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Abstract Direct search methods have been an area of active research in recent

years. On many real-world problems involving computationally expen-

sive and often noisy functions, they are one of the few applicable alterna-

tives. However, although these methods are usually easy to implement,

robust and provably convergent in many cases, they suffer from a slow

rate of convergence.

Usually these methods do not take the local topography of the ob-

jective function into account. We present a new algorithm for uncon-

strained optimisation which is a modification to a basic generating set

search method. The new algorithm tries to adapt its search directions

to the local topography by accumulating curvature information about

the objective function as the search progresses.

The curvature information is accumulated over a region thus smooth-

ing out noise and minor discontinuities. We present some theory regard-

ing its properties, as well as numerical results. Preliminary numerical

testing shows that the new algorithm outperforms the basic method

most of the time, sometimes by significant relative margins, on noisy as

well as smooth problems.

Keywords: Unconstrained optimisation, derivative-free optimisation,

pattern search, generating set search.
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1. INTRODUCTION

When choosing an optimisation method for unconstrained optimisa-
tion the choice is often Newton’s method or quasi-Newton methods. If
the function is well-defined through computer code, one can obtain the
required derivatives to machine precision by the use of automatic dif-
ferentiation techniques (AD), with little extra cost in the case of the
gradient. A different alternative is to use finite differences (FD), which
produces approximations to the desired derivatives.

Consider now less ideal scenarios than the one just described. AD
methods may be inapplicable if the source code is not available, or,
say, if the computer code representing the function is written in sev-
eral languages. Furthermore, the nature of the function might make AD
techniques inappropriate. In [19], function evaluations that involve in-
tegrating a function backwards in time as well as poor portability make
AD an undesirable option. As for FD, in some instances the approxi-
mate derivatives obtained are not helpful either. Optimization problems
in computational fluid dynamics where the objective function includes
integrals [5, 6] are examples of this. The reason FD derivatives can fail
here is that the discretisation involved in solving the integral introduces
noise. This noise is numerical in nature, in the sense that the same input
always gives the same output, but gives inaccurate FD derivatives, and
in [6] spurious solutions which are not present in the underlying objec-
tive function. Plots of the objective functions in [5] look like the function
in Figure 1.1. Although there is an underlying, smooth function, it is
obscured by noise.

Generating set search (GSS) methods (see e.g. [2, 3, 15, 18]) are meth-
ods which try to overcome the difficulties mentioned. They do this by
not using derivative information, and not allowing the topography of
the function to degenerate the set of search directions they consider.
GSS methods have been applied to a wide range of real-world problems,
both computationally expensive and inexpensive, among others design
of thermal insulation systems [1], shape optimization in aeroacoustics
[19], and helicopter rotor blade design [4]. GSS methods have also been
implemented on parallel machines [10].

These methods are however, usually slow when it comes to conver-
gence. If the function to be minimised is expensive, as is the case in
[4] where a single evaluation takes minutes, it might be impossible to
perform, say, 10,000 function evaluations to reach the optimum, even in
a high-performance computing environment.

We will show an approach to how to utilise curvature information,
which on several examples improves a basic GSS method on both smooth



A Generating Set Search Method Using Curvature Information 3

Figure 1.1. Quadratic function with noise.

and noisy problems when such information is helpful, without deterio-
rating performance-wise if curvature information is not helpful. Coope
and Price [7] have developed a generating set search method for smooth
problems using conjugate directions. This method also builds up and
uses second order information, but the two methods differ on several
issues.

We consider the unconstrained optimisation problem

min
x∈Rn

f(x), (1)

where f : R
n 7→ R. Extensions toward linearly constrained optimisation

[16] can readily be incorporated into our method. In addition, there exist
strategies [3, 9, 17] dealing with nonlinear constraints which are appli-
cable as well. A strategy to tailor these methods toward the large-scale
case has been studied in [21]. An extension of this paper to separable
functions, also allowing for larger n appeared as [13].

