
Efficiently Locating Schema Incompatibilities
in an eXtensible Markup Language

B

ERGENSIS

UN

IVERSITAS

Roland Kaufmann
University of Bergen

roland.kaufmann@student.uib.no

May 30, 2003

2

Preface

This thesis is submitted as part of a cand. scient. graduate degree from the Depart-
ment of Informatics under the Faculty of Mathematics and Natural Sciences at the

University of Bergen.

Synopsis

The work presented here extends an existing algorithm for testing if an inclusion relation
exists between two markup schemata, to only take into account the parts of the grammar
that have been used in a given subset of its language. Statistics for this purpose are
gathered in combination with validation when documents are entered and are stored
along with them in the repository. This modified subtyping relation is used to determine
compatibility with the current database when a schema is upgraded.

Candidate’s background

As a student, the author has been associated with the Programming Theory group, which
has a strong linguistic and algebraic focus besides design and tools development. This
thesis is a culmination of experiences from working with the HyperEducator project, one
of the ongoing research activities.

Acknowledgments

A work such as this thesis could not have been written in a vacuum without any aid,
technically as well as socially.

The author would like to thank his advisor Khalid Azim Mughal for the interest he
has shown in this work, and for the ability to ask the right questions at the right time,
providing guidance, direction and inspiration. He has kept loose enough reigns to let the
thesis take an organic direction yet tight enough to make sure it still was on track.

The author would also like to thank his family and friends for their support and en-
couragement while writing this thesis, and not at least his live-in girlfriend Jorunn for
her enduring patience, compassion and love.

The time at the University of Bergen has been an unforgettable experience.

3

Preface

Colophon

A development license of Oracle’s JDeveloper 9.0.3 IDE was used for editing and de-
bugging and all code have been run on Sun’s JDK 1.4.1. It should nonetheless run in
any other environment that supports the Java2 runtime environment, version 1.4 or later.
The project can also be assembled from the command-line using the build tool Ant 1.5.1,
which is included.

No other third-party libraries have been used than JUnit, currently at version 3.8.1,
which is employed as an aid for writing unit tests. The framework may be used without
these unit tests, though.

The text of the thesis has been typed in jEdit 4.0 and prepared with Christian Schenk’s
MiKTeX 2.2 distribution of the LATEX 2ε typesetting system before converted to PDF using
Aladdin Ghostscript 7.04. The font is Palatino 11 pt for main text and mathematics while
Lucida Sans have used in headings and Courier in source code listings. For graphics, Dia
0.90 has been used, with figures exported to the PSTricks format for inclusion in the main
document.

All programs have been run at a Dell Inspiron 8100 workstation with an Intel Pentium
III CPU running at 933 MHz and 512 MB RAM on the Windows XP 5.1 operating system.
Online literature searches has been conducted at http://citeseer.nj.nec.com/cs
and http://www.google.com.

4

http://citeseer.nj.nec.com/cs
http://www.google.com

Contents

Preface 3

Contents 5

Figures 9

1 Introduction 15
1.1 Problems and goals . 15

1.1.1 Background . 15
1.1.2 Problem description . 16
1.1.3 Analogy . 17
1.1.4 Applicability . 19

1.2 Roadmap . 19
1.2.1 Alternatives . 19
1.2.2 Formal description . 20
1.2.3 Contribution . 21
1.2.4 Outline . 21

2 Grammars 23
2.1 Sequences . 23

2.1.1 Strings . 23
2.1.2 Languages . 24
2.1.3 Regular expressions . 25

2.2 Trees . 26
2.2.1 Documents . 26
2.2.2 Schemata . 27
2.2.3 The problem with regular string expressions 27
2.2.4 Context-free languages . 28
2.2.5 Regular tree grammars . 29
2.2.6 Subclasses . 31

2.3 Specification . 32
2.3.1 Algebra . 32
2.3.2 Design . 34

2.4 Implementation . 38

5

Contents

2.4.1 Empty set and empty string . 38
2.4.2 Labeled elements . 39
2.4.3 Ordering types . 40
2.4.4 Element unions . 42
2.4.5 List enumeration . 43
2.4.6 Union operation . 44
2.4.7 Closures . 46
2.4.8 Sequence concatenation . 48

2.5 Further enhancements . 51
2.5.1 Traversal . 51
2.5.2 Typed content . 52
2.5.3 Wildcards — partial specification of schema 53

2.6 Summary . 54

3 Relations 55
3.1 Top-down versus bottom-up . 55

3.1.1 Alternatives . 55
3.2 Rules . 56

3.2.1 Caching . 56
3.2.2 Transactions . 56
3.2.3 Implementation of the transaction manager 58
3.2.4 Framework for a rule checker . 60

3.3 Equivalence . 62
3.3.1 Exposing equivalence . 66
3.3.2 Congruence . 67
3.3.3 Prefixing . 69

3.4 Subtyping . 70
3.4.1 Complexity considerations . 71
3.4.2 Algorithm . 71
3.4.3 Non-basic elements . 72
3.4.4 Empty sequences . 73
3.4.5 Disjoint sequences . 74
3.4.6 Non-empty basic elements . 75

3.5 Summary . 81

4 Documents 83
4.1 Anatomy . 83

4.1.1 Trees . 83
4.1.2 Leaves and sequences . 86
4.1.3 Character data . 87
4.1.4 Attributes . 88

4.2 Validation . 90
4.2.1 Data integrity . 90

6

Contents

4.2.2 Matching . 91
4.2.3 Inferring types . 92
4.2.4 Custom datatypes . 93

4.3 Paths . 94
4.3.1 Determinism . 94
4.3.2 Incarnation . 96
4.3.3 Traversal . 99
4.3.4 Use in relations . 101

4.4 Summary . 104

5 Compatibility 107
5.1 Schema-oriented solutions . 107

5.1.1 Extension and removal . 107
5.1.2 Brute force . 108
5.1.3 Type-based statistics . 108

5.2 Name-based approaches . 109
5.2.1 Explicit naming . 110
5.2.2 Generated names . 110
5.2.3 Change management . 111

5.3 Path-based approaches . 112
5.3.1 Global acquittal . 112
5.3.2 Local acquittal . 113

5.4 Context-based approaches . 114
5.4.1 Aptness . 114
5.4.2 Recovery . 115
5.4.3 Integration . 116

5.5 Summary . 118

6 Exterior 119
6.1 Syntax . 119

6.1.1 Elements . 119
6.1.2 Attributes . 120
6.1.3 Special characters . 120

6.2 Meta-schema . 121
6.2.1 Types . 123
6.2.2 Elements . 126
6.2.3 Attributes . 128
6.2.4 Simpler variant . 128
6.2.5 Unsupported features . 130

6.3 Processing model . 131
6.3.1 Streams . 131
6.3.2 Flow . 132
6.3.3 Extensions . 134

7

Contents

6.4 Attributed grammars . 135
6.4.1 Semantic stack . 135
6.4.2 Value building . 136
6.4.3 Environment . 138
6.4.4 Type building . 140
6.4.5 Productions . 142

6.5 Summary . 145

7 Repository 147
7.1 Back-end . 147

7.1.1 Catalog . 147
7.1.2 Meta-data . 149
7.1.3 Functionality . 149
7.1.4 Simultaneous access . 151

7.2 Databases . 153
7.2.1 In-memory database . 153
7.2.2 Binary large objects . 156
7.2.3 Object-relational mapping . 156
7.2.4 Native XML databases . 157

7.3 Integration . 158
7.3.1 Façade . 158
7.3.2 Validation and upgrade . 160
7.3.3 Statistics . 161
7.3.4 Auxiliaries . 163

7.4 Summary . 164

8 Conclusion 165
8.1 Future work . 165

8.1.1 Repository . 165
8.1.2 Algorithm . 167

8.2 Results . 167
8.2.1 Overview . 167
8.2.2 Structure . 167
8.2.3 Implementation . 168

8.3 Lessons learned . 169
8.3.1 Design . 169
8.3.2 Improvements . 169
8.3.3 Testing . 169

8.4 Summary . 170

Bibliography 171

Index 177

8

Figures

1.1 Content management system model . 16

1.2 System with added feedback from data repository 17

1.3 Original library class . 18

1.4 Program using the original contract . 18

1.5 Altered library class . 18

1.6 Run-time error in program after library change 18

1.7 Compile-time error in program after library change 18

1.8 Valid documents are a subset of the language 20

1.9 Subset of documents not in language of new grammar 21

1.10 Logical dependencies between chapters . 22

2.1 Regular expression . 25

2.2 The pumping lemma . 28

2.3 Regular Tree Grammar . 29

2.4 Labels a, leafs b . 30

2.5 Competing element types . 31

2.6 Local Tree Grammar . 31

2.7 Single-type Tree Grammar . 31

2.8 Specification for regular tree grammars . 34

2.9 Isomorphic element trees . 35

2.10 Types as zig-zag matrices . 36

2.11 Class hierarchy . 37

2.12 Skeleton of Type.java . 38

2.13 oe and eps methods . 39

2.14 Data members of the Label class . 39

2.15 Label constructor . 40

2.16 Ranks of type carrier classes . 40

2.17 compareTo method . 41

2.18 compareToSameClass for Label . 41

2.19 Union data members . 42

9

Figures

2.20 insert method in Union . 43

2.21 car and cdr methods for Union . 43

2.22 car and cdr methods for Type . 44

2.23 Template for foreach construct . 44

2.24 Default implementation for union operator 45

2.25 Union operator for an empty set . 45

2.26 Merging two unions . 45

2.27 Backpatches . 46

2.28 Decorations and occurrence constraints . 47

2.29 Wrapping closures . 47

2.30 Trivial concatenation rules . 49

2.31 Distributing concatenation over (non-basic) unions 49

2.32 Concatenation of labels . 49

2.33 Recursive expression using references . 50

2.34 Concatenation of an element to itself . 50

2.35 Concatenation will resolve references . 51

2.36 Skeleton of recursive buffer . 52

2.37 Example rendering routine . 52

2.38 Free-form text elements . 53

2.39 Wild-card element . 54

3.1 Specification for transactions . 57

3.2 Skeleton of a transaction . 58

3.3 Starting a new transaction . 59

3.4 Insertion and lookup . 60

3.5 Commit and rollback . 60

3.6 General rules for relation framework . 61

3.7 Relation membership (rules [HYP] and [ASSUM]) 62

3.8 Ordering equality . 63

3.9 Structural equivalence . 63

3.10 Rules for structural equivalence . 64

3.11 Proof that x, x∗ ' x+ where x = l[ε] . 65

3.12 Testing structural equality between labels 65

3.13 Testing structural equality between unions 65

3.14 equals() for labeled elements . 66

3.15 Interning to flyweight elements . 68

3.16 Interning to canonical elements . 68

3.17 Semantical equivalence . 69

3.18 Inclusion . 70

10

Figures

3.19 Subtyping modeled with Venn diagrams . 71

3.20 Subtyping rules for unions . 72

3.21 Subtyping for the empty set (rule [EMPTY]) 73

3.22 Subtyping for a union with more than one element (rule [SPLIT]) 73

3.23 Subtyping rules for leafs . 73

3.24 Subtyping for the empty sequence (rule [LEAF]) 74

3.25 Subtyping rules for pruning . 74

3.26 Removing anything but relevant labels (rule [PRUNE]) 75

3.27 Insufficient rule for testing labels . 75

3.28 Subtype of only one term on the right side 76

3.29 Subtype of more than one term on the right side 76

3.30 Correct rule for testing labels . 77

3.31 A combination exclude its complement’s intersection part 77

3.32 Run of l[t], u v
∣

∣

∣

i
l[ri], si with no overlapping terms) 78

3.33 Run of l[t], u v
∣

∣

∣

i
l[ri], si where terms are overlapping (s1 = s2) 79

3.34 Non-overlapping terms on the right side . 79

3.35 Run of l[t], u v
∣

∣

∣

i
l[ri], si where terms are not overlapping 80

3.36 Subtyping for a single label (rule [REC]) . 80

4.1 Mapping between a tree and a marked-up string 84

4.2 Specification for document values . 85

4.3 Skeleton of a document . 85

4.4 Hiding object allocation . 85

4.5 Planting a hedge . 86

4.6 Performing concatenation on null references 87

4.7 Character data elements . 87

4.8 Constructing value carriers from strings . 88

4.9 Polymorphic copying . 88

4.10 Attributes as character data elements . 89

4.11 Language relation . 90

4.12 Validation is distributive over unions . 91

4.13 Mapping values to types . 92

4.14 Implicit type of documents . 93

4.15 Front-end for language relation . 93

4.16 Specification for paths . 96

4.17 Skeleton of Path carrier class . 97

4.18 Constructing a root path . 97

4.19 Depth of the path . 98

11

Figures

4.20 Handling of tag occurrence . 98

4.21 Serialization of a path . 99

4.22 Traversing a structure tree . 100

4.23 Current position of traversal in a relation 101

4.24 Wrapper for testing root elements . 101

4.25 Wrapper for testing child elements . 102

4.26 Wrapper for testing sequence elements . 102

4.27 Error handling . 103

4.28 Need for error level escalation . 104

5.1 Only considering previously seen contexts 117

5.2 Query context dictionary . 117

5.3 Anatomy of a context . 118

6.1 Escape sequences . 120

6.2 Logical view of XML Schema subset . 122

6.3 Root node of a schema . 122

6.4 Schema top-level definitions . 122

6.5 Type definitions . 123

6.6 Complex types . 123

6.7 Terms for composite types . 124

6.8 References to globally defined entities . 124

6.9 Allowed model for a type . 125

6.10 Decoration of model terms . 125

6.11 Particles . 125

6.12 Content models . 127

6.13 Inline element definitions . 127

6.14 Using a type defined elsewhere . 127

6.15 Individual attribute entries . 128

6.16 Meta-schema in DTD . 129

6.17 Callbacks for parsing events . 131

6.18 Source of events . 132

6.19 Instantiating a parser . 132

6.20 JAXP package . 133

6.21 Creating a parsing chain . 134

6.22 Parsing stack during document build (after each event) 136

6.23 Parser stack setup . 136

6.24 Adding a new builder to the parse stack . 137

6.25 Sending content to the current builder . 137

12

Figures

6.26 Converting the current builder into a semantic object 138

6.27 Handling free-form text . 138

6.28 Retrieving the semantic root object . 138

6.29 Lookup in the symbol table . 139

6.30 Adding to the symbol table . 139

6.31 Semantic actions . 140

6.32 Mapping actions to schema elements . 141

6.33 Invoking a new production . 141

6.34 Evaluating the production into a semantic object 142

6.35 Registering top-level units in the symbol table 143

6.36 Aggregating element attributes . 143

6.37 Evaluating the labeled element production 144

6.38 Computing semantic expression during property assignment 144

6.39 Decorations handled in common base class 145

7.1 Operations required by a storage back-end 150

7.2 Permanent and temporary storage containers 154

7.3 Bundle of document and associated data 154

7.4 Initializing upload of new data . 154

7.5 Finalizing upload of new data . 155

7.6 Localizing the container for a given schema 155

7.7 Downloading existing data . 155

7.8 Encapsulation of back-end . 158

7.9 Front-end aggregates back-end . 159

7.10 Checks to be performed are added upon start of uploading 159

7.11 Only documents that passes all checks are committed 160

7.12 Language relation checks document updates 160

7.13 Subtyping relation checks schema updates 161

7.14 Reader for statistics . 162

7.15 Writer for statistics . 162

7.16 Adding strings the easy way . 163

7.17 Fetching a document into a character string 164

8.1 System where stylesheets participate in the repository 166

13

14

Chapter 1

Introduction

This chapter will present the problems this thesis sets out to solve, give an overview
of the goals that are targeted in that matter, and provide a roadmap for how they are

intended to be reached.

1.1 Problems and goals

A problem may be defined as the difference between the actual and a desired situation
[KT65]. Goals are the conditions that must be satisfied before the desired outcome can
said to be reached. In this section, the current and wanted state of content integrity will
be portrayed.

1.1.1 Background

Recent trends in content management systems have been to separate the data 1 repre-
senting information from the data telling how it should be presented, and furthermore
employ structures reflecting the semantics in its encoding.

Schemata2 describe what constitutes valid data, and they are used to perform valida-
tion as data is loaded into a repository where remaining for later use. When information
eventually is to be displayed, a stylesheet 3 directs the transformation of data into a for-
mat that can be rendered by the client.

The power of this model lays in that multiple stylesheets can be used to render the
same data in various ways, and that stylesheets can be changed to reflect artistic change to
the presentation without modifying the underlaying data. Conversely, data can be edited
without considerations of its ultimate appearance, as long as the data and the stylesheet
are both in accordance with the schema. This process is illustrated in figure 1.1 on the
following page.

Having data stored in a repository is valuable for at least three reasons:

1XML is an abbreviation for “eXtensive Markup Language”
2XSD is an abbreviation for “XML Schema Definition”
3XSLT is an abbreviation for “eXtensive Stylesheet Language Transformations”

15

Chapter 1. Introduction

XML

XSD

Data
repository

XSLT

(X)HTML

Figure 1.1: Content management system model

(i) If data is validated when entering the repository and non-valid data correspond-
ingly rejected, then the user is assured that data retrieved from the repository is
always valid and that no additional error checking is necessary while processing it.

(ii) Invalid data is caught upon entering the repository and can be fixed as part of the
storing process. This is analogous to compile-time checking of computer programs.

(iii) By having a central repository, the client does not need to worry about locating the
data.

Markup technologies are often used for these purposes because they offer a content-
independent way to add structure to documents. The versatility and ubiquity of such
standards makes a lot of tools and frameworks available upon which new and more spe-
cialized systems can be built.

1.1.2 Problem description

The above model works very well if the domain to which it is deployed is static. However,
in reality a need to change the information will arise from time to time. This may not be
a problem when it comes to the data itself, because the old information can be removed
from the repository and then new data added. Neither does a change in the stylesheets
pose a significant problem because nothing else depends on them (in the scope of this
model at least). In fact, one can only look upon the new stylesheet as merely another way
of presenting the data, something that the model actually was designed to facilitate.

The real problem lays in changing the schemata. If the schema is changed after data
has been put into the repository, property (i) as described in the previous section — and
in a sense also property (ii) — have been violated.

What is needed is an extension of the concept of data validation upon entrance to-
wards also applying the schemata, by realizing that they are nothing but a special kind
of data called metadata. The revised system is depicted in figure 1.2 on the next page.

16

1.1. Problems and goals

XML
Data

repository

XSLT

(X)HTML

XSD
Schema

repository

Figure 1.2: System with added feedback from data repository

When a schema is changed in the repository, all data that belongs to it are checked
to determine whether they are still compatible. If there is a conflict, then the user must
either:

(a) Resolve the conflict by changing the schema,

(b) Resolve the conflict by correcting the data, or

(c) Mark the data for deferred conflict resolution that effectively hides them from being
used by the stylesheets.

Despite the perceived added value in such a system, there is to the authors knowl-
edge no standard solution for such a setup and it is for that reason a problem considered
worthy of further research. The task of this thesis is hence to solve this problem. Put
another way, the task can be formulated:

“Design and implement a system that directed by the repository of already
validated documents can identify which parts of them are not compatible
with a given change in the schema, using information about dependencies be-
tween the documents and their schemata already established in the database.”

1.1.3 Analogy

It may be fruitful to look at a related problem familiar to software developers to illustrate
the repository consistency problem further. In this analogy, a system corresponds to the
repository, interfaces to schemata, classes implementing those interfaces to documents,
and code using references to such classes to stylesheets. Compiling program code is the
same as validating documents. Examples will be given in the computer language Java
and assumed to be run in its associated runtime environment.

Imagine a program built up of classes that are under development and whose inter-
faces are hence still in flux. Say that there is a class named Library, given in listing 1.3.
The semantics of this class is not important in this regard, only the contract it offers to its
clients.

17

Chapter 1. Introduction

public c l a s s Library {
public s t a t i c i n t foo (i n t a) { return a ∗ a ; }

}

Listing 1.3: Original library class

public c l a s s Program {
public s t a t i c void main (S t r i n g [] args) { System . out . p r i n t l n (Library . foo (4 2)) ; }

}

Listing 1.4: Program using the original contract

Listing 1.4 is an example of a small program that uses this class. This program com-
piles and runs just fine.

Consider then a change in the definition of the library class to the one given in list-
ing 1.5, but without any corresponding changes done elsewhere, in particular not in
Program. As can be seen, an extra parameter b has been added to the signature of the
method foo, causing the contract of the class to change.

public c l a s s Library {
public s t a t i c i n t foo (i n t a, int b) { return a ∗ a + b ; }

}

Listing 1.5: Altered library class

If only the class Library is compiled and the resulting object code deployed to the
system, a run of the program will now terminate with a run-time error as shown in list-
ing 1.6 since the main program still expects the library to adhere to the old contract which
was effective when it was compiled. However, the part of the interface that was referred
to earlier no longer exists, breaking backward compatibility.

Exception in thread ” main ” java . lang . NoSuchMethodError : Library . foo (I) I
a t Program . main (Program . java : 2)

Listing 1.6: Run-time error in program after library change

Program . java : 2 : foo (in t , i n t) in Library cannot be applied to (i n t)
publ ic s t a t i c void main (S t r i n g [] args) { System . out . p r i n t l n (Library . foo (4 2)) ; }

ˆ

Listing 1.7: Compile-time error in program after library change

Had the entire system including the Program class been recompiled, the message in
listing 1.7 stating that the set of arguments given is not applicable to the current signature
would be displayed at compile-time, and the error would have been detected prior to
running the program.

18

1.2. Roadmap

However, it is debatable whether the fault is with the main program or if rather the
new version of the library is to blame. At the time the class Programwas compiled, it was
correct and has not changed since. It was the change in the library class that provoked
the error.

This corresponds to a document being invalidated by a change in the schema without
any attempt to maintain integrity of the repository. If reverse dependencies was kept on
the other hand, a smart editor would be able to alert the developer making the change to
the library that this action would cause problems in the main program and that appro-
priate actions should be taken before being allowed to proceed.

1.1.4 Applicability

The problem described in the previous sections has been observed in practice by the au-
thor during work with the current generation of the HyperEducator system. The engine
— called SOFU — maintains a repository of both schemata and documents, but does not
provide for consistency checks between these two types of entities.

The strength of HyperEducator is the structured approach it takes to content manage-
ment, supporting reuse and maintainability, and the author reckons that schema consis-
tency checks will fit nicely into and add further to the values emphasized by this system,
so the solution worked out through this thesis should be possible to integrate into the
next version of HyperEducator without major obstacles.

1.2 Roadmap

A number of possible approaches can be taken to ensure integrity in the repository, and
this section will indicate the direction chosen by the author for this thesis along with
pointers to the areas to be treated in later chapters.

1.2.1 Alternatives

The diligent reader will perhaps already have identified that there are at least three prin-
cipal ways to augment the system in figure 1.1 on page 16 to achieve the functionality of
the one in figure 1.2 on page 17 upon entrance of new documents:

(A) Revalidate all existing documents against the new schema.

(B) Let existing documents use the old, and future documents use the new schema.

(C) Compare the new schema to the old schema, looking for conflicts.

Alternative (A) uses brute force to detect any conflicts, and although it will even-
tually provide the right result, this method is potentially very time-consuming and the
author challenges the proposition that this is an efficient way to ensure consistency. In a
real world scenario, the repository may contain a large number of documents while the
change in the schema will typically only affect a relatively small part of them.

19

Chapter 1. Introduction

Furthermore, revalidating all documents makes incremental checking of the docu-
ment while authoring a less viable option, since there is no information about the depen-
dencies to the part being currently edited in particular, and the processor will have to
perform all the work over again every time a change is made.

There are two fundamental weaknesses making solution (B), which exercises version
control in the repository, less compelling than it may initially seem.

First, if new stylesheets are added, a version must be written for both the old and the
new version of the schema as both may now exist in the repository and must be handled
appropriately, and this increases development time. The amount of old stylesheets is
however not an issue, as these must be ported to the new schema in any case.

Second, an administrative burden is put on the maintainer of the repository who must
manually decide to submit changes to documents under the old schema or under the new
schema, on a case-by-case basis since neither option is a natural candidate as the default.
If always submitted under the old version of the schema, new features cannot be used,
whereas submitting under the new version may yield the document invalid as it was not
taken in consideration when accepting the schema.

Granted, both of these problems are solvable. Yet the thesis will not choose to explore
this path further, but rather focus on option (C) instead due to its promise with respect to
supporting data evolution over time.

1.2.2 Formal description

The purpose of this section is to give a more mathematically inclined formulation of the
problem to facilitate identifying potentially helpful literature on the subject.

Let G be a grammar and L(G) the language that this grammar generates, i.e. L(G) is
the set of sentences that are valid within this grammar. Let V be a set of documents that is
in accordance to the grammar, i.e. V ⊆ L(G). An illustration of this is given in figure 1.8.

V

L(G)

Figure 1.8: Valid documents are a subset of the language

Consider then a change in the grammar from G to the new grammar G′. The set V
may now only partially also be a subset of L(G′) depending on how large the intersection
between these two grammars is. Let the largest subset of V that is also a member of L(G ′)

be called V ′, i.e. V ′ = {v|v ∈ V ∧ v ∈ L(G ∩ G′)}. Let the subset of V that is not a part of
V be called V∗, i.e. V∗ = V −V ′. All of this is shown in figure 1.9 on the next page.

The task is then to given the change from G to G′ in the grammar to determine the set
of documents V∗ that is incompatible with it, i.e. the set of documents that was dependent
on the part G∗ = G− G′ of the old grammar.

20

1.2. Roadmap

V∗

L(G)

V ′
L(G′)

Figure 1.9: Subset of documents not in language of new grammar

1.2.3 Contribution

A literature search for a formal theory that contains a model for the intersection and
difference between grammars describing markup languages reveals the existence of an
active community working on the subject.

This thesis draws heavily on current research in the area of regular tree grammars
and subtyping, and aims to make a contribution — albeit small — to advance the field
by:

(I) Providing an implementation of regular tree grammars and subtyping in the Java
host language.

(II) Finding possible ways to enhance the subtyping algorithm to only consider types
in actual use.

(III) Discussing the considerations that must be taken when integrating the algorithms
with a repository holding the data.

The novelty of the thesis lies in the combination of the repository and the grammar
algorithms, as each of the individual components is already covered by existing work of
others.

1.2.4 Outline

In order to develop a prototype and proof-of-concept for a content management system
in which the algorithms for ensuring database integrity can be tested and experimented
with, the following areas have been identified for exploration:

(1) Establish a formalism for describing grammars.

(2) Identify relations between grammars.

(3) Recognize the language of the grammar.

(4) Capture dependencies between documents and grammars.

(5) Store documents in a format suitable for interchange.

(6) Devise an implementation that uses the algorithms in combination with the database.

21

Chapter 1. Introduction

Each of these steps have been given attention corresponding roughly to a chapter in
the thesis, in the listed order. Chapters 2, 3 and 4 are revolved around the foundation in
formal language theory, chapter 5 is mainly about how the algorithms can be extended
to provide the desired services, while chapters 6 and 7 are concerned about the practical
aspect of integration with other components. The two latter chapters may be skipped if
it is desirable to view the material only from a theoretical angle.

All chapters are written from the repeating formula of first introducing and discussing
the theoretical aspects before moving on to extracting considerations and implementation
techniques from that. Although the chapters are intended to be read sequentially, the
structure should at the same time be modular enough to enable a reader with a thorough
knowledge on a subject to skim or skip altogether some of them.

However, most of the text builds on results from previous chapters, creating a nat-
ural progression towards the ultimate goal. The dependencies among the chapters are
illustrated in figure 1.10.

2. Grammars

3. Relations

4. Documents

5. Compatibility

6. Exterior

7. Repository

Figure 1.10: Logical dependencies between chapters

The framework developed in this thesis is written in the Java language and modeled
as a library targeting systems using in the Java2 runtime environment; the availability
and mindshare of the platform being a contributing factor in this decision. It requires
no extensions beyond standard tools, and is intended for reuse at the class level. Other
approaches have been to integrate the algorithms into the host language itself [Pie02,
MS03].

Listings are presented directly in Java to avoid introducing a pseudo language for the
purpose of discussing the code alone. Almost all of them are extracted from the source
code, although some casts and exception handling have been omitted in some places for
brevity. Comments are also removed as they are effectively replaced by the discussion in
the text.

22

Chapter 2

Grammars

To model structured content, a theoretical framework is needed. One such framework
is the theory of Regular Tree Grammars. This chapter introduces this framework and

explains the rationale behind choosing to use that one in particular. The chapter then
proceeds to define the constructs needed further in the thesis. It is assumed that the
reader has basic knowledge of mathematical set theory.

2.1 Sequences

2.1.1 Strings

Information that is to be store must be encoded in some way. To encode documents
strings are used. A string is a sequence of symbols from a particular alphabet. An al-
phabet is normally denoted with Σ. This thesis is only concerned about the characters
from the English alphabet as content. However, there is nothing that hinders the usage
of other alphabets.

Sequences can have an arbitrary, positive length including zero. A sequence with
zero length simply does not have any characters in it and is called an empty string. Such
a string is denoted with the special symbol epsilon, ε.

Some examples of strings are as follows. These examples are not exhaustive, but are
rather meant as an illustration. The same character can occur multiple times in the string,
in different positions and with other characters in between.

ε ab
aa b

Strings are the foundation bricks of content, but they do not in themselves convey any
meaningful information other than that they can be compared for equality and compared
according to some lexicographical order.

Both of these definitions rely on similar definitions for individual characters in the
alphabet. Regard the alphabet as a sequence of characters. Two instances of a character
are equal if they match the character from the same position in the alphabet. A character

23

Chapter 2. Grammars

is said to be less than another if it occurs before in the alphabet, and greater if it occurs
later.

a = a a < b b > a

Two strings are considered equal if and only if they contain the exact same number
of characters and if the characters in each corresponding position are equal. A string is
less than another if it contains a non-negative number of equal characters with the other
followed by a lesser character or no character at all. A prefix is hence always shorter than
the full string. Conversely, a string is greater than another if the other one is lesser than it
according to the definition above.

ε < a a = a a < aa
a < b aa < ab ab < ba

While these definitions come in handy when inserting strings into and retrieving
strings from collections, they are not helpful in categorizing strings further.

2.1.2 Languages

To structure a collection of strings, it is necessary to partition it into subcollections. This
is done with a language. A language is a union of strings. For example a language that
consists of all the strings mentioned in the first example of the previous section can be
created:

ε | aa | ab | b

In this thesis, the bar | is used to denote the union operator. An individual string may
be seen as a set of strings containing one string, overloading the operator to work on
both individual strings and a set of strings. The operator of course yield a set of strings
as result.

A string is either in a language or it is not, dividing the space of string into two. Both
of these parts may be empty, if for example the language contains none or all strings.
Such an empty language is denoted with the symbol ∅.

In a language, more than one string may have the same prefix. Instead of writing out
all the strings, the strings that have the same prefixes may be grouped into sublanguages.
The suffixes of these strings constitutes a language of their own.

The notation of the main language may then be shortened by putting the prefix out-
side a parenthesis followed by the sublanguage that specifies the suffix inside. Applied
to the example yields as follows. All the strings that begin with a have been grouped.

ε a(a|b) b

A language is equal to another language if it contains the same set of strings. A partial
order may be defined between languages using the notion of subsets.

24

2.1. Sequences

2.1.3 Regular expressions

This thesis is interested in a class of languages called regular languages. These are lan-
guages that are defined using regular expressions[HMU01]. The language of such an
expression E is denoted L(E). Regular expressions are called a meta-language because it
is a language used to describe other languages.

This class is interesting because languages in it can be recognized by an automaton
without using a stack. The space complexity of the recognizer is then only dependent on
the size of the language not of the input. In addition, there are well-known algorithms
for translating a language described by a regular expression into such an automaton.

In particular, the intersection between two regular languages can be calculated by
setting up the product of these two languages’ automata and let the pairs that contains
accepting states from both automata be accepting states in the product. The language of
the resulting automaton will also be regular.

Next follows a definition of regular expressions. The reader is cautioned to note the
difference between when a symbol is used as a literal in the definitions and when it is
used as a semantic value.

Definition 2.1 (Regular expression) A regular expression RE(Σ) is defined recursively as

ε is a regular expression with L(ε) = {ε}.

∅ is a regular expression with L(∅) = ∅.

a where a is a string from the alphabet Σ, is a regular expression with L(a) = {a}.

vw where both v and w are regular expressions RE(Σ), is a regular expression with L(vw) =

L(v)L(w), i.e. a cartesian concatenation of all the elements in the two sets.

v|w where both v and w are regular expressions RE(Σ), is a regular expression with L(v|w) =

L(v) ∪ L(w).

v∗ where v is a regular expression RE(Σ), is a regular expression with L(v∗) = ∪i≥0L(v)i

where Li is i instances of L concatenated to eachother. Note that L0 = {ε} for all languages.
This operator is called the Kleene closure.

(v) where v is a regular expression RE(Σ), is a regular expression with L((v)) = L(v).

No explicit operator is used for concatenation as is also the case in common text.
Literal symbols from the alphabet may be read from left to right.

Parenthesises have the highest precedence due to the syntax. It is common to assign
the Kleene closure operator higher precedence than the concatenation operator, and the
concatenation operator higher than the union operator again. This thesis follows that
convention. This means that L(a|ab) = {a, ab}, L(aa|ab) = {aa, ab} and L

(

(a|b)(a|b)
)

=

{aa, ab, ba, bb} but L(a|ab|b) = {a, ab, b}.

In addition, two shorthand suffix operators will be used:

25

Chapter 2. Grammars

v+ is the same as (vv∗).

v? is the same as (v|ε).

These operators are at the same precedence level as the Kleene closure, something that is
indicated with the use of parenthesises in the definition.

The thesis will now proceed to look at the applicability of regular languages in struc-
tured content management systems.

2.2 Trees

2.2.1 Documents

A tagged string is a a string with a name attached to it. This name is called a tag or a
label.

The tag is usually written in the same alphabet as is the string itself, so it is necessary
to separate the two by the use of markers. The markers are symbols that is not a part of
the original alphabet of the string. All the characters of the string that constitute the label
is amalgamated into one unit. Prefixes and suffixes of the label is not interesting, only
full equality to other labels.

In this thesis, the convention is to write tagged strings with the name in front of the
content and use brackets (“[” and “]”) as markers to signal the beginning and the end,
respectively, of the string that is being tagged. An example of this is the tagged string a[b]

where a is the tag and b is the string being tagged.

An element is defined recursively as a tagged string which is not a string of charac-
ters, but a string of other elements. An element thus span out a tree, where elements
that is non-empty make out the branches and empty elements make out the leafs. El-
ements can be written out using the notation described above, with content expanded
recursively. The result would be string from the original string alphabet extended with
marker characters. This thesis will also adopt a convention where the content are skipped
if it only consist of the empty string. In those cases the markers are not written either. It
then become ambiguous whether a string is one label consisting of several characters or
several labels consisting of one character. To prevent such cases, all examples that are
given in a mathematical context will use only one character. Some examples of elements
are given below. The alphabet in this example are deliberately the same as in previous
examples.

ε a[a]b a[ab]b
a[a]a a[ab] b

Parsers are software components that build the element tree from such a “flattened”
string. However, this thesis will not contain a treatment of this functionality but instead
refer the reader to a seminal text on the topic [ASU86].

The model can be further expanded by allowing elements where the content is a se-
quence of both other elements and character strings. This is called mixed content. If

26

2.2. Trees

an element with mixed content is expanded, marked-up text is the result. The diligent
reader will have noticed that this thesis’ choice of notation does not give an unambigu-
ous way of writing such mixed text. The reason is that such mixed-in character strings
is considered opaque and can be replaced by an element representing it if needed. This
is indeed the technique used in later sections. The author has rather tried to make the
notation shorter and more readable at the expense of expressiveness.

2.2.2 Schemata

Sequences of elements have a language, and thus the content of an element has a lan-
guage too. But the language of the content need not be the same language as the one of
the sequence that the element itself is in. Whenever a marker is found is an expanded ele-
ment, a possibly entire new language must be recognized until the corresponding ending
marker is found.

A schema is a union of elements. Informally, the schema makes out the language
of the expanded element. As it is with prefixes and suffixes in languages, it is practical
to factor out common labels and put the different content in a union. A schema that
describes among other things the strings given as examples of elements in the previous
section, is given below:

ε | a
[

(a|ab)
](

a|b
)

| b

Note that a union of sequences with a common prefix – such as a[a|b]a and a[a|b]b –
can also be factored. The union branch operator may appear later in the sequence. An
illustration of this is that the tree spanned out by the union temporarily grows together
before splitting again.

Do not confuse schemata with schema languages. The latter are meta-languages used
to describe schema. Real-world examples are DTD [BPSMM00] and XSD[TBMM01]. The
focus of this chapter is to establish such a meta-language.

The find out if an element is part of a schema, an expression language is needed. It
would be advantageous if an already known expression language could be employed
since that would provide necessary tools as well a firm theoretical foundation.

2.2.3 The problem with regular string expressions

A recognizer for a regular expression can be built using a deterministic finite automaton
[ASU86]. While these recognizers have the nice property of having a space complexity
dependent only on the expression and not on the input, the same trait also limit the
expressive power of this meta-language.

A deterministic finite automaton contains as the name implies a finite number of
states. Assume that the number of states for a particular language is k. If given an in-
put string with more than k symbols, one or more of the characters in the string must
cause a transition to a state that has previously been visited. Otherwise, if each input
character from the string gives a new state, there would obviously be more than k states,

27

Chapter 2. Grammars

invalidating the premises. Since each state in such a DFA is not allowed to keep any in-
formation other than what was given from the language, the state cannot know if it has
been visited before or not. Hence, information has been lost when the state is reentered.

The Pumping lemma says that for strings that are larger than the number of states k
in the automaton, a (non-empty) part of the string will be repetitive and this part will be
within the first k characters. When the automaton comes to the repetitive part after say i
transfers to unique states, it will “pump” it through the same state Pi before it continues
with the rest of the string. This is illustrated in figure 2.2.

a1 · · · ai

ai+1 · · · aj

aj+1 · · · am
Pi

Figure 2.2: The pumping lemma

It can be shown that a language for a tagged string can be set up so that it contains
a string where the start marker would be in the repetitive part whereas the end marker
would not. This is possible due to the fact that the repetitive part must occur within the
first k characters in the string. However, the pumping lemma states that the repetitive
part could be removed and the remaining string would still be regular. Since the markers
always occurs in pairs, this contradicts that the string would be in the language after all.
Therefore, languages that contain this – or any other nested constructs for that matter –
can not be regular. The reader is referred to [HMU01] for a proof of this assertion.

2.2.4 Context-free languages

A larger class of languages can be recognized by adding a stack to the recognizer. The
result is called a push-down automaton. This stack gives the automaton the ability pump
two substrings, as information can be stored on the stack for later retrieval. This means
that nested constructs can be recognized. The class of languages that is covered by such
an automaton is called context-free languages and a grammar that describes it a context-
free grammar.

Most programming languages can be described by a context-free grammar and so can
tagged strings. Indeed, markup is often used as an example of what can be done with
recognizers based on context-free grammars.

However, a stack only allows information to be accessed from the top, and this im-
pairs this class somewhat. Only one extra pump may be coordinated with the first, mak-
ing it impossible to have more than two. Although nested constructs are recognized,
repeatable constructs are not accepted.

The intersection of two nested expression where the end marker of the first is the start
marker in the next would be a language where the second end marker functioned as an
echo of the first. Generally, context-free grammars are not generally closed under the

28

2.2. Trees

intersection operator. If an algorithm was written to perform this operation, the return
type could not be guaranteed to be the same as the two parameters.

That does not mean that context-free grammars cannot be used. In fact, in a marked-
up string the start and end markers will always differ – by design. It might be possible
to devise an algorithm that finds the intersection of two languages describing markup
and treat the result as a context-free language. This algorithm may also always work.
The consequence of the lack of a generalized closure property of intersection is simply
that context-free grammars cannot be used as a theoretical framework to analyze and
describe such an algorithm.

2.2.5 Regular tree grammars

What is needed is a class of languages that have similar powers as the context-free lan-
guages while retaining the closure properties of regular string languages. This class must
employ the fact that markers always occur in pairs, and that the structure of the document
is really a tree where each tagged string is a branch or a leaf as mentioned in section 2.2.1.

This class is called regular tree languages and consequently grammars that describe
such languages are called regular tree grammars. This class of grammars are denoted
RTG. Such grammars are also a schemata as defined in section 2.2.2 since they defines a
sublanguage at each level. The applicability of such languages on markup is described in
[Pre98].

It turns out that regular tree languages are closed under intersection much in the same
way as regular string languages are [LMM00b]. Proofs of this can be found in [CDG+02].

Definition 2.3 (Regular Tree Grammar) A regular tree grammar (RTG) is a 6-tuple G =

RTG(L, TE, TC, PE, PC, S) where

L is a set with strings that will be labels. It is common to use lowercase letters for labels.
Labels are terminal symbols.

TE is a set with symbols for “element types”. It is common to use uppercase letters for types.
Types are non-terminal symbols.

TC is a set with symbols for “complex types”.

PE is a set with productions on the form e = l[t] where e ∈ TE, l ∈ L and t ∈ ε∪ TC. The right
side of these productions are tagged strings, as defined in section 2.2.1. These productions
gives types for single elements. These are units that can be used to construct sequences of
elements. Note that nothing precludes two elements to use the same label in this definition.

PC is a set with productions on the form c = RE(ε ∪ TE) where c ∈ TC and RE(ε ∪ TE) is a
regular expression over the alphabet ε ∪ TE.

S is a set of start symbols for the grammar, where S ⊆ TE. These are the possible roots of the
tree.

29

Chapter 2. Grammars

and there is a restriction that symbols that designate types can only appear once on the left side
of the productions, i.e. ∀e = l[t] ∈ PE.@e = l′[t′] ∈ PE and ∀c = RE(ε ∪ TE) ∈ PC.@c =

RE′(ε ∪ TE) ∈ PC.

Although not strictly necessary it is common to restrict the usage of symbols so that
a symbol can only identify a rule in either PE or PC but not both, i.e. TE ∩ TC = ∅. It is
assumed that neither TE nor TC contain unused symbols.

The roots of the tree must be single elements only. If all types (i.e. symbols from both
TE and TC were allowed as roots, the grammar would describe a hedge[Mur99] instead
of a tree.

Note that it is very important that only the symbols from TE can occur on the right
side of the productions in PC. Each complex type must be “framed” by a label and a pair
of markers before they can appear in other complex types. This is what makes the tree
regular and not context-free.

This form of grammar is normalized. Any regular tree grammar can be converted into
this form [LMM00b]. This thesis will later show the advantages of separating element
types and complex types when an algebra is to be constructed for such grammars. Other
forms of regular tree grammars have eliminated the notion of complex types and only
operates with element types and “inline” expressions of those directly in content. The
content is then said to have an anonymous type.

An alternative is also to implicitly assume that all symbols from TE are “imported”
into TC with the corresponding rule A = A in PC for all such imported symbols A. Both
element types and complex types can then be used in expressions.

Example 2.4 (Labels a, leafs b) G = RTG(L, TE, TP, PE, PC, S) where

L = {a, b}

TE = {A, B}

TP = {A′, B′}

PE = {A = a[A′],
B = b[B′] }

PC = {A′ = (A|B)+

B′ = ε }

S = {A, B}

is a grammar that describes trees where a is the label of branches and b is the label of leafs.

