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AbstratTwo-dimensional gel eletrophoresis (2DE) is a powerful tehnique to examine thepost-translational modi�ations of omplexly modulated proteins. We developed a novelorrelation tehnique that determines the relationship between visualized two-dimensionalgel eletrophoresis images and biologial data without requiring human interpretation ona gel per gel basis. After image alignment and normalization, the biologial parametersand pixel values were replaed with their spei� rank. The rank adjusted images andparameters were then used as input into a standard linear Pearson orrelation and there-after tested for signi�ane and variane. The tehnique was �rst explored in a simulateddataset, thereafter applied on p53 2DE immunoblots from aner ells known to haveunique signaling networks. A p53 protein is targeted by a number of signaling networks,and is involved in growth regulation, ell death and di�erentiation. The p53 orrelationanalysis distinguished between the aner forms aute lymphoblasti leukemia and autemyeloid leukemia. Further analysis of p53 and the di�erentiation stage of aute myeloidleukemia indiated that the level of di�erentiation in aner might be re�eted in the p53protein pattern. This proposes that p53 protein isoforms an be read as a biosignature,and that the novel orrelation method may be important for exploration of omplex signalonvergene on regulatory proteins in biologial systems.
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1 INTRODUCTION1 IntrodutionTwo-dimensional gel eletrophoresis (2DE) has been a suessful tehnique for identi�ationand visualization of post-translational modi�ations [1℄ (reviewed in [2℄), and is inreasinglyused to determine aessible parts of the proteome in human ells [3℄. Only to a limitedextent has 2DE been used to propose diagnosis or linial lassi�ation in diseases [4℄. Theamount and omplexity of data obtained from 2DE gel patterns have led to the developmentof analysis software for digitalized images [5, 6, 7℄, but human interpretation and validationof the data is usually neessary. Typially, one of the steps in 2DE analysis is the seletion ofspots followed by desription of their position, volume and other parameters. Currentmethods for spot detetion assume regular spot shapes [8℄ or model spots as bivariateGaussian densities [9℄, and therefore annot disriminate spot shapes and irregularity[10, 11℄. We developed a method that omits the spot detetion phase and does not requirehuman interpretation on a gel-to-gel basis.Given a set of gel images, the tehnique measures orrelation between every pixel positionand an external parameter. This makes it possible to study the protein distribution on 2DEgel as well as the atual relation to the external parameter. The method has been rigorouslytested on a set of simulated 2DE gels with di�erent levels of bakground, additional noiseand outliers. Real-life evaluation of the tehnique was performed by testing the orrelationanalysis on p53 protein expression in ell samples from patients with well-haraterizedhematologial malignanies.The p53 protein regulates di�erentiation, growth and ell death through its omplexpost-translational modi�ations aused by multiple signaling networks diretly or indiretlytargeting the protein[12, 13℄. The TP53 gene is frequently mutated in many aners, andmutations in signaling pathways ating on p53 protein are found both in sporadi andhereditary aners [14℄. During di�erentiation, p53 undergoes modi�ations likephosphorylation and aetylation and is suggested to be involved in di�erentiation of autemyeloid leukemia [15, 16℄. Di�erent hematologial malignanies, like aute lymphoblastileukemia (ALL) and aute myeloid leukemia (AML) [17℄, are haraterized by mutations or3



2 RESULTSvarying expression of ell signalling enoding genes [18, 19℄. We therefore hypothesized thata wide examination of the extensive post-translationally modi�ed p53 protein ould ompriseinformation about type of aner and the di�erentiation stage of the aner.A total of 39 unique aute myeloid leukemia (AML) and 8 unique aute lymphoblasti(ALL) patients were analyzed by 2DE and immunoblotting for visualization of the p53protein pattern by an amino-terminal targeting antibody Bp53-12. The p53 patterns wereorrelated to aner type (AML vs ALL) and the standardized Frenh-Ameria-Britishdi�erentiation lassi�ation [20℄.The overall results demonstrated that the presented orrelation tehnique may aid theeluidation of omplexly regulated proteins in biologial systems.2 ResultsOverview of the study - The work-�ow and the onept of the proposed orrelation isindiated in Fig. 1. In order to illustrate how the orrelation images ought to be interpreted,a simulated gel stak with de�ned spot harateristis in funtion of an external parameter twas reated (Fig. 2). This simulation reassured a ontrolled environment in whih thealgorithmi behavior was observed. For simulation purposes t was hosen as the gel numberin the simulated stak. In pratie it ould represent any biologial parameter as illustratedlater.Spot positions, sizes and translations - The orrelation analysis of the simulated gelstak (Fig. 2) present information about loation, volume and translation of spots related tothe external parameter t. The spots α and β in the gel stak (Fig. 2A) are altered infuntion of t. They are visualized in the orrelation images (Fig 2B) at the same position,showing that the orrelation image o�ers orret positional information. The orrelationstrength is presented in shades of green (positive orrelation) and brown (negativeorrelation or anti-orrelation). If spots do not relate to t, they might go unnotied, asillustrated by the γ-spots. The two onstant γ-spots were designed to be independent of the4



