
A class of Methods Combining L-BFGS and

Truncated Newton
∗

Lennart Frimannslund
†

Trond Steihaug
‡

March 31, 2006

Abstract

We present a class of methods which is a combination of the lim-
ited memory BFGS method and the truncated Newton method. Each
member of the class is defined by the (possibly dynamic) number of
vector pairs of the L-BFGS method and the forcing sequence of the
truncated Newton method. We exemplify with a scheme which makes
the hybrid method perform like the L-BFGS method far from the solu-
tion, and like the truncated Newton method close to the solution. The
cost of a method in the class of combined methods is compared with
its parent methods on different functions, for different cost schemes,
namely the cost of finite difference derivatives versus AD derivatives,
and whether or not we can exploit sparsity. Numerical results indi-
cate that the example hybrid method usually performs well if one of
its parent methods performs well, to a large extent independent of the
cost of derivatives and available sparsity information.

Keywords: Limited memory BFGS, truncated Newton, automatic
differentiation, sparsity.

1 Introduction

We consider the unconstrained optimisation problem

min
x∈Rn

f(x), (1.1)
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where f : R
n → R is two times continuously differentiable. If the

Hessian is available one may use Newton’s method for solving (1.1).
At the heart of a Newton iteration is the solution of the step equation,

∇2f(xk) pk = −∇f(xk). (1.2)

If only gradients are available, one can use quasi-Newton methods,
such as the BFGS method, which typically maintains an approxima-
tion H to the inverse of the Hessian, which gives the step equation

−Hk∇f(xk) = pk, (1.3)

See e.g. [12] and the references therein. Both Newton’s method and
quasi-Newton methods require O(n2) storage. If memory is limited
and the product of the Hessian with an arbitrary vector is available,
one may use an iterative method to solve (1.2). Solving (1.2) full ac-
curacy at each iteration corresponds to the regular Newton’s method.
Alternatively, one can solve (1.2) inexactly when far form the solution,
and to an increasing degree of accuracy as one approaches the opti-
mal solution. The latter method is called a truncated Newton (TN)
method [6, 7]. If only gradients are available and memory is limited,
one may use a discrete truncated Newton method (DTN) such as in
[19, 7]. DTN uses gradients to approximate the product of the Hessian
with an arbitrary vector. An alternative is a limited memory quasi-
Newton method such as the limited memory BFGS (L-BFGS) method
[17, 11, 8], which maintains a user-defined portion of the information
contained in the Hessian approximation of the full BFGS method.

Several attempts have been made to create a method which com-
bines the properties of the (discrete) truncated Newton method and
the L-BFGS method. It has been proposed to use the difference pairs
accumulated by L-BFGS as a preconditioner for the iterative solution
of the step equation [16], using difference pairs from within a conju-
gate gradient (CG) solution process to provide fresh difference pairs
for the L-BFGS method [3, 13], and using inexact or exact Hessian
information to create an incomplete or modified Cholesky precondi-
tioner for determining the matrix Hk

0 used by the L-BFGS method
[10, 20]. This idea stems from proposition 1.7.3 in [1]. In this paper
we present a novel class of methods which combines the truncated
Newton method and the L-BFGS method. We determine the matrix
Hk

0 using Hessian information in conjunction with an iterative equa-
tion solver such as the conjugate gradient (CG) method. The reason
we consider the L-BFGS specifically, is that is has the advantage over
other limited memory quasi-Newton methods that the product involv-
ing H0 is isolated from the rest of the computations [2]. Specifically,
we will numerically test the performance of a method in the class
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which behaves like the L-BFGS method when far from the solution,
and like truncated Newton when close to the solution. The reason for
this is the same logic that lies behind truncated Newton, that accurate
second-order information is more important close to the solution than
far from it.

This paper is organised as follows. In section 2 we describe the
truncated Newton method, BFGS and L-BFGS. In section 3 we outline
the hybrid approach, give numerical results in section 4 and give some
concluding remarks in section 5.

