
On Curvature and Separability in
Unconstrained Optimisation

Lennart Frimannslund

Thesis for the degree of Philosophiae Doctor (Ph.D.)
Department of Informatics

University of Bergen
Norway

March 2006

2

Acknowledgments

I would like to thank my principal advisor over the past years, professor Trond
Steihaug, without whose blend of patience, impatience, competence and pro-
fessionalism this thesis would never have been completed. Thank you! Thanks
also to my second advisor, professor Hans Julius Skaug, for being patient and
treating me more like a peer than a student.

On the personal side, thanks to my girlfriend, family and friends, for be-
lieving in me and supporting me, not least at the times when I didn’t deserve
it.

Notation

In this thesis we use superscripts to denote the iteration a variable corresponds
to. We use subscripts to denote variable names and indices. If a variable has
more than one item of information which is to appear in the same position, we
use parentheses. Some examples are given below:

xk The variable x, at iteration k.
x∗ The optimal value of x.

(CQ)ij Element ij of the matrix CQ.
(yk)T The transpose of the variable y at iteration k.

e1 The first unit coordinate vector.
(qr)i Element i of the vector qr.

In addition, we sometimes use the notation xij in conjunction with a matrix
element (CQ)ij , which means xij is a vector, which has a connection with ele-
ment ij of the matrix CQ.

Contents

1 Introduction 4

2 Generating Set Search 9

3 Using Curvature Information 17

3.1 Using Curvature Information in GSS methods 17
3.2 Paper I — A GSS Method Using Curvature Information 20

4 Using Separability Information 25

4.1 Separability and Sparsity . 25
4.2 Exploiting Separability in Direct Search Methods 27
4.3 Paper II & IV — GSS Methods Exploiting Curvature and Sepa-

rability . 28

5 Limited Memory Methods 32

5.1 Quasi-Newton Methods . 32
5.2 Derivative-Based Limited Memory Methods 35
5.3 Hessian Sparsity in Derivative-Based Methods 37
5.4 Paper V — A Class of Methods Combining TN and L-BFGS . . 39

6 Application of GSS to Maximum Likelihood Estimation 41

6.1 Maximum Likelihood Estimation 41
6.2 Paper III — Estimating Mortality of Norwegian Spring Spawning

Herring . 42

7 Concluding Remarks 45

7.1 Summary . 45
7.2 Possible Further Research . 45

3

Chapter 1

Introduction

Optimisation is a diverse field, where the only common denominator of all its
incarnations can be said to find the best choice in a situation where one has sev-
eral possibilities to choose from. For instance, one might be adjusting the ratio
of components to make a chemical process run as smoothly as possible, or the
properties of physical object such as its shape, mass distribution and stiffness.
One might be trying to make a production line run more efficiently, increase the
revenue of a factory, or try to produce the largest number of clothes from a given
amount of fabric or any other similar situation. To give an example, consider
the problem of a farmer looking for a site to build a farm. The farm must have
irrigation, with water supplied from a nearby reservoir, electricity from a local
power station, and road access to a processing plant, where the products of the
farm will be delivered. There is a cost associated with building a water pipeline,
installing cables for electricity and paving a road to the processing plant. The
farmer wants to build the farm in the site which corresponds to the lowest cost,
so the optimisation problem can be formulated as

min
Farm position

Pipeline cost + cable cost + road cost. (1.1)

As one learns from calculus, extreme values are found where the gradient van-
ishes. Apart from cases involving very simple objective functions one needs
iterative solution methods. Many methods are implicitly based on Taylor’s the-
orem by constructing polynomial model functions. Newton’s method assumes a
quadratic model function, and steps to the minimum of that function. A third-
order tensor method assumes a cubic model function, and similarly steps to the
minimum of that function. Since Taylor’s theorem tells us that the higher the
degree of the polynomial, the better we can approximate an arbitrary function,
one might expect that methods of this kind would become more and more pow-
erful as their order increases. However, trying to build the highest-order method
possible would present new problems along the way, for instance that:

1. The desired derivatives may be expensive, or difficult to compute.

4

CHAPTER 1. INTRODUCTION 5

2. The objective function might not be differentiable, or yield unhelpful
derivatives.

3. The desired derivatives may be expensive to store.

The fact that derivatives may be expensive to compute is addressed by quasi-
newton methods like the BFGS method (see e.g. [50] and the references therein),
which make use of gradient information from past iterations to produce an
approximation to the Hessian. Compared to Hessian matrices, gradients can be
computed relatively cheaply using Automatic Differentiation (AD) techniques,
see e.g. [36]. However, if gradients are not directly available, for example if
the function is written in several programming languages, precluding the use of
AD, or is for some other reason only available as a “black box”-procedure, one
might have to turn to other alternatives.

If the objective function is the result of a simulation on a computer, then
the resulting function might well not be smooth, although the same input will
always give the same output except in the case of random effects. For example,
determining the time of day it is fastest or slowest for a cargo train to get from
one city to another, given ordinary traffic that uses the same network of rails, is
a problem which can be cast as a continuous optimisation problem, since the in-
put variable (start time) and output variable (travel time) are continuous. Since
two trains cannot occupy the same piece of rail at the same time, there could be
situations where the cargo train would have to wait for oncoming trains, or wait
until a track is cleared for some other reason. This could result in the objective
function resembling a the profile of a staircase, like in Figure 1.1, which would
make it a non-differentiable function in some parts of its domain and the gradient
zero wherever it is defined, which would certainly be a challenging function for
a gradient-based method. A different example — simulations might be used in
weather forecasting. One could if one were to calibrate a model for weather fore-
casting based on historical weather data, encounter an objective function which
would probably involve solving a differential equation. Differential equations
are solved using iterative methods, such as for example Runge-Kutta methods.
These methods inevitably involve some sort of discretisation, which can result
in that even if there exists an underlying smooth function in the mathematical
sense, the numerical function the optimisation method works with appears as
non-smooth. This can also happen in the context of flow optimisation, e.g. [8].
To generalise this kind of functions, suppose we are dealing with a function that
is very expensive to compute accurately, but which can be computed approxi-
mately at a lower cost. Such a function could, apart from differential equations
for instance contain integrals. High-dimensional integrals can be expensive to
compute, especially if they cover a broad region. One might solve the integral
using a coarse discretisation, which would make the integral – and in turn the
function – relatively cheap to compute, although one would then only obtain an
approximation to the underlying function value. A third example, the objective
function itself could contain an “inner” optimisation problem, so that evalua-
tion of the objective function would mean solving an optimisation problem in
the process. The inner problem could be solved to varying degrees of accuracy,

CHAPTER 1. INTRODUCTION 6

Time of day

Tr
av

el
 ti

m
e

Figure 1.1: Cost function where the derivative is not always defined.

which would again influence computation time and accuracy of the final numer-
ical objective function value. In chapter 6 we will encounter a function of this
type, where the inner optimisation is part of an approximation to an integral.

If the function values are expensive to obtain accurately, then it is not hard
to imagine that the same is the case for the derivatives. If the function when
computed to limited accuracy is not smooth, it is not necessarily clear what an
inaccurately computed derivative represents or if it contains useful information
about the underlying smooth objective function at all. In an example in flow
optimisation [9], a discretisation in the computed objective function causes the
corresponding computed gradient to be inconsistent with the underlying mathe-
matical function, and causes gradient-based optimisation methods to terminate
at non-stationary points.

In all of the cases mentioned one can turn to derivative-free optimisation
methods. These methods in their most basic form use only function values.
This is a strength, since it makes these methods robust in the sense that they
in practice can perform very well on functions which are not differentiable, even
though for many of these methods there is often no theoretical guarantee for
convergence on such functions. The fact that these methods only use func-
tion values is also a source of potential weakness, since these methods in their
simplest form typically converge very slowly, unless the objective function by
chance is particularly well suited to the method at hand.

When we talk about expensive functions, the case might also be that the ob-
jective function is so expensive to evaluate that one may only perform a limited
number of evaluations, since evaluating the function more times is impractical,
or even impossible. If this is the case one often works with a surrogate model
function instead, which is in part based on the values of the actual objective

CHAPTER 1. INTRODUCTION 7

function. In surrogate modeling derivative-free methods which we will be con-
cerned with can play a part (see e.g. [28, 6, 7]), although we will not investigate
this kind of modeling directly.

That derivatives are expensive to store is an obstacle that limited memory
methods attempt to deal with. The gradient of the objective function has n
elements, which allows for quite large n on today’s computers, although concepts
like small and large will of course always be relative. A Hessian matrix has n(n+
1)/2 unique elements, and the quadratic growth of the storage requirements as n
grows puts a limit on the size of variables it is practical to work with. Even more
so in case of the third derivatives, which have n(n+1)(n+2)/6 unique elements.
In this case one often tries to exploit sparsity if it is present, which can reduce
the need for storage. Even if the derivatives are not sparse, if the function is
separable then one it might still be possible to cut back on storage requirements,
for example in the case of a Hessian matrix where all the diagonal elements are
always equal to each other, and all the off-diagonal elements are equal to each
other as well. In this case, even if the Hessian were of infinite size, it would only
contain two unique elements and could be stored using only two floating point
numbers. If one cannot cut storage requirements through separability, one may
use a limited number of lower-order derivative values to approximate higher-
order derivatives. Two important methods which do this are the limited memory
BFGS (L-BFGS) method [54, 48] and the discrete Newton method [27, 56]. Both
these methods use gradients to approximate Hessian information. The L-BFGS
method is a variant of the BFGS method. Whereas the storage requirement
for BFGS is O(n2), the L-BFGS method uses only O(mn) space, where m is a
variable which can be controlled by the user. The discrete truncated Newton
uses the property of most iterative methods for solving linear equations that
they do not need an explicit representation of the coefficient matrix, in this
case the Hessian. Instead, a iterative method usually only needs the ability to
compute the product of the Hessian with an arbitrary vector. Such a product
one can approximate using two values of the gradient. Newton methods which
use iterative equation solvers usually do not solve the Newton step equations to
full precision at each iteration, and hence are called (discrete) truncated Newton
methods.

What we wish to investigate in this thesis is how we can speed up meth-
ods that deal with the three points listed. To see how this can be done, let us
put ourself in the place of an optimisation method for a moment. If one as a
human being were to determine what is the best choice in a situation where
one has several or infinite options to choose from, one would probably do some
research before one starts experimenting, and memorise one’s experience dur-
ing the testing phase. Optimisation methods are little different from humans
in this respect, they can make use of information about the problem provided
to them before they start evaluating the function. We will make use of the
separability properties of the objective function, which are sometimes available
before the optimisation process starts. Similarly, optimisation methods can re-
member what has happened in earlier iterations, and use for instance previous
function values and gradients to make an informed decision about where to

CHAPTER 1. INTRODUCTION 8

search for the next solution. We intend to use curvature information to this
end. Thus, we will try to improve existing methods and we will keep in mind
that objective functions are not always smooth, even if the underlying mathe-
matical representation might be. Specifically, we will deal with generating set
search methods, which deal with potentially non-smooth functions and func-
tions where the derivatives are difficult to obtain, and hence address points 1
and 2, and limited memory methods which address point 3. If the function is
not smooth, we will use average curvature information to try to capture the
curvature properties of the underlying function. For example, in the case of the
function in Figure 1.1, this would mean capturing the curvature properties of
a quadratic function. As for limited-memory methods, although the L-BFGS
method approximates curvature over time, previous research has shown that its
initial curvature approximation is very important when it comes to ensuring
quick convergence. We will try to enhance this method by trying to make use of
second derivative information, that is, given that we can compute the product
of the Hessian with an arbitrary vector, we will try to make L-BFGS exploit
this information in its initial curvature approximation.

The thesis is organised as follows. In chapter 2 we introduce unconstrained
optimisation, briefly review derivative free methods, introduce generating set
search methods, and reiterate which types of functions we will be concerned
with. In chapter 3 we show how a generating set search method can be made
to reach the optimal solution faster, by making it detect and exploit average
curvature information. In chapter 4 we introduce the concept of separability,
and show how it is not necessarily related to differentiability. We extend the
improved generating set search method of chapter 3 to take separability into
account. In chapter 5 we introduce quasi-Newton methods and limited memory
methods, particularly L-BFGS and the (discrete) truncated Newton method.
We present a new class of hybrid methods which encompasses L-BFGS and
truncated Newton. The new class can be viewed either as a class of L-BFGS
methods enhanced by curvature information, or as a class of truncated New-
ton methods enhanced by using previously acquired gradient values. Chapter
6 contains an application of the generating set search method of chapter 3 to
a concrete problem from statistics, and chapter 7 offers some concluding re-
marks and proposes some possible avenues of further research. The five papers
themselves appear at the end of this thesis.

Chapter 2

Generating Set Search

In this thesis we will address problems of the form

min
x

f(x), (2.1)

where
f : R

n 7→ R.

The function may or may not be differentiable, and may or may not be contin-
uous. We assume that the function is not stochastic, that is, the same input
always gives the same output. We will try to obtain local minima of the objec-
tive function f from an arbitrary starting point, we will not try to predictably
obtain global minima.

We can define a concrete version the farm problem (1.1) to obtain a problem
of the form (2.1). Let the processing plant be at the origin, let the water reservoir
be at position xw = (100, 0) and the power plant be at position xpow = (150, 50),
where the units along the axes are kilometers. Let the cost of of cable to the
power plant be AC7000 per kilometer, the cost of a pipeline from the water
reservoir be AC8000 per kilometer, and the cost to build a road to the processing
plant be AC9000 per kilometer. Let the position of the farm be xf . Again, where
is the cheapest site to build the farm? We can model this as

min
xf

9000 · ‖xf‖2 + 8000 · ‖xf − xw‖2 + 7000 · ‖xf − xpow‖2. (2.2)

This is a smooth optimisation problem, with well-defined derivatives except at
the origin, xw and xpow . In real life on the other hand, the costs involved can
depend on things like the nature of the terrain, cost of subcontracting, available
manpower, overtime payment — simply put any number of problems one can
think of. In other words, although one would like the cost function for for
example the water pipeline to look like the lowermost curve in Figure (2.1), it
might well look like the staircase-curve in the middle, or even the uppermost
noisy curve, in complicated cases. In all three curves of the figure we have an

9

CHAPTER 2. GENERATING SET SEARCH 10

Distance

Co
st

Example cost functions

Figure 2.1: Example cost functions.

underlying, simple function, but the two uppermost curves present potential
problems for gradient-based methods.

If the function is challenging for gradient-based methods, there are many
derivative-free method classes to choose from. One may for instance sample the
function at particular points, and construct an interpolating model function.
Then, one could minimise the interpolating function, and evaluate the objective
function at the optimum of the model function, construct a new model function,
and repeat the process. Polynomials, either linear or quadratic are often the
interpolating functions of choice in this context. Using this method one might
get an interpolating function which is a poor approximation to the objective
function, especially far from the current best point. An extension to the above
strategy is to consider the model function to be valid only within a specific
radius of the current best point, and to search for the minimum of the model
function within this region only. This is called a trust region approach. Some
of these methods, including linear model functions are reviewed in [16, 59, 61].
Methods that use quadratic approximations include those in [18, 60, 62, 14], a
recent method with both a linear and a quadratic variant is given in [51]. A
recent extension towards separable function is given in [15].

A different approach entirely is that of simplex methods. One of the most
widely cited and popular simplex methods is the method of Nelder and Mead
[52]. The Nelder-Mead method in n dimensions keeps a simplex of n+1 points,
and changes one of these points per iteration. We will not give a full description
of the method, but highlight one of its features, which is of interest to us. In
Figure 2.2 we see what is called an outside contraction, in R

2. The three points
of the triangle with dashed sides are the points corresponding to, say, iteration
k, and the three points of the triangle with solid sides correspond to iteration

CHAPTER 2. GENERATING SET SEARCH 11

Figure 2.2: An outside contraction in the Nelder-Mead method.

k + 1. In other words, the uppermost point is substituted with the lowermost
point in the figure. Similarly, the algorithm can also perform what is called
a reflection and expansion step, which in the figure corresponds to the solid
triangle belonging to iteration k and the dashed triangle to iteration k + 1.
In any event, what we wish to highlight is that the shape of the simplex is
not constant, since the angles between the sides of the simplex can vary. This
can cause the shape of the simplex to be for instance very long and narrow,
which in turn can cause the method to stagnate. Torczon [68] demonstrated
that the direction of progress of the Nelder-Mead method can become nearly
orthogonal to the negative gradient for even the simplest functions. Torczon
introduced a new method, the multi-directional search method, which just like
the Nelder-Mead method keeps a simplex of n + 1 points in n dimensions, but
which does not allow the angles between its sides to change. The numerical
results in [68] show the multi-directional search method to perform better than
the Nelder-Mead method.

That the function may cause the points the Nelder-Mead method keeps
to lie close to each other is a phenomenon which can also affect trust region
interpolation methods in the form we have described them above. The reason
for this is that we have not imposed any restrictions on the geometry of the
points we include in our model, so for a given function, the equations that
define the interpolating function might be singular, or near-singular, as pointed
out in [17]. Interpolation methods can be made to enforce a certain geometry,
which eliminates this particular problem.

As far as derivative-free methods are concerned, we wish to develop methods
that enforce a certain geometry on its points and search directions, but do not
wish to do this within the a trust-region framework, that is, we do not want an
explicit model function. It is then natural to turn to methods like the multi-
directional search algorithm.

This method is in the class of what is called generating set search (GSS)

CHAPTER 2. GENERATING SET SEARCH 12

methods. Until the review article [42] coined this name (GSS) there seems to
have been some overlapping use of terminology in this field. In the review article
[73], both the Nelder-Mead method and the multi-directional search algorithm
are called “direct search methods”, Torczon et al use the name “pattern search”,
in e.g. [70, 71, 30, 47] to signify (a subset of) GSS methods, whereas Conn and
Toint in [18] use the name “pattern search” for both the Nelder-Mead method
and the multi-directional method. Exactly how to define these methods has
not been an easy task either, leading to headings like “I know it when I see
it: Toward a definition of direct search methods” [72] and indirect definitions
like that a direct search method only uses function values and does not “in its
heart” develop an approximate gradient [73].

A framework encompassing all the GSS algorithms we will be concerned with
was given in [42], and we will stick with the name and definitions of that review.
GSS methods are in their simplest form very intuitive methods. As stated in
the preface of [25], one such method was used when one first started to optimise
functions on computers. Two issues however, that for many years made direct
search methods an unattractive option for many users were as pointed out in
for instance [67, 42], the lack of convergence theory, and the fact that the meth-
ods often converge slowly in practice. The multi-directional search algorithm
was presented along with a proof of convergence [68, 69], and this convergence
theory was generalised in [70], which also presented a unifying framework for
a particular class of GSS algorithms. This class is called generalised pattern
search (GPS) algorithms in [4], where the convergence theory of [44, 45, 70]
was unified. GPS with derivative information was studied in [1], and GPS with
inexact derivative information in [23].

Convergence theory for GSS methods we will call moving grid methods was
presented in [21] and for what we will call sufficient decrease methods in [49].
Extensions toward constrained optimisation have been discussed in [29, 44, 45,
46], and an algorithm designed specifically for noisy problems appeared in [2].

The methods for which [70, 4] provides convergence theory are methods
which restrict all the iterates to lie on a rational lattice, which essentially is a
regular grid in n dimensions. Mathematically, this can be stated as that given
an initial iterate x0, search directions di, i = 1, . . . , r and initial corresponding
step lengths δi, then any iterate on xk on a given lattice defined by d and δ,
satisfies

xk = x0 +

r∑

i=1

ζiδidi, (2.3)

where the coefficients ζi are all nonnegative integers. The lattice can be succes-
sively refined according to rules imposed by the convergence theory, for simplic-
ity one can imagine the refinement as restricted to halving the step lengths δ.
Since the resulting lattice is rational, the convergence result becomes that

lim
k→∞

inf ‖∇f(xk)‖ = 0.

This result cannot always be strengthened, as discussed in [3].

CHAPTER 2. GENERATING SET SEARCH 13

Moving grid methods can be viewed as an extension to rational lattice meth-
ods. Moving grid methods allow the grid of points to be reconfigured once a
grid minimum is found. A grid minimum is a point on a fixed grid which cor-
responds to a lower objective function value than all of its neighbouring points.
This reconfiguration can be for instance a rotation, scaling, a shear transforma-
tion or a combination of some or all of these transformations. (For a definition
of shear, see e.g. [32] section 5.2.)

Sufficient decrease methods do not impose restrictions on grids, as long as a
new point is only accepted if it produces sufficient decrease, that is,

f(xnew) ≤ f(xold)− ρ(δ),

where
δ = ‖xnew − xold‖,

and
ρ(δ) = o(δ), as t ↓ 0.

All of these results where summarised in [42], which also credits [74] and [43]
for the convergence results. Central to all GSS methods is the presence of a
generating set, or positive basis as it is also called. A generating set is a set of
vectors vi, i = 1, . . . , r such that for each x in R

n, we have

x =

r∑

i=1

civi, ci ≥ 0, i = 1, . . . , r.

This requires [26] that r ≥ n + 1. A GSS method uses these directions as
its search directions, or search basis. We will, for the rest of this thesis only
consider methods where r = 2n, where the search directions are the positive and
negative of the columns of an orthogonal matrix Q, unless otherwise stated. We
will occasionally state results for methods which search along the positive and
negative of the columns of an m× n matrix P .

A very simple example of a GSS method which we will call compass search,
can be written as in Figure 2.3. From the code one can gather what is meant
by an iterative method. The method takes an approximation to, or guess of
the optimal solution xk, and produces a better approximation xk+1. Then the
process repeats, and can be repeated until no better function value is found, or
one is satisfied with the current approximation. There are several aspects of this
method which can be decided upon by the user, for instance which directions G
should contain, in which order the method should search along the directions, as
well as when step lengths are increased and decreased. It is common to halve the
step lengths if no search progress is made, either by halving all the step lengths
if no progress is made along any direction, or treating the directions individually
and halving the step lengths corresponding to directions with no progress. One
can also increase the step lengths, for instance by doubling them, if for instance
the method has stepped along a certain direction or certain directions many
times in a row. There are a few technical requirements for the method to be

CHAPTER 2. GENERATING SET SEARCH 14

Given f , k = 0, xk, search directions G, step lengths δi,

While maxi δi > threshold

Set x+ ← xk,

For each direction di in G, with associated step length δi

If f(x+ + δidi) < f(x+)

Set x+ ← x+ + δidi.

end.

Set xk+1 ← x+.

Update step lengths δi

Set k ← k + 1.

end.

Figure 2.3: Pseudocode for Compass Search.

0/4 1

2

3/8

5

6

7/12 9

10

11

13

Figure 2.4: Progress of Compass Search.

convergent, most importantly that the set of search directions multiplied by all
possible step lengths spans the entire space of interest.

An illustration of how the method searches in R
2 when G consists of the

positive and negative of the unit vectors is given in Figure 2.4. In the figure
each point is marked by a node. The directions in G are searched in the order
east, north, south, west. In addition, step lengths are unchanged as long as
there is progress along one of the four directions. The search starts at the black
node, and the points are evaluated in the order they are numbered. First, the
method searches to the right/east, finds a better function value, and steps to the
grey node. Then, it searches upward/north, but does not find a better value,
which is marked by a white node. Then it searches to the south/down, but
does not find a better value. Then it searches to the left/west, and tests the
original black point again, but does not step since the starting point does not
give a lower function value. In the form given in Figure 2.3 the method would

CHAPTER 2. GENERATING SET SEARCH 15

perform this evaluation twice, hence it is marked 0/4. Then the cycle repeats,
the method tests in the order east, north, south, west. Note that the points
marked 3/8 and 7/12 are also visited twice.

We can apply compass search to the farm problem (2.2). Let us take the
point xf = (50, 50) as the initial guess. We use the positive and negative of the
unit coordinate vectors as the set G, the same step length δ for all directions in G,
and halve δ if we cannot find reduction along any direction. Initially δ = 10. The
result of the first 25 iterations are given in Table 2.1. As one can see in the table,

Iteration f δ (xf)1 (xf)2

0 1.90208e+06 1.00000e+01 5.00000e+01 5.00000e+01
1 1.85853e+06 1.00000e+01 4.00000e+01 5.00000e+01
2 1.83126e+06 1.00000e+01 3.00000e+01 5.00000e+01
3 1.82114e+06 1.00000e+01 2.00000e+01 4.00000e+01
4 1.82114e+06 5.00000e+00 2.00000e+01 4.00000e+01
5 1.82114e+06 2.50000e+00 2.00000e+01 4.00000e+01
6 1.82093e+06 2.50000e+00 2.25000e+01 4.00000e+01
7 1.82080e+06 2.50000e+00 2.25000e+01 4.25000e+01
8 1.82080e+06 1.25000e+00 2.25000e+01 4.25000e+01
9 1.82074e+06 1.25000e+00 2.12500e+01 4.12500e+01
10 1.82074e+06 6.25000e-01 2.12500e+01 4.12500e+01
11 1.82071e+06 6.25000e-01 2.18750e+01 4.12500e+01
12 1.82071e+06 3.12500e-01 2.18750e+01 4.12500e+01
13 1.82071e+06 3.12500e-01 2.18750e+01 4.15625e+01
14 1.82071e+06 1.56250e-01 2.18750e+01 4.15625e+01
15 1.82071e+06 1.56250e-01 2.18750e+01 4.14062e+01
16 1.82071e+06 7.81250e-02 2.18750e+01 4.14062e+01
17 1.82071e+06 7.81250e-02 2.17969e+01 4.14844e+01
18 1.82071e+06 7.81250e-02 2.17969e+01 4.14062e+01
19 1.82071e+06 3.90625e-02 2.17969e+01 4.14062e+01
20 1.82071e+06 3.90625e-02 2.17969e+01 4.14453e+01
21 1.82071e+06 1.95312e-02 2.17969e+01 4.14453e+01
22 1.82071e+06 1.95312e-02 2.18164e+01 4.14258e+01
23 1.82071e+06 9.76562e-03 2.18164e+01 4.14258e+01
24 1.82071e+06 9.76562e-03 2.18164e+01 4.14355e+01
25 1.82071e+06 4.88281e-03 2.18164e+01 4.14355e+01

Table 2.1: First 25 compass search iterations on problem (2.2).

the sequence of iterates tends towards the point xf = (21.81 . . . , 41.43 . . .), and
δ declines as the method closes in on this point. The corresponding placement
of the farm is visualised in Figure 2.5.

Informally, one can say that GSS methods converge linearly. If we call the
white nodes in Figure 2.4 xl

unsuccessful, where l is an index which is updated as the

CHAPTER 2. GENERATING SET SEARCH 16

(0,100)

(150,50)

(xf)∗ = (21.81, 41.43)

(0,0)

H2O

Figure 2.5: Positions of the processing plant, water reservoir and electricity
plant and optimal placement of farm.

white nodes are discovered, then technically, and under reasonable assumptions
on the objective function and the method, the sequence

‖xl
unsuccessful − x∗‖

converges r-linearly to zero. (See e.g. [55], chapter 3.3 for more on convergence
rates.)

Chapter 3

Using Curvature

Information

3.1 Using Curvature Information in GSS meth-

ods

Compass search as presented in the previous chapter is in a sense memory-less,
as it makes no use of previously sampled function values. As we will show,
these values can be very useful. The search progress of compass search in R

2 we
have already illustrated to some extent in Figure 2.4, but in Figure 3.1 one can
see one of its major drawbacks, what we will call zig-zagging. Since compass
search (and all other methods we consider) require that the function value at
a new point is lower than at the current point, it is often forced to take very
small steps. The reason for this is that the angle between the negative of the
gradient and the available search directions can be relatively large (about 45

�

in
the figure), and the effect of this is that the method may have to perform a large
number of function evaluations to cover the distance from the initial solution to
the optimal solution. In the worst case, for instance a gradient of all ones, the
smallest angle in R

2 between any of the positive and negative unit vectors is
45

�

. This number depends on the dimension n. Zig-zagging can be illustrated
with a simple example. Let

Q =
1√
2

[
1 1
−1 1

]
, Λ =

[
10−4

100

]
,

and
f(x) = xT QT ΛQx.

As one can see the optimal solution is x∗ = 0, and f(x∗) = 0 as well. Let us

apply compass search to the problem. If we take x0 =
[
−2 −2

]T
as our

initial approximation, we have

‖x0 − x∗‖ = 2.8284, and f(x0) = 8 · 10−4.

17

CHAPTER 3. USING CURVATURE INFORMATION 18

Figure 3.1: Zig-zagging while searching along coordinate directions. Only suc-
cessful steps shown.