The types A and B define two elements. Elements of type A may contain a variable
non-zero number of elements as content, while those of type B can only have the empty
string and must hence be leafs. The tree must have at least one element. The following
are legal examples of markup that are in the language specified by this grammar. Recall
from section 2.2.1 that the markers are not written when the content is empty.

a[b] a

[

a
[

b a
[

a[b]
]

]

]

a[b b] b

30

2.2. Trees

2.2.6 Subclasses

The class of regular tree grammars can be divided according to the uniqueness of labels
in types. This property decides to which degree types can be inferred from the labels.
This thesis will later employ this to store labels as an approximation to type names. The
subclasses introduced in this section are the classes where such an approximation can be
considered good.

To investigate what constitutes the uniqueness of a label in a grammar, it is necessary
to define competing types[LMM00b].

Definition 2.5 (Competing element types) 1-lookahead competing element types in an RTG
are types of the form e = l[t], e ∈ TE, l is a string, t ∈ TC that has the same label l.

1-lookahead means that only the root element of the tree that can be spanned from the
definition is inspected. By the definition of marked up text in section 2.2.1, this will also
be the first label to appear in the resulting string. As this thesis is not interested in any
other form of competition, 1-lookahead competing element types will simply be denoted
as just “competing types”.

The first subclass is one where there is a one-to-one relationship between labels and
element types. This is called a local tree grammar.

Definition 2.6 (Local Tree Grammar) Local tree grammars are regular tree grammars where
there are no competing element types, i.e. ∀e ∈ PE.@e′ ∈ P′E.e competes with e′. The class of local
tree grammars is denoted LTG.

This class is called “local” because the type of an element can be inferred from the
element alone with no need of context. By looking at the label, the correct type can be
decided because there is no ambiguity. When defining grammars of this class, the notion
of types is not needed and labels are used as type names. The languages defined by the
meta-language DTD belongs to this class, but not all local tree grammars can be modeled
using DTD [LMM00b].

The second subclass is one where several types can have the same label, but they
cannot appear together. This is called a single-type tree grammar.

Definition 2.7 (Single-type Tree Grammar) Single-type tree grammars are regular tree gram-
mars where there are no competing types in the same expression on the right side of a complex type
production, i.e. ∀c = RE(ε ∪ TE) ∈ PC.@e, e′ ∈ TE.e, e′ ∈ RE(ε ∪ TE) and e competes with e′,
and that starting symbols should not be competing, i.e. ∀s ∈ S.@s′ ∈ S.s competes with s′. The
class of single-type grammars is denoted STG.

Note that the constraint says that competing symbols should not occur in the expres-
sion itself, not that they shouldn’t be in the language of the expression (although the first
precludes the other).

The name “single-type” stems from the fact that a label can only belong to one type
within a given content model. If the parent type is known, then the label in conjuncture

31

Chapter 2. Grammars

with this parent type will determine the element’s type. Since the starting symbols are
not competing, types can be determined for all elements while reading markup by the
use of a stack. The languages defined by the meta-language XSD belongs to this class,
but similar to DTD not all single-type tree grammars can be modeled using it.

Since a grammar with no competing types cannot contain any expression with com-
peting types either, it follows that all local tree grammars are also single-type tree gram-
mars. By definition, both are regular tree grammars. The relationship of these three
classes is therefore that LTG ⊂ STG ⊂ RTG.

If competing elements exists in the intersection of two grammars, then both the gram-
mars must have contained those elements. If the result of an intersection is not an STG,
it must have been because one of the terms wasn’t STG either. Hence, the class STG is
closed under intersection [LMM00a].

However, when performing a union operation, elements with the same label will be
competing when these two are combined. For instance the union of a grammar G1 that
prohibits something and a grammar G2 that requires the exact same thing, will be a gram-
mar G3 whose language will contain trees both with it and without it. A general regular
tree grammar can solve this by introducing competing types, akin to the way polymor-
phism can be used in object-oriented programming languages [Boo94]. The union exists,
but it is not a single-type tree grammar and hence the class STG is not closed under union
[LMM00a]. A similar proof applies in the case of difference.

A regular expression is said to be ambiguous if a string can match its components in
more than one way by dividing it differently. E.g. the string aaa will fit into the expression
a+a+ as both (aa)(a) and (a)(aa). The middle a can fit into either the first or the second
closure. 1-ambiguous is the notion that at least one symbol in strings of this language
has this property, as in the example above. Regular grammars where the right-hand side
of the productions in PC are not 1-ambiguous belongs to the class called TDLL(1). The
markup meta-languages DTD and XSD are the intersection of TDLL(1) and respectively
LTG and STG [LMM00b].

Purely theoretically, one of the subclasses could be used as foundation, aligning the
implementation with one of the existing meta-languages. Since they are closed under
intersection, finding schema incompatibilites become possible. However, it is impractical
to construct grammars using these classes when the other operations are not available so
this thesis will use general regular tree grammars as the base for the abstract data types
that are presented next.

2.3 Specification

2.3.1 Algebra

An algebra for constructing regular tree grammars will now be devised. It will be spec-
ified in the syntax used in [LEW96]. The specification, however, is used as a tool to
describe the design and not as a mean in itself. It will therefore not be treated with the
same rigor as is necessary in mathematical texts. Note that the underscore character, , is

32

2.3. Specification

used to denote explicit placement of the parameters to operations. (Another attempt to
capture the semantics of regular expressions in a similar specification is [Wil01]).

From the definition of a regular tree grammar in section 2.2.5, it seems naturally to
select the sets L, TE and TC as carriers for the algebra. Labels are character sequences,
and most programming languages have such a type in their base library. It is therefore
assumed present and imported into the algebra. The exact operations of this class are
not important, as long as there is a comparison operator that can be used for ordering.
The specification of such an operator is omitted from this specification for brevity and
assumed a part of the import. Similarly is a type for performing boolean arithmetic in-
cluded.

An element in the set TC is constructed from a regular expression of elements in TE,
and the elements in TE are in turn constructed by putting an element of TC between a
labeled set of markers. The modeling of productions from PC which defines the elements
of TC is first considered. The algebra will mimic the constructions of a regular expres-
sion from section 2.1.3. Instead of creating a separate carrier that holds elements from
TE, the construction of these elements is integrated in the constructor that corresponds
to the single symbol in the regular expression. Only one carrier is thus needed, and this
carrier is capable of expressing both complex types and element types. The latter is mod-
eled as an implicit complex type containing exactly one element type. Since any of this
types are allowed as start symbols, the algebra actually models hedges instead of trees,
cf. section 2.2.5. The resulting algebra is presented in figure 2.8. The carrier T represents
an element type, and each of these element types is in themselves grammars.

Operations for the parenthesis construct in regular expressions are not needed, since
the use of parenthesis in the specification language itself can be used to determine the
grouping of symbols.

In the definition of RTGs, it was important that complex types (i.e. elements of the
set TC) did not occur in the definition of another complex type because that would make
the grammar context-free. In the specification of the algebra, the lack of recursively con-
structed carriers prevent this from happening. Another implication of this is that the
algebra must contain an explicit operation that can do the closure, and the specification
of this closure operator uses the mathematical recursive operator , µ (similar to val rec

in ML), even though it strictly violates the constructiveness of the algebra since no carri-
ers can be created that way. Thus the closure could also be considered a constructor.

In addition to creating grammar types, operations that traverse the various subele-
ments is needed for the algorithm that determines subtyping. To do this, the operation ≤
is introduced to create an order amongst the types and the operations car and cdr is used
to find the first element and the following elements of a list, respectively. The specifica-
tion is considered partial because the ordering of elements are incomplete from the rules
that have been set up here. These rules rather are meant to illustrate the intention behind
the operation.

33

Chapter 2. Grammars

RTG = partial constructive spec
import String, Boolean
carrier Type
ops

ctor ∅ :→ Type empty set
ctor ε :→ Type empty value
ctor [] : String× Type → Type label value
ctor , : Type× Type → Type concatenation
ctor | : Type× Type → Type union
∗ : Type → Type Kleene closure
+ : Type → Type positive closure
? : Type → Type optional
≤ : Type× Type → Boolean ordering

car : Type → Type first
cdr : Type → Type follow

subject to
∅, x = ∅ (I)
x, ∅ = ∅ (II)
ε, x = x (III)
x, ε = x (IV)
∅|x = x (V)
x|∅ = x (VI)
x|x = x (VII)
(x|y)|z = x|(y|z) (VIII)
x|y = y|x (IX)
(x, y), z = x, (y, z) (X)
(x|y), z = (x, z)|(y, z) (XI)
x∗ = µy.(x, y)|ε (XII)
x+ = µy.x, (y|ε) (XIII)
x? = x|ε (XIV)
∅ ≤ ε ≤ l[x] ≤ y|z = true (XV)
s1 ≤ s2 = true ⇒ s1[x] ≤ s2[y] = true (XVI)
x ≤ y = true ∧ y ≤ z = true ⇒ x ≤ z = true (XVII)
z 6= x|y ⇒ car(z) = z (XVIII)
z 6= x|y ⇒ cdr(z) = ∅ (XIX)
z = x|y ∧ x ≤ y = true ⇒ car(z) = x (XX)
z = x|y ∧ x ≤ y = true ⇒ cdr(z) = y (XXI)

Figure 2.8: Specification for regular tree grammars

2.3.2 Design

To model this algebra in code, this thesis follows the design pattern that each carrier
is an abstract class and each constructor defines a concrete subclass of this superclass.
Operations whose first parameter is a carrier of the algebra, is turned into methods of the
class for that carrier. Other operations are turned into class-wide methods.

A starting point is to model schemata the same way as they are written in the gram-

34

2.3. Specification

mar. Both the concatenation and the union operator would give a list of its operands,
possibly implemented as a tree that would be traversed in infix order. However, this
format is not very practical to work with since many isomorphic variants of the same
grammar can be created. Take for instance the grammar a, a, a which can be created using
the algebra as either (a, a), a and a, (a, a). Using a model as sketched above, this will gen-
erate the two trees in figure 2.9. Both of these two trees are isomorphic, i.e. they recognize
the same language. Any equality relation now has the burden to recognize this and many
other more elaborate constructs.

Sequence

Sequence

a a

a

(a) Left-heavy

Sequence

Sequence

a a

a

(b) Right-heavy

Figure 2.9: Isomorphic element trees

Instead, a two-tier solution is employed. Unions are at the first level, and sequences at
the second. The assignments to levels are consistent with the precedence between these
two operators, as mentioned in section 2.1.3. The operator with the highest precedence
is at the lowest level, and is grouped first. Each level keeps a list on which elements are
combined using the same operation. Operations with arguments that is of a higher level
is rewritten so that the operation is distributed over all the higher-level elements. This is
done by rule (XI) in the algebra specification.

Each of the levels are coded as lists. The constants ∅ and ε are end-of-list sentinels
that denotes the termination of the list. These constants are the unit element for the union
and concatenation operation, respectively, as indicated by rules (VI) and (III). A single
element may therefore be regarded as either a union with the empty set, or a concate-
nation with the empty value. This dual nature is reflected in the design, as the abstract
type carrier can act as both a set and as an element by letting the operations change the
concrete class polymorphically as needed.

Instead of translating between an “external” representation that is basically a parse
tree of the terms of the algebra into an “internal” representation where the two-tier ap-
proach is used, this thesis will bring to the table an implementation where the translation
is done implicitly in the construction. The advantage of this is that there is only one model
to relate to. Note in this respect that both the union and the concatenation operators are
constructors in the algebra, and indeed that is where this translation will take place.

These lists may be seen as trees which is rewritten to always be right-heavy, i.e. it is
always the right operand that contains a non-basic type for this level.

35

Chapter 2. Grammars

An element is a set that contains itself. Informally, an expression may be seen as a zig-
zag matrix where the rows are in union with each other and the columns are in sequence.
To say that a particular sequence matches with this expression requires that there is at
least one row where the columns (from left to right) matches this sequence exactly. Since
unions are on a higher level than sequences, the matching of a sequence across columns
is bounded to elements of the same row. The content model of each element is matched
recursively.

Consider the example depicted in figure 2.10(a). This matrix corresponds to the ex-

pression E1 = a
(

a|b
)

∣

∣

∣

∣

b which gives L(E1) = {aa, ab, b}. In this example, each possible

sequence of elements have its own row (although that will not be the case generally, if
closures are introduced).

a a

a b

b

(a) Without closure

a

b

(b) With closure

Figure 2.10: Types as zig-zag matrices

To implement closures a loop must be introduced in the type carrier such that the type
becomes reentrant.

This is perhaps best illustrated with an example. Take the expression E2 = a∗b which
gives L(E2) = {b, ab, aab, aaab, . . .}. To derive the zigzag matrix for this type, rule (XII)
is employed to expand the closure twice, and rule (XI) backwards to put the last term
within the parenthesis. Notice the change of the bound variable from x to y as the part of
the expression that is recursive changes.

a∗b = (µx.ax|ε)b

=
(

a(µx.ax|ε)
∣

∣

∣
ε
)

b

= a(µx.ax|ε)b
∣

∣

∣
εb

= µy.ay|b

The last equation gives the matrix in figure 2.10(b). After an a has been matched,
the next cell contains a pointer back to the very same expression meaning that the rest

36

2.3. Specification

of the sequence should be matched against this as well. In order to create such self-
referencing loops before the type is fully constructed, a helper class is introduced that
will later resolve the pointer. This helper class models an assignment to the internal
pointers. Instead of exposing this assignment to clients directly, it is encapsulated in this
class to allow it to be done once and only exactly once, making a missing assignment or
a re-assignment illegal. The functional flavor of the algebra is hence preserved.

The resulting implementation class hierarchy derived from the algebra is shown in
figure 2.11. Lea f and EmptySet are the constants with the corresponding name. The
name Lea f reflects that this would be a leaf in the syntax tree of the grammar. Label is
the class that models sequences of one or more elements (sequences that will always be
prefixed by a label). Union models a union of two or more elements. An element may be
regarded as a union in itself, but it will then always be represented by one of the other
classes, never of Union. Re f is a reference to a type that has not yet been created and will
be used to implement closures.

Although the sequence and union operations are denoted as constructors, there are
no classes that directly models the result of these operations, cf. the discussion above.
Note that these constructors takes a type carrier as their first parameter. They are rather
modeled as operations based on one of the other classes that generates new objects based
on the rules of the algebra. It is not so that being a constructor alone determines that there
should be a corresponding concrete class. They are however constructors nonetheless
since they generate object values that is not possible to obtain using any other operation.

The operations that are common to all concrete classes in this model is hence , , | ,
car, cdr, ≤ and ∗ (+ and ? can be implemented in terms of ∗). These operations will
now be discussed in terms of each of these concrete classes.

Leaf

EmptySet

Label

Union

Type

Ref

n

n

n

n

n

n

Figure 2.11: Class hierarchy

37

Chapter 2. Grammars

2.4 Implementation

A skeleton for the base class for the algebra is displayed in listing 2.12. The methods have
been given names that is compatible with the Java syntax: oe and eps are the names of
the ∅ and ε constructors respectively, while label is used to construct a new element type.
concat creates a sequence of the object and the parameter and union creates a set of those
two. The closure operations have all been reduced to a single method decorate whose
name reflect that the expression is being “decorated” with a ∗, a + or a ? suffix.

public a b s t r a c t c l a s s Type implements j ava . lang . Comparable {
public s t a t i c Type oe () { }
public s t a t i c Type eps () { }
public s t a t i c Type l a b e l (S t r i n g tag , Type content) { }
public a b s t r a c t Type concat (Type t) ;
public Type union (Type t) { }
public Type decorate (boolean allowZero , boolean allowMore) { }
public i n t compareTo (Object o) { }
public Type car () { }
public Type cdr () { }

}

Listing 2.12: Skeleton of Type.java

The ordering operator≤ have been replaced with the standard Java method compareTo.
The class notes to the environment that it is supports this method by implementing the
marker interface Comparable. By doing this, the method promises to accept any object for
comparison and the implementation will have to check that the object really is within the
hierarchy of the Type class. The methods car and cdr keeps their name from the algebra.

Most of these methods can be implemented entirely, or at least give a default im-
plementation, in the base class. The only method that does not have a natural default
implementation is the concat method which is therefore declared abstract.

Binary operations in the algebra are defined in terms of the class of both its operands.
In order to implement these in a language that does not support multiple dispatch [ADL91],
type-testing is employed using the instanceof operator. This gives code in style of the
pattern matching commonly found in programs written in ML [Pau91]. An alternative
would have been to use the Acyclic Visitor pattern [Mar96]. While more “pure” object-
oriented, this approach is not chosen on the grounds that it would complicate the code
without giving any significant benefits since the type hierarchy is relatively static.

2.4.1 Empty set and empty string

Both oe and eps are functions that does not take any parameter. Neither does any of
these functions have any side-effect. Therefore, the result must always be the same. The
return value of these methods are static members that have the type (in a Java sense)
EmptySet and Lea f respectively. Although the immutability of these classes ensure that
these members could have been exposed directly, they are encapsulated in each their
method so that later implementations may change. This implementation is a realization
of the Singleton pattern [GHJV95]. The code for these methods is displayed in listing 2.13.

38

2.4. Implementation

/ / c l a s s Type
s t a t i c f i n a l Type OE = new EmptySet () ;
public s t a t i c Type oe () { return OE ; }
s t a t i c f i n a l Type EPS = new Leaf () ;
public s t a t i c Type eps () { return EPS ; }

Listing 2.13: oe and eps methods

The classes EmptySet and Lea f can for the moment be assumed to be empty since
they don’t hold any state, only behavior.

2.4.2 Labeled elements

The label method provide the functionality to create a new labeled element. Recall from
section 2.3.2 that not only is an element a set containing itself, but it will also be a sequence
containing itself. Instead of coding the sequence explicitly, it will be integrated in the
elements by the use of a “next” pointer. The class Lea f does not need such a pointer since
it will always terminate the list. In addition to the next pointer, it will need members
to hold the state associated with a single element, namely the tag of the element and its
content type. The data members of the class Label is shown in listing 2.14.

The class is designed to be immutable, so only an readable accessor declared for tag
and content so that this state may be inspected by client code. The naming of these “prop-
erties” have been chosen to mimic the name of the fields rather than the standard Jav-
aBeans convention of prefixing the method name with get−. The member next does not
have a corresponding accessor method as it is not desirable to expose the implementation
of the sequence as a linked list.

Since only the constructor is able to set the semantic state of these objects once and for
all, an evaluation of whether the fields could be declared final is in order. However, for
reasons that will be explained in the next chapter (section 3.3.2), the two members that
has the type Type can not formally be declared final (as a digression, they could have
been declared mutable in C++).

c l a s s Label extends Type {
f i n a l S t r i n g tag ;
/∗ f i n a l ∗ / Type content ;
/∗ f i n a l ∗ / Type next ;
public S t r i n g tag () { return tag ; }
public Type content () { return content ; }

}

Listing 2.14: Data members of the Label class

The method label in the base class Type is only a wrapper for the constructor of the
Label class. The parameter is sent forward as-is after a check for a null pointer. The null
pointer does not have any semantics in the algebra, and no object of type Type should
ever legally be null. In listing 2.15, the constructor is listed. The first form is the one

39

Chapter 2. Grammars

that is called by the method in the base class, and all it does is to create a single sequence
consisting of this element alone. Note that the list is terminated with an ε.

The role of the constructor is simply to initialize the data members; no other behavior
is done here. The label is interned so that it is replaced with its canonical representation.
This ensures that semantic equality is aligned with reference equality, and comparisons
after this point can be done in constant order relative to the length of the string.

/ / c l a s s L a b e l
Label (S t r i n g tag , Type content , Type next) {

t h i s . tag = tag = = null ? null : tag . i n t e r n () ;
t h i s . content = content ;
t h i s . next = next ;

}

Listing 2.15: Label constructor

2.4.3 Ordering types

Before unions can be discussed, an order must be introduced amongst types. A sequence
has an implicit order from its composition, while in a union this is not the case. Hence an
explicit order must be introduced so that the union can be kept sorted internally. If the list
of union elements are always kept in this order, then the work is done upon construction
and comparisons can be made more quickly. In a schema comparison, the schemata are
only constructed once but may be compared several times, so this will amount to time
savings.

Type carriers may be of very different classes so an artificial rank is introduced to
make proverbial apples comparable to proverbial oranges. If the carriers are of a different
class, the rank determines the ordering. The ranks are assigned as laid out in table 2.16.

Lea f -1
EmptySet, Label, Re f 0

Union 1

Table 2.16: Ranks of type carrier classes

The rank has its origin in the cardinality of the union, i.e. it is vital to put all single
element before composite elements. Since empty sets won’t occur in the union (which by
definition is two elements or more), it is lumped together with the rest. Leafs are made
to sort below everything else so that they will be put at the front of the union. This has
two advantages: First, if another leaf is inserted into the union, it can very quickly be
detected whether it is already there. The probability of the same labeled element to be
inserted twice is much lower. Second, having leafs first give better readable print-outs.

Furthermore, this thesis will use the term basic type for unions of a single sequence,
and non-basic for unions with a cardinality different from exactly one.

The comparison operator may be coded as in listing 2.17. The method rank is a helper
method that returns the rank, while di f f is a helper method that simply returns the arith-

40

2.4. Implementation

metic difference between two object pointers. This arithmetic difference is used to deter-
mine the order between two carriers with the same rank but different class. The compar-
ison between two such objects may not matter, but it must always be consistent (within
the same run at least). It is also used to determine an order between objects in the Type
hierarchy and outside of it, in case any carriers are put in a heterogeneous collection.

Note that the result of a comparison method is always cached in a local variable to
avoid making the same calls again later if the value should be returned. Although the
value cannot have changed, considerable work may have been done which would be
superfluous to do again. (This construct is akin to the let statement found in ML).

/ / c l a s s Type
public i n t compareTo (Other o) {

Type t = (Type) o ;
i f (t h i s . rank () ! = t . rank ())

return t h i s . rank () − t . rank () ;
i f (t h i s . ge tClass () ! = t . ge tClass ())

return d i f f (this , t) ;
else

return compareToSameClass (t) ;
}

Listing 2.17: compareTo method

If two carriers are of the same class, the class may define a more detailed ordering
within itself. The role of the compareToSameClass is to determine this ordering. Since
this method is virtual, it can only have the general Type as a parameter, but the various
subclasses will assume that it is only called with an object of their own type. An exam-
ple of an implementation of this method is the one for the Label carrier, as displayed in
listing 2.18.

/ / c l a s s L a b e l
i n t compareToSameClass (Type t) {

Label other = (Label) t ;
i n t c ;
i f ((c = tag . compareTo (other . tag)) ! = 0)

return c ;
else i f ((c = d i f f (content , other . content)) ! = 0)

return c ;
else i f ((c = d i f f (next , other . next)) ! = 0)

return c ;
}

Listing 2.18: compareToSameClass for Label

The compareToSameClass method in Label uses the tag to further order the labels. If
the labels are equal, it uses the object identity of the content and the rest of the sequence
to determine the ordering. If both of these are the same object, then the two Labels must
have been constructed from the same terms.

The opposite is not true, however. Not all objects that are created from semantically
equal terms will be considered equal using the compareTo method. The structural com-
parison is only one level deep. If a call to compareTo was made on the Type components,

41

Chapter 2. Grammars

the result would be a recursion “pit” on a closure like the one in figure 2.10(b). An equal-
ity relation that does not have this problem is a topic in the next chapter. The conclusion
that can be drawn at this point is that the compareTo method can be used for ordering,
but not for testing equality.

2.4.4 Element unions

The | operator may create a Union type if any sequence not already existing in the union
is added, i.e. cases not covered by rules (VI) and (VII) in the algebra. A Union will thus
consist of at least two non-empty sequences. As with the sequences, the elements of a
union will be kept in a linked list. The list is built recursively so that the first element
will always contain the base case, i.e. a single sequence, while the rest of the union is
either a single sequence too or another union. Operations that is to be performed on
the entire union can then be performed in an inductive manner. An artificial hierarchy
could be used to introduce a difference between basic and non-basic type carriers, but
this thesis has instead chosen to insert debug assertions to perform these checks, as only
code internal to the package will set up the data structures. It is therefore not necessary
to employ the type system to prevent the user from performing such a mistake.

c l a s s Union extends Type {
f i n a l Type head ;
f i n a l Type body ;

}

Listing 2.19: Union data members

The skeleton of the Union class is displayed in listing 2.19. Both fields are marked
final as this structure is to be immutable. The disadvantage of having the list im-
mutable is that insertions will have to create an entire new chain of elements. The old
chain will be a candidate for garbage collection. As the cost of garbage collection is held
to be proportional to the size of the memory being allocated [Boe95] and each element on
the list is of constant size, this should not affect the time complexity of the insertion.

A helper method is needed to manage insertion of new elements. Due to the class’
immutability, there is no need for any corresponding extraction operation. Use of the
word “insertion” is actually somewhat wrong, because what happens is really that a new
union that also contains the extra element is created. Code for this operation is displayed
in listing 2.20.

First, an assertion is made that only basic elements are inserted. Other methods will
take care of the case where two unions are to be merged, as will later be shown. The right
position of the new element is determined next. If it is order lesser than the existing head,
it becomes the new head and the existing head is sent to the tail of the union. Otherwise,
it must either be inserted into the tail, which is done recursively, or else in the case of the
tail being a single element put in a union with the existing tail. The sort order between
the existing tail and the new element is decided inline to make the constructor easier,
although this job could be deferred to a sorting constructor.

42

2.4. Implementation

/ / c l a s s Union
Union i n s e r t (Type t) {

a s s e r t ! (t instanceof Union) & & ! (t instanceof EmptySet) ;
i n t comp = head . compareTo (t) ;
i f (comp = = 0) return t h i s ;
i f (comp > 0) return new Union (t , this , t rue) ;
i f (comp < 0) {

i f (body instanceof Union)
return new Union (head , ((Union) body) . i n s e r t (t) , t rue) ;

else {
comp = body . compareTo (t) ;
i f (comp = = 0) return t h i s ;
i f (comp > 0) return new Union (head , new Union (t , body , t rue) , t rue) ;
i f (comp < 0) return new Union (head , new Union (body , t , t rue) , t rue) ;

}
}

}

Listing 2.20: insert method in Union

The third argument to the constructor instructs it to accept the parameters in their
given position, i.e. the first parameter is the head and the second is the tail. This overload
is not available to outside code.

2.4.5 List enumeration

To process a list, a scheme for enumerating all its elements is needed. This thesis employs
the pattern of dequeuing the first element, treating the remainder of the list as a new list.
In this context, operations for extracting the head and the tail of the list is defined. These
operations are named car and cdr, respectively [Hol02]. An adapter can easily be created
for the java.util.Iterator interface if desired.

Implementing these operations for a Union is trivial, since the unions by construction
already keep the basic element that is the head in its own field and the insertion operator
always ensures that the greater elements are propagated to the tail, keeping the least
one at the front. Thus, these operations are reduced to simple accessors as shown in
listing 2.21.

/ / c l a s s Union
Type car () { return head ; }
Type cdr () { return body ; }

Listing 2.21: car and cdr methods for Union

Note that when a basic element remains in the head, the class of the return value of
the method cdr will no longer be Union. All the other classes simply return themselves
as the head element of their implicit union and the empty set as their tail. This also
works for the empty set itself, signaling the termination of the enumeration. The default
implementation for all other classes than Union is displayed in listing 2.22.

The helper method isEmpty is defined to test if the class of the type carrier is the
EmptySet, to avoid exposure of the implementation hierarchy. All ingredients is now

43

Chapter 2. Grammars

/ / c l a s s Type
Type car () { return t h i s ; }
Type cdr () { return Type .OE ; }

Listing 2.22: car and cdr methods for Type

present to create a template of enumerations of union elements. This skeleton is presented
in listing 2.23.

for (Type x = · · · ; ! x . isEmpty () ; x = x . cdr ())
· · · x . car () · · ·

Listing 2.23: Template for foreach construct

The variable x local to the loop both holds the current value through the car method
and acts as a counter that can be incremented through the cdr method.

Only the first tier of list elements are enumerable. A general enumeration of sequence
elements is possible, but is not considered to be of any practical value to this thesis. An
example to illuminate this is presented. Consider a union composed of two sequences,
both of which have unions in their sequence list:

(

a, t|u
)

∣

∣

∣

∣

(

b, x|y
)

A possible implementation of the hypothetical operations sequence-car and sequence-
cdr is to extract elements from each of the sequences in the union, and then return the
union of these elements again. Thus, sequence-car would return a|b and sequence-cdr
would return t|u|x|y for the example above. However, the algorithms covered here has
no use for these constructs.

Instead, this thesis will use the internal next field in the cases where the type carrier
is known to be a single non-empty sequence, i.e. an instance of the class Label.

2.4.6 Union operation

The union operator joins two elements in a common set. This will usually cause the set
to grow, but there are two exceptions. The empty set is the unit value for this operation,
and adding it is an idempotent action with no effect. This is specified in rule (V) and (VI)
from the algebra specification. The other exception is that making the union joining itself
should also give the same set, i.e. the implicit set a single element. Rule (VII) governs
this.

The default implementation of the union method is given in listing 2.24. It checks first
for the two rules outlined above. If none of these apply, a new union is created. The
second argument to the constructor instructs it to sort the arguments before creating the
union, using the compareTo method, as was the case in the insert method covered in the
previous section.

44

2.4. Implementation

/ / c l a s s Type
public Type union (Type t) {

i f (t instanceof EmptySet)
return t h i s ;

i f (t h i s . compareTo (t) = = 0)
return t h i s ;

else
return new Union (this , t , f a l s e) ;

}

Listing 2.24: Default implementation for union operator

To prevent empty sets being sent as an element to the Union constructor, the union
method is overloaded for the EmptySet class. This is necessary since the Union construc-
tor is obligated to create a Union object and cannot change the class if it determines that
there is not enough basic elements amongst its parameters after all. The overloaded op-
erator is listed in figure 2.25. It simply removes the empty set, returning the parameter
as the new union. Recall that a single element has a dual role as a union containing itself.
Observe that the operation works correctly, even if the union between two empty sets are
attempted.

/ / c l a s s EmptySet
public Type union (Type t) { return t ; }

Listing 2.25: Union operator for an empty set

The job of merging two unions, can either be put off to the constructor of the Union
class, or it can be handled by also overloading the union method in the Union class. The
latter approach is chosen in this thesis, as it simplifies the constructor of the Union class as
it can now assume that at least one of its arguments is a basic element. (If two non-basic
elements is to be joined, one of the overloaded versions of the method is used).

/ / c l a s s Union
public Type union (Type t) {

Union u = t h i s ;
for (Type x = t ; ! x . isEmpty () ; x = x . cdr ())

u = u . i n s e r t (x . car ()) ;
return u ;

}

Listing 2.26: Merging two unions

The listing 2.26 shows how the merging of two unions is performed. Each element
is simply inserted into the existing union. The insert method will make sure that the
elements are kept in order. This also works for empty sets and basic elements, as the
enumeration will return zero and one elements, respectively.

45

Chapter 2. Grammars

2.4.7 Closures

Creation of closures require that type carriers can be referenced before they are fully de-
fined. One way to do this is to create mutable structures which are initialized to some
default value (commonly, null) and then corrected when the reference to the actual car-
rier is known. The downside of this approach is that it is hard to reason about whether
the program is free from side-effects, due to this mutability.

Therefore, it is desirable to limit the span of the mutability to an explicit type carrier.
Objects of this class works as a placeholder until the real target is known. The class Re f
defines such placeholders for the type carrier from the algebra used in this thesis. An
outline of this class is shown in listing 2.27.

c l a s s Ref extends Type {
Type t a r g e t ;
Type deref () {

a s s e r t t a r g e t ! = null ;
return t a r g e t . deref () ;

}
public void ass ign (Type t) {

a s s e r t t a r g e t = = null ;
t a r g e t = t ;

}
}

/ / c l a s s Type
Type deref () { return t h i s ; }

Listing 2.27: Backpatches

Note that Re f is not a public class. Like all the other type carrier classes, the client
code will only make use of this through operations on the interface of the generic Type
superclass.

Since Re f is a part of the Type hierarchy, it can be used as any other type. However, its
use are in nature meant to be temporary. All operations could be forwarded to the target
once the target was defined, creating a level of indirection. Instead, an operation dere f is
introduced to remove this extra layer. The default semantics of dere f is simply to return
itself, making the return value idempotent if called on objects from any other class than
Re f .

For references, dere f returns the target. The target itself is also dere f ed, removing any
number of layers of forward references that has been created. Hence, the return value of
dere f will never be a forward reference. Thus, the span of assignability to the reference is
limited from its creation up to the point where dere f is called.

References receive their target through the method assign. If it was possible to spec-
ify the target upon construction of the reference, the target itself could be used instead
making the entire point of having a forward reference moot. It is only meant to defer
having to know the actual reference to a later time, not to provide the ability to change
an already initialize pointer. This is ensured by having checks that the target is assigned
once (before it is used) and only once (upon assignment).

46

2.4. Implementation

The process of allowing use of a symbol before it is defined and then completing its
information at a later stage when this become known, is similar to the backpatching that
is done in single-pass compilers.

The Kleene and positive closure operations (∗ and +, respectively) are combined
with the optional operation (?) to form a common method that controls the occurrence
constraint of the type carrier. This property has two dimensions which are orthogonal; the
symbol can be dropped, or it can be repeated, and all of these operations “decorate” the
symbol with a marker accordingly. Hence a the common method is called decorate and
takes two parameters that regulate whether the minimum number of occurrences is zero
or one, and whether the maximum number of occurrences is one or many. The mapping
between the decorations and the parameters is shown in table 2.28 and the method itself
is defined in listing 2.29.

`
`

`
`

`
`

`
`

`
`

`
`

`
`

allowZero
allowMore

false true

false X X+

true X? X∗

Table 2.28: Decorations and occurrence constraints

Allowing to specifying the two attributes of the constraint separately, is in line with
the way this is done in XSD [TBMM01]. The advantage of this mapping will become
appearent in later chapters where schemata will be read from this format.

An extension is to allow the schema to specify not only from the predefined value
sets {0, 1} and {1, ∞}, but to also give any exact positive integer for the attributes. This
thesis does not implement this extension as it only serves to complicate the code giving
no change in the expression power. Furthermore; no schemata originally drafted in DTD
will require it and thus the practical use is currently limited.

/ / c l a s s Type
public Type decorate (boolean allowZero , boolean allowMore) {

i f (! allowMore) {
i f (! allowZero)

return t h i s ; / / X
else

return t h i s . union (Type . EPS) ; / / X=X|ε
}
else {

Ref r = new Ref () ;
Type t ;
i f (allowZero)

t = t h i s . concat (r) . union (Type . EPS) ; / / X∗ = (X, X∗)|ε
else

t = t h i s . concat (r . union (Type . EPS)) ; / / X+ = X, (X+ |ε)
r . ass ign (t) ;
return t /∗ . d e r e f () ∗ / ;

}
}

Listing 2.29: Wrapping closures

In the case of decorations that allow the symbol to repeat (allowMore is true), a ref-

47

Chapter 2. Grammars

erence r is first created, and this reference is then subsequently used in the construction
of the type carrier t. First after the type t is completely created is the reference r resolved
by the use of assign to the very symbol that is being defined, making the closure. Upon
returning the newly created type, the structure could have been “compacted” by remov-
ing the reference using dere f . However, this is not really necessary, it does not impact the
time complexity of the program and it turns out that not doing so enables the printing
algorithm to better identify loops. As not only closures create references, the algorithms
have to be prepared to resolve any of these as needed anyway.

2.4.8 Sequence concatenation

Concatenation appends a new element to each basic element in the set unless the element
is the empty sequence, in which case the resulting set will be the the new element alone
as specified by rule (III). Correspondingly, rule (IV) specifies that appending the empty
sequence (of basic elements) to a set does not change it, making the empty sequence the
unit value of this operator.

Thus the concatenation is distributed over all elements in the first tier set, i.e. the
union set, and can be reduced to operations on the second tier which consists of the basic
elements. This can be expressed as:

X, t =
⋃

x∈X

x, t

Again, the technique of having basic elements behave as a union in the first tier con-
taining themselves in the second tier is employed.

Appending something to each element in an empty set yields the empty set, as there is
as many elements in the set before the concatenation as there is after. Only the union op-
eration change the number of elements in the set; the concatenation changes each element
individually. It is worth mentioning that appending the empty set to an element causes
the element to “collapse” into the empty set itself, as there is no longer any (marked up)
strings that will match this element. Nothing matches the empty set (whereas in com-
parison, an empty string will match the empty sequence), so even though the prefix up
to the empty set can be matched, having an empty set in the tail will always cause the
matching to fail. This property is given in the rules (V) and (VI).

Since the dispatch of the virtual method that makes out the operator will end up
in the class of the left argument, the rules (III) and (V) will be coded in the Lea f and
the EmptySet classes, respectively. The implementation of these methods are shown in
listing 2.30. Note that rules (IV) and (VI) are also handled by these methods in the case
where the left argument is a Lea f or an EmptySet! However, as these rules specify the
semantics of the operation based upon the right argument of the operator which is passed
as a parameter to the virtual method, they must must be taken into consideration in each
of the other classes as well.

Concatenation to unions that consist of more than one basic element can be reduced
to a distributed operation, as pointed out above. The implementation of this method is

48

2.4. Implementation

/ / c l a s s L e a f
public Type concat (Type t) { return t ; }

/ / c l a s s EmptySet
public Type concat (Type t) { return t h i s ; }

Listing 2.30: Trivial concatenation rules

hence simply a codification of this formula, as shown in listing 2.31. Observe that if the
parameter is the empty set, this enumeration will ultimately return the empty set if all
the other classes obeys rule (VI). In other words, the return type of this method is not
necessarily of the class Union.

/ / c l a s s Union
public Type concat (Type t) {

Type u = Type .OE;
for (Type x = t h i s ; ! x . isEmpty () ; x = x . cdr ())

u = u . union (x . car () . concat (t)) ;
return u ;

}

Listing 2.31: Distributing concatenation over (non-basic) unions

Like the union method, concat contains a hidden use of the new operation (through
insert), which will potentially create a new Union in each iteration. This is necessary to
preserve the immutability of the class. An alternative could have been to create a union
that was mutable internally to the method, but this would have greatened its complexity.
All temporary unions are eligible for garbage collection and will most likely be of the 0th
generation, making the cost of reclaiming the memory low [App89].

/ / c l a s s L a b e l
s t a t i c j ava . u t i l .Map/∗<Labe l , Ref>∗ / backpatches = new j ava . u t i l . HashMap () ;
public Type concat (Type t) {

i f (t instanceof EmptySet)
return Type .OE ; // (†)

Pa i r p = new Pair (this , t) ;
Ref r = (Ref) backpatches . get (p) ;
i f (r ! = null)

return r ; // (‡)

r = new Ref () ;
backpatches . put (p , r) ;
Type n = new Label (tag , content , next . concat (t)) ; // (§)
backpatches . remove (p) ;
r . ass ign (n) ;
return n ;

}

Listing 2.32: Concatenation of labels

What remains is a discussion of concatenation to a non-empty basic element. The
implementation of this method is shown in listing 2.32. It can be split in two parts based
on the parameter that is to be added. The first part is marked with (†) and handles the

49

Chapter 2. Grammars

case of an empty set being added to the sequence. This will, as discussed above, give
the effect that no marked up strings match the sequence and rule (IV) mandates that the
empty set should be returned. All other parameters will return a non-empty sequence
containing this sequence as a prefix (although not necessarily a proper prefix, in the case
of an empty sequence being added), and this is handled in the second part of the method
(in the else clause).

Concatenation to a sequence is done by appending the right argument at the end
of the sequence. Construction of an entirely new sequence is necessary to preserve the
immutability of the left argument. This is done by making a copy of the head of the se-
quence and then letting the remainder of the list handle the appending inductively. This
is an application of the rule (X) from the specification. When the base case of an empty
sequence end-of-list sentinel is reached, it will replace itself with the right argument con-
taining what is to become the rest of the list. The memory occupied by the rest of the list
is hence shared with the parameter, while the memory used by the original left argument
is eligible for recycling if otherwise unused.

The line marked with (§) — still in listing 2.32 — handles the sequence insertion itself,
while the rest of the else clause is a guard against endless recursion. It is possible to
construct the recursive expression µx.a, x; a sequence where a labeled element has itself
as the following tail. The code in figure 2.33 shows how this can be done using references.

Ref r = new Ref () ;
Type x = Type . l a b e l (”a” , Type . eps ()) . concat (r) ;
r . ass ign (x) ;

Listing 2.33: Recursive expression using references

The resulting object graph is displayed in figure 2.34. Note that this kind of loop
constitute a kind of closure resembling a “bottom-less pit”; if first encountered, it will be
repeated ad infinitum.

a

Figure 2.34: Concatenation of an element to itself

In such a construct, the expression can be replaced with itself since the number of
iterations in both cases will be infinite. The code in listing 2.32 employs this rewriting. It
creates a Pair consisting of the arguments of the concatenation operation, which is then
placed on a call stack. If this pair is however detected to already be on the call stack, then
this operation is deemed part of a loop (originally invoked from the line marked (§)) and
should be short-circuited. To avoid synchronization, a thread-local variable may be used
instead for the call-stack. Observe that concatenations to the closures created with the

50

2.5. Further enhancements

decorate method will only short-circuit the repetitive parts of the expression, e.g.:

a+, b =
(

µx.a, (ε|x)
)

, b = µx′.a, (b|x′)

The diligent reader will perhaps also have interest in knowing that Pair uses the
compareTo method for determining equality when searching the call-stack, which is recursion-
safe as discussed in section 2.4.3.

As the result type of the concatenation is dependent on the class of the operands, it
cannot yet be determined what to yield if a reference is used as the left operand. There are
two ways to handle this situation. The first is to defer the concatenations to later when the
target of the reference has become known. However, this require that the reference must
maintain a queue of outstanding operations to be performed once it is to be resolved.
The second approach is to resolve the reference before the concatenation is performed,
restricting the usage of the reference.

/ / c l a s s Re f
public Type concat (Type t) { return deref () . concat (t) ; }

Listing 2.35: Concatenation will resolve references

Choosing to defer the operation introduces more state to the object, and in order to
preserve immutability each change of this state would have to result in a now clone, all
of which would have to be associated with each other to coordinate the assignment of the
reference. Due to this added complexity, the latter approach is the one that is chosen by
this thesis.Preventing appends to forward references is however also a requirement for
the type to retain its regularity [HVP00].

2.5 Further enhancements

In addition to the basic operations necessary for construction of type carriers, some aux-
iliary operations that ease programming can also be defined.

2.5.1 Traversal

It may be desirable to output a type carrier to a character stream for diagnostic purposes.
This implicates serialization of the object graph. A naı̈ve implementation where each
object simply prints each of its fields may fall into an endless recursion, similar to the one
that was described in section 2.4.8. An algorithm that detects loops and inserts symbolic
links is therefore needed.

To facilitate such an algorithm, a special stream RecursiveBu f f er is designed. The re-
sponsibility of printing a carrier is split in two: The buffer receives a carrier to be printed,
and a carrier must be able to render itself to such a stream. The loop detection is hence
isolated within the buffer logic, while the appearance of each carrier is deferred to the
correct type.

