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Abstract

Two-dimensional gel electrophoresis (2DE) is a powerful technique to examine the
post-translational modifications of complexly modulated proteins. We developed a novel
correlation technique that determines the relationship between visualized two-dimensional
gel electrophoresis images and biological data without requiring human interpretation on
a gel per gel basis. After image alignment and normalization, the biological parameters
and pixel values were replaced with their specific rank. The rank adjusted images and
parameters were then used as input into a standard linear Pearson correlation and there-
after tested for significance and variance. The technique was first explored in a simulated
dataset, thereafter applied on p53 2DE immunoblots from cancer cells known to have
unique signaling networks. A p53 protein is targeted by a number of signaling networks,
and is involved in growth regulation, cell death and differentiation. The p53 correlation
analysis distinguished between the cancer forms acute lymphoblastic leukemia and acute
myeloid leukemia. Further analysis of p53 and the differentiation stage of acute myeloid
leukemia indicated that the level of differentiation in cancer might be reflected in the p53
protein pattern. This proposes that p53 protein isoforms can be read as a biosignature,
and that the novel correlation method may be important for exploration of complex signal

convergence on regulatory proteins in biological systems.



1 INTRODUCTION

1 Introduction

Two-dimensional gel electrophoresis (2DE) has been a successful technique for identification
and visualization of post-translational modifications [1| (reviewed in |2|), and is increasingly
used to determine accessible parts of the proteome in human cells [3]. Only to a limited
extent has 2DE been used to propose diagnosis or clinical classification in diseases [4]. The
amount and complexity of data obtained from 2DE gel patterns have led to the development
of analysis software for digitalized images [5, 6, 7|, but human interpretation and validation
of the data is usually necessary. Typically, one of the steps in 2DE analysis is the selection of
spots followed by description of their position, volume and other parameters. Current
methods for spot detection assume regular spot shapes [8] or model spots as bivariate
Gaussian densities [9], and therefore cannot discriminate spot shapes and irregularity

[10, 11]. We developed a method that omits the spot detection phase and does not require

human interpretation on a gel-to-gel basis.

Given a set of gel images, the technique measures correlation between every pixel position
and an external parameter. This makes it possible to study the protein distribution on 2DE
gel as well as the actual relation to the external parameter. The method has been rigorously
tested on a set of simulated 2DE gels with different levels of background, additional noise
and outliers. Real-life evaluation of the technique was performed by testing the correlation
analysis on pb3 protein expression in cell samples from patients with well-characterized

hematological malignancies.

The p53 protein regulates differentiation, growth and cell death through its complex
post-translational modifications caused by multiple signaling networks directly or indirectly
targeting the protein[12, 13]. The TP53 gene is frequently mutated in many cancers, and
mutations in signaling pathways acting on p53 protein are found both in sporadic and
hereditary cancers [14]|. During differentiation, p53 undergoes modifications like
phosphorylation and acetylation and is suggested to be involved in differentiation of acute
myeloid leukemia |15, 16]. Different hematological malignancies, like acute lymphoblastic

leukemia (ALL) and acute myeloid leukemia (AML) [17], are characterized by mutations or
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varying expression of cell signalling encoding genes [18, 19]. We therefore hypothesized that
a wide examination of the extensive post-translationally modified p53 protein could comprise

information about type of cancer and the differentiation stage of the cancer.

A total of 39 unique acute myeloid leukemia (AML) and 8 unique acute lymphoblastic
(ALL) patients were analyzed by 2DE and immunoblotting for visualization of the p53
protein pattern by an amino-terminal targeting antibody Bp53-12. The p53 patterns were
correlated to cancer type (AML vs ALL) and the standardized French-America-British

differentiation classification [20].

The overall results demonstrated that the presented correlation technique may aid the

elucidation of complexly regulated proteins in biological systems.

2 Results

Overview of the study - The work-flow and the concept of the proposed correlation is
indicated in Fig. 1. In order to illustrate how the correlation images ought to be interpreted,
a simulated gel stack with defined spot characteristics in function of an external parameter ¢
was created (Fig. 2). This simulation reassured a controlled environment in which the
algorithmic behavior was observed. For simulation purposes ¢t was chosen as the gel number
in the simulated stack. In practice it could represent any biological parameter as illustrated

later.