This paper is organised as follows. In the rest of section 1 we out-
line two basic, existing GSS methods. In section 2 we present our new
method, and in section 3 sketch some of its theoretical properties. Sec-
tion 4 presents numerical experiments, while section 5 offers some con-
cluding remarks.
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1.1. BASIC GSS ALGORITHMS

A basic variant of GSS is what we will call Coordinate Search. Let
qi, i = 1 . . . n be an orthonormal basis, and G be

G =
n⋃

i=1

{qi,−qi} , (2)

the set of search directions. The standard choice giving justification to
the name of the algorithm is

qi = ei, i = 1 . . . n,

where ei is the vector with zeros everywhere except for 1 in position i.
A pseudo-code for coordinate search on the unconstrained problem (1)

is given below. The algorithm evaluates the function along each search
direction, and steps to the point which reduces the function value the
most. See Figure 1.2.

Coordinate Search

Given δtol > 0, α ≥ 1 > β > 0 and x ∈ R
n.

While δ > δtol,
Compute v : minv∈G f(x + δv),
If f(x + δv) < f(x),

Set x← x + δv.
Set δ ← αδ.

Else, set δ ← βδ.
end.

A typical choice is β = 1
2 . Under reasonable assumptions on f , this

algorithm can be shown [15, 24] to be globally convergent in the sense
that

lim
k→∞

inf ‖∇f(xk)‖ = 0.

1.2. COMMON GSS VARIANTS

There exist several modifications to this basic algorithm. One modi-
fication is to introduce individual step lengths for each search direction.
This tactic is a possible remedy for variable scaling issues. Furthermore,
the algorithm needs not consider all coordinate directions before accept-
ing the step. Simply stepping to a point as soon as a smaller function
value is identified, gives an algorithm we will call Compass Search. See
Figure 1.3. In the figure, the search starts at the black node/point.
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Figure 1.3. Compass Search in R
2: Search along positive and negative coordinate

directions, and step immediately if function reduction found.

First, we search rightwards, and step. Then we search upwards, but do
not step. Then downwards, step, then leftwards, but do not step, etc.

The number of search directions in both methods when using coordi-
nate directions is 2n, but this number can be reduced. A set of vectors
vi, i = 1, . . . , r constitutes a positive basis or generating set if for every
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x ∈ R
n,

x =
r∑

i=1

civi, where ci ≥ 0, i = 1 . . . r.

It can be shown [8] that n + 1 ≤ r ≤ 2n, so in theory a GSS method
only needs n + 1 directions. In this paper we will use a positive basis of
2n directions, the positive and negative of n orthogonal directions.

Comprehensive convergence theory for GSS methods can be found in
[15]. In general, no more than linear convergence can be expected.

2. THE BASIC IDEA

Our basic idea is to rotate the search basis based on curvature infor-
mation. A similar scheme, which aligns the basis to the average direction
the search progresses, appeared as early as 1960 in [22]. To illustrate
the idea we use Compass Search, although it can be applied to other al-
gorithms as well. Thus, the new method is a Compass Search, but with
a dynamic search basis. It implicitly uses a quadratic model function by
assuming we are minimising, say,

g(y) = φ + bT (y − x) +
1

2
(y − x)T C(y − x),

where C is a symmetric matrix, although we in reality are minimising a
general function f . Let the search directions (2) of our search be positive
and negative of the column vectors of the orthogonal matrix Q, that is,

Q =
[

q1 q2 · · · qn

]
.

Since g is a quadratic function, we have

qT
i Cqj =

g(x + δiqi + δjqj)− g(x + δiqi)− g(x + δjqj) + g(x)

δiδj

.

For a general function function f define the matrix CQ with element
(i, j) by

(CQ)ij =
f(x + δiqi + δjqj)− f(x + δiqi)− f(x + δjqj) + f(x)

δiδj

. (3)

In addition, let
C = QCQQT , (4)

and C will be an approximation to the Hessian matrix (and be exact for
a quadratic function).