Let us take 0.1 to be the initial step lengths, and search along the positive and
negative of the coordinate axes. Let us halve the step length δi if the search fails
along both the direction di and −di. If the search succeeds along a direction,
we immediately test if we can step again along the same direction. If this
succeeds, we accept the second step and double the step length. This is how the
subroutine exploratory moves in paper I searches. Over the first 14 iterations,
all that happens is that the method halves the step lengths, before starting to
progress when the step lengths are of the order 10−6. After 30 iterations, we
have,

‖x30 − x∗‖ = 2.8280, and f(x30) = 7.9976 · 10−4,

which is very little progress, considering the number of iterations that have
been performed. If we instead of searching along the coordinate directions had
searched along the positive and negative of the column vectors of Q, then we
would have obtained

‖x30 − x∗‖ = 3.0510 · 10−6, and f(x30) = 9.3088 · 10−16,

which is very close to the optimal solution.
As the example shows, the choice of search basis can to a large extent influ-

ence how much the method is able to progress per iteration. It would therefore
be desirable to have a method which can automatically choose its search direc-
tions. This idea was behind two early direct search methods, the method of
Hooke and Jeeves [40], which implicitly searches along the direction of average
progress in addition to searching along the coordinate directions, and Rosen-
brock’s method [64], which is basically a variant of compass search, combined
with rotation of all its search directions. Specifically, Rosenbrock’s method
aligns the principal search direction to the direction of average progress. Figure
3.2 illustrates what this means. In the left of the figure we see an example of
search progress. One can see that the general direction of progress is down and

CHAPTER 3. USING CURVATURE INFORMATION 19

Figure 3.2: Illustration of the logic behind Rosenbrock’s method. On the left,
search before rotation of search directions, on the right, search after directions
are rotated. The step lengths and time of rotation in this figure differ from
Rosenbrock’s implementation.

to the right. Therefore, a suitable choice of search directions, hopefully allowing
for longer steps would be the directions in the right of the figure, one search di-
rection being the direction of average progress, and the rest orthogonal to it. At
suitable intervals Rosenbrock’s method creates an n× n matrix where the first
column contains the change in the variable since the last basis rotation. The
second column contains the change in the variable along all the search direc-
tions except the first search direction, the third column the change along all the
search directions except the first and the second search direction, an so on. The
new n search directions are obtained by applying the Gram-Schmidt process to
the columns of this matrix. This way the method adapts its search directions
to the function, while maintaining the geometry of mutually orthogonal search
directions.

From one to n Function-based Directions Out of the Rosenbrock method’s
n unique (apart from sign) orthogonal search directions, only one is based on
information obtained from the function itself, namely the direction of average
progress. The remaining n − 1 directions are based on a decomposition of the
information stored in the first direction. We would like a method where all
its n unique directions are based on information from the function, while still
preserving a healthy geometry, that is, we want the directions to be orthogonal.

Often, optimisation methods are designed to work well on quadratic func-
tions. We will adopt this methodology, and implicitly use a quadratic model
function. The question becomes what can be considered good orthogonal direc-
tions for a quadratic function.

We would like directions which allow us to take long steps along as many of
the n unique directions as possible, which would then reduce zig-zagging, since
zig-zagging is caused by the method only being able to take short steps along
its search directions. We know from the theory behind the conjugate gradient
method [39] for solving linear equations with symmetric positive definite coef-
ficient matrices that conjugate directions with respect to the coefficient matrix

CHAPTER 3. USING CURVATURE INFORMATION 20

are directions which do not lead to zig-zagging on quadratic functions, since if
one minimises the corresponding quadratic function along such a direction, the
direction need not be considered again. Recall that two directions p and q are
by definition conjugate with respect to the matrix A if and only if

pT Aq = 0.

Since minimising a quadratic function, say,

f(x) = c− bT x +
1

2
xT Ax,

with a symmetric positive definite Hessian A is the same as solving the linear
equation system

Ax = b,

then conjugate directions should make good search directions, as studied in
[10]. Indeed, derivative-free methods that search along conjugate directions
have been proposed [20, 58]. However, conjugate directions are not necessarily
orthogonal, so if the underlying implicit quadratic model is inaccurate, we could
in theory end up with a worse zig-zagging problem than what we sought to
prevent. Thus, ideally we would like conjugate, orthogonal search vectors based
on curvature information from the function. Fortunately, such directions are
easily identifiable, namely the eigenvectors of the Hessian of the underlying
model function. We make use of these directions in the method of Paper I.

3.2 Paper I — A GSS Method Using Curvature

Information

In paper I we present a moving grid GSS method which makes use of curvature
information. This is done by observing that, as can be seen in Figure 2.4, when
performing compass search along orthogonal directions, the points which the
algorithm evaluates will lie in constellations which can be used by the formula

qT
i ∇2f(x̃)qj =

f(x + hqi + kqj)− f(x + hqi)− f(x + kqj) + f(x)

hk
, (3.1)

where the equation holds for two times continuously differentiable functions. To
see this for n > 2, consider Figure 3.3. The situation depicted in the figure is that
after two search directions have been considered. Independent of whether or not
the search along either direction is successful, the constellation of points given
by the three nodes as drawn in the figure, or rotated or mirrored, will always be
found. If, for example both steps are successful, then the constellation occurs
when stepping from node 1 to 2 to 3, which is what is shown in the figure.
As before the search starts at the black point, and grey nodes signify points
which are accepted. If only the first step is successful, then the constellation
occurs if the method for instance again starts at point 1, steps to point 2, and

CHAPTER 3. USING CURVATURE INFORMATION 21

1

2 3

4

Figure 3.3: Example of constellation of points occurring in compass search.

considers point 3 but does not step. (The colours in the figure are from now on
inconsistent with previous usage.) Similarly, with failure along first direction
but not along the second direction (start at point 2, try point 1 but fail, try
point 3 and step), as well as failure along both directions (start at point 2, try
point 1, fail, try point 3, fail), the constellation occurs. If one, given such a
constellation computes the function value at point 4 explicitly, one gets four
points in a rectangle, which is exactly the set of points needed by formula (3.1).
The algorithm shuffles the order of the search directions in order to obtain
curvature information along all pairs of directions. An outline of the algorithm
is given below:

- Perform compass search along the directions in the set G, initially consist-
ing of the columns of I and −I .

- Use formula (3.1) to compute a matrix CQ, as the search progresses. If
the function is two times continuously differentiable CQ will have, as entry
(i, j),

(CQ)ij = qT
i ∇2f(xij)qj ,

for various xij .

- Once CQ is complete, calculate the Hessian approximation

∇2f(x) ≈ C = QCQQT .

- Compute the eigenvectors of C and replace G with the positive and nega-
tive of these eigenvectors.

A Small Example We illustrate a slightly simplified version of the algorithm
on a small example. There are a few technical requirements on the algorithm
imposed by the convergence theory which are addressed in the paper. The
example is illustrated in figure 3.4. Let:

f(x) = f(x1, x2) = 5x2
1 + 2x1x2 + 10x2

2.

CHAPTER 3. USING CURVATURE INFORMATION 22

Let the initial variable be

x0 =

[
x1

x2

]
=

[
1
2

]
,

and let the search basis be

Q =
1√
2

[
1 1
−1 1

]
=

[
q1 q2

]
.

Let the initial step lengths be

δ =

[
0.1
3

]
.

We order the directions

[
q1 q2 −q1 −q2

]
.

Now, the fact that q1 and q2 immediately follow each other as the first two search
directions enables us to compute (CQ)12. (The algorithm of paper I actually
makes use of search directions in groups of three, but we do not touch upon this
behaviour in this example.) At our initial point x = x0 we have

f(x) = 49.

We search along q1 and find

f(x + δ1q1) = 47.0851,

a function value reduction. We then immediately test if we can double the step
length along this direction and test

f(x + 2δ1q1) = 45.3002,

an additional reduction. So now we set

x← x + 2δ1q1,

and compute, by (3.1) (with qi = qj and δi = δj)

(CQ)11 ←
45.3002− 2 · 47.0851 + 49

0.12
= 13.

Finally we set
δ1 ← 2δ1 = 0.2.

Now we are ready to search along q2. We test

f(x + δ2q2) = 237.5941.

CHAPTER 3. USING CURVATURE INFORMATION 23

The search along q2 does not provide us with a lower function value, but we
leave δ2 unchanged for the time being. Since we were able to step along q1 but
not along q2, we are in the situation depicted in Figure 3.3, with the black point
in Figure 3.4 corresponding to point 1 in Figure 3.3, and points 2, 3 and 4 being
the same. We need to compute the function value at the point marked by a
cross, namely

f(x− δ1q1 + δ2q2) = 244.2939.

Now we can compute, by (3.1)

(CQ)12 ←
237.5941− 244.2939− 45.3002 + 49

0.2 · 3 = −5.

Note that we have used the updated δ1 in the denominator. The next direction
scheduled for search is −q1. Now, since

x− δ1q1 = x0,

the search direction −q1 is skipped. The next direction for search is −q2. We
get

f(x− δ2q2) = 6.0063.

Immediately, again, we test

f(x− 2δ2q2) = 119.7123.

Stepping twice was not successful, so we set

x← x− δ2q2.

Now we can compute

(CQ)22 =
119.7123− 2 · 6.0063 + 45.3002

32
= 17.

All elements in CQ are now determined and we can solve for our new search
basis. We compute

C ← Q

[
13 −5
−5 17

]
QT =

[
10 2
2 20

]
,

the exact Hessian, since f is quadratic. All that remains is to eigenvalue-factorise
C and use its eigenvectors as the new search basis.

Numerical Results Our numerical experiments show that this new method
performs much better than compass search in terms of the number of function
evaluations required to reach the optimal solution, except when the coordinate
directions themselves are near-conjugate directions. This is the case for both
smooth and noisy problems.

CHAPTER 3. USING CURVATURE INFORMATION 24

x
0

1

2

3

4

5

6

Figure 3.4: Visualisation of the algorithm’s progress in the example. (The axes
are unequally scaled.) The black point is the starting point. Grey points are
taken, the white points are not. The cross marks the extra point evaluated for
the computation of (CQ)12. The numbers indicate the order in which the points
are evaluated.

Chapter 4

Using Separability

Information

4.1 Separability and Sparsity

First derivative and curvature information are good examples of information
one can gather about the function as the search progresses. It is also sometimes
possible to make statements about the function before it is evaluated, by looking
at its representation. The property of partial separability falls into this category.
Given the sets

χ1, χ2, . . . , χν , χi ⊆ {1, 2, . . . , n} , for all i.

Consider the function

f : R
n 7→ R, f =

ν∑

i=1

fi, fi : R
|χi| 7→ R, (4.1)

where each function depends only on a few of the components of x, specified by
the χ-sets. That is, fi depends on the components of x corresponding to the
indices in the set χi. An example in R

3 is

f(x) = sin(x1) + cos(x2x3), (4.2)

which can be written
f = f1 + f2,

with
χ1 = {1} , χ2 = {2, 3} .

Thus, f is the sum of ν element functions, each of which ideally depends on only
a few variables, and thus has an invariant subspace. Such a function is called a
partially separable function. Partial separability was introduced by Griewank
and Toint, see e.g. [37], and [38] for the incorporation of partial separability
into quasi-Newton methods.

25

CHAPTER 4. USING SEPARABILITY INFORMATION 26

1 2 3

Figure 4.1: Covariation graph corresponding to function (4.2).

The Covariation Graph Separability is usually associated with differentia-
bility. We present a new definition which is applicable to non-differentiable
functions as well. Define, for any function f : R

n 7→ R the covariation graph,

G(V, E), |V | = n, (4.3)

that is, a graph with n nodes. Let ei be the ith unit coordinate vector. If, for
some x, we have

f(x + ei + ej)− f(x + ei)− f(x + ej) + f(x) 6= 0,

then let there be an edge between from node i to node j in the graph. If there
is an edge from node i to j there must also be an edge from node j to node i.
In other words, the graph G can be viewed as undirected. In the case of the
function (4.2), we get the graph in Figure 4.1.

Theorem 1 Let a continuous function f : R
n 7→ R, and its covariation graph

be given. If the graph is not complete then the function is separable.

Proof. If the graph is not complete then there exist i and j such that

f(x + ei + ej)− f(x + ei)− f(x + ej) + f(x) = 0,

for all x. Assume without loss of generality that n = 2, and that i = 1 and
j = 2. Then we have, for all h and k,

f(x1 + h, x2 + k)− f(x1 + h, x2)− f(x1, x2 + k) + f(x1, x2) = 0.

Now, let x1 and x2 be identical to zero, and let h and k be the independent
variables. Then we get

f(h, k)− f(h, 0)− f(0, k) + f(0, 0) = 0,

which can be written

f(h, k) = f(h, 0) + f(0, k)− f(0, 0).

Now we can define, for instance

f1(h) = f(h, 0) + f(0, 0),

and
f2(k) = f(0, k),

CHAPTER 4. USING SEPARABILITY INFORMATION 27

and we have that f can be written on the form (4.1), and thus is separable. �

From the covariation graph we can make a graph adjacency matrix, which is
symmetric since the graph G is undirected. The matrix for (4.2) becomes

×
× ×
× ×

 . (4.4)

If the function is two times differentiable, then the structure of the adjacency
matrix arising from the covariation graph is the structure of the Hessian. In
addition, the result of Theorem 1 can then be stated in terms of partial deriva-
tives, that is, that if any of the cross-derivatives ∂f

∂xi∂xj
is identical to zero, then

the function is partially separable [37].
In paper IV we extend our definition of separability so that it is not depen-

dent on the vectors e1, . . . , en, instead depending on n orthogonal or n general
linearly independent vectors.

4.2 Exploiting Separability in Direct Search Meth-

ods

It is possible to exploit information about separability in direct search methods.
A method which does this is the method of Price and Toint, which assumes that
each individual element function is available, and takes advantage of this.

The method of Price and Toint In [63], a direct search method which
makes use of partial separability of the objective function is presented. Specif-
ically, it does this by noting that for separable functions where the individual
element functions are known, evaluating the function at points of the form

f ± hei, i = 1, . . . , n,

is relatively inexpensive, since one may not need to evaluate the entire function,
only the element functions which are affected by the change in the variable x.
In addition, one sometimes obtains function values at specific points at no extra
cost. For instance, if the function is totally separable, that is, for instance

f(x) =

n∑

i=1

fi(xi),

then evaluating the entire function at two points x and y gives the values at the
points

z, such that zi = xi or zi = yi, i = 1, . . . , n,

provided that the element functions are known explicitly. This approach enables
the algorithm to solve problems with a large number of variables (as many as
5000 in the paper) at little cost.

CHAPTER 4. USING SEPARABILITY INFORMATION 28

In papers II and IV, we employ separability without assuming that the in-
dividual element functions are available. We extend the algorithm of paper I
to take advantage of knowledge about the structure of the adjacency matrix
of the covariation graph, so that curvature information can be gathered more
efficiently.

4.3 Paper II & IV — GSS Methods Exploiting

Curvature and Separability

Computing Curvature Information Element by Element In paper II
we present an extension to the moving grid method of paper I, by imposing a
structure on the matrix C used in the first paper.

In paper IV we extend the algorithm further and answer theoretical questions
which were left open in paper II. We impose a sufficient decrease condition on
the exploratory moves making the method of paper IV a (provably convergent)
sufficient decrease method.

Recall that the algorithm of paper I computed curvature in a rotated coor-
dinate system and assembled it in a matrix CQ, such that

∇2f ≈ C = QCQQT . (4.5)

Equation (4.5) can be written in a different form, using Kronecker products.
Kronecker products can be defined by

AXB = C ⇔ (BT ⊗A)vec(X) = vec(C), (4.6)

Where vec : R
n×n 7→ R

n2

stacks the entries of the matrix X , column by column
in a vector. The matrix (BT ⊗A) is n2 × n2, with entries

(BT ⊗A) =

B11A · · · Bn1A
...

...
B1nA · · · BnnA

 . (4.7)

If we apply this to the last part of the equation (4.5) we can write

C = QCQQT ⇐⇒ (QT ⊗QT)vec(C) = vec(CQ). (4.8)

We impose the sparsity structure of the adjacency matrix of the covariation
graph of f on C. Now if Q = I the n2 × n2 equation system

(QT ⊗QT)vec(C) = vec(CQ) (4.9)

can be reduced in size based on knowledge of which elements of C are zero, as
well as the fact that C is symmetric, so that we only need to compute the upper
or lower triangular elements of CQ.

We can apply the same idea even if Q 6= I , as long as we are a little careful.
It turns out not to be obvious which elements of CQ are to be computed in

CHAPTER 4. USING SEPARABILITY INFORMATION 29

this case. The resulting coefficient matrix might be singular if elements are
not properly chosen. In paper II we employ a simple heuristic for choosing
these elements, in paper IV we extend this heuristic to a method which we
prove always returns a nonsingular coefficient matrix. In addition, the solution
itself will depend on which elements are chosen if the right-hand side vec(CQ)
contains truncation error. To clarify, consider the following two examples. Let
the Hessian be diagonal and constant, say,

∇2f =

1
2

3

 .

Let

Q =

√
3

3

√
2

2
√

3
−

√
2

2√
3

3 −
√

2√
3

0
√

3
3

√
2

2
√

3

√
2

2

 .

(QT⊗QT) is a 9×9 matrix, but since we require all off-diagonal elements of C to
be zero, we can cut all but three of its columns, giving us the an overdetermined
system which can be written

(QT ⊗QT)Pc

C11

C22

C33

 = vec(CQ). (4.10)

Define

vec(C) =

C11

C22

C33

 ,

Then Pc is the (9× 3) matrix such that

vec(C) = Pcvec(C).

To turn (4.10) into an equation system with a square coefficient matrix we
can either solve for the least squares solution, or we can cut rows from the
coefficient matrix, which corresponds to computing only selected elements in
CQ. We would like to compute no more elements of CQ than strictly needed
when the adjacency matrix of the covariation graph is sparse, so we choose
the latter option. Now, if we choose to evaluate the three off-diagonal unique
elements in CQ, namely

CQ :

 ×
× ×

 ,

then the resulting coefficient matrix A, which can be written

A = Pr(Q
T ⊗QT)Pc,

CHAPTER 4. USING SEPARABILITY INFORMATION 30

will be singular. This can be seen if one tries to compute

A ·

1
1
1

 = Prvec((Q

T IQ)) = 0,

since Pr cuts all the elements corresponding to the diagonal of CQ. If one instead
tries to compute for instance the elements

CQ :

×
×
×

 ,

then A will be nonsingular. Furthermore if the function is two times continu-
ously differentiable, and the elements of CQ contain truncation errors or equiv-
alently are correspond to derivatives computed at different x, that is

(CQ)ij = qT
i ∇2f(xij)qj ,

(CQ)rs = qT
r ∇2f(xrs)qs,

where
xij 6= xrs,

then the solution C will also depend on which elements of CQ we compute. This
is also true if the function is not differentiable. To see this, assume that ∇2f
exists and is diagonal but not constant, and that

Q =
[

q1 q2

]
=

1√
2

[
1 1
1 −1

]
.

Let e be a constant, and let

(CQ)11 = qT
1

[
1− e 0

0 1− e

]
q1, (CQ)21 = qT

2

[
1 0
0 1

]
q1,

(CQ)12 = (CQ)21, (CQ)22 = qT
2

[
1 + e 0

0 1 + e

]
q2.

Then, if we compute C from (CQ)11 and (CQ)12 we get,

C =

[
1− e 0

0 1− e

]
,

whereas if we compute C from (CQ)12 and (CQ)22 we get

C =

[
1 + e 0

0 1 + e

]
,

and least squares solution from all elements of CQ yields C = I . Either way,
the difference between the actual Hessian and C, roughly speaking, grows with

CHAPTER 4. USING SEPARABILITY INFORMATION 31

the size of h and k used to compute CQ elements in formula (3.1), and depends
on the condition number of the matrix A. This is elaborated upon in the two
papers.

Numerical results show that the algorithms of the two papers both outper-
form the method of paper I, especially as n grows, and the adjacency matrix of
the covariation graph has many identical zeros.

Chapter 5

Limited Memory Methods

5.1 Quasi-Newton Methods

Quasi-Newton methods are powerful gradient-based methods which use gradient
information from past iterations to approximate the Hessian. For a comprehen-
sive treatment of the subject, see e.g. [50] and the references therein. The
original idea of using acquired gradient information to approximate the Hessian
was introduced in 1959 by Davidon [24]. (Available as [25], since the original
paper was never published until the first issue of SIAM Journal on Optimiza-
tion in 1991.) The work of Davidon was continued by Fletcher and Powell [31],
resulting in what is called the DFP method. The DFP method maintains a pos-
itive definite approximation to either the Hessian, its inverse, or a factorisation
of either of the two. At iteration k, let us call the approximation to the Hessian
Bk, and the method sets the point xk+1 by the formula

xk+1 = xk − αk(Bk)−1∇f(xk),

where αk is usually taken to satisfy e.g. the strong Wolfe conditions, which are

f(xk + αkpk) ≤ f(xk) + c1α
k∇f(xk)T pk (5.1)

|∇(f + αkpk)T pk| ≤ c2|∇f(xk)pk|, (5.2)

where
0 < c1 < c2 < 1,

and in practice typically c1 = 10−4 and c2 = 0.9 for the methods we will be
concerned with (see e.g. [55], section 3.1). The matrix Bk is then updated by
the formula

Bk+1 = (I − γkyk(sk)T)Bk(I − γksk(yk)T) + γkyk(yk)T , (5.3)

where

sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk), γk =
1

(yk)T sk
.

32

CHAPTER 5. LIMITED MEMORY METHODS 33

One arrives at the formula (5.3) by solving the problem

Bk+1 = argmin
B
‖B −Bk‖, (5.4)

where B is required to be symmetric, and in addition satisfy the secant equation

Bk+1sk = yk. (5.5)

The choice of norm in (5.4) plays a role in the sense that different norms result
in different update formulas, but this is beyond the scope of this discussion.
The most important properties as far as we are concerned is that the method
generates descent directions. For this to be the case Bk needs to be positive
definite. The reason for this is that only if Bk is positive definite, the angle
between the negative of the gradient and the search direction −Bk∇f(xk) is
provably in the range (−90◦, 90◦). The cosine of this angle, say, η is given as

cos(η) =
∇f(xk)T Bk∇f(xk)

‖∇f(xk)‖ ‖Bk∇f(xk)‖ (5.6)

Since the matrix Bk is positive definite, and hence that

xT Bkx > 0, ∀x ∈ R
n,

the numerator of the fraction in (5.6) is always strictly positive, and hence the di-
rection the angle between −∇f(xk) and −Bk∇f(xk) is in the range (−90◦, 90◦)
as required. Furthermore, as long as Bk is positive definite and γk > 0, Bk+1

is also positive definite.
The most popular and efficient quasi-Newton method in use today is the

BFGS method [5]. One can derive this method by instead of solving (5.4),
minimising with respect to the inverse of B, which we call H , and solve

Hk+1 = arg min
H
‖H −Hk‖, (5.7)

where H is required to be symmetric, as well as to satisfy the inverse of the
secant equation (5.5), namely

Hk+1yk = sk. (5.8)

The formulas for xk+1 and Hk+1 in the BFGS method are

xk+1 = xk − αkHk∇f(xk),

and
Hk+1 = (I − ρksk(yk)T)Hk(I − ρkyk(sk)T) + ρksk(sk)T , (5.9)

where as before
sk = xk+1 − xk ,

yk = ∇f(xk+1)−∇f(xk),

CHAPTER 5. LIMITED MEMORY METHODS 34

Given f , k = 0, x0, H0, ∇f(x0),

While ‖∇f(xk)‖ > tolerance,

Set xk+1 ← xk − αkHk∇f(xk), for some αk satisfying the (strong)
Wolfe conditions.

Compute ∇f(xk+1).

Compute Hk+1 by (5.9).

Set k ← k + 1.

end.

Figure 5.1: Pseudocode for the BFGS algorithm.

and in addition

ρk =
1

(yk)T sk.

Hk+1 is positive definite as long as Hk is positive definite, and ρk > 0. It can
be shown that if αk is required to conform to the Wolfe conditions, then ρk

is positive. The Wolfe conditions are a slightly less restrictive version of the
strong Wolfe conditions, or vice versa. Keeping an approximation to the inverse
of the Hessian rather than the Hessian itself gives a cheaper algorithm in terms
of operation count, since one does not have to solve an equation system at every
iteration. As mentioned, it is also possible to store either B or H in factorised
form, for instance the Cholesky factorisation of B, or a conjugate factorisation
of H , as is done in [19]. As is tested and discussed in [11] among others, there is
little difference whether one chooses a factorised or non-factorised implementa-
tion as long as gradients are available to machine precision. The authors claim
in [11] that when gradients are only available to limited precision (e.g. are
approximated with finite difference formulas), then factorised implementations
perform better, in the sense that they converge more often.

Pseudo code for the BFGS method is given in Figure 5.1. We now turn
our attention to how the initial approximation to the Hessian B0 or its inverse
H0 should be chosen. The most obvious choice, if one knows little about the
function is H0 = I . It has been suggested to let H0 be a diagonal matrix whose
entries are the inverses of the diagonal entries of the Hessian. These are, as noted
in [65] expensive to compute, and if the resulting matrix is not positive definite,
it cannot be used unaltered, since it might not generate descent directions. It
is suggested in [65] to compute x1 using H0 = I , and scale H0 before H1 is
computed, by the formula

Ĥ0 =
(y1)T s1

(y1)T y1
, (5.10)

and then forming H1 from Ĥ0 instead of from H0. The numerical results of [65]
show that except for small n, computing H1 from Ĥ0 gives a much more effective

CHAPTER 5. LIMITED MEMORY METHODS 35

algorithm in terms of iterations than computing H1 from H0 = I . If we apply
BFGS (updating H1 from Ĥ0) to the farm problem (2.2), we get the results in
Table 5.1. BFGS does not converge as rapidly as Newton’s method, but is much

Iteration f ‖∇f(xf)‖ (xf)1 (xf)2

0 1.90208e+06 5.07036e+03 5.00000e+01 5.00000e+01
1 1.83968e+06 3.40752e+03 1.07749e+01 4.44757e+01
2 1.82294e+06 9.94100e+02 2.60807e+01 4.35143e+01
3 1.82083e+06 1.77030e+02 2.25124e+01 4.27033e+01
4 1.82072e+06 6.05756e+01 2.18219e+01 4.19556e+01
5 1.82071e+06 2.05783e+01 2.17742e+01 4.15489e+01
6 1.82071e+06 1.28433e+00 2.18062e+01 4.14305e+01
7 1.82071e+06 8.37229e-02 2.18109e+01 4.14313e+01
8 1.82071e+06 5.27479e-04 2.18112e+01 4.14316e+01
9 1.82071e+06 7.85562e-06 2.18112e+01 4.14316e+01
10 1.82071e+06 6.87501e-06 2.18112e+01 4.14316e+01
11 1.82071e+06 2.73346e-11 2.18112e+01 4.14316e+01
12 1.82071e+06 1.25056e-12 2.18112e+01 4.14316e+01
13 1.82071e+06 1.50071e-12 2.18112e+01 4.14316e+01
14 1.82071e+06 9.11269e-13 2.18112e+01 4.14316e+01

Table 5.1: 14 BFGS iterations on problem (2.2).

faster than GSS, or e.g. steepest descent. BFGS converges superlinearly, that
is,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

Since quasi-Newton algorithms perform only one gradient evaluation per itera-
tion disregarding gradient computations in the line search, the same as steepest
descent, they are a good example of how one can use previously obtained infor-
mation effectively.

5.2 Derivative-Based Limited Memory Methods

When n is large, the memory required to store a full Hessian or approximations
to it, namely O(n2) may be more than is practical on a given computer system.
The aim of limited-memory methods is to be able to solve the step equation using
only O(n) memory. Two such methods are limited memory BFGS [48, 54, 12]
and discrete Newton [56, 27].

Limited memory BFGS is a variant of BFGS which instead of maintaining
an approximation Hk to the inverse of the Hessian based on the k vector pairs

y0, . . . , yk and s0, . . . , sk,

CHAPTER 5. LIMITED MEMORY METHODS 36

keeps only the m most recent pairs, where m can be chosen by the user. This
requires little storage if m is not too large (usually less than about 30), since the
product of Hk with an arbitrary vector v can be computed without constructing
Hk itself, using the procedure in Figure 5.2. Between the two for-loops we have

Given p, Hk
0 , sk−m, . . . , sk−1, yk−m, . . . , yk−1,

q ← v,

For i = k − 1 to k −m,

αi ← ρi(si)T q,

q ← q − αiyi,

end.

r = Hk
0 q,

For i = k −m to k − 1,

β ← ρi(y
i)T r,

r ← r + si(αi − β),

end.

Figure 5.2: Two-loop procedure to compute r = Hkv. α is a vector of length m
used for storage.

the assignment
r = Hk

0 q.

The matrix Hk
0 plays the same role as the matrix H0 in the first line of the

regular BFGS method in Figure 5.1, in the sense that is serves as the initial
approximation to the inverse of the Hessian, which the gradient-variable dif-
ference pairs (si, yi) subsequently modify. In the regular BFGS method H0 is
only used as the approximation of the inverse of the Hessian at the starting
point x0. In L-BFGS, since we only keep the m most recent difference pairs,
Hk

0 at iteration k serves as an approximation to the inverse of the Hessian at
xj , j = max {1, k −m}, that is, at iteration k, k > m the method assumes that

Hk
0 ≈

[
∇2f(xk−m)

]−1
.