Spot positions, sizes and translations - The correlation analysis of the simulated gel
stack (Fig. 2) present information about location, volume and translation of spots related to
the external parameter ¢. The spots « and [ in the gel stack (Fig. 2A) are altered in
function of ¢. They are visualized in the correlation images (Fig 2B) at the same position,
showing that the correlation image offers correct positional information. The correlation
strength is presented in shades of green (positive correlation) and brown (negative
correlation or anti-correlation). If spots do not relate to t, they might go unnoticed, as

illustrated by the v-spots. The two constant y-spots were designed to be independent of the
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gel sequence number t. This resulted in no visible correlation in Fig 2Bab. If the y-spots
were made to correlate with ¢ due to the application of normalization, then the correlation

image (Fig. 2Bc) visualized two spots of different sizes, reflecting the volume of the spots.

The d-spots illustrated detection of spot shifts related to the external parameter. The
original and destination positions will respectively correlate, then anti-correlate, resulting in

a smear in the correlation image (Fig. 2B).

Reading of spot shape - All images in Fig. 2B showed the a-spot anti-correlate in the
middle and correlate at its periphery. This is consistent with the creation of the gel-stack in
which the amplitude of spot «a lowers from 5.0 to 1.0 while the spots broadens from 10 to
100 pixels. Because the central spot widens, higher gel numbers will have relatively more
signal in the periphery. This indicates that spots where diffusion-like alteration dominates
will be detected based on difference in correlation between the inner and outer areas. Similar
behavior can be observed in the shape changing (-spot. The initial vertical shape (low
t-value) anti-correlates (it disappears) while the later horizontal shape (at higher ¢-values)

correlates (it appears).

Significance visualized by masking the correlation image - In the simulated
gel-stack, empty areas have a constant intensity. The raw correlation analysis indicates a
strong correlation (Fig. 2Ba) or anti-correlation (Fig 2Bb) for those areas. Mathematically
this is correct, but because of a lack in intensity variation (the area is constant) this
correlation is without information. The putative empty information was filtered out using
two masks, one mask to remove non significant correlations and a second mask to remove
areas without variance (see material and methods, Step 4 for details). After masking the
correlation image (Fig. 2B(abc)), only the areas with relevant spot modulations are

indicated (Fig. 2B(a’,b’,¢")).

Effect of different normalizations - Different background removal and scaling techniques
on the simulated gel-stack were tested (Fig. 2), including background subtraction and

background division. The original information that led to the creation of the gel-stack was
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retrieved in all cases. The «, § and 3 spot correlations were always visualized, indicating
that the normalization technique used is of little importance for qualitative analysis. In the
particular case of gel normalization obtained by division through the mean gel intensity, new
information was found that did not directly originate from the creation of the simulation
(Fig. 2Bc). Due to a t-dependent energy increase in spot « the mean intensity of the gel
increases. As a result, the original constant y-spots decreased in energy (division by a larger
number leads to lower values). The y-spots became ¢ dependent and thus showed up in the
correlation image. This unexpected behavior does not reduce the analytical power of the
correlation method. Since normalization is performed on an individual gel basis it can
always be repeated on any gel without taking into account previous gels. Quantitatively,
normalization factors strongly influence correlation measures. If the technique is used as a
quantitative method, then calibration spots ought to be used and exact understanding of

machine specifications and camera properties should be known.

Background Correlations and the effect of noise in 2DE images - Adding noise to
the images attenuated the appearance of background in the correlation images (Fig. 3Aa-c).
The noised background was white in the correlation images, while the background was either
correlating positive or negative in Fig. 2B. This indicates that small amounts of noise might
enhance interpretation of the correlation analysis. Increasing noise up to 75% (of maximum
image intensity) resulted in weaker correlations, but still important spots were identifiable
(Fig. 3A a-c). Increasing the noise level in pace with increasing gel stack number (¢-value)
resulted in correct information about the negative correlation, but loss of information about
the positive correlation (Fig 3Ad,d’). Such a situation could occur if an automatic camera
acquired images at waning signal strength. We conclude that presence of uniform or
Gaussian distributed noise in the dataset barely influences the analytical power of the

presented correlation test.

Effect of randomization of the dataset - Two sets of random data were generated to be
used as t-value. Instead of testing correlation towards the sequence number ¢, we now

determined the effect of correlation of the images towards noise. The IDL function
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‘randomu’ |21], generated the normally distributed pseudo random numbers. In the
correlation images we always recognized the same shapes as with the original t-values. Areas
that behave similarly had distinct pseudo-coloring, regardless of the external biological
parameter set. This emphasizes the robustness of the algorithm to identify regions of

interest. Fig 3B was made with the particular seeds 287 and 2874.