51

Chapter 2. Grammars

Listing 2.36 shows how these responsibilities are turned into code. Any object capable
of writing itself onto the buffer must implement Printable. It may either render a field as
a simple string, or as another Printable.

public i n t e r f a c e P r i n t a b l e {
void p r i n t (Recurs iveBuf fer buf) ;

}

public c l a s s Recurs iveBuf fer {
public void append (S t r i n g s) { }
public void append (P r i n t a b l e t) { }
public S t r i n g t o S t r i n g () { }

}

Listing 2.36: Skeleton of recursive buffer

This yields two overloaded methods in the RecursiveBu f f er. A simple string is added
to the buffer right away, while an instance of Printable must be scrutinized for loops be-
fore the contents are put in the buffer. If a loop is indeed detected, then a symbolic link
must be inserted instead of invoking yet another cycle. A variable is then assigned to this
expression, and the designation for this variable is added to the stream. When the recur-
sion unnests back to the first definition of this expression, then its variable declaration is
also output. The implementation is similar to that of the concat method in Label, and will
not be dwelled over again here.

/ / c l a s s L a b e l imp l ements P r i n t a b l e
public void p r i n t (Recurs iveBuf fer buf) {

buf . append (tag) ; / / S t r i n g
buf . append (” [”) ; / / S t r i n g
buf . append (content) ; / / P r i n t a b l e
buf . append (”] , ”) ; / / S t r i n g
buf . append (next) ; / / P r i n t a b l e

}

Listing 2.37: Example rendering routine

An example of the print method for a carrier is shown in listing 2.37. Note the simi-
larities between this and the naı̈ve implementation; the only difference is the buffer used.
The method toString returns the entire buffer — including symbolic links — that has been
printed to it up to this point, and can be used to output the expression on a console.

2.5.2 Typed content

Section 2.2.1 started by defining an element as a sequence of other elements. To allow not
only structure of predefined tags as defined in the schema but also variable data entry,
this definition was extended to include free-form text, i.e. content is a sequence of the
union of both elements and characters, and section 2.2.1 named this mixed content. Text
is allowed “in between” tags.

The meaning of these data are specific to the client application; the validator has no
understanding of it as the schema only describes the structure and not the semantics. A

52

2.5. Further enhancements

validator will treat the text as an opaque element and pass it on to the client.

However, the schema may be employed to specify a datatype of the text and the
validator may check that the text is within the value domain of that datatype as an extra
step in the validation process. Recent schema standards such as XML Schema enables
the schema writer to not only specify a set of existing datatypes, but also to define new
ones [BM01]. As this thesis is primarily concerned about document structure and not
validation of data, mapping of free-form text to datatypes is outside its scope and will
therefore be briefly discussed on a “hand-waving” basis only.

A continuous sequence of characters is modeled as an element with the specially rec-
ognized tag #PCDATA that has no further content. Instead of having this convention
hard-coded into the clients, a method can be defined that encapsulates this convention.
The definition of this method is shown in listing 2.38.

/ / c l a s s Type
public s t a t i c Type t e x t () { return new Label (”#PCDATA” , EPS , EPS) ; }

Listing 2.38: Free-form text elements

To extend the framework to handle datatype validation, a specialization of Label
could be created, which aggregated the datatype specified. Upon matching an schema
element to a document element, a polymorphic method in this associated datatype for
validating the text further could be invoked if both elements had the tag that indicated
free-form text, i.e. #PCDATA. The schema element would then contain the datatype and
the document element would contain the value.

Built-in conversions is possible by creating a hierarchy amongst the datatypes, e.g.
Integer could inherit Double which again could inherit String. When checking inclusion
between two schema types, any datatype associated with a free-form text element must
be castable from the “smaller” type into value domain of the “larger”.

2.5.3 Wildcards — partial specification of schema

The need to embed subdocuments may arise. The outer document then specifies a struc-
ture, but another document is used to describe values instead of free-form text. The outer
document is called an envelope and the inner document contained within it a letter.

A practical use for this feature is to include value data written in a presentation lan-
guage such as HTML, in a structure specified by the schema.

One way of tackling this challenge is to have an import facility and use namespaces
to keep the schemata apart. This require the schema of the inner document to be known
at development time of the schema for the outer document. Another solution is to allow
the outer schema to be only partially specified and allow arbitrary schemata for the inner
document. The client must then resubmit the inner document to the verifier to have it
checked. It is the latter solution that will be discussed here.

The basis of a template element is implemented by letting a null value for the tag act
like a wildcard, which will match any other tag. The sorting order is altered to recognize

53

Chapter 2. Grammars

that a wildcard sorts before any other tag. (After any other tag would work just as well).
The any element is a hedge consisting of a variable number of such elements again con-
taining any hedge (hence the name). Listing 2.39 shows how this is implemented using a
wildcard tag.

/ / c l a s s Type
public s t a t i c Type any () {

Ref r = new Ref () ;
Type t = l a b e l (null , r) . decorate (true , t rue) ;
r . ass ign (t) ;
return t ;

}

Listing 2.39: Wild-card element

Notice the resemblance between this setup and the one in section 2.4.8 where a loop
was created. However, here the reference is used as content instead of as follower, making
it possible for the hedge to have arbitrary depth. Since the wildcard element itself is
wrapped in a Kleene closure, it may exit at any time (no pun intended).

2.6 Summary

This chapter reviewed the theory of strings, regular expression and context-free lan-
guages and discussed why these were inadequate or unsuitable for describing structured
documents. It then presented regular trees as a proper framework for theoretical reason-
ing and introduced an algebraic specification for this grammar construct. A realization
of this specification was next designed and various aspects about its implementation en-
lightened in order to give an understanding of the construction of element types. Provi-
sions needed to extend the framework to not only handle structure but also value data is
described.

54

Chapter 3

Relations

In order to reason about types it is necessary to be able to test which relations between
them hold. This chapter extends the framework described in chapter 2 with the con-

structs necessary to determine selected relationships.

In section 2.4.3, the compareTo operator was defined to establish an ordering between
type carriers. However, this method can only determine if two instances have the same
literal content model. It cannot do a structural comparison over cyclic structures. In order
to do this, a separate algebra that will recognize and keep track of the cycles is needed.

3.1 Top-down versus bottom-up

Semantic analysis of a tree can be performed in two ways: Top-down or bottom-up. The
former start at the root working its way downward the branches and returning semantic
information when popping the implicit stack. The latter starts out with the leafs, building
and reducing an explicit stack. Often a bottom-up analysis is driven by a generic algo-
rithm accompanied with a parsing table that holds the information about how tokens are
reduced, while in the case of top-down this is hard-coded in the algorithm itself.

The approach chosen in this thesis will be that of a top-down algorithm, based upon
the work found in [AM91] and [HVP00]. Schemata are already defined as tree structures
and the algorithm employs these directly, avoiding the need to construct a separate parser
table for each schema at run-time. (In most compilers the language is known before-hand
and since a bottom-up parser table therefore can be constructed at compile-time it may
hence be beneficial).

3.1.1 Alternatives

Another alternative is creating an automaton for each schema that recognize its language-
and then use set-operations to compare two such automata. However, this approach has
been shown to be unusable in practice as it too often causes worst-case time complex-
ity [AM91]. Another more efficient algorithm to determine subtyping that has quadratic

55

Chapter 3. Relations

complexity exists [KPS95], but it has to the authors knowledge not been adapted to un-
tagged unions.

3.2 Rules

What constitutes a certain relationship will be defined by a set of deduction rules, and
to determine whether a pair is in this relationship it is necessary to build a proof “tree”
from these rules that gives a path from the expression to be checked to established axioms.
Both the rules and an algorithm to pick rules to participate in the proof tree for a relation
based on the type carriers to be tested will be given.

3.2.1 Caching

To avoid reevaluating a relation that have already been tested, a trick from dynamic pro-
gramming called memoization will be used: Each time a relation is tested, the result of
that test is recorded in a cache. When given a relation to evaluate, the records in this cache
are first consulted to see if the operands have been evaluated before, and it that case the
result is immediately returned (cache hit). Only a previously unseen pair of operands are
put through a full proof (cache miss).

This technique is essentially helpful in testing cyclic structures. The relation to be
tested is a priori assumed to be true and is added to the cache. If this pair also occurs later
in the proof, the tree is not reentered but the branch is rather cut off with an immediate
result. However, this presents a new problem in itself: If the proof is found to fail, the
assumption does not hold. Not only must the record for this pair of operands be removed,
but the records that is the result of all other subproofs based upon this assumption as well.
Throwing away all results whenever a relation fails would be an overkill and counter-
productive. What is needed is a concept of layering the results into generations where
some results are “home-free” while others are on “probation”.

3.2.2 Transactions

A concept that provides the ability to return to a previous state upon failure is the one
of transactions [BN97]. A mark is set that indicates where the scope of the transaction
should start. Thereafter, a number of elements are added to the set under the premise
that their existence in it may be of temporary nature and is not yet determined. When
the result value finally becomes determinable, the client can choose to either commit to
keep all the values added to the set, or rollback to discard all changes and return the set
to the state it had before the transaction was started.

Layering may be introduced so that a commit operation simply moves values from
one generation to another that encompasses it. This is called nested transactions. The
root transaction is the set of values that always hold and cannot be rolled back. All other
transactions must be layered on top of this.

56

3.2. Rules

Transactions are normally regarded as having an imperative nature due to their use
to upheld the properties atomicity, consistency, isolation and durability [BN97] (better
known as ACID). For the scope of this thesis however, only the property of atomicity is
interesting and a specification where the state change is modeled as functions is attain-
able.

A specification of an algebra for transactions is given in figure 3.1. It is parameterized
on the values that can be put in the set, as these does not affect the operations of the
transaction manager itself. As in the specification for regular tree grammars, it is assumed
that an algebra for boolean logic is available.

TX = partial constructive spec
import Object, Boolean
carrier Transaction
ops

ctor root :→ Transaction
ctor add : Transaction×Object → Transaction
ctor begin : Transaction → Transaction

commit : Transaction → Transaction
rollback : Transaction → Transaction
lookup : Transaction×Object → Boolean

subject to
t add x lookup x = true (I)
root lookup x = f alse (II)
t add x add y = t add y add x (III)
t add y lookup x = t lookup x (IV)
t add x commit = t commit add x (V)
t add x rollback = t rollback (VI)
t begin commit = t (VII)
t begin rollback = t (VIII)

Figure 3.1: Specification for transactions

The carrier Transaction holds the state of each transaction. A further restriction may
be put on this carrier that no instance is used other than once in the following operation
with no change necessary in later presented algorithms and such a restriction would facil-
itate implementation. Operations are written in a post-fix notation and is left associative,
to give the illusion of a pipe modifying the state at each point before passing it on to the
next.

Naturally the operations root and add are constructors, but also begin must be classi-
fied as a constructor to indicate that transaction starting points are a part of its state. The
result of a rollback would indeed be different if it was preceded by t than from t begin!
The operation rollback only reverts the transaction back to a state that has been previ-
ously seen, and the carrier returned by the commit operation could be created be adding
directly to the parent transaction, so these are not constructors. The lookup operation is
simply an observer and does not change any state at all, something that can be inferred
by the fact that it does not return a Transaction carrier at all.

57

Chapter 3. Relations

Rules (I) and (II) says that an element must be added to the set before it can be found.
The order in which they are added is irrelevant as so is what has been added other than
the lookup target, states rules (III) and (IV) respectively. According to rules (V) and (VI),
a value will only survive a commit and not a rollback. Note that this should not affect
the presence of the value in an outer transaction, as the example term rewriting below
shows. Rules (VII) and (VIII) allows inner transactions to be removed from the term once
their contents has been rewritten into the outer transaction.

root add x begin add x rollback lookup x
(VI)
= root add x begin rollback lookup x

(VIII)
= root add x lookup x
(I)
= true

3.2.3 Implementation of the transaction manager

Every transaction needs to keep track of its parent transaction to which the values may
be committed as well as the values themselves. This naturally leads to implementing
the carrier as an object with two state members, shown in listing 3.2. The Map interface
is reused from the language runtime library. It has operations to associate values with
arbitrary keys, and then later retrieve values by those keys.

c l a s s Transact ion {
f i n a l Transact ion parent ;
f i n a l Map l o c a l s ;

}

Listing 3.2: Skeleton of a transaction

There are three classes of transaction carriers, all determined by the constructors; the
root transaction, an empty nested transaction and transactions with elements added to
them. The latter two classes can be modeled as one by realizing that a newly spawned
transaction has an empty map of values. By using the convention that a null parent
designates the root transaction, only one implementation class is needed to cover all al-
gebraic classes.

New transactions are started with the constructors root or begin. Both of these need to
create new object instances as they will need their own private map to add values. As an
implementation detail, a private initializer that sets both state members upon allocating
the instance is available as a helper method. The code of these algebraic constructor is
then reduced to passing the correct initial state to this method. This scheme is shown
in listing 3.3. The root method is static as it requires no previous transaction to work

58

3.2. Rules

upon (the parent argument to the initializer is null), while the begin method spawns a
new transaction using an already existing one as basis.

/ / c l a s s T r a n s a c t i o n
private Transact ion (Transact ion parent , Map l o c a l s) {

t h i s . parent = parent ;
t h i s . l o c a l s = l o c a l s ;

}

s t a t i c Transact ion root () { return new Transact ion (null , new WeakHashMap ()) ; }

Transact ion begin () { return new Transact ion (this , new WeakHashMap ()) ; }

Listing 3.3: Starting a new transaction

add and lookup takes as arguments a pair containing both a key and a value instead
of just the generic Object from the specification. The motivation for this deviation is that
the intended use of the transaction manager is to store whether there exists a relation or
not. Instead of binding a boolean value to the pair of arguments and then lookup this
tuple potentially twice (once for each boolean state), it is more efficient to perform the
lookup directly on the pair and then return the tristate result code. This technique will be
elaborated further in section 3.2.4; at this point it suffice to know that the signature of the
methods have been modified to fit that use.

WeakHashMap is an efficient implementation of a dictionary in the host language
Java. It holds weak references to the keys in the map, meaning that they become eligible
for garbage collection if there are no other (strong) references to them even though they
are still reachable from the map. In order to make a cache hit a reference to the key
must be passed to the relation from the exterior, making it not only safe to use weak
references but also necessary to avoid excessive caching of out-dated carriers that are no
longer in scope. WeakHashMap uses the hash code of the key to look up the mapping,
and this hash code is consistent with the compareTo method. An important but minute
detail is that it is Pairs that are added to the transaction and in their equals method which
the WeakHashMap uses to determine equality, they uses the compareTo method of their
component Types (see section 3.2.4 for an explanation).

Unfortunately, this component is mutable and does not support sharing of common
state between instances. Consequentially, the new transaction state must create a new
map initialized to be a clone of the old before adding the value to its local set. However
simple the code in listing 3.4 may seem, the runtime costs associated with this copying
is huge. The author has in practice found the algorithm to overall run approximately 10
times faster if the ownership of the map is rather transferred entirely to the new trans-
action and the old transaction is invalidated and its use prohibited, as mentioned in sec-
tion 3.2.2.

Looking up values are done by checking all transactions that are pending, in opposite
order of construction. The recursion terminates when either a value has been found, or
the root set has been unsuccessfully checked and there is no more parents to be inspected.
If a value is associated with a key more than once, only the last association is visible
(unless the transaction is rolled back, of course). The same applies when a transaction is

59

Chapter 3. Relations

/ / c l a s s T r a n s a c t i o n
Transact ion add (Object key , Object value)

Map map = new WeakHashMap (l o c a l s) ;
map . put (key , value) ;
return new Transact ion (parent , map) ;

}

Object lookup (Object key) {
Object found = l o c a l s . get (key) ;
i f (found = = null && parent ! = null)

return parent . lookup (key) ;
else

return found ;
}

Listing 3.4: Insertion and lookup

committed: The values that are written to the parent must overwrite any already existing
values for those keys. This is the semantics of the put method in WeakHashMap, so it
can be employed directly without checking for this condition first. Listing 3.5 gives the
implementation of the commit and rollback operations.

/ / c l a s s T r a n s a c t i o n
Transact ion commit () {

a s s e r t parent ! = null ;
Transact ion t = parent ;
for (I t e r a t o r i = l o c a l s . keySet () . i t e r a t o r () ; i . hasNext () ;) {

Object key = i . next () ;
t = t . add (key , l o c a l s . get (key)) ;

}
return t ;

}

Transact ion r o l l b a c k () {
a s s e r t parent ! = null ;
return parent ;

}

Listing 3.5: Commit and rollback

3.2.4 Framework for a rule checker

With the aid of a transaction manager, a framework for determining relations using rules
can be established. Testing a relation involves setting up a hypothesis of the form

Φ ` T ¤ U

where Φ is a set of existing relations that is assumed a priori to hold and ¤ is a place-
holder for the relation that is claimed between T and U. Initially the set of assumption is
set to ∅ at the top level. The framework will then try to prove the hypothesis by building
a proof-tree from the set of induction rules that has been defined for the given relation.

Two rules are defined for all relations by the framework itself, and these are given in
figure 3.6. The rule [HYP] checks whether the relation is already a part of the assump-

60

3.2. Rules

tions, working as a cache to avoid retesting. To determine if a set contains a given relation,
it is sought for a pair whose elements are equal to the ones in the pair that is tested. It is
only required that this comparison identifies whether two references are to the same in-
stance, so the compareTo method may be used in this case. This observation is important,
as structural equality has not been defined yet at this point. The notation in this thesis
is that .

= indicates reference equality while ' indicates structural equality to keep these
two distinct.

[ASSUM] plays the part of a cycle-detector by putting the relation to be tested into the
set of assumptions. A requirement that the relation is not already in the set is present to
force the rule [HYP] to be used instead if that is the case, making the selection of rules
at this level deterministic. It then uses a relation-specific satisfaction operator (`¤) to
further test the relation. If the general operator (`) was used, then the rule [HYP] would
immediately cause this condition to return true in any case and the prover would be
broken. By using a separate operator, the prove must go through some of the relation-
specific induction rules before returning to either [HYP] or [ASSUM].

(t ¤ u)∈ .
=Φ

Φ ` t ¤ u
[HYP]

(t ¤ u) 6∈ .
=Φ Φ ∪ (t ¤ u) `¤ t ¤ u

Φ ` t ¤ u
[ASSUM]

Figure 3.6: General rules for relation framework

A superclass Relation is created that models the set theory concept of a relation,
namely all known pairs that are in it. The method isIn takes two arguments and re-
turn whether these are in the relation or not. Since the code cannot possibly start out
by finding all such pairs upon construction, it will have to rely on lazy evaluation, i.e. it
proves relations only as needed.

Upon successful proof, the pair of arguments is added to the set and used as part of
the assumptions the next time another pair should be evaluated. Once a relation is proved
to hold, it cannot be “unproven”. The opposite result may be stored too. If a relation has
been found not to hold, that will not change either. Also, if a relation hold upon a set
of assumptions, it should also hold upon a superset of those relations as well. That the
client cannot override the induction rules by explicitly adding or removing pairs from
the relation, is a crucial supposition for these properties to hold. The rules only assumes
that Φ is a set of pairs that if encountered indicates a cycle, while in practice it will also
contain a history of what has been proved.

The set of assumptions floats in a depth-first manner through the rules, similar to the
evaluation of semantic attributes in an abstract syntax tree as described in [EMRS97].

An implementation for Relation is given in listing 3.7. Notice the use of aggregation
of Transaction instead of inheritance due to the client not being supposed to have explicit
access to the pairs that has been tested. The relation starts out with the root transaction.

61

Chapter 3. Relations

/ / c l a s s R e l a t i o n
Transact ion currentScope = Transact ion . root () ;

public boolean i s I n (Type l e f t , Type r i g h t) {
Pair pa i r = new Pair (l e f t , r i g h t) ; // (1)
Boolean found = (Boolean) currentScope . lookup (pa i r) ;
i f (found ! = null)

return found . booleanValue () ;

currentScope = currentScope . begin () ; // (2)
currentScope = currentScope . add (pair , Boolean .TRUE) ;
i f (r u l e s (l e f t , r i g h t)) {

currentScope = currentScope . commit () ;
return true ;

}

currentScope = currentScope . r o l l b a c k () ; // (3)
currentScope = currentScope . add (pair , Boolean . FALSE) ;
return f a l s e ;

}

Listing 3.7: Relation membership (rules [HYP] and [ASSUM])

This represents using the empty set as an initial set of assumptions.

A pair have a ternary state to the relation; proven to hold, proven not to hold and
not yet determined. The wrapper class Boolean in the runtime library represents such a
tristate with its three legal values; TRUE, FALSE and null. The work of the isIn method
is to map this ternary state onto a binary that tells for certain if the pair is in the relation
or not. If the state is already determined (either TRUE or FALSE), this is simply returned.
Otherwise, the case is undetermined. It must be resolved and the set updated before the
new state is returned.

The first block, marked with (1), performs the lookup and returns the value directly if
it is already determined. This corresponds to the rule [HYP]. The second block, marked
with (2) adds the pair to the set and then uses the method rules to perform the work of the
relation-specific satisfaction operator (`¤). This corresponds to the rule [ASSUM]. This
test must run within its own transaction so that results that stems from this assumption
is not used if the hypothesis is proven not to be true, as explained in section 3.2.1. If
that case, the transaction must be rolled back and the faulty assumption replaced. This
happens in the block marked with (3).

By extending this class, a relation can employ the framework to easily implement
the specific rules in a straight-forward manner from their description. The method rules
delegates its responsibility to further methods based on the class of the left argument, as
this turns out to be the primary factor that distinguish the rules.

3.3 Equivalence

The ordering provides a way to differentiate between carriers, and can be used to see
if two references are in fact pointing to the same object. Thus, it is feasible to use the
ordering to define a limited variant of equality:

62

3.3. Equivalence

Definition 3.8 (Ordering equality) Two regular tree expressions are considered identical if
they are indistinguishable for the ordering, i.e. T .

= U ⇔ T ≤ U ∧U ≤ T.

However, the ordering is only partially defined and will not identify all carriers the
specification rules equal as such. (Remember that the specification is only partial, and a
full specification of the ordering is what is missing). This is intentional. The ordering is
meant as a internal primitive operation in order to overcome the limitation of the com-
puter architecture that it is not efficient to let a term always refer to the same object. An
object is more like an avatar of a carrier. Hence, it is worthwhile to observe that the same
term may give objects that is not equal according to the ordering. This introduces a dis-
crepancy between the mathematical theory and the implementation. Different notations
will be used to designate different concepts of equality to avoid confusion.

An interesting problem may be to see if the creation of types from two regular tree
language expressions was done in the same manner, which is more in line with what is
normally associated with equality. To do so, they must be tested for structural equiva-
lence, which is defined as follows:

Definition 3.9 (Structural equivalence) Two regular tree expressions t and u are structurally
equivalent if their terms are equal according to the specification, i.e. t ' u ⇔ T(RTG)(t) =

T(RTG)(u). (Notice that the equality used here are from the specification language, not the
ordering).

Do not confuse structural equivalence with semantical equivalence, defined later in
definition 3.17. Using algebraic theory for the isomorphism between two terms, the fol-
lowing properties can be “lifted” to hold for the structural equivalence relation also:

Reflexive : t ' t
Symmetric : t ' u ⇒ u ' t
Transitive : t ' u ∧ u ' v ⇒ t ' v

By regarding the constraints for the specification of regular tree languages defined in
figure 2.8 on page 34 as a term rewriting system (since it is intended to be a constructive
specification, cf. [LEW96]), the terms that are “melted” together to the same carrier by
the algebra may in conjuncture with these properties (since term rewriting only goes one
way) be proven to be structural equivalent. E.g. using rule (IV) it can be shown that
x ' x, ε and according to rule (II), ∅ ' x, ∅.

This has the nice implication that two terms deemed equal by the method compareTo
will always be structural equivalent as well. A new rule called [TAUT] will reflect this.
Since using that method is faster than employing the framework, the rule [HYP] can be
extended (for the equivalence relation only) to not only check if T ' U is in the existing
set but also U ' T as well, to catch such cases earlier. In particular, it might be observed
that different instances of ε and ∅ has no difference in state, so the equivalence within
these classes are tautologies.

Figure 3.10 list the additional deduction rules necessary for the structural equivalence
relation. Note that the relation-specific satisfaction operator (`') is used in the conclusion

63

Chapter 3. Relations

t .
= u

Φ `' t ' u
[TAUT]

l = l′ Φ ` t ' r Φ ` u ' s

Φ `' l[t], u ' l′[r], s
[LAB]

∀i . ∃j . Φ ` ti ' rj ∀j . ∃i . Φ ` ti ' rj

Φ `'

∣

∣

∣

i
ti '

∣

∣

∣

j
rj

[BIJ]

Figure 3.10: Rules for structural equivalence

of the rules, while the general satisfaction operator (`) are used in the premises. This
ensures that the set of assumptions are always updated by the rule [ASSUM] and that
[HYP] will prevent reproof of an already seen branch. Only an informal explanation
will be given for these rules. Do not fall into the trap of thinking that these rules will
also suffice for checking semantic equivalence. The reason why is discussed further in
section 3.3.3.

The rule [LAB] states that for two non-empty basic sequences to be structurally equiv-
alent, both their labels and their contents must be so. The rest of the sequence is then
tested inductively. The base case for this induction is when the relation between the terms
is a tautology, for instance ε ' ε. In practice, the rule [TAUT] will use the compareTo
method to find a broader set of terms that can be considered equal using term rewriting.

Equivalence between two unions is more tricky, since the order of the elements in
the union is not significant. The unions have only to be isomorphic to be equivalent.
A union may be considered an unordered set, and equivalence will be determined by
testing for the presence of a bijection between two such sets, i.e. if each element in one of
the sets has a correspondent element in the other set and vice versa. As the elements are
not necessarily considered equal by the ordering, but may still be equivalent, all possible
combinations from the two sets must be checked. (A double loop is the easiest although
not the most efficient way to test this).

Observe that the rules [LAB] and [BIJ] are related to the implementation of the compareTo
method but differs from it in that they allow recursion, cf. section 2.4.3 on page 41.

An example of the use of these deduction rules within the framework is shown in
figure 3.11. Although this relation is stated as a shorthand in section 2.1.3, it is not obvious
from the term rewriting system in specification alone whether it is possible to back up
this statement or not. Closure of a single labeled element is used to illustrate how all
the rules that makes out the structural equivalence work. To simplify the appearance of
the proof, the usage of rule [ASSUM] is dropped where there is no corresponding [HYP]

that relies on the relation added. Neither is the set of assumptions shown for every rule.
When reading the proof, the terms x∗ and x+ could be read as variable names instead of

64

3.3. Equivalence

closures, if the reader finds the latter interpretation to inhibit the comprehension.

l = l

. . .
[TAUT]

ε ' ε

. . .
[TAUT]

ε ' ε

. . .
[HYP]

l[ε], x∗ ' x+

[BI J]
ε|l[ε], x∗ ' ε|x+

[LAB]
l[ε], x∗ ' x+ `' l[ε], (ε|l[ε], x∗) ' l[ε], (ε|x+)

[ASSUM]
l[ε], (µx∗ . ε|l[ε], x∗) ' µx+ . l[ε], (ε|x+)

Figure 3.11: Proof that x, x∗ ' x+ where x = l[ε]

Creating an implementation of the equivalence relation consists mostly of overriding
the methods in Relation that handles non-empty sequences and unions with code for the
rules [LAB] and [BIJ], respectively. The first one is shown in listing 3.12 and is considered
straight-forward. The reader may want to compare this with listing 2.18 on page 41 to
study the similarities.

/ / c l a s s EqRel e x t e n d s R e l a t i o n
boolean ru leLabe l (Label l e f t , Label r i g h t) {

return (l e f t . tag == r i g h t . tag)
&& i s I n (l e f t . content , r i g h t . content)
&& i s I n (l e f t . next , r i g h t . next) ;

}

Listing 3.12: Testing structural equality between labels

/ / c l a s s EqRel e x t e n d s R e l a t i o n
boolean ruleUnion (Union l e f t , Union r i g h t) {

return i s S u r j e c t i v e (l e f t , r i g h t) & & i s S u r j e c t i v e (r ight , l e f t) ;
}

boolean i s S u r j e c t i v e (Union l e f t , Union r i g h t) {
boolean foundForAll = t rue ;
for (Type x = r i g h t ; ! x . isEmpty () ; x = x . cdr ()) {

boolean foundForThis = f a l s e ;
for (Type y = l e f t ; ! y . isEmpty () ; y = y . cdr ())

foundForThis | = i s I n (x . car () , y . car ()) ;
foundForAll &= foundForThis ;

}
return foundForAll ;

}

Listing 3.13: Testing structural equality between unions

The second, defined in listing 3.13, is slightly more intricate. Each of the conditions
in the premises are coded with the help of the auxiliary routine isSurjective, which deter-
mines if there is at least one corresponding element in the “right-most” set for each and
every element in the “left-most” set, using the equivalence relation to determine corre-
spondence. Then this test is turned around and checked the other way too see if there is
any remaining elements in the left-most set that has no equivalent (and if a mapping was
to be defined between these two sets, it would for these arguments have to elect targets
already “taken” by being “hit” by some of the elements that do corresponds, breaking the

65

Chapter 3. Relations

injection).

3.3.1 Exposing equivalence

The client code can test for equivalence at any time using the relation explicitly. However,
sometimes there is an implicit need to test equivalence between two carriers imposed by
other components that can not be retrofitted to use the relation. Neither is the explicit use
of a relation always practical as it may reduce the readability of the code.

Java has a method equals that is provided to expose equivalence between two arbi-
trary objects. Although specified to take any other object in order to allow for heteroge-
neous collection, only the case where the other object is a type carrier will be discussed
here. It is trivial to extend the code to handle classes outside of the Type hierarchy, and
this is left as an exercise for the reader.

/ / c l a s s Type
public boolean equals (Object other) {

return t h i s . compareTo (other) = = 0 ;
}

(a) Using the ordering alone

/ / c l a s s L a b e l
public boolean equals (Object other) {

return new EqRel () . i s I n (this , (Type) other) ;
}

(b) Using the structural equivalence relation

/ / c l a s s L a b e l
private s t a t i c EqRel eq = new EqRel () ;

public boolean equals (Object other) {
return eq . i s I n (this , (Type) other) ;

}

(c) Using global caching

Listing 3.14: equals() for labeled elements

It remains to be discussed which kind of equivalence should be exposed through this
method; the “shallow” comparison using the ordering or the “deep” comparison using
the relation. The former does not expose structural equivalence deeper than one level
while the latter do. That means that there will be a difference between these two methods
only in the carrier classes that references other carriers, such as Label and Union, while for
EmptySet and Lea f they will yield the same result. As there is a significant cost combined
with using a full-scale relation, this implies that it should only be used where actually
providing additional benefits.

This thesis opt to provide the most functionally complete implementation, which
means that the equals method should test for structural equivalence. The ordering
method compareTo can still be used if a more lightweight comparison is needed. As a
detail it should be noted in that respect that clients should put the carriers in a HashMap

66

3.3. Equivalence

or HashSet if structural equivalence is desired (as these classes uses equals), while
TreeMap or TreeSet (which uses compareTo) is suitable for ordering.

Figure 3.14(a) give the general implementation of the equals method that makes it
aligned with the ordering. It must then be overridden in Label and Union, for which an
example in the case of Label is depicted in figure 3.14(b). This variant uses a local relation
and consequently everything learned in this relation is forgotten upon return.

A more efficient method is the one in figure 3.14(c). Due to the immutability of the
carriers, it can store all previously compared elements in a class-wide relation. It is par-
ticularly suitable to be used in a dictionary, where it is typically the same elements that
are compared many times.

The method is not synchronized as any concurrent access should be handled by the
relation. (For the method in figure 3.14(b), no synchronization was needed because the
relation was a local variable). Furthermore, the relation should be private to the class, as
no carriers from any other classes would ever be equivalent to a labeled element, causing
nothing else than more objects in the map to inspect.

3.3.2 Congruence

Having two different concepts of equivalence can lead to confusion about which one is
proper to use when. This problem can be removed if the two concepts in some way can
be aligned with one another. A way to do this is through creating a quotient algebra.

In a quotient algebra, all carriers that are congruent with each other in the are mapped
into a single, canonical carrier that represents them all. In addition to terms that evaluate
to the same carrier, the case here will be to also map different objects that represents the
same term into a reference to a single object.

The congruence criteria that will be used is structural equivalence. All objects that
are structurally equivalent will form their own little sets and elect a “representative” for
this set. By replacing objects with their representatives, they will after the mapping not
only be considered equal by the “smallest” equality definition which is the one defined
by the ordering, but also using the reference equality of the host language. This can be
expressed with the following statement:

t ' u ⇒ RTG/'(t) .
= RTG/'(u)

The mapping from RTG to RTG/' will be done by a new method called intern, which
returns the representative for the carrier at hand. In order to optimize repeated compar-
isons, this method may be called in advance (for all objects) as it will ensure that using
simple reference comparison will suffice later.

In classes where the objects hold no state, all of them will naturally be mapped to
a common, class-wide representative. This applies to the classes EmptySet and Lea f .
Evidence of this is that the equals method already uses compareTo. The interning of the
carriers can then be done by mapping back onto the flyweight element that is used by
the constructor to represent this class. Listing 3.15 shows how this is done in practice.

67

Chapter 3. Relations

/ / c l a s s L e a f
Type i n t e r n () { return Type . eps () ; }

/ / c l a s s EmptySet
Type i n t e r n () { return Type . oe () ; }

Listing 3.15: Interning to flyweight elements

Mapping the “heavier” classes Label and Union requires that a set of canonical ele-
ments are maintained so that interning is done once and for all for each element. It is
not intended that it should be possible to retrieve the originating term for the representa-
tive, so it can be selected arbitrary from the set of congruent elements as long as they all
select the same. One such implementation — for the class Label — will be presented, in
listing 3.16. The implementation for Union follow along the same lines.

/ / c l a s s L a b e l
s t a t i c Map c a n o n i c a l s = new WeakHashMap () ;

Type i n t e r n () {
Label r e p r e s e n t a t i v e = (Label) c a n o n i c a l s . get (t h i s) ;
i f (r e p r e s e n t a t i v e = = null) {

c a n o n i c a l s . put (this , t h i s) ;
content = content . i n t e r n () ;
next = next . i n t e r n () ;
return t h i s ;

}
else

return r e p r e s e n t a t i v e ;
}

Listing 3.16: Interning to canonical elements

A set that will hold all objects deemed canonical are declared class-wide. Upon in-
terning, this set is first inspected to see if there is an element in it which is structurally
equal to this one. This is done by the dictionary itself, as it uses the equals method to
find a matching element from the set. If no canonical is found, this object is elected the
representative as it is the first (and at the time the only) to appear in its congruence set,
and the dictionary is updated. The key and the value is the same so that the map works
like a set that returns the found element upon lookup.

After the set is updated, the element itself is “compacted” by replacing the content
with its canonical representation. This must be done after it has been appointed the rep-
resentative, in order to avoid a recursion trap if the content turns out to have a reference
back to its parent. The replacement of a field with its canonical representation is safe
as these will always be observed as equal (regardless of the equality concept used!). Al-
though not strictly necessary to map further congruent elements, it must be done in order
for the compareTo method to realize that the content of two labels are the same so that the
mapping can be done more efficiently later.

68

3.3. Equivalence

3.3.3 Prefixing

Structural equivalence allows reasoning based on the algebraic specification. However,
the rules in this specification is currently limited to recognizing isomorphy between parse
tree of the terms, which has a limited application in itself. More interesting is checking if
two carriers may be used as substitutes for one another:

Definition 3.17 (Semantical equivalence) Two regular tree language expressions are seman-
tically equivalent if and only if they recognize the same (tree) language, i.e. t ≡ u ⇔ L(t) = L(u).

Using set theory, it can be inferred that the above definition also constitutes an equiv-
alence relation. The difference between this and the other definition of equivalence arises
because the rules of the specification only ensure distributivity in the first tier (consisting
of unions of elements) and not between the tiers. Unions inside sequences can not be
moved up to the top level. What is missing is the rules:

l[t],
(

u|s
)

= l[t], u
∣

∣

∣
l[t], s (A)

l
[

t|r
]

, u = l[t], u
∣

∣

∣
l[r], u (B)

Incorporating these rules in the constructors of the algebra would make all unions
“surface” to the top level causing the resulting type to be a union of all documents of its
language. The increase in problem size renders this approach unusable in practice, and
this is partially why these rules have been let out of the algebra.

It is not the only reason however, because the are other problems as well. Upon con-
struction of a closure, the constructors does not yet have information to determine if a
forward reference is to a union or not, let alone which elements will participate in the
union if it is. Unwinding the union when the reference is resolved is not an unproblem-
atic option either, as it will possible change the type of the carrier (from a single labeled
element to a union) and hence restrict such operations to be done only within the frame-
work itself.

Another alternative is to reverse the rules and make the rewriting the other way, col-
lecting unions with a common prefix and put them inside a single labeled element. While
it seems desirable to let the algebra clean up the term by identifying parts that perhaps
should have been put together in the first place, it would require very elaborate logic to
determine these parts, and all this logic has of course an expense.

To grasp the complexity involved, consider that the two terms following is not equal,
and that such a rewrite would be overzealous prefixing. Rather, elements with the same
label and following sequence should be collected as a separate step from elements with
the same label and contents.

l[t], u
∣

∣

∣
l[r], s 6= l

[

t|r
]

,
(

u|s
)

(C)

Rewriting at the insertion into a union should be done by matching the element up
with other elements with either the same content or the same following sequence. The

69

Chapter 3. Relations

element that is selected for a merge must be temporarily removed from the union and re-
cursively inserted again to allow both rules to apply. The rewriting of a cartesian product
should be done as illustrated below.

(

(

l[x], a
∣

∣

∣
l[x], b

)∣

∣

∣
l[y], a

)

∣

∣

∣
l[y], b =

(

l[x],
(

a|b
)∣

∣

∣
l[y], a

)

∣

∣

∣
l[y], b

= l[x],
(

a|b
)

∣

∣

∣

∣

l[y],
(

a|b
)

= l
[

x|y
]

,
(

a|b
)

(D)

Note however, that this alone does not solve the problems of forward references nor
the inability to do deep comparison due to recursive structures.

A trade-off that performs well in practice is to perform the expansion of a label into
the cartesian product of its contents and following sequence locally (i.e. only one level
at the time) in the relation data structure where the deduction are under transactional
control and closures will be handled correctly.

A third option is to employ the anti-symmetry of the subtyping relation defined in the
next section, and reuse the code develop there. If desired, any of the two last approaches
presented can be chosen and the implementation of equals changed accordingly. (One
can also argue in that case that the current compareTo method should be renamed and
that the subtyping relation should be used to provide the Comparable interface).

3.4 Subtyping

While it may be interesting to see if two types describe the exact same set of documents,
it may be more beneficial to look into the more general, one-sided relation that checks if
one of the types give at least the same set of documents as the other:

Definition 3.18 (Inclusion) A regular tree language expression t is a subtype of u if and only
if all trees recognized by t is also recognized by u, i.e. t v u ⇔ L(t) ⊆ L(u). Conversely, u is
called a supertype of t.

This relation is useful since it provides the ability to check if a change to a type makes
it an extension of the original, or if it leads to a new, incompatible type. The supertype
extension will — by definition — recognize all the documents of the subtype.

The direction of the inclusion may be confusing for day-to-day programmers. Type
systems for most of the present generally used object-oriented programming languages
usually only allow for restriction of an existing type although this form of inheritance
often is given the name “extension”. (As a digression, it should be mentioned that ex-
tensions can also be implemented using this mechanism since there are no checks that
the so-called subtype actually adheres to the Liskov Substitution Principle [LG00] other
than what the programmer has manually added of pre- and postcondition invariants).
However, regardless of the name the concept still smells as sweet: The subtype is a more
restrictive set of objects than is the supertype (considering that all of the instance objects

70

3.4. Subtyping

of the subtype is also of the supertype). Neither is the notion of subtyping that is used
here interchangeable with using the terms to mean a branch of the parse tree.

Notice that this relation constitutes a partial ordering of types, as it fulfills the follow-
ing properties:

Reflexive : t v t
Anti-symmetric : t v u ∧ u v t ⇔ t ≡ u

Transitive : t v u ∧ u v v ⇒ t v v

3.4.1 Complexity considerations

The subtyping relation could theoretically be realized by creating automata for each
of the arguments and then checking the following equality, as both intersection and
complementation are operations that can be performed on recognizable tree languages
[CDG+02].

t v u ⇔ L(t) ∩ L(u) = ∅

The Venn diagrams in figure 3.19 illustrates both a case where the two types are in the
subtype relation and one where they are not. The shaded area denotes the complement
of the right argument. If the left argument is not a subset of the right but falls (partially)
into this area, the relation does not hold.

u

t

(a) t v u

v

t

(b) t 6v v

Figure 3.19: Subtyping modeled with Venn diagrams

It has been shown that the subtype relation has a worst-case exponential time com-
plexity [Sei90] as the automaton must be made deterministic using subset construction
to find the complement, and algorithms that are based on automata construction have
turned out to be impractical due to the immediate realization of the entire node graph
[AM91, HVP00].

3.4.2 Algorithm

What will be used in this thesis is the algorithm of Hosoya et al. presented in [HVP00],
around which the framework presented earlier has been created to fit. The worst-case
complexity of this algorithm is still exponential, but it can recognize subtyping between
patterns without the need to expand them. As a result, it performs much better in prac-
tice.

71

Chapter 3. Relations

In short, this algorithm works by breaking a type into its ground term components
and testing them piece-wise through the framework, depending on the class of the car-
rier. All possible constructions of the left side have associated rules and these rules also
covers any combinations on the right side. For non-basic elements on the left side, each
subelement is recursively tested against the entire right side, and success is reported if
and only if all of them matches. The outcome for basic elements depends on whether
they are within the sum of cross-product from the right side. Sequences that are clearly
disjoint with eachother can be optimized away before the cross-products are enumerated.
Each of these steps will be explained and covered in detail in the following sections.

Merely a presentation of the rules and their implementation is done here, and will
be restrained to an overview of their rationale only. For a rigid proof of soundness,
completeness and termination the reader is referred to [HVP00]. For the algebraically
inclined, their explanation may be better than a geometric representation.

The algorithm is well-suited for processing regular (tree) languages since it can han-
dle untagged unions, a feature used in the types with which this thesis is concerned. For
determining inclusion between two types from lambda calculus, a more efficient algo-
rithm that runs in quadratic time exists [KPS95]. Programming languages usually falls
into this category.

3.4.3 Non-basic elements

The first test handles the elements that are not basic, whose cardinality are different from
one. The following deduction rules make use of transitivity amongst subsets, i.e. a subset
of a subset will also be a subset. Each of the parts can hence be tested separately. This
only works with the left argument, as the subset relation is anti-symmetric, i.e. a subset
of a set is not necessarily still a subset of a subset of that set.

For such a composite type to be a subtype, all of its parts must be within the supertype.
Two rules that processed these types are given in figure 3.20.

Φ `v ∅ v t [EMPTY]

∀i . Φ ` ti v u

Φ `v

∣

∣

∣

i
ti v u

[SPLIT]

Figure 3.20: Subtyping rules for unions

Notice that the rule [EMPTY] is not strictly needed, as the case of an empty set is also
covered by the rule [SPLIT]. If the union is empty, then there are no elements that is not
a subtype and therefore all (zero) of them are. This is also intuitive, as the empty set is
logically a subset of any set. However, it is advantageous to do this as a special case since
the empty sets are represented by their own carrier class and the framework dispatches

72

3.4. Subtyping

to various method based on the class. Doing the rule in its own method is just as short as
the code needed to forward it the the more general one.

