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Abstra
tTwo-dimensional gel ele
trophoresis (2DE) is a powerful te
hnique to examine thepost-translational modi�
ations of 
omplexly modulated proteins. We developed a novel
orrelation te
hnique that determines the relationship between visualized two-dimensionalgel ele
trophoresis images and biologi
al data without requiring human interpretation ona gel per gel basis. After image alignment and normalization, the biologi
al parametersand pixel values were repla
ed with their spe
i�
 rank. The rank adjusted images andparameters were then used as input into a standard linear Pearson 
orrelation and there-after tested for signi�
an
e and varian
e. The te
hnique was �rst explored in a simulateddataset, thereafter applied on p53 2DE immunoblots from 
an
er 
ells known to haveunique signaling networks. A p53 protein is targeted by a number of signaling networks,and is involved in growth regulation, 
ell death and di�erentiation. The p53 
orrelationanalysis distinguished between the 
an
er forms a
ute lymphoblasti
 leukemia and a
utemyeloid leukemia. Further analysis of p53 and the di�erentiation stage of a
ute myeloidleukemia indi
ated that the level of di�erentiation in 
an
er might be re�e
ted in the p53protein pattern. This proposes that p53 protein isoforms 
an be read as a biosignature,and that the novel 
orrelation method may be important for exploration of 
omplex signal
onvergen
e on regulatory proteins in biologi
al systems.
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1 INTRODUCTION1 Introdu
tionTwo-dimensional gel ele
trophoresis (2DE) has been a su

essful te
hnique for identi�
ationand visualization of post-translational modi�
ations [1℄ (reviewed in [2℄), and is in
reasinglyused to determine a

essible parts of the proteome in human 
ells [3℄. Only to a limitedextent has 2DE been used to propose diagnosis or 
lini
al 
lassi�
ation in diseases [4℄. Theamount and 
omplexity of data obtained from 2DE gel patterns have led to the developmentof analysis software for digitalized images [5, 6, 7℄, but human interpretation and validationof the data is usually ne
essary. Typi
ally, one of the steps in 2DE analysis is the sele
tion ofspots followed by des
ription of their position, volume and other parameters. Currentmethods for spot dete
tion assume regular spot shapes [8℄ or model spots as bivariateGaussian densities [9℄, and therefore 
annot dis
riminate spot shapes and irregularity[10, 11℄. We developed a method that omits the spot dete
tion phase and does not requirehuman interpretation on a gel-to-gel basis.Given a set of gel images, the te
hnique measures 
orrelation between every pixel positionand an external parameter. This makes it possible to study the protein distribution on 2DEgel as well as the a
tual relation to the external parameter. The method has been rigorouslytested on a set of simulated 2DE gels with di�erent levels of ba
kground, additional noiseand outliers. Real-life evaluation of the te
hnique was performed by testing the 
orrelationanalysis on p53 protein expression in 
ell samples from patients with well-
hara
terizedhematologi
al malignan
ies.The p53 protein regulates di�erentiation, growth and 
ell death through its 
omplexpost-translational modi�
ations 
aused by multiple signaling networks dire
tly or indire
tlytargeting the protein[12, 13℄. The TP53 gene is frequently mutated in many 
an
ers, andmutations in signaling pathways a
ting on p53 protein are found both in sporadi
 andhereditary 
an
ers [14℄. During di�erentiation, p53 undergoes modi�
ations likephosphorylation and a
etylation and is suggested to be involved in di�erentiation of a
utemyeloid leukemia [15, 16℄. Di�erent hematologi
al malignan
ies, like a
ute lymphoblasti
leukemia (ALL) and a
ute myeloid leukemia (AML) [17℄, are 
hara
terized by mutations or3



2 RESULTSvarying expression of 
ell signalling en
oding genes [18, 19℄. We therefore hypothesized thata wide examination of the extensive post-translationally modi�ed p53 protein 
ould 
ompriseinformation about type of 
an
er and the di�erentiation stage of the 
an
er.A total of 39 unique a
ute myeloid leukemia (AML) and 8 unique a
ute lymphoblasti
(ALL) patients were analyzed by 2DE and immunoblotting for visualization of the p53protein pattern by an amino-terminal targeting antibody Bp53-12. The p53 patterns were
orrelated to 
an
er type (AML vs ALL) and the standardized Fren
h-Ameri
a-Britishdi�erentiation 
lassi�
ation [20℄.The overall results demonstrated that the presented 
orrelation te
hnique may aid theelu
idation of 
omplexly regulated proteins in biologi
al systems.2 ResultsOverview of the study - The work-�ow and the 
on
ept of the proposed 
orrelation isindi
ated in Fig. 1. In order to illustrate how the 
orrelation images ought to be interpreted,a simulated gel sta
k with de�ned spot 
hara
teristi
s in fun
tion of an external parameter twas 
reated (Fig. 2). This simulation reassured a 
ontrolled environment in whi
h thealgorithmi
 behavior was observed. For simulation purposes t was 
hosen as the gel numberin the simulated sta
k. In pra
ti
e it 
ould represent any biologi
al parameter as illustratedlater.Spot positions, sizes and translations - The 
orrelation analysis of the simulated gelsta
k (Fig. 2) present information about lo
ation, volume and translation of spots related tothe external parameter t. The spots α and β in the gel sta
k (Fig. 2A) are altered infun
tion of t. They are visualized in the 
orrelation images (Fig 2B) at the same position,showing that the 
orrelation image o�ers 
orre
t positional information. The 
orrelationstrength is presented in shades of green (positive 
orrelation) and brown (negative
orrelation or anti-
orrelation). If spots do not relate to t, they might go unnoti
ed, asillustrated by the γ-spots. The two 
onstant γ-spots were designed to be independent of the4