2 RESULTSgel sequene number t. This resulted in no visible orrelation in Fig 2Bab. If the γ-spotswere made to orrelate with t due to the appliation of normalization, then the orrelationimage (Fig. 2B) visualized two spots of di�erent sizes, re�eting the volume of the spots.The δ-spots illustrated detetion of spot shifts related to the external parameter. Theoriginal and destination positions will respetively orrelate, then anti-orrelate, resulting ina smear in the orrelation image (Fig. 2B).Reading of spot shape - All images in Fig. 2B showed the α-spot anti-orrelate in themiddle and orrelate at its periphery. This is onsistent with the reation of the gel-stak inwhih the amplitude of spot α lowers from 5.0 to 1.0 while the spots broadens from 10 to100 pixels. Beause the entral spot widens, higher gel numbers will have relatively moresignal in the periphery. This indiates that spots where di�usion-like alteration dominateswill be deteted based on di�erene in orrelation between the inner and outer areas. Similarbehavior an be observed in the shape hanging β-spot. The initial vertial shape (low
t-value) anti-orrelates (it disappears) while the later horizontal shape (at higher t-values)orrelates (it appears).Signi�ane visualized by masking the orrelation image - In the simulatedgel-stak, empty areas have a onstant intensity. The raw orrelation analysis indiates astrong orrelation (Fig. 2Ba) or anti-orrelation (Fig 2Bb) for those areas. Mathematiallythis is orret, but beause of a lak in intensity variation (the area is onstant) thisorrelation is without information. The putative empty information was �ltered out usingtwo masks, one mask to remove non signi�ant orrelations and a seond mask to removeareas without variane (see material and methods, Step 4 for details). After masking theorrelation image (Fig. 2B(ab)), only the areas with relevant spot modulations areindiated (Fig. 2B(a',b',')).E�et of di�erent normalizations - Di�erent bakground removal and saling tehniqueson the simulated gel-stak were tested (Fig. 2), inluding bakground subtration andbakground division. The original information that led to the reation of the gel-stak was5



2 RESULTSretrieved in all ases. The α, δ and β spot orrelations were always visualized, indiatingthat the normalization tehnique used is of little importane for qualitative analysis. In thepartiular ase of gel normalization obtained by division through the mean gel intensity, newinformation was found that did not diretly originate from the reation of the simulation(Fig. 2B). Due to a t-dependent energy inrease in spot α the mean intensity of the gelinreases. As a result, the original onstant γ-spots dereased in energy (division by a largernumber leads to lower values). The γ-spots beame t dependent and thus showed up in theorrelation image. This unexpeted behavior does not redue the analytial power of theorrelation method. Sine normalization is performed on an individual gel basis it analways be repeated on any gel without taking into aount previous gels. Quantitatively,normalization fators strongly in�uene orrelation measures. If the tehnique is used as aquantitative method, then alibration spots ought to be used and exat understanding ofmahine spei�ations and amera properties should be known.Bakground Correlations and the e�et of noise in 2DE images - Adding noise tothe images attenuated the appearane of bakground in the orrelation images (Fig. 3Aa-).The noised bakground was white in the orrelation images, while the bakground was eitherorrelating positive or negative in Fig. 2B. This indiates that small amounts of noise mightenhane interpretation of the orrelation analysis. Inreasing noise up to 75% (of maximumimage intensity) resulted in weaker orrelations, but still important spots were identi�able(Fig. 3A a-). Inreasing the noise level in pae with inreasing gel stak number (t-value)resulted in orret information about the negative orrelation, but loss of information aboutthe positive orrelation (Fig 3Ad,d'). Suh a situation ould our if an automati ameraaquired images at waning signal strength. We onlude that presene of uniform orGaussian distributed noise in the dataset barely in�uenes the analytial power of thepresented orrelation test.E�et of randomization of the dataset - Two sets of random data were generated to beused as t-value. Instead of testing orrelation towards the sequene number t, we nowdetermined the e�et of orrelation of the images towards noise. The IDL funtion6