This leads to the question of how to choose Hk
0 . Liu and Nocedal [48] discuss

several choices for Hk
0 , and find that the dynamic scaling of the identity matrix

Hk
0 =

(yk−1)T sk−1

(yk−1)T yk−1
I, (5.11)

CHAPTER 5. LIMITED MEMORY METHODS 37

leads to a more effective algorithm than for instance Hk
0 = I, k = 1, . . . or

Hk
0 =

(y1)T s1

(y1)T y1
I, k = 1, . . . ,

as is done in the regular BFGS method. Different rules for Hk
0 are also discussed

in e.g. [34], where the best choice tested for Hk
0 is a diagonal matrix based on

a full Hessian approximation B.
Discrete Newton methods are variants of Newton’s method that use an iter-

ative method for solving the step equation, that is

∇2f(xk)pk = −∇f(xk). (5.12)

Since iterative solvers such as the conjugate gradient method need only the
product of the coefficient matrix with an arbitrary vector, not the matrix itself,
the approximation

∇2f(x)v ≈ ∇f(x + εv)−∇f(x)

ε
. (5.13)

can be used to this end. In addition, although not related to memory, one does
not have to solve the step equation to full accuracy at each iteration. A useful
rule is to solve (5.12), at iteration k, to accuracy

‖∇2f(xk)p̃k +∇f(xk)‖
‖∇f(xk)‖ ≤ min

{
1

k
, ‖∇f(xk)‖

}
, (5.14)

where p̃k is an approximate solution to (5.12) [27]. This is called a discrete
truncated Newton method, or a truncated Newton method if the product ∇2fv
is computed from Hessian information rather than from (5.13).

5.3 Hessian Sparsity in Derivative-Based Meth-

ods

Sparsity can be used effectively to evaluate Hessian matrices at little cost (see
e. g. [22, 13, 53]). For instance, assume that the Hessian of the objective function
is tridiagonal, and that it is known only as the product of the Hessian with
an arbitrary vector, ∇2f · v, either by a finite difference formula or through
automatic differentiation. Then, an n × n Hessian can be directly determined
using only three evaluations. To see how this can be the case, consider the
tridiagonal matrix structure

∇2f =

h11 h12

h21 h22 h23

. . .
. . .

. . .

hn−1,n−2 hn−1,n−1 hn−1,n

hn,n−1 hnn

. (5.15)

CHAPTER 5. LIMITED MEMORY METHODS 38

Assume without loss of generality that n is divisible by 3. If we now choose to
compute the three products

∇2f · s1, ∇2f · s2, ∇2f · s3,

where

s1 =

1
0
0
1
0
0
...
1
0
0

, s2 =

0
1
0
0
1
0
...
0
1
0

, s3 =

0
0
1
0
0
1
...
0
0
1

, (5.16)

then the resulting vectors will be

∇2f · s1 =

h11

h21

h34

h44

h54

h67

...

, ∇2f · s2 =

h12

h22

h32

h45

h55

h65

...

, ∇2f · s3 =

h23

h33

h43

h56

h66

h76

...

, (5.17)

and we can read the values of the sought Hessian elements directly. The vectors
s1, s2, s3 are often called seed vectors. Since the Hessian is symmetric and only
has 2n− 1 unknowns in this case and each Hessian vector product produces n
equations we can determine a tridiagonal Hessian from only two such products,
but we then have to solve a system of equations to find the explicit values of
the elements. Assuming, again without loss of generality, that n is even, then a
pair of seed vectors which accomplishes this is

s1 =

1
0
1
0
...
1
0

, s2 =

0
1
0
1
...
0
1

. (5.18)

Note that many choices of seed vectors would help us determine the Hessian, as
long as the resulting equation system

∇2f ·
[

s1 s2

]
= W, (5.19)

CHAPTER 5. LIMITED MEMORY METHODS 39

has a unique solution. Thus, if one knows in advance that the Hessian of the
objective function is sparse, one can compute the entire Hessian cheaply, and
hence optimise the function with a Newton-type method with less operations
than if one does not make use of information about sparsity.

5.4 Paper V — A Class of Methods Combining

TN and L-BFGS

In this paper we present a new class of hybrid limited memory methods. The
class can be described based on the L-BFGS method. Instead of performing the
assignment

r = Hk
0 q, (5.20)

between the two for-loops in the procedure to compute Hkv, we solve the equa-
tion system

∇2f(xk)r = q, (5.21)

inexactly, using an iterative equation solver, and subject to some forcing se-
quence. Apart from this assignment and that we will allow m to vary, the
methods in the class are equal to L-BFGS. This way, if m = 0 throughout, the
method reduces to a truncated Newton algorithm, and if m is constant and
the iterative equation solver applied to (5.21) returns (5.20), then the method
becomes L-BFGS.

We test a member of the class with m = 3 and a simple forcing sequence for
(5.21). We simulate the cost for different situations, whether or not derivatives
are available through AD, and whether or not we are able to exploit the tech-
niques of section 5.3. We find our preliminary numerical results very promising,
and for the concrete method tested we find that it preforms well compared with
L-BFGS with m = 3 and truncated Newton with forcing sequence (5.14), and
that it generally performs well if one of its parent methods does. A nice example
is given in Figure 5.3, where the method starts as effectively as L-BFGS, and
when L-BFGS stagnates it continues progressing towards the optimal solution
at about the rate of truncated Newton. We conclude that the class of methods is
a promising one, and that more research should be conducted to identify forcing
sequences and values of m which can give rapid convergence with little memory.

CHAPTER 5. LIMITED MEMORY METHODS 40

0 5 10 15
x 104

10−5

100

105

1010

1015

1020

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 1, CPR(1000), no AD

TN
Hybrid
L−BFGS

Figure 5.3: Plot of a hybrid method, TN and L-BFGS on the Penalty I function
from the CUTEr collection [35]. See paper V for a detailed description of the
plot.

Chapter 6

Application of GSS to

Maximum Likelihood

Estimation

6.1 Maximum Likelihood Estimation

Consider the situation where we want to determine some quantity found in
nature. This may be, for instance the height of men aged 25. We assume,
correctly or incorrectly, that this quantity has a normal distribution, with mean
µ and variance σ2. The probability density of the normal distribution is given
as

1√
2πσ

exp

(
−1

2

(x− µ)2

σ2

)
. (6.1)

We conduct multiple observations with different results. Let us say we observe
ten men, with observations as in Table 6.1. The table consists of values drawn
from a pseudo-random normal distribution with µreal = 180 and σreal = 10.
What are the most likely values of the quantities µ and σ, given the observa-
tions? This is what maximum likelihood estimation addresses. Associated with
the distribution function (6.1) and the recorded observations is a log-likelihood
function, in this case given as

l(µ, σ) = −10 log(
√

2πσ)− −
∑10

i=1(xi − µ)2

2σ2
, (6.2)

We can now use optimisation methods to maximise this function, to obtain the
estimates

µ = 182.31 and σ = 8.38.

It should be noted that the log-likelihood function (6.2) can be maximised ana-
lytically, but for the more complicated model we shall discuss below analytical
results are not available. Even though the data set we generated comes from

41

CHAPTER 6. APPLICATION OF GSS TO MAXIMUM LIKELIHOOD ESTIMATION42

Observed heights

178.13
187.25
174.11
201.83
178.63
181.13
190.66
180.59
179.04
171.67

Table 6.1: Observed heights in centimeters of ten men.

a normal distribution (or a distribution very close to one) we do not recover
the true values for µ and σ. Maximum likelihood estimates are unbiased in the
limit, which means that if we had an infinite number of samples from the true
distribution, we would recover the values µreal and σreal. Since we have a quite
small data set, we experience bias. See for instance [57] for more on likelihood
estimation.

6.2 Paper III — Estimating Mortality of Nor-

wegian Spring Spawning Herring

In this paper we try to determine the amount of data required to make state-
ments about variations in the mortality of Norwegian spring spawning herring.
By data sets we mean acoustical observations of the herring stock like those
presented in [41]. This we do via a model which can be applied to other species
as well. A cohort is the group of herring born a particular year. Let Njt be the
size of cohort j the year t, with t = 0 being the year it is born in our model. Let
Cjt be the number of herring from cohort j caught in year t. (The age of herring
can be determined by looking at their shells, which is similar to determining
the age of a tree by looking at its growth rings.) In addition, a portion of each
cohort dies of causes not related to catch, so that we can express the size of a
cohort recursively by the expression

Nj,t = (Nj,t−1 − Cj,t−1)e
−(M+εt−1). (6.3)

The portion of a cohort which does not survive to the next year due to other
causes than catch is controlled by M + εt−1, which we call the mortality pa-
rameter for year t− 1. We assume that the individual εt, t = 0, . . . , n− 1, are
normally distributed, with mean 0 and variance τ 2. Our goal is to estimate τ .

CHAPTER 6. APPLICATION OF GSS TO MAXIMUM LIKELIHOOD ESTIMATION43

To obtain estimates of τ we construct artificial data sets, the same way we did
for the example of heights, and test for which sizes of the data set the maximum
likelihood estimate exists, and its level of accuracy. The likelihood function we
are interested in can be written as l(θ, ε), where θ and ε both are vectors of vari-
ables. ε is the vector containing εt, t = 0, . . . , n−1 from (6.3), and θ is a vector
containing τ as well as some additional variables not of primary interest to us,
such as M and Nj,0, j = 1, .., A, from (6.3), A being the number of cohorts
under consideration. We are interested in the marginal likelihood function with
respect to the components of θ, so we are interested in maximising the function

l(θ) = log

[∫
exp

(
l(θ, ε)

)
dε

]
. (6.4)

Since ε in our experiments consists of 20 variables, solving the integral (6.4) is
very expensive, so instead we maximise an approximation. The approximation
to the integral (6.4) we use is called a Laplace approximation [66], and has the
form

l∗(θ) = −1

2
log det

(
−∇2l(θ, ε̄)

)
+ l(θ, ε̄), (6.5)

where we by
∇2l(θ, ε̄),

mean the Hessian of l with respect to the elements of ε, given θ and evaluated
at ε̄, det is the determinant and

ε̄ = argmax
ε

l(θ, ε). (6.6)

That is, ε̄ is the value of ε that maximises l for a given value of θ. This is
a two-level optimisation problem, since evaluating the function l∗ requires the
optimisation of the function l. l∗ is therefore expensive to evaluate, and its
derivatives are difficult to obtain. It is possible to compute ε̄ inexactly to reduce
the cost of evaluating (6.5). This introduces numerical noise, and optimising
l∗ is therefore a problem well suited to GSS methods. In Table 6.2 we show
the results of performing 25 iterations on (6.5) with our GSS method of paper
I, with the slight modification that it enforces sufficient decrease rather than
simple decrease as in the paper. 25 iterations are usually sufficient to obtain an
estimate of τ with a reasonable degree of precision. As a starting value we use
the “true” values from which our data sets are generated. Let ∇l denote the
gradient of l(θ, ε) with respect to ε. In the heading of Table 6.2 the convergence
criterion used for obtaining ε̄ is listed. As one can see in the table, the level
of accuracy used for obtaining ε̄ can be very loose and still only affect the
estimated value of τ to little extent. In addition, a loose tolerance translates
to less computation time. In the implementation behind the results using GSS,
Newton’s method was used for maximising l(θ, ε). It is likely that the relative
gains in time can be made bigger by for instance employing truncated Newton
instead.

In paper III we were able to work with a proprietary commercially avail-
able package for nonlinear statistical models, AD Model builder [33] (ADMB).

CHAPTER 6. APPLICATION OF GSS TO MAXIMUM LIKELIHOOD ESTIMATION44

GSS, ‖∇l‖ ≤ 10−6 GSS, ‖∇l‖ ≤ 1 ADMB
Problem τ time τ time τ

1 1.50266e-01 18.0s 1.50137e-01 13.5s 1.528e-01
2 1.39902e-01 17.8s 1.39901e-01 13.2s 1.395e-01
3 2.31647e-01 14.4s 2.31647e-01 11.4s 2.321e-01
4 2.41657e-01 17.5s 2.41657e-01 13.8s 2.405e-01
5 2.09133e-01 17.1s 2.09133e-01 13.1s 2.091e-01
6 1.83468e-01 17.8s 1.83466e-01 13.5s 1.834e-01
7 1.80755e-01 21.1s 1.80755e-01 16.5s 1.779e-01
8 1.93294e-01 21.8s 1.93294e-01 16.8s 1.924e-01

Table 6.2: Estimates of τ on eight randomly generated data sets using our GSS
method with two tolerances for the inner optimisation (6.6), and the time used
to obtain the estimate. The estimate in the last column is from AD Model
Builder, and should be considered the most accurate for each problem.

ADMB is able, through a combination of AD and hand-coded derivatives to
obtain the gradient of the Laplace approximation (6.5), and hence optimise
l∗ effectively with a quasi-Newton method. Nevertheless, we contend that the
problem (6.5) is a useful and realistic example of the applicability of our method
to a numerically noisy problem.

Statistical Findings As for the results pertaining to the likelihood estimation
itself, we find that it is difficult to obtain an accurate estimate of τ if the true
value of τ is low, say, 0.05. If the true value is somewhat larger, e.g. 0.2, we
have a better chance of getting a good estimate.

Chapter 7

Concluding Remarks

7.1 Summary

In this thesis we have showed how we can take a very basic and arguably slow
GSS algorithm, compass search, and speed it up using average curvature infor-
mation accumulated over a region. We have shown that the necessary curvature
information can be obtained effectively for partially separable functions, in turn
leading to a more effective method. In addition, separability is not intrinsically
linked to differentiability, which makes it a useful concept for functions which
are not differentiable as well.

Numerical testing has indicated that updating the search basis of GSS al-
gorithms using the eigenvectors of a matrix based on curvature information
reduces zig-zagging, sometimes significantly.

We have applied one of our methods to a problem from maximum likelihood
estimation, showing that the method is applicable to a difficult class of numer-
ically noisy problems.

We have defined a new class of limited memory methods for smooth uncon-
strained optimisation, and shown that a particular instance of the class performs
well compared to its parent methods.

7.2 Possible Further Research

There are several issues we have not been able to address, which could be studied
in the future. An obvious avenue of further research is developing effective
forcing sequences and schemes for varying m for the class of methods presented
in paper V. For GSS methods, some possibilities are outlined below.

Enhancing the Exploratory Moves Our GSS algorithms base themselves
on a particular method for their exploratory moves, listed in Paper I. This

45

CHAPTER 7. CONCLUDING REMARKS 46

subroutine searches in 2n directions at each iteration. In theory this may lead
to points being evaluated more than once, and if there is a clear trend as to
where in n-space the method progresses, as many as half of these evaluations
if not more may easily be unsuccessful. It should be possible to incorporate a
heuristic which tries to minimise the number of unsuccessful evaluations, while
still collecting curvature information.

Expanding the Role of the Quadratic Model Function We have so far
only used an implicit quadratic model function, since the curvature matrix C we
work with can be used as a basis for a family of quadratic functions. We have
not tried to exploit a model function further, for instance by using interpolation
to predict suitable values for step lengths, or where in n-space to search next.
This could possibly speed our methods.

Treating Element Functions individually In our work on separable func-
tions, we have yet to study the case where the individual element functions
are available to us. If this were the case, we could build up (average) curva-
ture information about each of the element functions, and then assemble this
information in C prior to the eigenvalue-factorisation.

Computing Curvature Information by Approximate Gradients So far,
our work on GSS methods has revolved around computing curvature information
element by element. It is also possible to apply techniques like those of section
5.3, that is, computing (approximate) Hessian-vector products and exploiting
sparsity to obtain the full Hessian at little cost. Hessian-vector products can be
obtained with a formula such as the one used by the discrete truncated Newton
method. Gradients can be approximated by the formula

(QT∇f(x))i ≈
f(x + εqi)− f(x)

ε
.

The constellation of points needed to computed the entire gradient in the coor-
dinate system defined by the columns of Q can be obtained if a compass search
iteration tries many points before accepting a new point. A simple example is
given in Figure 7.1. In the figure the algorithm tries three different points before
stepping to the fourth point evaluated. The function values of the unsuccessful
points can then be used for gradient computation. In this case we have four
points around the starting point so that we can compute a central-difference
approximation to the derivative. If the function is two times differentiable, then
given two such gradient approximations one can either approximate the product
of the Hessian with a vector, of create a quasi-Newton-like approximation to the
entire Hessian matrix.

This matrix we could then, for instance, eigenvalue-factorise as we do in our
current methods, and use the eigenvectors as the new search directions.

CHAPTER 7. CONCLUDING REMARKS 47

Figure 7.1: Possible outcome after an iteration of compass search.

Bibliography

[1] M. A. Abramson, C. Audet, and J. E. Dennis, Jr. Generalized pattern
searches with derivative information. Mathematical Programming, Series
B, 100:3–25, 2004.

[2] E. J. Anderson and M. C. Ferris. A direct search algorithm for optimization
with noisy function evaluations. SIAM Journal on Optimization, 11(3):837–
857, 2001.

[3] C. Audet. Convergence results for generalized pattern search algorithms
are tight. Optimization and Engineering, 5:101–122, 2004.

[4] C. Audet and J. E. Dennis, Jr. Analysis of generalized pattern searches.
SIAM Journal on Optimization, 12(2):889–903, 2002.

[5] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA,
1995. 2nd edition 1999.

[6] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, and V. Torczon.
Optimization using surrogate objectives on a helicopter test example. In J.
T. Borggaard, J. Burns, E. Cliff and S. Sherk, eds., Computational Methods
for Optimal Design and Control, Birkhauser, Boston, 1998.

[7] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, V. Torczon,
and M. W. Trosset. A rigorous framework for optimization of expensive
functions by surrogates. Structural and Multidisciplinary Optimization,
17(1):1–13, 1999.

[8] J. Borggaard, D. Pelletier, and K. Vugrin. On sensitivity analysis for prob-
lems with numerical noise. AIAA Paper 2002–5553, 2002. Presented at
the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Op-
timization, Atlanta, Georgia.

[9] J. Burkardt, M. Gunzburger, and J. Peterson. Insensitive functionals, in-
consistent gradients, spurious minima, and regularized functionals in flow
optimization problems. International Journal of Computational Fluid Dy-
namics, 16(3):171–185, 2002.

48

BIBLIOGRAPHY 49

[10] D. Byatt, I. D. Coope, and C. J. Price. Conjugate grids for unconstrained
optimisation. Computational Optimization and Applications, 29:49–68,
2004.

[11] D. Byatt, I. D. Coope, and C. J. Price. Performance of various BFGS imple-
mentations with limited precision second-order information. The ANZIAM
Journal, 45:511–522, 2004.

[12] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-
Newton matrices and their use in limited memory methods. Mathematical
Programming, 63:129–156, 1994.

[13] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and
graph coloring problems. SIAM Journal on Numerical Analysis, 20(1):187–
209, 1983.

[14] B. Colson and P. L. Toint. Exploiting band structure in unconstrained
optimization without derivatives. Optimization and Engineering, 2:399–
412, 2001.

[15] B. Colson and P. L. Toint. Optimizing partially separable functions without
derivatives. Optimization methods and software, 20(4–5):493–508, 2005.

[16] A. R. Conn, K. Scheinberg, and P. L. Toint. Recent progress in uncon-
strained nonlinear optimization without derivatives. Mathematical Pro-
gramming, 79:397–414, 1997.

[17] A. R. Conn, K. Scheinberg, and L. N. Vicente. Error estimates and poised-
ness in multivariate polynomial interpolation. Technical Report Research
Report RC 22990, IBM T. J. Watson Research Center, Yorktown, USA,
2003.

[18] A. R. Conn and P. L. Toint. An algorithm using quadratic interpolation
for unconstrained derivative free optimization. In Nonlinear Optimization
and Applications, G. Di Pillo and F. Giannessi, (Eds.), Plenum, 1995.

[19] I. D. Coope. A conjugate direction implementation of the BFGS algorithm
with automatic scaling. Journal of the Australian Mathematical Society
Series B, 31:122–134, 1989.

[20] I. D. Coope and C. J. Price. A direct search conjugate directions algorithm
for unconstrained minimization. The ANZIAM Journal, 42(E):C478–C498,
2000.

[21] I. D. Coope and C. J. Price. On the convergence of grid-based methods for
unconstrained optimization. SIAM Journal on Optimization, 11(4):859–
869, 2001.

[22] A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse
Jacobian matrices. J. Inst Maths Applics, 13:117–119, 1974.

BIBLIOGRAPHY 50

[23] A. L. Custódio and L. N. Vicente. Using sampling and simplex derivatives
in pattern search methods. Technical Report 04-35, Dept. of Mathematics,
Univ. of Coimbra, 2004.

[24] W. C. Davidon. Variable metric method for minimization. Technical Report
5990, Argonne National Laboratory, 1959.

[25] W. C. Davidon. Variable metric method for minimization. SIAM Journal
Optimization, 1(1):1–17, February 1991. With a belated preface for ANL
5990.

[26] C. Davis. Theory of positive linear dependence. American Journal of
Mathematics, 76:733–746, 1954.

[27] R. S. Dembo and T. Steihaug. Truncated-Newton algorithms for large-scale
unconstrained optimization. Mathematical Programming, 26:190–212, 1983.

[28] J. E. Dennis and V. Torczon. Managing approximation models in optimiza-
tion. In N. M. Alexandrov and M. Y. Hussaini, editors, Multidisciplinary
Design Optimization: State of the Art, pages 330–347. SIAM, Philadelphia,
1997.

[29] J. E. Dennis, Jr., C. J. Price, and I. D. Coope. Direct search methods for
nonlinearly constrained optimization using filters and frames. Optimization
and Engineering, 5:123–144, 2004.

[30] E. D. Dolan, R. M. Lewis, and V. Torczon. On the local convergence of
pattern search. SIAM Journal on Optimization, 14(2):567–583, 2003.

[31] R. Fletcher and M. J. D. Powell. A rapidly convergent descent method for
minimization. The Computer Journal, 6:163–168, 1963.

[32] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graph-
ics, Principles and Practice, Second Edition in C. The Systems Program-
ming Series. Addison–Wesley, 1997. ISBN 0–201–84840–6.

[33] D. Fournier. An introduction to AD MODEL BUILDER Version 6.0.2
for use in nonlinear modeling and statistics. Available from http://otter-
rsch.com/admodel.htm, 2001.

[34] J. C. Gilbert and C. Lemaréchal. Some numerical experiments with
variable-storage quasi-Newton algorithms. Mathematical Programming,
45:407–435, 1989.

[35] N. I. M. Gould, D. Orban, and P. L. Toint. CUTEr (and SifDec), a con-
strained and unconstrained testing environment, revisited. Technical Re-
port RAL–TR–2002–009, Computational Science and Engineering Depart-
ment, Rutherford Appleton Laboratory, 2002.

BIBLIOGRAPHY 51

[36] A. Griewank. Evaluating Derivatives: Principles and Techniques of Al-
gorithmic Differentiation. Number 19 in Frontiers in Appl. Math. SIAM,
Philadelphia, PA, 2000. ISBN 0–89871–451–6.

[37] A. Griewank and P. L. Toint. On the unconstrained optimization of par-
tially separable functions. In M. Powell, editor, Nonlinear Optimization
1981, pages 301–312. 1982.

[38] A. Griewank and P. L. Toint. Partitioned variable metric updates for large
structured optimization problems. Numerische Mathematik, 39(1):119–137,
1982.

[39] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards,
49:409–436, 1952.

[40] R. Hooke and T. A. Jeeves. Direct search solution of numerical and sta-
tistical problems. Journal of the Association for Computing Machinery,
8(2):212–229, Apr. 1961.

[41] ICES. Report of the northern pelagic and blue whiting fisheries working
group. ICES CM 2002/ACFM19, 2002.

[42] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search:
New perspectives on some classical and modern methods. SIAM Review,
45(3):385–482, 2003.

[43] R. M. Lewis and V. Torczon. Rank ordering and positive bases in pat-
tern search algorithms. Technical Report 96–71, Institute for Computer
Applications in Science and Engineering, Mail Stop 132C, NASA Langley
Research Center, Hampton, Virginia 23681–2199, 1996.

[44] R. M. Lewis and V. Torczon. Pattern search algorithms for bound con-
strained minimization. SIAM Journal on Optimization, 9(4):1082–1099,
1999.

[45] R. M. Lewis and V. Torczon. Pattern search methods for linearly con-
strained minimization. SIAM Journal on Optimization, 10(3):917–941,
2000.

[46] R. M. Lewis and V. Torczon. A globally convergent augmented Lagrangian
pattern search algorithm for optimization with general constraints and sim-
ple bounds. SIAM Journal on Optimization, 12(4):1075–1089, 2002.

[47] R. M. Lewis, V. Torczon, and M. W. Trosset. Why pattern search works.
Optima, 59:1–7, October 1998. Also available as ICASE Technical Report
98–57. ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton,
Virginia 23681–2199.

BIBLIOGRAPHY 52

[48] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45:503–528, 1989.

[49] S. Lucidi and M. Sciandrone. On the global convergence of derivative-free
methods for unconstrained optimization. SIAM Journal on Optimization,
13(1):97–116, 2002.

[50] L. Lukšan and E. Spedicato. Variable metric methods for unconstrained
optimization and nonlinear least squares. Journal of Computational and
Applied Mathematics, 124:61–95, 2000.

[51] M. Marazzi and J. Nocedal. Wedge trust region methods for derivative free
optimization. Mathematical Programming Series A, 91(2):289–305, 2002.

[52] J. A. Nelder and R. Mead. A simplex method for function minimization.
The Computer Journal, 7(4):308–313, Jan. 1965.

[53] G. N. Newsam and J. D. Ramsdell. Estimation of sparse Jacobian matrices.
SIAM J. Alg. Disc. Meth., 4(3):404–417, 1983.

[54] J. Nocedal. Updating quasi-Newton matrices with limited storage. Math-
ematics of Computation, 35(151):773–782, 1980.

[55] J. Nocedal and S. J. Wright. Numerical Optimization. Springer–Verlag,
1999. ISBN 0–387–98793–2.

[56] D. P. O’Leary. A discrete Newton algorithm for minimizing a function of
many variables. Mathematical Programming, 23(1):20–33, 1982.

[57] Y. Pawitan. In All Likelihood: Statistical Modelling and Inference Using
Likelihood. Oxford University Press, 2001.

[58] M. J. D. Powell. An efficient method for finding the minimum of a func-
tion without calculating derivatives. The Computer Journal, 7(2):155–162,
1964.

[59] M. J. D. Powell. Direct search algorithms for optimization calculations.
Acta Numerica, 7:287–336, 1998.

[60] M. J. D. Powell. UOBYQA: Unconstrained optimization by quadratic ap-
proximation. Mathematical Programming, 92(3):555–582, 2002.

[61] M. J. D. Powell. On trust region methods for unconstrained minimization
without derivatives. Mathematical Programming, Series B, 97:605–623,
2003.

[62] M. J. D. Powell. The NEWUOA software for unconstrained optimization
without derivatives. Technical Report DAMTP NA2004/08, University of
Cambridge, 2004.

BIBLIOGRAPHY 53

[63] C. P. Price and P. L. Toint. Exploiting problem structure in pattern search
methods for unconstrained optimization. Optimization Methods and Soft-
ware, 21(3):479–491, 2006.

[64] H. H. Rosenbrock. An automatic method for finding the greatest or least
value of a function. The Computer Journal, 3(3):175–184, Oct. 1960.

[65] D. Shanno and K.-H. Phua. Matrix conditioning and nonlinear optimiza-
tion. Mathematical Programming, 14:149–160, 1978.

[66] H. Skaug and D. Fournier. Evaluating the Laplace approximation by au-
tomatic differentiation in nonlinear hierarchical models. Technical report,
Inst. of Marine Research, Box 1870 Nordnes, 5817 Bergen, Norway, 2005.

[67] W. H. Swann. Direct search methods. In W. Murray, editor, Numerical
Methods for Unconstrained Optimization, pages 13–28. Academic Press,
London and New York, 1972.

[68] V. Torczon. Multi-Directional Search: A Direct Search Algorithm for Par-
allel Machines. PhD thesis, Department of Mathematical Sciences, Rice
University, Houston, Texas, 1989. Available as Tech. Rep. 90-07, Depart-
ment of Computational and Applied Mathematics, Rice University, Hous-
ton, Texas 77005-1892.

[69] V. Torczon. On the convergence of the multidirectional search algorithm.
SIAM Journal on Optimization, 1(1):123–145, 1991.

[70] V. Torczon. On the convergence of pattern search algorithms. SIAM Jour-
nal on Optimization, 7(1):1–25, 1997.

[71] V. Torczon and M. W. Trosset. From evolutionary operation to parallel
direct search: Pattern search algorithms for numerical optimization. Com-
puting Science and Statistics, 29:396–401, 1998.

[72] M. W. Trosset. I know it when I see it: Toward a definition of direct search
methods. SIAG/OPT Views-and-News: A Forum for the SIAM Activity
Group on Optimization, 9:7–10, Fall 1997.

[73] M. Wright. Direct search methods: Once scorned, now respectable. In D. F.
Griffiths and G. A. Watson, editors, Numerical Analysis 1995 (Proceedings
of the 1995 Dundee biennial Conference in Numerical Analysis), pages 191–
208. 1996.