/ / c l a s s SubRel
boolean ruleEmptySet (EmptySet l e f t , Type r i g h t) { return true ; }

Listing 3.21: Subtyping for the empty set (rule [EMPTY])

The implementation of the rule [EMPTY] is as shown in listing 3.21 trivial. It always
returns true as there are no premises to verify. Rule [SPLIT] consists of a loop that updates
a flag using logical-AND. The flag starts out being set since an empty union would give
that result as discussed above. It will be cleared if any of the individual parts fail. Code
for this method is given in listing 3.22. Not shown here is the possibility of short circuiting
the evaluation; if the flag has been cleared then the enumeration may as well be aborted
as there are no other elements that can bring it back to the set state.

/ / c l a s s SubRel
boolean ruleUnion (Union l e f t , Type r i g h t) {

boolean matchesAllTested = t rue ;
for (Type x = l e f t ; ! x . isEmpty () ; x = x . cdr ())

matchesAllTested &= i s I n (x . car () , r i g h t) ;
return matchesAllTested ;

}

Listing 3.22: Subtyping for a union with more than one element (rule [SPLIT])

3.4.4 Empty sequences

Empty sequences have no attached state and hence all of them look the same, and will be
indistinguishable to the ordering. Such basic elements are atoms, and are used as leaves
in the parse tree of a term. Any set of items that at least contains the empty sequence will
be a superset of it. To test if the right side of the subtype relation is a supertype of the
empty sequence it will therefore suffice to enumerate any of the parts (union-wise) to see
if a leaf is found. If the right side is another basic element, it will be viewed as a union
containing only itself and the basic element would then have to be a leaf too. The rule
[LEAF] in figure 3.23 expresses this.

∃i . ε
.
= ti

Φ `v ε v
∣

∣

∣

i
ti

[LEAF]

Figure 3.23: Subtyping rules for leafs

The premise does not contain any recursive calls, so the leaf is a base case for the
deduction, as would be expected.

The leaf will have to be at the top-level union in order for the code to flag that it has
been found. It will be the first and only element in its sequence element. It cannot be

73

Chapter 3. Relations

/ / c l a s s SubRel
boolean ru leLeaf (Leaf l e f t , Type r i g h t) {

boolean foundALeaf = f a l s e ;
for (Type x = r i g h t ; ! x . isEmpty () ; x = x . cdr ())

foundALeaf | = (x . car () . compareTo (Type . eps ()) = = 0) ;
return foundALeaf ;

}

Listing 3.24: Subtyping for the empty sequence (rule [LEAF])

inside a sequence since a label then would have to occur in the markup stream contra-
dicting it being an empty string.

The code in listing 3.24 shows how this is implemented using a loop that searches the
union using logical-OR to update a flag that tells if a leaf has been found. Similarly to the
processing of the union, it is possible to short-circuit the evaluation by terminating the
enumeration (with a successful result code) once the flag has been set.

3.4.5 Disjoint sequences

Testing a labeled element against a union with high cardinality can be a very expensive
operation, as will be shown in the next section. Therefore, it is interesting to find opti-
mizations that can avoid or mitigate that situation. One such optimization is to “trim”
the right argument (containing the union) of elements that only contribute to increasing
the problem size but which is not part of the solution, before sending the modified union
on to the main deduction rule.

Any sequence that starts with another label than the one on the left side (and there is
only one label on the left side since the case of two or more should be handled by the rule
[SPLIT]) cannot span a language that contains any of the documents that is described by
that element. Neither can sequences that are empty (which must pass through the rule
[LEAF] to succeed). Hence, only labeled sequences starting with the same label that is
present on the left side need to be passed on to the recognizer. Figure 3.25 does just that.

Φ ` l[t], u v
∣

∣

∣

j∈J
rj, J = {i , ri

.
= l[t′], u′}

Φ `v l[t], u v
∣

∣

∣

i
ri

[PRUNE]

Figure 3.25: Subtyping rules for pruning

This framework will not dispatch directly to this rule since it has the same signature
as the recognizer. It has the form of a helper method that is used by the recognizer as a
preprocessing step. The code for this method is depicted in listing 3.26.

Again the right side is enumerated, but in contrast with the other rules a success code
is not returned but rather a new type. This type is a union consisting of all elements from
the right side that matches the selection criteria; that they are a labeled element with the
same tag as the left side.

74

3.4. Subtyping

/ / c l a s s SubRel
Type prune (Label l e f t , Type r i g h t) {

Type r e s u l t = Type . oe () ;
for (Type x = r i g h t ; ! x . isEmpty () ; x = x . cdr ())

i f (x . car () instanceof Label && l e f t . tag () = = ((Label) x . car ()) . tag ())
r e s u l t = r e s u l t . union (element) ;

return r e s u l t ;
}

Listing 3.26: Removing anything but relevant labels (rule [PRUNE])

The returned carrier is not passed through the framework, and it might seem like
an oversight that it doesn’t get cached by [ASSUM]. In reality the rule is only used as
a front-end and the parameters — which has a greater chance of appearing again, and
do not have to be pruned in order to match — will get cached upon call to the outer
recognizer.

3.4.6 Non-empty basic elements

At this point rules have been given for the constructors that generates unions and empty
sequences. What is missing is a rule to handle the case where the left side consists of
a single sequence starting with a labeled element and the right side is one or more of
those. This is where the heavy lifting is done and henceforth this part of the algorithm is
referred to as the recognizer.

An initial approach could have been to follow along the lines of [SPLIT] and test if
any of the elements on the right side single-handedly matched the left side, by recur-
sively inspecting whether the content and the rest of the sequence was a subtype of its
corresponding counterparts. This would result in the rule [WEAK-REC] shown in fig-
ure 3.27.

∃i . Φ ` t v ri ∧ Φ ` u v si

Φ `v l[t], u v
∣

∣

∣

n

i=1
l[ri], si , n ≥ 1

[WEAK-REC]

Figure 3.27: Insufficient rule for testing labels

However, this rule does not fit the bill. In order to visualize this, it might be fruitful to
find an analogy in ordinary set algebra. As sequences are distributive over unions, they
can be pictured as products and unions as additions, respectively. Although sequences
are additions in some sense, they are represented as products here because the resulting
language domain is the cross-product of the domain of the arguments. For the case of
n = 3, the conclusion to be verified can be written:

t× u ⊆ r1 × s1 + r2 × s2 + r3 × s3

If t× u is a subset of only one of the terms — say the first term r1 × s1 as is illustrated

75

Chapter 3. Relations

in figure 3.28 — the rule [WEAK-REC] will indeed yield the correct result. Each term on
the right side is represented by a solid square, and the dashed rectangle represents the
left side which is embodied in the upper-left square. These are the cases where the right
side is the same as the left side apart from being extended with some new terms which
has nothing to do with the old ones.

s1 s2 s3

r1

r2

r3

u
t

Figure 3.28: Subtype of only one term on the right side

But if the left side stretches over more than one term as in figure 3.29, then it will no
longer suffice. What has happened here is that no individual element on the right side
covers the entire left side, but the sum of them do.

r1

s1,2 s3

r2

r3

u
t

Figure 3.29: Subtype of more than one term on the right side

The reason this is possible — that the rectangle stretches over several squares, but is
still not outside them — is of course that the squares are made adjacent by letting the
argument in one of the dimensions overlap. In this case it is because s1 = s2. This is not
such an uncommon incident that it may seem to be at first.

Consider rewriting rule (B) from section 3.3.3. According to it, the following regular
tree relation and the corresponding classic set relation should hold:

l
[

r1|r2

]

, s1,2 v l[r1], s1,2

∣

∣

∣
l[r2], s1,2

(r1 + r2)× s1,2 ⊆ r1 × s1,2 + r2 × s1,2

Yet this is not recognizable to [WEAK-REC]. To overcome this limitation, Hosoya et al.
develop in [HVP00] a rule [REC] shown in figure 3.30 that takes into consideration all of
the terms while still breaking the problem in smaller components.

76

3.4. Subtyping

∀I ∈ ℘(N) . Φ ` t v
∣

∣

∣

j∈I
rj ∨ Φ ` u v

∣

∣

∣

k∈℘(N)\I
sk , N = {i, 1 ≤ i ≤ n}

Φ `v l[t], u′ v
∣

∣

∣

n

i=1
l[ri], si , n ≥ 1

[REC]

Figure 3.30: Correct rule for testing labels

To do its work, this rule enumerates all possible combinations of terms from the right
side (the powerset) and for each of these inspects the dimensions of those combination
separately against the corresponding factor from the left side. This is what causes the
exponential time complexity for the algorithm, as the powerset has 2n elements. For
instance if n = 3 then N = {1, 2, 3} and |℘(N)| = 23 = 8.

The interesting thing to observe here is that for each combination the first dimension
is tested against, the other is done so against the complement, i.e. all the elements from
the second dimension that did not have the same indices as the ones that were used from
the first. Also note that the relationship is logical OR and not logical AND. Checking the
other dimension against the same combination and requiring them both to hold is too
lenient as it will only determine if the left side is inside the product of the sums and not
the sum of the products. It cannot tell if the left side is only partially inside both terms
(cf. the product {r1, r2} × {s1, s2} in figure 3.34 on page 79).

Hence the argument is turned around: If the left side is not in this combination for the
first dimension, then it must at least be in the some of the other components for the other
dimension. This leaves out the space that are in the combination’s second dimension but
is not in the combination itself (since if it were it would be matched by the condition
that it should also be in the combinations first dimension). It includes space that are not
in any of the terms (the intersection of the first dimension of the combination and the
second dimension of those that are not), but this space is excluded by the combination
that is the complement of this one (where the role of the dimensions are reversed). Each
combination’s complement will always be present in the powerset.

s1 s2 s3

r1

r2

r3

(a) {r3} × T + T × {s1, s2}

s1 s2 s3

r1

r2

r3

(b) {r1, r2} × T + T × {s3}

Figure 3.31: A combination exclude its complement’s intersection part

An illustration may be in order to imagine this, and the reader is called upon to review
the explanation above with the visual aid of figure 3.31. As u ⊆ T for any u where

77

Chapter 3. Relations

T denotes the maximal set (i.e. “everything” in that dimension), t ⊆ r is equivalent to
t× u ⊆ r× T and vice versa. The squares represents the terms as usual while the dashed
rings spans out everything that is in the same first dimension as the chosen combination
and everything that is in the same second dimension as its complement, respectively. The
gray area is what is excluded from this particular combination.

A point worth mentioning here is that each of the areas that are spanned out by taking
the product of a combination in one dimension and its complement in the other (e.g.
{r3}× {s1, s2}) is a “tile” that covers a part of the space that the squares would not if there
were no overlap. (Actually the tile is what is excluded by the combination’s complement.
The intersection of the dashed rings in figure 3.31(a) is the gray area of figure 3.31(b)).

An intuitive explanation of the algorithm is that it checks if the left side is not within
any of these tiles, but is rather outside each of them (i.e. inside the squares). If it is outside
all of the tiles, then it must be inside some of the squares. Testing if the left side is not
inside a tile (in both dimensions) can be rewritten to testing if it is outside it (in any
dimension) using DeMorgan’s law. Be aware that in this scheme, the outcome for the
tile is determined by the combination’s complement since that is the one that does the
exclusion of the product.

To see how this works out in practice, consider table 3.32 that displays the steps in-
volved in running the algorithm in the premise on the case presented in figure 3.28 on
page 76. In each row, there is always one of the two result columns that indicate success
because a dimension from the first term must always belong in one of the two sets.

R =
∣

∣

∣

j∈I
rj t v R S =

∣

∣

∣

k∈I
sk u v S

{} False {s1, s2, s3} True
{r1} True {s2, s3} False
{r2} False {s1, s3} True
{r3} False {s1, s2} True
{r1, r2} True {s3} False
{r1, r3} True {s2} False
{r2, r3} False {s1} True
{r1, r2, r3} True {} False

Table 3.32: Run of l[t], u v
∣

∣

∣

i
l[ri], si with no overlapping terms)

By focusing on keeping the left side out of the area that is excluded instead of inside
any of the one that is included, this recognizer handles overlapping too. Table 3.33 on the
facing page lists the evaluations done to determine the outcome in the case of figure 3.29;
the one where the rectangle stretched over two squares.

The lines that are different from figure 3.32 are highlighted. The interpretation of these
lines are that the combination containing only r1 alone is not enough anymore; having
both r1 and r2 is required to succeed in that dimension. However, having s2 (which also
implies s1) in the other dimension saves the day.

If there are no common components in any dimensions of the terms on the right side,

78

3.4. Subtyping

R =
∣

∣

∣

j∈I
rj t v R S =

∣

∣

∣

k∈I
sk u v S

{} False {s1, s2, s3} True
{r1} False {s2, s3} True
{r2} False {s1, s3} True
{r3} False {s1, s2} True
{r1, r2} True {s3} False
{r1, r3} False {s2} True
{r2, r3} False {s1} True
{r1, r2, r3} True {} False

Table 3.33: Run of l[t], u v
∣

∣

∣

i
l[ri], si where terms are overlapping (s1 = s2)

then the left side will either have to be a subset of only one of them or it will be of none.
Put another way: If a dimension of the left side is covered by more than one term on
the right side then the other dimension in these terms must overlap in order for one of
the sides of the squares to be common (and not just a corner) so that they are adjacent.
If there are no adjacent sides, then the left side cannot stretch over two squares without
also being outside of them.

To see this, remember that the rewriting rule (C) from section 3.3.3 on page 69 does
not hold since the product of sums is larger than the sum of products (as the latter does
not include the products of the non-corresponding terms):

l
[

r1|r2

]

,
(

s1|s2

)

6v l[r1], s1

∣

∣

∣
l[r2], s2

(r1 + r2)× (s1 + s2) 6⊆ r1 × s1 + r2 × s2

There cannot be a union on the left side without having either the union expanded to
two terms with one equal component (in the other dimension — like rules (A) or (B) do),
or of course that the union is entirely matched by a single term.

s1 s2 s3

r1

r2

r3

t

u

Figure 3.34: Non-overlapping terms on the right side

Figure 3.34 is a graphical illustration of this, and table 3.35 on the following page con-
tains a display of how each of the combinations in the powerset and their complements
are evaluated. The lines that make the check fail (both of the result columns are False)
have been highlighted.

79

Chapter 3. Relations

R =
∣

∣

∣

j∈I
rj t v R S =

∣

∣

∣

k∈I
sk u v S

{} False {s1, s2, s3} True
{r1} False {s2, s3} False
{r2} False {s1, s3} False
{r3} False {s1, s2} True
{r1, r2} True {s3} False
{r1, r3} False {s2} False
{r2, r3} False {s1} False
{r1, r2, r3} True {} False

Table 3.35: Run of l[t], u v
∣

∣

∣

i
l[ri], si where terms are not overlapping

The gray areas in figure 3.34 on the page before are the parts of the left side that is not
matched by any term on the right side; these are the parts of the dashed rectangle that fall
outside of the squares. Observe that all of the tiles from the lines that fails in table 3.35
cover these gray areas. The first and third line cover the lower left gray area, while the
second and fourth line cover the upper right (exactly opposite of what the intersections
do).

Implementing the rule is much easier than comprehending it. Listing 3.36 displays the
necessary code. The helper class PowerSet implements an enumeration over the powerset
of a set of n elements by creating a binary counter that goes from 0 to 2n− 1 using each bits
to indicate whether an element should be included in that particular combination or not.
The test is otherwise modeled straight-forward after the rule, requiring all combinations
to hold for the method to succeed.

/ / c l a s s SubRel
boolean ru leLabe l (Label l e f t , Type r i g h t) {

r i g h t = prune (l e f t , r i g h t) ;

boolean overAll = t rue ;
for (PowerSet p = new PowerSet (r i g h t) ; p . hasNext () ; p . next ())

overAll &= i s I n (l e f t . content , unionOf (p . subset () , content)
| | i s I n (l e f t . next , unionOf (p . complement () , next) ;

return overAll && ! r i g h t . isEmpty () ;
}

Listing 3.36: Subtyping for a single label (rule [REC])

All the labels on the right side in the conclusion of the rule are the same as on the
left side in order to make it necessary to do pruning before using the rule in a proof tree.
The method ruleLabel on the other hand, will be invoked by the framework regardless
of the labels in the union. Hence, pruning must be invoked explicitly at the top of the
method to eviscerate any irrelevant elements and the argument representing the right
side is replaced by a “liposucked” copy.

It is also implicit stated that the union must not be empty by letting the counter be
restricted to strictly positive numbers. As there is no deduction rule that cover the case of

80

3.5. Summary

the right side being an empty union, an appearance of a such should make the proof fail.
This check must be done explicitly in the code since having no combinations to enumerate
(and therefore none to contradict) would otherwise erroneously indicate a success.

The special case of a union with a cardinality of one can be (and has been in the
program) optimized to do the evaluation in the style of rule [LAB] (from section 3.3) to
eliminate the superfluous comparisons against the empty set.

Notice finally in the code the detail that content and next used on the subsets are
not static properties of the type (which would be a union), but rather dynamic proper-
ties (function objects) named after them that fetches that field from the labeled element
passed. They are used to combine the fields of each element in the subset union into form-
ing a new union which is subsequently passed to the recursive relation check against that
field from the left side.

3.5 Summary

In this chapter a framework for evaluating deduction rules upon structures where recur-
sion may be present were established, using a transactional cache. In the context of this
framework, the following relations

• Ordering equality, .
=, which identifies equal instances

• Structural equality, ', which identifies equal terms

• Semantical equality, ≡, which identifies equal languages

• Subtype, v, which identifies sufficient languages

were in order of “broadness” defined for the regular tree types set forth in chapter 2. The
difference between them, their value and application were explained. A description of
the relations’ inner workings was given and code to implement them presented.

81

82

Chapter 4

Documents

The thesis has up until this point had its focus on types. It will now turn to the entity
that made types interesting in the first place, namely documents. Documents are

vastly more simpler to reason about than types. A type has a corresponding language
that may even be infinite, whereas a document only refers to one, finite instance of this
language.

Documents are values of the types that are being described. Types describe the struc-
ture of the data, while the data itself is located in the documents. Before the interaction
between types and documents can be looked into, the way that documents are built must
be examined.

4.1 Anatomy

A document consists of data that is already stored in a way that indicate its structure. The
structure is embedded in the document together with the data.

Contrast this with free-form data, which is nothing more than a flow of single atom
values without any relation between them. Structure does not come with the data, but
must rather be imposed onto it later. The process of reading through the data and deter-
mine its structure is known as parsing. The result will be a document.

There reason why it may sometimes be advantageous to represent data in free form
instead of as documents, is that the underlaying storage may not know of any larger
entities than the most general ones such as characters. It is thus necessary to represent the
structure as a stream of those and later rebuild the document from that stream. However,
this thesis will not concern itself with the steps prior to achieving a document as there is
available literature that explains this in detail, e.g. [ASU86].

4.1.1 Trees

A very common, versatile way of structuring data is in a tree. A tree is a set of objects
(called nodes) that have either no or one parent and may have several children of the

83

Chapter 4. Documents

same kind. An object that is the ancestor of another may not simultaneously be a descen-
dant. The object that does not have any parent is called the root of its tree.

Trees are usually finite, and they can be nicely mapped into a free-form notation. Re-
call from section 2.2.1 that an element of information could be represented as a tree as
well as flattened to a marked-up string of characters. Just like the difference between
context-free languages and regular tree languages are in the use of markers, the one be-
tween documents and streams is also.

a
[

b c,
]

a

b c

Figure 4.1: Mapping between a tree and a marked-up string

An example of this mapping is shown in figure 4.1. All elements that are within the
markers are made children of a new node which gets the label attached to the markers.
The order of the children is important as the sequence is not commutative. This allows
the positioning of elements to have semantics, and it also makes it much easier to match
a document up against its type as will later be shown.

The outlook this thesis has on documents are that they hold data in a structure and
does not have any semantics of their own. A document carrier contains the structure in
its construction and there are no other operations on these data. The framework does not
assume in any way what the client code intend to do on this data.

Nodes in the tree are built out of strings and other data in elements besides labels
must have a valid conversion with that type, thus ensuring that the tree is serializable to
and from a character stream.

A specification for such value-holding carriers is displayed in figure 4.2. It is mod-
eled after the construction of labeled type elements from the regular tree grammar in
section 2.3.1. The only rules are the ones that states that the empty model is the additive
element for sequences and that sequences are associative, respectively.

An algebra that satisfies this specification is one where the carriers are hedges of trees.
Each carrier is a sequence of elements that in themselves may be carriers. This may be
realized in Java as a linked list of the class in listing 4.3. Since each object has a reference
to the next sibling in sequence through the field called next, all the children of a node
can be pointed to by simply aggregating the first in the field content. The label associated
with the node is stored in tag.

Only this one class represents all the carriers in the algebra, as the language itself

84

4.1. Anatomy

VAL = initial spec
import String
carrier Value
ops

ctor ⊥ :→ Value empty model
ctor [] : String×Value → Value labeled content
ctor : String → Value character data
ctor , : Value×Value → Value hedge

subject to
⊥ , x = x (I)
x , ⊥= x (II)
x , (y , z) = (x , y) , z (III)

Figure 4.2: Specification for document values

public c l a s s Value {
f i n a l S t r i n g tag ;
f i n a l Value content ;
f i n a l Value next ;

}

Listing 4.3: Skeleton of a document

contains a notion of the empty model ⊥ in the form of the special reference null. Hence,
there is no need to create a derivative class for this constructor. Rule (II) allows for a
single labeled element to be represented as a sequence containing this element followed
by the empty model. This leads to an opportunity to represent all of the carriers of type
Value by a single base class. As before, String is reused from the runtime library of the
platform.

Notice that there are no reference to the parent in a carrier. An object can be used as
a child but is never associated with the parent explicitly. As the object is immutable (all
fields are marked as final) the parent cannot influence its state. Since the algorithms
work in a top-down fashion there is no need to maintain the parent reference and al-
though not leveraged, it gives the side effect of also allowing two identical branches to
share object representation.

By having immutable objects, trees created is always finite. A tree cannot be con-
structed where one of its descendants is itself because the reference to itself would then
have to be exist before it was created! A similar problem was handled in section 2.4.7, but
unlike types there are no provisions for forward references in values.

/ / c l a s s Value
public s t a t i c Value l a b e l (S t r i n g tag , Value content) {

return new Value (tag , content , null) ;
}

Listing 4.4: Hiding object allocation

The implementation fact that a labeled value is also a sequence of one should be hid-

85

Chapter 4. Documents

den. Also, it is not desirable to expose the explicit allocation of a new object to represent
the carrier. Both of these goals can be met by moving the construction of labeled elements
into a static method as shown in listing 4.4. This passes the empty model as a the param-
eter that represents the next field, terminating the sequence. This could also be seen as a
default value for that field, while the other two must always be specified.

The client code should use this method as a factory. This reduces dependencies be-
tween modules and will allow the implementation to alter the representation scheme at
a later point if desirable while introducing as few changes as possible in the interface.

4.1.2 Leaves and sequences

Selecting null to represent the termination sentinel in sequences aligns it with the leaves
in the trees. There is no difference between an empty content model and the residual part
of a sequence after all the children has been enumerated.

Listing 4.5 contains the code that performs the operation of the sequence constructor
in the algebra. If the end-of-sequence marker is encountered, then this is the right place to
insert the value to be appended. The new tail is responsible of terminating the sequence,
and it is not possible to create any carrier to pass to this method that is not properly
terminated. If the end of the sequence has not been reached yet, the sequence must be
traversed using rule (III) until that is the case, pushing the insertion further down an
induction chain where the empty model is the base case.

/ / c l a s s Value
Value concat (Value v) {

return clone (next = = null ? v : next . concat (v)) ;
}

protected Value clone (Value next) {
return new Value (tag , content , next) ;

}

Listing 4.5: Planting a hedge

Immutability of the values are guaranteed by creating new values as they are “mod-
ified” by replacing the rest of the sequence with one that has been modified (an element
has been added). The code is functional: A new value is returned instead of modify-
ing the one the operation is invoked upon. The original value may be seen as merely a
template on which the new sequence is generated (but with a changed tail).

The allocation of a new object is deferred to the helper method named clone instead
of calling the operator new directly, for reasons that will be explained in the next section.
The method clone creates a new object which has the same label and content model as
this one (thus the name), but which may occur in another context.

However, observe that concat is not a public method. The cost of this gained sim-
plicity is that null must be treated like any other valid value object. More specifically it
must be legal to use the empty model as a starting point of a sequence. The implemen-
tation of the sequence constructor cannot be realized through concat alone, but must be

86

4.1. Anatomy

filtered through a static method such as the one in listing 4.6 that checks for the occur-
rence of null on the left side.

/ / c l a s s Value
public s t a t i c Value combine (Value a , Value b) {

return a = = null ? b : a . concat (b) ;
}

Listing 4.6: Performing concatenation on null references

If the left side is the empty model, then the sequence is replaced with the carrier to
add in accordance with rule (I). Otherwise an initialized object is present and the method
concat can be used on this.

4.1.3 Character data

Relying on structure alone may be an insufficient or impractical mean to convey informa-
tion in a document. Many applications use data that is not available for enumeration at
the time the schema is written, or whose format is not easily expressed as a regular tree.
Examples of these are names of persons, quantities and measurement data.

Such entities are considered opaque to the structure and is better rendered in its own
format, encoded as a sequence of characters embedded in the document’s stream. When
the stream is parsed, these characters must still be scanned in order to determine their
boundary. They are therefore referred to as parsed character data.

This thesis will treat character data as an element with no content model, labeled
by the special token #PCDATA. Occurrence of data may then be modeled in the type
by using this element. The characters themselves are attached to the element out-of-
band so that they are available to the application, but no interpretation of them are done.
Further specification of the allowed syntax requires the client to do its own specialization
of the code. Mapping the semantics of specialized data to a type will be discussed in
section 4.2.4.

c l a s s Pcdata extends Value {
f i n a l S t r i n g t e x t ;

Pcdata (S t r i n g t e x t , Value next) {
super (”#PCDATA” , null , next) ;
t h i s . t e x t = t e x t ;

}
}

Listing 4.7: Character data elements

Specialized elements are handled by subclassing the carrier class Value. Listing 4.7
contains the general specialization for all character data. The structure of the element is
fixed, and the text is stored in a field that is available for later introspection. As before, di-
rect exposure of the carrier is not desirable, so the algebra is extended with a method that

87

Chapter 4. Documents

performs the construction of a single, stand-alone such item that can later be combined
with other branches into a larger document.

This method is the remaining constructor from the specification; the one that converts
strings into value carriers. Its implementation is shown in listing 4.8.

/ / c l a s s Value
public s t a t i c Value data (S t r i n g t e x t) {

return new Pcdata (t e x t , null) ;
}

Listing 4.8: Constructing value carriers from strings

With the introduction of a derivative carrier class, the framework cannot use one spe-
cific constructor to create a clone of an object instance as this operation has become poly-
morphic. Remember from section 4.1.2 that cloning is necessary to obtain a duplicate that
can be used in another context, due to the fact that the object instance itself is immutable.
Hence the method clone must be reimplemented in Pcdata to return an object of the same
type. The code for this is in listing 4.9. Observe that in contrast with the implementation
from the base class in listing 4.5, the fields unique to this class is passed to the constructor.

/ / c l a s s Pcda ta
protected Value clone (Value next) {

return new Pcdata (t e x t , next) ;
}

Listing 4.9: Polymorphic copying

If this is not done, instances of the subclass will be sliced as the superclass only copy
the fields that it know of and not the new that is introduced in the subclass. (Unfortu-
nately there is no way in Java to specify that a subclass must customize a method in order
to prevent slicing from a base class that is not abstract).

4.1.4 Attributes

Little has been said so far about attributes. Attributes in documents can be seen as se-
mantic “constants” that are applied to the parse tree. They would be constants as they
are specified together with the data and is thus static. A broader concept of attributes
includes dynamic ones, i.e. variables that are evaluated upon traversal of the tree in the
semantic passes of the application [EMRS97]. The attributes mentioned here are for in-
stance suitable as initializers for those variables.

Attributes formally introduce other properties than the label into the element, inte-
grating them with the markup language itself instead of leaving it to the application to
define how multiple values are encoded in the character data children. Attributes are
used to explicitly state the presence of those values in the schema, enforcing that the doc-
ument writer is aware of them. Indeed can both the label and the character data of the
element be regarded as nothing more than predefined attributes [McG01].

88

4.1. Anatomy

In present markup languages such as SGML and XML attributes can only hold flat
contents in form of a single string, whereas character data can be interspersed with other
element children making it possible to create a composite structure. Traditionally, the
convention has been to use attributes to hold meta-data, which is information about how
the document should be processed, while character data was used to hold the payload
of “business” information [Hol99]. The connotation has been that attributes and tags are
the “envelope” and the character data is the “letter”.

Another difference was that in the schema language DTD only attributes could be
strongly typed, albeit the selection of types were fairly limited. Character data was al-
ways seen as an opaque stream. In newer schema languages such as XML Schema and
RELAX, it is possible to specify the (simple) type of character content too, blurring the
distinction between them. Attributes are being reduced to a short-hand notation of chil-
dren that cannot have complex types, i.e. a hierarchical structure.

The approach used by this thesis will be along the lines of this development. At-
tributes (in terms of semantic constants) does not seem to add any power of expression
and will therefore be implemented by using existing parts of the framework, keeping its
weight down. They will be created as child elements containing only text. The value
of the attribute is kept in the text whereas the name of the attribute is put in the label.
To prevent clashes with real child elements as defined in the schema, the names of the
attribute will be prefixed by “@”. Listing 4.10 contains the appropriate code.

/ / c l a s s Value
public s t a t i c Value a t t r (S t r i n g name , S t r i n g value) {

return new Value (”@” + name , new Pcdata (value , null) , null) ;
}

Listing 4.10: Attributes as character data elements

The type of attributes is restricted to a simple character string only. If further refine-
ment is desired, a subclass of Pcdata that handles the (simple) datatype should be created
and a method that created attributes using this subclass instead added to the algebra.
A general solution would involve that the class factory representing the datatype of the
attribute was passed as a parameter.

Although it is possible to model the tag of an element as an attribute, this is usually
not done and the libraries for parsing markup do not encourage it either. Elements must
still have a field for names if they are used in the implementation of attributes, so no
savings are possible. Hence, the label is still internalized in the object as a field and this
field is used as storage for the name of the attribute.

By convention there is an informal requirement that attributes are put before any other
child elements and that there are no two attributes with the same name. However, these
conventions are not enforced by the framework in any way, partly because it does not
need them to be fulfilled. If the usual attribute semantics is necessary, it is up to the client
application to overhold them.

89

Chapter 4. Documents

4.2 Validation

The purpose of schemata is to describe a set of documents without having to list them
all. In order for a schema to not refer to all documents but rather just some of them, there
must be a way to identify those documents that are in the schema’s language. As a lan-
guage may be infinite, it is futile to attempt to list all documents that are in the language.
Instead, the test will be done the other way around: A single, concrete document can be
checked to be in the language of the schema. This is called the language relation and it is
is formally stated in definition 4.11:

Definition 4.11 (Language relation) A type t is a model for a document v, written t |= v, if
and only if v ∈ L(t). Conversely, L(t) = {v

∣

∣

∣
t |= v}.

The process of determining whether a document is in the language of a schema is
called validation. It is then assumed that the document was written with a particular
schema in mind, and that it should be verified to (still) be in compliance with it. Often
this information follow along with the document in the form of a processing instruction
or can be inferred from the context that the document was retrieved, much like type
information is attached to references in strongly-typed managed languages (e.g. Java).

4.2.1 Data integrity

Validity can be checked on two levels. The first concept is well-formedness, which treat of
validity towards the markup language itself. A character stream is said to be well-formed
if it is in within the classes that the markup language spans out, i.e. if it can be recognized
as marked-up text. Any such stream can be read into a document, and in fact is this the
very criteria for parsing documents from streams: That they are well-formed.

On the other hand, the second concept of validation is about validity according to a
type. Since a type only describes documents, valid markup must also be well-formed. A
document will always be valid according to some type as it is possible to construct a type
that has been tailored to it [GGR+00], but there is of course no guarantee that it can be
shoe-horned into an arbitrary target type. Validation can be regarded as the process of
ensuring that the implicit type that can be inferred from the document is a subtype of the
one desired. This is revealed by the following rephrase of the validation problem: If u is
a type (that is inferred) such that L(u) = v, then u v t ⇒ v ∈ L(t).

Checking for well-formedness is within the problem domain of the parser, and is
consequently outside the scope of this thesis. Validation however, is performed by a
component known as the validator and such a module is what this thesis will present.

Type validity hold an important rule in ensuring a certain level of quality in the data.
If the document is known to adhere to the structure set forward in the type specification,
the client application can access its various parts in a safe manner, assuming that they
will be present as expected. Error handling can be done up-front instead of being tangled
together with the business logic that determines the document’s semantics. Moreover,
the explicit specification of a structure through the use of a type makes it possible to

90

4.2. Validation

do validation as an entirely separate step from the other processing. Validation can be
done once upon storing the document initially, enabling the client to assume that the
documents that a drawn from the repository to meet the set standard.

4.2.2 Matching

A natural way of doing validation seems at first to be that each type determines if the
value is within its language, and let this test be done recursively in children and tails.
One would perhaps expect that the problems with comparing types — namely that it is
possible to fall into a recursion trap if there exists a forward reference to the very type
that is being checked — is not present in this scenario since values cannot contain loops
and enumeration therefore must be finite as the check terminates when it hits the base
case of a leaf. An imaginary method match could return the presence of a document in
the type’s language.

For labeled elements the reasoning in the above paragraph is is correct. Since this class
is what (primarily) creates problems in type-to-type comparison, it might be tempting
to draw the erroneous conclusion that type-to-value checking will work fine when this
obstacle is removed. However, it is a fallacy for unions which also is prone to this problem
due to the implementation artifact of forward references needed for closures.

Because of the flexibility given in the extra degree of freedom from the union tier of
types, which does not exists in values, it is the type that is the effective unit of dispatch in
the validation, as will explained shortly. The language of a union contain a document if
it is in the language of each part of the union. The rule [TRY] in figure 4.12 describes the
formal relationship between union types and documents, and the reader is encouraged
to explore the similarities with rule [SPLIT] from section 3.4.3 on page 72.

∃i . ti |= v
∣

∣

∣

i
ti |= v

[TRY]

Figure 4.12: Validation is distributive over unions

If one of the elements in the union is a forward reference that point to the union itself
again, this rule will cause a recursive comparison to enter an infinite loop. Although
value carriers have countable lengths, there is no part of the rule that reduces the structure
of the value on the right side, only the type on the left side.

Even a simple check for forward references to the same union is not sufficient, as a
cycle may be comprised by more than one union. In order to properly handle such cycles,
all references must be resolved using the dere f method from section 2.4.7 on page 46.
Mutually referenced unions will then be combined into one. Another approach is to
treat the language relation the same way as the subtype relation; through a transactional
caching rule-deduction so that the rule [TRY] is not re-entered upon the same pair. The
language relation can then either be implemented as an explicit relation containing the

91

Chapter 4. Documents

matching methods for each carrier class as rules, or as an application of the subtyping
relation through the conversion of the document to a type carrier.

The framework contains all of these implementations and enables switching between
them with a compile-time parameter, but the thesis will only provide an in-depth review
of the latter. The diligent reader who wants to inspect the other two are referred to the
source code.

4.2.3 Inferring types

Every document has a corresponding type that validates the exact structure of it and
nothing more. If anything is removed or changed from the type the document will no
longer be in its language, and everything that is added will be superfluous. Because of
these properties, this type is called the minimal or initial type of the document.

The rules for inferring a minimal type from a value are displayed in figure 4.13. What
they do is to build a tree with the same labeled element that is in the document, putting
leaves at the end of each branch. Written in this format, the application of the rule may
seem somewhat backwards: The right side of the conclusion is the pattern that matches
the value passed as parameter, giving the resulting type on the left side. The premise of
the rule shows the intermediate calculations necessary to arrive at that result. Note that
the two rules explore all possible value constructors.

ε |=⊥ [NIL]

l = l′ t |= v u |= w

l[t], u |= l′[v], w
[VAL]

Figure 4.13: Mapping values to types

No unions are created from these rules, which is of course due to the deterministic
nature of documents. If these rules are to be used in an explicit language relation, they
must also include the rule [TRY] from the previous section which not only covers unions
with cardinality larger than one but also the empty set. The empty set should fail to
validate anything as its language contains no documents.

Implementing these rules is relatively straight-forward from the rules, as displayed
in listing 4.14 on the facing page. Unfortunately, the since the null reference was chosen
to represent the sequence terminator for value carriers it cannot be implemented as a
regular method of the algebra but must be a static method, giving a procedural flavor
to the mapping that does not explore polymorphism. However, the author regard this
as a minor trade-off. It can be remedied by putting the label construction into a factory
method of the value carrier, akin to clone (cf. section 4.1.2 on page 86).

A front-end that performs the validation in form of an internalized method in the
type can now be written as is done in listing 4.15. This code uses the subtype relation to

92

4.2. Validation

/ / c l a s s Value
public s t a t i c Type i n f e r (Value v) {

i f (v = = null)
return new Leaf () ;

else
return new Label (v . tag , i n f e r (v . content) , i n f e r (v . next)) ;

}

Listing 4.14: Implicit type of documents

check if the type is capable of holding the structure inferred from the document. Since
the minimal type to which it is compared is a tree of temporary objects, there is no point
in caching the relations deduced from this for later nor is it productive to employ in this
comparison relations cached elsewhere.

/ / c l a s s Type
public boolean match (Value v) {

return new SubRel () . i s I n (Value . i n f e r (v) , t h i s) ;
}

Listing 4.15: Front-end for language relation

Regarding the complexity of the validate operation, the worst case scenario of runtime
exponential to problem size will not be encountered due to the fact that there are no
unions in the minimal type. Although it is possible that unions in the schema will have
to be investigated for every element, the length of the term provide an upper limit since
union cycles are cut off. Sequence cycles are terminated when the structure of the value
carrier is exhausted, making runtime dependent on the size of the document as well as
the size of the schema.

While the use of the subtype relation to do validation may seem elegant, there is
some overhead associated with maintaining the cache and creating temporary type carri-
ers, which can be avoided by using the recursive algorithm. However, with the recursive
algorithm not being as configurable as the relation and of approximately the same or-
der, the proper implementation to select should be determined based on the requirement
profile of the client.

4.2.4 Custom datatypes

Matching the character data to a datatype other than string poses some extra problems. In
essence, a subclass of the value carrier that represents the datatype must be created and a
token that can represent such elements selected. Section 4.1.3 contains a template for such
specialization through the use of Pcdata to represent strings. A hierarchy of datatypes
must be created and the subtype relation enhanced correspondingly to detect subtyping
within this hierarchy instead of doing simple tag comparison, where applicable in the
rules (cf. rule [PRUNE] in figure 3.26 on page 75).

Doing validation in terms of checking the inferred type will no longer be a viable
option in the presence of custom datatypes, as the actual content is lost when rephrasing

93

Chapter 4. Documents

the value to a type. Any simple datatype should inherit from string and will therefore
turn out to “match” it even when the contents does not. Hence, matching must be done
with either the explicit relation or the recursive algorithm, that both work of bona fide
value carriers. In these cases, the checking of the actual contents against the datatype
must be done in the rule [VAL] from the previous section. An actual such implementation
is however considered to be outside of the scope of this thesis.

4.3 Paths

In conjuncture with the discovery of certain properties or facts about a document, the
need may arise to address only a branch of it during processing as the result of the algo-
rithm is often caused by only a certain subset of elements. For the writer, the document
does not appear as an opaque blob but rather as a structure of smaller entities strung to-
gether. If given an indication as to which of these was the origin of the result, it becomes
easier to pinpoint any flaws or deviations from the original intent and identify the neces-
sary changes to make amends. This is analogous to the way a programmer is given line
and column number in the source file when the compiler detects an error.

At runtime, the various parts of a document is available as references to carrier in-
stances. If the document is kept loaded in memory and an editor is integrated with the
framework, such a reference may be sufficient to use to address the branch. Unfortu-
nately, instance references cannot be persisted and activated again later. The memory
that backs the object may be recycled by the garbage collector and there is no guarantee
that the object will appear at the same memory position if revived from secondary stor-
age. Hence, references are short-lived and cannot provide the identity of an object in the
long run.

To address parts of a document in a location-independent manner, a construction
called a path is used. Paths does not tell where the branch exist at any point, but rather
how to get there from a well-known point. In this thesis, it is assumed that the client has a
mean to locate a specific document from the repository and because the entire document
can always become bootstrapped from that location, the start of the document then be-
comes an anchor from which one can navigate. Usage of paths relative to other anchors
are of course also possible, but that aspect is not investigated here.

4.3.1 Determinism

Paths specify the navigation necessary to arrive at a particular branch by listing the tags
encountered and the direction taken at each junction. However, listing everything up
to the point where the branch starts would amount to a lot of needlessly echoing of the
document. Therefore, a path is built up by including only those elements that is actually
entered, represented by their tag. Any sibling element that does not have this tag is im-
plicitly skipped. Since more than one element may carry the same tag, it is also necessary
to denote in some way how many elements with this tag that is to be skipped. This latter
number is called the index or sometimes the position. The index number will indicate

94

4.3. Paths

which occurrence of a labeled element in a sequence that is to be entered. The children
of the ones before it need not be examined at all, which may speed up the process of
retrieving a branch.

An example of a path is:

/a[2]/b[3]

which identifies the third occurrence of b within the children of the second occurrence
of a relative to the start of the document. For this path to be a branch at all (and not an
empty model), there must be at least one other occurrence of a at the top level, and two
other occurrences of b at the next.

Branches in documents are identified uniquely by the path, i.e. a path will only iden-
tify one particular part of the document. The reason for this is that the path describes the
subterms necessary in the construction of the document for it to contain this branch. The
building blocks of a path may be seen as descriptions of value constructors, and these
operations only creates one carrier (which will contain the branch in question). For two
branches to have the same path, the same carrier would have to be constructed from two
different constructors.

This does not mean that the path determines the document, because the construction
may also contain several other subterms that is not mentioned in the path. It does for
instance not say what elements there should be in elements that are skipped, nor how
many and what kind these elements should be — merely that they should not be entered
if they do not match the pattern in the path. From this follows that the same path may
exists in more than one document even though the documents are not alike, since the
position of the branch relative to other parts may change. Also notice that that the path
does not make any statements of the contents of the branch which may also be different
from document to document.

Paths are not limited to documents only but can be “lifted” to work on schemata as
well, since a schema is a set of documents. A path in the schema would then denote
the set of branches that is identified by it in all of the documents in the language of the
schema. In this context, it is very likely that the path addresses more than one value
carrier. With regards to schemata, paths are non-deterministic.

What is interesting is then to attempt to use the path as a filter for subterms in type
construction in the same manner as in value construction, in order to determine if the
language of a type carrier contains the (sub)set of value carriers that the path describes.
That a type matches a path is used to mark that documents that also matches the path are
in the language of that type.

Since it is possible in types to construct unions in addition to sequences and hierarchy,
a type carrier that matches a path will potentially generate more than one value carrier
in a document due to this extra degree of freedom. It is also common to sometimes drop
indices in schema paths because closures can make the point of having them somewhat
moot. The type carrier a∗ for example, will match both paths a[1] and a[2] or any other
index for that matter.