Outliers - A test with t-value outliers shows limited impact on the interpretation of the gels
(Fig. 3B). We changed the t-values from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} to {0,
1,15,3,4,5,6,7,8,9,10, 11, 12, 13, 14}, resulting in a slight change in actual correlation
magnitude, but the information content was surprisingly well preserved. Even with 13%
outliers {0, 1, 15, 3, 4, 5, 6, 4, 8, 9, 10, 11, 12, 13, 14}, the original information is recovered.
This is mainly due to the robust correlation which relies on ranking of the dataset instead of

the numerical values (both the ¢-values and the image pixel values are ranked).

Application of correlation technique in cancer cells - We tested the algorithm on a
set of pb3 2DE immunoblots from acute leukemia. We first examined p53 2DE immunoblots
in ALL versus AML (Fig. 4A). The impact of wrong diagnosis was examined by random
swapping ALL and AML labels, resulting in lower correlation as expected (Fig. 4B). The
strong positive correlation between ALL and p53-a and § forms was examined in the normal
and mature cell counterpart of ALL and AML, lymphocytes and granulocytes (Fig. 4C).
Granulocytes hardly expressed a or § p53 protein, while lymphocytes showed predominantly

p5H3-9 forms, supporting the positive p53 correlation with lymphatic derived leukemia.

Correlation between p53 protein isoforms in acute myeloid leukemia (AML) and
differentiation stage - Based on the observation that pb3 is involved in leukemic cell
differentiation [15, 22, 16, 23|, and the fact that the standardized and widely used
French-American-British (FAB) classification of AML is based on morphologically
determined stage of myeloid maturation and direction of maturation [24, 20], we searched for
correlations between FAB classification and the p53 2DE pattern. Using 73 gels we found
striking correlations (Fig. 5). Image A is the masked correlation landscape, image B is the

raw correlation image. The observations were that: a) The tail of the p53-a isoform
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correlates negatively to the FAB classification (profile 4, region g and h). b) The p63 area
correlates positively towards the FAB classification (profile 3, the i region). c¢) The p53-0
region has four positively correlating articulated spots (profile 1, a-d, r=0.2), d) The p53
sub-J region has two negatively correlating spots (profile 2e,f). The combination of a
positive correlation at the p53-0 region and a negative correlating sub-d region indicates a
spot shift from one area to another. e) Presence of the super-é negative correlating region
indicates that a change of spot shape also occurs. When the spots are larger and diffuse then
the patient is classified as M0, M1 or M2. If the spots in the § region are clear articulated
and smaller, the patient are either M4 or M5. None of the above correlations are strong
(r 0.25 using the stringent Spearman rank order correlation). Nonetheless they can all be
observed in the 2DE images, which means that they can form an important tool in

stratification of patients.

The presented correlation includes M3, a distinct subgroup of AML with signs of granu-
locytic differentiation, featuring the translocation t(15;17) and responsiveness to retinoic acid
therapy [25]. FAB M3 is therefore a separate entity in the recent WHO classification |26].
The correlation of M0/1 versus M4/5 was weaker when M3 was removed (data not shown).
This observation suggests that it is the maturation distance from M(/1 that is mirrored in the
M3-including analysis (Fig. 3B); and it may also suggest that p53 patterns associated with

M3 are unique, thereby contributing to a greater splitting of the patients into subgroups.

3 Discussion

In our opinion, the presented correlation technique offers unique advantages over standard
2D gel analysis techniques relying on spot detection methods, including (i) robust and
general analysis; (ii) natural spot position comparison; (iii) fast interpretation; and (iv) no

strict need for calibration.

The technique does not require perfect gels. Background noise and outliers do not influence

the quality of the analysis. Since we rely on ranking of the data set, outliers (whether they
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are in the gel images or in the external parameters) do not attribute any significant impact

to the correlation image.

Spot detection and selection have become unnecessary. The analysis takes into account all
information that does not easily fit into a bivariate Gaussian distribution. This implicates

that spot shapes, tails and areas are all treated equally.

Because spots never occur at exactly the same position, a certain amount of jitter is allowed
by spot detection methods before spots are considered different. Our analysis does not
require such parameters and will automatically tune to the required resolution. When spots
are small, then small translations will be considered relevant. When spots are broad, larger

shifts are necessary to detect translation.

