models is the
relationship between the interest rate or bond and different terms or maturity,
also known as a zero-coupon curve, or yield curve. This risk free yield curve
is published for different currencies, including NOK, for the current reference
date. See Figure 4.1.

The interest rate models should further be calibrated to an appropriate volatil-
ity measure. One alternative is calibration to market prices of different interest
rate derivatives. A problem with this approach however, is that derivatives with
long maturities are often not available. We can also use historical interest rate
data to determine the model parameters. Calibration based on historical data
are often more stable than those implied by derivative prices.

If liquid market prices exist, they should be used, since the purpose of the
use of the interest rate model is pricing. The model parameters are typically
fitted to match the prices of liquid market instruments such as swaps, caps, or
liquid bonds seen in the market, Park (2004). However, for the Norwegian mar-
ket the availability of option prices across different maturities is limited. When
calibrating interest rate models, Brigo and Mercurio (2007) suggest that illiquid
market data should be left out. We are left with three options:

• Using interest rate derivative prices from a more liquid market as proxies.

• Using fictitious prices.

• Using historical data.

The method of calibration depends on the particular application. For our
purpose calibration using historical data is reasonable.
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Figure 4.1: The yield curve specified by EIOPA in January 2016.

The short rate, r(t), is a key ingredient in all our models. Since the short
rate in reality is stochastic, and we assume a risk-neutral world, the natural way
of evaluating P (t, T ) is to take the expectation, as shown in 2.24. Knowledge of
P (t, T ) for arbitrary values of t and T completely define the interest rate term-
structure, hence knowledge of the short rate process completely determines the
term-structure. However, the theoretical definition of the short rate does not
exist in reality. In other words, the short rate can not be directly observed. The
overnight rate, or the daily rate is not considered to be a good proxy for the
short rate because they are driven by a different set of economic factors and do
not accurately reflect the principal factors driving the term-structure. Common
practice is to use the 1-month or 3-month rates as a proxy. We will use the
3-month rate in this thesis.

The same period is used to estimate the parameters of all three interest rate
models. Our data set consists of monthly data from the 3-month rate and swap
rates with maturities 1 to 10 years, from the period December 2003 to Decem-
ber 2013. Figure 4.2 shows the swap rates and the 3-month rate. Here, the
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dark green line corresponds to the 1-year rate, the dark blue line to the 2-year
rate and so on. The purple line with the smallest volatility corresponds to the
10-year maturity rate. Finely, the dotted blue line is the 3-month rate.

Figure 4.2: Norwegian swap rates from December 31, 2003 to December 31,
2013 and the 3-month rate (dotted line).

When estimating the parameters we have used maximum likelihood for the
Hull-White and CIR++ model, while for G2++ we have minimized the sum of
squared differences between theoretical and empirical volatilities. The values of
the estimated parameters are given in Table 4.1.

Hull White-parameters

Parameter µ̂ β̂ σ̂
Value 0.0268 0.2026 0.0099

CIR++-parameters
Parameter µ β σ
Value 0.0467 0.0471 0.0468

G2++-parameters
Parameter α β γ η κ
Value 0.6838 0.0931 1e-6 0.0099 -0.8809

Table 4.1: Estimated parameters for our three models.
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4.2 Simulation

Our goal is to predict future interest rates, which we can use in the computa-
tion of the best estimate of liabilities under Solvency II. For this we want the
expected future values of the interest rates to correspond to the yield curve
prescribed by EIOPA. We have used the yield curve from January 2016, which
is shown in Figure 4.1. From the yield curve we can derive PM (0, T ) which is
needed in all of our models.

With the yield curve described and the parameter estimates shown in Section
4.1 we generated 10 000 simulations with a time horizon of 60 years for maturi-
ties 1 to 3 years for each of the three models. The short rate is shown in Figure
4.3. Here we can see that both the Hull-White model and the G2++ model
produce negative interest rates, while for the CIR++ model all rates are above
zero. We can also notice that the CIR++ model leads to slightly larger short
rates in the long run.

Figure 4.3: Simulated future paths for the instantaneous short rate for the Hull-
White model (left), the CIR++ model (middle) and the G2++ model (right)
.
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Further, is it interesting to have a look at the mean and standard devi-
ation, corresponding to the 10 000 simulations shown in Figures 4.4 and 4.5
respectively. Notice even when we used the same historical data for estimation,
the simulations from the three models have quite different mean and volatility
characteristics, especially far into the future.