2 RESULTS'randomu' [21℄, generated the normally distributed pseudo random numbers. In theorrelation images we always reognized the same shapes as with the original t-values. Areasthat behave similarly had distint pseudo-oloring, regardless of the external biologialparameter set. This emphasizes the robustness of the algorithm to identify regions ofinterest. Fig 3B was made with the partiular seeds 287 and 2874.Outliers - A test with t-value outliers shows limited impat on the interpretation of the gels(Fig. 3B). We hanged the t-values from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} to {0,1, 15, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, resulting in a slight hange in atual orrelationmagnitude, but the information ontent was surprisingly well preserved. Even with 13%outliers {0, 1, 15, 3, 4, 5, 6, 4, 8, 9, 10, 11, 12, 13, 14}, the original information is reovered.This is mainly due to the robust orrelation whih relies on ranking of the dataset instead ofthe numerial values (both the t-values and the image pixel values are ranked).Appliation of orrelation tehnique in aner ells - We tested the algorithm on aset of p53 2DE immunoblots from aute leukemia. We �rst examined p53 2DE immunoblotsin ALL versus AML (Fig. 4A). The impat of wrong diagnosis was examined by randomswapping ALL and AML labels, resulting in lower orrelation as expeted (Fig. 4B). Thestrong positive orrelation between ALL and p53-α and δ forms was examined in the normaland mature ell ounterpart of ALL and AML, lymphoytes and granuloytes (Fig. 4C).Granuloytes hardly expressed α or δ p53 protein, while lymphoytes showed predominantlyp53-δ forms, supporting the positive p53 orrelation with lymphati derived leukemia.Correlation between p53 protein isoforms in aute myeloid leukemia (AML) anddi�erentiation stage - Based on the observation that p53 is involved in leukemi elldi�erentiation [15, 22, 16, 23℄, and the fat that the standardized and widely usedFrenh-Amerian-British (FAB) lassi�ation of AML is based on morphologiallydetermined stage of myeloid maturation and diretion of maturation [24, 20℄, we searhed fororrelations between FAB lassi�ation and the p53 2DE pattern. Using 73 gels we foundstriking orrelations (Fig. 5). Image A is the masked orrelation landsape, image B is theraw orrelation image. The observations were that: a) The tail of the p53-α isoform7



3 DISCUSSIONorrelates negatively to the FAB lassi�ation (pro�le 4, region g and h). b) The p63 areaorrelates positively towards the FAB lassi�ation (pro�le 3, the i region). ) The p53-δregion has four positively orrelating artiulated spots (pro�le 1, a-d, r=0.2), d) The p53sub-δ region has two negatively orrelating spots (pro�le 2e,f). The ombination of apositive orrelation at the p53-δ region and a negative orrelating sub-δ region indiates aspot shift from one area to another. e) Presene of the super-δ negative orrelating regionindiates that a hange of spot shape also ours. When the spots are larger and di�use thenthe patient is lassi�ed as M0, M1 or M2. If the spots in the δ region are lear artiulatedand smaller, the patient are either M4 or M5. None of the above orrelations are strong(r 0.25 using the stringent Spearman rank order orrelation). Nonetheless they an all beobserved in the 2DE images, whih means that they an form an important tool instrati�ation of patients.The presented orrelation inludes M3, a distint subgroup of AML with signs of granu-loyti di�erentiation, featuring the transloation t(15;17) and responsiveness to retinoi aidtherapy [25℄. FAB M3 is therefore a separate entity in the reent WHO lassi�ation [26℄.The orrelation of M0/1 versus M4/5 was weaker when M3 was removed (data not shown).This observation suggests that it is the maturation distane from M0/1 that is mirrored in theM3-inluding analysis (Fig. 3B); and it may also suggest that p53 patterns assoiated withM3 are unique, thereby ontributing to a greater splitting of the patients into subgroups.3 DisussionIn our opinion, the presented orrelation tehnique o�ers unique advantages over standard2D gel analysis tehniques relying on spot detetion methods, inluding (i) robust andgeneral analysis; (ii) natural spot position omparison; (iii) fast interpretation; and (iv) nostrit need for alibration.The tehnique does not require perfet gels. Bakground noise and outliers do not in�uenethe quality of the analysis. Sine we rely on ranking of the data set, outliers (whether they8