The four points in (3) make up the corner points of a rectangle in
the (qi, qj)-plane. If we take qi = qj we get a formula for the second
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derivative along this vector, consisting of four or three points, depending
on whether or not δi = δj . As the compass-type search progresses,
the algorithm performs exploratory function evaluations, and as can be
gathered from Figure 1.3 some of these points will lie in the constellations
required by (3). For n > 2, the necessary rectangles can be constructed
with little extra effort. In this way the matrix CQ can be built up in a
predictable and systematic fashion. The algorithm’s key ingredients are:

Compass Search along the columns of Q and −Q.

Computation of the terms (CQ)ij by (3) as the method updates x,
with adaptive shuffling of search directions to facilitate all combi-
nations of i and j, i ≥ j.

Application of formula (4) to obtain C.

Computation of all the eigenvectors qi of C, and setting these
eigenvectors as the new search basis Q.

The initial choice of Q can be, for instance, Q = I.
Although eigenvector computation is considered expensive, the cost

must be seen relative to that of a function evaluation. If a function
evaluation takes many seconds, not to say minutes, an eigenvalue fac-
torisation is inexpensive by comparison.

When f is Noisy — Average Curvature Information. Con-
sider again the function in Figure 1.1. As mentioned in the introduc-
tion, a finite difference-based method using small differences will run
into problems on this function since local rate of change and local curva-
ture may differ very much from the average rate of change and curvature
in the region covered by the figure. However, a finite difference-scheme
with sufficiently large differences will capture these average quantities.
(See for example [14] for a discussion.) In addition, average curvature
can be estimated from a wide range of sample points, as long as they
are sufficiently far apart.

We suggest using relatively large step sizes and thereby gather infor-
mation about average second derivatives. Hopefully, this information
will provide us with eigenvectors that make good search directions in
the sense that they allow for long steps even if, for instance, we are
in a narrow valley. Once the algorithm nears the optimal solution step
lengths become smaller, and we then obtain local curvature information,
which we want when close to the optimum.
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Figure 1.4. The four possible outcomes of successive searches along qi and qj . A

grey node signifies a step which has been taken, a white node signifies a step not

taken. The search starts at the black node in each case.

2.1. COMPUTING THE MATRIX CQ

SYSTEMATICALLY

If the search directions ±qi and ±qj are ordered
[

qi qj −qi · · · −qj

]
,

then the first three directions may enable the algorithm to compute
(CQ)ij . The reason for this is that a successful search and subsequent
step along the two first directions and a successful or unsuccessful step
along the third direction provides the rectangle of points needed by (3).
However, this is not always the case, and we consider now the four
possible cases that can occur in the first two steps. In the following
paragraphs, we consider the ordering

[
qi qj −qi

]
, (5)

and look at the situation after two trial steps. All four cases refer to
Figure 1.4.
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Case 1 — Success along both directions. Two successful
steps indicated by grey nodes, and the point along −qi, indicated by the
dashed line and circle have been computed. An approximation to (CQ)ij
by equation (3) can be computed regardless of the success or failure of
the third step.

Case 2 — Success along first direction only. Three points
have been evaluated, but the algorithm has not stepped to the second
point since it does not provide a lower function value. This is indicated
by a white node. An extra function evaluation at the point marked by
a cross must be computed in order to obtain (CQ)ij. Note that the next
point scheduled for evaluation (along −qi) is the point x0, and there is
no need for this evaluation.

Case 3 — Success along second direction only. As in case 2,
the algorithm has to perform one extra function evaluation, marked by
a cross. The next point scheduled for evaluation falls outside the square,
and will be evaluated and accepted if leading to a reduction in function
value.

Case 4 — No Success along either direction. In this case
the algorithm also needs to perform one extra evaluation at the point
marked by a cross, and consider the next point scheduled for evaluation
as in case 3.

Choosing the Ordering of Directions. How to best order the
search directions can be illustrated by an example. Consider the case
with n = 4, and order the eight directions in two groups each consisting
of three directions (like the ordering (5)) and let the remaining (two)
directions be columns in the matrix B.

[
T1 T2 B

]
=

[
q1 q2 −q1 q3 −q2 −q3 q4 −q4

]
.