Standard procedures of selecting and quantifying spots take a long time due to parameter
tuning. Since our technique does not require this, it is much faster. Also, the computational
requirements are limited. Standard computers can easily calculate large correlation images
in matters of minutes. Spot detection can afterwards be used on the final correlation image

and can in some cases be a method for verification of the observed correlations.

We demonstrated that the correlation technique works surprisingly well without calibrated
intensities. The use of mean background division and RMS scaling offers the same

information quality as relying on exactly calibrated values.

A major drawback of the presented correlation technique is its requirement for properly
aligned gels. Aligning many different gels is not an easy task without calibration spots. One
often needs to rotate, translate and zoom gels appropriately. Another drawback is that the
method does not allow comparison of spot volumes. Instead of measuring protein
concentrations related to spot volumes, this technique measures intensities on an individual

pixel basis and provides information on the shape changes of spots.

Recently we demonstrated that signaling networks may be altered and potentiated in cancer

cells suggesting a prognostic meaningful classification [27]. This includes altered p38
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MAP-kinase signaling, known to phosphorylate p53. Signaling networks are emerging targets
of new therapy [28|, and the p53 biosignatures may be the result of integrated information
about signaling networks in cancer, we hypothesize that these p53 signatures might be used
for future therapy individualization. The correlation analysis of p53 in ALL versus AML
suggests that pb3 isoforms analyzed by two-dimensional immunoblots represent a
biosignature that comprise information about the origin of cancer (Fig. 4). It is probable
that the p53 biosignature is formed by the combinations of splice forms of p53 and by its
various post-translational modifications [12, 29]|. The p53 protein is tightly regulated by
post-translational modifications [12|, thereby involved in several positive and negative
feedback networks [13]. This has ignited the hypothesis that p53 integrates information from
all these signaling networks [30]. ALL and AML comprise different genetic abnormalities
[25, 31], and analysis of growth factor receptor expression and global gene expression has
pointed out that the expression of receptor tyrosine kinases and signaling modulators are
different [32, 33]. Therefore, since the p53 protein is implied in various cancer related
signaling networks, it is probable that a p53 isoform analysis using two-dimensional

immunoblot provides a biosignature distinguishing ALL from AML.

Phosphorylation of pb3 Ser315 is necessary for differentiation in mouse embryonic stem cells
[34], and p5b3 is also able to direct differentiation in acute myeloid leukemia cell lines |23, 16].
The p53-deficient HL-60 cell line has potential for both monocytic and granulocytic
differentiation, and introduction of wild type p53 direct differentiation in the granulocytic
direction |22]. Recent reports indicate that the FAB classification, in particular the
distinction between M1-2 and M4-5 in maturation level and direction of maturation, is
associated with certain gene classes in unsupervised clustering of gene expression profiles
[35, 36]. These observations suggest that the p53 biosignatures reflect the stage and
direction of myeloid differentiation to certain extent. The pb3 recognizing antibody Bp53-12
also detects p63 [37|, and the correlation analysis supports that the p53 family-member p63
is increased at increased differentiation (Fig. 5A). This observation is interesting since p63 is

more strongly related to embryonic development and differentiation than p53 [38].

10
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Future development of the method should include 2DE gels with built in standards (pI,
MW) and known protein amounts, together with consideration of hardware-parameters, grey
value scales, noise types and noise floors. This may allow quantitative measurement of spot

modulation.

Taking the correlation further than the pixel level should be possible by using canonical
correlations and development of significance measures that take into account the similarity

of neighboring pixels [39, 40].

Another worthwhile alley is prediction of external parameters based on a large training set.
Using multivariate discriminant analysis [41], this might offer prospects for patient
stratification. Finally, it should also be possible to insert clustering algorithms to pseudo
color the final image or rely on image segmentation algorithms to classify areas automatically
[42, 43]. However, even in its present provides our correlation technique a method to perform

correlation analysis of complex biosignatures and signal network responses.

4 Material & Methods

The 2DE gel correlation technique relies on a large amount of 2DE gels of a biological
system. Every gel needs to be described by an external numerical measure. E.g: life
expectancy, differentiation stage of a cell sample, age of an organism, origin of a cancer cell
sample, effect of cancer therapy, time, temperature, pressure, cell size, and so on. For every
n gels (described as A, in which z is the gel image number), there are n external parameters,
described as T,. Gels can further be annotated as A, , . in which (z,y) is the position on gel

number z. A, , is a vector containing the intensities of all gels:

AZB,y = A%Zhl A%%z e Ax7y7n

Step 1: Alignment and registration - The method requires proper direction and
alignment of all gels. Presence of calibration spots facilitates this process, otherwise
techniques such as Hough transformation [44, 45| for gel direction measurement and cross

correlation [46] for multiple gel alignment can be used. Once the gels are aligned, further

11
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basic warping and registration [47| techniques are useful to account for small shifts between

the different gels. The aligned images are denoted AIZ.