3 DISCUSSIONare in the gel images or in the external parameters) do not attribute any signi�ant impatto the orrelation image.Spot detetion and seletion have beome unneessary. The analysis takes into aount allinformation that does not easily �t into a bivariate Gaussian distribution. This impliatesthat spot shapes, tails and areas are all treated equally.Beause spots never our at exatly the same position, a ertain amount of jitter is allowedby spot detetion methods before spots are onsidered di�erent. Our analysis does notrequire suh parameters and will automatially tune to the required resolution. When spotsare small, then small translations will be onsidered relevant. When spots are broad, largershifts are neessary to detet translation.Standard proedures of seleting and quantifying spots take a long time due to parametertuning. Sine our tehnique does not require this, it is muh faster. Also, the omputationalrequirements are limited. Standard omputers an easily alulate large orrelation imagesin matters of minutes. Spot detetion an afterwards be used on the �nal orrelation imageand an in some ases be a method for veri�ation of the observed orrelations.We demonstrated that the orrelation tehnique works surprisingly well without alibratedintensities. The use of mean bakground division and RMS saling o�ers the sameinformation quality as relying on exatly alibrated values.A major drawbak of the presented orrelation tehnique is its requirement for properlyaligned gels. Aligning many di�erent gels is not an easy task without alibration spots. Oneoften needs to rotate, translate and zoom gels appropriately. Another drawbak is that themethod does not allow omparison of spot volumes. Instead of measuring proteinonentrations related to spot volumes, this tehnique measures intensities on an individualpixel basis and provides information on the shape hanges of spots.Reently we demonstrated that signaling networks may be altered and potentiated in anerells suggesting a prognosti meaningful lassi�ation [27℄. This inludes altered p389



3 DISCUSSIONMAP-kinase signaling, known to phosphorylate p53. Signaling networks are emerging targetsof new therapy [28℄, and the p53 biosignatures may be the result of integrated informationabout signaling networks in aner, we hypothesize that these p53 signatures might be usedfor future therapy individualization. The orrelation analysis of p53 in ALL versus AMLsuggests that p53 isoforms analyzed by two-dimensional immunoblots represent abiosignature that omprise information about the origin of aner (Fig. 4). It is probablethat the p53 biosignature is formed by the ombinations of splie forms of p53 and by itsvarious post-translational modi�ations [12, 29℄. The p53 protein is tightly regulated bypost-translational modi�ations [12℄, thereby involved in several positive and negativefeedbak networks [13℄. This has ignited the hypothesis that p53 integrates information fromall these signaling networks [30℄. ALL and AML omprise di�erent geneti abnormalities[25, 31℄, and analysis of growth fator reeptor expression and global gene expression haspointed out that the expression of reeptor tyrosine kinases and signaling modulators aredi�erent [32, 33℄. Therefore, sine the p53 protein is implied in various aner relatedsignaling networks, it is probable that a p53 isoform analysis using two-dimensionalimmunoblot provides a biosignature distinguishing ALL from AML.Phosphorylation of p53 Ser315 is neessary for di�erentiation in mouse embryoni stem ells[34℄, and p53 is also able to diret di�erentiation in aute myeloid leukemia ell lines [23, 16℄.The p53-de�ient HL-60 ell line has potential for both monoyti and granuloytidi�erentiation, and introdution of wild type p53 diret di�erentiation in the granuloytidiretion [22℄. Reent reports indiate that the FAB lassi�ation, in partiular thedistintion between M1-2 and M4-5 in maturation level and diretion of maturation, isassoiated with ertain gene lasses in unsupervised lustering of gene expression pro�les[35, 36℄. These observations suggest that the p53 biosignatures re�et the stage anddiretion of myeloid di�erentiation to ertain extent. The p53 reognizing antibody Bp53-12also detets p63 [37℄, and the orrelation analysis supports that the p53 family-member p63is inreased at inreased di�erentiation (Fig. 5A). This observation is interesting sine p63 ismore strongly related to embryoni development and di�erentiation than p53 [38℄.10



4 MATERIAL & METHODSFuture development of the method should inlude 2DE gels with built in standards (pI,MW) and known protein amounts, together with onsideration of hardware-parameters, greyvalue sales, noise types and noise �oors. This may allow quantitative measurement of spotmodulation.Taking the orrelation further than the pixel level should be possible by using anonialorrelations and development of signi�ane measures that take into aount the similarityof neighboring pixels [39, 40℄.Another worthwhile alley is predition of external parameters based on a large training set.Using multivariate disriminant analysis [41℄, this might o�er prospets for patientstrati�ation. Finally, it should also be possible to insert lustering algorithms to pseudoolor the �nal image or rely on image segmentation algorithms to lassify areas automatially[42, 43℄. However, even in its present provides our orrelation tehnique a method to performorrelation analysis of omplex biosignatures and signal network responses.4 Material & MethodsThe 2DE gel orrelation tehnique relies on a large amount of 2DE gels of a biologialsystem. Every gel needs to be desribed by an external numerial measure. E.g: lifeexpetany, di�erentiation stage of a ell sample, age of an organism, origin of a aner ellsample, e�et of aner therapy, time, temperature, pressure, ell size, and so on. For every
n gels (desribed as Az in whih z is the gel image number), there are n external parameters,desribed as Tz. Gels an further be annotated as Ax,y,z in whih (x, y) is the position on gelnumber z. Ax,y is a vetor ontaining the intensities of all gels:
Ax,y =