2 RESULTSgel sequen
e number t. This resulted in no visible 
orrelation in Fig 2Bab. If the γ-spotswere made to 
orrelate with t due to the appli
ation of normalization, then the 
orrelationimage (Fig. 2B
) visualized two spots of di�erent sizes, re�e
ting the volume of the spots.The δ-spots illustrated dete
tion of spot shifts related to the external parameter. Theoriginal and destination positions will respe
tively 
orrelate, then anti-
orrelate, resulting ina smear in the 
orrelation image (Fig. 2B).Reading of spot shape - All images in Fig. 2B showed the α-spot anti-
orrelate in themiddle and 
orrelate at its periphery. This is 
onsistent with the 
reation of the gel-sta
k inwhi
h the amplitude of spot α lowers from 5.0 to 1.0 while the spots broadens from 10 to100 pixels. Be
ause the 
entral spot widens, higher gel numbers will have relatively moresignal in the periphery. This indi
ates that spots where di�usion-like alteration dominateswill be dete
ted based on di�eren
e in 
orrelation between the inner and outer areas. Similarbehavior 
an be observed in the shape 
hanging β-spot. The initial verti
al shape (low
t-value) anti-
orrelates (it disappears) while the later horizontal shape (at higher t-values)
orrelates (it appears).Signi�
an
e visualized by masking the 
orrelation image - In the simulatedgel-sta
k, empty areas have a 
onstant intensity. The raw 
orrelation analysis indi
ates astrong 
orrelation (Fig. 2Ba) or anti-
orrelation (Fig 2Bb) for those areas. Mathemati
allythis is 
orre
t, but be
ause of a la
k in intensity variation (the area is 
onstant) this
orrelation is without information. The putative empty information was �ltered out usingtwo masks, one mask to remove non signi�
ant 
orrelations and a se
ond mask to removeareas without varian
e (see material and methods, Step 4 for details). After masking the
orrelation image (Fig. 2B(ab
)), only the areas with relevant spot modulations areindi
ated (Fig. 2B(a',b',
')).E�e
t of di�erent normalizations - Di�erent ba
kground removal and s
aling te
hniqueson the simulated gel-sta
k were tested (Fig. 2), in
luding ba
kground subtra
tion andba
kground division. The original information that led to the 
reation of the gel-sta
k was5



2 RESULTSretrieved in all 
ases. The α, δ and β spot 
orrelations were always visualized, indi
atingthat the normalization te
hnique used is of little importan
e for qualitative analysis. In theparti
ular 
ase of gel normalization obtained by division through the mean gel intensity, newinformation was found that did not dire
tly originate from the 
reation of the simulation(Fig. 2B
). Due to a t-dependent energy in
rease in spot α the mean intensity of the gelin
reases. As a result, the original 
onstant γ-spots de
reased in energy (division by a largernumber leads to lower values). The γ-spots be
ame t dependent and thus showed up in the
orrelation image. This unexpe
ted behavior does not redu
e the analyti
al power of the
orrelation method. Sin
e normalization is performed on an individual gel basis it 
analways be repeated on any gel without taking into a

ount previous gels. Quantitatively,normalization fa
tors strongly in�uen
e 
orrelation measures. If the te
hnique is used as aquantitative method, then 
alibration spots ought to be used and exa
t understanding ofma
hine spe
i�
ations and 
amera properties should be known.Ba
kground Correlations and the e�e
t of noise in 2DE images - Adding noise tothe images attenuated the appearan
e of ba
kground in the 
orrelation images (Fig. 3Aa-
).The noised ba
kground was white in the 
orrelation images, while the ba
kground was either
orrelating positive or negative in Fig. 2B. This indi
ates that small amounts of noise mightenhan
e interpretation of the 
orrelation analysis. In
reasing noise up to 75% (of maximumimage intensity) resulted in weaker 
orrelations, but still important spots were identi�able(Fig. 3A a-
). In
reasing the noise level in pa
e with in
reasing gel sta
k number (t-value)resulted in 
orre
t information about the negative 
orrelation, but loss of information aboutthe positive 
orrelation (Fig 3Ad,d'). Su
h a situation 
ould o

ur if an automati
 
ameraa
quired images at waning signal strength. We 
on
lude that presen
e of uniform orGaussian distributed noise in the dataset barely in�uen
es the analyti
al power of thepresented 
orrelation test.E�e
t of randomization of the dataset - Two sets of random data were generated to beused as t-value. Instead of testing 
orrelation towards the sequen
e number t, we nowdetermined the e�e
t of 
orrelation of the images towards noise. The IDL fun
tion6