Step 2: Intensity Normalization - The second step normalizes the intensity values of the
gels to allow for inter-gel pixel comparison. There is little known of the relation between
pixel intensities and protein concentrations. Furthermore, pixel values can be relative or
gamma corrected, depending on the hardware. The wide variety of possible pixel value
interpretations leads us to embrace the use of relative grey values. The simulated gel stack
showed that the choice of normalization technique barely influences the final correlation

image.

Step 2a: Background intensity - The background floor of a 2DE gel refers to the
brightness of empty gel areas. Different capture techniques produce different background
floors. Background signal can be either added to all pixel values (additive background), or it
can cumulate with a decaying signal (multiplicative background). As previously observed
[48], most cameras introduce a mixture of additive and multiplicative backgrounds. Removal

”

of additive noise can be done through subtracting the mean (A, := A” — A7) or median

”

value (A := A. — median(A)). Removal of multiplicative noise can be done through
A; = % — 1. We would emphasize that whatever normalization scheme is used in this step,

z

it should be performed on an individual gel basis.

Step 2b: Scaling of gel intensity - After removal of the background floor, the dynamic
range of the image is normalized through scaling of gel intensities. The presence of a

calibration spot eases this process. If A’ is the non-relative image and (z,y) is the

’
i
T,y

calibration spot position, then the image A" := defines the normalized image. Without

calibration spot the total energy content (sum of all intensities or RMS value) forms a very

’

A

reasonable scaling means: A, = RS

Step 3: Correlation Image - After alignment and normalization, the correlation analysis
generates a new image visualizing the correlation measure between a specific position and an

external parameter. The correlation image is composed of pixels, each testing one position

12
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on the gel. The result of each test is a number between -1.0 (anti-correlation) and 1.0
(correlation), which, after appropriate scaling, defines the pixel color in the correlation
image. The two vectors participating in the test are A;y and B. The first vector contains
the gel expression levels at position (x,y). Given 89 gel images, A;,y will contain 89 different
expression values; one for each gel. The second vector B contains 89 external values
associated with every gel. Repeating this correlation test for every pixel results in the

correlation image C' (Eq. 1)

Coy = p(A;,,T) (1)

x7y’

The correlation image can be visualized using different color schemes. In Fig. 1 green
indicates positive correlations and brown negative correlations.

The preferred correlation is the robust Spearman rank order correlation (p-correlation)[21].
This non-parametric test allows us to ignore the specific distributions of gel intensity levels
and external parameters. p-correlation requires a ranking of the two participating vectors and

then relies on a standard linear Pearson correlation.

Step 4: Masking - Correlation does not necessarily imply a causal, significant, or useful
relationship. To filter out some possibly useless relations, a number of masks limit the visible
correlations. The first mask removes correlations that might be occurring by coincidence:
some datasets easily correlate with any other dataset (significance). The second mask

removes correlations that offer little useful information (E.g: a dataset containing all zero’s).

Step 4a: Significance - To remove correlations that have a high probability of occurring,
the significance test typically associated with the Spearman correlation test was used. In

this context, it is defined as

n—2
Sew =1 Cay| T )
x7y

13
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If this number is close to 1 then there exists a low probability that some random data would
happen to correlate with the given result set. Likewise, if this number is 0 then there exists a

high probability that the correlation is coincidental.

Step 4b: Variance - The second mask avoids strong and significant correlations that have
a low biological significance because the gel intensities do not change enough. It relies on the

standard deviation [49] measured on the relative, non-ranked, gel intensities

1AL
TG 2
D:my = N,y, (3)

The standard variance (or RMS) of the mean divided gels will have a large value where there
is a varying gel expression. At places where the gel expression is constant this value will be

zZero.

Step 4c: The masked correlation image - Multiplying the standard deviation mask
(Eq. 3) with the significance mask (Eq. 2) gives a new mask that can be superimposed over

the correlation image (Eq. 1).

R=CxSxD

The pixel values of R no longer relates to the correct correlation measure. Therefore, R

forms an indicator, showing position of possible interest.