Figure 4.4: Mean over 10 000 simulations of spot rates with 1, 2 and 3 years
maturity using Hull White, CIR++ and G2++.
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Figure 4.5: Standard deviation of 10 000 simulations of spot rate with 1, 2 and
3 years maturity generated using Hull White, CIR++ and G++.
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We can show that the difference far into the future does not mean that not all
three models fit the initial term structure. Let the discount factor in simulation
s and year r be dt,s and define it as

dt,s =
1∏t

u=1(1 +R(u, u+ 1, s))
, (4.1)

where R(u, u + 1, s) is the value of the risk-free 1-year interest rate in year
u and simulation s. For each year t, we compute the average d̄t of dt,s over
all simulations, and finally we derive the model-implied yield curve from these
average values as

yt = (d̄t)
−1/t − 1. (4.2)

The difference between the input yield curve from Figure 4.1 and the yield
curve defined by yt, t = 1, ..., T should be small if our simulations are appro-
priate. Figure 4.6 show us these differences for all our models in basis points.
As we can see from the figure the difference is minor.

Figure 4.6: Difference between the implied yield curve and the market yield
curve when calibrating the three models
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Chapter 5

Computing Liabilities

A key aspect to the Solvency II framework is the Solvency Capital Requirement
(SCR). It represents required level of capital that an insurance company must
hold to ensure that it can meet its expected future obligations on insurance
contracts, in other words it is the required risk capital for a one-year time hori-
zon. The SCR is given as the 99.5% quantile of the distribution of the one-year
loss. It can be calculated either trough standard formula, through the use of an
internal mode, or a combination of both. The internal model must be approved
by the supervisory authorities.

In Solvency II standard approach the SCR is first calculated for each module
listed in 5.1. For market and insurance risk module, each individual shock is
performed according to detailed rules, e.g. stock prices fall with x% or mortality
goes down by y%

The SCR for each individual risk is then determined as the difference between
the net asset value (assets minus the best estimate of liabilities) in the unstressed
balance sheet and the net asset value in the stressed balance sheet. More specif-
ically, one determines the value of the asset AC0 under different shocks C and
computes the corresponding values of liability, LC0 . The SCR corresponding to
the shock C is determined as

SCRC = (A0 − L0)− (AC0 − LC0 ) = E0 − EC0 , (5.1)

where E0 is the net asset value today. The market value of the assets today,
A0 is readily available. For the liabilities we use the best estimate of liabilities
from the technical provisions. A method of calculate the best estimate of liabil-
ities is described in Equation 5.5.

These individual risk capital amounts are then combined across the risks within
the module using a specified correlation matrix.
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Figure 5.1: The structure of SCR calculation

5.1 Liability Models and Parameters

In our example we will study three different profiles of the guaranteed benefits
of an insurance portfolio of which two are based on real world portfolios from
the life insurance company Spare-Bank 1 Forsikring. Our profiles corresponds
to the products; old-age pension for individuals with profit sharing (old-age pen-
sion) and paid-up defined benefit pension policies with pension sharing (paid-up
policies).

The product old-age pension consists of an old-age pension with the possibil-
ity of a further payment (lump sum or annuity) if the policyholder dies. The
old-age pension is either paid out for a defined number of years or as a lifelong
benefit, usually starting at the age 67. In Spare Bank 1’s portfolio the guaran-
teed interest rate is between 2.5% and 4%, depending on a policy’s inception
date, and the average duration of the liabilities is approximately 5.5 years.
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The product paid-up policies are fully paid contracts from a defined benefit
plan. The benefits are old-age pension, spouse pension and disability pension.
The old-age pension, with benefits usually starting at age 67, and spouse pen-
sion, are either paid out in a defined number of years, or as a lifelong benefit.
A disability pension may be paid out until age 67. In Spare Bank 1s portfolio
the guaranteed interest rate is between 2.5% and 4%, depending on when the
premiums were paid, and the average duration of the liabilities is approximately
16 years.

Further, according to Norwegian legislation one must split these products’ profit
into three main elements when allocating profit between insurance company and
policyholder:

• Risk result : Pure risk premium income minus benefits paid to policyhold-
ers and changes in premium.

• Administration result : Administration fees minus expenses and commis-
sions.

• Financial market result : Financial market income minus guaranteed in-
terest and changes in market risk related reserves.