[

Ax,y,1 Ax,y,2 . . . Ax,y,n

].Step 1: Alignment and registration - The method requires proper diretion andalignment of all gels. Presene of alibration spots failitates this proess, otherwisetehniques suh as Hough transformation [44, 45℄ for gel diretion measurement and rossorrelation [46℄ for multiple gel alignment an be used. One the gels are aligned, further11



4 MATERIAL & METHODSbasi warping and registration [47℄ tehniques are useful to aount for small shifts betweenthe di�erent gels. The aligned images are denoted A
′

z.Step 2: Intensity Normalization - The seond step normalizes the intensity values of thegels to allow for inter-gel pixel omparison. There is little known of the relation betweenpixel intensities and protein onentrations. Furthermore, pixel values an be relative orgamma orreted, depending on the hardware. The wide variety of possible pixel valueinterpretations leads us to embrae the use of relative grey values. The simulated gel stakshowed that the hoie of normalization tehnique barely in�uenes the �nal orrelationimage.Step 2a: Bakground intensity - The bakground �oor of a 2DE gel refers to thebrightness of empty gel areas. Di�erent apture tehniques produe di�erent bakground�oors. Bakground signal an be either added to all pixel values (additive bakground), or itan umulate with a deaying signal (multipliative bakground). As previously observed[48℄, most ameras introdue a mixture of additive and multipliative bakgrounds. Removalof additive noise an be done through subtrating the mean (A”
z := A

′

z − A
′

z) or medianvalue (A”
z := A

′

z − median(A
′

z)). Removal of multipliative noise an be done through
A”

z := A
′

z

A
′

z

− 1. We would emphasize that whatever normalization sheme is used in this step,it should be performed on an individual gel basis.Step 2b: Saling of gel intensity - After removal of the bakground �oor, the dynamirange of the image is normalized through saling of gel intensities. The presene of aalibration spot eases this proess. If A′ is the non-relative image and (x, y) is thealibration spot position, then the image A” := A
′

A
′

x,y

de�nes the normalized image. Withoutalibration spot the total energy ontent (sum of all intensities or RMS value) forms a veryreasonable saling means: A”
z = A

′

z

RMS(A′

z)Step 3: Correlation Image - After alignment and normalization, the orrelation analysisgenerates a new image visualizing the orrelation measure between a spei� position and anexternal parameter. The orrelation image is omposed of pixels, eah testing one position12



4 MATERIAL & METHODSon the gel. The result of eah test is a number between -1.0 (anti-orrelation) and 1.0(orrelation), whih, after appropriate saling, de�nes the pixel olor in the orrelationimage. The two vetors partiipating in the test are A”
x,y and B. The �rst vetor ontainsthe gel expression levels at position (x, y). Given 89 gel images, A”

x,y will ontain 89 di�erentexpression values; one for eah gel. The seond vetor B ontains 89 external valuesassoiated with every gel. Repeating this orrelation test for every pixel results in theorrelation image C (Eq. 1)
Cx,y = ρ(A”

x,y, T ) (1)The orrelation image an be visualized using di�erent olor shemes. In Fig. 1 greenindiates positive orrelations and brown negative orrelations.The preferred orrelation is the robust Spearman rank order orrelation (ρ-orrelation)[21℄.This non-parametri test allows us to ignore the spei� distributions of gel intensity levelsand external parameters. ρ-orrelation requires a ranking of the two partiipating vetors andthen relies on a standard linear Pearson orrelation.Step 4: Masking - Correlation does not neessarily imply a ausal, signi�ant, or usefulrelationship. To �lter out some possibly useless relations, a number of masks limit the visibleorrelations. The �rst mask removes orrelations that might be ourring by oinidene:some datasets easily orrelate with any other dataset (signi�ane). The seond maskremoves orrelations that o�er little useful information (E.g: a dataset ontaining all zero's).Step 4a: Signi�ane - To remove orrelations that have a high probability of ourring,the signi�ane test typially assoiated with the Spearman orrelation test was used. Inthis ontext, it is de�ned as
Sx,y = 1 − Cx,y

√

n − 2

1 − C2
x,y

(2)
13



4 MATERIAL & METHODSIf this number is lose to 1 then there exists a low probability that some random data wouldhappen to orrelate with the given result set. Likewise, if this number is 0 then there exists ahigh probability that the orrelation is oinidental.Step 4b: Variane - The seond mask avoids strong and signi�ant orrelations that havea low biologial signi�ane beause the gel intensities do not hange enough. It relies on thestandard deviation [49℄ measured on the relative, non-ranked, gel intensities
Dx,y =

√

∑n−1
z=0 (

A”
x,y,z

A”
x,y,∗

− 1)2

N
(3)The standard variane (or RMS) of the mean divided gels will have a large value where thereis a varying gel expression. At plaes where the gel expression is onstant this value will bezero.Step 4: The masked orrelation image - Multiplying the standard deviation mask(Eq. 3) with the signi�ane mask (Eq. 2) gives a new mask that an be superimposed overthe orrelation image (Eq. 1).