95

Chapter 4. Documents

4.3.2 Incarnation

Locating a branch in a document is traditionally done in two ways: Either by navigating
an already-built tree structure [ABC+98] or by filtering a stream of events that is gener-
ated as the document is traversed once [Bro01]. The former uses a top-down approach
while the latter has a bottom-up flavor. The algebra for a path that is presented here will
be compatible with both.

A path is built by stating how subterms that appear in the construction of the value
is treated. The path always start from the root, which can be thought of as an empty
model to which the document is then appended. A labeled element can either be skipped
entirely if the branch is not within its descendants, or it can be entered. Skipping an
element moves processing to the next value in the sequence, while entering it brings the
child value sequence into focus.

In a processing model based on event streams, the events will indicate the beginning
and the end of an element. These events are generated when the parser discovers the
markers in the character stream from which the document is built. Such events are in their
nature imperative, while the specification presented here is intended to be functional.
This is solved by letting the discovery of an element imply that all events until the end
marker are ignored unless the next action is to explicitly enter that element. The tree
model is likewise handled by simulating events by a depth-first traversal.

PTR = constructive spec
import String, Int
carrier Path
ops

ctor / :→ Path starting anchor
ctor O : Path → Path enter branch
ctor . : Path× String → Path discover tag
parent : Path → Path previous level
count : Path× String → Int get index
xpath : Path → String serialize

subject to
parent(/) = / (I)
parent(pO) = p (II)
parent(p . s) = parent(p) (III)
count(/) = 0 (IV)
count(pO, s) = 0 (V)
s = s′ ⇒ count(p . s′, s) = count(p, s) + 1 (VI)
s 6= s′ ⇒ count(p . s′, s) = count(p, s) (VII)
xpath(/) = “′′ (VIII)
xpath(pO) = xpath(p) + “/′′ (IX)
xpath(p . s) = xpath(parent(p)) + “/′′s +

“[′′+count(p . s, s) + “]′′ (X)

Figure 4.16: Specification for paths

Figure 4.16 contains the specification for a path. As usual is a specification for the stan-

96

4.3. Paths

dard carriers String and Int assumed readily available from elsewhere. The constructors
but the constant represents the various filters that can be applied. In addition, xpath is
an “observing” operation that renders the path into an externalizable format that can be
displayed to the user or be dealt with by a component in the application that is not part of
the framework. This format is a subset of the standard path language for markup docu-
ments, XPath [CD99]. A slash is used to separate one level from the next, and indices are
put in angle brackets behind the appropriate label. The two other operations are helper
methods that is used by xpath and is not imminently needed.

Informally, a path is implemented as a stack of maps, where each level in the stack
corresponds to a level in the structure tree and the map contains the number of elements
of each label kind that has been processed so far. The state necessary to hold this carrier
is outlined in listing 4.17. As will be explained shortly, the map is implemented in terms
of a stack.

c l a s s Path {
Stack /∗<S t a c k < Str ing > >∗ / tags = new Stack () ;

}

Listing 4.17: Skeleton of Path carrier class

When an element is entered by the O operation, a new level with an empty map in
it is added to the stack, and processing continues at that level. Each of the elements
in this level that is discovered by the . operation updates the map by incrementing the
counter for the label passed as an argument, keeping track of the number of such elements
encountered. The root / simply consists of a stack with a single element where no labels
have been encountered yet. This is shown in listing 4.18 below.

/ / c l a s s Path
Path () { tags . push (new Stack ()) ; }

Listing 4.18: Constructing a root path

If the runtime had provided immutable versions of Stack and Map, for example im-
plemented as a linked list, the remaining two constructors could have been implemented
almost right out of the description of the previous paragraph, returning a new path with
a stack of maps that was updated accordingly.

However, the stacks and maps in the runtime are mutable. Cloning the entire stack
for each operation is considered impractical. Likewise is a custom implementation of
stacks and maps that has the immutability property. Rather, this thesis finds it desirable
to reuse the data structures provided in the runtime due to their efficiency. As will be
strived to show, this can be done without compromising the intent behind the specifica-
tion although it will not be functional anymore.

Instead of having each constructor generating a new path carrier, they are trans-
formed into “mutating” operations that changes the already instantiated object to the
new state. Each such operation is then accompanied by an operation that can undo this

97

Chapter 4. Documents

effect so that the carrier returns to the old state. The operationO is implemented as shown
in listing 4.19 as a pair of methods that adds a new level to the outer stack and removes
it again, respectively.

/ / c l a s s Path
void i n c r e a s e L e v e l () { tags . push (new Stack ()) ; }

void decreaseLevel () { tags . pop () ; }

Listing 4.19: Depth of the path

The reason why the map is implemented in terms of a stack will now be revealed:
The stack is the natural data structure to use if there is a need to remove the item that was
just put into it, which is precisely the task of the undo operation. Instead of keeping a
counter associated with each label, the number of times the label appear on the stack is its
corresponding index. Hence, by using a stack, insertion becomes efficient at the expense
of lookup, which now have to walk the stack in order to count the elements. However,
this trade-off is deemed acceptable since the observing of the path is to be done only
when the path is finally rendered to the client as a one-time operation, while updating of
the path will be done inside of the algorithms, multiplying the complexity of the update
operation with the complexity of the algorithm.

Listing 4.20 contains the code necessary to implement the . operation. The methods
respectively inserts and remove label occurrences from the top-most level.

/ / c l a s s Path
void enterSequence (S t r i n g tag) { tags . peek () . push (tag) ; }

void leaveSequence (S t r i n g tag) { tags . peek () . pop () ; }

Listing 4.20: Handling of tag occurrence

In addition to these constructors, there is a clone method added to the algebra that
performs a deep copying of the outermost stack in order to create a replicate of the path.
(The inner-stack need only be copied shallowly since the strings on it are immutable). If
a snapshot of the object representing the path at its current state is needed, this method
can be used to create a copy that will not be modified through the original reference.

Rendering of the path is done through the method toString that fulfills the duty of
the xpath operation, as this is the customary way in Java to name an operation that prints
the object to a character stream. The count helper operation of the specification walks
the inner-most stack and counts the elements on it with the matching label. The parent
helper methods is present to provide a way to inductively recurse through the elements
of the stack. Both of these operations can be inlined into toString method and rewritten
as loops.

They are present in the specification as separate operations simply because the spec-
ification language is strictly functional and there are no other convenient ways to model
loops. While perhaps theoretically elegant to implement them using recursion in the code

98

4.3. Paths

too, it can be argued that it is also the only gain relative to an imperative implementation
and will perhaps add verbosity at the expense of clarity since the implementation other-
wise is not suited to follow the functional treatment. For instance is it hard to retrieve the
parent path without copying data. On these grounds, the imperative version is presented
here.

/ / c l a s s Path
public S t r i n g t o S t r i n g () {

S t r i n g B u f f e r buf = new S t r i n g B u f f e r () ;
for (i n t l e v e l = 0 ; l e v e l < tags . s i z e () ; l e v e l + +) { // (†)

Stack tags InLeve l = tags . elementAt (l e v e l) ;
S t r i n g tag = tags InLeve l . peek () ; // (‡)

i n t count = 0 ;
for (I t e r a t o r i t e r = tags InLeve l . i t e r a t o r () ; i t e r . hasNext () ;) // (§)

i f (tag . equals (i t e r . next ()))
count ++;

buf . append (’/ ’) . append (tag) . append (” [”) . append (count) . append (”] ”) ;
}
return buf . t o S t r i n g () ;

}

Listing 4.21: Serialization of a path

The outer loop started at (†) represents the use of the parent operation. Instead of
starting the rendering with a recursive call, each of the levels are processed in order from
bottom to top. Operation count is performed by the loop that starts at (§) and the label is
found at the line marked with (‡). The line at the end outputs the label and index together
with the delimiters of the XPath language. The code accompanying the thesis includes
more corner cases and error handling, and the reader is referred to this for details.

4.3.3 Traversal

Gathering statistics about the usage of tags in a document can be done by looking at all
the paths that exists in it. Any information or counters could then be inferred from these
paths and then stored in for example a database that kept record of which documents
matched which properties in a mapping table. Later in the thesis, such a system will be
developed.

Finding all the paths in a document is a matter of traversing it and track the path
to each of the elements as they are visited. Callbacks before and after the elements are
visited enables the application to hook into the path enumeration and perform special
processing at each point.

A class called Traverser will encapsulate the functionality of the traversal, and to hook
into this process the client should specialize this class and provide the concrete methods
necessary for callback. At each callback, the current path is available through a protected
member, which is used to reflect the state of traversal. It should be regarded as read-only
by the callback methods, i.e. they should only use its observing method to extract the
state, in order to not disrupt the flow.

99

Chapter 4. Documents

Listing 4.22 shows the Traverser class and its main method traverse that takes as input
the document value tree upon which the operation is to be performed. The client should
override the methods preProcess and postProcess to perform actions before and after a
node in this tree is discovered, respectively. The branch which is rooted in this node is
passed as a parameter to these callbacks.

/ / c l a s s T r a v e r s e r
protected Path path = new Path () ;

void t r a v e r s e (Value v) {
i f (v ! = null) {

path . enterSequence (v . tag) ; // (†)
preProcess (v) ;

path . i n c r e a s e L e v e l () ;
t r a v e r s e (v . content) ; // (‡)
path . decreaseLevel () ;

postProcess (v) ; // (§)
t r a v e r s e (v . next) ;
path . leaveSequence () ;

}
}

Listing 4.22: Traversing a structure tree

The first thing that happens is that the element is discovered, and this is recorded in
the path in the line marked with (†). The preprocessing hook is then called with the path
that now includes the element, before any of the children are considered.

Before entering the children, the level of the path is increased so that all children
rightfully will appear as subelement of this one. The line at the note (‡) then process all
the children by calling the traverse method recursively on the first child in the sequence,
before the path is then restored to the parent level.

The tail is then handled by calling traverse recursively at the parent level with its
first node. The rest of the sequence is processed in an inductive manner with the null
sentinel being the base case. In this case it is actually more convenient to use recursion
than a loop, since there are further actions to be done after the tail has been traversed.

In order to only have one node at a given level “active” at a time, postprocessing must
however be done before the recursive call so that it is completed when the next sibling is
entered for preprocessing, as can be witnessed at the line marked with (§).

After the sequence is handled, the front tag is removed from the stack returning the
path to its original position. Although superfluous in traversal of value carriers alone,
this step should generally be done so that if traversal is done in conjuncture with types, it
returns to the original state allowing the value to be retested against another type union
element.

Reversal must not be done straight after postprocessing before the recursive call to
the tail, because the label of the element must be on the stack for the index count to be
correct. In contrast to the processing events, the trails of the sequences on the stack is
hence nested.

100

4.3. Paths

4.3.4 Use in relations

The framework should keep track of how the type carrier is traversed so that in case it
determines that a given relation between two types does not hold, the location of the
erroneous construct can be reported for the user to inspect. The reader should recall from
section 4.3.1 the discussion of path indices validity in schemata. Generally however, the
error will be reported at the first incident in the schema due to the loop detection, and this
facilitates bug hunting. A field is hence added to the relation to hold this current path, as
is shown in listing 4.23 below.

/ / c l a s s R e l a t i o n
Path currentPath ;

Listing 4.23: Current position of traversal in a relation

To update this path when a type carrier is decomposed and its various parts are in-
voked for relation testing, the code must be changed to use wrapper methods around isIn
that performs this task. The signature of these methods are the same as the original, so
they are interchangeable at source level. This thesis will only describe these methods and
outline their use. For a full examination of how the framework is changed, the reader is
invited to review the code itself.

The first wrapper is called isInForRoot and is used to determine the relation between
two top-level type carriers, i.e. this method should be invoked from outside the frame-
work to bootstrap the testing and is not used by any of the internal code. Listing 4.24
presents this method. It creates a new path that is initialized to the root of the type struc-
ture tree. (Recall from listing 4.18 on page 97 that the default constructor of the Path
class represents the root constant). After this new object has been assigned to hold the
current path, regular traversal is started at the first element by calling isInForSeq, which
is another wrapper described in a moment.

/ / c l a s s R e l a t i o n
boolean i s InForRoot (Type t , Type u) {

currentPath = new Path () ;
return i s InForSeq (t , u) ;

}

Listing 4.24: Wrapper for testing root elements

This method may also be renamed to isIn to preserve source compatibility since it is
now intended as the external interface of the relation.

If the framework decompose a labeled element and is about to perform testing on any
of the child element, the path must first be updated to indicate that another level has been
entered. This is done by employing the isInForChild wrapper displayed in listing 4.25,
which simply increase the level before handling the request to the child sequence, and
restores the old level afterwards. The child elements are also handled by the isInForSeq
wrapper, which deals with sequences.

101

Chapter 4. Documents

/ / c l a s s R e l a t i o n
boolean i s InForChi ld (Type t , Type u) {

currentPath . incrementLevel () ;
boolean r e s u l t = is InForSeq (t , u) ;
currentPath . decrementLevel () ;
return r e s u l t ;

}

Listing 4.25: Wrapper for testing child elements

When an element that might be a basic non-empty sequence is encountered, the path
is changed to reflect that this tag has been seen. This task is performed at the line marked
with (†) in isInForSeq, shown in listing 4.26. Notice that one of the interpretations of the
name inInForSeq is a misnomer. It is so called because it handles sequences, but this is
not the only thing on which it operates. It accepts any element, which is why the call to
enterSequence must test if the type carrier class is Label first.

/ / c l a s s R e l a t i o n
i n t currentDepth = −1 ;

boolean i s InForSeq (Type t , Type u) {
currentDepth ++;
i f (t instanceof Label) // (†)

currentPath . enterSequence (((Label) t) . tag ()) ;

boolean r e s u l t = i s I n O r i g (t , u) ;
checkForErrors (r e s u l t) ; // (‡)

i f (t instanceof Label) // (§)
currentPath . leaveSequence (((Label) t) . tag ()) ;

currentDepth−−;

return r e s u l t ;
}

Listing 4.26: Wrapper for testing sequence elements

The instance field currentDepth indicates the depth of the recursion, since it is incre-
mented at the start of the method and testing of every element eventually flows through
isInForSeq (either directly or through the other two wrappers isInForRoot or isInForChild).
Observe that the recursion depth is not the same as the number of levels in the path, as
the wrappers are invoked on other elements than labeled sequences, such as unions and
leafs. This field is initialized to −1 so that it will be bumped up to 0 at the first invocation
and incremented from there.

The effect of the this bookkeeping is undone in the block marked with (§). In be-
tween, the call to the original relation framework from listing 3.7 on page 62 is executed,
which has been renamed here to isInOrig in order to prevent a potential name clash with
the new external interface isInForRoot should the latter be renamed to reflect that, as
mentioned above. A method checkForErrors that does error handling has been inserted
immediately after the outcome of the test is available, in line (‡), before the old path is
restored further down.

102

4.3. Paths

The result of the test is given back to the caller through the return value, and ulti-
mately this will end up in the application code that made the first call to the framework.
However, the return value is only a thumb-up/thumb-down response that does not give
any further information about the cause of failure. To alleviate this, the path to the first
part of the type carrier where non-compliance to the requirements set forward by the
relation is detected, is also saved. If the relation returns false, this path can then be
retrieved through a property.

Hence, two fields called f ailurePath and f ailureDepth are added to the relation, and
these fields will hold copies of the value the progress indicators currentPath and currentDepth
(from listings 4.23 and 4.26) had at the time of the failure. The fields are initialized to de-
fault variables indicating that no errors has happened yet. Listing 4.27 holds the code
that handles failure reporting, and the line marked with (†) shows what the state of the
error tracking is before entering this routine.

/ / c l a s s R e l a t i o n
Path f a i l u r e P a t h = null ; // (†)
i n t fa i lureDepth = −1 ;

void checkForErrors (boolean outcome) {
i f (! outcome && fai lureDepth < 0) { // (‡)

f a i l u r e P a t h = currentPath . c lone () ;
fa i lureDepth = currentDepth ;

}

i f (outcome && currentDepth < fa i lureDepth) { // (§)
f a i l u r e P a t h = null ;
fa i lureDepth = −1 ;

}

i f (! outcome && currentDepth < fa i lureDepth) { // (¶)
fa i lureDepth = currentDevel ;

}
}

Listing 4.27: Error handling

As mentioned before, this method is designated to inspect the result from the relation
testing and update the error tracking accordingly. The parameter outcome indicates if the
relation was found to hold or not between the two type carriers passed to the relation. If
this variable is false, an error occurred.

If in addition, f ailureDepth is simultaneously still at its default value no error is cur-
rently registered, so this would be the point of origin of a new error. The error tracking
variables are then assigned to the state of traversal at this point, which is done by the
block at (‡).

Registering an error does not necessarily imply that the entire relation check will ulti-
mately fail. The outcome on one level may only be one of many checks performed to test
various premise conditions and will eventually be overturned if another branch is able
to fulfill the rule. Consider the rule [TRY] (cf. figure 4.12 on page 91) where a value only
have to validate against one of the elements in the union and may test false against the
rest.

103

Chapter 4. Documents

The expression currentDepth < f ailureDepth is true if traversal have reached a parent
level of where an error was registered. (Note that if an error is not registered, this test will
never yield true). A positive outcome on such a lower level should clear the error from
upstreams, and the block (§) will do this by resetting the error tracking fields to their
default values again.

However, the error cannot be eradicated by any positive outcome at a lower level.
Only direct recursion ancestors should be able to do this. Otherwise, a “cousin” test that
is just not as deep could inadvertently reset the tracking variables since its level counter
happens to be lower than the branch where the error first appeared, with the result that
they are lost after the parent rule have evaluated all its premises. Figure 4.28 illustrates
this.

2

1

0

point of original error

branch with lower depth

common stem

Figure 4.28: Need for error level escalation

To prevent this, the error must be escalated to the parent level when the rule return.
The failure level is then bumped down to reflect that the error has now caused this level
to fail too since the rule did not find any other premise that could be used instead.

The last test in the error handler — the block marked with (¶) in listing 4.27 — does
this escalation as negative outcomes trickles down the recursion ladder. f ailureDepth are
the place in the code which has failed due to the error, whereas f ailurePath points to the
corresponding location in the (document structure) data. When an error is encountered,
the code recurses back to the origin but traversal of the data halts. Therefore, only the
depth variable are updated in an escalation and not the path.

4.4 Summary

Documents are trees where each internal node is labeled with a tag. Character data and
attributes, entities that are common in standard markup languages, can also be modeled
with these basic elements. Documents structure data.

Validation is the process of determining whether a document is within the language
described by a schema. It can be done in three ways: with an explicit language rela-

104

4.4. Summary

tion, by a recursive algorithm with cycle detection or by reusing the subtype relation in
conjuncture with the minimal type inferred from the document. Validation tells if the
document has the correct structure.

A path is a way of addressing a branch of a document in an instance-neutral manner.
Paths are built by specifying how the document should be decomposed and navigated
to retrieve the desired node. They can be used to pinpoint the location of where the
document break the structure, or to express which parts of a structure that has been en-
countered.

105

106

Chapter 5

Compatibility

In the initial design process, schemata are usually written prior to the introduction of
documents in the system, as the schemata are meant to provide structural descriptions

and must be available at the time of document validation.

However, deployment of the system and its use give feedback to another round of
design in which the assumptions have changed somewhat from the initial phase. Hence,
a desire to change the schemata arise, but a total redesign and redeployment of the system
which involves reviewing all documents may be infeasible from an organizational and
economic viewpoint.

This chapter explore the options available and the considerations necessary — both
in the framework and in the schemata — to do such incremental upgrades to the content
structure.

5.1 Schema-oriented solutions

This thesis will approach the problem of structural changes with a focus on reasoning
upon the schema types, and attempt to limit the number of constraint put on the writing
or the usage of the schema. In other words, it will seek to obtain a solution that involves
little manual labor from neither the end users nor the users of the frameworks.

The problem is thus to ensure that the new language is a superset of at least the subset
of the old language that was actively used, i.e. that the new language still contains all
documents entered. Future documents must then relate to the new schema, so the parts
of the old schema that is not used is no longer of any concern.

5.1.1 Extension and removal

If the modifications to a schema consists of extending it to accommodate new uses that
was originally overlooked, the subtyping relation from section 3.4 can be used to find
out if the type carrier that represents this new schema still will validate all the existing
documents, by simply comparing it to the old. If the old schema is a subtype of the new,
only additions have been made, allowing a larger set of documents in the language.

107

Chapter 5. Compatibility

But, if the action taken is not just to extend but also to remove elements, then this
simple procedure will no longer be sufficient, as the full language of the old schema is
no longer a subset of the new even though the documents in the residual has never been
entered into the system.

Since a modification can be seen as first a removal and then an extension in a single
operation, any operation that allows an existing part of the schema to be altered should
be prepared for the possibility of rendering the new schema incompatible.

Destructive changes may be necessary on several grounds: Parts of the schema could
have been included at the wrong places because the understanding of the problem do-
main was not good enough, or it might be that use has shown that they were never nec-
essary and it is now desirable to clean up the schema from old cruft. The design process
can never be expected to find the perfect match at first try, so the framework must give
provisions to rectify such errors.

5.1.2 Brute force

Evidently, one possible solution to the problem is to use brute force: When a new schema
is proposed, all documents that was entered into the system (for the old version of that
schema) is completely revalidated. If all documents passes this test, then the language
of the new schema at least contains what was actively used from the old and can take its
place.

This thesis does not hold brute force to be a viable option due to that the complexity of
the algorithm will increase with a magnitude. The order of the validation procedure will
incur for each and every one of the documents. In a real system, there is also typically
many more documents than there are schemata.

On these grounds, this approach is dismissed and it is mentioned here merely to show
that it is in fact possible to ensure history adherence, and to establish an upper bound on
the runtime.

5.1.3 Type-based statistics

A more suitable option seems to be to leverage the procedure used for extension and
make it also handle reduction of the schema. Hence, the subtyping relation is modi-
fied to take into account only the parts that has actually been used by documents, when
testing for schema upgradeability. Instead of always terminating the deduction when a
mismatch between the old and the new type carrier is found, it should be done only if
there exists a document branch that is in the language of the type carrier in question.

If no such branches are present, then this mismatch could safely be ignored because
none of the old documents would fail validation because of it, and all new documents are
validated according to the new schema from this point on anyway.

Usage of unions in the schema is what makes part of it optional for documents. When
the validator enters the [TRY] rule (cf. figure 4.12 on page 91), only one of the elements
in the union have to be satisfied in order for the value to pass. Each of these branches

108

5.2. Name-based approaches

identifies a subset of the type’s language, and the documents in such a subset are the
ones that require the corresponding branch of the union to be true during validation.
Conversely, if a branch never yield true for any of the documents that are added to the
repository, then no documents in the subset of the language that it represents are present.

Note that more than one branch may give a positive result for a given document,
meaning that their subsets are overlapping. For instance, the example

a[ε|x]
∣

∣

∣
a[ε|y]

will match in both branches for the document a[ε], meaning that this document is in the
language of both branches and that these consequently must be (partly) overlapping,
whereas the following type

a[ε]
∣

∣

∣
a[x]

∣

∣

∣
a[y]

will only match the document through the first union element. The languages of these
two examples are the same.

Each branch will therefore be evaluated individually for inclusion regardless of the
others, and the rule [SPLIT] (cf. figure 3.20 on page 72) modified accordingly to no longer
require the right side (the new schema) to match all the elements on the left side (the old
schema) but only those that were invoked during validation. The union elements that are
essential for the history of documents to match are in some way marked while the others
are discarded. A related method is described in [BCF97] where only the automaton states
that has been visited in a bottom-up validation are kept.

The approaches discussed in the rest of this chapter all consider how in various ways
to mark the parts of the schema that is used by documents. The question is always how
to identify the type carrier in order to know that it should be included in a check for
upgradeability. In this context the modified subtype relation may also be referred to as
the compatibility relation or the upgrade relation.

An alternative is to create the minimal type necessary to describe all the documents in
the repository. Upon insertion of a new document, its minimal type is inferred and then
put in union with the minimal type of the schema that is being built incrementally. This
is perhaps the most theoretically sound method, it has yet the deficit that the type algebra
used in the framework does not compact the carrier according to rule (D) on page 70. As
a result, this approach may end up with an inflated minimal type that grows linearly with
the number of documents and would give the same runtime performance as revalidating
all the elements brute force.

5.2 Name-based approaches

At first glance, the intuitive solution seems to be to give each type carrier some kind
of identifier. Records are then kept of which types are “touched” during validation, by
collecting the names of these types into a list that can be stored. When the upgrade check

109

Chapter 5. Compatibility

is done, all type carriers that are not on this list may be ignored. However, the problem
has now been rephrased into how a name of a type should be chosen.

5.2.1 Explicit naming

The easiest solution for the framework is to put the burden of selecting names on the user.
Every time a type is created, it must also be given a name. This name then becomes the
permanent identity of the type and the instance that is created is only an incarnation of
an object for this particular run of the program.

In many modern schema languages such as XML Schema and RELAX [TBMM01,
CM01], the user is given the opportunity to define and label types explicitly. The type
can then be reused by referring to it by this name. This is in contrast with the older
language DTD [BPSMM00] where types are always defined inline.

However, not all types are accessible for naming. Only some of the carriers of which
the schema is made are created explicitly by the user, while the rest are the results of
operations performed on the others. The group of carriers that is specified inline without
being tagged is called anonymous types.

For example, consider the composite type (To refresh the definition of the question
mark, the reader is referred to section 2.1.3 on page 2.1.3):

a, b?, c

As b? = ε|b, the last concatenation will be distributed over this union. The expression will
therefore result in the internal representation (observe that the language of the expression
is {ac, abc}):

a,
(

c
∣

∣

∣
(b, c)

)

If no documents has the branches that is defined the optional schema element b, the
last union element above (the inner parenthesis) is not needed during validation. That
element was created as a result of the concatenation operation though, and is not assigned
any name. Hence, there is no key under which to record its presence or lack of it.

Additionally, the existence of such accounts in the schema indicates that there may
be carriers beneath the level of abstraction on which the user operates, making it hard to
come up with meaningful names for them anyway.

5.2.2 Generated names

At a glance, it is tempting to argue that it is conceivable to create a solution where the
name of the stem being decorated is combined with a tag indicating the decoration cre-
ated. For every operation that creates a new type carrier, the name of the argument(s)
must be combined with information about the action taken, e.g. if a type called “b” is
decorated to be optional, then the resulting type could be named “b?”.

110

5.2. Name-based approaches

If the system has to generate some of the names it might as well generate them all,
removing the burden from the user. Naming of types can then be made an optional
feature, and when a types name is reported from the framework, the internal name is
first attempted mapped to the user-specified label if present.

The name of the initial type carriers — the types that are the result of a constructor
being invoked by the user — must then be generated from some external measure since
constructors of course do not take any arguments from which the name can be based. Two
candidates for such automatically generated names are (i) Globally Unique IDentifiers
(GUIDs) and (ii) definition paths.

GUIDs are essentially serial numbers [LS98] usable in distributed systems. Definition
paths can be used in systems where the schema themselves are also being described using
structured documents. The path in this document to the branch that defines the type can
then function as its name.

The advantages of these two methods are that they work with anonymous types. The
downside are that they are both volatile in that a small change in the schema may cause
many types to get a different generated name even though they were not directly affected
by the change otherwise, as both methods deal out names in a sequential manner. When
the schema is changed, types may get a different name from what they had in the original.

5.2.3 Change management

A third option is to employ the user-defined names whenever possible and then use auto-
matically generated names only for anonymous types. This alleviate the problem some-
what since the manually given names are typically more robust and name generation
can be framed to within the nearest such labeled block. Although it lessens the impact
by making changes affect only local anonymous types, it is still short of being a general
solution.

If the user-defined names are changed, the statistics that are gathered on the old
names would have to be updated correspondingly. Otherwise, the first upgrade would
still work since the original names would be used by the compatibility relation to deter-
mine which parts to ignore, but any further upgrades could not be based on the statistics
because it would then be out of touch with the names that were used in the new schema.
Such a hybrid approach will thus require that the names picked by the user must remain
fixed for the lifetime of the schema, restraining flexibility in schema authoring.

Furthermore, even though the names are held constant, there may not necessarily be
a homomorphism for each type in the old schema to a corresponding type in the new
schema, even though the schemata are compatible. Consider an example where an ele-
ment is “split” by lifting a union to a higher level:

a
[

b1 | b2

]

v a[b1]
∣

∣

∣
a[b2]

Upgrading the statistics would involve transferring the counter for the element on the
left side to the counters for the two elements on the right side. Alas, the distribution of

111

Chapter 5. Compatibility

this counter cannot be decided without taking into account the number of times the types
b1 and b2 have been used within the type a, respectively. Upgradeability of counters based
on types can therefore not be regarded as transitive.

Being unable to perform upgrades like this severely impairs the ability to refactor the
schema, and this thesis therefore considers it unacceptable to put these constraints on
the user. Conclusively, types can be addressed but recording schema usage this way is
insufficient to determine upgradeability by modified subtyping.

5.3 Path-based approaches

Another way to take actual schema use into account than identifying the type carriers
employed in validation is to look at the other side of the proverbial coin and do this
based on the document branches used, represented by their paths. This works by first
recording all paths of the documents in the repository and then in the compatibility check
only invoke the parts of the grammar that covers branches with the same paths. As will
become apparent in a later section, this can actually be more flexible that basing the cut-
off on type identity since the same type may be reused in other, unrelated places in the
schema.

When a rule is invoked with a left-hand side argument (the old schema) whose path
is determined not to be used, the right-hand side type (the new schema) is said to be
acquitted, and the return value will then be positive as if the pair did satisfy the subtype
relation. This will work for recursive carriers too, since the outcome for them will be
determined at the first encounter. If the path /a/b is not present, then the path /a/b/a/b
will not be either. If the result for the pair is subsequently cached, the acquittal is said to
be global since it then applies to all instances of that pair, whereas if it only applies in
this particular evaluation it is local.

Due to the loop detection built into the framework, the gap between type and path
determinability (i.e. types can be reused while a path only identifies one branch in the
document, even if the value carrier is reused) turns out to be an obstacle that hinders this
solution from being effective.

5.3.1 Global acquittal

If the relation between two arguments is reported to hold based only on their lack of
occurrence in one particular path, the acquittal is over-generalized as the type may also
occur other places in the schema not related to that path. Take for example the schema

a[ε | b], (ε | b)

Observe that the type carrier inside the bracket parenthesis is the same as the one in
round parenthesis. Even if the same instance object was not used for these two types,
they will be considered equal by the framework.

112

5.3. Path-based approaches

If there are no documents containing a branch with the path /a[1]/b[1], the type car-
rier b will be acquitted when the contents of the first element is checked. However, the
not-in-use status does not necessarily apply to the path /b[1]. Upon return to the top-
level, the check for presence of a corresponding type to the second sequence term in the
new schema would then faultily be left out. As a result, the new schema would pass
even though it was not compatible with the documents in the repository, which is clearly
unacceptable.

5.3.2 Local acquittal

Since global acquittal is unsuitable, the other option is to filter out the types that is not
used in any document before they are cached. The deduction framework will then ignore
them as if they never existed in that particular path, but they will be revisited if they
occur later, in another.

The problem with doing this is that although acquittal is local for this particular ref-
erence to the type in the schema, the outcome will propagate to the parent if it is only
performed isolated in a level with no further book-keeping. The following example illus-
trates this:

a[ε | b], a[ε | b]

Notice the resemblance between this example and the one from the previous section,
only that the union appears as a child of the second sequence element just like the first.
The content of both elements are optional, so it may or may not appear in documents,
independently.

If there are no paths /a[1]/b[1] registered in the repository, then the type b will first
be locally acquitted at that point during deduction and the outcome is as said not cached.
However, this may cause the deduction rule that is evaluating the parent type a to have
all its premises fulfilled and consequently the result for a is put in the cache, even if the
replacement type for a’s content in the new schema does not allow b at all.

At the path /a[2], the cache will “remember” that the type a already cleared out and
acquit it at this point too. However, a check for the existence of the path /a[2]/b[1] has
now been forgotten.

Although the error in the previous paragraph lays in the non-deterministic nature of
type paths (cf. section 4.3.1), dropping the indices from the path does not help either,
because a prefix in the path may still change. E.g. if each element of the sequence is again
wrapped in elements, but this time with different labels:

x
[

a[ε | b]
]

, y
[

a[ε | b]
]

Now there might be that there (disregarding indices) exists no path /x/a/b but that
a path /y/a/b is present. With local acquittal and no feedback, the type representing
a would be cached in this example also, since the prefix of the path now functions as a
discriminator instead of the index.

113

Chapter 5. Compatibility

Feedback could have been introduced by combining the result value with a flag that
told whether it was caused by lack of relevant document (branches) instead of a deduc-
tion rule. If a mandatory premise returned with this flag set, the parent rule would be-
come “tainted” and would have to set the flag itself to avoid being erroneously cached.
Such a design could jeopardize the loop detection if the argument pair is removed from
the cache before the framework is entered; it must rather be entered in advance (as is
done by the rule [ASSUM]) and removed afterwards if the evaluation has been tainted.

This feature still requires that a large number of paths to be recorded, and it somewhat
deprive the framework of the ability to cache relationships unless the test is done after the
deduction rules have otherwise failed (so that the lack of presence overturn a failed result
rather than preemptively mask it out before testing). It requires an extensive overhaul of
the framework core to accommodate the extra flag in the return values and for that reason
the code that is affected will not be reiterated here. Diligent readers interested in details
are referred to the source code. For a lighter treatment, the discussion in section 5.4.3 can
be followed analogously with necessary adjustments for cache effects.

Future work should further explore ways to increase the time and space efficiency of
this method, as it looks very viable for the task at hand.

Instead of employing the full path of all branches, both the amount of history stored
and the problem of identical types being present at branches with different prefixes can
be partially solved by looking at suffixes instead, which is the topic of the next section.

5.4 Context-based approaches

A context is loosely speaking a description of the environment in which a given element
is present. Approaches based on contexts are hybrids that combine type-based and path-
based compatibility checking by generating a context representing the type, from parts
of the path. The aim is to achieve the efficiency of a type-based check, and the robustness
of a path-based check.

The context is built from a suffix of the path. Each term constraints the kind of element
that has occurred at the corresponding level by applying the restriction that it must have
the given label. Hence, the labels are used as an estimator of the type. A parent narrows
the available candidates in which a child can take place.

The granularity of the context is determined by the depth of this suffix, i.e. how many
terms that is included from the end of the path. The more constraints, the fewer branches
in the document will actually match the suffix. Optimally, a context should describe
all the branches that are validated by a type, and only that type. This thesis will only
consider contexts with depths of one and two.

5.4.1 Aptness

Using a context with a depth of one is the same as recording all the tags that are used in
the documents, and then only acquit a labeled element if its label has not been seen at all.

114

5.4. Context-based approaches

This works very well if there is close correspondence between the label and the type, and
will be a perfect match if there is only one type for each label.

Recall from section 2.2.6 (on page 31) that grammars of the subclass LTG possesses
this property. The type is defined in terms of the label. This implies that for schema that
is written in the meta-language DTD [BPSMM00], recording a counter for each possible
label suffices.

However, for grammars that are outside of this class, the chance of getting a spurious
miss is high. A spurious miss is when the type is reported to be in use and can therefore
not be acquitted whilst there in reality are no documents that would contradict the new
schema, i.e. a branch has marked more than its one real type. Using only one term from
the suffix gives very coarse contexts so the chance of this happening increases.

For meta-languages that has more expressive power, a context of larger depth should
thus be considered. Note that if only a subset compatible with DTD is used of the gram-
mar, the resulting schemata will still be within the subclass LTG, and this may therefore
be the case for schemata originally defined in DTD.

Another subclass of interest is STG (cf. section 2.2.6 on page 31), where a label is guar-
anteed to be unique within the same type. In other words can the type be inferred from
the label if the parent type is known, in grammars of this class. This class is interesting
because it is the foundation of the meta-language XML Schema [TBMM01] which despite
its drawbacks has gained industry support and is poised to overtake DTD in usage.

The problem of finding the parent type still remains though, and the solution is to
attempt to estimate it from a context. Hence, more terms are drawn from the suffix so
that information about the parent is also included.

Inductively, this reasoning can be repeated until the context consists of the full path,
reverting to local acquittal as described in section 5.3.2. In practice, most of the time
the accuracy of the parent type can be traded off for a short context since overloading
of labels is not that common. Estimating the parent using a single level may be enough,
meaning that the context has a depth of two terms: The parent label and the current label.

Context-based testing is no panacea. If for example path /x/a/b is neither used nor
supported in the new schema (and therefore due for removal) but path /y/a/b is, then a
context (a, b) will be recorded and cause a spurious miss in the resulting failure to acquit
the former type.

5.4.2 Recovery

Spurious misses are errors that are the result of being over-cautious. If the framework is
in doubt, it should rather dismiss a schema that could have been entered on the grounds
that it has not enough evidence rather than taking the chance of allowing an incompatible
schema to enter the repository, potentially corrupting its integrity.

This section explore the options for amending the algorithm in order to recover from
spurious hits without manual intervention from the user. When a spurious miss occurs,
the documents that contains the context in question must be validated brute force against
the new schema and the compatibility testing must then resume as if this error never

115

Chapter 5. Compatibility

happened. To determine the subset of documents that must be checked, a reverse lookup
is performed on the context, assuming that the repository not only contains an inventory
of the contexts that has been seen upon entering documents but also a mapping from each
context to the document in which it was found as well. Since the context was marked as
being in use in the first place, such a reverse lookup will always return a non-empty set
of documents.

Attempting to do validation at the spot where the error first arose is not very efficient.
Many errors are premises that fail at one level but from which a rule at a lower level
recovers as another premise fulfills its requirements (cf. section 4.3.4 on page 103). Hence,
performing validation once a rule fails will do much more work than is really necessary.

To determine if the error will make the subtyping algorithm ultimately fail, it must be
allowed to propagate to the top level. At this point the documents that are identified by
the reverse lookup can be validated, and if all of them is accepted by the new schema the
compatibility test should resume from where it was first stopped. However, restarting
the framework from a point deep inside the recursion involves capturing the memento
[GHJV95] of all objects in the deduction to restore this state later, which is a non-trivial
task that this thesis makes no attempt to accomplish due to the amount of effort entailed.

An easier implementation is to record the path of failure in a blacklist, to which the
algorithm has access. The compatibility relation will ignore errors that happens on paths
that are found in this list. After a successful validation of all document that has the
context built from this path, the compatibility relation is restarted from scratch again,
working its way back to the point where the previous error occurred. This time it will be
ignored since it is on the blacklist, and the upgrade check can proceed.

While relatively straight-forward to code by simply letting the presence in the black-
list also yield a positive result, this method is far from ideal as it may require several
restarts, having to perform multiple passes through the schema. Nonetheless, it does not
perform more validation than is required (by a context-based approach) if a list of the sta-
tuses for all documents that has been validated is kept and consulted before attempting
to do so again, to prevent documents containing more than one doubtful context being
tested more than once. A snag is that it suffers from the deficiency of erroneously prop-
agating success to the parent, unless a flag indicating locality is passed together with the
result value.

5.4.3 Integration

In order to integrate context-based acquittal with the compatibility checking, the frame-
work must be modified to also take the statistics from the repository into account when
determining the result value of a deduction. Rules that would normally return false

will have their outcome overturned if the context is not marked as used.

The best place to do this seems to be immediately upon return from the cache wrapper
around the deduction rules. At this point, the path is still current for the type being tested
and all the rules have been evaluated so the outcome of the subtyping is known.

Listing 5.1 on the next page shows how the code for performing acquittal is injected

116

5.4. Context-based approaches

into the framework by rewriting the method isInForSeq. The result value is no longer
determined by the deduction alone but also by the statistics gathered from the repository.
If the context that this type is used does not exist in any document, the compatibility
check should succeed regardless of what the rules deemed. Similarly, paths that has been
entered on the blacklist could be acquitted because all documents containing their context
have as suggested by the previous section been verified separately, allowing the client to
override any error and let the framework continue.

/ / c l a s s R e l a t i o n
boolean i s InForSeq (Type t , Type u) {
· · ·
boolean r e s u l t = ! e x i s t s I n C o n t e x t (t) | | i s I n O r i g (t , u) ;
· · ·

}

Listing 5.1: Only considering previously seen contexts

Note that the order of these two tests are significant as the compiler will short-circuit
the evaluation if possible, meaning that the rule deduction routine that alters the cache
may or may not run depending on the result of the other test. It is done in advance
so that the subtyping will not be affected by acquittal based on contexts. Performing a
lookup in the context database is about as quick as consulting the cache for types, so it
is not necessary to enter acquittals into the cache. (Context lookup is however only a
supplement and can not comprise a compatibility relation substitute).

If interaction with the cache is desired — for instance to roll back failures that are
acquitted locally — the logic must be moved inside the isInOrig method itself. A full
treatment of this variant is considered too extensive to review, and is available in the
code only.

Deciding if a context exists in the repository is done here by querying a collection,
which can either be loaded in advance or be a dynamic view to the database. The context
sought is created on the fly using the current path. Listing 5.2 depicts this setup.

/ / c l a s s SubRel
boolean e x i s t s I n C o n t e x t (Type t) {

i f (t instanceof Leaf | | t instanceof Label)
return c o n t e x t s . conta ins (new Context (currentPath)) ;

else
return true ;

}

Listing 5.2: Query context dictionary

Only labeled and leaf elements are tested for their context, as types of these classes
are the only ones that will add something to the path. Unions on the other hand, do not
contribute to the path themselves but rather functions like containers for other types that
do. A union could be thought of as containing a set of paths. They are considered to
always be present, to force introspection of each of their elements. Therefore, true is
unconditionally returned in this case.

117

Chapter 5. Compatibility

Context encapsulates the code that retrieve proper information about the environment
from the path. It can be considered a view of the necessary parts. Additionally, contexts
are unlike paths immutable, so they can be passed around easily like value objects. To
accommodate changes in the depth of the context, only the implementation of this class
will have to be modified. Listing 5.3 shows a realization of a context with a depth of two
where the parent and the current term is extracted from the path to build a suffix string.

c l a s s Context {
f i n a l S t r i n g s u f f i x ;

public Context (Path path) {
s u f f i x = blankI fNul l (path . getParent ()) + ”/” + blankI fNul l (path . getCurrent ()) ;

}

private s t a t i c f i n a l S t r i n g blankI fNul l (S t r i n g s) {
return s = = null ? ”” : s ;

}
}

Listing 5.3: Anatomy of a context

In addition to the method of construction, it must also provide the standard methods
of comparison, equals and hashCode, in order to do efficient lookup as well as methods
for storing the context externally. These can trivially be implemented based on the only
instance field.

5.5 Summary

Upgrading a schema does not need to involve revalidating the entire repository of docu-
ments, but can instead be done by reasoning about the relationship between the old and
the new type. The subtyping relation will detect if the new schema is an extension of
the old. To allow reductions, it must be verified that no document depends on the parts
being removed. This is done by modifying the subtype relation to acquit types that are
unused, regardless of their presence in the new schema.

A type-based approach for identifying unneeded branches is theoretically correct, but
will put unreasonable restrictions on the changes that can be made. A path-based method
will work provided that the effect is kept local although it will lead to data inflation and
lower efficiency. Context- based acquittal is not perfect as it may give spurious misses,
but constitutes an acceptable compromise for the schemata encountered in practice.

118

Chapter 6

Exterior

Conversation between two systems require that they both use the same format for in-
terchange of data. Standardization of this format facilitates interoperability amongst

a variety of solutions without creating tight bindings, and lowers the cost of integration
as tools are generally available instead of having to be custom-made.