Simulation of a two-dimensional gel electrophoresis stack - The simulated gel-stack

is based on the animation of different 2D gauss 'bumps’, defined as

T—cx\2 y—cy\2
<M>2<wy>)

G(z,y) = a.exp(—

(cz,cy) is the center position, wzr and wy are the width and height respectively. a is the

amplitude of the curve. Based on this Gaussian ’bump’ a gel-stack, containing 15 different

14
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gels was constructed. Every gel contains: I) an out-fading spot (Fig 2, spot «) with a
growing radius from 10 to 100 pixels and lowering amplitude from 5.0 to 1.0. II) An
elliptical spot (Fig 2, spot ) which changes shape from being small and tall

(wx = 10, wy = 40, a = 5) to broad and flat (wz = 40, wy = 10, a = 5). III) Two spots with
minimal (1.0) and maximal (5.0) amplitudes (Fig 2, spots 7). IV) A moving spot (Fig 2,

spot 0) from left to right. Every gel is annotated with its position in the stack.

Patients, leukemic cell separation and sample preparation - The study was
approved by the local Ethics Committee and samples collected after informed consent. Cell
separation, storage and culture of patient AML blasts were performed as previously
described [50, 27]. ALL and AML blasts were isolated by density gradient separation with
Lymphoprep (Nycomed Pharma AS, Oslo, Norway) and contained more than 90% malignant
cells. Patient characteristics and number of gels are presented in Table 1. Normal
granulocytes (97% neutrophile) and lymphocytes (peripheral blood mononuclear cells
containing 10% monocytes and predominantly T lymphocytes) were separated by density
gradient centrifugation combining Polymorphprep TM (Axis-Shield PoC AS, Oslo, Norway)
and Lymphoprep following the manufacturers instructions. Preparation for two dimensional
gel electrophoresis (2DE) and immunoblotting was performed as previously described

[51, 52, 53]. Briefly, cells were washed in NaCl (9 mg/ml) and then lysed in 7%
trichloroacetic acid. The precipitated protein was washed once in 5% trichloroacetic acid and
three times in water saturated ether to remove salts. The protein pellet was resuspended in
sample buffer for 2DE gel electrophoresis (7 M urea, 2 M thiourea, 100 mM dithiotreitol,
1.5% Ampholyte 3 - 10, 0.5% Ampholyte 5 - 6, 0.5% CHAPS). 2D was performed using 7 cm
pH 3-10 (Zoom Strip, Invitrogen Corp., Carlsbad, CA, USA) isoelectric focusing gel strips,
following the manufacturers’ instructions. Electrophoresis was performed at 200 V for 60
minutes, after which the proteins were transferred to polyvinylidene fluoride membrane
(Amersham Biosciences AB, Uppsala, Sweden) by standard electro-blotting. p53 protein was
detected using primary Bp53-12 antibody (Santa Cruz Biotechnology, CA, USA) and
secondary horse radish peroxidase conjugated mouse antibody (Jackson ImmunoResearch,

West Grove, PA, USA) visualized using the Supersignal west Pico or Supersignal west Femto

15
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system (Pierce Biotechnology, Inc., Rockford, IL, USA). Chemiluminescence imaging was
performed using a Kodak Image Station 2000R (Eastman Kodak Company, Lake Avenue,
Rochester, NY, USA) and were saved in TIFF format with the resolution of 300 dpi for

correlation analysis.
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6 FIGURES & TABLES

6 Figures & Tables

Disease Classification Patients Images

AML
M0/1 1 2
M1 7 12
M1/2 1 2
M2 10 18
M3 2 4
M4 3 6
M4/5 6 12
M5 7 14
Mba 2 3
Sum 73
Mean Age 58.4 years
Median Age 61 years
Age Range 29-86 years

ALL 8 16
Mean Age 47.3 years
Median Age 41.5 years
Age Range 22-84 years

Table 2: Leukemia patient characteristics and corresponding 2DE imagesTotally 73 AML and
16 ALL images were included in the analysis. All ALL patients had B-cell disease and two
patients comprised the ber-abl fusion product.
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Figure 1: 2DE Gel Correlation relies on an aligned, normalized stack of 2DE gel images and
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a numerical label associated with every gel. Pixel per pixel correlation creates a new image

showing areas in the gel that relate to the external parameter. In comparison to standard gel

analysis methods, spot detection is not necessary and therefor less bias is introduced into the