2 RESULTS'randomu' [21℄, generated the normally distributed pseudo random numbers. In the
orrelation images we always re
ognized the same shapes as with the original t-values. Areasthat behave similarly had distin
t pseudo-
oloring, regardless of the external biologi
alparameter set. This emphasizes the robustness of the algorithm to identify regions ofinterest. Fig 3B was made with the parti
ular seeds 287 and 2874.Outliers - A test with t-value outliers shows limited impa
t on the interpretation of the gels(Fig. 3B). We 
hanged the t-values from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} to {0,1, 15, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, resulting in a slight 
hange in a
tual 
orrelationmagnitude, but the information 
ontent was surprisingly well preserved. Even with 13%outliers {0, 1, 15, 3, 4, 5, 6, 4, 8, 9, 10, 11, 12, 13, 14}, the original information is re
overed.This is mainly due to the robust 
orrelation whi
h relies on ranking of the dataset instead ofthe numeri
al values (both the t-values and the image pixel values are ranked).Appli
ation of 
orrelation te
hnique in 
an
er 
ells - We tested the algorithm on aset of p53 2DE immunoblots from a
ute leukemia. We �rst examined p53 2DE immunoblotsin ALL versus AML (Fig. 4A). The impa
t of wrong diagnosis was examined by randomswapping ALL and AML labels, resulting in lower 
orrelation as expe
ted (Fig. 4B). Thestrong positive 
orrelation between ALL and p53-α and δ forms was examined in the normaland mature 
ell 
ounterpart of ALL and AML, lympho
ytes and granulo
ytes (Fig. 4C).Granulo
ytes hardly expressed α or δ p53 protein, while lympho
ytes showed predominantlyp53-δ forms, supporting the positive p53 
orrelation with lymphati
 derived leukemia.Correlation between p53 protein isoforms in a
ute myeloid leukemia (AML) anddi�erentiation stage - Based on the observation that p53 is involved in leukemi
 
elldi�erentiation [15, 22, 16, 23℄, and the fa
t that the standardized and widely usedFren
h-Ameri
an-British (FAB) 
lassi�
ation of AML is based on morphologi
allydetermined stage of myeloid maturation and dire
tion of maturation [24, 20℄, we sear
hed for
orrelations between FAB 
lassi�
ation and the p53 2DE pattern. Using 73 gels we foundstriking 
orrelations (Fig. 5). Image A is the masked 
orrelation lands
ape, image B is theraw 
orrelation image. The observations were that: a) The tail of the p53-α isoform7



3 DISCUSSION
orrelates negatively to the FAB 
lassi�
ation (pro�le 4, region g and h). b) The p63 area
orrelates positively towards the FAB 
lassi�
ation (pro�le 3, the i region). 
) The p53-δregion has four positively 
orrelating arti
ulated spots (pro�le 1, a-d, r=0.2), d) The p53sub-δ region has two negatively 
orrelating spots (pro�le 2e,f). The 
ombination of apositive 
orrelation at the p53-δ region and a negative 
orrelating sub-δ region indi
ates aspot shift from one area to another. e) Presen
e of the super-δ negative 
orrelating regionindi
ates that a 
hange of spot shape also o

urs. When the spots are larger and di�use thenthe patient is 
lassi�ed as M0, M1 or M2. If the spots in the δ region are 
lear arti
ulatedand smaller, the patient are either M4 or M5. None of the above 
orrelations are strong(r 0.25 using the stringent Spearman rank order 
orrelation). Nonetheless they 
an all beobserved in the 2DE images, whi
h means that they 
an form an important tool instrati�
ation of patients.The presented 
orrelation in
ludes M3, a distin
t subgroup of AML with signs of granu-lo
yti
 di�erentiation, featuring the translo
ation t(15;17) and responsiveness to retinoi
 a
idtherapy [25℄. FAB M3 is therefore a separate entity in the re
ent WHO 
lassi�
ation [26℄.The 
orrelation of M0/1 versus M4/5 was weaker when M3 was removed (data not shown).This observation suggests that it is the maturation distan
e from M0/1 that is mirrored in theM3-in
luding analysis (Fig. 3B); and it may also suggest that p53 patterns asso
iated withM3 are unique, thereby 
ontributing to a greater splitting of the patients into subgroups.3 Dis
ussionIn our opinion, the presented 
orrelation te
hnique o�ers unique advantages over standard2D gel analysis te
hniques relying on spot dete
tion methods, in
luding (i) robust andgeneral analysis; (ii) natural spot position 
omparison; (iii) fast interpretation; and (iv) nostri
t need for 
alibration.The te
hnique does not require perfe
t gels. Ba
kground noise and outliers do not in�uen
ethe quality of the analysis. Sin
e we rely on ranking of the data set, outliers (whether they8