For the old-age pension if the sum of the risk result, administration result
and financial market result is positive, the policyholder will receive a minimum
of 65% of the profit. For paid-up policies however, the profit sharing rules are
as follows; if the risk result is positive, the policyholder will receive the profit
from this element. Further, the company will receive the administration result
in any case, and finally, if the sum of financial market result and risk result is
positive, the policyholder gets a minimum 80% of the profit.

5.2 Synthetic Example.

The synthetic example presented in this section has the same structure as the
one presented in Aas et al. (2015). We study three different profiles of the
guaranteed benefits:

• The average duration of the liabilities is 5.5 years. The development of the
guaranteed benefits over the time horizon are shown in the upper panel of
Figure 5.3.

• The average duration of the liabilities is 16 years. The development of the
guaranteed benefits over the time horizon are shown in the middle panel
of Figure 5.3.

• The average duration of the liabilities is 50 years, The development of the
guaranteed benefits over the time horizon are shown in the lower panel of
Figure 5.3.
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Total result

Company 100%

Policyholder 80% 
Company 20%

+

-

Figure 5.2: Profit sharing rules for Profit sharing rules example

The first two cases correspond to the average duration of the liabilities for
the products old-age pension and paid-up pension, respectively. The third case
is extreme, here all the liabilities are paid out at the end of the time horizon.
We assume we have a product where the holder of the policy gets a fixed guar-
anteed interest rate. The annual guaranteed interest rate is assumed to be 3.5%.
In addition, we assume a bonus which is annually added to the policyholder’s
account. That is, any surplus is divided 20/80 between the company and the
policyholders, while any deficits must be covered by the insurance company. See
Figure 5.2. It should be noted that our synthetic example is a simplified version
of a real world case.
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Figure 5.3: The development of guaranteed benefits over the time horizon for
the three different profiles. Top panel: Average duration of the liabilities is 5.5
years, old-age pension. Middle panel: Average duration og the liabilities is 16
years, paid-up policies. Lower panel: Average duration of the liabilities is 50
years, extreme case
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The initial premium reserve V0 = 462.39 MNOK and the time horizon is set
to 50 years. Let Vt be the premium reserve at the beginning of year t. We then
have

Vt = Vt−1(1 + gt)− bt, (5.2)

where bt and gt are the guaranteed benefits and the guaranteed interest rate
in year t, respectively.

Let zt be the achieved financial return in year t. Then, the company’s financial
market related profit, et in year t is given by:

et =

{
Vt(zt − gt) zt ≤ g,

0.2Vt(zt − gt) zt > g.

The costumers financial market related profit, ct, in year t is given by:

ct =

{
0 zt ≤ g

0.8Vt(zt − gt) zt > g.

To generate the probability distribution of ct we simulate the financial re-
turns zt in two different ways. The first model assumes that the returns are
generated from a geometric random walk with volatility σ. We generate the
returns as follows:

zt = exp(log(1−R(t, t+ 1)) + σεt − 0.5σ2)− 1, (5.3)

where εt follows a standard normal distribution, εt ∼ N(0, 1), and R(t, t+1)
are the 1-year interest rates simulated in Section 4.2.

The second model represents a bond portfolio that at the end of each year t
is sold and replaced by a new portfolio for which the duration is D.

zt = R(t, t+D) +
exp(−(D − 1)R(t+ 1, t+D − 1))

exp(−(D − 1)R(t, t+D))
− 1. (5.4)

The numerator of the fraction is the value of a zero coupon bond with du-
ration D− 1 issued at the beginning of year t+ 1, while the denominator is the
value at the end of year t of a zero-coupon bond with duration D issued at the
beginning of year t. In this example we assume that the credit bond portfolio
has a fixed duration D of 3 years. This means we only need to simulate three
interest rates; the 1-year interest rate, which is used for discounting, and the
2-year and 3-year rates, that are used to determine the yearly changes in the
market value of the bond portfolio. The interest rates in both Model 1 and
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Model 2 are simulated as described in Section 4.2.

When we have generated the simulations of ct,s, the best estimate of the li-
abilities may be computed as

L̂ =
1

10000

10000∑
s=1

50∑
t=1

(bt + ct,s)dt,s, (5.5)

where dt,s is the discount factor in year t and simulation s, defined in Section
4.2. In this example the best estimate of the liabilities is given as the sum of
the guaranteed benefits and the future discretionary benefits.