This chapter explore the integration of the framework presented in this thesis with
such a standard format for both documents and schemata, and the host language’s run-
time library package associated with it. The format selected is the industry-wide sup-
ported eXtensive Markup Language (XML) [BPSMM00].

6.1 Syntax

XML is devised to outline how a document should be parsed from a character stream,
as discussed in section 4.1 on page 83. It does not describe a concrete set of documents
itself, but is rather a meta-language that sets forward a common, basic syntax shared by
a family of languages. In conjuncture with a schema that provides the valid tags and
structure, a complete grammar is formed. The separation of work-load between syntactic
and semantic processing allows components to be better specialized to their task and
users to leverage modularization.

6.1.1 Elements

Up to this point, this thesis has employed the notation that was introduced in section 2.2.1 on
page 26, where square brackets have been used as markers. XML on the other hand, uses
angle brackets and encapsulates the tag rather than the content. Thus, the tag is integral
to the marker. Instead of ending the element with a simple character, the tag is repeated
in the end marker to ease detection of an imbalanced tree, but with a slash prefix indicat-
ing that the element is being closed. Hence, an element with the tag a will look like the
following:

< a > · · · < /a >

119

Chapter 6. Exterior

where the three dot ellipsis is a placeholder for the content of the element. If there is no
content, the element can be abbreviated to a single tag but with a slash suffix to specify
that this is a start and end marker in one. E.g.:

< a/ >

The advantage of specifying elements this way is that tag characters can never be
mistaken to be free-form data, as they are always delimited by the angle brackets. This
could however also be accomplished by starting tags with an escape character so it is not
particularly space efficient. It has also the same short-coming as most other formats that
some characters have a special use and are prohibited from occurring within the data.

6.1.2 Attributes

Besides putting child elements between the start and the end marker, XML also allows
a particular form of children called attributes to appear inside the start marker with an
assignment expression syntax. The tag of the child is then used on the left side of an
equal sign and the value of the child is put inside quotes on the right. Here is an example
where the element labeled a has two attributes named b and c respectively:

< a b = ” · · · ” c = ” · · · ” > · · · < /a >

The content of an attribute is called its value, and attribute values are limited to only
contain character data. No structure is allowed, and it is therefore an error if an angle
bracket appears inside the value of an attribute. Attributes are always terminal nodes in
the structure tree.

6.1.3 Special characters

In order to use the special characters that are part of the language syntax inside free-form
data, an escape character is employed. When the parser encounters this character, the
next token is used to determine the replacement of this entity.

In XML, the escape character is the ampersand, and the next token is terminated with
a semi-colon. This implies that the ampersand character must itself be escaped to appear
in the text. Table 6.1 contains a list over the special characters which are essential for the
basic syntax and their corresponding escape codes. Note that none of the characters that
ends the commands such as the right angle bracket and the semi-colon) must be escaped.

< <
” "
& &

Table 6.1: Escape sequences

Other entities may also be declared, but this feature is not necessary in the context of
the framework presented here and is therefore considered to be outside the scope of this
thesis.

120

6.2. Meta-schema

6.2 Meta-schema

Schemata are anticipated to be written using the XML Schema Description (XSD) lan-
guage [TBMM01]. Although neither as powerful as the academically founded RELAX
NG [CM01] nor as widespread as the older DTD [BPSMM00], it is the recommendation
from the standard organization W3C and is rapidly being picked up by the industry. The
selection of this schema language does not exclude other adapters to be written for the
framework.

XSD is — unlike DTD — of the XML family and a schema can therefore serve a dual
role as both a document and a schema. It can almost be used to describe itself, and some
of its quirks make it indeed necessary to use a language more powerful to capture it
completely. It is in this author’s opinion quite intricate and not for the faint of heart.

Implementing the entire standard would be a Herculean effort, and this thesis will
therefore focus on providing support for a selected subset only. It contains only the basic
components (elements and attributes) and the provisions necessary for recursion (named
types) and rudimentary support for reuse (named groups).

Funnily, a feature of regular tree grammars that is not found in XSD is required to
describe the subset to compensate for some parts that have been removed. Consequently,
not all XSD schemata will be understood by the code presented here and some grammars
that are not proper XSD will be understood, but it is attainable to write schemata within
the subset that is usable with this as well as other validators. Specifically, this applies to
grammars converted from the older language DTD.

The schema is presented in its own syntax, implying that either prior knowledge of
XSD is required or the reader must possess the intuition needed to “bootstrap” an un-
derstanding of it. Only listings that illustrates a concept in the explanation is selected,
while parts that are redundant for that purpose are not included. The walk-through of its
various parts also serves as examples of its use. This section is not intended to be a gen-
eral tutorial of XSD however, but rather to serve as a reference of which constructs that
is carried on to the subset. For a more comprehensive introduction, [vdV01] can be read.
The purpose is to deliver an insight of the schema that will be useful in comprehending
the workings of the semantic builder that is shown in a later section.

The inexperienced reader is advised to follow the explanation while only paying loose
attention to the listings first, and then review the listings more rigorously afterwards. It
may also help to take a glance at section 6.2.4 before proceeding. Figure 6.2 on the fol-
lowing page provides a logical overview of relationships between the units in the subset.

All schemata must have the root element <schema>, and this is the only element that
is allowed at the top level. The namespace of the element should be set to signal that a
schema is being defined, and an attribute called targetNamespace is used to hold the
namespace in which documents of this schema should be put. Note from listing 6.3 on
the next page that the namespace of the meta-schema is the same as is being defined, i.e.
the schema defines itself.

A schema may contain a variable number of type definitions that define content mod-
els which can be reused elsewhere, and global elements that are start productions for

121

Chapter 6. Exterior

Attribute AttributeGroup

AttributeSet Schema Group

ComplexType Model Compositor

Sequence ChoiceParticleElement

Figure 6.2: Logical view of XML Schema subset

<?xml version=” 1 . 0 ”?>
<schema xmlns=” h t t p : //www. w3 . org /2001/XMLSchema”

targetNamespace=” h t t p : //www. w3 . org /2001/XMLSchema”>
· · ·

</schema>

Listing 6.3: Root node of a schema

the grammar. As listing 6.4 displays, the starting element in XSD is labeled schema and
its contents is an unbounded closure of a union between complexType and element,
which represents type definitions and global elements, together with group and
attributeGroup, which allow element and attribute entities, respectively. Each of
these will be reviewed in the following sections.

<element name=”schema”>
<complexType>

<choice minOccurs=”0” maxOccurs=”unbounded”>
<element name=” at tr ibuteGroup ” type=” attr ibuteGroup−def ”/>

<element name=”complexType” type=”complexType−def ”/>

<element name=”group” type=”group−def ”/>

<element name=” element ” type=” element−def ”/>

</choice>

<a t t r i b u t e name=” targetNamespace” use=” required ”/>

</complexType>
</element>

Listing 6.4: Schema top-level definitions

In addition, schema elements have an attribute called targetNamespace which
holds the identifier of the root type that is being defined. This should be a Uniform
Resource Identifier [BLFM98], although a generic string datatype is used here. As this
serves only as an identifier, the actual content of the attribute does not matter beyond
being unique.

122

6.2. Meta-schema

6.2.1 Types

Complex types are regular tree expressions that can be used as content for elements.
Elements that are not global, i.e. should not be valid start symbols, must be defined inline.
To avoid copying and pasting definitions for these elements, a separate type should be
defined and this type referred to in the declaration of the element.

Recall from section 4.1.4 on page 89 that a complex type allows a hierarchical structure
whereas a simple type only defines the textual content. In this thesis, the only simple
datatype available is a character string, and thus no provisions are made for defining
other simple types in the meta-grammar. Mixed content, i.e. elements and free text in-
terspersed, is in XSD (unlike e.g. in RELAX NG) specified as an indicator for the entire
type, which will require text elements to be inserted in the content model a posteriori.
However, this can be laborious and problematic and the implementation here is abridged
to support only mixed content in the style of DTD, i.e. in unbounded closures, so to cover
at least hypertext.

A top-level complexType can be seen as a named type carrier. There is however a
limitation in XSD that complexType cannot stand alone in definitions in the same way as
elements, but only be used as a complete content model. A related concept called a group
is intended as a replacement for entities. However, groups can be abused in attempts to
degenerate the grammar into a context-free language [LMM00b] and should therefore
be treated with caution as this is generally undetectable [HMU01], but still prevented
by the framework through not allowing appending operations on forward references (in
accordance with the notion of wellformedness of types in [HVP00]).

<group name=”type−def ”>
<sequence>

<group r e f =”model” minOccurs=”0”/>

<group r e f =” a t t r i b u t e s ” minOccurs=”0” maxOccurs=”unbounded”/>

</sequence>

</group>

Listing 6.5: Type definitions

<complexType name=”complexType−def ”>
<group r e f =”type−def ”/>

<a t t r i b u t e name=”name” use=” required ”/>

<a t t r i b u t e name=”mixed” use=” opt iona l ”/>

</complexType>

Listing 6.6: Complex types

Listings 6.5 and 6.6 show the definition of complexTypes. The definition of the the
content has been factored out to a separate group which will be reused later. In addition
to its content, it has two attributes on top-level: One that defines the name of the type
and another that tells if mixed content is allowed. The name must always be present at
top-level; otherwise the type cannot be referred to. The flag on the other hand is optional

123

Chapter 6. Exterior

and has a default value of false if not specified, meaning that the content of the type
being defined must strictly consist of elements alone and no free text.

A complex type contains a model that defines the content model and then a set of
attributes, neither which has to be present and therefore both the attributes group
and the model group must explicitly be set to optional. A group on the other hand can
contain one and only one compositor. Being present at the top level, they must also be
given names to be referable.

Even though there are no practical obstacles, a group cannot be used as an implicit
type with the group’s content embedded. (However, the framework does not discrim-
inate between how the type carrier was originally declared and will allow it without
issuing a warning, if a schema that is not validated is entered).

Compositors are entries that represent a regular tree expression that may contain mul-
tiple terms, and is defined in listing 6.7. A sequence is a list of particles that must all
be present, while choice is a list where only one can be, indicating a union. In regular
expression syntax (cf. section 2.1.3 on page 25), sequences were specified by separating
the particles by commas (,) and choices by separating them with bars (|).

<group name=” compositor ”>
<choice>

<element name=” sequence ” type=” p a r t i c l e s ”/>

<element name=” choice ” type=” p a r t i c l e s ”/>

</choice>

</group>

Listing 6.7: Terms for composite types

XSD contains a quirk in that only compositors and group references can occur at the
top level in a model. Single elements are not implicitly seen as model of their own, but
must be wrapped in a compositor or a group. Neither can a group reference occur within
the body of a group declaration, although the only effect this would have would be to
create an alias for the first group. Nevertheless, that is the reason for having compositor
specified as a separate group that is later reused in both group and model. The latter
extends the set of compositors with references to already defined groups (see listings 6.8,
and 6.9 on the facing page).

<complexType name=” r e f e r e n c e ”>
<a t t r i b u t e name=” r e f ” use=” required ”/>

<at tr ibuteGroup r e f =” occurs ”/>

</complexType>

Listing 6.8: References to globally defined entities

Note that the group reference in a model has not only an attribute that points to the
identifier, but that there also is a group of attributes from listing 6.10 on the next page
that controls the decoration (cf. section 2.4.7 on page 47). The compositors also have
these attributes, meaning that a closure can be specified for any model.

124

6.2. Meta-schema

<group name=”model”>
<choice>

<group r e f =” compositor ”/>

<element name=”group” type=” r e f e r e n c e ”/>

</choice>

</group>

Listing 6.9: Allowed model for a type

<at tr ibuteGroup name=” occurs ”>
<a t t r i b u t e name=”minOccurs” use=” opt iona l ”/>

<a t t r i b u t e name=”maxOccurs” use=” opt iona l ”/>

</attr ibuteGroup>

Listing 6.10: Decoration of model terms

The attribute minOccurs specifies how many instances of the term that must be
found, and is used to indicate whether it is optional or not. The only allowed values in
the framework are 0 and 1, with 1 being the default. The number of instances that can be
found is regulated with the attribute maxOccurs. The valid domain for this attribute is in
this thesis constrained to 1 and unbounded. Again is 1 the default, meaning that exactly
one instance is required if both of these attributes are omitted. The value unbounded

means that there is no limit on the times the term can occur, and designates a closure. For
an overview of how these attributes map to the decorations used in regular expressions,
refer to table 2.28 on page 47.

Strictly, the compositors in groups cannot contain occurrence attributes, but as this
would complicate the schema definition considerably, any specifications of these attributes
are propagated to the instantiation of the group, where they are allowed. Custom schemata
should refrain from exploiting this fact.

<complexType name=” p a r t i c l e s ”>
<choice minOccurs=”0” maxOccurs=”unbounded”>

<group r e f =”model”/>

<choice>

<element name=” element ” type=” element−i n l i n e ”/>

<element name=” element ” type=” r e f e r e n c e ”/>

<element name=” element ” type=” element−type ”/>

</choice>

</choice>

<at tr ibuteGroup r e f =” occurs ”/>

</complexType>

Listing 6.11: Particles

The contents of compositors and groups are made up of particles as defined in list-
ing 6.11 which represents a regular expression of the elements that will occur in the docu-
ments. A particle can be thought of as a type carrier. This can be given as a list of elements
or nested models. The nested models act like parenthesis would do in the regular expres-
sion syntax. Any number of particles may occur in the list, and each of these particles can
be decorated separately be using the attributes minOccurs and maxOccurs mentioned

125

Chapter 6. Exterior

before.

It this definition, the subset deviates from the standard in the way element particles
are described. Here, a choice between three element types with the same label (“ele-
ment”) is given. These forms describe elements that are defined inline, elements that
are referred to, and elements whose type is referred to, respectively. To be a single-type
grammar (cf. section 2.2.6 on page 31) only one content model can be specified for an
element with a given label. Since attributes are put on the type itself and not as part of
its model group, a choice cannot be used to express different mutually exclusive compo-
sitions of them (for a related discussion, see [SR01]). Yet, this is the prime distinctions for
element declarations. Thus, a non-deterministic model is employed in the meta-schema.
This feature will however not propagate into the schemata defined, i.e. it is still possible
to define single-type grammars using the XSD subset.

A more lax meta-schema that in itself is compliant with XSD can be defined by adding
the attributes type and ref to the complex type element-inline and mark both these
and the existing attributes as optional, enabling this type to be assume the role as the
only content model for <element>s. However, any inconsistent use the attributes for
this element can no longer be detected by the validator, but must be done in code. Also,
by increasing the number of optional attributes, validation will incur a performance hit.

During design of custom schemata, it is recommended that co-constraints like the
one above is avoided and rather resolved by using different labels instead of relying on
a polymorphic definition. Attributes that deals with the context of an element (such as
minOccurs) instead of the element itself should be shunned and replaced with wrapping
elements.

6.2.2 Elements

Elements can be defined globally in the schema for use as start symbols, or locally within
a particle list. XSD has the ability to lift a local element to the global level through the
attribute form, but this feature is not supported here.

A global element must have its content model defined inline. If it is desirable to enable
reuse of types for global elements, a choice similar to the one in listing 6.11 on the page
before could be added in the definition for schema, with no extra source code needed.

Models can be specified inline by a complexType element. If this element is omit-
ted, then the element will get an empty model, meaning that it cannot contain any sub-
elements nor any text and must be closed immediately using the short form described
in section 6.1.1 on page 120. The label of the element will always be the name given to
definition. For this reason, not only global elements but also elements that are defined
inline must be named. As with other particles, it must contain the attributes minOccurs
and maxOccurs to enable decorations to be specified.

Listings 6.12 and 6.13 on the next page contain the definition of inline elements. The
definition of the optional content complexType reuses the group type-def from list-
ing 6.5 on page 123. Although it may seem like a good candidate, the type
complexType-def is not reused for this element, as it contains the attribute namewhich

126

6.2. Meta-schema

cannot be put on inline type definitions. Note that the inline type defined for complexType
within an element and the type defined for a global complexType is identical apart from
this particular attribute.

<group name=” content ”>
<sequence>

<element name=”complexType”>
<complexType>

<group r e f =”type−def ”/>

<a t t r i b u t e name=”mixed” use=” opt iona l ”/>

</complexType>
</element>

</sequence>

</group>

Listing 6.12: Content models

<complexType name=” element−i n l i n e ”>
<group r e f =” content ” minOccurs=”0”/>

<a t t r i b u t e name=”name” use=” required ”/>

<at tr ibuteGroup r e f =” occurs ”/>

</complexType>

Listing 6.13: Inline element definitions

The definition for the type element-def that describes global elements is practically
the same as element-inline, but without the attribute group occurs. The main body
of the definition is put in the group content so it can then be reused by referral and the
appropriate attribute mix applied to the type afterwards.

References to globally defined elements are made by specifying the name of the ele-
ment in the ref attribute, just like references to groups. Consequently, the type
reference from listing 6.8 on page 124 is used for these.

An element may be specified locally but reuse a pre-defined type. This has the ad-
vantage that the element will not be visible at the top level. Instead of using the type
reference, a new type must be defined that contains not only the name of the type that
will constitute the element’s contents, but also an attribute for its label. Instead of using
ref for the identifier of the type referenced, type is used to designate that it is a type and
not a global element that is pointed to. As usual, name labels the element. Listing 6.14
shows such a definition.

<complexType name=” element−type ”>
<a t t r i b u t e name=”name” use=” required ”/>

<a t t r i b u t e name=” type ” use=” required ”/>

<at tr ibuteGroup r e f =” occurs ”/>

</complexType>

Listing 6.14: Using a type defined elsewhere

127

Chapter 6. Exterior

6.2.3 Attributes

Normally, attributes are defined in conjuncture with types, but they can also be specified
in a reusable group to avoid repeating their definition needlessly, akin to what can be
done with element groups. Where attributes can be put (inside type-defs), either com-
plete definition of the attributes must be presented, or a reference to a group containing
them. Definitions and references can be mixed freely. Listing 6.15 displays the group for
attributes.

<group name=” a t t r i b u t e s ”>
<choice>

<element name=” a t t r i b u t e ”>
<complexType>

<a t t r i b u t e name=”name” use=” required ”/>

<a t t r i b u t e name=” type ” use=” opt iona l ”/>

<a t t r i b u t e name=”use ” use=” opt iona l ”/>

</complexType>
</element>
<element name=” at tr ibuteGroup ”>

<complexType>
<a t t r i b u t e name=” r e f ” use=” required ”/>

</complexType>
</element>

</choice>

</group>

Listing 6.15: Individual attribute entries

Every attribute must be given a name, which is the key in the expression within the
opening marker of the host elements that sets this attribute’s value. The datatype allowed
for the text that makes up the value is given by type. If this is omitted, the default of
string is used, denoting a character string with no restrictions. No other datatypes
are implemented by the framework, but this attribute is still included in the subset since
it is sometimes explicitly set in custom schemata. Occurrence is not specified with the
usual attributes minOccurs and maxOccurs as for particles, but rather with use, which
is here limited to the values optional and required. Even though it has the same
semantics as minOccurs within the subset, this is not the case in the full XSD standard,
and hence is different names and values used. An attribute cannot occur more than once
in an element, so there is no attribute corresponding to maxOccurs.

The definition of an attributeGroup reference resembles that of the other refer-
ences defined by reference except for the lack of the occurrence specification, which
is propagated from the attributes within the group individually instead of being put on
the group as a whole. Attribute groups at the top level consists of simply a list of the
attributes that it should contain as well as the name of the group, much in the same way
as listing 6.6 on page 123 does.

6.2.4 Simpler variant

XSD can be pretty daunting at first sight, mostly because of the various context-dependent
constraints that are put on its elements. Therefore, it might be clarifying to create a simpli-

128

6.2. Meta-schema

fied definition of the grammar where no considerations to these idiosyncrasies are made,
in order to get an overview of the structure of a schema.

Listing 6.16 contains the meta-schema converted into DTD in its entirety. It contains
the same elements and attributes as the XSD version, but with a different composition.
This meta-schema is a local type grammar, meaning that each label has only one content
model associated with it. Hence, it will recognize some schemata that is not legal XSD
as it is unable to distinguish between the various contexts. However, all of the schemata
that is allowed by the framework will successfully be validated by it. Thus, it can be used
as a negative test; schemata that fails by it will not be allowed in the repository either.

<!ELEMENT a t t r i b u t e EMPTY >

<!ATTLIST a t t r i b u t e name CDATA #REQUIRED
type CDATA # IMPLIED
use CDATA # IMPLIED >

<!ENTITY % a t t r i b u t e s ” (a t t r i b u t e | at tr ibuteGroup)∗ ” >

<!ENTITY % named ”name CDATA # IMPLIED
r e f CDATA # IMPLIED” >

<!ELEMENT at tr ibuteGroup %a t t r i b u t e s ; >

<!ATTLIST at tr ibuteGroup %named; >

<!ENTITY % occurs ”minOccurs CDATA # IMPLIED
maxOccurs CDATA # IMPLIED” >

<!ELEMENT element (complexType)? >

<!ATTLIST element %named ;
type CDATA # IMPLIED
%occurs ; >

<!ENTITY % compositor ” sequence | choice ” >

<!ENTITY % model ”%compositor ; | group” >

<!ENTITY % p a r t i c l e s ”(%model ; | element)∗ ” >

<!ELEMENT sequence %p a r t i c l e s ; >

<!ATTLIST sequence %occurs ; >

<!ELEMENT choice %p a r t i c l e s ; >

<!ATTLIST choice %occurs ; >

<!ELEMENT group (%model ;) ? >

<!ATTLIST group %named ;
%occurs ; >

<!ELEMENT complexType ((%model ;) ? , % a t t r i b u t e s ;) >

<!ATTLIST complexType name CDATA # IMPLIED
mixed CDATA # IMPLIED >

<!ELEMENT schema (at tr ibuteGroup | complexType | group | element)∗ >

<!ATTLIST schema xmlns CDATA # FIXED ” h t t p : //www. w3 . org /2001/XMLSchema”
targetNamespace CDATA #REQUIRED >

Listing 6.16: Meta-schema in DTD

It was created by collecting all models for elements with the same label and amalga-
mate them into one. The attributes that are not omnipresent are made optional in order
to allow them to be missing in some context. This has of course the drawback that they
can also be left out from vital places without being detectable by the meta-schema. Gen-
erally, a local tree grammar whose language is a superset of a regular tree grammar’s can

129

Chapter 6. Exterior

always be created [Mur99].

Entities have the same names as the groups in the XSD subset to which they corre-
spond, to ease comparison between the two grammars.

6.2.5 Unsupported features

To arrive at a manageable subset, not only obscure features but also more common facets
were discarded from the meta-schema. This section enumerates some of these aspects
to explain why they were not included as well as pointing to the direction future work
should take in order to reincorporate them. None of the suggestions mentioned here have
been incorporated into the existing code. Knowing the limitations will also be of help in
designing custom schemata that is intended for use in the framework.

Restrictions and extensions. Inheritance from other types is not supported on two grounds.
First, it adds a lot of extra syntax for the meta-schema to handle and second, it is difficult
to build an extension sequence on top of a forward reference. Removing and constraining
type carriers is even more cumbersome. Solving these problems can be done by intro-
ducing a front-end that does a topological sort of type definitions and then construct the
corresponding type carriers piece-wise afterwards. A workaround in this version, is to
use aggregation of groups instead of extension, as is exemplified by listing 6.9.

Simple datatypes. Allowing constraints on free-form text adds an entire new dimension
in matching. As this thesis is concerned mainly of structure and not really of content,
this is omitted. Section 4.2.4 on page 93 discusses how simple types can be added to the
framework in general.

Permutations. Only the compositors sequence and choice is supported, whereas
<all> is not. An unordered set of particles would amount to a union between all pos-
sible permutations, inflating the size of the type carrier. This issue can be resolved by a
front-end which generates them all, replacing the set with the resulting union.

Free units. Global attributes and multi-schema specification are not available as units
defined this way will be pervasive. They would have to be added as an optional fea-
ture of every element, adding further to the space and time complexity of the carriers
being created. However, this cost would only incur for schemata that actually utilize the
feature.

Declaration order. Groups must be defined before they are employed. Recall from
section 2.4.8 on page 51 that forward references cannot be used as the head of a se-
quence.Types are not subject to this limitation because they are only allowed as complete
and not partial content and will hence be encapsulated between labels. Usually this con-
straint is of a more practical nature as circular groups are not allowed anyway. Thus,
there will always be a well-defined order between them and it boils down to a matter of
where the definition is physically located in the file.

Attribute order. For the same reason that permutations are not supported, documents
must contain attribute expressions in the same order of appearance as in the schema
definition for the element on which they are applied. Like many of the other items, it can
if found to be a major obstacle be remedied by introducing a front-end that both sorts the

130

6.3. Processing model

attributes on name upon reading the documents and rearranges the attribute order in the
schemata correspondingly.

6.3 Processing model

Java contains a package for XML reading and processing called JAXP [MDB01], and this
section discusses the usage and minor adjustments needed to align it with the framework
presented in this thesis.

6.3.1 Streams

The traditional model for input/output has been to pull a chunk of (character) elements
from a stream. Instead of reading characters, JAXP is instead based on getting parsing
tokens from the source. Opening and closing markers and free text are the main con-
stituents of these tokens, along with some more esoteric ones that are not interesting in
this context.

Unlike the pull-based model where elements are typically read in a loop and then
acted upon, JAXP employs a push-based model where the loop is hidden inside the
framework in a manner similar to what is common in window handling packages such
as e.g. Swing, and the elements are dispatched to a handler in the form of an event. Con-
tentHandler is the interface for such handlers, and the relevant events are partially listed
in listing 6.17. In order to handle these events, the receiving class must implement this
interface and override the methods.

/ / p a c k a g e org . xml . sax
i n t e r f a c e ContentHandler {

void s tar tE lement (S t r i n g namespace , S t r i n g localName , S t r i n g qName , A t t r i b u t e s a t t s) ;
void endElement (S t r i n g namespace , S t r i n g localName , S t r i n g qName) ;
void c h a r a c t e r s (char [] ch , i n t s t a r t , i n t length) ;
// · · ·

}

Listing 6.17: Callbacks for parsing events

The events startElement and endElement notifies the handler that an element
has been opened and closed, respectively. The first three parameters describe the tag of
the element. The namespace identifies the schema in which it was defined and the local
name is the text that makes out the tag itself. The collection atts contains all the attribute
assignment expressions that was found in the opening marker.

The event characters method will be called every time free-form text is found be-
tween markers, including indentation whitespace that is normally not intended to be a
part of the value carrier for the document. It may be called several times for the same ele-
ment, even without the occurrence of elements in between text. Entities are expanded and
translated into their definition before this method is called. Note that the array passed as
parameter may also contain other data than the text; only the range specified by the two
last parameters are considered valid for inspection.

131

Chapter 6. Exterior

A call to endElement with the same parameters as startElement is said to be
matching if there has been an even number of opening and closing events between them,
i.e. they are for the same element. All events that occurs between these two such matching
events are on the contents of the element.

Custom semantic properties is not provisioned for in the generic handler. Information
that needs to be exchanged between events must be stored as fields in the handler object
to be available to all callback methods. Also missing is a well-defined way of switching
handlers during processing based on the events received, characteristic of a finite state
machines. This must be done by either exposing the input source to the handler or by
introducing a delegating layer which can perform the switch. The latter approach is the
one that will be taken by a later section in this chapter.

6.3.2 Flow

Parsing the character stream into markup events are modeled by the interface XMLReader.
As the excerpt in listing 6.18 shows, it consists of a property setContentHandler that
should be set to the handler that will receive the events, and an action parse that will
trigger the processing of a given document. The events will be called during invocation
of this method. It is synchronous, meaning that the thread will block until the entire
document is done or an error has occurred.

/ / p a c k a g e org . xml . sax
i n t e r f a c e XMLReader {

void setContentHandler (ContentHandler handler) ;
void parse (InputSource input) ;
// · · ·

}

Listing 6.18: Source of events

InputSource is an indirection to the underlaying stream from which characters are
fetched. It may seem like a superfluous wrapper, but its added value is in the ability
to specify the encoding of the stream and to identify from which entity it was loaded,
neither of which are utilized by this thesis. It would also have been an excellent place to
integrate retrieval from diverse sources, but this opportunity has not been seized.

XMLReader r = SAXParserFactory . newInstance () . newSAXParser () . getXMLReader () ; // (1)
r . s e t F e a t u r e (” ht tp ://xml . org/sax/ f e a t u r e s /namespaces” , t rue) ;
r . s e t F e a t u r e (” ht tp ://xml . org/sax/ f e a t u r e s /namespace−p r e f i x e s ” , f a l s e) ;
r . setContentHandler (/∗ · · · ∗ /) ; // (2)
r . parse (new InputSource (new Str ingReader (/∗ · · · ∗ /))) ; // (3)

Listing 6.19: Instantiating a parser

Reading a document hence takes form of the three steps in listing 6.19. First, a parser
must be requested. This is done through a factory object, to obtain interchangeability
between parsers by altering a configuration setting. Here, a SAX parser is requested as
this is appropriate for push-based processing. To handle namespaces correctly, some flags

132

6.3. Processing model

must be set. The first regulates whether namespaces are supported, and the second if a
blank attribute (!) will be set to the current namespace. Strangely, these values are the
default of the SAX specification, but are not set correspondingly in the Java package!

Second, this parser must be initialized with the handler that will receive the events,
and third is the parsing started. In this example, both the objects specifying the handler
and the input stream has been elided for simplicity.

By creating a handler chain, more than one handler can operate on the same document
without doing a complete reparse for each of them. This means that large documents can
be processed in one pass without claiming temporary storage, easing the space require-
ment burden for the server running the application. A chain is set up by letting the first
hook receive the event and then pass it on to the next in the chain. If so is desired, it may
even change the events in transit, filtering the information. The parser is unaware that
more that one handler is subscribing to events, as the first hook is the only one it relate
to.

The interface for frontends that do preprocessing of the events before they are for-
warded to the ultimate handler is a descendant of XMLReader called XMLFilter. In-
heriting the reader makes the frontend indistinguishable from it, requiring no changes at
the client side. In addition to setContentHandler that let one specify the target, filters
also contains the method setParent which is used to set the source from which events
are delivered. (The filter will install itself as the source’s handler, thus creating a chain).

To assist in creating filters, JAXP provides the class XMLFilterImpl. It implements
both XMLFilter and ContentHandler, directing events to itself instead of a specified
external handler. It provides a default implementation for each event that will forward
the event, so only the methods for the events of interest must be explicitly overridden. To
prevent the event from being terminated, the base class implementation should be called
at the end of each callback, and it will pass it on to the next handler in the chain. The
relationship between these classes and interfaces is shown in figure 6.20.

XMLReader
+setContentHandler()
+parse()

XMLFilter
+setParent()

XMLFilterImpl

ContentHandler
+startElement()
+endElement()
+characters()

Figure 6.20: JAXP package

Handlers based on this class turns out to be very versatile as they can be used both
stand-alone or as part in a chain, and this is therefore recommended design. When devel-
oping with a pull-based model, all logic should be implemented in filters and the message
pump be a separate component that is not integrated with any of them, maximizing the

133

Chapter 6. Exterior

flexibility in combining these in various settings.

Events originate from the “uppermost” of parents, i.e. the filter that does not have
any parent itself, and then trickles down through the chain to the handler that is not
parent of anyone. Because of the dual role of a filter as both a source and a target, either
setContentHandler or setParent can be used to add handlers to the chain.

Listing 6.21 illustrates how this is done. Both of these examples create a chain that
invokes handlers a, b and c in that order. If setParent is used as in listing 6.21(a), filters
are added at the end and parse is called on the last filter, pulling event through the
chain. Contrast this with listing 6.21(b) where a filter is added in front of a handler and
then the first filter is activated to push events.

b . s e t P a r e n t (a) ;
c . s e t P a r e n t (b) ;
c . parse (/∗ · · · ∗ /) ;

(a) Downwards

b . setContentHandler (c) ;
a . setContentHandler (b) ;
a . parse (/∗ · · · ∗ /) ;

(b) Upwards

Listing 6.21: Creating a parsing chain

6.3.3 Extensions

While JAXP contains wide-ranging support for manipulating XML document elements
through the DOM, it makes no attempt to unify this with the streaming model, resulting
in a lack of ability to persist parsing tokens. This section introduces two helper classes
that has been added by this thesis to fill this gap. They are completely generic and not
bound to any other part of the framework otherwise presented.

XMLWriter. Not all handling of the document may be within the same process, so there-
fore the need to serialize the document back to a character stream arise. The class XMLWriter
does the opposite of an XMLReader; instead of being an event source, it is an event sink.
As events are received, corresponding text is being written to a given stream.

Being filters, objects of this class can either be the end-point of a chain, sending the
document to a descriptor such as a socket or a file, or they can work as a log that traces
the document that is sent through the chain.

SAXEvent/SAXBuffer. In addition to transporting events between different process spaces,
it may be necessary to move them across the time dimension as well. An example of this is
when the header of the document determines how the body should be processed, it can-
not be implemented with a switch of handlers as the header must be included in process-
ing too. The solution is then to buffer the events while filtering them through detection
logic. When enough has been read, the correct handler is installed and the hold buffer is
replayed onto it before commencing further processing where parsing previously left off.

Every event is modeled as an object that is based on the abstract class SAXEvent

stating that it must be able to replay itself to a given handler. On receiving an event,
SAXBuffer will store all the parameters into such an object and add these to a list.

134

6.4. Attributed grammars

Hence, the events are transformed into function objects. For instance is startElement
turned into an instance of the class SAXStartElementEvent.

The difference between this approach and building the Document Object Model (DOM)
is that here a tree is not created, but the events are rather stored linearly and is more akin
to the character stream from which they originated. The buffer can instead be seen as a
binary representation of a tokenized but yet unparsed document.

6.4 Attributed grammars

A SAX “parser” is not really a parser in the traditional sense of the word as used in
compiler theory. It is more like a scanner, whose task is to do preprocessing to remove
comments and to transform the stream from raw characters into tokens that can more
easily be worked on by the parser.

The job of the (real) parser is to convert syntax objects into semantic objects [ASU86],
on which semantic calculations can be performed to retrieve the meaning of the text
[EMRS97]. Input objects to such a calculation are called inherited while output objects
from it are called synthesized. Semantic objects also go by the name attributes since they
are attached to symbols of the grammar. However, to avoid confusion with the markup
counterparts, this thesis will stick to the former term. To perform the analysis brought
forward by previous chapters, the semantic objects that are interesting to retrieve are
value carriers from documents and type carriers from schemata.

In this section, a method of extracting these objects from the syntax that has been laid
out in sections 6.1 and 6.2 using the processing model from section 6.3 will be presented.
Since this describes how the semantical objects are built from the external syntax, it is
called a syntax directed definition.

6.4.1 Semantic stack

Normally, a syntax directed definition describes the flow of semantic objects between
the grammar productions. As the algebras in this thesis are built in a functional matter,
each object can be synthesized from the objects that makes out its immediate children,
with the exception of a symbol table that is inherited from its ascendants and siblings
to accommodates references declared earlier. This kind of flow belongs to a class called
L-attributed definitions, where the evaluation of semantic objects can be done with a
single depth-first traversal of the syntax tree [ASU86].

Being able to perform evaluation in this manner fits well with processing the docu-
ment using a stream-based method such as SAX. Instead of building a parse tree first,
virtual nodes can be visited upon events indicating that the element is entered or left,
skipping that intermediate form completely. An auxiliary stack is needed to hold the
semantic objects that are currently in scope.

When an element is opened, a construct known as a builder is created. This builder
will accumulate information from the contents that is needed to create a semantic object
for this element. If the semantic objects had been mutable, the information could have

135

Chapter 6. Exterior

been passed directly to them, but in order to provide all arguments to the constructor si-
multaneously, a temporary storage is needed in time till they are all completed. A builder
is roughly equivalent to a grammar production in traditional compiler generation tools.

The builder is then put on the parse stack, where it will receive objects from all child
elements. At the end of an element, the builder is popped from the stack and realized into
a semantic object which is then sent to the builder of the parent, which is now the new top
of the stack. The root element will thus eventually realize into an object that represents
the entire document. Table 6.22 exemplifies the parse of a document into a value.

Document parseStack[0] parseStack[1] parseStack[2] parseStack[3]

<a> ⊥ ⊥
 ⊥ ⊥ ⊥
 ⊥ b
<c x="· · ·"> ⊥ b @x
</c> ⊥ b, c[@x]
<d> ⊥ b, c[@x] ⊥

<e> ⊥ b, c[@x] ⊥ ⊥
</e> ⊥ b, c[@x] e

</d> ⊥ b, c[@x], d[e]
 a

[

b, c[@x], d[e]
]

Table 6.22: Parsing stack during document build (after each event)

In the following sections, specialized builders for value and type carriers will be pre-
sented. For a more general approach that uses reflection to automate the builder, relieving
the developer from hand-coding it, see [Zuk01]. The downside is however that it does
not allow any mismatch between the schema and class model.

6.4.2 Value building

Generating value carriers from documents is a relatively straight-forward task since the
mapping from one to another is more or less one-to-one as the algebra was designed to fit
exactly that purpose. Due to this simplicity, building values serves as a nice example of
the technique. As the builder always operate on the same carrier class and the operations
of the builder correspond to the ones in the algebra, the parse stack can contain the carri-
ers directly and the building operations made static in respect of it. The builder inherits
from XMLFilterImpl so it can be used as a handler receiving scanner events.

public c l a s s ValueBuilder extends XMLFilterImpl {
Stack /∗<Value>∗ / parseStack = new Stack () ;
public ValueBuilder () { parseStack . push (null) ; }
// · · ·

}

Listing 6.23: Parser stack setup

136

6.4. Attributed grammars

Listing 6.23 on the facing page displays the setup of the parser stack. A new stack
is created and filled with the Value equivalent of an empty document, namely the null
reference. This is done to ensure that the stack is always filled with valid content, so
testing for boundary conditions all the time is avoided. The null reference is the additive
value for the concatenation operation and is therefore the ideal candidate for a neutral
starting point.

The same thing is done locally within the construction of a value element, as can be
witnessed in listing 6.24. The stack is prepared with a carrier that will hold the content of
the element. An accumulator value is initialized to null in the line marked with (1). This
temporary carrier embodying the builder is then pushed to the parse stack, so that child
elements (other than attributes) will be directed at it. This happens in the line marked
with (2). If any attributes are present, they will be passed to the start event as a collection
parameter and not as separate events. The code iterate through this collection and add
each of the attributes to the accumulator in (3). Finally, the event is in (4) forwarded to
the super class where it would propagate through the rest of the handler chain.

/ / c l a s s V a l u e B u i l d e r
public void s tar tE lement (S t r i n g uri , S t r i n g l o c a l , S t r i n g q u a l i f i e d , A t t r i b u t e s a) {

Value content = null ; // (1)
parseStack . push (content) ; // (2)
for (i n t i = 0 ; i < a . getLength () ; i ++)

add (Value . a t t r (a . getLocalName (i) , a . getValue (i)) ; // (3)
super . s ta r tE lement (uri , l o c a l , q u a l i f i e d , a) ; // (4)

}

Listing 6.24: Adding a new builder to the parse stack

Adding an element to the contents is done with the helper routine displayed in list-
ing 6.25. It first pops the stack for the current element and then uses the combinemethod
to append the element is question to its tail. The value carrier representing the new se-
quence is the added back to the parse stack, effectively replacing the old sequence.

/ / c l a s s V a l u e B u i l d e r
void add (Value v) {

Value s i b l i n g s = (Value) parseStack . pop () ;
parseStack . push (Value . combine (s i b l i n g s , v)) ;

}

Listing 6.25: Sending content to the current builder

When the closing marker of the element is encountered, a sequence corresponding to
the content will be at the top of the stack. It is dequeued and combined with the label
provided as an parameter to the event, to a new carrier which represents the element.
This value is then added to the parent sequence. After the content was popped, the
content of the parent remains on the stack, and this is the sequence in which this element
resides. Listing 6.26 on the next page shows how this is implemented.

Free-form text is handled just like an element, but instead of inspecting the stack for
any child elements, the text is extracted directly from the parameter that is passed to the

137

Chapter 6. Exterior

/ / c l a s s V a l u e B u i l d e r
public void endElement (S t r i n g uri , S t r i n g l o c a l , S t r i n g q u a l i f i e d) {

Value content = (Value) parseStack . pop () ;
add (Value . l a b e l (l o c a l , content)) ;
super . endElement (uri , l o c a l , q u a l i f i e d) ;

}

Listing 6.26: Converting the current builder into a semantic object

event and a special element that is intended for holding parsed character data is created
(cf. section 4.1.3 on page 87) as illustrates by the snippet in listing 6.27. Indentation is
deemed insignificant and removed from each of the sides of the text.

/ / c l a s s V a l u e B u i l d e r
public void c h a r a c t e r s (char [] ch , i n t s t a r t , i n t length) {

S t r i n g t e x t = S t r i n g . copyValueOf (ch , s t a r t , length) . tr im () ;
add (Value . data (t e x t)) ;
super . c h a r a c t e r s (ch , s t a r t , length) ;

}

Listing 6.27: Handling free-form text

The bottom of the parse stack holds not the content of an element, but the content of
the entire document. Another way to see this is to pretend that there is a virtual element
that contains the root element. (The DOM for instance, contains such a notion). Thus,
when the document has been processed, there will only be a single element on the stack
and this would be the value carrier for the root element in the document. Listing 6.28
depicts how this ultimate element is publicized for the application code to retrieve after
the processing is complete.

/ / c l a s s V a l u e B u i l d e r
public Value get () {

a s s e r t parseStack . s i z e () = = 1 ;
return (Value) parseStack . peek () ;

}

Listing 6.28: Retrieving the semantic root object

6.4.3 Environment

Documents are strict tree structures, where nodes do not occur more than at most once in
any path. Types on the other hand, may form graphs with cycles, due to the possibility of
forward references. In code, such references can easily be set up imperatively using the
host language’s support for object references (see for example listing 2.33 on page 50). To
do the same in schema declarations, there must be a way to convert names into references.

Units that are reachable are said to be within the environment of the scope, and the
mapping between the name and the reference is stored in a symbol table. A lookup in the
environment is done to resolve a referenced unit from its name. Since all declarations are

138

6.4. Attributed grammars

global in the meta-schema subset selected, there are no practical difference between the
environment and the symbol table in this thesis.

The code to find a type carrier from its name is presented in listing 6.29. A map is
first consulted to see if an entry has been defined for this name. If that is the case, this
reference is returned directly and the environment acts like nothing more than a wrapper
of the symbol table.

/ / c l a s s Environment
Type lookup (S t r i n g name) {

Type t = (Type) symbolTable . get (name) ;
i f (t = = null) {

t = new Ref () ;
symbolTable . put (name , t) ;

}
return t ;

}

Listing 6.29: Lookup in the symbol table

More interesting is the case of the name not being found. The environment will then
create a forward reference that will later be bound to this unit when (and if) it is defined,
and this reference is returned. The reference is also added to the symbol table so that
other lookups will return the same reference, to avoid having more than one outstanding
references to backpatch when the identifier is later discovered.

Hence, the lookup operation will always return a legal type carrier, even though the
unit that was referenced has not been seen yet during parse of the schema! Error handling
that checks for an invalid carrier being returned, is not necessary in the builders. Any
missing references will be detected upon the first use of the carrier, although this can also
be provoked with a simple call to deref after the parse is completed.

When a named unit is defined (at the top level), it must be entered into the symbol
table. This is performed by the bind method in the environment, and the code for this
operation can be found in listing 6.30.