3 DISCUSSIONare in the gel images or in the external parameters) do not attribute any signi�
ant impa
tto the 
orrelation image.Spot dete
tion and sele
tion have be
ome unne
essary. The analysis takes into a

ount allinformation that does not easily �t into a bivariate Gaussian distribution. This impli
atesthat spot shapes, tails and areas are all treated equally.Be
ause spots never o

ur at exa
tly the same position, a 
ertain amount of jitter is allowedby spot dete
tion methods before spots are 
onsidered di�erent. Our analysis does notrequire su
h parameters and will automati
ally tune to the required resolution. When spotsare small, then small translations will be 
onsidered relevant. When spots are broad, largershifts are ne
essary to dete
t translation.Standard pro
edures of sele
ting and quantifying spots take a long time due to parametertuning. Sin
e our te
hnique does not require this, it is mu
h faster. Also, the 
omputationalrequirements are limited. Standard 
omputers 
an easily 
al
ulate large 
orrelation imagesin matters of minutes. Spot dete
tion 
an afterwards be used on the �nal 
orrelation imageand 
an in some 
ases be a method for veri�
ation of the observed 
orrelations.We demonstrated that the 
orrelation te
hnique works surprisingly well without 
alibratedintensities. The use of mean ba
kground division and RMS s
aling o�ers the sameinformation quality as relying on exa
tly 
alibrated values.A major drawba
k of the presented 
orrelation te
hnique is its requirement for properlyaligned gels. Aligning many di�erent gels is not an easy task without 
alibration spots. Oneoften needs to rotate, translate and zoom gels appropriately. Another drawba
k is that themethod does not allow 
omparison of spot volumes. Instead of measuring protein
on
entrations related to spot volumes, this te
hnique measures intensities on an individualpixel basis and provides information on the shape 
hanges of spots.Re
ently we demonstrated that signaling networks may be altered and potentiated in 
an
er
ells suggesting a prognosti
 meaningful 
lassi�
ation [27℄. This in
ludes altered p389



3 DISCUSSIONMAP-kinase signaling, known to phosphorylate p53. Signaling networks are emerging targetsof new therapy [28℄, and the p53 biosignatures may be the result of integrated informationabout signaling networks in 
an
er, we hypothesize that these p53 signatures might be usedfor future therapy individualization. The 
orrelation analysis of p53 in ALL versus AMLsuggests that p53 isoforms analyzed by two-dimensional immunoblots represent abiosignature that 
omprise information about the origin of 
an
er (Fig. 4). It is probablethat the p53 biosignature is formed by the 
ombinations of spli
e forms of p53 and by itsvarious post-translational modi�
ations [12, 29℄. The p53 protein is tightly regulated bypost-translational modi�
ations [12℄, thereby involved in several positive and negativefeedba
k networks [13℄. This has ignited the hypothesis that p53 integrates information fromall these signaling networks [30℄. ALL and AML 
omprise di�erent geneti
 abnormalities[25, 31℄, and analysis of growth fa
tor re
eptor expression and global gene expression haspointed out that the expression of re
eptor tyrosine kinases and signaling modulators aredi�erent [32, 33℄. Therefore, sin
e the p53 protein is implied in various 
an
er relatedsignaling networks, it is probable that a p53 isoform analysis using two-dimensionalimmunoblot provides a biosignature distinguishing ALL from AML.Phosphorylation of p53 Ser315 is ne
essary for di�erentiation in mouse embryoni
 stem 
ells[34℄, and p53 is also able to dire
t di�erentiation in a
ute myeloid leukemia 
ell lines [23, 16℄.The p53-de�
ient HL-60 
ell line has potential for both mono
yti
 and granulo
yti
di�erentiation, and introdu
tion of wild type p53 dire
t di�erentiation in the granulo
yti
dire
tion [22℄. Re
ent reports indi
ate that the FAB 
lassi�
ation, in parti
ular thedistin
tion between M1-2 and M4-5 in maturation level and dire
tion of maturation, isasso
iated with 
ertain gene 
lasses in unsupervised 
lustering of gene expression pro�les[35, 36℄. These observations suggest that the p53 biosignatures re�e
t the stage anddire
tion of myeloid di�erentiation to 
ertain extent. The p53 re
ognizing antibody Bp53-12also dete
ts p63 [37℄, and the 
orrelation analysis supports that the p53 family-member p63is in
reased at in
reased di�erentiation (Fig. 5A). This observation is interesting sin
e p63 ismore strongly related to embryoni
 development and di�erentiation than p53 [38℄.10



4 MATERIAL & METHODSFuture development of the method should in
lude 2DE gels with built in standards (pI,MW) and known protein amounts, together with 
onsideration of hardware-parameters, greyvalue s
ales, noise types and noise �oors. This may allow quantitative measurement of spotmodulation.Taking the 
orrelation further than the pixel level should be possible by using 
anoni
al
orrelations and development of signi�
an
e measures that take into a

ount the similarityof neighboring pixels [39, 40℄.Another worthwhile alley is predi
tion of external parameters based on a large training set.Using multivariate dis
riminant analysis [41℄, this might o�er prospe
ts for patientstrati�
ation. Finally, it should also be possible to insert 
lustering algorithms to pseudo
olor the �nal image or rely on image segmentation algorithms to 
lassify areas automati
ally[42, 43℄. However, even in its present provides our 
orrelation te
hnique a method to perform
orrelation analysis of 
omplex biosignatures and signal network responses.4 Material & MethodsThe 2DE gel 
orrelation te
hnique relies on a large amount of 2DE gels of a biologi
alsystem. Every gel needs to be des
ribed by an external numeri
al measure. E.g: lifeexpe
tan
y, di�erentiation stage of a 
ell sample, age of an organism, origin of a 
an
er 
ellsample, e�e
t of 
an
er therapy, time, temperature, pressure, 
ell size, and so on. For every
n gels (des
ribed as Az in whi
h z is the gel image number), there are n external parameters,des
ribed as Tz. Gels 
an further be annotated as Ax,y,z in whi
h (x, y) is the position on gelnumber z. Ax,y is a ve
tor 
ontaining the intensities of all gels:
Ax,y =