The first group, T1, enables computation of (CQ)21 and T2 gives us
(CQ)32. The last group, B, consists of left over vectors, and can be
ordered arbitrarily. After searching along all directions, it is time to
reshuffle. This time, we can order the directions

[
q1 q4 −q1 q2 −q4 −q2 q3 −q3

]
,

to compute (CQ)41 and (CQ)42. The remaining elements can be ob-
tained through successive, appropriate orderings. This way, dynamically
ordering directions to help computing CQ elements, we obtain all its off-
diagonal elements in a systematic fashion. The important observation
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is that the first and third members of a triplet are the negative of each
other.

When computing matrix elements this way we can predict how quickly
we obtain all off-diagonal elements of CQ. Let us call the search process
between two shuffles a sweep. We obtain approximately 2n

3 off-diagonal
elements per sweep, since there are 2n search directions and we need

three directions to compute an element. Since we need to estimate n2−n
2

off-diagonal elements, this can be done in approximately

n2−n
2
2n
3

=
3

4
(n− 1)

sweeps, which depends on n. This is not a problem in our experience
for n smaller than about 30.

Diagonal Elements. The computation of diagonal elements re-
quires three or four points along a line depending on whether or not
δi = δj in (3). A constellation of three points we can achieve when ad-
justing step lengths. If we immediately try to double the step length
when encountering a function value reduction, we have the three points
we need. However, the rate at which we will obtain diagonal elements
this way is difficult to predict. Potentially, we can obtain all n elements
in the first sweep, or we might not obtain any elements if we have step
lengths which are too large. In any event, since there are only n diagonal
elements, we can afford to compute these separately if needed.

Off-diagonal element Computation using Pairs or Triplets.

Upon studying Figure 1.4 one might wonder if the grouping of search
directions into triplets is necessary, since only the case of success along
the first two directions makes use of the fact that the third direction is
the negative of the first direction. Indeed, it is possible to group the
search directions into pairs and estimate the objective function value at
extra points as marked by crosses in Figure 1.4, but our preliminary
numerical experience suggests that this does not lead to a more effective
algorithm. On the contrary, the resulting algorithm on average performs
slightly poorer than the algorithm employing triplets, the reason for this
seemingly being that the extra cost of always having to compute an extra
point outweighs the advantages of obtaining a full matrix at an earlier
time. This matter could however potentially benefit from further study,
especially when n is relatively large.



A Generating Set Search Method Using Curvature Information 11

2.2. THE ALGORITHM

We now present the new algorithm in pseudo-code format, listed in
Figure 1.5. It requires an initial guess, x0, an n × n orthogonal basis
matrix Q with column i being qi, as well as a vector of step lengths δ,
where each component δi corresponds to the vectors qi and −qi. In the
algorithm we use the term “successful step” if the variable is updated.
Note also that the variable xk+1 can be overwritten several times by
candidate variable values before k is increased, thereby accepting the
new variable value. The helper function exploratory moves is listed in
Figure 1.6. The update of δ in step 5 (one of many possible updates)
seeks to preserve the properties of step lengths in the old basis to the
new basis. It is based on the same change that applies to the basis
matrix Q, that is, since Q is replaced by X, which can be accomplished
by multiplying it with XQT , the method does the same with δ. The
factor 2 is to undo the step length reduction in step 4.

The function exploratory moves takes as input xin, q, δin and kin, and
gives as output xout, δout and kout. The convergence criterion mentioned
in step 6 can be set as

max
i

δi < tolerance. (6)

This criterion gives good results in practice, as discussed in [11]. Since
we obtain an approximation to the Hessian and the algorithm in theory
can gather gradient information as well, it would be possible to add a
Newton step to the algorithm, as is done in [7] to speed up convergence
on smooth functions.

3. THEORETICAL ASPECTS

In this section we investigate the relationship between C and ∇2f(x),
as well as address the relationship between our new method and existing
convergence theory.

The following lemma can be found in textbooks (e.g. lemma 3.5 in
[12]).

Lemma 1 Let f : R
n 7→ R be two times continuously differentiable. Let

‖p‖ = 1 and ‖q‖ = 1. Given h, k ∈ R, then there exists a t ∈ (0, h) and
an s ∈ (0, k) such that

f(x + hp + kq)− f(x + hp)− f(x + kq) + f(x)

hk
= pT∇2f(x+ tp+ sq)q.