[74] W. Yu. Positive basis and a class of direct search techniques. Scientia
Sinica, Special Issue of Mathematics, 1:53–67, 1979.

Paper I

Chapter 1

A GENERATING SET SEARCH METHOD

USING CURVATURE INFORMATION∗

Lennart Frimannslund
Department of Informatics, University of Bergen, Norway

lennart.frimannslund@ii.uib.no

Trond Steihaug
Department of Informatics, University of Bergen, Norway

trond.steihaug@ii.uib.no

Abstract Direct search methods have been an area of active research in recent

years. On many real-world problems involving computationally expen-

sive and often noisy functions, they are one of the few applicable alterna-

tives. However, although these methods are usually easy to implement,

robust and provably convergent in many cases, they suffer from a slow

rate of convergence.

Usually these methods do not take the local topography of the ob-

jective function into account. We present a new algorithm for uncon-

strained optimisation which is a modification to a basic generating set

search method. The new algorithm tries to adapt its search directions

to the local topography by accumulating curvature information about

the objective function as the search progresses.

The curvature information is accumulated over a region thus smooth-

ing out noise and minor discontinuities. We present some theory regard-

ing its properties, as well as numerical results. Preliminary numerical

testing shows that the new algorithm outperforms the basic method

most of the time, sometimes by significant relative margins, on noisy as

well as smooth problems.

Keywords: Unconstrained optimisation, derivative-free optimisation,

pattern search, generating set search.

∗This work was supported by the Norwegian Research Council (NFR).

1

2

1. INTRODUCTION

When choosing an optimisation method for unconstrained optimisa-
tion the choice is often Newton’s method or quasi-Newton methods. If
the function is well-defined through computer code, one can obtain the
required derivatives to machine precision by the use of automatic dif-
ferentiation techniques (AD), with little extra cost in the case of the
gradient. A different alternative is to use finite differences (FD), which
produces approximations to the desired derivatives.

Consider now less ideal scenarios than the one just described. AD
methods may be inapplicable if the source code is not available, or,
say, if the computer code representing the function is written in sev-
eral languages. Furthermore, the nature of the function might make AD
techniques inappropriate. In [19], function evaluations that involve in-
tegrating a function backwards in time as well as poor portability make
AD an undesirable option. As for FD, in some instances the approxi-
mate derivatives obtained are not helpful either. Optimization problems
in computational fluid dynamics where the objective function includes
integrals [5, 6] are examples of this. The reason FD derivatives can fail
here is that the discretisation involved in solving the integral introduces
noise. This noise is numerical in nature, in the sense that the same input
always gives the same output, but gives inaccurate FD derivatives, and
in [6] spurious solutions which are not present in the underlying objec-
tive function. Plots of the objective functions in [5] look like the function
in Figure 1.1. Although there is an underlying, smooth function, it is
obscured by noise.

Generating set search (GSS) methods (see e.g. [2, 3, 15, 18]) are meth-
ods which try to overcome the difficulties mentioned. They do this by
not using derivative information, and not allowing the topography of
the function to degenerate the set of search directions they consider.
GSS methods have been applied to a wide range of real-world problems,
both computationally expensive and inexpensive, among others design
of thermal insulation systems [1], shape optimization in aeroacoustics
[19], and helicopter rotor blade design [4]. GSS methods have also been
implemented on parallel machines [10].

These methods are however, usually slow when it comes to conver-
gence. If the function to be minimised is expensive, as is the case in
[4] where a single evaluation takes minutes, it might be impossible to
perform, say, 10,000 function evaluations to reach the optimum, even in
a high-performance computing environment.

We will show an approach to how to utilise curvature information,
which on several examples improves a basic GSS method on both smooth

A Generating Set Search Method Using Curvature Information 3

Figure 1.1. Quadratic function with noise.

and noisy problems when such information is helpful, without deterio-
rating performance-wise if curvature information is not helpful. Coope
and Price [7] have developed a generating set search method for smooth
problems using conjugate directions. This method also builds up and
uses second order information, but the two methods differ on several
issues.

We consider the unconstrained optimisation problem

min
x∈Rn

f(x), (1)

where f : R
n 7→ R. Extensions toward linearly constrained optimisation

[16] can readily be incorporated into our method. In addition, there exist
strategies [3, 9, 17] dealing with nonlinear constraints which are appli-
cable as well. A strategy to tailor these methods toward the large-scale
case has been studied in [21]. An extension of this paper to separable
functions, also allowing for larger n appeared as [13].

This paper is organised as follows. In the rest of section 1 we out-
line two basic, existing GSS methods. In section 2 we present our new
method, and in section 3 sketch some of its theoretical properties. Sec-
tion 4 presents numerical experiments, while section 5 offers some con-
cluding remarks.

4

1.1. BASIC GSS ALGORITHMS

A basic variant of GSS is what we will call Coordinate Search. Let
qi, i = 1 . . . n be an orthonormal basis, and G be

G =
n⋃

i=1

{qi,−qi} , (2)

the set of search directions. The standard choice giving justification to
the name of the algorithm is

qi = ei, i = 1 . . . n,

where ei is the vector with zeros everywhere except for 1 in position i.
A pseudo-code for coordinate search on the unconstrained problem (1)

is given below. The algorithm evaluates the function along each search
direction, and steps to the point which reduces the function value the
most. See Figure 1.2.

Coordinate Search

Given δtol > 0, α ≥ 1 > β > 0 and x ∈ R
n.

While δ > δtol,
Compute v : minv∈G f(x + δv),
If f(x + δv) < f(x),

Set x← x + δv.
Set δ ← αδ.

Else, set δ ← βδ.
end.

A typical choice is β = 1
2 . Under reasonable assumptions on f , this

algorithm can be shown [15, 24] to be globally convergent in the sense
that

lim
k→∞

inf ‖∇f(xk)‖ = 0.

1.2. COMMON GSS VARIANTS

There exist several modifications to this basic algorithm. One modi-
fication is to introduce individual step lengths for each search direction.
This tactic is a possible remedy for variable scaling issues. Furthermore,
the algorithm needs not consider all coordinate directions before accept-
ing the step. Simply stepping to a point as soon as a smaller function
value is identified, gives an algorithm we will call Compass Search. See
Figure 1.3. In the figure, the search starts at the black node/point.

A Generating Set Search Method Using Curvature Information 5

x
k+1

x
k

Figure 1.2. Coordinate search in R
2.

x
k

x
k+1

x
k+2

x
k+3

x
k+4

Figure 1.3. Compass Search in R
2: Search along positive and negative coordinate

directions, and step immediately if function reduction found.

First, we search rightwards, and step. Then we search upwards, but do
not step. Then downwards, step, then leftwards, but do not step, etc.

The number of search directions in both methods when using coordi-
nate directions is 2n, but this number can be reduced. A set of vectors
vi, i = 1, . . . , r constitutes a positive basis or generating set if for every

6

x ∈ R
n,

x =
r∑

i=1

civi, where ci ≥ 0, i = 1 . . . r.

It can be shown [8] that n + 1 ≤ r ≤ 2n, so in theory a GSS method
only needs n + 1 directions. In this paper we will use a positive basis of
2n directions, the positive and negative of n orthogonal directions.

Comprehensive convergence theory for GSS methods can be found in
[15]. In general, no more than linear convergence can be expected.

2. THE BASIC IDEA

Our basic idea is to rotate the search basis based on curvature infor-
mation. A similar scheme, which aligns the basis to the average direction
the search progresses, appeared as early as 1960 in [22]. To illustrate
the idea we use Compass Search, although it can be applied to other al-
gorithms as well. Thus, the new method is a Compass Search, but with
a dynamic search basis. It implicitly uses a quadratic model function by
assuming we are minimising, say,

g(y) = φ + bT (y − x) +
1

2
(y − x)T C(y − x),

where C is a symmetric matrix, although we in reality are minimising a
general function f . Let the search directions (2) of our search be positive
and negative of the column vectors of the orthogonal matrix Q, that is,

Q =
[

q1 q2 · · · qn

]
.

Since g is a quadratic function, we have

qT
i Cqj =

g(x + δiqi + δjqj)− g(x + δiqi)− g(x + δjqj) + g(x)

δiδj

.

For a general function function f define the matrix CQ with element
(i, j) by

(CQ)ij =
f(x + δiqi + δjqj)− f(x + δiqi)− f(x + δjqj) + f(x)

δiδj

. (3)

In addition, let
C = QCQQT , (4)

and C will be an approximation to the Hessian matrix (and be exact for
a quadratic function).

The four points in (3) make up the corner points of a rectangle in
the (qi, qj)-plane. If we take qi = qj we get a formula for the second

A Generating Set Search Method Using Curvature Information 7

derivative along this vector, consisting of four or three points, depending
on whether or not δi = δj . As the compass-type search progresses,
the algorithm performs exploratory function evaluations, and as can be
gathered from Figure 1.3 some of these points will lie in the constellations
required by (3). For n > 2, the necessary rectangles can be constructed
with little extra effort. In this way the matrix CQ can be built up in a
predictable and systematic fashion. The algorithm’s key ingredients are:

Compass Search along the columns of Q and −Q.

Computation of the terms (CQ)ij by (3) as the method updates x,
with adaptive shuffling of search directions to facilitate all combi-
nations of i and j, i ≥ j.

Application of formula (4) to obtain C.

Computation of all the eigenvectors qi of C, and setting these
eigenvectors as the new search basis Q.

The initial choice of Q can be, for instance, Q = I.
Although eigenvector computation is considered expensive, the cost

must be seen relative to that of a function evaluation. If a function
evaluation takes many seconds, not to say minutes, an eigenvalue fac-
torisation is inexpensive by comparison.

When f is Noisy — Average Curvature Information. Con-
sider again the function in Figure 1.1. As mentioned in the introduc-
tion, a finite difference-based method using small differences will run
into problems on this function since local rate of change and local curva-
ture may differ very much from the average rate of change and curvature
in the region covered by the figure. However, a finite difference-scheme
with sufficiently large differences will capture these average quantities.
(See for example [14] for a discussion.) In addition, average curvature
can be estimated from a wide range of sample points, as long as they
are sufficiently far apart.

We suggest using relatively large step sizes and thereby gather infor-
mation about average second derivatives. Hopefully, this information
will provide us with eigenvectors that make good search directions in
the sense that they allow for long steps even if, for instance, we are
in a narrow valley. Once the algorithm nears the optimal solution step
lengths become smaller, and we then obtain local curvature information,
which we want when close to the optimum.

8

x2

x1x0

Case 1

x1
+ δjqj

x1x0

Case 2

x0 x0
+ δiqi

x1

Case 3

x0 x0
+ δiqi

x0
+ δjqj

Case 4

Figure 1.4. The four possible outcomes of successive searches along qi and qj . A

grey node signifies a step which has been taken, a white node signifies a step not

taken. The search starts at the black node in each case.

2.1. COMPUTING THE MATRIX CQ

SYSTEMATICALLY

If the search directions ±qi and ±qj are ordered
[

qi qj −qi · · · −qj

]
,

then the first three directions may enable the algorithm to compute
(CQ)ij . The reason for this is that a successful search and subsequent
step along the two first directions and a successful or unsuccessful step
along the third direction provides the rectangle of points needed by (3).
However, this is not always the case, and we consider now the four
possible cases that can occur in the first two steps. In the following
paragraphs, we consider the ordering

[
qi qj −qi

]
, (5)

and look at the situation after two trial steps. All four cases refer to
Figure 1.4.

A Generating Set Search Method Using Curvature Information 9

Case 1 — Success along both directions. Two successful
steps indicated by grey nodes, and the point along −qi, indicated by the
dashed line and circle have been computed. An approximation to (CQ)ij
by equation (3) can be computed regardless of the success or failure of
the third step.

Case 2 — Success along first direction only. Three points
have been evaluated, but the algorithm has not stepped to the second
point since it does not provide a lower function value. This is indicated
by a white node. An extra function evaluation at the point marked by
a cross must be computed in order to obtain (CQ)ij. Note that the next
point scheduled for evaluation (along −qi) is the point x0, and there is
no need for this evaluation.

Case 3 — Success along second direction only. As in case 2,
the algorithm has to perform one extra function evaluation, marked by
a cross. The next point scheduled for evaluation falls outside the square,
and will be evaluated and accepted if leading to a reduction in function
value.

Case 4 — No Success along either direction. In this case
the algorithm also needs to perform one extra evaluation at the point
marked by a cross, and consider the next point scheduled for evaluation
as in case 3.

Choosing the Ordering of Directions. How to best order the
search directions can be illustrated by an example. Consider the case
with n = 4, and order the eight directions in two groups each consisting
of three directions (like the ordering (5)) and let the remaining (two)
directions be columns in the matrix B.

[
T1 T2 B

]
=

[
q1 q2 −q1 q3 −q2 −q3 q4 −q4

]
.

The first group, T1, enables computation of (CQ)21 and T2 gives us
(CQ)32. The last group, B, consists of left over vectors, and can be
ordered arbitrarily. After searching along all directions, it is time to
reshuffle. This time, we can order the directions

[
q1 q4 −q1 q2 −q4 −q2 q3 −q3

]
,

to compute (CQ)41 and (CQ)42. The remaining elements can be ob-
tained through successive, appropriate orderings. This way, dynamically
ordering directions to help computing CQ elements, we obtain all its off-
diagonal elements in a systematic fashion. The important observation

10

is that the first and third members of a triplet are the negative of each
other.

When computing matrix elements this way we can predict how quickly
we obtain all off-diagonal elements of CQ. Let us call the search process
between two shuffles a sweep. We obtain approximately 2n

3 off-diagonal
elements per sweep, since there are 2n search directions and we need

three directions to compute an element. Since we need to estimate n2−n
2

off-diagonal elements, this can be done in approximately

n2−n
2
2n
3

=
3

4
(n− 1)

sweeps, which depends on n. This is not a problem in our experience
for n smaller than about 30.

Diagonal Elements. The computation of diagonal elements re-
quires three or four points along a line depending on whether or not
δi = δj in (3). A constellation of three points we can achieve when ad-
justing step lengths. If we immediately try to double the step length
when encountering a function value reduction, we have the three points
we need. However, the rate at which we will obtain diagonal elements
this way is difficult to predict. Potentially, we can obtain all n elements
in the first sweep, or we might not obtain any elements if we have step
lengths which are too large. In any event, since there are only n diagonal
elements, we can afford to compute these separately if needed.

Off-diagonal element Computation using Pairs or Triplets.

Upon studying Figure 1.4 one might wonder if the grouping of search
directions into triplets is necessary, since only the case of success along
the first two directions makes use of the fact that the third direction is
the negative of the first direction. Indeed, it is possible to group the
search directions into pairs and estimate the objective function value at
extra points as marked by crosses in Figure 1.4, but our preliminary
numerical experience suggests that this does not lead to a more effective
algorithm. On the contrary, the resulting algorithm on average performs
slightly poorer than the algorithm employing triplets, the reason for this
seemingly being that the extra cost of always having to compute an extra
point outweighs the advantages of obtaining a full matrix at an earlier
time. This matter could however potentially benefit from further study,
especially when n is relatively large.

A Generating Set Search Method Using Curvature Information 11

2.2. THE ALGORITHM

We now present the new algorithm in pseudo-code format, listed in
Figure 1.5. It requires an initial guess, x0, an n × n orthogonal basis
matrix Q with column i being qi, as well as a vector of step lengths δ,
where each component δi corresponds to the vectors qi and −qi. In the
algorithm we use the term “successful step” if the variable is updated.
Note also that the variable xk+1 can be overwritten several times by
candidate variable values before k is increased, thereby accepting the
new variable value. The helper function exploratory moves is listed in
Figure 1.6. The update of δ in step 5 (one of many possible updates)
seeks to preserve the properties of step lengths in the old basis to the
new basis. It is based on the same change that applies to the basis
matrix Q, that is, since Q is replaced by X, which can be accomplished
by multiplying it with XQT , the method does the same with δ. The
factor 2 is to undo the step length reduction in step 4.

The function exploratory moves takes as input xin, q, δin and kin, and
gives as output xout, δout and kout. The convergence criterion mentioned
in step 6 can be set as

max
i

δi < tolerance. (6)

This criterion gives good results in practice, as discussed in [11]. Since
we obtain an approximation to the Hessian and the algorithm in theory
can gather gradient information as well, it would be possible to add a
Newton step to the algorithm, as is done in [7] to speed up convergence
on smooth functions.

3. THEORETICAL ASPECTS

In this section we investigate the relationship between C and ∇2f(x),
as well as address the relationship between our new method and existing
convergence theory.

The following lemma can be found in textbooks (e.g. lemma 3.5 in
[12]).

Lemma 1 Let f : R
n 7→ R be two times continuously differentiable. Let

‖p‖ = 1 and ‖q‖ = 1. Given h, k ∈ R, then there exists a t ∈ (0, h) and
an s ∈ (0, k) such that

f(x + hp + kq)− f(x + hp)− f(x + kq) + f(x)

hk
= pT∇2f(x+ tp+ sq)q.

Now we can turn our attention to the effect of the rotation (4) in the
algorithm. We first show a result for non-orthogonal search directions,

12

Step 1

Order directions
[

T1 T2 · · · B
]
, where Ti =

[
qr qs −qr

]
,

for columns qr and qs in Q, where (CQ)rs is not yet computed,
and B are leftover columns from triplet partitioning.
Step 2

For each Ti:
(xk+1, δr, kout)← exploratory moves(xk, qr, δr, k). k ← kout.
(xk+1, δs, kout)← exploratory moves(xk, qs, δs, k). k ← kout.
If the search along both qr and qs was successful,

(xk+1, δr, kout)← exploratory moves(xk,−qr, δr, k) k ← kout,
(Figure 1.4, case 1)

end.
Compute (CQ)rs by (3), evaluating extra point if needed
(Figure 1.4, case 2, 3 and 4).
If in case 3 or 4,
(xk+1, δr, kout)← exploratory moves(xk,−qr, δr, k). k ← kout,

end.
end.
Step 3

For each direction qi in B,
(xk+1, δi, kout)← exploratory moves(xk, qi, δi, k). k ← kout,

end.
Step 4

For all j, if no step was made along ±qj where δj has been
increased by exploratory moves, set δj ← 1

2δj .
If no step lengths have been increased by exploratory moves or
such increase has been undone, and if no step was made along any
direction, set δ ← 1

2δ.
Step 5

If all off-diagonal elements of CQ have been computed and no step
was made along any direction:

Compute remaining diagonal CQ elements by (3).
Set C ← QCQQT .
Eigenvalue-factorise C: C = XΛXT .
Set δ ← 2 ·XQT δ.
Set Q← X.

Step 6

If convergence criterion satisfied, terminate, otherwise go to step 1.

Figure 1.5. Pseudocode for the algorithm.

A Generating Set Search Method Using Curvature Information 13

exploratory moves(xin, q, δin, kin)

If f(xin + δinq) < f(xin),
If f(xin + 2δinq) < f(xin + δinq),

xout ← xin + 2δinq,
δout ← 2δin,

else
xout ← xin + δinq,
δout ← δin,

end.
Compute diagonal CQ element corresponding to q by (3),
kout ← kin + 1,

else
xout ← xin,
δout ← δin,
kout ← kin,

end.

Figure 1.6. The helper function exploratory moves.

p1, . . . , pm. Let

p1, . . . pm ∈ R
n, ‖pk‖ = 1, k = 1, 2 . . . m ≤ n, (7)

and assume that the elements (CP)ij of the symmetric m × m matrix
CP have been computed using formula (3) at the points

{
xij , xij + hijpi, xij + kijpj, xij + hijpi + kijpj

}
, (8)

for all (i, j), i ≥ j and (CP)ji set to be equal to (CP)ij . Let N be the
union of all such points and let

δ = max
z,y∈N

‖z − y‖, (9)

and

N =

{
x ∈ R

n

∣∣∣∣ max
y∈N
‖x− y‖ ≤ δ

}
. (10)

Lemma 2 Assume that f is twice continuously differentiable and ∇2f
is Lipschitz-continuous in N , that is

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖, for all x, y ∈ N ,

where N is defined by (10). Then the m×m symmetric matrix CP with
entry (i, j), i ≥ j computed by (3) at the points (8), and for any x ∈ N

14

satisfies
‖CP − P T∇2f(x)P‖ ≤ mLδ, (11)

where
P =

[
p1 p2 · · · pm

]

is the (n×m)-matrix where column k is pk in (7).

Proof. From Lemma 1 we have for each pair (i, j), a point x̃ij such that

(CP)ij = pT
i ∇2f(x̃ij)pj ,

where x̃ij ∈ N . Then,

|(CP)ij − pT
i ∇2f(x)pj | ≤ Lδ,

and
‖CP − P T∇2f(x)P‖ ≤ mLδ.

�

The result can be stated for an orthogonal matrix Q.

Corollary 3 Given the quantities (7)–(10), but replacing (7) with n
orthogonal vectors qi, i = 1 . . . n, and updating the other quantities ac-
cordingly, we have

‖QCQQT −∇2f(x)‖ ≤ nLδ. (12)

The dissimilar placement of the matrices Q and P in (11) and (12)
respectively owes to the fact that multiplication by an orthogonal matrix
Q does not affect norms.

Convergence Theory. In [15] several requirements are listed for
a GSS method to be convergent. Given a GSS algorithm that enforces
simple decrease (a step is accepted only if it produces a smaller function
value, but there is no requirement of sufficient decrease), searches along
the elements of a generating set G and an additional set of directions H,
restricted to be integer combinations of the directions in G, the require-
ments are: Such a method is convergent if it reduces its step lengths or
updates G only if the search fails along all directions in G, and never
increases step lengths.

The new method meets these requirements. It searches along the
positive and negative of the column vectors of an orthogonal matrix Q,
which, when multiplied with the corresponding step lengths in δ make up

A Generating Set Search Method Using Curvature Information 15

a generating set G. (The members of a generating set need not have unit
length.) Although step lengths are allowed to be increased, this amounts
to searching along directions in H. Since step lengths are reduced only
if step length increase has been undone by subsequent reductions and
search fails along all directions, this is the same as the search failing
along all directions of G as required. Additionally, basis rotation, which
is an update of G, only takes place when search has failed along all
directions in G. The subsequent multiplication

δ ← 2XQT δ

can be seen as part of the update of G.
For Compass Search, which does not update its search basis, the re-

quirements are not as strict. It may increase and decrease step lengths
freely as long as it enforces simple decrease and all iterates lie on a
rational lattice. See [15] for details.

4. NUMERICAL RESULTS

We tested the algorithm on several functions from [20], and compared
it with our version of Compass Search which we get if we suspend direc-
tion shuffling and CQ element computation at all times as well as relax
the requirements on step length updating corresponding to the require-
ments of the convergence theory, by allowing step lengths to be decreased
even if search has not failed along all directions of G. The reason we com-
pare with Compass Search, which is arguably a slow method, is that this
will effectively illustrate the benefits of the idea of basis rotation based
on curvature information.

The test set consists of functions from [20] of the form

F : R
n 7→ R

m,

the test functions being

f(x) = F (x)T F (x), (13)

following the recommendations in [20]. All the test functions have an
optimal value of zero. The initial step lengths where chosen as follows:

- If |x0
i | > 0, δi = |x0

i |.
- If x0

i = 0 and ‖x0‖ > 0, δi = ‖x0‖.
- If ‖x0‖ = 0, δ = e, where e is a vector of all ones.

On some functions this choice of step length lead to the methods finding
the optimal solution almost immediately (e.g. if x0 = (1 1)T and

x∗ = (0 0)T), so in such cases custom initial step lengths were used.

16

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10−6

10−5

10−4

10−3

10−2

10−1

100
BiggsE6 function

Function evaluations

Fu
nc

tio
n

va
lu

e

0 200 400 600 800 1000 1200
10−3

10−2

10−1

100

Function evaluations

Fu
nc

tio
n

va
lu

e

BiggsE6 function

Figure 1.7. Logarithmic plot of function values vs. the number of function evalu-

ations on function #18, without noise added in the left plot, and with noise in the

right plot. The solid curve corresponds to the new algorithm, the dashed curve to

Compass Search.

On smooth functions, the methods were halted once a function value
less than 10−5 was obtained, if the maximum step length was less than
10−12 or if the number of sweeps exceeded 10000. The results are pre-
sented in Table 1.1. The the first column lists the function number, cor-
responding to the function names in Table 1.3. The next three columns
are, for the new algorithm, the number of function evaluations per-
formed, the lowest function value obtained, and the number of basis
changes, which is equal to the number of C-matrices computed. The
last two columns are, for Compass Search, the number of function eval-
uations performed, and the lowest function value found.

As can be seen, the new algorithm outperforms Compass Search most
of the time, sometimes by significant margins, with but a few exceptions.
The most notable case where the new algorithm performs worse than
Compass Search is function number 4. This is a function which is badly
scaled and is very well suited to methods that search along the coordinate
directions. On this function the new method initially steers away from
the search directions based on the identity matrix, and also suffers from
the requirements on step length increase set by the convergence theory.

To make the test examples more realistic we added noise to the func-
tions. We adopt the noise scheme of [23], which is to test on the function

f̃(x) = f(x) + max(10−4 · |f(x)|, 10−4) · µ, (14)

where µ is uniformly distributed in the interval [−1, 1]. The methods
were halted once a function value less than 10−2 was obtained, or, as
before, the maximum step length was less than 10−12 or the number
of sweeps more than 10000. The results, which are median value over

A Generating Set Search Method Using Curvature Information 17

Table 1.1 . Numerical results on smooth functions. Methods halted when f ≤ 1e-5.

Function New algorithm Compass Search

#feval f∗ #Basis #feval f∗

1 461 2.59e-07 10 11118 9.99e-06

3 134 1.19e-07 5 118 1.87e-07

4 1659 2.70e-06 33 222 4.58e-13

5 200 6.39e-06 7 186 9.86e-06

7 340 2.13e-06 6 5978 9.93e-06

14 617 5.49e-07 7 6328 9.91e-06

18 1973 9.41e-06 10 37499 9.99e-06

21 11705 6.73e-06 11 65456 9.96e-06

22 1637 1.44e-06 6 224381 4.93e-04

25 312 7.11e-06 3 532 9.36e-06

28 215 1.31e-06 2 839 9.63e-06

100 runs, are shown in Table 1.2. Function #28 is not included, since
its initial value is lower than 10−2 with the starting point used. Both
methods fail on function #4, which is badly scaled, the new method fails
on function #3, which is also badly scaled.

On the noisy functions the methods resemble each other more than on
smooth functions, although the new method still outperforms Compass
Search by significant margins in some cases. To understand why the
picture is different than on smooth functions, one can look at Figure
1.7. In the left plot, we see that the two methods start with a similar
rate of decline in function values, but that the curve corresponding to
Compass Search levels off after a while. This phenomenon is quite typical
for Compass search, and indeed it has been pointed out (e.g. [25]) that
although pattern search methods are slow when it comes to convergence,
they are good at finding approximate solutions. On noisy functions,
however, the methods are halted before Compass Search starts leveling
off, and hence the results are more similar. This can be observed in the
right plot of Figure 1.7. One function where a good approximation is not
obtained quickly is the Rosenbrock function, which is designed to make
algorithms search along a curved valley. On this function (#1, and #21
for the extended Rosenbrock function) we observe similar behaviour as
on smooth functions, in the sense that the new algorithm reduces the
amount of function evaluations significantly.

18

Table 1.2 . Numerical results on noisy functions. Median over 100 runs shown.

Methods halted when f ≤ 1e-2.

Problem New algorithm Compass Search

#feval f∗ #Basis #feval f∗

1 445.5 7.20e-03 12 2424.5 2.30e-02

3 59 1.00e+00 2 75.5 7.19e-03

4 77 1.00e+12 3 58.5 1.00e+12

5 94 6.12e-03 3 50 9.65e-03

7 172 9.81e-04 3 2719 2.37e-02

14 344 7.71e-03 4 345 8.89e-03

18 434 9.01e-03 2 227 9.66e-03

21 7421 9.37e-03 7 12419 1.13e-01

22 301.5 6.44e-03 1 792.5 1.19e-02

25 180 5.90e-03 1 127 9.08e-03

Table 1.3 . Test function names.

n m Function name

1 2 2 Rosenbrock

3 2 2 Powell badly scaled

4 2 3 Brown badly scaled

5 2 3 Beale

7 3 3 Helical Valley

14 4 6 Wood

18 6 13 Biggs EXP6

21 10 10 Extended Rosenbrock

22 8 8 Extended Powell Singular

25 4 6 Variably dimensioned

28 5 5 Discrete boundary value

A Generating Set Search Method Using Curvature Information 19

5. CONCLUDING REMARKS

In this paper we suggested a modification of the algorithm Compass
Search, to make it more aware of the local topography of the objective
function. On smooth functions we have had good results when it comes
to reducing the number of function evaluations, where reduction of well
over 50% is not uncommon. On noisy functions, when approximate so-
lutions are obtained after few function evaluations, the two methods
resemble each other in performance. When approximate solutions can-
not be obtained quickly, we again get good results for the new method.
Only rarely does it perform significantly worse than Compass Search.

References

[1] M. A. Abramson. Mixed variable optimization of a load-bearing
thermal insulation system using a filter pattern search algorithm.
Optimization and Engineering, 5:157–177, 2004.