R = C × S × DThe pixel values of R no longer relates to the orret orrelation measure. Therefore, Rforms an indiator, showing position of possible interest.Simulation of a two-dimensional gel eletrophoresis stak - The simulated gel-stakis based on the animation of di�erent 2D gauss 'bumps', de�ned as
G(x, y) = a.exp(−

(x−cx
wx

)2 + (y−cy
wy

)2

2
)

(cx, cy) is the enter position, wx and wy are the width and height respetively. a is theamplitude of the urve. Based on this Gaussian 'bump' a gel-stak, ontaining 15 di�erent14



4 MATERIAL & METHODSgels was onstruted. Every gel ontains: I) an out-fading spot (Fig 2, spot α) with agrowing radius from 10 to 100 pixels and lowering amplitude from 5.0 to 1.0. II) Anelliptial spot (Fig 2, spot β) whih hanges shape from being small and tall
(wx = 10, wy = 40, a = 5) to broad and �at (wx = 40, wy = 10, a = 5). III) Two spots withminimal (1.0) and maximal (5.0) amplitudes (Fig 2, spots γ). IV) A moving spot (Fig 2,spot δ) from left to right. Every gel is annotated with its position in the stak.Patients, leukemi ell separation and sample preparation - The study wasapproved by the loal Ethis Committee and samples olleted after informed onsent. Cellseparation, storage and ulture of patient AML blasts were performed as previouslydesribed [50, 27℄. ALL and AML blasts were isolated by density gradient separation withLymphoprep (Nyomed Pharma AS, Oslo, Norway) and ontained more than 90% malignantells. Patient harateristis and number of gels are presented in Table 1. Normalgranuloytes (97% neutrophile) and lymphoytes (peripheral blood mononulear ellsontaining 10% monoytes and predominantly T lymphoytes) were separated by densitygradient entrifugation ombining Polymorphprep TM (Axis-Shield PoC AS, Oslo, Norway)and Lymphoprep following the manufaturers instrutions. Preparation for two dimensionalgel eletrophoresis (2DE) and immunoblotting was performed as previously desribed[51, 52, 53℄. Brie�y, ells were washed in NaCl (9 mg/ml) and then lysed in 7%trihloroaeti aid. The preipitated protein was washed one in 5% trihloroaeti aid andthree times in water saturated ether to remove salts. The protein pellet was resuspended insample bu�er for 2DE gel eletrophoresis (7 M urea, 2 M thiourea, 100 mM dithiotreitol,1.5% Ampholyte 3 - 10, 0.5% Ampholyte 5 - 6, 0.5% CHAPS). 2D was performed using 7 mpH 3-10 (Zoom Strip, Invitrogen Corp., Carlsbad, CA, USA) isoeletri fousing gel strips,following the manufaturers' instrutions. Eletrophoresis was performed at 200 V for 60minutes, after whih the proteins were transferred to polyvinylidene �uoride membrane(Amersham Biosienes AB, Uppsala, Sweden) by standard eletro-blotting. p53 protein wasdeteted using primary Bp53-12 antibody (Santa Cruz Biotehnology, CA, USA) andseondary horse radish peroxidase onjugated mouse antibody (Jakson ImmunoResearh,West Grove, PA, USA) visualized using the Supersignal west Pio or Supersignal west Femto15
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6 FIGURES & TABLES6 Figures & TablesDisease Classi�ation Patients ImagesAML M0/1 1 2M1 7 12M1/2 1 2M2 10 18M3 2 4M4 3 6M4/5 6 12M5 7 14M5a 2 3Sum 73Mean Age 58.4 yearsMedian Age 61 yearsAge Range 29-86 yearsALL 8 16Mean Age 47.3 yearsMedian Age 41.5 yearsAge Range 22-84 yearsTable 2: Leukemia patient harateristis and orresponding 2DE imagesTotally 73 AML and16 ALL images were inluded in the analysis. All ALL patients had B-ell disease and twopatients omprised the br-abl fusion produt.
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6 FIGURES & TABLES