To ensure that the simulation error is negligible, we have for all experiments
also computed the distance.

D =

[
V0 −

1

10000

10000∑
s=1

50∑
t=1

(bt + ct,s + et,s)dt,s

]
/V0. (5.6)

If there is no leakage in our cash-flow model and we have enough simulations,
this distance should be small.

5.3 Results

We have presented all the results in Tables 5.1 to 5.4. In Table 5.1 we have
studied the effect of different durations when we use Model 1 to simulate the
financial return, zt. Here the volatility, σ is set to 5%. Columns 2 to 4 show us
the computed value of the best estimate of the liabilities for the three different
interest rate models, while the last column contains the difference between value
obtained by the G2++ model and that obtained by the Hull-White model. As
we can see from the table, the difference between the two models increases for
longer duration.

In Table 5.2 we have studied the effect of different values for the portfolio
volatility σ, when the average duration of the benefits is fixed to 5.5 years. The
difference between the models becomes smaller when the volatility increase. For
large values of σ, the portfolio volatility is dominating the interest rate volatil-
ity. We can also see that the larger portfolio volatility, the larger is the value of
the best estimate, as expected. A large volatility means increased risk of poor
returns, which makes the interest rate guarantee more valuable.
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Duration
of benefits

Hull-White CIR++ G2++ Diff.

5.5 years 527.4807 527.0704 527.9334 0.086%
16 years 597.3782 598.3376 599.6215 0.374%
50 years 889.7522 902.9500 906.3713 1.834%

Table 5.1: Effect of duration of benefits: The computed value of the best
estimate of the liabilities for different durations of the benefits when Model 1 is
used to generate the financial returns and the portfolio volatility is fixed to 5%
(σ = 0.05).

Port. vol. Hull-White CIR++ G2++ Diff.
2% 508.6433 508.1434 509.5693 0.182%
5% 527.4807 527.0704 527.9334 0.086%
10% 564.1759 563.4995 564.5638 0.068%

Table 5.2: Effect of portfolio volatility: The computed values of the best
estimate liabilities for different portfolio volatilities when Model 1 is used to to
generate the financial returns and the average duration of the benefits is fixed
to 5.5 years.

Table 5.3 shows the values of the best estimate liabilities for different dura-
tions of the benefits, using Model 2 with D = 3 for generating financial returns.
Like Table 5.1, the difference between the two models increase for longer dura-
tion. If we further compare the two tables, we can see that the differences are
larger in Table 5.3. This is due to the fact that the volatility of the financial
returns in Model 2 is totally determined by the combination of duration and
interest rate volatility, while in Model 1 σ is the far largest component of finan-
cial return volatility.
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Duration
of benefits

Hull-White CIR++ G2++ Diff.

5.5 years 506.2328 504.5735 508.0189 0.352%
16 years 540.5984 539.1161 548.2993 1.404%
50 years 637.0246 657.2196 685.9579 7.134%

Table 5.3: Effect of duration of benefits: The computed value of the best
estimate liabilities for different durations of the benefits when Model 2, with
D = 3 is used to generate the financial returns.

Duration
of benefits

Hull-White CIR++ G2++ Diff.

5.5 years 516.6535 516.1918 517.1612 0.098 %
16 years 569.1382 569.6572 572.4405 0.577 %
50 years 764.6523 783.0286 789.5600 3.155 %

Table 5.4: Effect of duration of benefits: The computed value of the best
estimate liabilities for different durations of the benefits when both Model 1 and
Model 2 are used to generate the financial returns. Here, σ = 0.05 and D = 3.

In our last experiment we use a combination of Model 1 and 2. From Aas
et al. (2015), the asset portfolio of the life insurance company may be divide into
5 main assets classes; Norwegian stocks (2%), International stocks (10%), Real
estate(20%), Credit bonds (33%) and Government bonds(35%), where approx-
imate portfolio wights are given in parenthesis. Since we are in a risk neutral
world for Solvency II purposes, all kinds of assets will earn the risk free return
on average. For the Norwegian stocks, International stocks, real estate and gov-
ernment bonds we will use Model 1. For credit bonds, however, we will use
Model 2. More specifically, we assume financial returns are generated by

zt = 0.67z1,t + 0.33z2,t, (5.7)

where z1,t and z2,t are simulated using Model 1 and Model 2, respectively. In
this combination model we assume that σ = 5% and D = 3. The results are
shown in Table 5.4. As we can see from the table, the model differences are in
this case slightly larger than those in Table 5.1. They are however smaller than
those in Table 5.3.
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Chapter 6