[2] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algo-
rithms for constrained optimization. Les Journées de l’Optimisation
2004, 2004.

[3] C. Audet and J. E. Dennis, Jr. A pattern search filter method
for nonlinear programming without derivatives. SIAM Journal on
Optimization, 14(4):980–1010, 2004.

[4] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, and
V. Torczon. Optimization using surrogate objectives on a heli-
copter test example. In J. T. Borggaard, J. Burns, E. Cliff and
S. Sherk, eds., Computational Methods for Optimal Design and
Control, Birkhauser, Boston, 1998.

[5] J. Borggaard, D. Pelletier, and K. Vugrin. On sensitivity analysis for
problems with numerical noise. AIAA Paper 2002–5553, 2002. Pre-
sented at the 9th AIAA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Atlanta, Georgia.

[6] J. Burkardt, M. Gunzburger, and J. Peterson. Insensitive func-
tionals, inconsistent gradients, spurious minima, and regularized
functionals in flow optimization problems. International Journal
of Computational Fluid Dynamics, 16(3):171–185, 2002.

[7] I. D. Coope and C. J. Price. A direct search conjugate direc-
tions algorithm for unconstrained minimization. ANZIAM Journal,
42(E):C478–C498, 2000.

[8] C. Davis. Theory of positive linear dependence. American Journal
of Mathematics, 76:733–746, 1954.

21

22

[9] J. E. Dennis, Jr., C. J. Price, and I. D. Coope. Direct search
methods for nonlinearly constrained optimization using filters and
frames. Optimization and Engineering, 5:123–144, 2004.

[10] J. E. Dennis, Jr. and V. Torczon. Direct search methods on parallel
machines. SIAM Journal on Optimization, 1(4):448–474, Nov. 1991.

[11] E. D. Dolan, R. M. Lewis, and V. Torczon. On the local convergence
of pattern search. SIAM Journal on Optimization, 14(2):567–583,
2003.

[12] C. H. Edwards. Advanced Calculus of Several Variables. Academic
Press, 1973. ISBN 0–12–232550–8.

[13] L. Frimannslund and T. Steihaug. A generating set search method
exploiting curvature and sparsity. In Proceedings of the Ninth Meet-
ing of the Nordic Section of the Mathematical Programming Society,
pages 57–71, Linköping, Sweden, 2004. Linköping University Elec-
tronic Press.

[14] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization.
Academic Press, 1981. ISBN 0-12-283950-1.

[15] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct
search: New perspectives on some classical and modern methods.
SIAM Review, 45(3):385–482, 2003.

[16] R. M. Lewis and V. Torczon. Pattern search methods for lin-
early constrained minimization. SIAM Journal on Optimization,
10(3):917–941, 2000.

[17] R. M. Lewis and V. Torczon. A globally convergent augmented
Lagrangian pattern search algorithm for optimization with general
constraints and simple bounds. SIAM Journal on Optimization,
12(4):1075–1089, 2002.

[18] S. Lucidi and M. Sciandrone. On the global convergence of
derivative-free methods for unconstrained optimization. SIAM
Journal on Optimization, 13(1):97–116, 2002.

[19] A. L. Marsden, M. Wang, J. E. Dennis, Jr., and P. Moin. Optimal
aeroacoustic shape design using the surrogate management frame-
work. Optimization and Engineering, 5:235–263, 2004.

[20] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing uncon-
strained optimization software. ACM Transactions on Mathemati-
cal Software, 7(1):17–41, 1981.

REFERENCES 23

[21] C. P. Price and P. Toint. Exploiting problem structure in pat-
tern search methods for unconstrained optimization. Optimization
Methods and Software, 21(3):479–491, 2006.

[22] H. H. Rosenbrock. An automatic method for finding the greatest
or least value of a function. The Computer Journal, 3(3):175–184,
Oct. 1960.

[23] V. Torczon. Multi-Directional Search: A Direct Search Algorithm
for Parallel Machines. PhD thesis, Department of Mathemati-
cal Sciences, Rice University, Houston, Texas, 1989. Available as
Tech. Rep. 90-07, Department of Computational and Applied Math-
ematics, Rice University, Houston, Texas 77005-1892.

[24] V. Torczon. On the convergence of pattern search algorithms. SIAM
Journal on Optimization, 7(1):1–25, 1997.

[25] V. Torczon and M. W. Trosset. From evolutionary operation to
parallel direct search: Pattern search algorithms for numerical op-
timization. Computing Science and Statistics, 29:396–401, 1998.

Paper II

A Generating Set Searh Method ExploitingCurvature and Sparsity�Lennart Frimannslundy Trond SteihaugzAbstratGenerating Set Searh methods are one of the few alternatives for optimising high�delity funtions with numerial noise. These methods are usually only eÆientwhen the number of variables is relatively small. This paper presents a modi�-ation to an existing Generating Set Searh method, whih makes it aware of thesparsity struture of the Hessian. The aim is to enable the eÆient optimisationof funtions with a relatively large number of variables. Numerial results show aderease in the number of funtion evaluation it takes to reah the optimal solution,sometimes by signi�ant margins, on noisy as well as smooth problems, for a modestas well as a relatively large number of variables.Keywords: Nonlinear programming, derivative{free optimization, pattern searh,generating set searh, sparsity.1 IntrodutionWe onsider the unonstrained optimisation problemminx2Rn f(x); (1)where f : Rn 7! R. Suppose that f is only available asef(x) = f(x) + �; (2)where the error term � is either stohasti or numerial in nature. By numerial noise wemean the noise whih an arise from, for instane, the disretisation involved if evaluating�This work was supported by the Norwegian Researh Counil.yDepartment of Informatis, University of Bergen, Box 7800, N-5020 Bergen, Norway. E-mail:lennart.frimannslund�ii.uib.nozDepartment of Informatis, University of Bergen. E-mail: trond.steihaug�ii.uib.no
57

f requires omputing an integral, solving a di�erential equation or any other subproblemwhih is solved inexatly. The same input will always give the same output, but the fun-tion will not be smooth. An example of suh a funtion ours in [1℄, where the objetivefuntion ontains an integral. The trunation error stemming from the omputation of theintegral makes the funtion look like the one in �gure 1. There is an underlying smoothfuntion, but it is obsured by noise. On suh methods derivative-based methods aneasily run into trouble, sine �nite di�erene-based derivatives may be very inaurateand automati di�erentiation often is unhelpful as well. Generating Set Searh (GSS)Methods are a good alternative in this ase. GSS methods are omprehensively reviewedin [12℄. Although usually easy to implement, GSS methods in their most basi form oftenonverge slowly. Modi�ations to speed up onvergene were suggested as early as in1960 by Rosenbrok [17℄. Two reent approahes using urvature information have beensuggested [2, 7℄. The main modi�ation to basi GSS in these papers is that the searhdiretions the methods onsider are dynami. The introdution of a dynami searh basisis shown to signi�antly redue the number of funtion evaluations required to reah theoptimiser, in most ases.Apart from slow onvergene, GSS methods are often unsuitable for problems wherethe number of variables n is large. In [16℄, one proposes a method e�etive for theoptimisation of smooth funtions whih an be deomposed into element funtions. Let�k � f1; 2; : : : ; ng ; k = 1; : : : ; n and let j�kj be the ardinality of the set �k. Letfk : Rj�k j 7! R; k = 1; : : : ; n, where �k are the indies of x on whih fk depend. If f is ofthe form f(x) = nXk=1 fk(x); (3)then f is said to be partially separable, or totally separable depending on the ardinality ofthe sets �k. Separability of f is losely related to the sparsity struture of the derivatives,but we make the distintion beause separability struture is de�ned even if the funtionis not di�erentiable. Theory on separability of funtions an be found in [11℄.Given a totally separable funtion one an obtain the value of f at as many as 3n� 1points at the ost of only 2 f -evaluations, as long as the points in question are alignedwith the oordinate axes. The optimisation algorithm in [16℄ exploits this fat to solvesmooth problems of the form (1) with f of the form (3) for up to more than 5000 variables.We wish to exploit separability of f , on noisy funtions.In [7℄ an algorithm whih solves (1) where the funtion is of the form (2) using averageurvature information to speed up onvergene was developed. However, as n grows,the algorithm beomes inreasingly unable to exploit this information. In this paper wepresent an extension to the algorithm of [7℄, whih utilises the sparsity pattern of theHessian of f in (2). Although noise an potentially eliminate any sparsity pattern fromr2f in r2 ef , a priori knowledge about r2f through knowledge about the separabilitystruture (3) or known Hessian sparsity struture is assumed to be valid for r2 ef as well.
58

Figure 1: ex � x2 with noise.This paper fouses on unonstrained optimisation, but extensions toward onstrainedoptimisation disussed in [4, 13, 14℄ are appliable.2 Generating Set SearhGSS methods are a lass of methods whih searh along the vetors of a generating setor positive basis. A generating set onsists of vetors vi; i = 1; : : : ; r suh that for anyx 2 Rn , x = rXi=1 ivi; i � 0; i = 1; : : : ; r:In words, the vetors in the set positively span Rn . It is shown in [3℄ that to positivelyspan Rn , n + 1 � r � 2n, depending on the vetors. The positive and negative of theCartesian oordinate vetors, say ei; i = 1; : : : ; n are an example of a generating set with2n vetors. These methods are also known as pattern searh, the name Generating SetSearh was oined in [12℄.Let the set of searh diretions D be de�ned asD = r[i=1 fpig :Assoiate with eah pi a step length Æi. Then, a pseudo ode for a method we will allCompass Searh is:
59

Compass SearhGiven x; Ætol; � � 1 > � > 0,Repeat until onvergene,For eah pi 2 D,If f(x + Æipi) < f(x);x x + ÆipiÆi �Æielse,Æi �Æiend.end.end.� and � need not be onstant throughout. We will all one run of the repeat-loop asweep. For this and other GSS methods one an expet linear onvergene, see [12℄ andthe referenes therein.Rosenbrok's method [17℄ is based on Compass Searh with 2n searh diretions. Itregularly rotates the searh vetors in D by aligning the prinipal searh diretion to anaverage gradient and generates (n � 1) additional diretions through the Gram-Shmidtproess. It uses the positive and negative of the resulting vetors as its new searhdiretions.2.1 GSS Methods Using Curvature InformationWe look at two di�erent methods employing urvature information.The Method of Coope and Prie This method for unonstrained optimisation ofsmooth funtions, is desribed fully in [2℄. It minimises the funtion on suessively�ner grids whih are de�ned by the searh diretions vi; i = 1; : : : ; n and the step lengthsassoiated with eah diretion. The method searhes along both the positive and negativeof these diretions, and hene has 2n searh diretions. In the proess of searhing alongthe urrent diretion, say, vi, the method obtains the funtion values at three points alongthis line. From these three points it reates an interpolating quadrati funtion. The steplength Æi orresponding to vi is then based on the distane from the urrent iterate to theminimiser of the interpolating funtion.
60

Using the parallel subspae theorem (see, e.g. theorem 4.2.1 of [6℄) the method gener-ates onjugate searh diretions, one diretion at a time from the n initially non-onjugatesearh diretions. One a onjugate diretion has been found, the algorithm deletes a non-onjugate diretion, to maintain the number of searh diretions. The generated onjugatediretions are stored in a matrix V, whih beomes an indiret approximation to (r2f)�1one n onjugate diretions have been found, by the relationVV T � (r2f)�1:The method is able to perform a �nite di�erene Newton step from time to time. Onethe entire inverse Hessian approximation is in plae, the algorithm starts building up anew approximation. The algorithm terminates exatly on quadrati funtions.A Method Exploiting Average Curvature Information This method is desribedfully in [7℄. Let the searh basis D onsist of the positive and negative of the olumnvetors of the orthogonal matrixQ = � q1 q2 � � � qn � ;where qi is olumn i. By adaptively shu�ing the order of the diretions in D one persweep, the algorithm is able to gather average urvature information from the history offuntion evaluations. The algorithm builds up what in [7℄ is alled a urvature informationmatrix, CQ, one element at the time, by the formula(CQ)ij = f(xij + Æiqi + Æjqj)� f(xij + Æiqi)� f(xij + Æjqj) + f(xij)ÆiÆj : (4)where Æi and Æj are the step lengths along the searh diretions qi and qj respetively, atany given time. The point xij is usually di�erent for eah (CQ)ij. CQ is required to besymmetri, so only the lower triangle of CQ is omputed. The expression (4) equals adiretional seond derivative, (CQ)ij = qTi r2f(exij)qj (5)for some exij in the retangle with the four points xij + Æiqi + Æjqj, xij + Æiqi, xij + Æjqjand xij as orner points. (See e.g. lemma 3.5 in [5℄.) If the step lengths are suÆientlylarge then average urvature information is obtained, thus smoothing out the e�ets ofnoise. The method is able to obtain O(n) CQ-elements per sweep, so the entire matrix CQonsisting of n2+nn unique elements is omputed in O(n) sweeps. When CQ is determined,the matrix C, given by the formula C = QCQQT ; (6)is omputed. The positive and negative of the eigenvetors of C are taken as the newsearh basis, and Q is updated aordingly.
61

3 A Sheme for Exploiting SparsityWe now propose an extension to the algorithm of [7℄. Assume f is separable. The indi-vidual fk and �k de�ne j�kj � j�kj Hessian strutural information, and by assembling allthe individual matries, we have a sparsity struture for the entire Hessian. If sparsitystruture is not known a priori, it an be deteted by the tehnique of [10℄, or it is pos-sible to obtain the information from omputational graphs, whih are used in AutomatiDi�erentiation (AD). (See, e. g. [9℄ for more on AD.)However, sparsity is relative to the oordinate system. CQ will not be sparse if Q 6= I,and neither will the matrix C from (6) be unless the funtion is quadrati, due to trun-ation error in (4). Therefore, we impose the restrition that C have the same sparsitystruture as the Hessian.Whenr2f is full, we need to ompute n2+n2 CQ-elements by (4). If the Hessian is sparsewith, for instane, O(n) unique elements, we would like to ompute no more elements inCQ than there are unique elements in the Hessian itself. O(n) elements an be omputedin O(1) sweeps.We do this by writing (6) as the equationQTCQ = CQ; (7)where the unknown is the matrix C. Let D and B be n � n-matries. The Kronekerprodut (D
B) is an n2 � n2-matrix(D
 B) = 264 D11B � � � D1nB... ...Dn1B � � � DnnB 375 : (8)See e.g. [8℄. Useful identities are(D
 B)�1 = (D�1
B�1); (9)and (D
 B)T = (DT
 BT); (10)Using the Kroneker produt, (7) an be rewritten as(QT
QT)ve(C) = ve(CQ); (11)where ve is an operator ve : Rn�n 7! Rn2 whih staks the entries of a matrix in avetor suh that the equivalene between (7) and (11) holds. Denote the olumns of thematrix C by i; i = 1; : : : ; n; that is,C = � 1 2 � � � n � :
62

Then ve(C) = (T1 T2 � � � Tn)T : (12)If we examine the matrix (QT
QT) it reads(QT
QT) = 264 Q11QT � � � Qn1QT... ...Q1nQT � � � QnnQT 375 : (13)The �rst row onsists of produts involving only the elements of q1. The seond rowonsists of produts involving only the elements of q1 and q2. Similarly, eah of theremaining rows ontain produts involving elements of only two q-vetors. Sine theve-operator is also applied to CQ in the right-hand side of (11), the row made up ofthe vetors qi and qj orresponds to the element (CQ)ij in ve(CQ). We now want toredue the number of variables in (11) based on our knowledge of symmetry and sparsitystruture. Sine we require C to be symmetri we an, for all r > s, add the olumnsorresponding to Csr to the olumns orresponding to Crs and delete the former olumns.This means we only onsider the elements in the lower triangle of C. Aordingly, wedelete all the rows whih do not orrespond to omputation of elements in the lowertriangle of CQ. Furthermore, sine C has a ertain sparsity struture, we an delete allolumns whih orrespond to elements Crs we know are to be zero.Having removed the olumns orresponding to zero elements, we must also removethe same number of rows. We have some freedom when it omes to whih rows areto be removed. We want the resulting oeÆient matrix after row removal to be wellonditioned. If we were working in a Cartesian oordinate system, then the two vetorsused to ompute Crs by a di�erene formula like the one in (4) would be the oordinatevetors er and es, and any nonsingular submatrix of (13) would be well onditioned. Sinewe are working in the oordinate system de�ned by the vetors qi; i = 1; : : : ; n, the losestwe an get to er and es are the vetors with their maximum absolute elements in positionr and s, that is, vetors qi and qj suh thatmaxk j(qi)kj = j(qi)rj;and maxk j(qj)kj = j(qj)sj:So, for eah nonzero Crs we pik the vetors qi and qj and keep the orresponding row.Let � be the number of unique nonzero elements in the Hessian. Sine we want anequation system with � equations an unknowns, we need to modify the ve to take thisinto aount. Let ve be the operator whih staks the nonzero elements of the lowertriangle of a matrix in a vetor. Let Q signify the �-vetor of CQ-entries that we ompute.The resulting �� � equation system beomesAve(C) = Q; (14)
63

where A is the resulting matrix from modifying (QT
 QT). In our experiments, usingthe heuristi just desribed, A was usually very well onditioned.Sine we need to ompute � Q-elements and an ompute O(n) elements per sweep,the right-hand side Q will be available in O(�n) sweeps. Then we solve (14) and onstrutC with the inverse of the operator ve.3.1 The Relationship between C and the HessianIn this setion we examine the error kC �r2fk:First we need a tehnial result. De�ne = ve(C);Then we have kk � kCkF � p2kk: (15)Too see this, suppose that C has n diagonal and o�-diagonal nonzero elements. Wethen have kk = n+Xi=1 2i! 12 ; (16)and kCkF = 0�X8(r;s)C2rs1A 12 : (17)Not ounting terms C2rs where Crs is known to be zero, the sum in (17) ontains n + 2nonnegative elements. All of the terms in the sum in (16) are present in (17), so learlykk � kCkF . As for the seond inequality, we havep2kk = kp2k = n+Xi=1 (p2i)2! 12 : (18)This an be written 2 n+Xi=1 2i!12 = n+Xi=1 2i + n+Xi=1 2i! 12 : (19)The �nal sum of (19) ontains a sum of 2n + 2 nonnegative elements. All the n + 2elements in (17), (still not ounting terms C2rs where Crs is known to be zero) are presentin (19), so the seond inequality of (15) holds as well.Now we an turn our attention to the relationship between C and the Hessian.
64

Lemma 1 Let f be twie ontinuously di�erentiable. Assume A in (14) is invertible andlet be the solution to (14). Let element l, l = 1; : : : ; � of Q in (14) be omputed by (4)and be equal to qTi r2f(exl)qj for the appropriate vetors qi and qj by (5). De�neN = �[l=1�exl	 ; (20)and let Æ = maxx;y2N kx� yk; (21)and N = �x 2 Rn ����maxy2N kx� yk � Æ� : (22)Let f be Lipshitz-ontinuous in N with Lipshitz-onstant L. Then, the matrix C ob-tained by applying the inverse of the operator ve on , satis�eskC �r2f(x)k � p2��(A)LÆ;where x 2 N and �(A) is the ondition number of A.Proof. Let hl = ve(r2f(exl)); l = 1; : : : ; �. The Hessian has the same sparsity strutureas C, so Q an be written Q = 26664 (Ah1)1(Ah2)2...(Ah�)�
37775 ;where (Ahl)l is the lth element of the vetor Ahl. If we now let El be the matrix with 1in position (l; l) and zero everywhere else, we have = A�1 �Xl=1 (ElAhl):The Hessian mapping r2f : Rn 7! Rn�n is assumed to be Lipshitz-ontinuous in N , thatis, kr2f(x)�r2f(y)k � Lkx� yk for all x; y 2 N : (23)Let x 2 N . De�ne ve(r2f(x)) = h:Then we have = A�1 �Xl=1 (ElA(h+ �l));

65

where �l = hl � h:This expands to = A�1(E1 + � � �+ E�)Ah+ �Xl=1 A�1ElA�l:The �rst part of the expression redues to just h, sine the sum of the El beomes theidentity matrix. The seond term beomes an error term, whose norm is bounded byk� hk = k �Xl=1 A�1ElA�lk � �kA�1k�maxl kElk� kAk�maxl k�lk� : (24)All the El have unit norm, and the norms kAk and kA�1k together make up the onditionnumber of the matrix A, �(A). We now need a bound on maxl k�lk. We havemaxl kexl � xk � Æ;sine x and all the exl are in N . Thus, by (23):maxl kexl � xk � Æ) maxl kr2f(exl)�r2f(x)k � LÆ:By (15) we havemaxl k�lk = maxl kh� hlk � maxl kr2f(exl)�r2f(x)kF � LÆ:This turns (24) into k� hk � ��(A)LÆ;and �nally, by (15), kC �r2f(x)kF � p2��(A)LÆ:�4 Preliminary Numerial ResultsNumerial test were performed on three funtions from [15℄, for various sizes of n. All thefuntions have a minimum value of zero. The results on smooth funtions are listed in table1. The olumns ontain, from left to right, the number of variables, the number of uniquenonzero elements to be determined �, the number of funtion evaluations performed toreah the solution, the number of C-matries omputed and hene the number of timesthe positive basis D is updated, and the �nal funtion value obtained, for the method
66

using sparsity and the method of [7℄ (marked \regular" in the table), respetively. Theonvergene riterion used in the experiments on smooth funtions wasmaxi Æi < 10�7:The results on the extended Rosenbrok funtion agree very well with our expetations.The Hessian of the extended Rosenbrok funtion has O(n) elements, so as expeted thenumber of C-matries and hene D-updates is relatively onstant for the sparse method,onsistent with the bound O(�n) for obtaining the desired CQ-elements. In the ase of theregular method, D-updates beome fewer as n grows, onsistent with the bound O(n) onthe omputation of CQ in this ase. In addition, the sparse method uses fewer funtionevaluations to reah the optimum, apparently sine it is able to hange searh basis andhene adapt to the landsape of the funtion more often than the regular method.On the Broyden tridiagonal funtion we see a similar piture, although the savings infuntion evaluations are not as apparent here as on the extended Rosenbrok funtion.The reason this seems to be that frequent basis updates is not ruial on this funtion.The same an be said about the results on the Broyden banded funtion. Note that onthe two Broyden funtions, when n = 64 and n = 128, no basis hange takes plae in thease of the regular method, whih then in reality beomes Compass Searh.We also tested on the funtions with noise, spei�allyef(x) = f(x) + max(10�4 � jf(x)j; 10�4) � �; (25)where � is uniformly distributed in the interval [�1; 1℄. This noise sheme is adopted from[18℄. On these problems, the onvergene riterion used wasmaxi Æi < 10�4:The results are listed in table 2. Sine we add noise to the problems by (25) we annotexpet to �nd a lower funtion value than 10�4. On the extended Rosenbrok funtion thepiture is very muh the same as with no noise. However, the regular method terminatesprematurely for n equal to 32, 64, and 128. The sparse method terminates prematurelyfor n = 128. On the Broyden funtions we also have the same piture as when no noiseis added.5 Conluding RemarksWe have proposed and extension to the algorithm of [7℄ to make it aware of sparsity, andthereby enable solution of problems with n relatively large. We have managed to reduethe number of funtion evaluations it takes to reah a minimum on all three test funtionsas n grows. The results hold promise, and muh an be done to improve the results still, for
67

Extended Rosenbrok FuntionSparse Regularn � #feval #Basis f � #feval #Basis f �4 6 893 16 1.53e-15 1051 14 3.52e-138 12 1972 18 5.89e-16 2870 11 3.26e-1616 24 3669 17 1.99e-15 8128 8 9.62e-1632 48 7368 17 3.65e-15 20632 6 2.77e-1564 96 14849 17 1.63e-15 65284 4 1.18e-14128 192 29781 17 3.26e-15 190884 3 2.13e-13Broyden Tridiagonal FuntionSparse Regularn � #feval #Basis f � #feval #Basis f �4 7 355 6 1.53e-13 365 5 4.62e-138 15 826 7 2.59e-13 781 3 1.20e-1316 31 1556 6 8.25e-13 1672 2 7.97e-1332 63 3384 7 4.09e-13 4153 1 7.52e-1464 127 6440 7 1.70e-12 9186 0 1.42e-12128 255 14997 8 1.41e-12 18879 0 8.61e-12Broyden Banded FuntionSparse Regularn � #feval #Basis f � #feval #Basis f �4 10 457 6 5.08e-15 382 5 2.56e-138 35 824 3 1.36e-14 804 3 4.28e-1316 91 1667 3 5.05e-14 1682 2 2.34e-1332 203 3439 2 6.90e-13 3437 1 9.31e-1364 427 6709 2 1.45e-12 7524 0 1.76e-13128 875 13450 2 2.24e-12 15070 0 3.96e-13Table 1: Numerial results, smooth funtions.

68

Extended Rosenbrok FuntionSparse Regularn � #feval #Basis f � #feval #Basis f �4 6 808 15 3.63e-5 874 11 3.52e-48 12 1635 15 2.67e-3 2251 9 1.31e-416 24 3113 14 2.36e-2 7556 8 4.35e-332 48 7014 14 2.36e-2 10623 3 3.06e164 96 14085 16 1.38e-1 5236 0 1.22e2128 192 29321 17 1.86e1 6629 0 2.49e2Broyden Tridiagonal FuntionSparse Regularn � #feval #Basis f � #feval #Basis f �4 7 182 3 5.25e-5 220 3 6.71e-58 15 383 3 3.66e-5 400 2 9.09e-516 31 855 4 1.86e-4 923 1 1.98e-432 63 1710 4 6.69e-4 1955 0 9.15e-464 127 3436 4 1.03e-4 4460 0 2.03e-3128 255 6834 4 1.70e-3 8146 0 4.81e-3Broyden Banded FuntionSparse Regularn � #feval #Basis f � #feval #Basis f �4 10 205 3 1.73e-5 264 4 2.70e-58 35 460 2 5.76e-5 434 2 7.89e-516 91 893 1 1.13e-4 925 1 1.50e-432 203 1687 1 1.93e-4 1885 0 2.53e-464 427 3734 1 2.81e-4 3791 0 7.56e-4128 875 6799 1 8.60e-4 7504 0 1.33e-3Table 2: Numerial results, noisy funtions.

69

instane inorporating ideas like the one in [16℄ mentioned in the introdution, and dealingwith the great number of tehnial issues whih arise when onverting the algorithm of[7℄ to handle sparse Hessians.Referenes[1℄ J. Borggaard, D. Pelletier, and K. Vugrin. On sensitivity analysis for problemswith numerial noise. AIAA Paper 2002{5553, Presented at the 9th AIAA/ISSMOSymposium on Multidisiplinary Analysis and Optimization, Atlanta, Georgia, 2002.[2℄ I. D. Coope and C. J. Prie. A diret searh onjugate diretions algorithm forunonstrained minimization. ANZIAM Journal, 42(E):C478{C498, 2000.[3℄ Chandler Davis. Theory of positive linear dependene. Amerian Journal of Mathe-matis, 76:733{746, 1954.[4℄ John E. Dennis Jr., Christopher J. Prie, and Ian D. Coope. Diret searh methodsfor nonlinearly onstrained optimization using �lters and frames. Optimization andEngineering, 5:123{144, 2004.[5℄ C. H. Edwards. Advaned Calulus of Several Variables. Aademi Press, 1973. ISBN0{12{232550{8.[6℄ R. Flether. Pratial Methods of Optimization. John Wiley & Sons Ltd., 1987.Seond Edition, ISBN 0{471{91547{5.[7℄ Lennart Frimannslund and Trond Steihaug. A generating set searh method usingurvature information. To appear, 2004.[8℄ Alexader Graham. Kroneker Produts and Matrix Calulations with Appliations.Halsted Press, John Wiley and Sons, New York, 1981. ISBN 0470273003.[9℄ Andreas Griewank. Evaluating Derivatives: Priniples and Tehniques of AlgorithmiDi�erentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, PA,2000. ISBN 0{89871{451{6.[10℄ Andreas Griewank and Christo Mitev. Deteting jaobian sparsity patterns bybayesian probing. Mathematial Programming, 93(1):1{25, 2002.[11℄ Andreas Griewank and Philippe L. Toint. On the unonstrained optimization ofpartially separable funtions. In Mihael J. D. Powell, editor, Nonlinear Optimization1981, pages 301{312. Aademi Press, New York, NY, 1982.
70

[12℄ Tamara G. Kolda, Robert Mihael Lewis, and Virginia Torzon. Optimization by di-ret searh: New perspetives on some lassial and modern methods. SIAM Review,45(3):385{482, 2003.[13℄ Robert Mihael Lewis and Virginia Torzon. Pattern searh methods for linearlyonstrained minimization. SIAM Journal on Optimization, 10(3):917{941, 2000.[14℄ Robert Mihael Lewis and Virginia Torzon. A globally onvergent augmented La-grangian pattern searh algorithm for optimization with general onstraints and sim-ple bounds. SIAM Journal on Optimization, 12(4):1075{1089, 2002.[15℄ Jorge J. Mor�e, Burton S. Garbow, and Kenneth E. Hillstrom. Testing unonstrainedoptimization software. ACM Transations on Mathematial Software, 7(1):17{41,1981.[16℄ C. P. Prie and P. Toint. Exploiting problem struture in pattern searh methods forunonstrained optimization. Tehnial Report 2004/3, Mathematis and Statistisdepartment, Canterbury University, Christhurh, New Zealand, 2004.[17℄ H. H. Rosenbrok. An automati method for �nding the greatest or least value of afuntion. The Computer Journal, 3(3):175{184, Otober 1960.[18℄ Virginia Torzon. Multi-Diretional Searh: A Diret Searh Algorithm for ParallelMahines. PhD thesis, Department of Mathematial Sienes, Rie University, Hous-ton, Texas, 1989; available as Teh. Rep. 90-07, Department of Computational andApplied Mathematis, Rie University, Houston, Texas 77005-1892.