Figure 1: 2DE Gel Correlation relies on an aligned, normalized stak of 2DE gel images anda numerial label assoiated with every gel. Pixel per pixel orrelation reates a new imageshowing areas in the gel that relate to the external parameter. In omparison to standard gelanalysis methods, spot detetion is not neessary and therefor less bias is introdued into theanalysis proess. This tehnique also reognizes moving spots and spot shapes that hange.
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6 FIGURES & TABLES

A

BFigure 2: Correlation of a simulated 2DE gel-stak and the e�et of various bak-ground normalizations. (A) 8 snapshots taken from a stak of 15 gels generated usingGaussian bumps, see material and methods for formula and details. Eah gel ontains sim-ulated spots with partiular harateristis: (α) an out-fading spot growing in size, (β) anelliptial spot hanging shape from small and tall to broad and �at, (γ) two spots with on-stant amplitudes and (δ) a spot shifting from left to right. (B) Correlation between thegel-stak and the external parameter, in this ase, the gels sequene number (t). Upper gels(a-) visualizes the orrelation, lower gels (a'-') represent a masking that visualizes the areasof useful orrelations. Correlation analysis was performed relying on di�erent bakgroundremoval methods. (a,a') without bakground removal; (b,b') with bakground subtration,(,') using bakground division. See the result setion for details.23



6 FIGURES & TABLESA. Noise 25% 50 % 75% 0-75%
Correlation

Masked CorrelationB. Randomization Outliers#1 #2 6% 13%
Correlation

Masked CorrelationFigure 3: The e�et of noise, outliers and randomization in the orrelation analysis.(A) Correlation analysis with the addition of normal distributed noise to 25 % (a,a'), 50%(b,b'), 75% (,') and inreasing noise from 0% to 75% in gels 0 to 14 (snapshot 1 to 8). Theanalysis was performed without normalization of the gels. (B) Two di�erent randomizationswere performed. #1(a,a') and #2(b,b') are the orrelation images towards a fully randomizedset of biologial parameters. (,') and (d'd') show the orrelation images when the biologialparameter set is polluted by respetively 6% and 13% outliers.
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Figure 4: Origin of aner and p53 isoform distribution. (A) 73 aute myeloid leukemia(AML) and 16 aute lymphoid leukemia (ALL) gel images were analyzed for orrelation of p53isoform distribution (left, orrelation; right, masked orrelation/signi�ane of orrelation).Green olor indiates positive orrelation for ALL (maximum positive orrelation 0.5557),and brown olor indiates negative orrelation (maximum negative orrelation 0.1464). Brownolor indiates p53 protein forms predominantly found in AML. Inset boxes present the or-relation (left) and signi�ane (right) for the α and δ region, respetively. (B) Attenuatedorrelation when ALL images are replaed with images from AML. Replaement of 25% ofthe ALL ases with AML (a): Maximum positive orrelation 0.3910, maximum negative or-relation 0.1463. Replaement of 50% of ALL with AML (b): Maximum positive orrelation0.2730, maximum negative orrelation 0.2232. (C) p53 expression in normal lymphoytes (leftpanel) and granuloytes (right panel). See Material and Methods for details on ell separation.



6 FIGURES & TABLES

Figure 5: Di�erentiation stages of aner modulates p53 isoform distribution. (A)Correlation landsape of p53 in 73 AML images related to di�erentiation diretion and stage(FAB, Frenh-Amerian-British lassi�ation). Green indiates orrelation with the moredi�erentiated forms of AML. Brown indiates anti-orrelation with the more mature formsof leukemia ells. The vertial axis sets out the absolute orrelation value. (B) Correlationimage demonstrating statistial signi�ant alterations in p53. Pro�le 1 shows the p53-δ regionontaining four orrelating spots (r = 0.2). Pro�le 2 shows the sub-δ region anti-orrelatingat positions e and f. Pro�le 3 is the p63 region (putative p53 isoform) orrelating towardsthe more di�erentiated leukemia's. Pro�le 4, a p53 region anti-orrelating with di�erentiatedAML. 26