[

Ax,y,1 Ax,y,2 . . . Ax,y,n

].Step 1: Alignment and registration - The method requires proper dire
tion andalignment of all gels. Presen
e of 
alibration spots fa
ilitates this pro
ess, otherwisete
hniques su
h as Hough transformation [44, 45℄ for gel dire
tion measurement and 
ross
orrelation [46℄ for multiple gel alignment 
an be used. On
e the gels are aligned, further11



4 MATERIAL & METHODSbasi
 warping and registration [47℄ te
hniques are useful to a

ount for small shifts betweenthe di�erent gels. The aligned images are denoted A
′

z.Step 2: Intensity Normalization - The se
ond step normalizes the intensity values of thegels to allow for inter-gel pixel 
omparison. There is little known of the relation betweenpixel intensities and protein 
on
entrations. Furthermore, pixel values 
an be relative orgamma 
orre
ted, depending on the hardware. The wide variety of possible pixel valueinterpretations leads us to embra
e the use of relative grey values. The simulated gel sta
kshowed that the 
hoi
e of normalization te
hnique barely in�uen
es the �nal 
orrelationimage.Step 2a: Ba
kground intensity - The ba
kground �oor of a 2DE gel refers to thebrightness of empty gel areas. Di�erent 
apture te
hniques produ
e di�erent ba
kground�oors. Ba
kground signal 
an be either added to all pixel values (additive ba
kground), or it
an 
umulate with a de
aying signal (multipli
ative ba
kground). As previously observed[48℄, most 
ameras introdu
e a mixture of additive and multipli
ative ba
kgrounds. Removalof additive noise 
an be done through subtra
ting the mean (A”
z := A

′

z − A
′

z) or medianvalue (A”
z := A

′

z − median(A
′

z)). Removal of multipli
ative noise 
an be done through
A”

z := A
′

z

A
′

z

− 1. We would emphasize that whatever normalization s
heme is used in this step,it should be performed on an individual gel basis.Step 2b: S
aling of gel intensity - After removal of the ba
kground �oor, the dynami
range of the image is normalized through s
aling of gel intensities. The presen
e of a
alibration spot eases this pro
ess. If A′ is the non-relative image and (x, y) is the
alibration spot position, then the image A” := A
′

A
′

x,y

de�nes the normalized image. Without
alibration spot the total energy 
ontent (sum of all intensities or RMS value) forms a veryreasonable s
aling means: A”
z = A

′

z

RMS(A′

z)Step 3: Correlation Image - After alignment and normalization, the 
orrelation analysisgenerates a new image visualizing the 
orrelation measure between a spe
i�
 position and anexternal parameter. The 
orrelation image is 
omposed of pixels, ea
h testing one position12



4 MATERIAL & METHODSon the gel. The result of ea
h test is a number between -1.0 (anti-
orrelation) and 1.0(
orrelation), whi
h, after appropriate s
aling, de�nes the pixel 
olor in the 
orrelationimage. The two ve
tors parti
ipating in the test are A”
x,y and B. The �rst ve
tor 
ontainsthe gel expression levels at position (x, y). Given 89 gel images, A”

x,y will 
ontain 89 di�erentexpression values; one for ea
h gel. The se
ond ve
tor B 
ontains 89 external valuesasso
iated with every gel. Repeating this 
orrelation test for every pixel results in the
orrelation image C (Eq. 1)
Cx,y = ρ(A”

x,y, T ) (1)The 
orrelation image 
an be visualized using di�erent 
olor s
hemes. In Fig. 1 greenindi
ates positive 
orrelations and brown negative 
orrelations.The preferred 
orrelation is the robust Spearman rank order 
orrelation (ρ-
orrelation)[21℄.This non-parametri
 test allows us to ignore the spe
i�
 distributions of gel intensity levelsand external parameters. ρ-
orrelation requires a ranking of the two parti
ipating ve
tors andthen relies on a standard linear Pearson 
orrelation.Step 4: Masking - Correlation does not ne
essarily imply a 
ausal, signi�
ant, or usefulrelationship. To �lter out some possibly useless relations, a number of masks limit the visible
orrelations. The �rst mask removes 
orrelations that might be o

urring by 
oin
iden
e:some datasets easily 
orrelate with any other dataset (signi�
an
e). The se
ond maskremoves 
orrelations that o�er little useful information (E.g: a dataset 
ontaining all zero's).Step 4a: Signi�
an
e - To remove 
orrelations that have a high probability of o

urring,the signi�
an
e test typi
ally asso
iated with the Spearman 
orrelation test was used. Inthis 
ontext, it is de�ned as
Sx,y = 1 − Cx,y

√

n − 2

1 − C2
x,y

(2)
13



4 MATERIAL & METHODSIf this number is 
lose to 1 then there exists a low probability that some random data wouldhappen to 
orrelate with the given result set. Likewise, if this number is 0 then there exists ahigh probability that the 
orrelation is 
oin
idental.Step 4b: Varian
e - The se
ond mask avoids strong and signi�
ant 
orrelations that havea low biologi
al signi�
an
e be
ause the gel intensities do not 
hange enough. It relies on thestandard deviation [49℄ measured on the relative, non-ranked, gel intensities
Dx,y =

√

∑n−1
z=0 (

A”
x,y,z

A”
x,y,∗

− 1)2

N
(3)The standard varian
e (or RMS) of the mean divided gels will have a large value where thereis a varying gel expression. At pla
es where the gel expression is 
onstant this value will bezero.Step 4
: The masked 
orrelation image - Multiplying the standard deviation mask(Eq. 3) with the signi�
an
e mask (Eq. 2) gives a new mask that 
an be superimposed overthe 
orrelation image (Eq. 1).