71

Paper III

Nested optimisation; Application to estimation

of variation in annual mortality in fish

populations
∗
.

Lennart Frimannslund
†

Hans Julius Skaug
‡

March 31, 2006

Abstract

We study a population dynamics model incorporating natural mor-
tality as well mortality due to human exploitation. The model is appli-
cable to Norwegian spring spawning herring. Our goal is to make in-
ference about annual variation in natural mortality. Using the Laplace
approximation of the marginal likelihood, we derive a likelihood func-
tion for the unknown parameters in the model. The statistical prop-
erties of the estimators are investigated using simulated data sets. We
do not find evidence for annual variation in mortality for Norwegian
spring spawning herring, but our simulation experiments indicate that
one would need much more data than currently available to be able
to detect such an effect.

Keywords: Laplace Approximation, Monte Carlo-Simulation, Au-
tomatic Differentiation, Pattern Search.

1 Introduction

The annual mortality rate M is an important demographic parameter
in wildlife populations. The probability that an individual survives
from one year to the next is e−M , and this serves to define M . In
a fish population there can be large annual variations in M , due to

∗This work was supported by the Norwegian research council (NFR).
†Department of Informatics, University of Bergen, Pb. 7800, 5020 Bergen, Norway.
‡Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5008

Bergen, Norway.

1

changes in environmental conditions and variation in predation pres-
sure. Denote by M + εt the mortality rate in year t, where εt is a
perturbation around the average mortality rate M . We assume that
there is no direct measurement of εt available, and hence we shall view
εt as a stochastic variable with expectation 0 and unknown variance τ 2.
We formulate a stochastic population dynamic model, and derive an
objective function that allows M and τ to be estimated from catch
data and data from scientific surveys. For most marine fish popula-
tions such data are scarce, and estimation of M is a difficult problem.
Needless to say, estimation of the level of annual variation (τ) is an
even harder problem. Hence, with the current level of information we
cannot hope to get reliable estimates of τ . In the present paper we use
simulations to investigate how much data would need to be available
in order for τ to be identifiable with a reasonable degree of precision.

The stochastic population dynamic model we use is an instance
of a state-space model. There are two types of unknown quantities
in such models: 1) the state variables, which here are the number of
individuals being alive each year, and 2) the (structural) parameters:
M , τ , along with some other parameters to be defined later. State-
space models are often fit to data using Kalman-filter techniques [10].
When the model is non-linear, the equations must be linearised before
one can apply the standard Kalman machinery. We use the Laplace
approximation [7] to integrate out the state variables from the likeli-
hood function. This leaves us with the marginal likelihood, which be-
comes our objective function for estimation of M and τ . The Laplace
approximation is itself phrased as an optimisation problem, so our ap-
proach involves nested optimisation. The inner optimisation problem
is solved using a quasi-Newton algorithm. We solve the outer problem
using two approaches, quasi-Newton and a pattern search algorithm,
the latter of which which allows for the inner problem to be solved
inexactly, hence more cheaply.

The rest of the paper is organised as follows. In section 2 we outline
the stochastic population dynamic model. In section 3 we outline the
computational methods, and in section 4 we apply the method to
data for Norwegian Spring Spawning Herring along with simulated
datasets, which we discuss in section 5.

2 Population Dynamics of Exploited

Fish Stocks

Most of our large fish populations are subject to human exploitation.
We assume that the number of individuals C removed from the popu-

2

lation each year by fisheries is known. The mortality rate M referred
to above is the “natural” mortality, and does not include the mortality
caused by the fisheries.

We consider a period of n years, labeled t = 1, . . . , n for simplicity.
Our population consists of A independent cohorts. In real life a cohort
consists of all fish born in a particular year, but for simplicity we shall
here treat the “cohorts” as being coexisting, but otherwise unrelated,
developing populations. The basic equation governing the population
dynamics of the jth, j = 1, . . . , A cohort is

Nj,t = (Nj,t−1 − Cj,t−1) e−(M+εt−1), t = 1, . . . , n, (1)

where the quantities are:

Nj,t Number of individuals in cohort j in year t,
M + εt Mortality in year t (applies to all cohorts),

Cj,t Catches in numbers of individuals in cohort j in year t.

The model specification is completed with the requirement that εt

has a Gaussian distribution with mean 0 and variance τ 2. Note that
this assumption allows for e−(M+εt) > 1, which does not have an
interpretation in terms of survival.

2.1 Available Data

In addition to the catch numbers C, data from acoustic scientific sur-
veys are available. These surveys provide relative indices I of popula-
tion size, in the sense that I is an estimate of q ·N , where q is a number
satisfying 0 < q < 1. We refer to q as the “catchability” parameter,
and it may be given the interpretation that the survey covers only a
proportion of the total population. By reading the age of individual
fish in a random sample it is possible to calculate a survey index for
each cohort. In the Norwegian Spring Spawning Herring data, and
in our simulated datasets, there are four surveys each year, each with
their own catchability parameter. The key quantities involved are:

Ij,s,t Survey index for cohort j in survey s in year t,
qs “Catchability” in survey s.

The statistical assumption we make is that log(Ij,s,t) has a normal
distribution with expectation log(qs · Nj,t) and variance σ2.

2.2 Likelihood Function

In order to initialise the system (1) we need values for (N1,0, . . . , NA,0),
i.e. the state vector at time zero. These values will be estimated

3

along with the other parameters of the model. Hence, the parameters
are: θ = (M, τ, σ, q1, . . . , qS , N1,0, . . . , NA,0). The other independent
variables in the model are the parameters dealing with variation in
mortality, (ε1, . . . , εn). Let ε (without subscript) denote the vector
(ε1, . . . , εn), and similarly for the other variables. The log-likelihood
function, from which we shall construct our objective function, has
two parts:

l(θ, ε) =

n∑

t=1

S∑

s=1

A∑

j=1

[
− log(σ) −

(log(Ij,s,t) − log(qsNj,t))
2

2σ2

]

+

n−1∑

t=0

[
− log(τ) −

ε2
t

2τ2

]
. (2)

The first part arises from the distributional assumptions made about
Ij,s,t, while the second part comes from the distributional assumptions
made about the εt. Note that the two parts are coupled through (1),
where M + εt occurs.

2.3 Laplace Approximation

Denote the function (2) by l(θ, ε) where θ denotes all other indepen-
dent variables than ε. It is well established in the statistical literature
(e.g. [6], p. 466) that joint maximisation of l with respect to θ and ε
does not give a good estimate of θ, and hence not of τ which is the
parameter of primary interest to us. Instead, one can use the Laplace
approximation [8]

l∗(θ) = −
1

2
log det(−H(θ)) + l(θ, ε̄(θ)), (3)

of the marginal log-likelihood

l(θ) = log

[∫
exp {l(θ, ε)} dε

]
. (4)

In (3), ε̄(θ) is the maximiser of l(θ, ε) with respect to ε for a fixed value
of θ, and the symmetric matrix function H is defined as

H(θ) =
∂2

∂ε2
l(θ, ε)|ε=ε̄(θ). (5)

Numerical evaluation of l∗(θ) may be done as follows:

- Maximise l(θ, ε) with respect to ε to obtain ε̄(θ). This optimisa-
tion step is referred to as the “inner optimisation”.

4

- Evaluate H at ε̄.

- Compute the determinant of H by means of a Cholesky factori-
sation and compute the expression (3).

The inner optimisation can be performed efficiently with a quasi-
Newton method, with the gradient computed by Automatic Differ-
entiation (AD), and H can also be computed by AD. AD (see, e.g.
[3]) is a collection of techniques which can compute derivatives of a
function defined through computer code, to machine precision. These
techniques are attractive since they are usually transparent to the
user, and can compute the gradient of a function f : R

n 7→ R at be-
tween four and five times the cost of evaluating the function itself.
AD may however require a large amount of storage space.

When ε̄(θ) does not maximise l(θ, ε) exactly, in which case we write
ε̃, we must include a correction term in the Laplace approximation,

l∗(θ) = −
1

2
log det(−H(θ)) + l(θ, ε̃(θ)) −

1

2
∇lTH−1∇l, (6)

where ∇l is the gradient of l(θ, ε) with respect to ε evaluated at ε̃,
and H given by (5) now is evaluated at ε̃. A proof of the result goes
as follows. By a second order Taylor expansion, and skipping the
argument θ from our notation, we get

l(ε) ≈ l(ε̃) + ∇lT (ε − ε̃) +
1

2
(ε − ε̃)T H(ε − ε̃). (7)

By algebraic manipulation we find that

(ε − ε̃ + H−1∇l)T H(ε − ε̃ + H−1∇l)

= (ε − ε̃)T H(ε − ε̃) + 2∇lT (ε − ε̃) + ∇lTH−1∇l,

which can be used to rewrite the Taylor expansion (7) as

l(ε) = l(ε̃) −
1

2
∇lT H−1∇l +

1

2
(ε − ε̃ + H−1∇l)T H(ε − ε̃ + H−1∇l).

Further, we have the multivariate normal integral
∫

exp

[
1

2
(ε − v)T H(ε − v)

]
dε = c · det(−H)−1/2, (8)

where c = (2π)n/2 is a constant that can be ignored in the present
context. Since (8) holds for all values of v, and in particular

v = ε̃ − H−1∇l,

the approximation (6) of the marginal likelihood (4) follows (after a
few lines of thought).

5

3 Optimising the Likelihood Function

We consider two different methods for optimising the objective func-
tion (3). The first approach is to solve the problem by using the
Quasi-Newton solver that is built into AD Model builder [1] (ADMB),
a commercially available package for nonlinear statistical models. The
second is to use a variant of the pattern search method of [2] for the
outer problem, and the BFGS method to solve the inner problem, with
gradients and H computed by the ADOL-C package [4].

A difference between the two approaches from a theoretical point of
view is that the former requires the gradient of l∗(θ), which involves
third order mixed derivatives of l(θ, ε) [8], whereas the latter only
requires the second derivative H(θ). When using AD, the computation
of the gradient of a functional (l∗(θ) in our case) can be done with less
than or equal to five times the amount of work required to compute
the function value itself, and thus our problem appears well suited for
a gradient-based method. The price to pay for the “cheap” gradient
is that one has to store a computational graph (or an execution trace,
sometimes called a tape) the size of which can be substantial in the
sense that it can be larger than the available disk space. The size of
the tape depends on the number and nature of the operations required
to compute the function value.

In our case, the length of the vector ε, n, is important. In order
to obtain the gradient of (3) we need to differentiate the Cholesky
factorisation of the Hessian H, whose dimension is n×n. The compu-
tational graph, and corresponding overhead, used in computing ∇l∗

will therefore grow as n grows, and make the computation of ∇l∗

more cumbersome. The principle that a gradient can be obtained at
five times the cost in operation count of the function still applies, but
the storage requirements may be substantial for large n, a problem
which is not encountered on the same scale when calculating function
values only.

In our context, however, since we only have one time step per
year (that is, the formula (1) is only applied one time for each year
considered) and fish have a limited life span, we do not expect ε to have
significantly more elements than 20. Consequently, the computational
graphs involved are of acceptable size on a personal computer, and
the gradient-based method performs well. In addition, the ADMB
package contains a differentiated version of the Cholesky algorithm
(see e.g. [9]), which reduces storage requirements.

As for pattern search, its ability to cope with non-smoothness
means that one may solve the inner optimisation problem inexactly
initially and solve it more and more accurately as one approaches the

6

solution of the outer problem (6). This reduces the total time of the
optimisation, since inexact function evaluations can be performed at
a relatively low cost. The suggested pattern search method must be
either be modified slightly to handle constraints, or one can handle
the constraints by using Lagrange multipliers and returning infinity
(or negative infinity) for points outside the domain of the function.

Both methods seem to benefit from the two-phase strategy out-
lined in [7]. The two-phase strategy should not be confused with the
nested (inner-outer) optimisation scheme that is common to both the
methods we discuss. In phase I the objective function is taken to
be (2), but with ε = 0 and τ fixed at some initial value. In particular,
there is no Laplace approximation involved in the first phase. Note
that the second term in (2) now can be ignored. Phase I hence pro-
vides estimates for all components of θ except τ . These estimates are
used as initial values for phase II in which the objective function is
taken to be the Laplace approximation (3).

Summing up, both methods are applicable to the problem; in our
context the ADMB package is faster than our experimental codes, so
we use the former in the next section.

4 Simulation Experiments

The question we ask in this section is: what type of, and how much,
data do we need to be able to estimate τ? For this purpose we gen-
erate artificial data from the model (1) via Monte Carlo simulation.
Hence we know what the true parameter values θ are. Then, we fit
the model to the simulated data, as explained above and obtain an
estimate θ̂. This procedure is repeated many times, and we can mea-
sure the statistical properties (mean and standard deviation) of the
estimator θ̂. The variable of main interest to us is τ , so we created
1,000 data sets for each of the values

τreal = {0.05, 0.1, 0.2} ,

where in addition

N0 =
[

200 200 200 200
]T

,

(implying four cohorts)

q =
[

0.5 0.5 0.5 0.5
]T

,

implying four surveys, and finally

σ = 0.2, M = 0.15, n = 20.

7

a: τtrue = 0.05

Data available Mean(τ̂) Std(τ̂) # τmin

50% 0.0181 (0.0559) 0.0274 (0.0183) 689
75% 0.0246 (0.0528) 0.0281 (0.0166) 544
100% 0.0297 (0.0488) 0.0265 (0.0160) 400

b: τtrue = 0.1

Data available Mean(τ̂) Std(τ̂) # τmin

50% 0.0782 (0.0899) 0.0398 (0.0280) 132
75% 0.0881 (0.0927) 0.0319 (0.0254) 50
100% 0.0890 (0.0912) 0.0280 (0.0245) 25

c: τtrue = 0.2

Data available Mean(τ̂) Std(τ̂) # τmin

50% 0.1870 (0.1908) 0.0424 (0.0373) 3
75% 0.1869 0.0386 0
100% 0.1905 0.0377 0

Table 1: Numerical results (1000 Monte Carlo replica) for different values of
τtrue The numbers in parentheses show the results when only the instances
where τ̂ 6= τmin are included.

4.1 Results

The results are given in Table 1 a)–c). The columns of the tables
signify, from left to right, the amount of survey data available, mean
and standard deviation of τ̂ and the number of times where τ̂ was
equal to the lower bound (τmin = 10−3) set by the optimisation algo-
rithm. The table also shows results when the cases where τ̂ is equal
to the lower bound are excluded. By available survey data, we mean
the percentage of the 4 · 4 · 20 = 320 acoustical observations available,
where which observations are available is randomly selected.

5 Discussion

From Table 1 we draw the following conclusions:

• The more available data, the closer the mean of τ̂ is to τtrue.

8

• The more available data, the smaller the standard deviation of
τ̂ .

• Using only the cases where τ̂ 6= τmin reduces the bias in the
estimator.

• The larger the value of τtrue, the fewer cases of τ̂ = τmin.

• The larger the value of τtrue, the larger the standard deviation
of τ̂ .

We also applied the method to time series data from Norwegian spring
spawning herring [5], which resulted in an estimate of τ = 0. Ap-
parently, there is no year-to-year variation in mortality, but an im-
portant point is that the uncertainty associated with the estimate is
large. The objective function (3) is flat near its optimum, which is
actually located at the boundary of the parameter space (τ must be
non-negative). Hence, data provided little information about the true
value of τ , which is what we expected. The simulation results pre-
sented in Table 1 support this conclusion, in that the probability that
τ̂ ends up at zero is high, particularly when τ is small, like τ = 0.05.

References

[1] D. Fournier. An introduction to AD MODEL BUILDER Version
6.0.2 for use in nonlinear modeling and statistics. Available from
http://otter-rsch.com/admodel.htm, 2001.

[2] L. Frimannslund and T. Steihaug. A generating set search
method using curvature information. To appear in Computa-
tional Optimization and Applications, 2006.

[3] A. Griewank. Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. Number 19 in Frontiers in Appl.
Math. SIAM, Philadelphia, PA, 2000. ISBN 0–89871–451–6.

[4] A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C:
a package for the automatic differentiation of algorithms writ-
ten in C/C++. ACM Transactions on Mathematical Software,
22(2):131–167, June 1996.

[5] ICES. Report of the northern pelagic and blue whiting fisheries
working group. ICES CM 2002/ACFM19, 2002.

[6] Y. Pawitan. In All Likelihood: Statistical Modelling and Inference
Using Likelihood. Oxford University Press, 2001.

[7] H. Skaug and D. Fournier. Evaluating the Laplace approxima-
tion by automatic differentiation in nonlinear hierarchical models.

9

Technical report, Inst. of Marine Research, Box 1870 Nordnes,
5817 Bergen, Norway, 2005.

[8] H. Skaug and D. Fournier. Automatic approximation of the
marginal likelihood in non-gaussian hierarchical models. Tech-
nical report, 2006. To appear in Computational Statistics and
Data Analysis.

[9] S. P. Smith. Differentiation of the Cholesky algorithm. Journal
of Computational and Graphical Statistics, 4(2):134–147, 1995.

[10] M. West and P. Harrison. Bayesian Forecasting and Dynamic
Models. Springer-Verlag, New York, 1997.

10

Paper IV

Using Partial Separability of Functions in Generating

Set Search Methods for Unconstrained Optimisation
∗

Lennart Frimannslund
†

Trond Steihaug
‡

March 21, 2006

Abstract

Generating set Search Methods (GSS), a class of derivative-free methods for un-
constrained optimisation, are in general robust but converge slowly. It has been
shown that the performance of these methods can be enhanced by utilising accumu-
lated information about the objective function as well as a priori knowledge such as
partial separability.

This paper introduces a notion of partial separability which is not dependent
on differentiability. We present a provably convergent method which extends and
enhances a previously published GSS method. Whereas the old method for two
times continuously differentiable functions takes advantage of Hessian sparsity, the
new method takes advantage of the separability properties of partially separable
functions with full Hessians as well. If the Hessian is undefined we show a similar
extension, compared with the old method. In addition, we introduce some new
theoretical results and discuss variants of the method.

Keywords: Unconstrained optimisation, derivative-free optimisation, noisy op-
timisation, generating set search, pattern search, separability, sparsity.

1 Introduction

Direct search methods have been an active area of research in recent years. One
class of direct search methods is Generating Set Search (GSS). For a comprehensive
introduction to these methods, see [7], or papers among e.g. [8, 14, 2, 9]. GSS
methods in their simplest form use only function values to determine the minimum

∗This work was supported by the Norwegian Research Council (NFR).
†Department of Informatics, University of Bergen, Box 7800, N-5020 Bergen, Norway. E-mail:

lennart.frimannslund@ii.uib.no
‡Department of Informatics, University of Bergen. E-mail: trond.steihaug@ii.uib.no

1

of a function. It has been shown that taking derivative information into account
[1], and particularly curvature information [3, 6] can lead to more effective meth-
ods. In addition, a priori knowledge about separability of the objective function
is also helpful in designing more effective methods, and methods that can be ap-
plied to problems of relatively large scale [12, 5]. This paper extends the work and
method presented in [5], introducing a provably convergent variant of that method,
generalises it to a wider class of partially separable functions and presents a more
thorough theoretical foundation than what as been done before. This paper is or-
ganised as follows. In section 2 we present the algorithm of [6], and the extension
outlined in [5], present modifications and extensions, and offer some new theoretical
results. Section 3 presents results from numerical testing, and section 4 offers some
concluding remarks.

2 A GSS Method using Curvature Informa-

tion

A Basic GSS Algorithm GSS algorithms draw their name from the fact that
they search along the members of a generating set. A generating set is a set of
vectors

G =

r⋃

i=1

{vi},

such that for any x ∈ R
n we have,

x =

r∑

i=1

civi, where ci ≥ 0, i = 1, . . . , r.

This can be achieved for r ≥ n + 1, depending on the vectors in G. We will, for the
most part be concerned with sets of the form

G =
n⋃

i=1

{qi,−qi}, (1)

that is, the positive and negative of n vectors, which we in addition define to be
orthonormal. We will call G our search basis. A simple method based on this set
we will call compass search. The step length δi is associated with both qi and
−qi. Pseudo code for compass search is listed in Figure 1. An example of how the
method can work in R

2 is given in Figure 2. In the figure, G consists of vectors at a
45 degree angle to the coordinate axes. The search starts at the black node/point,
marked 0. First the method searches down and to the right, finds a better function
value and steps. This is marked by a grey node. Then it searches down and to
the left, and steps. It then searches up and to the left, but does not find a lower
function value so it does not update x. This is indicated by a white node (marked

2

Compass Search

Given x, G, δi ≥ 0, i = 1, . . . , n.

Repeat until convergence:

Select next vector from G, say, qi.

If f(x + δiqi) < f(x),

Take x + δiqi as new point.

Update δi according to some rule in accordance with convergence theory.

end.

Figure 1: Compass search code.

Γ in the figure). Then it searches down and to the right again and steps, and so
on. The step lengths remain the same throughout in this example. Compass search
be modified in many ways. For instance, what is the “next” direction in G can be
defined in more than one way, many rules of updating δi can be applied, and the
set G can be updated, although convergence theory may place some restrictions on
these updates (see e.g. [7]). The method of [6] uses a variant of compass search,
and by adaptively choosing the order in which the search directions are selected, it
is able to compute matrix of curvature information (which is an approximation to
the Hessian if the function is two times continuously differentiable) and replaces G
with the positive and negative of the eigenvectors of this matrix. In [6] numerical
results show that updating G this way can reduce the number of function evaluations
needed to converge dramatically, compared to compass search with the positive and
negative of the coordinate vectors as its search basis G. Curvature information can
be obtained by the formula

f(x + hqi + kqj)− f(x + hqi)− f(x + kqj) + f(x)

hk
= qT

i ∇2f(x+tqi+sqj)qj, s, t ∈ [0, 1],

(2)
where the equation holds for two times continuously differentiable functions. Let
CQ be a symmetric n × n matrix with the result of formula (2) as element (i, j),
with x, h and k not necessarily being the same for each (i, j)-pair. To see that
such information is obtainable in the context of compass search, consider again
Figure 2. If we look at the figure, we see that we often have four points making
up a rectangle, for instance the points marked 0, 1, 2 and Γ. Given four such
points one can compute the appropriate element of CQ with formula (2), since the
numerator of the left hand-side of (2) is made up of the function values of four
points in a rectangle. In higher dimension than 2 one can construct such rectangles
by performing extra function evaluations if this is needed. The algorithm of [6] does
this by shuffling the order in which the search directions are selected. Specifically,

3

0

1

2

3

4

Γ

Figure 2: Compass search in R
2 along vectors 45◦ to the coordinate axes.

it partitions the available directions into triples T of the form

T : ±qi qj ∓qi or T : ±qi −qj ∓qi. (3)

In Figure 2, if we define q1 as down and to the right and q2 as down and to the left,
the directions are searched in the order

q1 q2 −q1 −q2 ,

that is, one triplet of the form (3) and one leftover direction. If the search along
the first two directions of such a triplet is successful, then one will obtain the
required rectangle regardless of whether or not the search along the third direction
is successful. In Figure 2 the search in the third direction is unsuccessful, but as
mentioned the points marked 0, 1, 2 and Γ make up the required rectangle. If search
fails along either of the first two directions then one needs to compute the fourth
point of the rectangle separately. Three directions per element and 2n directions to
choose from enables computation of the order of 2n/3 elements of CQ per iteration,
although one at the most can obtain two elements in the same row or column per
iteration. Diagonal CQ elements can be computed from constellations like the points
marked Γ, 2, 3, that is, three equally spaced points along a straight line.

Alternatively, one can arrange the search directions into pairs rather than triples,
and compute an extra point for each rectangle. This is depicted in Figure 3. In
Figure 3 the point marked by a cross needs to be computed separately in each case,
and can be stepped to if it produces a lower function value, although this is not

4

Case 1 Case 2

Case 3 Case 4

Figure 3: The four possible outcomes of successive searches to the east and north. A grey
node signifies a step which has been taken, a white node signifies a step not taken. The
search starts at the black node in each case.

5

done in [5, 6]. For instance, if n = 4 and one wants to compute (CQ)21, (CQ)31,
(CQ)24, and (CQ)34, then one can order the directions

q1 q2 −q1 q3 −q2 q4 −q3 −q4 .

Here the search along q1 and q2 provides us with (CQ)21, −q1 and q3 provides us with
(CQ)31, and so on. This way we can compute the order of n elements per iteration.
More complex schemes for obtaining curvature information can be devised, but we
restrict ourselves to pairs and triples in this paper. Once the matrix CQ is complete,
the algorithm computes the matrix

C = QCQQT , (4)

which contains curvature information with respect to the standard coordinate sys-
tem.

In general one can collect curvature information even if the members of G are not
orthogonal. Let P be a matrix with linearly independent columns of unit length,
not necessarily orthogonal, and denote its ith column by pi. Let

f(x) = c + bT x +
1

2
xT Hx,

and let the symmetric matrix CP have its entry (i, j), i > j, computed by

(CP)ij =
f(x + hpi + kpj)− f(x + hpi)− f(x + kpj) + f(x)

hk
= pT

i ∇2f(xij)pj , (5)

where the point xij varies with i and j. Then, since ∇2f is equal to H for all x, we
have that

H = P−T CP P−1.

To see this, observe that since (CP)ij is the result of a difference computation
along pi and pj , the construction of the matrix CP is equivalent to finite difference
computation of the Hessian, along the coordinate vectors, of the function

g(w) = c + bT Pw +
1

2
wT P T HPw.

Here, we have
w = P−1x,

so the Hessian of g satisfies

CP = ∇2g(w) = P T HP,

and the relation follows. For non-quadratic functions we cannot expect to recover
an exact Hessian if the points xij in (5) are different for different i and j, but can
recover the matrix

C = P−TCP P−1. (6)

6

The relationship between C and ∇2f is addressed in the following Lemma, which
is a slight variation of Lemma 2 in [6]. Let CP be the matrix with entry (i, j) as in
(5), and let C be the matrix (6). Let

N =
⋃

∀i,j

xij ,

where xij are the same as in equation (5). Let

δ = max
x,y∈N

‖x− y‖,

and let

N =

{
x ∈ R

n

∣∣∣∣max
y∈N
‖x− y‖ ≤ δ

}
.

Lemma 1 Assume f : R
n 7→ R is two times continuously differentiable, and that

∇2f satisfies
‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ N . (7)

Then, C satisfies
‖C −∇2f(x̃)‖ ≤ ‖P−1‖2nLδ, (8)

where n is the number of variables, and x̃ ∈ N .

Proof. Consider the matrix
CP − P T∇2f(x̃)P. (9)

Element (i, j) of this matrix is equal to

pT
i

(
∇2f(xij)−∇2f(x̃)

)
pj,

so by the relation ‖AB‖ ≤ ‖A‖ ‖B‖ and (7) we can write

|pT
i

(
∇2f(xij)−∇2f(x̃)

)
pj| ≤ ‖pi‖ L ‖xij − x̃‖ ‖pj‖ ≤ Lδ,

where the last two inequalities hold since x̃ ∈ N . The Frobenius norm of the matrix
(9) is the square root of the sum of the squares of its n2 elements, so we have

‖CP − P T∇2f(x̃)P‖2F ≤
n∑

i=1

n∑

j=1

L2δ2 = (nLδ)2.

By applying ‖AB‖ ≤ ‖A‖ ‖B‖, we can now write

‖P−T
(
CP − P T∇2f(x̃)P

)
P−1‖ = ‖C −∇2f(x̃)‖

≤ ‖P−T ‖ ‖CP − P T∇2f(x̃)P‖F ‖P−1‖
≤ ‖P−1‖2nLδ.

�

So, the error in the matrix C compared to the Hessian increases linearly with δ.
For the rest of the paper we assume, for simplicity, that G consists of the positive

and negative of n mutually orthogonal vectors, q1, . . . , qn and that Q is the matrix
with qi as its ith column.

7

2.1 Extension to partially Separable Functions

An Extended Definition of Sparsity When a function f : R
n 7→ R is two

times continuously differentiable, one can say that if its Hessian is sparse then the
function partially separable. That is, it can be written as a sum of element functions,

f =
ν∑

i=1

fi (10)

where, with the index sets χi, signifying the elements of x that fi depends on,

χi ⊂ {1, 2, . . . , n} , i = 1, . . . , ν,

we have
fi : R

|χi| 7→ R.