7 SUPPLEMENTARY MATERIAL7 Supplementary Material7.1 Correlation ImplementationThe algorithm is implemented in IDLv6.1 [54℄ and takes two arguments. The �rst argumentis the gel-stak, whih is a three dimensional spae. First dimension is the gel number, theseond and third dimensions are the x and y-axis of the gels. The seond argument is a vetordesribing the result of the di�erent gels. The presented algorithm makes use of a meansaling.PRO orrelate_images, all, resultd = size(all,/dim)VX = d[1℄VY = d[2℄; normalize the bakgroundfor i = 0, d[0℄ - 1 do beginall[i,*,*℄ /= mean(all[i,*,*℄)endfor; Rho orrelationor_pi = make_array(VX,VY,/double,value=0.0)f_pi = make_array(VX,VY,value=0.0)for x = 0, VX - 1 do beginfor y = 0, VY - 1 do beginr = r_orrelate(reform(all[*,x,y℄),result)or_pi[x,y℄=r[0℄f_pi[x,y℄=1.0-r[1℄endforendfor; we are interested in orrelations with high variane on gelvar_pi = make_array(VX,VY,/double,value=0.0)for x = 0, VX - 1 do beginfor y = 0, VY - 1 do beginvar_pi[x,y℄=stddev(all[*,x,y℄)endforendforvar_pi <= 1.0f_pi *= var_pior_pi <= 1.0or_pi >= -1.0show_orrelation, or_pi, f_piend7.2 Gauss Bumpsfuntion gauss2d, sx, sy, x, y, wx, wy, aim = float(make_array(sx,sy,value=0.0))for x = 0, sx - 1 do beginfor y = 0, sy - 1 do beginim[x,y℄=float(((x-x)/wx)^2 + ((y-y)/wy)^2)27



7.3 Simulated Gel Stak 7 SUPPLEMENTARY MATERIALendforendforim = -im/2im = exp(im)im *= areturn, imend7.3 Simulated Gel Stakfuntion reate_set, nr, sx, sy, wx1, wx2, wy1, wy2, a1, a2all = make_array(nr,sx,sy,value=0.0)for i = 0, nr - 1 do beginwx = wx1 + i*(wx2-wx1)/nrwy = wy1 + i*(wy2-wy1)/nra = a1 + i*(a2-a1)/nrall[i,*,*℄ = gauss2d(sx, sy, sx/2, sy/2, wx, wy, a)endforreturn, allendset1 = reate_set(15, 600.0, 400.0, 10.0, 100.0, 10.0, 100.0, 5.0, 1.0)set2 = reate_set(15, 300.0, 300.0, 10.0, 40.0, 40.0, 10.0, 5.0, 5.0)set3 = reate_set(15, 300.0, 300.0, 20.0, 20.0, 20.0, 20.0, 5.0, 5.0)set4 = reate_set(15, 300.0, 300.0, 20.0, 20.0, 20.0, 20.0, 1.0, 1.0)set1[*,0:299,0:299℄ += set2[*,*,*℄set1[*,300:599,0:299℄ += set3[*,*,*℄set1[*,300:599,100:399℄ += set4[*,*,*℄for i = 0, 14 do beginset1[i,0+i*10:299+i*10,200:399℄+=set3[i,*,50:249℄endforfor i = 0, 14 do beginset1[i,*,*℄/=double(i)endforset1 = relative(set1)result1 = findgen(15)orrelate_images, set1, result1end7.4 Creating green / brown imagesPRO show_orrelation, p, t_pior_pi = pDDD = size(p,/dim)VX = ddd[0℄VY = ddd[1℄; the normal oneshown = make_array(3,VX,VY,/double,value=255.0)multi = 1.0 / max(abs(or_pi))multi = 1.0 / max(abs(or_pi))shown[0,*,*℄ += (or_pi[*,*℄ < 0) * multi * 55shown[1,*,*℄ += (or_pi[*,*℄ < 0) * multi * 155shown[2,*,*℄ += (or_pi[*,*℄ < 0) * multi * 255shown[0,*,*℄ -= (or_pi[*,*℄ > 0) * multi * 255shown[1,*,*℄ -= (or_pi[*,*℄ > 0) * multi * 5528



7.4 Creating green / brown images 7 SUPPLEMENTARY MATERIALshown[2,*,*℄ -= (or_pi[*,*℄ > 0) * multi * 205window, 1, title='Correlation', ret=2, xsize=vx, ysize=vyshown >= 0shown <= 255tvsl, shown, /true; only the signifiant orrelationwor_pi = double(or_pi) * double(t_pi)shown = make_array(3,VX,VY,/double,value=255.0)multi = 255.0 / max(abs(wor_pi))shown[0,*,*℄ += (wor_pi[*,*℄ < 0) * multi * 55shown[1,*,*℄ += (wor_pi[*,*℄ < 0) * multi * 155shown[2,*,*℄ += (wor_pi[*,*℄ < 0) * multi * 255shown[0,*,*℄ -= (wor_pi[*,*℄ > 0) * multi * 255shown[1,*,*℄ -= (wor_pi[*,*℄ > 0) * multi * 55shown[2,*,*℄ -= (wor_pi[*,*℄ > 0) * multi * 205window, 3, title='Signifiant Correlations', ret=2, xsize=vx, ysize=vytvsl, shown, /trueshown = bytsl(shown)profiles, or_pi; signifianewindow, 2, title='Signifiane', ret=2, xsize=vx, ysize=vytvsl, t_piprofiles, t_piend
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