Now we can turn our attention to the effect of the rotation (4) in the
algorithm. We first show a result for non-orthogonal search directions,
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Step 1

Order directions
[

T1 T2 · · · B
]
, where Ti =

[
qr qs −qr

]
,

for columns qr and qs in Q, where (CQ)rs is not yet computed,
and B are leftover columns from triplet partitioning.
Step 2

For each Ti:
(xk+1, δr, kout)← exploratory moves(xk, qr, δr, k). k ← kout.
(xk+1, δs, kout)← exploratory moves(xk, qs, δs, k). k ← kout.
If the search along both qr and qs was successful,

(xk+1, δr, kout)← exploratory moves(xk,−qr, δr, k) k ← kout,
(Figure 1.4, case 1)

end.
Compute (CQ)rs by (3), evaluating extra point if needed
(Figure 1.4, case 2, 3 and 4).
If in case 3 or 4,
(xk+1, δr, kout)← exploratory moves(xk,−qr, δr, k). k ← kout,

end.
end.
Step 3

For each direction qi in B,
(xk+1, δi, kout)← exploratory moves(xk, qi, δi, k). k ← kout,

end.
Step 4

For all j, if no step was made along ±qj where δj has been
increased by exploratory moves, set δj ← 1

2δj .
If no step lengths have been increased by exploratory moves or
such increase has been undone, and if no step was made along any
direction, set δ ← 1

2δ.
Step 5

If all off-diagonal elements of CQ have been computed and no step
was made along any direction:

Compute remaining diagonal CQ elements by (3).
Set C ← QCQQT .
Eigenvalue-factorise C: C = XΛXT .
Set δ ← 2 ·XQT δ.
Set Q← X.

Step 6

If convergence criterion satisfied, terminate, otherwise go to step 1.

Figure 1.5. Pseudocode for the algorithm.
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exploratory moves(xin, q, δin, kin)

If f(xin + δinq) < f(xin),
If f(xin + 2δinq) < f(xin + δinq),

xout ← xin + 2δinq,
δout ← 2δin,

else
xout ← xin + δinq,
δout ← δin,

end.
Compute diagonal CQ element corresponding to q by (3),
kout ← kin + 1,

else
xout ← xin,
δout ← δin,
kout ← kin,

end.

Figure 1.6. The helper function exploratory moves.

p1, . . . , pm. Let

p1, . . . pm ∈ R
n, ‖pk‖ = 1, k = 1, 2 . . . m ≤ n, (7)

and assume that the elements (CP )ij of the symmetric m × m matrix
CP have been computed using formula (3) at the points

{
xij , xij + hijpi, xij + kijpj, xij + hijpi + kijpj

}
, (8)

for all (i, j), i ≥ j and (CP )ji set to be equal to (CP )ij . Let N be the
union of all such points and let

δ = max
z,y∈N

‖z − y‖, (9)

and

N =

{
x ∈ R

n

∣∣∣∣ max
y∈N
‖x− y‖ ≤ δ

}
. (10)

Lemma 2 Assume that f is twice continuously differentiable and ∇2f
is Lipschitz-continuous in N , that is

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖, for all x, y ∈ N ,

where N is defined by (10). Then the m×m symmetric matrix CP with
entry (i, j), i ≥ j computed by (3) at the points (8), and for any x ∈ N
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satisfies
‖CP − P T∇2f(x)P‖ ≤ mLδ, (11)

where
P =

[
p1 p2 · · · pm

]

is the (n×m)-matrix where column k is pk in (7).

Proof. From Lemma 1 we have for each pair (i, j), a point x̃ij such that

(CP )ij = pT
i ∇2f(x̃ij)pj ,

where x̃ij ∈ N . Then,

|(CP )ij − pT
i ∇2f(x)pj | ≤ Lδ,

and
‖CP − P T∇2f(x)P‖ ≤ mLδ.

�

The result can be stated for an orthogonal matrix Q.