R = C × S × DThe pixel values of R no longer relates to the 
orre
t 
orrelation measure. Therefore, Rforms an indi
ator, showing position of possible interest.Simulation of a two-dimensional gel ele
trophoresis sta
k - The simulated gel-sta
kis based on the animation of di�erent 2D gauss 'bumps', de�ned as
G(x, y) = a.exp(−

(x−cx
wx

)2 + (y−cy
wy

)2

2
)

(cx, cy) is the 
enter position, wx and wy are the width and height respe
tively. a is theamplitude of the 
urve. Based on this Gaussian 'bump' a gel-sta
k, 
ontaining 15 di�erent14



4 MATERIAL & METHODSgels was 
onstru
ted. Every gel 
ontains: I) an out-fading spot (Fig 2, spot α) with agrowing radius from 10 to 100 pixels and lowering amplitude from 5.0 to 1.0. II) Anellipti
al spot (Fig 2, spot β) whi
h 
hanges shape from being small and tall
(wx = 10, wy = 40, a = 5) to broad and �at (wx = 40, wy = 10, a = 5). III) Two spots withminimal (1.0) and maximal (5.0) amplitudes (Fig 2, spots γ). IV) A moving spot (Fig 2,spot δ) from left to right. Every gel is annotated with its position in the sta
k.Patients, leukemi
 
ell separation and sample preparation - The study wasapproved by the lo
al Ethi
s Committee and samples 
olle
ted after informed 
onsent. Cellseparation, storage and 
ulture of patient AML blasts were performed as previouslydes
ribed [50, 27℄. ALL and AML blasts were isolated by density gradient separation withLymphoprep (Ny
omed Pharma AS, Oslo, Norway) and 
ontained more than 90% malignant
ells. Patient 
hara
teristi
s and number of gels are presented in Table 1. Normalgranulo
ytes (97% neutrophile) and lympho
ytes (peripheral blood mononu
lear 
ells
ontaining 10% mono
ytes and predominantly T lympho
ytes) were separated by densitygradient 
entrifugation 
ombining Polymorphprep TM (Axis-Shield PoC AS, Oslo, Norway)and Lymphoprep following the manufa
turers instru
tions. Preparation for two dimensionalgel ele
trophoresis (2DE) and immunoblotting was performed as previously des
ribed[51, 52, 53℄. Brie�y, 
ells were washed in NaCl (9 mg/ml) and then lysed in 7%tri
hloroa
eti
 a
id. The pre
ipitated protein was washed on
e in 5% tri
hloroa
eti
 a
id andthree times in water saturated ether to remove salts. The protein pellet was resuspended insample bu�er for 2DE gel ele
trophoresis (7 M urea, 2 M thiourea, 100 mM dithiotreitol,1.5% Ampholyte 3 - 10, 0.5% Ampholyte 5 - 6, 0.5% CHAPS). 2D was performed using 7 
mpH 3-10 (Zoom Strip, Invitrogen Corp., Carlsbad, CA, USA) isoele
tri
 fo
using gel strips,following the manufa
turers' instru
tions. Ele
trophoresis was performed at 200 V for 60minutes, after whi
h the proteins were transferred to polyvinylidene �uoride membrane(Amersham Bios
ien
es AB, Uppsala, Sweden) by standard ele
tro-blotting. p53 protein wasdete
ted using primary Bp53-12 antibody (Santa Cruz Biote
hnology, CA, USA) andse
ondary horse radish peroxidase 
onjugated mouse antibody (Ja
kson ImmunoResear
h,West Grove, PA, USA) visualized using the Supersignal west Pi
o or Supersignal west Femto15



REFERENCESsystem (Pier
e Biote
hnology, In
., Ro
kford, IL, USA). Chemilumines
en
e imaging wasperformed using a Kodak Image Station 2000R (Eastman Kodak Company, Lake Avenue,Ro
hester, NY, USA) and were saved in TIFF format with the resolution of 300 dpi for
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6 FIGURES & TABLES6 Figures & TablesDisease Classi�
ation Patients ImagesAML M0/1 1 2M1 7 12M1/2 1 2M2 10 18M3 2 4M4 3 6M4/5 6 12M5 7 14M5a 2 3Sum 73Mean Age 58.4 yearsMedian Age 61 yearsAge Range 29-86 yearsALL 8 16Mean Age 47.3 yearsMedian Age 41.5 yearsAge Range 22-84 yearsTable 2: Leukemia patient 
hara
teristi
s and 
orresponding 2DE imagesTotally 73 AML and16 ALL images were in
luded in the analysis. All ALL patients had B-
ell disease and twopatients 
omprised the b
r-abl fusion produ
t.