In other words, f is the sum of ν element functions, which each depends on less
than n variables. (For a proof of this, see e.g. Theorem 9.3 of [11].) Let us extend
the notion of a sparse Hessian and consequent separability to non-differentiable
functions.

Given the standard coordinate vectors e1, . . . , en, define the undirected covaria-
tion graph as the graph G(V,E) with n nodes, one node for each of the n coordinate
vectors. Furthermore, let there be an edge between node i and j if and only if there
exist x, h and k such that

f(x + hei + kej)− f(x + hei)− f(x + kej) + f(x) 6= 0.

Define the adjacency matrix of a graph as the |V | × |V | matrix where element
(i, j) is 1 if there is an edge from node i to j, and zero otherwise. Since the
graph is undirected, this matrix is symmetric. Now, if the function f is two times
continuously differentiable then the structure of the adjacency matrix corresponding
to the graph G has the same structure as the Hessian matrix ∇2f . If the Hessian
is not defined, then the adjacency matrix has the same structure as the matrix CP

of (5), with P = I.

Lemma 2 If the covariation graph corresponding to a function f is sparse, then f
is partially separable.

Proof. If G is not complete, then there exists i, j for which

f(x + hei + kej)− f(x + hei)− f(x + kej) + f(x) = 0.

Without loss of generality, assume n = 2. Then we have

f(x1 + h, x2 + k)− f(x1 + h, x2)− f(x1, x2 + k) + f(x1, x2) = 0.

Now, let x1 = x2 = 0 and let h and k be the independent variables. This gives us

f(h, k)− f(h, 0)− f(0, k) + f(0, 0) = 0,

8

which can be written

f(h, k) = f(h, 0) + f(0, k)− f(0, 0).

Now we can define, for instance f1(h) = f(h, 0) and f2(k) = f(0, k) − f(0, 0), and
we have that f is if the form (10). �

A graph G(V,E) is sparse if there exist nodes i and j so that there is no edge from
i to j in the edge set E.

Note that we do not require that f is differentiable here. If the objective function
corresponds to a sparse covariation graph and sparse adjacency matrix with, say,
ρ nonzero elements in the lower triangle, then we can obtain the matrix C more
quickly than if the covariation graph is complete. In the following we for simplicity
use the word “Hessian” when discussing the structure of the adjacency matrix,
although that f is two times continuously differentiable is not a requirement for our
method to be applicable.

Application to the Optimisation Method If the search directions of the
method are ordered in doubles as outlined earlier, then computing a full Hessian of
n(n + 1)/2 elements at O(n) elements per iteration takes O(n) iterations, whereas
computing ρ elements at O(n) elements per iteration takes O(ρ

n
) iterations, which

in the case of for instance a tridiagonal Hessian, where ρ = O(n) means that we can
obtain C in a constant number of iterations, independent of n. Advantages of this
are that:

• The method can update the search basis more often, which is important on
functions like the Rosenbrock function.

• The method is effective for larger values of n than the non-sparse method
since the latter for large n sometimes does not rotate at all before terminating,
reducing it to compass search.

• The computed curvature information matrix will be more accurate compared
to the Hessian (if it exists), since they share the same identical zeros, and since
it is likely to have been computed over a smaller region.

In [5], the method of the previous section was extended to take advantage of the par-
tial separability property of functions with sparse Hessians. Sparsity must be seen
as relative to the coordinate system used, even if the second and cross derivatives
vanish at many positions in the Hessian, this does not mean that the directional
second and cross derivatives obtained when applying (2) along arbitrary directions
will be zero as often, if at all. To overcome this difficulty, one can first reformulate
the equation (4) to

QT CQ = CQ. (11)

Equation (11) can be reformulated using Kronecker products. Kronecker products
are useful in light of the relation

AXB = C ⇔ (BT ⊗A)vec(X) = vec(C). (12)

9

The operation vec(X) stacks the columns of the matrix X on top of each other in
a vector. By using (12), (11) can be rewritten as

(QT ⊗QT)vec(C) = vec(CQ). (13)

Both C and CQ are symmetric, so we can eliminate all the strictly upper triangular
elements of C from the equation system. (We can of course alternatively eliminate
elements from the lower triangle of C instead.) This we do by first adding the
columns in (QT ⊗ QT) corresponding to the upper-triangular elements of C to
the columns corresponding to its lower-triangular elements, and then delete the
former columns. After this operation we must delete the same number of rows,
specifically the rows corresponding to the upper or lower triangle of CQ. Otherwise,
the coefficient matrix will be singular. To see this, consider a simple example with
n = 2. Initially, we have equation (11), which looks like

[
Q11 Q21

Q12 Q22

] [
C11 C12

C21 C22

] [
Q11 Q12

Q21 Q22

]
=

[
(CQ)11 (CQ)12
(CQ)21 (CQ)22

]
. (14)

Equation (13) becomes

Q11Q11 Q11Q21 Q21Q11 Q21Q21

Q11Q12 Q11Q22 Q12Q21 Q21Q22

Q11Q12 Q12Q21 Q11Q22 Q21Q22

Q12Q12 Q12Q22 Q12Q22 Q22Q22

C11

C12

C21

C22

 =

(CQ)11
(CQ)12
(CQ)21
(CQ)22

 . (15)

We now want to eliminate element C12, so we add column two to column three in
(15) and delete column two, giving us the overdetermined system

Q11Q11 Q11Q21 + Q21Q11 Q21Q21

Q11Q12 Q11Q22 + Q12Q21 Q21Q22

Q11Q12 Q12Q21 + Q11Q22 Q21Q22

Q12Q12 Q12Q22 + Q12Q22 Q22Q22

C11

C21

C22

 =

(CQ)11
(CQ)12
(CQ)21
(CQ)22

 . (16)

In (16) we can see that rows two and three are the same, so we must eliminate
one of them to obtain a square system with full rank. Let us eliminate the row
corresponding to (CQ)12, and we finally get

Q11Q11 Q11Q21 + Q21Q11 Q21Q21

Q11Q12 Q12Q21 + Q11Q22 Q21Q22

Q12Q12 Q12Q22 + Q12Q22 Q22Q22

C11

C21

C22

 =

(CQ)11
(CQ)21
(CQ)22

 . (17)

A similar scheme for determining the elements of an unknown sparse matrix was
used in [4]. When C is assumed to be sparse we can eliminate the columns in the
equation system corresponding to elements of C which we know are zero. We then
have the option of eliminating up to the same number of rows. The more rows we
eliminate, the smaller the right-hand side, and the faster we can obtain the matrix
C in the context of our optimisation method. The effect on the final solution C
of removing rows depends on both the right-hand side we end up with, and on the
conditioning of the resulting coefficient matrix.

10

Existence of Non-singular Coefficient Matrix There always exists a non-
singular ρ× ρ coefficient matrix resulting from the process described above. Given
the n2 × n2 equation system

(QT ⊗QT)vec(C) = vec(CQ), (18)

we first add together the columns in the coefficient matrix corresponding to Cij and
Cji, then delete columns corresponding Cij where i < j and Cij = 0. This can be
done by right-multiplying the matrix (QT ⊗QT) with a matrix Pc. For instance, if
C is a symmetric tridiagonal 3× 3 matrix, that is

C =

× ×
× × ×
× ×

 ,

then the matrix which adds together the required columns of (QT ⊗QT) and deletes
the columns corresponding to upper triangular elements of C, as well as the zero
element in the lower triangle of C is:

Pc =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

. (19)

Since columns in (QT ⊗ QT) are deleted, we must alter vec(C) in (18) as well for
the equation to make sense. Define vec() as the operator that stacks the nonzero
elements of the lower triangle of C in a vector vec(C). This compensates for the
columns Pc removes. We can then write the reduced version of (18) as

(QT ⊗QT)Pcvec(C) = vec(CQ). (20)

The equation system (20) is over-determined, with dimension n2 × ρ. Let Pr be an
ρ× n2 matrix which selects ρ rows from an n2 × ρ matrix, that is, let Pr consist of
zeros except for one unity entry on each row. To reduce (20) to an ρ × ρ system,
we left-multiply both sides of the equality sign with Pr, which finally gives us

Pr(Q
T ⊗QT)Pcvec(C) = Prvec(CQ). (21)

Lemma 3 There exists at least one Pr such that the matrix Pr(Q
T ⊗ QT)Pc is

invertible.

11

Proof. The matrix (QT ⊗ QT) is orthogonal, and hence has full rank. Adding
together columns like the matrix Pc does is an elementary column operation (which
preserves rank), except for the fact that the columns corresponding to Cij and
Cji are set equal. The matrix Pc deletes half of these columns, thus restoring full
rank, as well as deleting additional columns corresponding to Cij known to be zero.
Consequently, the n2 × ρ matrix

(QT ⊗QT)Pc

has rank ρ, and there is at least once selection of ρ rows which results in an (ρ× ρ)
matrix of full rank. �

For simplicity, we introduce the notation

A = Pr(Q
T ⊗QT)Pc, (22)

and
cQ = Prvec(CQ).

Construction of Nonsingular A It turns out not to be obvious which rows
Pr should select when constructing A. For example, if C has a full diagonal, and
Pr does not select rows in (QT ⊗QT) corresponding to the diagonal of CQ, then A
is singular, and particularly,

Avec(I) = 0. (23)

To see this, consider the left hand-side of (23), which using (22), can be written:

Avec(I) = Pr(Q
T ⊗QT)Pcvec(I)

= Pr(Q
T ⊗QT)vec(I)

= Prvec(QT IQ)

= Prvec(I).

Now the matrix corresponding to vec(I), the identity, is diagonal, but since Pr cuts
all the rows corresponding to the diagonal, then

Prvec(I) = 0,

and we have shown that A is singular in this case. We can extend the result to:

Lemma 4 Let E be a non-zero symmetric matrix with the same sparsity structure
as C such that the vector vec(QT EQ) only has nonzero entries in positions which
are cut by Pr. Then A is singular, and, specifically,

Avec(E) = 0.

12

select rows

Let ak be row k of (QT ⊗Q
T)Pc.

Let A = ∅.
For i = 1 to ρ,

choose next aj ∈ {a1, a2, . . . , an2} \A, so that the vectors in A and aj are linearly
independent,

set A = A⋃ {aj} ,

end.

Set A to be the matrix made up of the rows in A, sorted appropriately.

Figure 4: Procedure for constructing nonsingular A.

We can always construct the matrix A in a brute-force fashion by starting with the
matrix

(QT ⊗QT)Pc, (24)

Which is an n2 × ρ matrix of full rank. (It can easily be reduced to an n(n + 1)/2 × ρ
matrix of full rank, since we know that the rows corresponding to CQ elements (i, j)
and (j, i), say, are equal.) To reduce this to a ρ× ρ matrix of full rank we can use
QR-factorisation (on the transpose of matrix (24)), which identifies which rows can
be deleted. Alternatively, and without the need for storing a large matrix, one can
build the matrix A row by row with a procedure like in Figure 4. The procedure
constructs A one row at a time checking if the last added row is linearly independent
from the previously added rows. This can be done by starting with A being zero
and maintaining a QR-factorisation of AT . That the procedure in Figure 4 always
produces a non-singular matrix A regardless of how the for-loop is implemented is
addressed in the following Lemma.

Lemma 5 The procedure select rows produces a matrix A which is nonsingular.

Proof. Let i < ρ. Let Ai be an i× ρ matrix with i linearly independent rows picked
from the rows of (QT ⊗QT)Pc, i.e. the result of select rows after i iterations of the
for-loop. Let aj be row j of Ai, j = 1, . . . , i. After iteration i we have

span {a1, . . . , ai} ⊂ R
ρ.

Since the matrix (QT ⊗QT)Pc has rank ρ, its rows span the entire space R
ρ. There-

fore, if i 6= n there will always be a row in (QT ⊗QT)Pc which, if projected into the
space

R
ρ \ span {a1, . . . , ai} ,

is nonzero. Consequently, given i < ρ linearly independent rows, one can always
find i + 1 linearly independent rows, and repeat the process until A is complete. �

13

Whether or not select rows will be effective depends on how the for-loop, and
particularly the “choose next j” statement is implemented. The heuristic of [5]
which often (but not always) produces nonsingular A-matrices, can be used for
selecting the first candidate rows. The heuristic works by noting that including a
specific row in A corresponds to computing a specific element of CQ, say, (CQ)rs.
The element (CQ)rs is computed by searching along the search directions qr and qs,
and the corresponding row in A is constructed from the same vectors. The heuristic
suggests using the (qr, qs)-pairs which mimic the most the coordinate vectors which
would have been used if Q = I, by the rule: For all (i, j), i > j, if Cij 6= 0, then
include the row in A constructed from qr and qs which satisfy

arg max
k

(qr)k = i,

and
arg max

l
(qs)l = j.

We now look at the effect of truncation errors in cQ on C.

Square System We wish to solve

Avec(C) = cQ. (25)

The right-hand side cQ is a vector whose entries are

cQ =

qT
λ1
∇2f(xλ1σ1)qσ1

...
qT
λρ
∇2f(xλρσρ)qσρ

 .

Here λ1, . . . , λρ and σ1, . . . , σρ are the appropriate orderings of the numbers 1, . . . , n.
Let

ηi = vec(∇2f(xλiσi)), i = 1, . . . , ρ, ηi ∈ R
ρ.

Then we can write

cQ =

(Aη1)1
...

(Aηρ)ρ

 ,

where (Aηi)i is the ith element of the vector Aηi. This can be written

cQ =

ρ∑

i=1

EiAηi,

where Ei is an ρ× ρ matrix with 1 in position (i, i) and zeros everywhere else. The
solution vec(C) becomes

vec(C) = A−1
ρ∑

i=1

EiAηi.

14

If all the ηi are the same, say, η, we have

vec(C) = η,

regardless of which elements of CQ we choose to compute. If the ηi are not equal
the solution vec(C) will not be independent of which CQ elements are computed,
but it can be shown that the resulting matrix C satisfies

‖C −∇2f(x̃)‖F ≤
√

2κ(A)ρLδ,

for some x̃ ∈ N . κ(A) means the condition number of A. So, the error in C grows
linearly with δ as before, and the condition number of A is a factor. The proof
of this is given in [5], and is similar to the proof we give for least squares solution
below.

Least Squares Solution It is possible to pick more than ρ rows from (QT ⊗QT)Pc

when reducing the size of the equation system. If we choose to compute m elements,
ρ < m ≤ n(n + 1)/2, we get an over-determined equation system which can be writ-
ten

P̂r(Q
T ⊗QT)Pcvec(C) = P̂rvec(CQ), (26)

where P̂r is an m×n2 matrix which deletes the appropriate rows. (26) can be solved
through least-squares solution. Define

Â = P̂r(Q
T ⊗QT)Pc,

and
ĉQ = P̂rvec(CQ),

then (26) can be written
Âvec(C) = ĉQ, (27)

with least squares solution

vec(C) = arg min
c
‖Âc− ĉQ‖2.

Here Â is an m× ρ matrix. ĉQ is m× 1 and can be written

ĉQ =

m∑

i=1

EiÂηi,

where Ei this time is an m × m matrix with zeros everywhere except for a 1 in
position (i, i), so that

vec(C) = (ÂT Â)−1ÂT

m∑

i=1

EiÂηi. (28)

15

Here we assume that (ÂT Â) is invertible. If the ηi are all equal the solution is the
same as for the square system. If the ηi are not equal then we can write (28) as

vec(C) = η + (ÂT Â)−1ÂT

m∑

i=1

EiÂεi

where
η = vec(∇2f(x̃)),

for some x̃, and
εi = ηi − η.

Let
c = vec(C).

We then have

‖c− η‖ = ‖
m∑

i=1

(ÂT Â)−1ÂT EiÂεi‖,

an upper bound on which is

‖c− η‖ ≤ m‖(ÂT Â)−1‖ ‖ÂT ‖ ‖Â‖ max
i
‖εi‖.

If f satisfies (7), then it can be shown that

max
i
‖εi‖ ≤ Lδ,

so that
‖c− η‖ ≤ ‖(ÂT Â)−1‖ ‖ÂT ‖ ‖Â‖ mLδ,

which implies

‖C −∇2f(x̃)‖F ≤ ‖(ÂT Â)−1‖ ‖ÂT ‖ ‖Â‖
√

2mLδ,

since, for a symmetric matrix with ρ nonzero elements in the lower triangle, say, B,
we have

‖B‖F ≤
√

2‖vec(B)‖.

2.2 A Generalised Sparse Covariation Graph

Consider the function
f(x) = (x1 + x2)

2. (29)

The covariation graph of this function is complete and its Hessian is full, namely

∇2f(x) =

[
2 2
2 2

]
.

16

There are three elements in the lower triangle, but these all have the same value.
As we will see, it is possible to compute the entire Hessian using only one finite
difference computation in this case. To see how this can be the case, observe that
for

U =
1√
2

[
1 1
1 −1

]
,

we have

UT∇2f(x)U =

[
4 0
0 0

]
,

which has only one nonzero element. This gives rise to the following technique. De-
fine the covariation graph with respect to the n×n nonsingular matrix U , GU (V,E),
with n nodes, where each node corresponds one-to-one to a column in U . Let there
be an edge between node i and j of GU if and only if there exist x, h, k such that

f(x + hui + kuj)− f(x + hui)− f(x + kuj) + f(x) 6= 0.

Lemma 6 If the covariation graph of f with respect to a nonsingular matrix U ,
GU (V,E) is not complete, then the function is partially separable, and subject to
a change in variables can be written as a sum of element functions, each with an
invariant subspace.

Proof. We have

f(x + hui + kuj)− f(x + hui)− f(x + kuj) + f(x) = 0,

for all x, h and k. Without loss of generality assume that n = 2 and x = 0. For
simplicity, let us write u1 = p, u2 = q, and let q1 be element 1 of q, and so on. Then
we can write

f(hp1 + kq1, hp2 + kq2)− f(hp1, hp2)− f(kq1, kq2) + f(0, 0) = 0,

which is the same as

f(hp1 + kq1, hp2 + kq2) = f(hp1, hp2) + f(kq1, kq2)− f(0, 0). (30)

Let g(h, k) be the function f
(
y(h, k)

)
, where

y(h, k) =

[
p1 q1

p2 q2

] [
h
k

]
,

using that p and q are linearly independent. Then, (30) can be written

g(h, k) = g1(h) + g2(k),

where for instance

g1(h) = f(hp1, hp2), and g2(k) = f(kq1, kq2)− f(0, 0),

17

and g is a sum of element functions, each of which are invariant to changes in one
of the variables. �

Assume for simplicity that U is orthogonal. Now we can compute a full matrix
C with only ρ finite difference computations along the directions of an orthogonal
matrix Q, if there exists an orthogonal matrix U such that CU is sparse, with ρ
nonzero elements in the lower triangle. Usually, we compute ρ elements of the
matrix CQ and impose a sparsity structure on the matrix C in the equation

C = QCQQT .

The matrix C is not sparse in the current context, but let us impose the appropriate
sparsity structure on the matrix

Y = UT CU.

Then, we get
Y = UT CU = UT QCQQT U,

which leads to
QT UY UT Q = CQ,

which can be written

(QT U ⊗QT U)vec(Y) = vec(CQ).

Using the same techniques as described before, one can reduce the size of this n2×n2

equation system to ρ× ρ and obtain the matrix Y , and finally obtain the matrix

C = UY UT . (31)

To give a concrete example, let us consider an extension of the function (29) to
dimension n,

f(x) = (x1 + · · ·+ xn)2. (32)

Here, let U be an orthogonal matrix with e/
√

n, e being a vector of all ones, as
its first column. The structure of the matrix U T∇2f(x)U is all zero except for
the element in position (1,1). Let Q be an arbitrary orthogonal matrix, and let us
compute the finite difference

(CQ)12 = f(x + q1 + q2)− f(x + q1)− f(x + q2) + f(x),

for some arbitrary x. With the appropriate matrices Pr and Pc we can now construct
the 1× 1 equation system

Pr(Q
T U ⊗QT U)Pcvec(Y) = cQ,

which gives us
vec(Y) = Y11 = 2n.

From this we can compute C from (31), which becomes a matrix of all 2’s, which is
equal to the exact Hessian of (32).

18

2.3 Convergence Theory

A summary of convergence theory for various types of GSS methods on continuously
differentiable functions is given in [7]. Since we update the search basis regularly,
there are two ways of ensuring global convergence, according to the theory of [7].
One is placing restrictions on when the basis may be updated, and when step lengths
may be reduced and increased. This is incorporated into the method of [6]. However,
the aim of the current method is to update the basis as often as possible, and this
conflicts with the restrictions on basis updates. Consequently, we must ensure global
convergence in a different way.

The second option is to enforce sufficient, rather than simple decrease [9]. By
simple decrease we mean that a step is accepted if

f(x + δiqi) < f(x). (33)

By sufficient decrease we mean accepting a step if

f(x + δiqi) < f(x)− ρ(δi), (34)

where ρ(t) is a nondecreasing continuous function, which in this context additionally
is required to satisfy

ρ(t) = o(t), when t ↓ 0,

for the method to be provably convergent. A function which accomplishes this is

ρ(t) = γ1 · tγ2 , (35)

for γ1 < 0 and γ2 > 1. To allow for long steps γ1 should be small, so we tentatively
set

γ1 = 10−4,

inspired by the Wolfe conditions for line search (see e.g. [11], chapter 3), and γ2 = 2.

2.4 Algorithm Pseudo Code

Pseudocode for the algorithm is given in figures 5 and 6. For simplicity, Figure 5
and the following discussion does not cover the material of section 2.2, since this
extension is relatively straightforward. Let us look at the main part, Figure 5, line
by line. The first part is initialisation, which is determining the initial search vectors,
the positive and negative of the unit coordinate vectors in our implementation, as
well as the initial step lengths, which we in our numerical experiments choose by
the rule:

- If |x0
i | > 0, δi = 0.05|x0

i |.
- If x0

i = 0 and ‖x0‖ > 0, δi = 0.05‖x0‖.
- If ‖x0‖ = 0, δ = 0.05e, where e is a vector of all ones.

19

It must be decided which elements of CQ should be computed, which for Q = I we
set as the same elements as the nonzero elements of the lower triangle of C.

The main while loop of the algorithm first tests if the method is deemed to have
converged. There exist several possible convergence criteria, and and replacing one
with another in an algorithm is usually easy. We suggest either

max
i

δi

‖x‖ < tolerance,

or just
max

i
δi < tolerance,

depending on whether or not the variable is assumed to approach zero over the
course of the optimisation.

Next, the method orders the search direction for the given iteration. This is
done the same way as outlined for the method not exploiting sparsity, by ordering
the directions into pairs.

Searching along a direction is done as in Figure 6, where a point is taken if
it gives sufficient decrease. If sufficient decrease is obtained, the method tries to
double the step length.

Having searched along two directions, the method computes a fourth point as
depicted in Figure 3 and computes the appropriate element of CQ. For the re-
maining directions after all pairs of directions are have been searched along, the
method searches along the remaining directions without considering off-diagonal
CQ elements, but still potentially computing diagonal CQ elements.

When we are finished searching along all 2n directions, the method updates step
lengths according to the rule:

- For those j where no step was taken along either qj or −qj, set δj ← 1
2δj .

Once all required off-diagonal elements of CQ have been computed, the search
directions are updated. First we must compute all remaining required diagonal
elements, if any. Then we solve the equation system (21) or (26) depending on
whether we want to solve an over-determined equation system or not. From the
solution we obtain the matrix C, and set the positive and negative of its eigenvectors
as the new search directions. In addition we update step lengths. Let Qold be the
matrix with the n unique (apart from sign) old basis vectors, and Qnew the matrix
containing the corresponding new basis vectors. We update step lengths by the rule

δnew =

∣∣∣∣
(
QT

newQoldδold

) ∣∣∣∣,

the absolute value sign meaning absolute value of each element of the vector QT
newQoldδold,

a relation deduced from wanting to maintain

Qnewδnew = Qoldδold,

20

and wanting to keep all step lengths nonnegative.
Next, since Q has changed we must determine which elements of CQ are to be

computed , which is equivalent to generating the matrix A discussed in section 2.1.
This is done with the procedure select rows of Figure 4. If we want to solve an over-
determined equation system then we in the experiments first select rows the using
the method select rows, then select the desired number of extra rows by picking the
first available elements on the diagonal of CQ, then on the first sub-diagonal, and
so on. When the new basis is in place we perform four compass search iterations
along the new search basis before starting to compute CQ and C. The reason for
this, based on initial numerical experience is that it is not helpful to update the
basis too often (i.e. at every iteration, which can be done if C is e.g. tridiagonal),
so we wait for a little while before pursuing a new search basis. It may of course
well be that better rules exist than to just wait four iterations.

Initialise

While not converged

Order directions

For each direction pair

Search along first direction

Search along second direction

Compute extra point and CQ element. Update iterate if extra point gives
sufficient decrease.

end.

For each of remaining directions

Search along direction

Update step lengths

If all desired off-diagonal CQ elements have been computed

Compute remaining desired diagonal elements. Update iterate if a point
giving sufficient decrease is found in the process.

Change basis and update step lengths

Determine which CQ elements are to be computed

Perform ordinary compass search along new basis for 4 iterations.

Figure 5: Pseudocode for the algorithm.

21

Given current iterate x, search direction qi, step length δi, γ1 and γ2

If f(x + δiqi) < f(x)− γ1δ
γ2

i

If f(x + 2 · δiqi) < f(x)− 2 · γ1δ
γ2

i ,

Take x + 2 · δiqi as new point.

Set δi ← 2 · δi.

Else

Take x + δiqi as new point.

Compute

(CQ)ii =
f(x + 2δiqi)− 2f(x + δiqi) + f(x)

δ
2
i

.

end.

Figure 6: Searching along a direction.

3 Numerical Results

The method was implemented in Matlab, and tested on functions from [10]. The
functions chosen for testing are:

• The extended Rosenbrock function. This function, used in designing the Rosen-
brock method [13], has a block-diagonal Hessian with block size 2. The func-
tion is designed to have search methods follow a curved valley, so we expect
good results on this function.

• The Broyden tridiagonal function. This function has a tridiagonal Hessian.

• The extended Powell singular function. This function has a block diagonal
Hessian matrix, with block size four. The Hessian is singular in certain sub-
spaces of the domain of the objective function, most importantly at the optimal
solution.

• The discrete boundary value function. This function has a Hessian with five
diagonals.

• The Broyden banded function. This function has a Hessian with 13 diagonals.

The results for these smooth functions are given in Table 1. The column “Sparse”
contains the number of function evaluations performed to reduce the function value
to less than 10−5, when starting from the recommended starting point and com-
puting only the number of CQ elements needed, that is, ρ elements. The column
“LSQ” lists the number of function evaluations to reduce the function value below
the same level, but computing 1.5 times the number of CQ elements strictly needed.
“Full” lists the results of computing the entire matrix CQ. The reason we halt the
methods rather then letting them run until they are deemed to have converged is

22

that we are interested in studying the rate of decline produced by the methods,
rather then the effects of a stopping criterion. To prevent stagnation, the methods
were also halted if

max
i

δi ≤ 10−7. (36)

In general one can say that the “Sparse”-column contains the best results and
the “Full”-column the worst, with the “LSQ”-column somewhere in between, and
that the relative differences between the columns depend on the function. On the
extended Powell Singular function, if we do not halt the methods after a value
below 10−5 is obtained, then all of the methods perform a huge number of function
evaluations without making much progress. The true Hessian becomes more and
more ill-conditioned along the paths the methods follow, so it would seem that
singular Hessians lead to bad search directions since zero eigenvalues can correspond
to arbitrary eigenvectors.

We then add noise to the functions, by testing on the function

f̃(x) = f(x) + max
{
10−4 · f(x), 10−4

}
· µ,

where −1 ≤ µ ≤ 1 has a uniform random distribution. We run each instance 10
times, and halt the methods when the objective function value drops below 10−2.
The results are given in Table 2, the average number of function evaluations being
listed. In some instances the methods fail to produce a function value lower than
10−2 before they are halted by the criterion (36). For those instances where this
happened all 10 times, the corresponding entry in the tables says “Fail”. If a method
failed on some, but not all 10 runs, then there is a number in parentheses after the
average number of evaluations, the number is the number of successful runs, and
the average number of function evaluations listed is over those successful runs only.

The picture is largely the same as for smooth functions. As n grows, it be-
comes beneficial to use the “Sparse” or “LSQ” approach. The “Full” approach fails
frequently for large n.

4 Summary

We have presented a provably convergent GSS method which exploits average cur-
vature information as well as partial separability. Numerical results have shown that
taking separability into account gives a method which usually produces a faster rate
of function value decline than not doing so, on smooth as well as noisy functions. In
addition, the method exploiting separability succeeds on some noisy problems for
large n where its counterpart fails.