/ / c l a s s Environment
void bind (S t r i n g name , Type t) {

Type old = (Type) symbolTable . get (name) ;
i f (old ! = null) {

a s s e r t old instanceof Ref ;
((Ref) old) . ass ign (t) ;

}
symbolTable . put (name , t) ;

}

Listing 6.30: Adding to the symbol table

A check is first performed to determine whether a new symbol is being entered or if
an old symbol is being replaced. Only forward references can be replaced; anything else
indicates a duplicate definition, which is not permitted. Regardless of the old content, it
is the new carrier that is bound to the name after the bind operation.

139

Chapter 6. Exterior

In the code accompanying the thesis, a specialized reference that also hold the name
of the unit is used, to simplify debugging of missing references. Even other references
can be assigned to a reference, chaining them, but although supported by the framework
this feature is never employed by the meta-schema as aliases are not supported.

6.4.4 Type building

Compared to values, types are harder to build. There is not a direct and trivial mapping
from the schema to the type carrier, although the semantic discrepancy is admittedly low.
Instead of operating directly on the resulting values on the parse stack, the translation
between the schema and the type carrier is done with a set of builders. However, as
all of these builders are focused on producing type carriers as a result, a generic builder
model like the one in the previous section can still be conceived, with the core evaluation
delegated to mini-builders. Each such mini-builder is called a semantic action, which is
the equivalent of a grammar production translation scheme. Such actions are modeled
with the interface shown in listing 6.31.

i n t e r f a c e Action {
void setScope (Environment env) ;

Environment getScope () ;
NamedType getType () ;

void onAttr ibute (S t r i n g name , S t r i n g value) ;
void onChild (S t r i n g name , NamedType value) ;

}

Listing 6.31: Semantic actions

This interface specifies that an action in the type builder has one inherited method
setScope that receives the symbol table upon entry, and two synthesized methods
getScope that can be used to pass this symbol table onto child elements, and getType

that yields the resulting type of the production upon completion. An action is a function
object where all the arguments are set as properties.

Output objects from each child are delivered to the action through the methods
onAttribute and onChild, depending on whether these were defined with an at-
tribute or a child element respectively. Each action will define its own set of valid proper-
ties (right-hand-side symbols), whose names are not hard-coded in the definition of the
method but rather passed in the argument name for each invocation. Hence, these two
methods handle a range of dynamic properties. The builder can then be designed in a
generic fashion independent of the content being processed. The responsibility of check-
ing if a valid property was attempted set thus falls on the action, not on the builder. Note
that a property may be set more than once, indicating that it is has an (multi-value) array
type.

The only thing that ties the action interface to the builder is the class of the resulting
synthesized object. NamedType is a plain old data structure that simply aggregates a
String and a Type in order to treat those two as a pair. If the type carrier is labeled,

140

6.4. Attributed grammars

its name will follow it to the parent in whose environment it is subsequently added. The
name is optional, enabling types to be anonymous if the name is not given but set to
the null reference. This cumbersome method is imposed by XSD which does not have
a separate construct to bind type expressions to identifiers but rather does this through
labeling the expression itself.

Each kind of element in the XSD subset is a non-terminal that will have a correspond-
ing grammar production associated with it, describing its valid content symbols. The
definition in section 6.2.4 on page 128 is reminiscent of such a grammar. To associate each
schema element with the action that handles this production, the builder maintains a
mapping of their names to a factory that can instantiate the appropriate implementation.
Listing 6.32 shows how this map is filled by an anonymous inner class with an instance
initializer.

/ / c l a s s T y p e B u i l d e r
Map/∗<Str ing , Class>∗ / a c t i o n s = new HashMap () { {

put (”group” , GroupAction . c l a s s) ;
put (” element ” , ElementAction . c l a s s) ;
put (” sequence ” , SequenceAction . c l a s s) ;
put (” choice ” , ChoiceAction . c l a s s) ;
put (”complexType” , ComplexTypeAction . c l a s s) ;
put (” a t t r i b u t e ” , At t r ibuteAct ion . c l a s s) ;
put (” at tr ibuteGroup ” , AttributeGroupAction . c l a s s) ;
put (”schema” , SchemaAction . c l a s s) ;

} } ;

Listing 6.32: Mapping actions to schema elements

When an element is found in the schema, the type builder will locate the appropriate
action factory (1) and use it to create a new instance (2) that will be handling the evalu-
ation of this particular element. The scope in then retrieved from the parent (3) and sent
to the new production (4) to initialize the environment before the invoked production is
put on the parse stack (5). Observe that since the environment is a mutable object, any
changes will propagate to the ancestors. Now, the action is ready to receive its properties
and the builder sends the attributes first (6) before returning to the scanner letting the
child elements apply themselves. Listing 6.33 contains this procedure.

/ / c l a s s T y p e B u i l d e r
public void s tar tE lement (S t r i n g uri , S t r i n g localName , S t r i n g qName , A t t r i b u t e s a) {

Class bui lder = (Class) a c t i o n s . get (localName) ; // (1)
Action current = (Action) bui lder . newInstance () ; // (2)
Action parent = (Action) parseStack . peek () ; // (3)
current . setScope (parent . getScope ()) ; // (4)
parseStack . push (current) ; // (5)
for (i n t i = 0 ; i < a . getLength () ; i ++)

current . onAttr ibute (a . getLocalName (i) , a . getValue (i)) ; // (6)
super . s ta r tE lement (uri , localName , qName , a) ;

}

Listing 6.33: Invoking a new production

Recall that the parse stack contains the (mini-)builders for the elements in the path
down to the current one, and this stack must be updated every time an element is opened

141

Chapter 6. Exterior

or closed. The evaluation of the productions will follow the structure of the schema doc-
ument, as the abstract syntax tree of a grammar is a regular tree [CDG+02, HMU01],
effectively meaning that a markup document is essentially a parsed grammar ready to be
evaluated. The production is evaluated when the element ends, and listing 6.34 displays
the steps necessary.

/ / c l a s s T y p e B u i l d e r
public void endElement (S t r i n g uri , S t r i n g localName , S t r i n g qName) {

Action current = (Action) s t a c k . pop () ; // (7)
NamedType type = current . getType () ; // (8)
Action parent = (Action) s t a c k . peek () ;
parent . onChild (localName , type) ; // (9)
super . endElement (uri , localName , qName) ;

}

Listing 6.34: Evaluating the production into a semantic object

All child elements has been evaluated and aggregated into the action at the time the
element is closed. The action is popped from the parse stack (7) and then a type carrier is
extracted from it (8). This semantic object representing the element, is sent to the parent
which is now the current top of the parse stack (9). The name of the element available
in the parameter localName, is used as the property to which the semantic object is
communicated.

The builder is not dependent on any details of the schema language selected as the
translation scheme is left at the discretion of the actions. If support for another schema
language such as RELAX NG [CM01] is desired, it is a matter of changing the available
set of productions to another that comprehend its syntax.

6.4.5 Productions

Action objects promote a design where each semantic expression is dealt with isolated,
enabling focus to be kept locally within the production and selectively ignore consider-
ations from other parts of the grammar. It can be inductively assumed that properties
are initialized correctly due to the processed schema being valid according to the meta-
schema, and each production generating the applicable type from these.

This section will review some of the core actions of the XSD subset in order to give an
impression of how the model works. All actions inherit from DefaultAction, which
centralized common chores such as reporting assignment to non-existent properties as
errors.

Schemata are containers for the elements and other constructs that are defined at the
top level. Its responsibilities are to register these global units in the symbol table and to
provide a reference to a valid starting symbol for the grammar.

Listing 6.35 on the next page illustrates how this task is accomplished in the
SchemaAction action, which is handling the <schema> element. Upon being notified
of a child element, the tag is inspected to determine if it represents a labeled element or a
type construct and branch into the correct logic correspondingly. The label must be used

142

6.4. Attributed grammars

/ / c l a s s SchemaAct ion e x t e n d s D e f a u l t A c t i o n
public void onChild (S t r i n g name , NamedType value) {

i f (name . equals (” element ”)) {
Label l a b e l = (Label) value . model ;
env . bind (”/” + l a b e l . tag () , l a b e l . content ()) ;
s t a r t = s t a r t . union (l a b e l) ;

}
else i f (name . equals (”complexType”) | | name . equals (”group”)) {

env . bind (value . tag , value . model) ;
}

}

Listing 6.35: Registering top-level units in the symbol table

as a differentiator since a complex type may consist of only a single labeled element and
hence be indistinguishable from an element in itself by looking at the resulting semantic
object.

Global elements are referred to using the label prefixed by a slash, which is otherwise
not allowed to occur in names and can therefore be used as a special token to prevent
clashes with other units in the unified symbol table as types and elements are normally
regarded to be in two different namespaces. They are also added to a field that holds the
union of all legal start symbols, while free types are only bound directly into the symbol
table by the name given to them.

/ / c l a s s E l ementAct i on e x t e n d s P a r t i c l e A c t i o n
public void onAttr ibute (S t r i n g name , S t r i n g value) {

i f (name . equals (”name”))
tag = value ;

else i f (name . equals (” type ”)) {
content = env . lookup (value) ;

}
else i f (name . equals (” r e f ”)) {

tag = value ;
content = env . lookup (”/” + value) ;

}
else

super . onAttr ibute (name , value) ;
}

Listing 6.36: Aggregating element attributes

Basic types representing labeled elements receive the information necessary to build
the carrier through a set of attributes put on the <element> that defines them. The action
ElementAction is the target of these events, and listing 6.36 shows how it aggregate
content for the fields tag and content representing constructor arguments, depending
on the information that is passed to it. The error code handling inconsistency between
the combinations of attributes allowed have been omitted for brevity.

If a pair of name and type attributes are set, then the label is given directly while
the type must be looked up in the symbol table, both from the value of the attribute.
Although they work as a pair, the attributes are set independently. The attribute ref on
the other hand, refers to a global element providing both the label and the content model
and hence set both of these fields at the same time. Observe that a slash is prepended to

143

Chapter 6. Exterior

the label to select the namespace of elements instead of complex types.

When the element is to be realized, the fields are combined into a type carrier using
the appropriate constructor, as can be seen in listing 6.37. Complex types are combining
their model and their attributes in a similar manner.

/ / c l a s s E l ementAct i on e x t e n d s P a r t i c l e A c t i o n
Type get InternalType () {

return Type . l a b e l (tag , content) ;
}

Listing 6.37: Evaluating the labeled element production

Other actions keep a field that represents the resulting object rather than the ingredi-
ents and keep this updated at all times. This approach is selected when the element has
a variable number of children. Instead of keeping a separate list, the type carrier itself is
used as a collection.

Compositors such as <sequence> and <choice> exhibit this behavior. The imple-
mentation of ChoiceAction which handles unions, is displayed in listing 6.38. The
type carrier for the union is stored in the field called model. This field is initialized to
an empty set, which is the default model for a union with no elements. All particles that
are encountered inside this compositor will be added to the union, whereas children of
unknown type are ignored and sent to the base class for error handling.

c l a s s ChoiceAction extends P a r t i c l e A c t i o n {
Type model = Type . oe () ;

public void onChild (S t r i n g name , NamedType value) {
i f (name . equals (” sequence ”) | | name . equals (” choice ”) | |

name . equals (” element ”) | | name . equals (”group”)) {
model = model . union (value . model) ;

}
else

super . onChild (name , value) ;
}

Type get InternalType () { return model ; }
}

Listing 6.38: Computing semantic expression during property assignment

Since model always contains the current contents of the union, evaluating the se-
mantic object consists simply of returning this field with no further ado, as is done in
the method getInternalType. This does not expose the internal state of the action,
as the Type carrier is immutable. Hence, there is no chance that a returned object will
be changed through the reference that the action holds. Anyway, it is assumed that the
builder will only call getType once for each builder, and that no properties will be set
after this is done.

Notice that neither ElementAction nor ChoiceAction implement getType from
the interface Action, but rather the method getInternalType which is defined in
their superclass ParticleAction. This class is the foundation for all schema constructs

144

6.5. Summary

that can act as particles and thus be decorated with a cardinality different from one, indi-
cating that they are optional, repeatable or both.

Handling of the attributes minOccurs and maxOccurs that controls the occurrence
of the particle is common functionality for all particles and therefore most rationally
placed in a base class which is sandwiched in between the ultimate ancestor
DefaultAction and the concrete class for the production.

This class overrides the semantic evaluation with the code in listing 6.39 to decorate
the type that is returned from the particle’s content, according to the property settings. As
only particles can have occurrence constraints, it is assumed that subclasses that override
getInternalType will yield anonymous types and thus have no name with which to
tag the resulting semantic object. Occurrence constraints and labels are mutually exclu-
sive: Particles that are not at top-level cannot be labeled and decorations at the top-level
makes no sense.

/ / c l a s s P a r t i c l e A c t i o n e x t e n d s D e f a u l t A c t i o n
public f i n a l NamedType getType () {

Type t = get InternalType () ;
return new NamedType (null , t . decorate (allowZero , allowMore)) ;

}

Listing 6.39: Decorations handled in common base class

Since the ElementAction production descends from ParticleAction, the schema
must upon entering it in the symbol table therefore bind it to the label of the element and
not the label from the semantic object, as the latter will be set to the null reference.

6.5 Summary

A general syntax for markup languages is defined by the standard eXtensive Markup
Language, also known as XML, which describes how tokens in a character stream can be
interpreted as a node tree. Constraining the structure of this tree can be done with the
standard XML Schema Definition, also known as XSD.

Together, instances of these two can define a grammar for a language which belongs
to the class that can be handled by the framework of this thesis. The meta-schema that
is supported is an XSD subset, where provisions for reusing type is included. As the
meta-schema is a schema too, it can be defined using itself.

Java’s runtime library contains a package for push-based reading of XML documents.
Transformation of external documents to an internal representation is done in one pass
over the source using depth-first evaluation of semantic objects. Handling of productions
is delegated to separate modules whose implementation is exchangeable if other meta-
schemata are desired.

145

146

Chapter 7

Repository

In order to efficiently reason about the integrity amongst the stored documents, the
framework must be able to assume that they are not altered without its knowledge.

Hence, they must be stored in a strictly controlled repository where the framework can
monitor any changes that are made.

This chapter will discuss the requirements a storage system must meet to be usable
for this purpose, and then how a layer can be formed to integrate it with the rest of the
framework. A consideration of the effects this will have on the repository layout will also
be presented.

7.1 Back-end

A back-end is the storage system that assumes the responsibility of ultimately providing
physical storage for the document. This need not be the only task it does — it is often
combined with other functionality as well — but this action is almost always deferred
until all other processing has completed, persisting the most current version of the docu-
ment.

There is a variety of standard products available to fulfill this role, and a goal of this
thesis is to employ to the extent possible only features common between them so as to
make them interchangeable, in order to have the option of picking the solution best suited
for the project overall and not create unnecessary dependencies on a particular third-
party product.

7.1.1 Catalog

For a document to be reachable, it must be identifiable, meaning that every document
must be associated with some information that makes it unique. The collection of such
data is called the catalog of the repository, because it holds the inventory.

The catalog keep track of two kind of entities; documents and schemata. A member
of the latter group is naturally identified by the namespace it defines, whereas the former
exhibits no such property and must have another method of identification imposed on it.

147

Chapter 7. Repository

Each document will be named by a Universal Resource Identifier (URI), but only ex-
clusive use within those that belongs to the same schema will have to be warranted. Thus,
the primary key of the document is a pair consisting of the schema namespace and the
URI of the document.

Linking the document to the schema this way is done to relieve the catalog from main-
taining a mapping from values to their types behind the scenes, instead making it explicit,
partitioning the complete set of documents into smaller and more manageable subsets
which are type-wise internally consistent. Many relational storage engines also demand
the data to be strongly typed.

A front-end can if desired be devised that perform the lookup before relaying the
request, to make only one truly unique URI suffice. The schema would then have to
be inferred when validating the document upon entry to the repository, and this could
for instance be done through use of a schemaLocation attribute [TBMM01]. Another
solution is to simply let parts of the URI designate the schema, e.g. by mapping specific
path components to it.

Intuitively, the user should be able to retrieve information through a virtual file sys-
tem gateway, where the identifier of a document contains all necessary information to
locate it. Such an identifier is thus called a locator. If the organization has registered the
domain name acme.com and set up a repository that can be reached through the service
repos, a document with type foo and name bar could be addressed like follows:

http://acme.com/repos/foo/bar.xml

The individual components of the identifier does not have to be the resource itself, as
long as the token provides enough information for the system to locate it under the hood.
Not exposing the actual name itself enables the system to encapsulate certain services
such as for example load balancing and location independence.

However, the above implementation is only one of many possible ways to invoke
the repository, as the framework itself does not read anything into identifiers. On the
contrary may the name of a document be in a totally opaque (regarding the location of
the document at least [LS98]) and mechanical manner, as the following example from
[MLS02] shows:

urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6

Client-specified document identities creates a separation of roles between the writer
that authors the data and the maintainer that structures the repository, in contrast to the
situation where the identity is hard-coded in a id attribute on the root node. Whether
this is an advantage or a disadvantage depends on the organizational structure and is
therefore considered outside the scope of this thesis.

Selecting the option of identifiers being specified explicitly will instead be done based
on its technical merits: It does not prevent the other alternative to be later supplied by a
front-end, whereas the opposite would arguably be somewhat more involving. Also, it
fits best with the push-based streaming model in which algebra carriers are read, since

148

7.1. Back-end

there is no need to set up a temporary buffer to preliminary scan the document for the
identity as described in section 6.3.3 on page 134.

7.1.2 Meta-data

Due to the fact that schemata really are documents too, albeit with a different role, they
can be stored in the repository in the same way as regular data, so as to avoid any special
tailoring for meta-data and enable reuse of the generic processing capabilities. Just like a
document relates to the schema, the schema on the other hand relates to the meta-schema.
This world-view allows both targets to be interfaced in a uniform manner.

The repository must still do some extra-ordinary handling when updating schemata
in order to ensure that the entire information set that belongs to it is revalidated (cf. chap-
ter 5), and this is done by recognizing the name of the meta-schema and intercepting
modifications to any documents of this schema behind the scenes.

7.1.3 Functionality

Every storage system must at least support a set of fundamental operations for putting
data into it and getting the data back out again. To avoid that old data linger on when
there are no longer any use for them, destructive functionality is also essential.

Additionally, a distinction between destructive and non-destructive updates is often
made. The difference is that a destructive update may overwrite some of the existing
data, while the non-destructive may not. Having these two notions as separate com-
mands enables the client to do partial updates by only supplying the parts of the data
that is to be replaced without touching any of the remaining items, whereas creation of
a new document on the other hand, always must supply a full batch of all mandatory
information. Hence, an partial update may be done more efficiently than a delete–create
combination.

This amounts to what in common jargon is called “CRUD” functionality, named so
after the initials of the four basic operations:

• Create; insert a new document into the repository

• Read; get the contents of a document that is present

• Update; alter the data in an existing document

• Delete; remove a document from the repository

However, this thesis will only consider atomic updates, i.e. if a change is to be made to
the document, its entire contents must be replaced with a new version where the appro-
priate modifications are done. The impedance mismatch between the streaming model
selected and the imperative model needed for partial updates is a contributing factor to
this decision. A future version should consider adding provisions for update hints to
allow the back-end room to do optimizations by selecting better suited native commands
for the task.

149

Chapter 7. Repository

Besides altering the database set by manipulating the documents, the back-end must
also have provisions for inspecting the set by querying the catalog, i.e. list the documents
available. Indeed do the operations on the catalog resemble the ones for the documents
but lifted to a higher level, as the creation and destruction of documents are updates to
the catalog.

Uploading a document will have to occur at a pace in which both the client can deliver
data and the back-end can accept it. Bottleneck in the back-end usually implies full pro-
cessor utilization and will cause the operation to block the current thread. Conversely,
being equally vulnerable for delays originating at the client side is not as acceptable,
since these are outside the framework’s sphere of control and it lacks any domain-specific
knowledge that may be needed to resolve them.

For this reason, the data pump will not be located inside the framework. Instead, the
upload operation is instead split into two method that indicate initiation and completion
respectively, and the client will impel the data into a designated handler in between calls
to these two.

Downloading is still done synchronously so as to not require the client to specify a
callback for transaction control, since data is assumed to be readily available from the
repository at all times and can be spooled to a temporary buffer to insulate from blocking
if the client does not want to perform this kind of management.

Listing 7.1 summarizes the interface through which a back-end adapter must commu-
nicate with the framework. The first four methods performs actions on the documents in
the repository, while the last three provide access to the catalog.

i n t e r f a c e BackEnd {
ContentHandler s t a r t P o s t (S t r i n g schema , S t r i n g id) ;
boolean endPost (ContentHandler handler , boolean commit) ;

void get (S t r i n g schema , S t r i n g id , ContentHandler t a r g e t , boolean f o r E d i t) ;

void d e l e t e (S t r i n g schema , S t r i n g id) ;

I t e r a t o r /∗<Str ing>∗ / s t a r t L i s t (S t r i n g schema) ;
void endList (I t e r a t o r /∗<Str ing>∗ / i t) ;

boolean e x i s t s (S t r i n g schema , S t r i n g id) ;
}

Listing 7.1: Operations required by a storage back-end

Identification of documents are done by a pair of character string arguments contain-
ing the name of the schema and the name of the document within that schema, respec-
tively. As each of these parts plays an individual role in the catalog, the pair is not encap-
sulated in its own a value type. Neither is the requirement that the names must be legal
URIs enforced: Technically, any string will fit although the use of URIs is recommended
to avoid any name clashes and to ensure compatibility with other external tools.

Calls to the methods prefixed with start- and end- should always be performed in
tandem, where the invocation of one matches a corresponding of the other. The start-
method that initiates the action not only return a value which is an access point to the data

150

7.1. Back-end

for the client, but which also acts as a cookie that turns the end- form into its continuation,
resuming work after the client has done its part of the job. Hence, thread causality can
shift between the client and the framework without having the former adhere to a specific
interface. (Listing 7.16 in section 7.3.4 on page 163 contains an example of this technique’s
usage).

Uploading is completed by calling endPost with the commit argument set to true,
which signals to the back-end that the data sent should be moved into persistent stor-
age. If this argument instead is set to false, the update is canceled and no change in the
document is made. Thus, errors that occur while writing new information need not prop-
agate into the repository, but can at least be recovered from by reverting the document to
its state prior to the operation. The return value of the method in turn tells whether the
document was accepted by the back-end or not.

A document is represented by an event handler for its stream (cf. section 6.3.1 on
page 131), on which a representation of the state transfer of the repository can be read or
written. All operations are independent of the documents’ contents, and embodies rather
generic verbs [Fie00].

While the startList/endList pair follows the same pattern as startPost/endPost,
the return value is a read-only enumerations of the documents available for a given
schema, and it is not intended for the client to alter. Consequently, no flag to indicate
the success of the operation is needed, but the client must still call the endList opera-
tion to give the back-end an opportunity to release any associated resources.

Searching for the existence of a given document can be done without traversing the
entire list, since the exists method provides a specialized shorter version, which can
employ better suited commands in the back-end for this purpose.

Retrieving documents require the client to pass an event handler to which the doc-
ument will be streamed, exposing either a builder for a semantic object or another des-
tination capable for chaining. Observe that in the latter context, the upload handler of
another repository to which the document is intended copied may very well be used.

The flag forEdit disables the execution of all transformations that should otherwise
be applied to the stream before presenting it to let the client get back the “raw” represen-
tation that was originally uploaded instead of a “cooked” one that has been massaged
by various filters, enabling the application to differentiate between document authoring
and document presentation.

Future work should consider the addition of a log property to the repository (or an
argument to the operations) to which messages from the back-end could be sent while
sending or receiving data, so as to allow non-fatal notifications through another mean
than exceptions and false boolean return values.

7.1.4 Simultaneous access

Intended as central storage that will keep all documents under integrity control, the
repository must handle access by multiple users. Not only is it probable that several
presentations of the material will be requested at the same time by for instance a web

151

Chapter 7. Repository

server, but on a production system it may also be conceived that editing of the very same
documents is concurrently attempted.

When a thread updates the database simultaneously with another thread requesting
conflicting items, the reader may experience various data anomalies stemming from un-
finished or uncommitted actions taken by the writer, depending on the level of isolation
that is ensured [BN97]. Each level that give a potentially different result than the reader
would otherwise get, is named by the incidents in which the corruption may occur. They
are presented here in decreasing order of severity (lack of isolation):

Dirty reads. Data that has been written by another thread but not yet committed is called
dirty, and should not be exposed to any readers. This anomaly is on document level, and
in order for it to happen both the reader and the writer must be addressing the exact same
schema and name. It is most often caused by back-ends that give the writer direct access
to a shared data area.

Phantom reads. Enumerations of a schema that include documents which a writer has
started uploading but not yet committed is said to contain phantom records, because
these will disappear if the other thread experiences an error and the updates it performed
must be reverted. Readers will be affected not only by accessing the catalog directly, but
also implicitly when locating documents to download. The common reason for this to
happen is that the back-end propagates changes from the writer’s local copy to the global
catalog at the start of (or continuously from) the update instead of at the end.

Non-repeatable reads. A reader that attempts to request a previously read document
once again but find that it has now been changed by another thread have done a non-
repeatable operation, because although the command is the same, the result is not. The
two queries are not recognized to be in the same scope, and the source of this inconsis-
tency is that the back-end does not keep a cache for each reader that is separate from the
global data set.

Each of these effects is undesirable, and it is hence necessary to evaluate efforts that
can counter them. The most popular mechanisms for ensuring isolation are locking and
multi-versioning [BN97]. Locking works by prohibiting access to an item while another
thread is operating upon it, whereas multi-versioning ensure that all uncommitted work
is done on local copies. Both topics have a vast amount of considerations associated with
them, but due to the lack of space and time only a surface treatment of the actual solution
selected will be given here.

Congestion may be reduced by differentiating between inspective and mutative ac-
cess to allow multiple threads to read at the same time [Lea97]. This certainly sounds
attractive as some characteristics of the system indicate that some operations may be par-
allelized. For instance, uploading of new data will indeed require write access to the
document itself, but only read access to the schema (for validation).

For its purpose, this thesis nevertheless selects an approach where updates are written
to temporary storage and not exchanged with the content in the main database until the
operation commits, requiring only synchronization to avoid collision at that particular
moment. Snapshots are not identified with version numbers as in relational databases
[Mit01], but instead with plain object references.

152

7.2. Databases

Using this methodology, dirty and phantom reads are prevented but in its current
incarnation non-repeatable reads will still be possible. Arguably, this shortcoming is in-
herit in the interface which does not provide any way to demarcate the boundaries of
related operations. The seriousness of this limitation is debatable however, given that the
data returned after all is committed, and it is left as future work to introduce a layered
approach for handling transactions along the lines of section 3.2.2 on page 56.

7.2 Databases

The interface is designed so that adapters can be developed for a diverse assortment
of back-ends, to accommodate changing needs from a variety of projects in which the
framework may be deployed. This section will introduce the types of databases most
likely to be used, and how adapters can be molded to fit them.

Only one of these — the in-memory database — has been implemented and included
in the source code. It is selected on the grounds of being extremely light-weight by not
requiring any external third-party resources and can therefore be used in all the same
settings that the rest of the framework can, facilitating further development and experi-
mentation of features and extensions.

7.2.1 In-memory database

Having data stored in-memory means that the entire object graph is always kept active
and no attempt are ever made to swap parts of it out to secondary storage such as a
hard-drive.

Because of this, the database is not durable, as all its contents is lost and must be
loaded again every time the program restarts. It is also very limited, as the amount of
primary storage such as RAM memory constrains the number of objects that can exist at
the same time. Although modern operating system are very good at providing virtual
memory, the algorithms does not exhibit any control over the placement of objects in
the address space and thus do not make any efforts to minimize thrashing in a strained
situation [SG98].

Performance and latency is generally good for repositories containing only a small
number of objects, and the footprint of the code itself is low. This kind of database is
suitable for situations where the contents can initially be fetched from a master copy
and is not considered critical, such as in an information kiosk set up for demonstration
purposes.

Implementation will be comprised of a simple two-layered hierarchy where all the
documents that belongs to the same schema are kept together in a container, which are
again put in a root collection for all schemata. Each of these layers are indexed by the
names of the items. This layout resembles a file system, where each schema is a directory
and the all the corresponding documents are files within it. A durable implementation
using the file system can easily be realized by exploiting this similarity and using the
in-memory database as a foundation.

153

Chapter 7. Repository

Use of this setup will be illustrated through the operations that deal with up- and
downloading of documents. However, an understanding of the methods for querying
and modifying the catalog should also be attainable from the basis laid forward here.

/ / c l a s s InMemoryDB impl ements BackEnd
Map/∗<Str ing , Map<Str ing , Document> >∗ / schemata = new HashMap () ;

Map/∗<XMLReader , Document>∗ / s e s s i o n s = new WeakHashMap () ;

Listing 7.2: Permanent and temporary storage containers

Temporary storage is provided by a separate area where data is associated with the
handler for the operation rather than the name of the document. Listing 7.2 shows the
declarations for these two maps. Upon startup of the back-end, they are initially empty.
Observe that the permanent storage uses strong references since it may be the only one
averting the garbage collector from recycling the data, whereas the temporary storage
can settle for weak references since those items should always be kept alive primarily by
the client working on them.

c l a s s Document {
S t r i n g schema ;
S t r i n g id ;
SAXBuffer b u f f e r ;
/ / · · ·

}

Listing 7.3: Bundle of document and associated data

Documents are represented by a plain data structure that bundles keys necessary to
locate the meta-data together with a compiled form of the events that make out its con-
tents (cf. section 6.3.3 on page 134), as is displayed in listing 7.3. Instances of this structure
are records that embodies the documents in the database. It will later be extended with
other information that is retrieved from the stream through filters. Use of this class is
only internal to the package and it will therefore never be exposed to the outside.

When uploading of a document is initiated, the database creates a new representation
in temporary storage including a buffer to which the client can stream the data, before as-
sociating it with a handle that is returned. Listing 7.4 outlines the steps of this procedure.

/ / c l a s s InMemoryDB impl ements BackEnd
public ContentHandler s t a r t P o s t (S t r i n g schema , S t r i n g id) {

XMLReader buf = new SAXBuffer () ;
Document doc = new Document (schema , doc , buf) ;
s e s s i o n s . put (buf , doc) ;
return buf ;

}

Listing 7.4: Initializing upload of new data

Note before proceeding that all code for synchronization and error handling has been
omitted from these listings so as to simplify them in order to better focus on the algorithm.

154

7.2. Databases

For full details, refer to the source code.

Names of the schema and the document are stored along with the buffer in the bundle,
so all the framework needs in order to regain those properties, is the handle by which to
perform a reverse lookup in the map of active sessions. This is the technique used in
finalization of an upload, which can be viewed in listing 7.5.

/ / c l a s s InMemoryDB impl ements BackEnd
public boolean endPost (ContentHandler handler , boolean commit) {

i f (commit) {
Document doc = (InMemoryDB . Document) s e s s i o n s . get (handler) ;
Map documents = getSchema (doc . schema , t rue) ;
documents . put (doc . id , doc) ;

}
s e s s i o n s . remove (handler) ;
return commit ;

}

Listing 7.5: Finalizing upload of new data

If the client decides to commit the upload, the correct container for the schema is
located — creating it if necessary — and the document bundle put therein. The upload
is terminated by a call to endPost no matter what the outcome is, so the bundle should
be removed from temporary storage and the client must not use its handle any more.
The actual code contains counter-measures against the possibility that a client mistakenly
corrupts data through an terminated handle by orphaning it.

/ / c l a s s InMemoryDB impl ements BackEnd
Map getSchema (S t r i n g schema , boolean c r e a t e) {

Map documents = (Map) schemata . get (schema) ;
i f (documents = = null && c r e a t e) {

documents = new HashMap () ;
schemata . put (schema , documents) ;

}
return documents ;

}

Listing 7.6: Localizing the container for a given schema

Getting the container for the schema is done by the helper routine in listing 7.6. It
first queries the global document area to find if there are already a subcollection for the
particular schema in question. If there is no matches and the argument create flags that
a non-null result is required, a new map for this and future use is created and returned.

/ / c l a s s InMemoryDB impl ements BackEnd
public void get (S t r i n g schema , S t r i n g id , ContentHandler t a r g e t , boolean f o r E d i t) {

Map documents = getSchema (schema , f a l s e) ;
Document doc = (Document) documents . get (id) ;
doc . b u f f e r . replay (t a r g e t) ;

}

Listing 7.7: Downloading existing data

The same helper is employed in the process of downloading a document, depicted in

155

Chapter 7. Repository

listing 7.7 on the page before. In this case, a reference to the document bundle is obtained
from the schema collection and subsequently sent to the client handler by replaying all
the events from the buffer. (Again the reader is reminded that the error checking per-
formed in code is distilled from the listing).

7.2.2 Binary large objects

Relational database management systems (RDBMS) are ubiquitous and have over the
years been demonstrated to possess capabilities to not only be very versatile but at the
same time be able to meet performance and scalability demand from larger projects. Be-
ing able to employ such a system is sometimes the key to successful deployment in many
real-world scenarios, and it is therefore vital that coping with it has been in mind when
designing the framework.

The easiest way to leverage a relational database is to store each document bundle as
its own record in a huge table, using a binary large object field to hold the entire data
buffer. Instead of accumulating events locally in a SAXBuffer, uploading is done by
connecting an XMLWriter that will encode the values using XML to the stream provided
by the management system for writing to this BLOB.

An advantage with this scheme is that performance is very good if the entire docu-
ment is operated upon, i.e. all of the data is uploaded or downloaded at once, and it is
more scalable since the temporary storage is handled by the management system’s cache
controller which probably uses sophisticated and fine-tuned paging routines. The buffer-
based implementation presented in the previous section can also be easily be adapted to
use BLOBs, as they are conceptually not very different from a file system although the
transaction management is better.

The downside of such a solution is that the structure that is inherently present in a reg-
ular tree document becomes opaque to the back-end, and hence any advanced searching
facilities can not be utilized. Finding documents that matches a criteria based on content
either requires that a full scan is performed or that filters are installed that copies the in-
formation which should be indexed over to extension properties in the document bundle.
The latter technique limits the flexibility that can be provided to the client in locating data
and gives additional implementation headaches in that it requires those properties to be
incessantly synchronized with the main data.

7.2.3 Object-relational mapping

Creating a full relational schema to hold the data is a more innate approach to an RDBMS
back-end. In an object-relational mapping scenario, no XML is stored in the database
but is instead only used as an interchange medium for the underlaying objects which is
modeled in the database. The internal representation is rather left to the management
system’s discretion.

Generally, there are two ways of mapping objects to a relational schema: Using a
separately customized schema for each object type [ML02], or using a universal schema

156

7.2. Databases

that is capable of storing anything for all of them [FK99].

The former method gives good search capabilities but carry a large overhead in opera-
tions that transfer data as it require a layer that can marshal the data from the hierarchical
structure to the appropriate (relational) schema. It may also require that the framework
has special administrative privileges in the database in order to run the commands to
install the data definitions, and that is not always practical.

Use of a relational schema created specially for the type will normally be desirable
as it yields higher data fidelity, but that is a minor point in this case since all documents
will be validated prior to entering the repository and it is assumed that the client cannot
otherwise achieve access.

The latter method is however also typically penalized by low performance when com-
posing and decomposing documents, due to its inability to take advantage of any struc-
tural clustering in the object graph. Children are not referenced with foreign key fields
that is put inline the record but always through intersection relations [Kro95], resulting
in a greater number of table joins to produce the final data set.

7.2.4 Native XML databases

Database management systems that regard marked-up documents as their native data
model stores information accordingly in a hierarchical manner rather than relational, and
provide facilities for selection and projection of trees instead of tuples [Bou03]. Such a
back-end would be a more natural fit for a repository containing regular tree languages
as its paradigmatic view is not discrepant from that of the front-end, which should ensure
that the construction of such an adapter within the current design is not a mission that in
the end would turn out to be too laborious.

At the time of this writing, a wide range of database management systems that has
support for XML is available. Some of these have their roots in relational or object-
oriented data models, but has been extended to also deal with regular tree grammars
[Gen03]. Others are designed around this concept from the ground up [FHK+02], and
operate with no alternative notions.

Using a database specialized for handling XML can be advantageous in that it will
be designed to make the appropriate trade-offs between features and performance for
both searching and manipulation, in contrast to solutions that are bolted on top of other
engines, which tends pay attention to only some of these areas. Furthermore, ad-hoc
report generators can choose to access the database through the framework or directly.

However, transparency of data structure can be a threat to the repository’s integrity if
clients can revise the database without the framework’s knowledge or authorization, ren-
dering some documents incompatible. Also, the database may not be prepared to handle
the situation where a schema for existing data change, or it may perform superfluous
checks in addition to those already done by the subtyping algorithm, leading to loss of
efficiency.

Lack of interface standardization is still an obstacle to overcome when trying to write
portable code that works with multiple products, and the actual offerings on the market

157

Chapter 7. Repository

has yet to prove their worth as vendors have not accumulated critical mass of real-world
experience.

Despite these immediate short-comings, it is the opinion of this thesis that native XML
databases seems to be the option that has the greatest potential to eventually provide the
best back-end for the repository.

7.3 Integration

The thesis will now shift its focus from the internals of the back-end adapter and devote
the rest of this chapter onto the task of integrating the repository with the algorithms
for validation and compatibility, in order to devise the missing piece of a completely
functional content management framework.

7.3.1 Façade

Additional services are layered on top of the database back-end, filtering not only the
documents that passes through the interface but the commands themselves, too. Hence,
the front-end is designed after the Russian doll principle, where an outer component
fully encapsulate a similar inner. Figure 7.8 visualizes this setup.

Client Front-end

Back-end Database

Figure 7.8: Encapsulation of back-end

Components only communicate bilaterally with its adjacent neighbors, to reduce cou-
pling and encourage modularization. Clients only speak to the front-end, never directly
with the back-end, and only the back-end is permitted to talk to the database. The archi-
tecture of the framework is extensible in that it allows supplementary filters to be added
to the handler that is returned when uploading is started, letting several components
cooperate to produce and determine the outcome of the final result.

The tasks of ensuring repository integrity will be placed in a component called Manager,
which is as much a natural candidate to be a singleton as the database. It has the same
interface as the back-end, of which it will aggregate an instance to do the grunt work after
its business logic is done processing the request for its purposes.

Listing 7.9 shows how the aggregated back-end is stored in an instance field, to be
available for the code in the class. After the back-end is aggregated, the manager will
“bootstrap” the meta-schema into the repository to ready it for receiving further content.
The meta-schema is needed to validate other schemata, but it must be added uncondi-
tionally itself to circumvent the circular dependency problem.

158

7.3. Integration

/ / c l a s s Manager impl ements BackEnd
BackEnd backend ;

public Manager (BackEnd backend) {
t h i s . backend = backend ;
/ / . . . i n i t i a l i z a t i o n o f r e p o s i t o r y . . .

}

Listing 7.9: Front-end aggregates back-end

The manager receives the back-end as a constructor argument as opposed to directly
initializing it or attempting to look up the reference in some directory. Both of these
alternatives require the framework to make assumptions about the environment in which
it is running, which is best avoided. Passing the back-end explicitly makes it possible to
introduce extra layers into the system without concerning this component. Procuring
a factory that selects the appropriate database and creates an adapter for it is the only
concern the client will have in this matter.

Information associated with a document upload is stored in session objects, which
play the same role in the manager as the bundles do in the in-memory database back-end
(cf. section 7.2.1) and can hence be implemented using the same pattern. Each session
has a list of checks which are to be performed. They are installed as filters in the event
handler chain, monitoring the content as it passes through.

Sessions are kept in a map indexed by the handler returned to the client. Listing 7.10
displays the establishment of a session. First, a new session object is instantiated. Notice
that as Session is an inner class, it will have access to the member fields of the manager.
The constructor will invoke the startPost method of the back-end, which provides the
end sink for the events. Next, the appropriate checks are added. All documents must be
at least validated and are subject to statistics collection. If and only if the document is a
schema, a compatibility check must be performed as well. These checks will be explained
in the coming sections. Finally, after the session is prepared, the register method is
invoked to retrieve the start of the handler chain, put the session in the map under this
key and then return the handler to the client.

/ / c l a s s Manager impl ements BackEnd
Map/∗<ContentHandler , S e s s i o n >∗ / s e s s i o n s = new HashMap () ;

public ContentHandler s t a r t P o s t (S t r i n g schema , S t r i n g id) {
Sess ion s e s s i o n = new t h i s . Sess ion (schema , id) ;

s e s s i o n . add (s e s s i o n . new ValidityCheck (schema)) ;
s e s s i o n . add (s e s s i o n . new S t a t i s t i c a l G a t h e r e r ()) ;
i f (schema . equals (MetaSchema .NAMESPACE))

s e s s i o n . add (s e s s i o n . new Compatibil i tyCheck (schema , id)) ;

return s e s s i o n . r e g i s t e r () ;
}

Listing 7.10: Checks to be performed are added upon start of uploading

When the client has completed the upload and call endPost of the manager, the

159

Chapter 7. Repository

session object is found through a reverse lookup on the handler and all the checks sub-
sequently enumerated to poll their status, as can be witnessed in listing 7.11. Any check
has the power to veto the decision to commit the document successfully, and so has the
client, thus is the flag indicating success initialized to the parameter commit which tells
if the client regards the upload as completed.

/ / c l a s s Manager impl ements BackEnd
public boolean endPost (ContentHandler handler , boolean commit) {

Sess ion s e s s i o n = e x t r a c t (handler) ;

boolean va l id = commit ;
for (I t e r a t o r i = s e s s i o n . checks . i t e r a t o r () ; i . hasNext () ;)

va l id = va l id & & ((Sess ion . Check) i . next ()) . check () ;

return s e s s i o n . c l o s e (va l id) ;
}

Listing 7.11: Only documents that passes all checks are committed

Only if the document is condoned by all of them is the back-end notified to proceed
with the update; otherwise it will be canceled. The method close will call endPost
in the back-end after removing the session from the map, performing any tear-down
activities that is needed.

7.3.2 Validation and upgrade

Checks are components that test the document’s adherence to certain aspects, gathering
information necessary to form an opinion by filtering the event stream. In this implemen-
tation they are inner classes of the session, so that they can access the meta-data of the
document such as its name, in addition to being able to query the associated back-end for
other data needed for this purpose.

The add method of the session will inspect the getFilter property of the check
to find the callback object that will be installed in the handler chain. Observe from list-
ing 7.12 that a builder can be returned to for instance construct a value carrier while the
document is read.

/ / c l a s s Manager . S e s s i o n
private c l a s s ValidityCheck extends Check {

ValueBuilder vb = new ValueBuilder () ;

XMLFilterImpl g e t F i l t e r () { return vb ; }

boolean check () {
TypeBuilder tb = new TypeBuilder () ;
get (MetaSchema .NAMESPACE, schema , tb , f a l s e) ;
LangRel lang = new LangRel () ;
return lang . i s I n (tb . get () , vb . get ()) ;

}
}

Listing 7.12: Language relation checks document updates

160

7.3. Integration

After the client ceases writing events and completes the upload, the manager will
survey the component through the check method to determine its stance on the issue of
whether the document should be allowed to pass or not. ValidityCheck will assess if
the value carrier is in compliance with the associated schema by loading the correspond-
ing type carrier from the database and use the language relation to ascertain.