21



6 FIGURES & TABLES

Figure 1: 2DE Gel Correlation relies on an aligned, normalized sta
k of 2DE gel images anda numeri
al label asso
iated with every gel. Pixel per pixel 
orrelation 
reates a new imageshowing areas in the gel that relate to the external parameter. In 
omparison to standard gelanalysis methods, spot dete
tion is not ne
essary and therefor less bias is introdu
ed into theanalysis pro
ess. This te
hnique also re
ognizes moving spots and spot shapes that 
hange.

22



6 FIGURES & TABLES

A

BFigure 2: Correlation of a simulated 2DE gel-sta
k and the e�e
t of various ba
k-ground normalizations. (A) 8 snapshots taken from a sta
k of 15 gels generated usingGaussian bumps, see material and methods for formula and details. Ea
h gel 
ontains sim-ulated spots with parti
ular 
hara
teristi
s: (α) an out-fading spot growing in size, (β) anellipti
al spot 
hanging shape from small and tall to broad and �at, (γ) two spots with 
on-stant amplitudes and (δ) a spot shifting from left to right. (B) Correlation between thegel-sta
k and the external parameter, in this 
ase, the gels sequen
e number (t). Upper gels(a-
) visualizes the 
orrelation, lower gels (a'-
') represent a masking that visualizes the areasof useful 
orrelations. Correlation analysis was performed relying on di�erent ba
kgroundremoval methods. (a,a') without ba
kground removal; (b,b') with ba
kground subtra
tion,(
,
') using ba
kground division. See the result se
tion for details.23



6 FIGURES & TABLESA. Noise 25% 50 % 75% 0-75%
Correlation

Masked CorrelationB. Randomization Outliers#1 #2 6% 13%
Correlation

Masked CorrelationFigure 3: The e�e
t of noise, outliers and randomization in the 
orrelation analysis.(A) Correlation analysis with the addition of normal distributed noise to 25 % (a,a'), 50%(b,b'), 75% (
,
') and in
reasing noise from 0% to 75% in gels 0 to 14 (snapshot 1 to 8). Theanalysis was performed without normalization of the gels. (B) Two di�erent randomizationswere performed. #1(a,a') and #2(b,b') are the 
orrelation images towards a fully randomizedset of biologi
al parameters. (
,
') and (d'd') show the 
orrelation images when the biologi
alparameter set is polluted by respe
tively 6% and 13% outliers.
24
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Figure 4: Origin of 
an
er and p53 isoform distribution. (A) 73 a
ute myeloid leukemia(AML) and 16 a
ute lymphoid leukemia (ALL) gel images were analyzed for 
orrelation of p53isoform distribution (left, 
orrelation; right, masked 
orrelation/signi�
an
e of 
orrelation).Green 
olor indi
ates positive 
orrelation for ALL (maximum positive 
orrelation 0.5557),and brown 
olor indi
ates negative 
orrelation (maximum negative 
orrelation 0.1464). Brown
olor indi
ates p53 protein forms predominantly found in AML. Inset boxes present the 
or-relation (left) and signi�
an
e (right) for the α and δ region, respe
tively. (B) Attenuated
orrelation when ALL images are repla
ed with images from AML. Repla
ement of 25% ofthe ALL 
ases with AML (a): Maximum positive 
orrelation 0.3910, maximum negative 
or-relation 0.1463. Repla
ement of 50% of ALL with AML (b): Maximum positive 
orrelation0.2730, maximum negative 
orrelation 0.2232. (C) p53 expression in normal lympho
ytes (leftpanel) and granulo
ytes (right panel). See Material and Methods for details on 
ell separation.



6 FIGURES & TABLES

Figure 5: Di�erentiation stages of 
an
er modulates p53 isoform distribution. (A)Correlation lands
ape of p53 in 73 AML images related to di�erentiation dire
tion and stage(FAB, Fren
h-Ameri
an-British 
lassi�
ation). Green indi
ates 
orrelation with the moredi�erentiated forms of AML. Brown indi
ates anti-
orrelation with the more mature formsof leukemia 
ells. The verti
al axis sets out the absolute 
orrelation value. (B) Correlationimage demonstrating statisti
al signi�
ant alterations in p53. Pro�le 1 shows the p53-δ region
ontaining four 
orrelating spots (r = 0.2). Pro�le 2 shows the sub-δ region anti-
orrelatingat positions e and f. Pro�le 3 is the p63 region (putative p53 isoform) 
orrelating towardsthe more di�erentiated leukemia's. Pro�le 4, a p53 region anti-
orrelating with di�erentiatedAML. 26