23

Function n Sparse LSQ Full

Extended Rosenbrock 4 603 637 653
8 1249 1346 1938

16 2497 2693 6093
32 4993 5514 18399
64 10273 10538 50163

128 20545 21941 184136
Ext. Powell Singular 4 237 - 204

8 355 572 788
16 936 961 1890
32 1804 2351 5793
64 4669 5915 21797

128 9346 8777 77257
Broyden Tridiagonal 4 219 - 168

8 390 376 449
16 851 897 1003
32 1791 1803 2377
64 3563 3366 5779

128 7611 8000 12035
Discrete boundary value 4 81 - 82

8 191 195 237
16 913 629 1028
32 844 846 3522

Broyden banded 4 215 - 230
8 499 - 500

16 994 - 1156
32 2240 2373 2342
64 4735 4648 5081

128 9242 10344 10647

Table 1: Number of function evaluations needed to reduce the objective function value to
less than 10−5, with γ1 = 10−4 and γ2 = 2. In the experiments reported in the LSQ column
1.5 times the needed amount of CQ elements were computed. A “-” entry signifies that
1.5 times the number of needed elements exceeds the total number of available elements
in CQ.

24

Function n Sparse LSQ Full

Extended Rosenbrock 4 496.8 528.3 528.7
8 1022.0 1126.5 1753.2

16 2069.3 2298.1 5604.5(8)
32 4284.2 4771.4 Fail
64 8919.4 9900.8 Fail

128 18773.8 22542.2 Fail
Ext. Powell Singular 4 128.8 - 115.5

8 268.5 262.9 515.0
16 578.4 561.5 1441.7
32 1448.1 1485.4 2428.5(2)
64 3519.4 3452.7 Fail

128 7306.3 8745.3(9) Fail
Broyden Tridiagonal 4 135.9 - 82.4

8 223.6 223.2 231.9
16 428.4 443.0 608.4
32 862.9 868.5 1515.3
64 1804.8 1809.9 3098.1

128 3947.6 4060.1 6207.5
Broyden banded 4 143.2 - 145.8

8 319.6 - 310.5
16 713.0 - 691.3
32 1493.8 1596.3 1594.9
64 3144.4 3197.4 3534.8

128 6810.8 6690.0 7592.0

Table 2: Number of function evaluations needed to reduce the objective function value
with noise added to less than 10−2, with γ1 = 10−4 and γ2 = 2. Average over 10 runs
listed.

25

References

[1] M. A. Abramson, C. Audet, and J. E. Dennis, Jr. Generalized pattern searches
with derivative information. Mathematical Programming, Series B, 100:3–25,
2004.

[2] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for
constrained optimization. Les Journées de l’Optimisation 2004, 2004.

[3] I. D. Coope and C. J. Price. A direct search conjugate directions algorithm for
unconstrained minimization. ANZIAM Journal, 42(E):C478–C498, 2000.

[4] R. Fletcher, A. Grothey, and S. Leyffer. Computing sparse hessian and jacobian
approximations with optimal hereditary properties. In L. Biegler, T. Coleman,
A. Conn, and F. Santosa, editors, Large-Scale Optimization with Applications,
Part II: Optimal Design and Control. 1997.

[5] L. Frimannslund and T. Steihaug. A generating set search method exploiting
curvature and sparsity. In Proceedings of the Ninth Meeting of the Nordic
Section of the Mathematical Programming Society, pages 57–71, Linköping,
Sweden, 2004. Linköping University Electronic Press.

[6] L. Frimannslund and T. Steihaug. A generating set search method using curva-
ture information. To appear in Computational Optimization and Applications,
2006.

[7] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM Review, 45(3):385–
482, 2003.

[8] R. M. Lewis, V. Torczon, and M. W. Trosset. Direct search methods: Then and
now. Journal of Computational and Applied Mathematics, 124(1–2):191–207,
December 2000.

[9] S. Lucidi and M. Sciandrone. On the global convergence of derivative-free meth-
ods for unconstrained optimization. SIAM Journal on Optimization, 13(1):97–
116, 2002.

[10] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained opti-
mization software. ACM Transactions on Mathematical Software, 7(1):17–41,
1981.

[11] J. Nocedal and S. J. Wright. Numerical Optimization. Springer–Verlag, 1999.
ISBN 0–387–98793–2.

[12] C. P. Price and P. Toint. Exploiting problem structure in pattern search
methods for unconstrained optimization. Optimization Methods and Software,
21(3):479–491, 2006.

[13] H. H. Rosenbrock. An automatic method for finding the greatest or least value
of a function. The Computer Journal, 3(3):175–184, Oct. 1960.

26

[14] V. Torczon. On the convergence of pattern search algorithms. SIAM Journal
on Optimization, 7(1):1–25, 1997.

27

Paper V

A class of Methods Combining L-BFGS and

Truncated Newton
∗

Lennart Frimannslund
†

Trond Steihaug
‡

March 31, 2006

Abstract

We present a class of methods which is a combination of the lim-
ited memory BFGS method and the truncated Newton method. Each
member of the class is defined by the (possibly dynamic) number of
vector pairs of the L-BFGS method and the forcing sequence of the
truncated Newton method. We exemplify with a scheme which makes
the hybrid method perform like the L-BFGS method far from the solu-
tion, and like the truncated Newton method close to the solution. The
cost of a method in the class of combined methods is compared with
its parent methods on different functions, for different cost schemes,
namely the cost of finite difference derivatives versus AD derivatives,
and whether or not we can exploit sparsity. Numerical results indi-
cate that the example hybrid method usually performs well if one of
its parent methods performs well, to a large extent independent of the
cost of derivatives and available sparsity information.

Keywords: Limited memory BFGS, truncated Newton, automatic
differentiation, sparsity.

1 Introduction

We consider the unconstrained optimisation problem

min
x∈Rn

f(x), (1.1)

∗This work was supported by the Norwegian Research Council (NFR).
†Department of Informatics, University of Bergen, Box 7800, N-5020 Bergen, Norway.

E-mail: lennart.frimannslund@ii.uib.no
‡Department of Informatics, University of Bergen. E-mail: trond.steihaug@ii.uib.no

1

where f : R
n → R is two times continuously differentiable. If the

Hessian is available one may use Newton’s method for solving (1.1).
At the heart of a Newton iteration is the solution of the step equation,

∇2f(xk) pk = −∇f(xk). (1.2)

If only gradients are available, one can use quasi-Newton methods,
such as the BFGS method, which typically maintains an approxima-
tion H to the inverse of the Hessian, which gives the step equation

−Hk∇f(xk) = pk, (1.3)

See e.g. [12] and the references therein. Both Newton’s method and
quasi-Newton methods require O(n2) storage. If memory is limited
and the product of the Hessian with an arbitrary vector is available,
one may use an iterative method to solve (1.2). Solving (1.2) full ac-
curacy at each iteration corresponds to the regular Newton’s method.
Alternatively, one can solve (1.2) inexactly when far form the solution,
and to an increasing degree of accuracy as one approaches the opti-
mal solution. The latter method is called a truncated Newton (TN)
method [6, 7]. If only gradients are available and memory is limited,
one may use a discrete truncated Newton method (DTN) such as in
[19, 7]. DTN uses gradients to approximate the product of the Hessian
with an arbitrary vector. An alternative is a limited memory quasi-
Newton method such as the limited memory BFGS (L-BFGS) method
[17, 11, 8], which maintains a user-defined portion of the information
contained in the Hessian approximation of the full BFGS method.

Several attempts have been made to create a method which com-
bines the properties of the (discrete) truncated Newton method and
the L-BFGS method. It has been proposed to use the difference pairs
accumulated by L-BFGS as a preconditioner for the iterative solution
of the step equation [16], using difference pairs from within a conju-
gate gradient (CG) solution process to provide fresh difference pairs
for the L-BFGS method [3, 13], and using inexact or exact Hessian
information to create an incomplete or modified Cholesky precondi-
tioner for determining the matrix Hk

0 used by the L-BFGS method
[10, 20]. This idea stems from proposition 1.7.3 in [1]. In this paper
we present a novel class of methods which combines the truncated
Newton method and the L-BFGS method. We determine the matrix
Hk

0 using Hessian information in conjunction with an iterative equa-
tion solver such as the conjugate gradient (CG) method. The reason
we consider the L-BFGS specifically, is that is has the advantage over
other limited memory quasi-Newton methods that the product involv-
ing H0 is isolated from the rest of the computations [2]. Specifically,
we will numerically test the performance of a method in the class

2

which behaves like the L-BFGS method when far from the solution,
and like truncated Newton when close to the solution. The reason for
this is the same logic that lies behind truncated Newton, that accurate
second-order information is more important close to the solution than
far from it.

This paper is organised as follows. In section 2 we describe the
truncated Newton method, BFGS and L-BFGS. In section 3 we outline
the hybrid approach, give numerical results in section 4 and give some
concluding remarks in section 5.

2 Truncated Newton and Limited Mem-

ory BFGS

A truncated Newton method makes use of an iterative solver to solve
(1.2), inexactly. Let p̃k be an inexact solution to (1.2). If the relative
residual of the step equation, that is,

‖∇2f(xk)p̃k +∇f(xk)‖

‖∇f(xk)‖
,

is forced to conform to a forcing sequence, a sequence ηk, k = 1, . . .
where

ηk < 1 for all k,

then the truncated Newton method can be shown to converge [6]. An
example of an effective forcing sequence is

‖∇2f(xk)p̃k +∇f(xk)‖

‖∇f(xk)‖
≤ ηk, ηk = min

{
1/k, ‖∇f(xk)‖

}
, (2.1)

which was introduced in [7]. Most iterative solvers do not require
an explicit representation of the coefficient matrix itself, instead only
the product of the matrix with an arbitrary vector. Discrete Newton
methods take advantage of this by observing that

∇2f(x)v ≈
∇f(x + εv)−∇f(x)

ε
, (2.2)

and use this finite difference estimate as the product needed by the
iterative equation solver. If one combines these two techniques, one
gets a discrete truncated Newton method.

Limited-memory BFGS or L-BFGS [17, 11] is a modification of the
BFGS method. BFGS usually works by by maintaining an approxi-
mation to the inverse of the Hessian. It performs a rank-two update at

3

each iteration. Specifically, given the approximation H k at iteration
k,

Hk ≈
(
∇2f(xk)

)−1
,

and given

yk = ∇f(xk+1)−∇f(xk) and sk = xk+1 − xk,

then Hk+1 is taken to be

Hk+1 = (I − ρksk(yk)T)Hk(I − ρkyk(sk)T) + ρksk(sk)T , (2.3)

where

ρk =
1

(yk)T sk
.

The initial approximation to the inverse of the Hessian is up to the
user. From the update formula (2.3) one can say that BFGS “remem-
bers” the effect of all difference pairs (yi, si), i = 1, . . . , k. In L-BFGS
the number of difference pairs (yi, si) is a user-defined parameter, and
only the most recent, say, m differences are kept. This leads to signif-
icant reduction in memory usage when m � n, since the product of
Hk with an arbitrary vector can be computed from a two-loop formula
without the need for storing an n×n matrix, only storing m difference
pairs. If k < m, then the method uses the k difference pairs it has
available.

L-BFGS Update Formula Let µ be a vector of the appropriate
length, and µi be its ith component. The two-loop procedure for
computing r = Hkv is given below:

q = v

for i = k − 1 step -1 until k −m

µi = ρi · (si)T q

q = q − µiyi

end

r = Hk
0 q

for i = k −m step 1 until k − 1

β = ρi · rT yi

r = r − (β − µi)s
i

end

4

Note that the choice of matrix Hk
0 is, again, not defined but up

to the user. One may choose Hk
0 = I to avoid an extra matrix-vector

product, but a choice which has proved to be successful is to set

Hk
0 =

(sk−1)T yk−1

(yk−1)T yk−1
· I, (2.4)

which is supported by numerical testing in [11], where several choices
for H0 are tested. In [8] similar numerical tests indicate that a diagonal
matrix based of the diagonal of a BFGS-type approximation to the
Hessian may perform even better than (2.4).

The reduced cost of the above formula compared to regular BFGS
comes at the cost of convergence rate, which is linear for the L-BFGS
method. L-BFGS can also require a very large number of iterations
on ill-conditioned problems.

Globalization For Newton-based methods to be globally conver-
gent, that is, converge to the solution from an arbitrary starting point,
one approach is to use line searches. We will use line searches satis-
fying the strict Wolfe conditions (see e.g. [18], chapter 3.1), that is,
given the solution to (1.2), at iteration k then the next iterate, xk+1

is taken to be
xk+1 = xk + αkpk,

for αk satisfying

f(x + αkpk) ≤ f(xk) + c1α
k∇f(xk)T pk, (2.5)

and
|∇f(xk + αkpk)T pk| ≤ c2|∇f(xk)T pk|, (2.6)

with c1 = 10−4 and c2 = 0.9 [11]. In our experiments we will use a
line search procedure based on that of [15].

3 Hybrid Approach

Consider the assignment
r = Hk

0 q, (3.1)

between the two for-loops in the L-BFGS formula for r = H kv. If Hk
0

were the inverse of the Hessian at xk, then (3.1) would correspond to

∇2f(xk) r = q. (3.2)

Let r̃ be an inexact solution to (3.2), with relative residual

‖q −∇2f(xk)r̃‖

‖q‖
.

5

We wish to combine TN with L-BFGS by replacing r from (3.1) in the
two-loop formula with r̃, obtained by applying an iterative equation
solver to (3.2). As a starting point for the iterative method we will
use the formula normally used by L-BFGS, that is

(sk−1)T yk−1

(yk−1)T yk−1
· q. (3.3)

This gives the following algorithm:

Given x0, k = 0.

while ‖∇f(xk)‖ > tolerance,

k ← k + 1.

v = −∇f(xk).

Perform first L-BFGS for-loop, resulting in vector q.

Solve ∇2f(xk)r = q to some tolerance with (3.3) as the

initial guess, resulting in vector r̃.

Set r = r̃.

Perform second L-BFGS loop, resulting in search direction pk.

Find αk satisfying (2.5) and (2.6).

Set xk+1 ← xk + αkpk.

Optionally adjust m.

Update difference pairs (si, yi), i = max {1, k −m} , . . . , k.

end

If m = 0 the code and (3.2) is solved to tolerance (2.1), then the
code reduces to truncated Newton with (2.1) as forcing sequence. If
no iterations are performed on (3.2) and the initial solution (3.3) is re-
turned, then the code becomes L-BFGS. In our numerical experiments
we for the hybrid method use the rule that (3.2) should be solved to
tolerance

‖q −∇2f(xk)r̃‖

‖q‖
≤ τ (3.4)

where k is the (outer) iteration number, and τ is given by the rule:

• If ‖q‖ ≥ 1, τ = 1.

• If ‖q‖ < 1, τ = max
{
1/k, ‖q‖

}
.

6

Note that this particular rule should not necessarily be used for m = 0,
were we recommend (2.1) instead. In our experiments we use (2.1) for
the truncated Newton method. See [6].

In our experiments we solve (3.2) with the conjugate gradient
method. We do not require in general that the number of difference
pairs m is constant, but in our experiments we use m = 3.

4 Numerical Testing

We wish to test the theoretical cost of the chosen hybrid method
compared to the theoretical cost of the corresponding L-BFGS and
truncated Newton methods. We calculate the following costs:

• L-BFGS: One function evaluation and one gradient evaluation
per iteration.

• Truncated Newton: One function evaluation, one gradient eval-
uation, and a variable amount of Hessian-vector products per
iteration.

• Hybrid method: One function evaluation, one gradient evalua-
tion, and a variable amount of Hessian-vector products per iter-
ation.

When it comes to line search, in our initial experiments the value
αk = 1 was usually accepted. If αk = 1 is the first test value for αk

[11], then one does not need interpolation or similar procedures which
incur extra cost most of the time. If αk = 1 is not accepted, then the
cost of a line search may vary to a very large extent depending on the
implementation. In our experiments we add 1/10 times the cost of
one gradient and one function evaluation to the cost of an iteration,
which corresponds to one extra function and gradient evaluation by
the line search once every ten iterations. When it comes to the cost
of gradients and Hessian-vector products, we test four different situa-
tions. These are whether or not AD is available, and whether or not
the sparsity structure of the Hessian can be exploited. If the Hessian
is sparse and the sparsity structure is known, then the Hessian can be
obtained cheaply from a compressed Hessian matrix with techniques
like that of Curtis, Powell and Reid (CPR) [4]. If CPR techniques are
available we take the view that if the number of Hessian-vector prod-
ucts needed in the iterative method is larger than ρ, the number of
products needed to determine ∇2f from a compressed Hessian matrix,
then the cost is only that of ρ such products. This may or may not
be a realistic view, but this depends on the relative cost of derivative
computations to the operations used to form Hessian vector products

7

Case AD Compr. Hess. C(∇f) C(∇2
f · v)

1 No Yes nC(f) (n + 1)C(f)
2 No No nC(f) (n + 1)C(f)
3 Yes Yes 5C(f) 12C(f)
4 Yes No 5C(f) 12C(f)

Table 4.1: The four scenarios plotted for each test function.

from a compressed Hessian. We take the view that when AD is avail-
able, the gradient can be computed at five times the cost of a function
evaluation, and that a Hessian-vector product costs 12 function eval-
uations (see e.g. [18], chapter 7.2). Actual costs in time and memory
are discussed in [14], and these numbers are in accordance with the
numbers used here. Define C(f) as the cost of one function evalua-
tion. As mentioned, for each problem we test four situations. These
are listed in Table 4.1. The first column in the table lists the num-
ber for each case. If we for instance look at case 1, then we see that
AD is not available, but we can determine Hessian-vector products
from a compressed Hessian. Since AD is not available, we calculate
the cost of gradients and Hessian vector products as they would be
if computed with finite difference formulas. The cost of a gradient
is then usually (n + 1) times that of a function evaluation, but since
we (in the context of an iterative optimisation method) already have
the function value, we set the cost to be n times that of a function
value. Similarly for Hessian vector products, this usually requires two
gradients, but since we already have one of the necessary gradients in
the optimisation method, we write only the cost of one gradient. This
cost scheme covers relative costs of gradients to Hessian vector prod-
ucts in the discrete truncated Newton method, where a Hessian vector
product costs the same as an (extra) gradient evaluation. Similarly, it
covers the situation where an analytically available gradient costs the
same as an analytically available Hessian-vector product if we ignore
the relative cost of derivatives to the cost of function values.

We test the three methods on the three problems of [5], as well as
six problems from the CUTEr collection [9], with convergence criterion

‖∇f(x)‖ ≤ 10−4.

For each problem we list four figures, with equivalent cost in func-
tion evaluations along the x-axis, and the norm of the gradient along
the y-axis. For each problem we have AD-derivatives or hand-coded

8

derivatives, so the costs in the figures are estimates. The four figures
correspond to the four cases of Table 4.1, with case 1 and 2 in the first
row, and 3 and 4 in the second. The dash-dotted, sometimes oscillat-
ing curve corresponds to L-BFGS, the solid line with stars (one star
for each outer iteration) corresponds to truncated Newton, and the
dashed line corresponds to the hybrid approach. On the HILBERTB
function (Figure 4.7) the L-BFGS and hybrid curves are indistinguish-
able.

On the first three functions, when CPR techniques are available
the curves corresponding to the truncated Newton method take sharp
dips. This sometimes happens for the hybrid method as well, notably
on problem two, but at a slightly later stage than for TN. When CPR
techniques are not available the methods perform quite similarly, with
the hybrid method frequently in second place, regardless of which
method is the fastest.

On the extended Rosenbrock function the curve of the hybrid
method is takes a dip when that of TN does, at a slightly later stage.
When CPR techniques are not available, it performs as good as identi-
cally to L-BFGS (which performs the best) when AD is not available,
and close to it when AD is available (case 4).

On the DIXMAANL problem, the hybrid method performs simi-
larly to TN, which performs the best in three of four cases.

On the chained Rosenbrock problem the hybrid method performs
the best in case two, slightly worse than L-BFGS in case 4 and is able
to benefit from CPR techniques like it did on the second problem, that
is, in a similar fashion as TN but at a slightly later stage.

On the HILBERTB problem, the hybrid method together with
L-BFGS performs the best in all cases.

On the penalty I function we get very interesting curves, which are
in a sense optimal for a hybrid method. Initially, the hybrid method
follows the steepest curve, namely that of L-BFGS, and when L-BFGS
stagnates continues at the pace of TN.

A similar, but less obvious picture appears for the penalty II func-
tion.

5 Concluding Remarks

We have presented a class of hybrid L-BFGS/TN methods, and tested
the performance of one of the members in the class compared with
its corresponding parent methods. In some of our tests, the hybrid
method followed the best curve of its parent methods closely, in other
tests it fell between its two parents.

9

0 0.5 1 1.5 2 2.5 3
x 104

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 1, CPR(12), no AD

TN
Hybrid
L−BFGS

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 2, No CPR, no AD

0 50 100 150 200 250
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 3, CPR(12), AD

0 50 100 150 200 250 300 350 400 450
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 4, No CPR, AD

Figure 4.1: Problem 1 from [5], well conditioned, ρ = 12, n = 916.

10

0 1 2 3 4 5 6 7
x 105

10−8

10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 1, CPR(12), no AD

TN
Hybrid
L−BFGS

0 1 2 3 4 5 6 7 8 9
x 105

10−8

10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations
G

ra
di

en
t n

or
m

Case 2, No CPR, no AD

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10−8

10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 3, CPR(12), AD

0 2000 4000 6000 8000 10000 12000
10−8

10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 4, No CPR, AD

Figure 4.2: Problem 2 from [5], ill-conditioned, ρ = 12, n = 916.

11

0 0.5 1 1.5 2 2.5
x 104

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 1, CPR(12), no AD

TN
Hybrid
L−BFGS

0 0.5 1 1.5 2 2.5 3
x 104

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Number of equivalent function evaluations
G

ra
di

en
t n

or
m

Case 2, No CPR, no AD

0 20 40 60 80 100 120 140 160 180 200
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 3, CPR(12), AD

0 50 100 150 200 250 300 350
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 4, No CPR, AD

Figure 4.3: Problem 3 from [5], quadratic, ρ = 12, n = 916.

12

0 500 1000 1500 2000 2500 3000 3500 4000
10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 1, CPR(2), no AD

TN
Hybrid
L−BFGS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations
G

ra
di

en
t n

or
m

Case 2, No CPR, no AD

0 50 100 150 200 250
10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 3, CPR(2), AD

0 100 200 300 400 500 600
10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 4, No CPR, AD

Figure 4.4: Extended Rosenbrock (EXTROSNB), ρ = 2, n = 100.

13

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 105

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 1, CPR(9), no AD

TN
Hybrid
L−BFGS

0 0.5 1 1.5 2 2.5
x 105

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

Number of equivalent function evaluations
G

ra
di

en
t n

or
m

Case 2, No CPR, no AD

0 100 200 300 400 500 600 700 800
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 3, CPR(9), AD

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 4, No CPR, AD

Figure 4.5: DIXMAANL, ρ = 9, n = 1500.

14

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10−8

10−6

10−4

10−2

100

102

104

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 1, CPR(3), no AD

TN
Hybrid
L−BFGS

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

10−8

10−6

10−4

10−2

100

102

104

Number of equivalent function evaluations
G

ra
di

en
t n

or
m

Case 2, No CPR, no AD

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10−8

10−6

10−4

10−2

100

102

104

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 3, CPR(3), AD

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10−8

10−6

10−4

10−2

100

102

104

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 4, No CPR, AD

Figure 4.6: Chained Rosenbrock (CHNROSNB), ρ = 3, n = 50.

15

0 50 100 150 200 250 300 350 400 450
10−5

10−4

10−3

10−2

10−1

100

101

102

103

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 1, CPR(50), no AD

TN
Hybrid
L−BFGS

0 50 100 150 200 250 300 350 400 450
10−5

10−4

10−3

10−2

10−1

100

101

102

103

Number of equivalent function evaluations
G

ra
di

en
t n

or
m

Case 2, No CPR, no AD

0 10 20 30 40 50 60 70 80
10−5

10−4

10−3

10−2

10−1

100

101

102

103

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 3, CPR(50), AD

0 10 20 30 40 50 60 70 80
10−5

10−4

10−3

10−2

10−1

100

101

102

103

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 4, No CPR, AD

Figure 4.7: HILBERTB, ρ = 50, n = 50.

16

0 5 10 15
x 104

10−5

100

105

1010

1015

1020

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 1, CPR(1000), no AD

TN
Hybrid
L−BFGS

0 5 10 15
x 104

10−5

100

105

1010

1015

1020

Number of equivalent function evaluations
G

ra
di

en
t n

or
m

Case 2, No CPR, no AD

0 500 1000 1500
10−5

100

105

1010

1015

1020

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 3, CPR(1000), AD

0 500 1000 1500
10−5

100

105

1010

1015

1020

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 4, No CPR, AD

Figure 4.8: PENALTYI, ρ = 1000, n = 1000.

17

0 5000 10000 15000
10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 1, CPR(50), no AD

TN
Hybrid
L−BFGS

0 5000 10000 15000
10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations
G

ra
di

en
t n

or
m

Case 2, No CPR, no AD

0 200 400 600 800 1000 1200 1400 1600 1800
10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 3, CPR(50), AD

0 500 1000 1500 2000 2500
10−6

10−4

10−2

100

102

104

106

Number of equivalent function evaluations

G
ra

di
en

t n
or

m

Case 4, No CPR, AD

Figure 4.9: PENALTYII, ρ = 50, n = 50.

18

The exception to this rule comes when TN is able to exploit CPR
techniques effectively at a very early stage by performing many cheap
CG iterations, although the tested hybrid method converges very
quickly when it starts performing many CG iterations as well.

We feel the our preliminary numerical results are very promising,
and that there should exist forcing sequences and possibly dynamic
choices of m which should result in effective methods using little mem-
ory.

We have not discussed preconditioning of the iterative equation
solver (CG in our tests) itself, and this an aspect that should be looked
into in the context of our class. Similarly, other choices than CG
should also be investigated.

References

[1] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Bel-
mont, MA, 1995. 2nd edition 1999.

[2] Richard H. Byrd, Jorge Nocedal, and Robert B. Schnabel. Rep-
resentations of quasi-Newton matrices and their use in limited
memory methods. Mathematical Programming, 63:129–156, 1994.

[3] Richard H. Byrd, Jorge Nocedal, and Ciyou Zhu. Towards a dis-
crete Newton method with memory for large-scale optimization.
Technical Report OTC 95/01, Optimization Technology Center,
1996.

[4] A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation
of sparse jacobian matrices. J. Inst Maths Applics, 13:117–119,
1974.

[5] R. S. Dembo and T. Steihaug. A test problem generator for
large-scale unconstrained optimization. ACM Transactions on
Mathematical Software, 11(2):97–102, 1985.

[6] Ron Dembo, Stanley Eisenstat, and Trond Steihaug. Inex-
act Newton methods. SIAM Journal on Numerical Analysis,
19(2):400–408, 1982.

[7] Ron S. Dembo and Trond Steihaug. Truncated-Newton algo-
rithms for large-scale unconstrained optimization. Mathematical
Programming, 26:190–212, 1983.

[8] Jean Charles Gilbert and Claude Lemaréchal. Some numerical ex-
periments with variable-storage quasi-Newton algorithms. Math-
ematical Programming, 45:407–435, 1989.

19

[9] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint.
CUTEr (and SifDec), a constrained and unconstrained testing
environment, revisited. Technical Report RAL–TR–2002–009,
Computational Science and Engineering Department, Rutherford
Appleton Laboratory, 2002.

[10] Lianju Jiang, Richard H. Byrd, Elisabeth Eskow, and Robert B.
Schnabel. A preconditioned l-BFGS algorithm with application
to molecular energy minimization. Technical Report CU-CS-982-
04, Department of Computer Science, University of Colorado,
Boulder, Colorado 80309, 2004.

[11] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS
method for large scale optimization. Mathematical Programming,
45:503–528, 1989.

[12] Ladislav Lukšan and Emilio Spedicato. Variable metric meth-
ods for unconstrained optimization and nonlinear least squares.
Journal of Computational and Applied Mathematics, 124:61–95,
2000.

[13] José Luis Morales and Jorge Nocedal. Enriched methods for large-
scale unconstrained optimization. Computational Optimization
and Applications, 21:143–154, 2002.

[14] Jorge J. Moré. Automatic differentiation tools in optimization
software. In George Corliss, Christèle Faure, Andreas Griewank,
Laurent Hascoët, and Uwe Naumann, editors, Automatic Differ-
entiation of Algorithms, 2002.

[15] Jorge J. Moré and David J. Thuente. Line search algorithms with
guaranteed sufficient decrease. ACM Transactions on Mathemat-
ical Software, 20(3):286–307, September 1994.

[16] Stephen G. Nash. Preconditioning of truncated-Newton methods.
SIAM Journal on Scientific and Statistical Computing, 6(3):599–
616, 1985.

[17] Jorge Nocedal. Updating quasi-Newton matrices with limited
storage. Mathematics of Computation, 35(151):773–782, 1980.

[18] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer–Verlag, 1999. ISBN 0–387–98793–2.

[19] Diane P. O’Leary. A discrete Newton algorithm for minimiz-
ing a function of many variables. Mathematical Programming,
23(1):20–33, 1982.

[20] Dexuan Xie and Tamar Schlick. Efficient implementation of the
truncated Newton method for large scale chemistry applications.
SIAM Journal on Optimization, 10(1):132–154, 1999.

20