Corollary 3 Given the quantities (7)–(10), but replacing (7) with n
orthogonal vectors qi, i = 1 . . . n, and updating the other quantities ac-
cordingly, we have

‖QCQQT −∇2f(x)‖ ≤ nLδ. (12)

The dissimilar placement of the matrices Q and P in (11) and (12)
respectively owes to the fact that multiplication by an orthogonal matrix
Q does not affect norms.

Convergence Theory. In [15] several requirements are listed for
a GSS method to be convergent. Given a GSS algorithm that enforces
simple decrease (a step is accepted only if it produces a smaller function
value, but there is no requirement of sufficient decrease), searches along
the elements of a generating set G and an additional set of directions H,
restricted to be integer combinations of the directions in G, the require-
ments are: Such a method is convergent if it reduces its step lengths or
updates G only if the search fails along all directions in G, and never
increases step lengths.

The new method meets these requirements. It searches along the
positive and negative of the column vectors of an orthogonal matrix Q,
which, when multiplied with the corresponding step lengths in δ make up
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a generating set G. (The members of a generating set need not have unit
length.) Although step lengths are allowed to be increased, this amounts
to searching along directions in H. Since step lengths are reduced only
if step length increase has been undone by subsequent reductions and
search fails along all directions, this is the same as the search failing
along all directions of G as required. Additionally, basis rotation, which
is an update of G, only takes place when search has failed along all
directions in G. The subsequent multiplication

δ ← 2XQT δ

can be seen as part of the update of G.
For Compass Search, which does not update its search basis, the re-

quirements are not as strict. It may increase and decrease step lengths
freely as long as it enforces simple decrease and all iterates lie on a
rational lattice. See [15] for details.

4. NUMERICAL RESULTS

We tested the algorithm on several functions from [20], and compared
it with our version of Compass Search which we get if we suspend direc-
tion shuffling and CQ element computation at all times as well as relax
the requirements on step length updating corresponding to the require-
ments of the convergence theory, by allowing step lengths to be decreased
even if search has not failed along all directions of G. The reason we com-
pare with Compass Search, which is arguably a slow method, is that this
will effectively illustrate the benefits of the idea of basis rotation based
on curvature information.

The test set consists of functions from [20] of the form

F : R
n 7→ R

m,

the test functions being

f(x) = F (x)T F (x), (13)

following the recommendations in [20]. All the test functions have an
optimal value of zero. The initial step lengths where chosen as follows:

- If |x0
i | > 0, δi = |x0

i |.
- If x0

i = 0 and ‖x0‖ > 0, δi = ‖x0‖.
- If ‖x0‖ = 0, δ = e, where e is a vector of all ones.

On some functions this choice of step length lead to the methods finding
the optimal solution almost immediately (e.g. if x0 = ( 1 1 )T and

x∗ = ( 0 0 )T ), so in such cases custom initial step lengths were used.
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Figure 1.7. Logarithmic plot of function values vs. the number of function evalu-

ations on function #18, without noise added in the left plot, and with noise in the

right plot. The solid curve corresponds to the new algorithm, the dashed curve to

Compass Search.

On smooth functions, the methods were halted once a function value
less than 10−5 was obtained, if the maximum step length was less than
10−12 or if the number of sweeps exceeded 10000. The results are pre-
sented in Table 1.1. The the first column lists the function number, cor-
responding to the function names in Table 1.3. The next three columns
are, for the new algorithm, the number of function evaluations per-
formed, the lowest function value obtained, and the number of basis
changes, which is equal to the number of C-matrices computed. The
last two columns are, for Compass Search, the number of function eval-
uations performed, and the lowest function value found.

As can be seen, the new algorithm outperforms Compass Search most
of the time, sometimes by significant margins, with but a few exceptions.
The most notable case where the new algorithm performs worse than
Compass Search is function number 4. This is a function which is badly
scaled and is very well suited to methods that search along the coordinate
directions. On this function the new method initially steers away from
the search directions based on the identity matrix, and also suffers from
the requirements on step length increase set by the convergence theory.