2 Truncated Newton and Limited Mem-

ory BFGS

A truncated Newton method makes use of an iterative solver to solve
(1.2), inexactly. Let p̃k be an inexact solution to (1.2). If the relative
residual of the step equation, that is,

‖∇2f(xk)p̃k +∇f(xk)‖

‖∇f(xk)‖
,

is forced to conform to a forcing sequence, a sequence ηk, k = 1, . . .
where

ηk < 1 for all k,

then the truncated Newton method can be shown to converge [6]. An
example of an effective forcing sequence is

‖∇2f(xk)p̃k +∇f(xk)‖

‖∇f(xk)‖
≤ ηk, ηk = min

{
1/k, ‖∇f(xk)‖

}
, (2.1)

which was introduced in [7]. Most iterative solvers do not require
an explicit representation of the coefficient matrix itself, instead only
the product of the matrix with an arbitrary vector. Discrete Newton
methods take advantage of this by observing that

∇2f(x)v ≈
∇f(x + εv)−∇f(x)

ε
, (2.2)

and use this finite difference estimate as the product needed by the
iterative equation solver. If one combines these two techniques, one
gets a discrete truncated Newton method.

Limited-memory BFGS or L-BFGS [17, 11] is a modification of the
BFGS method. BFGS usually works by by maintaining an approxi-
mation to the inverse of the Hessian. It performs a rank-two update at
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each iteration. Specifically, given the approximation H k at iteration
k,

Hk ≈
(
∇2f(xk)

)−1
,

and given

yk = ∇f(xk+1)−∇f(xk) and sk = xk+1 − xk,

then Hk+1 is taken to be

Hk+1 = (I − ρksk(yk)T )Hk(I − ρkyk(sk)T ) + ρksk(sk)T , (2.3)

where

ρk =
1

(yk)T sk
.

The initial approximation to the inverse of the Hessian is up to the
user. From the update formula (2.3) one can say that BFGS “remem-
bers” the effect of all difference pairs (yi, si), i = 1, . . . , k. In L-BFGS
the number of difference pairs (yi, si) is a user-defined parameter, and
only the most recent, say, m differences are kept. This leads to signif-
icant reduction in memory usage when m � n, since the product of
Hk with an arbitrary vector can be computed from a two-loop formula
without the need for storing an n×n matrix, only storing m difference
pairs. If k < m, then the method uses the k difference pairs it has
available.

L-BFGS Update Formula Let µ be a vector of the appropriate
length, and µi be its ith component. The two-loop procedure for
computing r = Hkv is given below:

q = v

for i = k − 1 step -1 until k −m

µi = ρi · (si)T q

q = q − µiyi

end

r = Hk
0 q

for i = k −m step 1 until k − 1

β = ρi · rT yi

r = r − (β − µi)s
i

end
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Note that the choice of matrix Hk
0 is, again, not defined but up

to the user. One may choose Hk
0 = I to avoid an extra matrix-vector

product, but a choice which has proved to be successful is to set

Hk
0 =

(sk−1)T yk−1

(yk−1)T yk−1
· I, (2.4)

which is supported by numerical testing in [11], where several choices
for H0 are tested. In [8] similar numerical tests indicate that a diagonal
matrix based of the diagonal of a BFGS-type approximation to the
Hessian may perform even better than (2.4).

The reduced cost of the above formula compared to regular BFGS
comes at the cost of convergence rate, which is linear for the L-BFGS
method. L-BFGS can also require a very large number of iterations
on ill-conditioned problems.

Globalization For Newton-based methods to be globally conver-
gent, that is, converge to the solution from an arbitrary starting point,
one approach is to use line searches. We will use line searches satis-
fying the strict Wolfe conditions (see e.g. [18], chapter 3.1), that is,
given the solution to (1.2), at iteration k then the next iterate, xk+1

is taken to be
xk+1 = xk + αkpk,

for αk satisfying

f(x + αkpk) ≤ f(xk) + c1α
k∇f(xk)T pk, (2.5)

and
|∇f(xk + αkpk)T pk| ≤ c2|∇f(xk)T pk|, (2.6)

with c1 = 10−4 and c2 = 0.9 [11]. In our experiments we will use a
line search procedure based on that of [15].