Although the document is only processed once, this particular realization of the tech-
nique will still keep the value carrier for the entire document in memory, since confirm-
ing validity can not be done without the aid of a buffer (to backtrack from branches in a
union). However, this drawback is not inherit in the design of the checking process, as a
stream-based validator could also be fitted in if available.

To vindicate the replacement of a schema, its accordance to the meta-schema will
not suffice alone but it must be complemented by a proof that it is compatible with
the current content of the repository. This extra scrutinization will be performed by
CompatibilityCheck, displayed in listing 7.13.

/ / c l a s s Manager . S e s s i o n
private c l a s s Compatibil i tyCheck extends Check {

TypeBuilder replacement = new TypeBuilder () ;

XMLFilterImpl g e t F i l t e r () { return replacement ; }

boolean check () {
TypeBuilder o r i g i n a l = new TypeBuilder () ;
get (schema , id , o r i g i n a l , f a l s e) ;
SubRel sub = new SubRel () ;
sub . se tContexts (getContextsForSchema (id)) ; // (†)
return sub . i s I n (o r i g i n a l . get () , replacement . get ()) ;

}
}

Listing 7.13: Subtyping relation checks schema updates

It is virtually identical to ValidityCheck except that a type carrier is built instead of
a value carrier, the subtype relation is used instead of the language relation, and that the
subtype relation is connected to the path usage statistics found in the repository for the
document at the line marked with (†), to supply the algorithm with the counters stored
in the database. Note that the namespace of the schema that is being uploaded is held by
the variable id in this setting.

7.3.3 Statistics

Counters that reflect to which extent the schema is currently being used by the documents
must be obtainable from the repository, and the back-end must thus be endowed with
not only a mean to accumulate totals for individual parts of the type but also a map
that indicates which documents that contributed to the measure. Hence, the database is
storage for not only documents but statistics about them, too.

Policies regarding how the counters are actually stored are left for the back-end to
decide. The in-memory database will for each document simply store a table of the paths
associated with their respective counters, summing the present documents for a schema

161

Chapter 7. Repository

dynamically to create a total view. For details regarding the implementation of these
methods, please refer to the source code.

For a back-end based on a relational database management system, a natural ap-
proach would be to have an intersection table between the documents and the schemata,
with the path being a field supplying additional knowledge about the relation itself.
Performance may be enhanced by caching the total count of paths found for a schema,
adding further complexity to ensure coherence.

The subtyping algorithm accesses a view to these counters through an interface called
ContextInput depicted in listing 7.14, which reads from the underlaying set of contexts
whether a particular one exists. This interface is mediated by the code in listing 7.13 on
the preceding page to the compatibility relation where it is made use of as described in
section 5.4.3 on page 117. If the back-end cannot be queried directly for statistics, the
conversion into a form that can be extracted and deposited must be done by the adapter.

public i n t e r f a c e ContextInput {
boolean conta ins (Context contex t) ;

}

Listing 7.14: Reader for statistics

Statistics are generated by the semantic evaluator ContextBuilder, which tracks
the paths of the value carriers that passes before it in the same fashion as the technique
presented in section 4.3.3 on page 99 albeit reacting to events instead of recursing over
pre-built objects, following the principles outlined in section 6.4.1 on page 135. No seman-
tic value is ever returned from this builder as it is only inserted in the handler chain for the
sake of the side-effects it produces. Similarly, the check called StatisticalGatherer

always returns true.

Notification of path occurrence is signaled to the back-end through the ContextOutput
interface found in listing 7.15, which is counterpart to ContextInput, enabling statis-
tics to be written into the repository. The framework is ignorant of the counter’s actual
value and care only for the change that should be made, allowing more efficient parallel
processing as the requests can be reordered internally to better fit the desired scheduling.

public i n t e r f a c e ContextOutput {
void add (Context contex t) ;
void sub (Context contex t) ;

}

Listing 7.15: Writer for statistics

As the counter is incremented during insertion of a document into the repository, it
must correspondingly be decremented when that document is removed. A modification
is handled as removal followed by addition.

162

7.3. Integration

7.3.4 Auxiliaries

The back-end interface is designed with regard to receiving and delivering data in a pipe
to other components in a server system. This kind of organization is directed towards
high performance and scalability, but at the expense of perhaps not providing simplicity
to the degree desirable for the client.

To oblige clients of lighter weight, the framework bestows a module for reading and
writing documents from an ordinary character string. This code also make out examples
of the patterns in which methods from the back-end is normally used. Listing 7.16 con-
tains for instance the logic to perform an upload and automatically commit a document
to the repository. (Error handling is excluded from the snippet).

/ / c l a s s H e l p e r
public boolean add (S t r i n g schema , S t r i n g id , S t r i n g document) {

boolean commit = f a l s e ;
boolean r e s u l t = f a l s e ;
ContentHandler handler = database . s t a r t P o s t (schema , id) ;
t r y {

reader . setContentHandler (handler) ;
reader . parse (new InputSource (new Str ingReader (document))) ;
commit = t rue ;

}
f i n a l l y {

r e s u l t = database . endPost (handler , commit) ;
}
return r e s u l t ;

}

Listing 7.16: Adding strings the easy way

A Helper instance retain a reference to the back-end (here called database) selected
so as to not requiring this to be passed as a parameter for every call since most calls will
only be to one database throughout the program. It also aggregates a common XML
reader component for all operations to not incur the cost of loading a new one every
time. Although this increases throughput, it also effectively restricts the helper object to
a single thread, which should be acceptable for most utilities. Both of these fields are
initialized upon construction.

Closing the transfer with endPost is done inside a try...finally block in order
to make this happen even if an exceptional condition arises, but it is only called if the in-
vocation of startPost outside to scope of the block succeeds. Commitment of the data
is first flagged true when there is no longer any chance of an exception being thrown
from the reading process. Any abruption of the flow will hence cause endPost to be
notified to of a rollback instead. This arrangement ensures that only fully completed data
is committed, and that the manager is always given a chance to clean up any outstanding
resources.

Notice finally that the result cannot be returned inside the finally clause as that
would nullify any pending exceptions, and indeed is there no notion of a result if an ex-
ception has occurred; the back-end should never return true if a rollback was requested.
Therefore, the result is rather stored in a local variable that is only relevant if normal

163

Chapter 7. Repository

termination of the routine is reached.

Getting data out of the repository on the other hand is, as listing 7.17 will testify, a
much less convoluted procedure due to most of the work being done by the XMLWriter
class (cf. section 6.3.3 on page 134) and the only task carried out by the helper is providing
the buffer into which the events will be serialized.

/ / c l a s s H e l p e r
public S t r i n g r e t r i e v e (S t r i n g schema , S t r i n g id) {

S t r i n g W r i t e r output = new S t r i n g W r i t e r () ;
database . get (schema , id , new XMLWriter (output) , f a l s e) ;
return output . t o S t r i n g () ;

}

Listing 7.17: Fetching a document into a character string

7.4 Summary

This chapter starts out with presenting contemplations about the organization of a reposi-
tory. All documents are associated with a name that identifies them and a type. Schemata
are also considered to be documents, belonging to the meta-schema.

An interface to a back-end general enough to accommodate writing adapters for a
range of databases is defined, and it supports streaming of data so that intermediate
buffering of the document will not have to take place. A simpler wrapper can be used for
situations where this flexibility is not needed and only adds unneeded complexity.

Various realizations of the back-end such as those based on relational database man-
agement systems and native XML databases are then discussed, and an implementation
of a database that is entirely based on consuming memory resources given, directed to-
wards experimental purposes.

Finally, the repository is integrated with the algorithms for determining whether a
document is in the language relation or a schema is in the subtyping relation, by installing
checks as filters in the handler chain for data uploading. The same approach is used to
gather statistics regarding schema usage from the documents that are installed.

164

Chapter 8

Conclusion

Finally, this last chapter will summarize the thesis by presenting visions for how the
framework can be further augmented, provide an overview of the work that has been

done, and review how well the goals it initially set out to solve have been accomplished.

8.1 Future work

Several directions may be taken to extend and enhance the library; more functionality
can be added to the repository, or improvements can be made to the existing algorithms.

8.1.1 Repository

Version control. Multiple versions of a document may be allowed in the repository, each
using a possible different schema as mentioned in section 1.2.1 on page 19. The purpose
would not be to contain and insulate older versions from schema changes but to provide
configuration management in form of an option to roll back changes. Schema differences
can perhaps be used when determining how to resolve merging conflicts for check-ins
whose origin have become stale.

Combining the name of a schema or document with a version number or date as an
identifier seems to be the most straight-forward way to come up with an implementation
for this.

Efficient search mechanism. The retrieval of data from the repository to be used in the
stylesheets can be studied. Instead of merely extracting a resource known by its identity,
a request can be formulated; the correct data is found and then piped through applicable
stylesheets.

Acceleration of queries can be done by storing indices containing the data of com-
monly sought properties together with the paths in the documents matching these crite-
ria. Maintaining an index for each and every element in a schema would probably lead to
insertion and removal operations costing more than what is gained through the increased
efficiency of retrieval.

165

Chapter 8. Conclusion

Hand-tuning could therefore be brought into the equation by manually adding a spe-
cial attribute on the applicable elements in the schema:

<element name="blum" hyp-ed:index="true"/>

Indeed could any kind of plug-in be associated with custom schema attributes. En-
countering this attribute in the schema records the fact that the attribute should be in-
dexed and when documents are entered in the repository, filters are installed according
to these records to collect the necessary statistics.

Upgrading the schema will potentially invalidate the type with which an index is
associated, and may also add new indices on top of the existing ones, triggering a full
rescan of all the documents unless the system is designed so that rebuilds can be done
incrementally as the use of “dirty” indices are detected.

Linking. Special support for XLink [DMO01] can be added so that embedding of other
documents in the database is performed automatically when a presentation view of a
document is requested. Edit views remains unchanged. Correspondingly, the repository
can be enhanced to check that link targets are of the correct schema when a document
containing pointers is uploaded, and to keep track of dependencies between documents.

Dependencies between documents and schemata and between documents themselves
could for instance be viewed as RDF1 triples, and be used to locate documents that fits
certain criteria.

Repository of stylesheets. The model can be extended to also include the checking of
schemata against existing stylesheets, and the checking of new stylesheets against the
schemata for the documents they process. However, this requires that one is able to
formulate the semantics of stylesheets as operations upon schema instances instead of
document information sets. The gains of this would be large, as the content of the repos-
itories would always be internally consistent. Such an improved system is illustrated in
figure 8.1.

XML Data
repository (X)HTML

XSD
Schema

repository

XSLT
Style

repository

Figure 8.1: System where stylesheets participate in the repository

1RDF is an abbreviation of Resource Description Framework

166

8.2. Results

8.1.2 Algorithm

The framework opens for experimentation with various algorithms for subtyping to com-
pare their ability and to address the problem at hand. Particularly interesting would be to
determine whether the procedure described in [KPS95] could be adapted for types with
anonymous (a.k.a. untagged) unions, since this algorithm only has a time complexity
of O(n2). In order to do this however, a mapping between λ-calculus and regular tree
grammars must be devised and applied.

8.2 Results

The aim of this thesis is to obtain a way to control concordance between schema upgrades
and existing documents, and its mandate is to create a component which in that respect
ensure integrity in a content management system.

8.2.1 Overview

A library for checking validity and compatibility, directed towards integration in such
systems is the result of the work presented, and this library provide the means to detect
a conflict between a new schema version and the current content in the repository in
order to protect the data from corruption. The framework is founded in a representation
of the underlaying algebra, which again builds primarily on work done on regular tree
grammars by Lee, Mani and Murata, and on subtyping by Hosoya, Vouillon and Pierce.

Contributions from this thesis to this field are: an adaption of the algebra to a Java
library, modifications of the algorithms which restrict them to only take into account the
current data, and integration of the system with a repository database. The subtyping
algorithm is enhanced to branch over portions of the schema that is not marked as being
used by any document.

Two solutions are established: One which runs the risk of experiencing spurious hits,
and one which involves storing large amounts of statistics. The time complexity of the
algorithm is O(2n), i.e. of exponential order, but where n is referring to the size of the
schema and not the number of documents. In practice, blow-up due to problem size
only occurs in some pathological cases which involves a lot of backtracking over non-
deterministic symbols. Termination is always ensured, but without a performance guar-
antee. However, the author expect others to find that behavior for normal problems lays
within acceptable limits.

8.2.2 Structure

The framework is targeted exclusively as a middle-tier to be included in other systems.
Integration does not require intimate knowledge of the theory behind the algorithms,
as documents can be read and processed from standard formats. Couplings to other
parts are specified to an extent that still leaves flexibility for other adaptions and are then

167

Chapter 8. Conclusion

demonstrated as a proof-of-concept for the purpose of testing and experimentation. Yet
is development of front-ends and back-ends suitable for production use mainly a task
that is outside the scope of this thesis and has a considerable potential for improvement.
Natural candidates for such extensions are for instance a WebDAV front-end and a SQL
database back-end.

Not all areas within the core are as copious as could be due to limitations in time and
to keep the thesis’ circumference at a manageable level. In particular does this apply to
the meta-schema subset which could consist of more constructions from XML Schema
such as namespaces and other simple datatypes than strings, and the repository manager
could be extended to include an automatic revalidation of all potentially spurious hits,
which could improve the attractiveness of the context-based approach to compatibility
testing. Albeit a complete system is not delivered, the framework appears to be mature
enough for inclusion in other projects.

Hence, the accompanying code is not directly applicable in production. While it is
conceivable that a deployable system could be created from it with minimal effort, the
best results will of course probably be obtained by annexing it to a larger, more encom-
passing one, as the framework is not intended as a turn-key solution in itself but rather
as a component.

Four different “pillars” can categorize adequately the parts of which the system con-
sist:

(1) Datatypes for regular tree grammars and hierarchical documents

(2) Algorithms for validation and subtyping

(3) Conversion to and from a standard format of exchange

(4) Interface to the storage layer

and the code is structured correspondingly. Other, related projects such as for instance
XDuce, often take a two-layer approach where both an external and an internal represen-
tation is present, whereas this thesis attempts to use the same structures for all purposes.
It remains yet to be seen if this strategy results in any specific advantages or disadvan-
tages.

8.2.3 Implementation

The program consists of 74 classes in 4 different packages (grammars, markup, repository
and miscellaneous auxiliaries) with more than 3700 non-commenting source statements
and just about as much comments. Program testing is done by running a total of over
150 unit tests which complete in less than 5 seconds of total time. A set of options can
be used to toggle between various approaches where more than one solution have been
mentioned. This thesis together with the comments in the source code and the JavaDoc
generated from them comprises the documentation for the framework. The unit tests also
contains examples of its usage.

168

8.3. Lessons learned

8.3 Lessons learned

In the process of constructing a program to go along with the thesis, the author has as
a guideline tried to create source code that is comprehensible, straightforward and un-
demanding to use, and that has a functional flavor to make it easier to reason about its
workings. There has however been no effort to concretize measures for these items, but
the experience does suggest that they seem to be achievable even in Java, which is not
normally coined as a language especially suitable for formal theory.

8.3.1 Design

An object-functional design like those selected for most algebras here, appears to be
highly appropriate although it needs to be “helped out” in some places — like circle de-
tection — by some imperative techniques. The implementation is otherwise done more
or less as a continuation of the design. Any parts of the code that are not described have
been left out because they do not show anything extra beyond what is already there.

It seems reasonable to conclude that code that is based in a theoretically strong foun-
dation can be written in a more compact and more robust manner, while the lack of such
conversely induces more compromises and workarounds. Before committing to a design,
the model should first be experimented with to gain experience and understanding of the
forces at work and then a new version devised from this afterwards.

8.3.2 Improvements

Lessons learned more concretely in that respect are that construction of carriers could
perhaps be scrutinized more carefully to determine if automatically arriving at canonical
elements would be feasible, list insertion could be more efficient, and more time should
be devoted to the groundwork of finding homomorphisms between types.

8.3.3 Testing

Due to the absence of a larger system in which to perform real-world assessment, evalu-
ation of the code has been done with unit testing and integration testing in between the
modules themselves. The unit tests are directed at all parts of the library, in addition to
some larger tests to probe handling of a larger load. The framework can successfully val-
idate its own meta-schema, and is reckoned to be able to handle other common schemata
too. Observation of problem solving methodology employed when the user is faced with
schema incompatibility would undoubtedly be an interesting study in order to explore
what further contributions that could be made from the framework, but this is considered
to be outside the realm of the thesis.

169

Chapter 8. Conclusion

8.4 Summary

The goal of contriving a method to check compatibility without performing a full scan
through all documents is nonetheless considered to be reached.

170

Bibliography

[ABC+98] Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs, Ian Jacobs,
Arnaud Le Hors, Gavin Nicol, Jonathan Robie, Robert Sutor, Chris Wilson,
and Lauren Wood. Document object model (DOM) level 1 specification,
1998.
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/.
(Cited on p. 96).

[ADL91] Rakesh Agrawal, Linda G. DeMichiel, and Bruce G. Lindsay. Static type
checking of multi-methods. In Proceedings of the OOPSLA ’91 Conference on
Object-oriented Programming Systems, Languages and Applications, pages 113–
128, 1991.
http://www.almaden.ibm.com/cs/people/ragrawal/papers/

oopsla91.ps. (Cited on p. 38).

[AM91] Alexander Aiken and Brian R. Murphy. Implementing regular tree expres-
sions. In Lecture Notes in Computer Science 523, pages 427–447. Springer–
Verlag, 1991.
http://www.cs.berkeley.edu/˜aiken/publications/papers/

fpca91.ps. (Cited on pp. 55, 55, 71).

[App89] Andrew W. Appel. Simple generational garbage collection and fast alloca-
tion. Software — Practice and Experience, 19(2):171–183, February 1989.
http://www.cs.princeton.edu/˜appel/papers/143.ps. (Cited
on p. 49).

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey. D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison–Wesley, 1986. ISBN 0-201-10088-6. (Cited on
pp. 26, 27, 83, 135, 135).

[BCF97] Alejandro Bia, Rafael C. Carrasco, and Mikel L. Forcada. Identifying a re-
duced DTD from marked up documents, 1997. (Cited on p. 109).

[BLFM98] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform resource
identifiers (URI): Generic syntax, 1998.
http://www.ietf.org/rfc/rfc2396.txt. (Cited on p. 122).

[BM01] Paul V. Bison and Ashok Malhotra. XML schema part 2: Datatypes, 2001.
http://www.w3.org/TR/xmlschema-2. (Cited on p. 53).

171

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.almaden.ibm.com/cs/people/ragrawal/papers/oopsla91.ps
http://www.almaden.ibm.com/cs/people/ragrawal/papers/oopsla91.ps
http://www.cs.berkeley.edu/~aiken/publications/papers/fpca91.ps
http://www.cs.berkeley.edu/~aiken/publications/papers/fpca91.ps
http://www.cs.princeton.edu/~appel/papers/143.ps
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/xmlschema-2

Bibliography

[BN97] Philip A. Bernstein and Eric Newcomer. Principles of Transaction Processing.
Morgan Kaufmann, 1997. ISBN 1-55860-415-4. (Cited on pp. 56, 57, 152,
152).

[Boe95] Hans-J. Boehm. Mark-sweep vs. copying collection and asymptotic com-
plexity, 1995.
ftp://parcftp.xerox.com/pub/gc/complexity.html. (Cited on
p. 42).

[Boo94] Grady Booch. Object-Oriented Analysis and Design with Applications.
Addison–Wesley, 2nd edition, 1994. ISBN 0-805-35340-2. (Cited on p. 32).

[Bou03] Ronald Bourret. XML and databases, 2003.
http://www.rpbourret.com/xml/XMLAndDatabases.htm. (Cited
on p. 157).

[BPSMM00] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible
markup language (XML) 1.0, 2000.
http://www.w3.org/TR/REC-xml. (Cited on pp. 27, 110, 115, 119, 121).

[Bro01] David Brownell. About SAX, 2001.
http://www.saxproject.org. (Cited on p. 96).

[CD99] James Clark and Steve DeRose. XML path language (xpath), 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116. (Cited on
p. 97).

[CDG+02] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications, 2002.
http://www.grappa.univ-lille3.fr/tata/tata.pdf. (Cited on
pp. 29, 71, 142).

[CM01] James Clark and Makoto Murata. RELAX NG tutorial, 2001.
http://www.oasis-open.org/committees/relax-ng/

tutorial-20011203.html. (Cited on pp. 110, 121, 142).

[DMO01] Steve DeRose, Eve Maler, and David Orchard. XML linking language
(XLink) version 1.0, 2001.
http://www.w3.org/TR/xlink/. (Cited on p. 166).

[EMRS97] Sofoklis G. Efremidis, Khalid A. Mughal, John H. Reppy, and Lars Søraas.
AML: Attribute grammars in ML. Nordic Journal of Computing, 4:37–65, 1997.
ftp://ftp.ii.uib.no/pub/aml/njc-aml-paper.ps.Z. (Cited on
pp. 61, 88, 135).

[FHK+02] Torsten Fiebig, Sven Helmer, Carl-Christian Kanne, Julia Mildenberger,
Guido Moerkotte, Robert Schiele, and Till Westmann. Anatomy of a native
XML base management system, 2002.
http://lsirpeople.epfl.ch/aberer/citations/TR-02-001.pdf.
(Cited on p. 157).

172

ftp://parcftp.xerox.com/pub/gc/complexity.html
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.w3.org/TR/REC-xml
http://www.saxproject.org
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.grappa.univ-lille3.fr/tata/tata.pdf
http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html
http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html
http://www.w3.org/TR/xlink/
ftp://ftp.ii.uib.no/pub/aml/njc-aml-paper.ps.Z
http://lsirpeople.epfl.ch/aberer/citations/TR-02-001.pdf

Bibliography

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures, pages 76–106. University of California, Irvine, 2000.
http://www.ics.uci.edu/˜fielding/pubs/dissertation/

rest_arch_style.htm. (Cited on p. 151).

[FK99] Daniela Florescu and Donald Kossmann. A performance evaluation of al-
ternative mapping schemes for storing xml data in a relational database.
Technical Report No. 3680, INRIA, 1999.
http://www-caravel.inria.fr/dataFiles/FK99.ps. (Cited on
p. 157).

[Gen03] Jonathan Gennick. Make XML native and relative, 2003.
http://otn.oracle.com/oramag/oracle/03-jan/o13xml.html.
(Cited on p. 157).

[GGR+00] Minos Garofalakis, Aristides Gionis, Rajeev Rastogi, S. Seshadri, and
Kyuseok Shim. XTRACT: a system for extracting document type descrip-
tors from XML documents. In Proceedings of ACM SIGMOD Conference on
Management of Data, pages 165–176, 2000.
http://www.bell-labs.com/project/serendip/Papers/

sigmod00-cam.ps.gz. (Cited on p. 90).

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison–Wesley, 1995. ISBN 0-201-63361-2. (Cited on pp. 38, 116).

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison–Wesley, 2nd edition,
2001. ISBN 0-201-44124-1. (Cited on pp. 25, 28, 123, 142).

[Hol99] G. Ken Holman. When to use attributes as opposed to elements, 1999.
http://xml.coverpages.org/holmanElementsAttrs.html.
(Cited on p. 89).

[Hol02] Nils M. Holm. Where does the name car come from?, 2002.
http://www.not-compatible.org/LISP/QA/carcdr.html. (Cited
on p. 43).

[HVP00] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expres-
sion types for XML. In Proceedings of the International Conference on Functional
Programming (ICFP), pages 11–22, 2000.
http://www.kurims.kyoto-u.ac.jp/˜hahosoya/papers/

regsub.ps. (Cited on pp. 51, 55, 71, 71, 72, 76, 123).

[KPS95] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recur-
sive subtyping. Mathematical Structures in Computer Science, 5(1):113–125,
1995.
http://www.cs.purdue.edu/homes/palsberg/paper/

mscs95-kps.ps.gz. (Cited on pp. 56, 72, 167).

173

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www-caravel.inria.fr/dataFiles/FK99.ps
http://otn.oracle.com/oramag/oracle/03-jan/o13xml.html
http://www.bell-labs.com/project/serendip/Papers/sigmod00-cam.ps.gz
http://www.bell-labs.com/project/serendip/Papers/sigmod00-cam.ps.gz
http://xml.coverpages.org/holmanElementsAttrs.html
http://www.not-compatible.org/LISP/QA/carcdr.html
http://www.kurims.kyoto-u.ac.jp/~hahosoya/papers/regsub.ps
http://www.kurims.kyoto-u.ac.jp/~hahosoya/papers/regsub.ps
http://www.cs.purdue.edu/homes/palsberg/paper/mscs95-kps.ps.gz
http://www.cs.purdue.edu/homes/palsberg/paper/mscs95-kps.ps.gz

Bibliography

[Kro95] David M. Kroenke. Database processing: Fundamentals, Design and Implemen-
tation. Prentice Hall, 5th edition, 1995. ISBN: 0-13-320128-7. (Cited on
p. 157).

[KT65] Charles H. Kepner and Benjamin B. Tregoe. The rational manager: a systematic
approach to problem solving and decision making. McGraw–Hill, 1965. ISBN 0-
07-034175-3. (Cited on p. 15).

[Lea97] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison–Wesley, 1997. ISBN 0-201-69581-2. (Cited on p. 152).

[LEW96] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of Ab-
stract Data Types. John Wiley & Sons, 1996. ISBN 0-471-95067-X. (Cited on
pp. 32, 63).

[LG00] Barbara Liskov and John V. Guttag. Program Development in Java: Abstraction,
Specification, and Object-Oriented Design. Addison–Wesley, 2000. ISBN 0-201-
65768-6. (Cited on p. 70).

[LMM00a] Dongwon Lee, Murali Mani, and Makoto Murata. On the expressive power
and closure properties of XML schema languages.
http://www.cs.ucla.edu/˜mani/xml/papers/conferences/

WebDB2001/td-main2.ps, 2000. (Cited on pp. 32, 32).

[LMM00b] Dongwon Lee, Murali Mani, and Makoto Murata. Reasoning about XML
schema languages using formal language theory. RJ#10197 Log#95071, IBM
Almaden Research Center, 2000.
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/

ibm-tr-2000.pdf. (Cited on pp. 29, 30, 31, 31, 32, 123).

[LS98] Paul J. Leach and Rich Salz. UUIDs and GUIDs, 1998.
http://www.opengroup.org/dce/info/

draft-leach-uuids-guids-01.txt. (Cited on pp. 111, 148).

[Mar96] Robert C. Martin. Acyclic visitor (v1.0), 1996.
http://www.objectmentor.com/resources/articles/acv.pdf.
(Cited on p. 38).

[McG01] Sean McGrath. Attributes versus elements: The never-ending choice, 2001.
http://www.itworld.com/nl/xml_prac/12132001/pf_index.html.
(Cited on p. 88).

[MDB01] Rajiv Mordani, James Duncan Davidson, and Scott Boag. Java API for XML
processing, 2001.
http://java.sun.com/xml/jaxp/dist/1.1/jaxp-1_1-spec.pdf.
(Cited on p. 131).

[Mit01] Joseph Mitchell. PostgreSQL’s multi-version concurrency control, 2001.
http://www.onlamp.com/lpt/a/872. (Cited on p. 152).

174

http://www.cs.ucla.edu/~mani/xml/papers/conferences/WebDB2001/td-main2.ps
http://www.cs.ucla.edu/~mani/xml/papers/conferences/WebDB2001/td-main2.ps
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/ibm-tr-2000.pdf
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/ibm-tr-2000.pdf
http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
http://www.objectmentor.com/resources/articles/acv.pdf
http://www.itworld.com/nl/xml_prac/12132001/pf_index.html
http://java.sun.com/xml/jaxp/dist/1.1/jaxp-1_1-spec.pdf
http://www.onlamp.com/lpt/a/872

Bibliography

[ML02] Murali Mani and Dongwon Lee. XML to relational conversion using theory
of regular tree grammars. In VLDB Workshop on Efficiency and Effectiveness of
XML Tools, and Techniques (EEXTT), Hong Kong, China, 2002.
http://nike.psu.edu/publications/eextt02.pdf. (Cited on
p. 156).

[MLS02] Michael Mealling, Paul Leach, and Rich Salz. A UUID URN namespace,
2002.
ftp://ftp.ietf.org/internet-drafts/

draft-mealling-uuid-urn-00.txt. (Cited on p. 148).

[MS03] Erik Meijer and Wolfram Shulte. Unifying tables, objects and documents,
2003.
http://research.microsoft.com/˜emeijer/Papers/oopsla.pdf.
(Cited on p. 22).

[Mur99] Makoto Murata. Hedge automata: a formal model for XML schemata, 1999.
http://www.geocities.com/ResearchTriangle/Lab/6259/

hedge_nice.pdf. (Cited on pp. 30, 130).

[Pau91] Lawrence C. Paulson. ML for the working programmer. Cambridge University
Press, 2nd edition, 1991. ISBN 0-521-56543-X. (Cited on p. 38).

[Pie02] Benjamin C. Pierce. Xtatic overview, 2002.
http://www.cis.upenn.edu/˜bcpierce/xtatic/outline.html.
(Cited on p. 22).

[Pre98] Paul Prescod. Formalizing SGML and XML instances and schemata with
forest automata theory, 1998.
http://www.prescod.net/forest/shorttut/. (Cited on p. 29).

[Sei90] Helmut Seidl. Deciding equivalence of finite tree automata. SIAM Journal
on Computing, 19(3):424–437, 1990. (Cited on p. 71).

[SG98] Abraham Silberschatz and Peter Baer Galvin. Operating System Concepts.
Addison–Wesley, 5th edition, 1998. ISBN 0-201-59113-8. (Cited on p. 153).

[SR01] Ian Stokes-Rees. fixed and default, 2001.
http://lists.w3.org/Archives/Public/xmlschema-dev/

2001Apr/0063.html. (Cited on p. 126).

[TBMM01] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn. XML schema part 1: Structures, 2001.
http://www.w3.org/TR/xmlschema-1. (Cited on pp. 27, 47, 110, 115,
121, 148).

[vdV01] Eric van der Vlist. Using W3C XML schema, 2001.
http://www.xml.com/lpt/a/2000/11/29/schemas/part1.html.
(Cited on p. 121).

175

http://nike.psu.edu/publications/eextt02.pdf
ftp://ftp.ietf.org/internet-drafts/draft-mealling-uuid-urn-00.txt
ftp://ftp.ietf.org/internet-drafts/draft-mealling-uuid-urn-00.txt
http://research.microsoft.com/~emeijer/Papers/oopsla.pdf
http://www.geocities.com/ResearchTriangle/Lab/6259/hedge_nice.pdf
http://www.geocities.com/ResearchTriangle/Lab/6259/hedge_nice.pdf
http://www.cis.upenn.edu/~bcpierce/xtatic/outline.html
http://www.prescod.net/forest/shorttut/
http://lists.w3.org/Archives/Public/xmlschema-dev/2001Apr/0063.html
http://lists.w3.org/Archives/Public/xmlschema-dev/2001Apr/0063.html
http://www.w3.org/TR/xmlschema-1
http://www.xml.com/lpt/a/2000/11/29/schemas/part1.html

Bibliography

[Wil01] Sam Wilmott. Content model algebra, 2001.
http://home.chello.no/˜mgrsby/sgmlintr/sgmlcont.htm.
(Cited on p. 33).

[Zuk01] John Zukowski. Magic with Merlin: Long-term persistence. Serialize
JavaBean component state to XML, 2001.
http://www.ibm.com/developerworks/java/library/j-mer0731/

index.html. (Cited on p. 136).

176

http://home.chello.no/~mgrsby/sgmlintr/sgmlcont.htm
http://www.ibm.com/developerworks/java/library/j-mer0731/index.html
http://www.ibm.com/developerworks/java/library/j-mer0731/index.html

Index

ε, 23
µ, 33
1-ambiguous, 32

accessor
readable, 39

acquittal, 112
global, 112
local, 112

action
semantic, 140

algebra
quotient, 67

alphabet, 23
ambiguous, 32
analysis

bottom-up, 55
top-down, 55

anchor, 94
angle brackets, 119
anonymous type, 30, 141
anonymous types, 110
anonymous union, 167
attribute, 120

semantic, 135
attribute value, 120
attributes, 88
automaton

deterministic finite, 27
push-down, 28

avatar, 63

back-end, 147
backpatching, 47, 139
basic type, 40
bijection, 64
bilateral

communication, 158
binary large object, 156
blacklist, 116
BLOB, 156
bodily incarnation, 63
bootstrap, 158
bottom-up, 55
brackets

angle, 119
brute force, 19
buffer, 134
builder, 135
bundle, 154

cache, 56
hit, 56
miss, 56

canonical, 67
car

sequential, 44
catalog, 147
cdr

sequential, 44
chain

handler, 133
character

escape, 120
character data

parsed, 87
check, 159
children, 83
circular dependency, 158
closure

Kleene, 25
commit, 56
communication

bilateral, 158

177

Index

compatibility relation, 109
competing type, 31
complex type, 29, 123
compositor, 124
congruence, 67
constraint

occurrence, 47
content

mixed, 26, 123
context, 114

granularity, 114
context-free

grammar, 28
language, 28

continuation, 151
control

version, 20
cooked representation, 151
cookie, 151
CRUD, 149
customized schema, 156

data, 15
character

parsed, 87
free-form, 83
parsed character, 87

data model
native, 157

database
relational, 156

datatype, 53
deduction rules, 56
definition

L-attributed, 135
syntax directed, 135

definition path, 111
dependency

circular, 158
depth, 114
destructive update, 149
deterministic finite automaton, 27
DFA, 27
dirty read, 152

dispatch
multiple, 38

document bundle, 154
doll

Russian, 158
durable, 153
dynamic programming, 56
dynamic properties, 81

element, 26
flyweight, 67

element type, 29
end-of-list, 35
entity, 120

grammar, 123
envelope, 53
environment, 138
equivalence

semantical, 69
structural, 63

error
escalating, 104

escalate errors, 104
escape character, 120
evaluation

lazy, 61
event, 131

matching, 132
sink, 134
source, 133

event handler, 131
expression

regular, 25
extension, 70

file system
virtual, 148

flyweight element, 67
force

brute, 19
free-form data, 83
function objects, 81

global acquittal, 112
globally unique identifier, 111

178

Index

grammar
context-free, 28
local tree, 31
regular tree, 29
single-type tree, 31

grammar entity, 123
grammar production, 136, 141
granularity, 114
group, 123
GUID, 111

handler
event, 131

handler chain, 133
hedge, 30
hint, 149
hold buffer, 134
hook, 133

identifier
uniform resource, 122

in-memory, 153
incarnation, 63, 110
index, 94
information, 15
information kiosk, 153
inherited object, 135
initial type, 92
interning

string, 40
isolation level, 152
isomorphic, 35, 64

JAXP, 131

key
primary, 148

kiosk, 153
Kleene closure, 25

L-attributed definition, 135
label, 26
language, 24

context-free, 28
meta, 25
regular, 25

regular tree, 29
schema, 27

language relation, 90
latency, 153
lazy evaluation, 61
lemma

pumping, 28
letter, 53
level of isolation, 152
load balancing, 148
local acquittal, 112
local tree grammar, 31
locator, 148
locking, 152
lookup

reverse, 116
LTG, 31

manager, 158
mapping

object-relational, 156
marked-up text, 27
markers, 26
master copy, 153
matching event, 132
maximal set, 78
memento, 116
memoization, 56
memory, 153

virtual, 153
meta-data, 89
meta-language, 25
metadata, 16
minimal type, 92
miss

spurious, 115
mixed content, 26, 123
model, 124
multi-version, 152
multiple dispatch, 38

name
robust, 111
volatile, 111

named type, 123

179

Index

named type carrier, 123
namespace, 53
native data model, 157
node, 83
non-basic type, 40
non-destructive update, 149
non-deterministic, 95
non-repeatable read, 152
non-terminal, 141
non-terminal symbol, 29
normalized

regular tree grammar, 30

object
binary large, 156

object-relational mapping, 156
occurrence

constraint, 47
operator

recursive, 33

parent, 83
parse token, 131
parsed character data, 87
parsing, 83
parsing table, 55
partial specification, 33
particle, 125
path, 94
phantom read, 152
placeholder, 46
POD, 140
polymorphic, 88
position, 94
powerset, 77
primary key, 148
primary storage, 153
production

grammar, 136, 141
proof tree, 56
properties

dynamic, 81
pumping lemma, 28
push-down automaton, 28

quotient algebra, 67

RAM, 153
rank, 40
raw representation, 151
RDBMS, 156
read

dirty, 152
non-repeatable, 152
phantom, 152

readable accessor, 39
recognizer, 75
recursive operator, 33
reentrant

type, 36
reference

weak, 59
regular

expression, 25
language, 25

regular tree grammar, 29
normalized, 30

regular tree language, 29
relation

compatibility, 109
language, 90
upgrade, 109

relational database, 156
repository, 15
repository manager, 158
representation

cooked, 151
raw, 151

resource identifier
uniform, 122

restriction, 70
reverse lookup, 116
robust name, 111
rollback, 56
root, 84
RTG, 29
rules

deduction, 56
Russian doll, 158

180

Index

scanner, 135
schema, 15, 27

customized, 156
extension, 107
removal, 107
universal, 156

schema language, 27
secondary storage, 153
semantic action, 140
semantic attribute, 135
semantic object

inherited, 135
synthesized, 135

semantic object builder, 135
semantical equivalence, 69
sentinel, 35
sequence-car, 44
sequence-cdr, 44
session check, 159
set

maximal, 78
short circuit, 73
simple type, 123
single-type tree grammar, 31
sink

event, 134
slash, 119
slicing, 88
source

event, 133
specification

partial, 33
spurious miss, 115
STG, 31
storage

back-end, 147
primary, 153
secondary, 153

string, 23
interning, 40
tagged, 26

structural equivalence, 63
stylesheet, 15
sublanguages, 24

suffix
depth, 114

symbol
non-terminal, 29
terminal, 29

symbol table, 135, 138
syntax directed definition, 135
synthesized object, 135

tag, 26
tagged string, 26
TDLL(1), 32
terminal symbol, 29
text

marked-up, 27
thrashing, 153
token, 131
top-down, 55
transaction, 56

begin, 56
commit, 56
nested, 56
rollback, 56
root, 56

translation scheme, 140
tree, 83

proof, 56
tree grammar

local, 31
regular, 29
single-type, 31

type
anonymous, 30, 141
basic, 40
competing, 31
complex, 29, 123
element, 29
initial, 92
minimal, 92
named, 123
non-basic, 40
reentrant, 36
simple, 123
wellformedness, 123

181

Index

type carrier
named, 123

types
anonymous, 110

underscore, 32
uniform resource identifier, 122
union

anonymous, 167
untagged, 167

Universal Resource Identifier, 148
Universal Resource Locator, 148
universal schema, 156
universally unique identifier, 111
untagged union, 167
update

destructive, 149
non-destructive, 149

upgrade relation, 109
URI, 122, 148
UUID, 111

validation, 90
validator, 90
value

attribute, 120
value domain, 53
version control, 20
veto, 160
VFS, 148
virtual file system, 148
virtual memory, 153
volatile name, 111

weak reference, 59
well-formed, 90
wellformedness, 123

182

	 Preface
	 Contents
	 Figures
	1 Introduction
	1.1 Problems and goals
	1.1.1 Background
	1.1.2 Problem description
	1.1.3 Analogy
	1.1.4 Applicability

	1.2 Roadmap
	1.2.1 Alternatives
	1.2.2 Formal description
	1.2.3 Contribution
	1.2.4 Outline

	2 Grammars
	2.1 Sequences
	2.1.1 Strings
	2.1.2 Languages
	2.1.3 Regular expressions

	2.2 Trees
	2.2.1 Documents
	2.2.2 Schemata
	2.2.3 The problem with regular string expressions
	2.2.4 Context-free languages
	2.2.5 Regular tree grammars
	2.2.6 Subclasses

	2.3 Specification
	2.3.1 Algebra
	2.3.2 Design

	2.4 Implementation
	2.4.1 Empty set and empty string
	2.4.2 Labeled elements
	2.4.3 Ordering types
	2.4.4 Element unions
	2.4.5 List enumeration
	2.4.6 Union operation
	2.4.7 Closures
	2.4.8 Sequence concatenation

	2.5 Further enhancements
	2.5.1 Traversal
	2.5.2 Typed content
	2.5.3 Wildcards --- partial specification of schema

	2.6 Summary

	3 Relations
	3.1 Top-down versus bottom-up
	3.1.1 Alternatives

	3.2 Rules
	3.2.1 Caching
	3.2.2 Transactions
	3.2.3 Implementation of the transaction manager
	3.2.4 Framework for a rule checker

	3.3 Equivalence
	3.3.1 Exposing equivalence
	3.3.2 Congruence
	3.3.3 Prefixing

	3.4 Subtyping
	3.4.1 Complexity considerations
	3.4.2 Algorithm
	3.4.3 Non-basic elements
	3.4.4 Empty sequences
	3.4.5 Disjoint sequences
	3.4.6 Non-empty basic elements

	3.5 Summary

	4 Documents
	4.1 Anatomy
	4.1.1 Trees
	4.1.2 Leaves and sequences
	4.1.3 Character data
	4.1.4 Attributes

	4.2 Validation
	4.2.1 Data integrity
	4.2.2 Matching
	4.2.3 Inferring types
	4.2.4 Custom datatypes

	4.3 Paths
	4.3.1 Determinism
	4.3.2 Incarnation
	4.3.3 Traversal
	4.3.4 Use in relations

	4.4 Summary

	5 Compatibility
	5.1 Schema-oriented solutions
	5.1.1 Extension and removal
	5.1.2 Brute force
	5.1.3 Type-based statistics

	5.2 Name-based approaches
	5.2.1 Explicit naming
	5.2.2 Generated names
	5.2.3 Change management

	5.3 Path-based approaches
	5.3.1 Global acquittal
	5.3.2 Local acquittal

	5.4 Context-based approaches
	5.4.1 Aptness
	5.4.2 Recovery
	5.4.3 Integration

	5.5 Summary

	6 Exterior
	6.1 Syntax
	6.1.1 Elements
	6.1.2 Attributes
	6.1.3 Special characters

	6.2 Meta-schema
	6.2.1 Types
	6.2.2 Elements
	6.2.3 Attributes
	6.2.4 Simpler variant
	6.2.5 Unsupported features

	6.3 Processing model
	6.3.1 Streams
	6.3.2 Flow
	6.3.3 Extensions

	6.4 Attributed grammars
	6.4.1 Semantic stack
	6.4.2 Value building
	6.4.3 Environment
	6.4.4 Type building
	6.4.5 Productions

	6.5 Summary

	7 Repository
	7.1 Back-end
	7.1.1 Catalog
	7.1.2 Meta-data
	7.1.3 Functionality
	7.1.4 Simultaneous access

	7.2 Databases
	7.2.1 In-memory database
	7.2.2 Binary large objects
	7.2.3 Object-relational mapping
	7.2.4 Native XML databases

	7.3 Integration
	7.3.1 Façade
	7.3.2 Validation and upgrade
	7.3.3 Statistics
	7.3.4 Auxiliaries

	7.4 Summary

	8 Conclusion
	8.1 Future work
	8.1.1 Repository
	8.1.2 Algorithm

	8.2 Results
	8.2.1 Overview
	8.2.2 Structure
	8.2.3 Implementation

	8.3 Lessons learned
	8.3.1 Design
	8.3.2 Improvements
	8.3.3 Testing

	8.4 Summary

	 Bibliography
	 Index