7 SUPPLEMENTARY MATERIAL7 Supplementary Material7.1 Correlation ImplementationThe algorithm is implemented in IDLv6.1 [54℄ and takes two arguments. The �rst argumentis the gel-sta
k, whi
h is a three dimensional spa
e. First dimension is the gel number, these
ond and third dimensions are the x and y-axis of the gels. The se
ond argument is a ve
tordes
ribing the result of the di�erent gels. The presented algorithm makes use of a means
aling.PRO 
orrelate_images, all, resultd = size(all,/dim)VX = d[1℄VY = d[2℄; normalize the ba
kgroundfor i = 0, d[0℄ - 1 do beginall[i,*,*℄ /= mean(all[i,*,*℄)endfor; Rho 
orrelation
or_pi
 = make_array(VX,VY,/double,value=0.0)f_pi
 = make_array(VX,VY,value=0.0)for x = 0, VX - 1 do beginfor y = 0, VY - 1 do beginr = r_
orrelate(reform(all[*,x,y℄),result)
or_pi
[x,y℄=r[0℄f_pi
[x,y℄=1.0-r[1℄endforendfor; we are interested in 
orrelations with high varian
e on gelvar_pi
 = make_array(VX,VY,/double,value=0.0)for x = 0, VX - 1 do beginfor y = 0, VY - 1 do beginvar_pi
[x,y℄=stddev(all[*,x,y℄)endforendforvar_pi
 <= 1.0f_pi
 *= var_pi

or_pi
 <= 1.0
or_pi
 >= -1.0show_
orrelation, 
or_pi
, f_pi
end7.2 Gauss Bumpsfun
tion gauss2d, sx, sy, 
x, 
y, wx, wy, aim = float(make_array(sx,sy,value=0.0))for x = 0, sx - 1 do beginfor y = 0, sy - 1 do beginim[x,y℄=float(((
x-x)/wx)^2 + ((
y-y)/wy)^2)27



7.3 Simulated Gel Sta
k 7 SUPPLEMENTARY MATERIALendforendforim = -im/2im = exp(im)im *= areturn, imend7.3 Simulated Gel Sta
kfun
tion 
reate_set, nr, sx, sy, wx1, wx2, wy1, wy2, a1, a2all = make_array(nr,sx,sy,value=0.0)for i = 0, nr - 1 do beginwx = wx1 + i*(wx2-wx1)/nrwy = wy1 + i*(wy2-wy1)/nra = a1 + i*(a2-a1)/nrall[i,*,*℄ = gauss2d(sx, sy, sx/2, sy/2, wx, wy, a)endforreturn, allendset1 = 
reate_set(15, 600.0, 400.0, 10.0, 100.0, 10.0, 100.0, 5.0, 1.0)set2 = 
reate_set(15, 300.0, 300.0, 10.0, 40.0, 40.0, 10.0, 5.0, 5.0)set3 = 
reate_set(15, 300.0, 300.0, 20.0, 20.0, 20.0, 20.0, 5.0, 5.0)set4 = 
reate_set(15, 300.0, 300.0, 20.0, 20.0, 20.0, 20.0, 1.0, 1.0)set1[*,0:299,0:299℄ += set2[*,*,*℄set1[*,300:599,0:299℄ += set3[*,*,*℄set1[*,300:599,100:399℄ += set4[*,*,*℄for i = 0, 14 do beginset1[i,0+i*10:299+i*10,200:399℄+=set3[i,*,50:249℄endforfor i = 0, 14 do beginset1[i,*,*℄/=double(i)endforset1 = relative(set1)result1 = findgen(15)
orrelate_images, set1, result1end7.4 Creating green / brown imagesPRO show_
orrelation, 
p, t_pi

or_pi
 = 
pDDD = size(
p,/dim)VX = ddd[0℄VY = ddd[1℄; the normal oneshown = make_array(3,VX,VY,/double,value=255.0)multi = 1.0 / max(abs(
or_pi
))multi = 1.0 / max(abs(
or_pi
))shown[0,*,*℄ += (
or_pi
[*,*℄ < 0) * multi * 55shown[1,*,*℄ += (
or_pi
[*,*℄ < 0) * multi * 155shown[2,*,*℄ += (
or_pi
[*,*℄ < 0) * multi * 255shown[0,*,*℄ -= (
or_pi
[*,*℄ > 0) * multi * 255shown[1,*,*℄ -= (
or_pi
[*,*℄ > 0) * multi * 5528



7.4 Creating green / brown images 7 SUPPLEMENTARY MATERIALshown[2,*,*℄ -= (
or_pi
[*,*℄ > 0) * multi * 205window, 1, title='Correlation', ret=2, xsize=vx, ysize=vyshown >= 0shown <= 255tvs
l, shown, /true; only the signifi
ant 
orrelationw
or_pi
 = double(
or_pi
) * double(t_pi
)shown = make_array(3,VX,VY,/double,value=255.0)multi = 255.0 / max(abs(w
or_pi
))shown[0,*,*℄ += (w
or_pi
[*,*℄ < 0) * multi * 55shown[1,*,*℄ += (w
or_pi
[*,*℄ < 0) * multi * 155shown[2,*,*℄ += (w
or_pi
[*,*℄ < 0) * multi * 255shown[0,*,*℄ -= (w
or_pi
[*,*℄ > 0) * multi * 255shown[1,*,*℄ -= (w
or_pi
[*,*℄ > 0) * multi * 55shown[2,*,*℄ -= (w
or_pi
[*,*℄ > 0) * multi * 205window, 3, title='Signifi
ant Correlations', ret=2, xsize=vx, ysize=vytvs
l, shown, /trueshown = byts
l(shown)profiles, 
or_pi
; signifi
an
ewindow, 2, title='Signifi
an
e', ret=2, xsize=vx, ysize=vytvs
l, t_pi
profiles, t_pi
end
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