analysis process. This technique also recognizes moving spots and spot shapes that change.
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Figure 2: Correlation of a simulated 2DE gel-stack and the effect of various back-
ground normalizations. (A) 8 snapshots taken from a stack of 15 gels generated using
Gaussian bumps, see material and methods for formula and details. Each gel contains sim-
ulated spots with particular characteristics: («) an out-fading spot growing in size, () an
elliptical spot changing shape from small and tall to broad and flat, () two spots with con-
stant amplitudes and (J) a spot shifting from left to right. (B) Correlation between the
gel-stack and the external parameter, in this case, the gels sequence number (t). Upper gels
(a-c) visualizes the correlation, lower gels (a’-c’) represent a masking that visualizes the areas
of useful correlations. Correlation analysis was performed relying on different background
removal methods. (a,a’) without background removal; (b,b’) with background subtraction,

(c,c’) using background division. See the result section for details.
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Figure 3: The effect of noise, outliers and randomization in the correlation analysis.
(A) Correlation analysis with the addition of normal distributed noise to 25 % (a,a’), 50%
(b,b’), 75% (c,c’) and increasing noise from 0% to 75% in gels 0 to 14 (snapshot 1 to 8). The
analysis was performed without normalization of the gels. (B) Two different randomizations
were performed. #1(a,a’) and #2(b,b’) are the correlation images towards a fully randomized
set of biological parameters. (c¢,¢’) and (d’d’) show the correlation images when the biological

parameter set is polluted by respectively 6% and 13% outliers.
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Figure 4: Origin of cancer and p53 isoform distribution. (A) 73 acute myeloid leukemia
(AML) and 16 acute lymphoid leukemia (ALL) gel images were analyzed for correlation of p53
isoform distribution (left, correlation; right, masked correlation/significance of correlation).
Green color indicates positive correlation for ALL (maximum positive correlation 0.5557),
and brown color indicates negative correlation (maximum negative correlation 0.1464). Brown
color indicates p53 protein forms predominantly found in AML. Inset boxes present the cor-
relation (left) and significance (right) for the o and ¢ region, respectively. (B) Attenuated
correlation when ALL images are replaced with images from AML. Replacement of 25% of
the ALL cases with AML (a): Maximum positive correlation 0.3910, maximum negative cor-
relation 0.1463. Replacement of 50% of ALL with AML (b): Maximum positive correlation
0.2730, maximum negative correlation 0.2232. (C) p53 expression in normal lymphocytes (left
panel) and granulocytes (right panel). See Material and Methods for details on cell separation.
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Figure 5: Differentiation stages of cancer modulates p53 isoform distribution. (A)
Correlation landscape of p53 in 73 AML images related to differentiation direction and stage
(FAB, French-American-British classification). Green indicates correlation with the more
differentiated forms of AML. Brown indicates anti-correlation with the more mature forms
of leukemia cells. The vertical axis sets out the absolute correlation value. (B) Correlation
image demonstrating statistical significant alterations in p53. Profile 1 shows the p53-d region
containing four correlating spots (r — 0.2). Profile 2 shows the sub-d region anti-correlating
at positions e and f. Profile 3 is the p63 region (putative p53 isoform) correlating towards
the more differentiated leukemia’s. Profile 4, a p53 region anti-correlating with differentiated

AML.
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7 SUPPLEMENTARY MATERIAL

7 Supplementary Material

7.1 Correlation Implementation

The algorithm is implemented in IDLv6.1 [54] and takes two arguments. The first argument
is the gel-stack, which is a three dimensional space. First dimension is the gel number, the
second and third dimensions are the x and y-axis of the gels. The second argument is a vector
describing the result of the different gels. The presented algorithm makes use of a mean

scaling.

PRO correlate_images, all, result
d = size(all,/dim)
VX = d[1]
VY = d[2]
; normalize the background
for i = 0, d[0] - 1 do begin

all[i,*,*] /= mean(alll[i,*,*])

endfor

; Rho correlation
cor_pic = make_array(VX,VY,/double,value=0.0)
f_pic = make_array(VX,VY,value=0.0)
0, VX - 1 do begin
=0, VY - 1 do begin
r_correlate(reform(all[*,x,y]) ,result)
cor_pic[x,yl=r[0]
f_piclx,yl=1.0-r[1]
endfor

for x
for

n <

r

H

endfor

; we are interested in correlations with high variance on gel
var_pic = make_array(VX,VY,/double,value=0.0)

for x = 0, VX - 1 do begin

for y = 0, VY - 1 do begin
var_piclx,yl=stddev(all[*,x,y])
endfor
endfor

var_pic <= 1.0

f_pic *= var_pic

cor_pic <= 1.0

cor_pic >= -1.0

show_correlation, cor_pic, f_pic
end

7.2 Gauss Bumps

function gauss2d, sx, sy, cx, cy, wx, wy, a
im = float(make_array(sx,sy,value=0.0))
for x = 0, sx - 1 do begin
for y = 0, sy - 1 do begin
im[x,y]=float (((cx-x) /wx)~2 + ((cy-y)/wy)~2)
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7.3 Simulated Gel Stack