Summary and Conclusion

The best estimate of liabilities is important in the Solvency II framework. It
is used to calculate e.g the solvency capital requirement, which is one of two
capital requirements in Pillar I. The best estimate of liabilities should be proba-
bility weighted average of future cash flows discounted to its present value. Life
insurance companies need stochastic models to produce future paths for interest
rates, bond returns and currency. These paths should be risk-neutral, meaning
that interest rate models is important to consider in the Solvency II framework.
In this thesis we have studied three different interest rate models, namely; the
Hull-White extended Vasicek model, the CIR++ model and the G2++ model.

Interest rate modelling has been developed during the last decades to estimate
prices of interest rate derivatives. It is a branch of mathematical finance where
no general model has yet been accepted. There are different models suited to
different situations and products. Our choice of models were based on reasons
as; well documented in the literature, easy to calibrate and simulate, and that
they all provided an exact fit to the yield curve.

Further, interest rate models range from simple one-factor models to more
complex multi-factor models. Both the Hull-White and CIR++ models are
one-factor, which means that they, at every time point, are perfectly correlated.
However, interest rates tend to exhibit non-perfect correlation. We therefore
also studied the two-factor G2++ model. From Brigo and Mercurio (2007)
two-factor models explain from 85% to 90% of the variation in the yield curve.
Our experiments can be used for different models, as they have done in Aas
et al. (2015). Here, they have studied the LIBOR Market model as well as the
CIR++ and G2++ models.

When using interest rate models in Solvency II framework, one has to use the
risk free term structure specified by EIOPA. Furthermore the interest rate mod-
els should be calibrated to an appropriate volatility measure. We calibrated our
interest rate models to the same historical data and generated 10 000 simula-
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tions based on the yield curve and the parameter estimations. Alternatively to
using historical data in an illiqued market is to use interest rate derivatives from
a more liquid market as proxies or use fictitious prices. It would be interesting
to compare the three alternatives.

Based on the interest rates simulated we have presented a synthetic example
for calculating the best estimate of liabilities. Here, we saw that the duration
of the liabilities was an important factor. If the duration and the proportion of
bonds in the asset portfolio are both low, the three interest rate models produce
quite similar values for the best estimate. The largest difference between the
Hull-White and the G2++ model occurred when we used a bond portfolio to
generate the best estimate, and the duration of benefits were 50 years. This was
as large as 7.134%.

The experiments performed here could further be used for real insurance prod-
ucts, different interest rate models, different yield curves and different data. It
would be interesting to see if our results are valid also when using market prices
from a more liquid market.

6.1 Related work

This thesis is based on the work of Aas et al. (2015). They have studied the
CIR++, G2++ and the LIBOR market model to compute the best estimate
of liabilities. Their historical data is from the period March, 2001 to March,
2011. Overall, the results presented in this thesis and the results presented in
Aas et al. (2015) are similar and the conclusion is the same. In addition to
the synthetic example they have compared the interest rate models in terms of
using them for two real-world products.
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Ebba K Baldvinsdóttir and Lina Palmborg. On constructing a market consistent
economic scenario generator. In Sweden: Seminars Matematical Statistics
KTH, 2011.

Tomas Björk. Arbitrage theory in continuous time. Oxford university press,
2004.

David Jamieson Bolder. Affine term-structure models: Theory and implemen-
tation. Available at SSRN 1082826, 2001.

Damiano Brigo and Fabio Mercurio. On deterministic shift extensions of short
rate models. SSRN Working Paper Series, 2002.

Damiano Brigo and Fabio Mercurio. Interest rate models-theory and practice:
with smile, inflation and credit. Springer Science & Business Media, 2007.

John C Cox, Jonathan E Ingersoll Jr, and Stephen A Ross. A theory of the
term structure of interest rates. Econometrica: Journal of the Econometric
Society, pages 385–407, 1985.

Christa Cuchiero. Affine interest rate models: theory and practice. na, 2006.

Cagatay Dagıstan. Quantifying the Interest Rate Risk of Bonds by Simulation.
PhD thesis, Bogaziçi University, 2010.
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