To make the test examples more realistic we added noise to the func-
tions. We adopt the noise scheme of [23], which is to test on the function

f̃(x) = f(x) + max(10−4 · |f(x)|, 10−4) · µ, (14)

where µ is uniformly distributed in the interval [−1, 1]. The methods
were halted once a function value less than 10−2 was obtained, or, as
before, the maximum step length was less than 10−12 or the number
of sweeps more than 10000. The results, which are median value over
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Table 1.1 . Numerical results on smooth functions. Methods halted when f ≤ 1e-5.

Function New algorithm Compass Search

# #feval f∗ #Basis #feval f∗

1 461 2.59e-07 10 11118 9.99e-06

3 134 1.19e-07 5 118 1.87e-07

4 1659 2.70e-06 33 222 4.58e-13

5 200 6.39e-06 7 186 9.86e-06

7 340 2.13e-06 6 5978 9.93e-06

14 617 5.49e-07 7 6328 9.91e-06

18 1973 9.41e-06 10 37499 9.99e-06

21 11705 6.73e-06 11 65456 9.96e-06

22 1637 1.44e-06 6 224381 4.93e-04

25 312 7.11e-06 3 532 9.36e-06

28 215 1.31e-06 2 839 9.63e-06

100 runs, are shown in Table 1.2. Function #28 is not included, since
its initial value is lower than 10−2 with the starting point used. Both
methods fail on function #4, which is badly scaled, the new method fails
on function #3, which is also badly scaled.

On the noisy functions the methods resemble each other more than on
smooth functions, although the new method still outperforms Compass
Search by significant margins in some cases. To understand why the
picture is different than on smooth functions, one can look at Figure
1.7. In the left plot, we see that the two methods start with a similar
rate of decline in function values, but that the curve corresponding to
Compass Search levels off after a while. This phenomenon is quite typical
for Compass search, and indeed it has been pointed out (e.g. [25]) that
although pattern search methods are slow when it comes to convergence,
they are good at finding approximate solutions. On noisy functions,
however, the methods are halted before Compass Search starts leveling
off, and hence the results are more similar. This can be observed in the
right plot of Figure 1.7. One function where a good approximation is not
obtained quickly is the Rosenbrock function, which is designed to make
algorithms search along a curved valley. On this function (#1, and #21
for the extended Rosenbrock function) we observe similar behaviour as
on smooth functions, in the sense that the new algorithm reduces the
amount of function evaluations significantly.
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Table 1.2 . Numerical results on noisy functions. Median over 100 runs shown.

Methods halted when f ≤ 1e-2.

Problem New algorithm Compass Search

# #feval f∗ #Basis #feval f∗

1 445.5 7.20e-03 12 2424.5 2.30e-02

3 59 1.00e+00 2 75.5 7.19e-03

4 77 1.00e+12 3 58.5 1.00e+12

5 94 6.12e-03 3 50 9.65e-03

7 172 9.81e-04 3 2719 2.37e-02

14 344 7.71e-03 4 345 8.89e-03

18 434 9.01e-03 2 227 9.66e-03

21 7421 9.37e-03 7 12419 1.13e-01

22 301.5 6.44e-03 1 792.5 1.19e-02

25 180 5.90e-03 1 127 9.08e-03

Table 1.3 . Test function names.

# n m Function name

1 2 2 Rosenbrock

3 2 2 Powell badly scaled

4 2 3 Brown badly scaled

5 2 3 Beale

7 3 3 Helical Valley

14 4 6 Wood

18 6 13 Biggs EXP6

21 10 10 Extended Rosenbrock

22 8 8 Extended Powell Singular

25 4 6 Variably dimensioned

28 5 5 Discrete boundary value
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5. CONCLUDING REMARKS

In this paper we suggested a modification of the algorithm Compass
Search, to make it more aware of the local topography of the objective
function. On smooth functions we have had good results when it comes
to reducing the number of function evaluations, where reduction of well
over 50% is not uncommon. On noisy functions, when approximate so-
lutions are obtained after few function evaluations, the two methods
resemble each other in performance. When approximate solutions can-
not be obtained quickly, we again get good results for the new method.
Only rarely does it perform significantly worse than Compass Search.
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