7 SUPPLEMENTARY MATERIAL

endfor
endfor
-im/2
exp (im)
*= a

im

im =
im
return, im
end

7.3 Simulated Gel Stack

function create_set, nr, sx, sy, wxl, wx2, wyl, wy2, al, a2

all

for i = 0, nr - 1 do begin
wx = wxl + i*(wx2-wxl)/nr
wy = wyl + i*(wy2-wyl)/nr
a = al + i*(a2-al)/nr

all[i,*,x] = gauss2d(sx, sy,

endfor

return, all
end
setl = create_set(15, 600.0, 400.0
set2 = create_set(15, 300.0, 300.0
set3 = create_set(15, 300.0, 300.0
set4 = create_set(15, 300.0, 300.0

set1[#,0:299,0:299] += set2[*,*,%]

set1[*,300:599,0:299] += set3[*,*,%]
set1[*,300:599,100:399] += setd[*,*,%*]

for i

0, 14 do begin

make_array(nr,sx,sy,value=0.0)

sx/2,

10.
10.
20.
20.

sy/2, wx, wy, a)

0, 100.0, 10.0, 100.0, 5.0, 1.0)
0, 40.0, 40.0, 10.0, 5.0, 5.0)
0, 20.0, 20.0, 20.0, 5.0, 5.0)
0, 20.0, 20.0, 20.0, 1.0, 1.0)

set1[i,0+i*10:299+i%10,200:399]+=set3[i,*,50:249]

endfor
for i = 0, 14 do begin
set1[i,*,*]/=double(i)

endfor

setl = relative(setl)
findgen(15)
correlate_images, setl, resultl

resultl

end

7.4

PRO show_correlation, cp, t_pic

Creating green / brown images

cor_pic = cp

DDD = size(cp,/dim)

VX = ddd[0]

VY = ddd[1]

; the normal one

shown = make_array(3,VX,VY,/double,value=255.0)
multi = 1.0 / max(abs(cor_pic))

multi = 1.0 / max(abs(cor_pic))

shown[0,*,*] += (cor_pic[*,*] < 0)
shown[1,*,*] += (cor_pic[*,*] < 0)
shown[2,*,*] += (cor_pic[*,*] < 0)
shown[0,*,*] -= (cor_pic[*,*] > 0)
shown[1,*,*] -= (cor_pic[*,*] > 0)

* K ¥ X ¥

multi * 55
multi * 155
multi * 255
multi * 255
multi * 55
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7.4 Creating green / brown images 7 SUPPLEMENTARY MATERIAL

shown[2,*,*] -= (cor_pic[*,*x] > 0) * multi * 205

window, 1, title=’Correlation’, ret=2, xsize=vx, ysize=vy
shown >= 0
255
shown,

shown <=
tvscl, /true

; only the significant correlation
wcor_pic = double(cor_pic) * double(t_pic)

shown = make_array(3,VX,VY,/double,value=255.0)

multi = 255.0 / max(abs(wcor_pic))

shown[0,*,*] += (wcor_pic[#,*] < 0) * multi * 55
shown[1,*,*] += (wcor_pic[#,*] < 0) * multi * 155
shown[2,*,*] += (wcor_pic[#,*] < 0) * multi * 255
shown[0,*,*] -= (wcor_pic[#,*] > 0) * multi * 255
shown[1,*,*] -= (wcor_pic[#,*] > 0) * multi * 55
shown[2,*,*] -= (wcor_pic[#,*] > 0) * multi * 205

window, 3, title=’Significant Correlations’, ret=2, xsize=vx, ysize=vy
shown, /true

bytscl (shown)

profiles, cor_pic

; significance

window, 2, title=’Significance’, ret=2, xsize=vx, ysize=vy

tvscl,
shown =

tvscl, t_pic
profiles, t_pic

end
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