3 Hybrid Approach

Consider the assignment
r = Hk

0 q, (3.1)

between the two for-loops in the L-BFGS formula for r = H kv. If Hk
0

were the inverse of the Hessian at xk, then (3.1) would correspond to

∇2f(xk) r = q. (3.2)

Let r̃ be an inexact solution to (3.2), with relative residual

‖q −∇2f(xk)r̃‖

‖q‖
.
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We wish to combine TN with L-BFGS by replacing r from (3.1) in the
two-loop formula with r̃, obtained by applying an iterative equation
solver to (3.2). As a starting point for the iterative method we will
use the formula normally used by L-BFGS, that is

(sk−1)T yk−1

(yk−1)T yk−1
· q. (3.3)

This gives the following algorithm:

Given x0, k = 0.

while ‖∇f(xk)‖ > tolerance,

k ← k + 1.

v = −∇f(xk).

Perform first L-BFGS for-loop, resulting in vector q.

Solve ∇2f(xk)r = q to some tolerance with (3.3) as the

initial guess, resulting in vector r̃.

Set r = r̃.

Perform second L-BFGS loop, resulting in search direction pk.

Find αk satisfying (2.5) and (2.6).

Set xk+1 ← xk + αkpk.

Optionally adjust m.

Update difference pairs (si, yi), i = max {1, k −m} , . . . , k.

end

If m = 0 the code and (3.2) is solved to tolerance (2.1), then the
code reduces to truncated Newton with (2.1) as forcing sequence. If
no iterations are performed on (3.2) and the initial solution (3.3) is re-
turned, then the code becomes L-BFGS. In our numerical experiments
we for the hybrid method use the rule that (3.2) should be solved to
tolerance

‖q −∇2f(xk)r̃‖

‖q‖
≤ τ (3.4)

where k is the (outer) iteration number, and τ is given by the rule:

• If ‖q‖ ≥ 1, τ = 1.

• If ‖q‖ < 1, τ = max
{
1/k, ‖q‖

}
.
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Note that this particular rule should not necessarily be used for m = 0,
were we recommend (2.1) instead. In our experiments we use (2.1) for
the truncated Newton method. See [6].

In our experiments we solve (3.2) with the conjugate gradient
method. We do not require in general that the number of difference
pairs m is constant, but in our experiments we use m = 3.

4 Numerical Testing

We wish to test the theoretical cost of the chosen hybrid method
compared to the theoretical cost of the corresponding L-BFGS and
truncated Newton methods. We calculate the following costs:

• L-BFGS: One function evaluation and one gradient evaluation
per iteration.

• Truncated Newton: One function evaluation, one gradient eval-
uation, and a variable amount of Hessian-vector products per
iteration.

• Hybrid method: One function evaluation, one gradient evalua-
tion, and a variable amount of Hessian-vector products per iter-
ation.

When it comes to line search, in our initial experiments the value
αk = 1 was usually accepted. If αk = 1 is the first test value for αk

[11], then one does not need interpolation or similar procedures which
incur extra cost most of the time. If αk = 1 is not accepted, then the
cost of a line search may vary to a very large extent depending on the
implementation. In our experiments we add 1/10 times the cost of
one gradient and one function evaluation to the cost of an iteration,
which corresponds to one extra function and gradient evaluation by
the line search once every ten iterations. When it comes to the cost
of gradients and Hessian-vector products, we test four different situa-
tions. These are whether or not AD is available, and whether or not
the sparsity structure of the Hessian can be exploited. If the Hessian
is sparse and the sparsity structure is known, then the Hessian can be
obtained cheaply from a compressed Hessian matrix with techniques
like that of Curtis, Powell and Reid (CPR) [4]. If CPR techniques are
available we take the view that if the number of Hessian-vector prod-
ucts needed in the iterative method is larger than ρ, the number of
products needed to determine ∇2f from a compressed Hessian matrix,
then the cost is only that of ρ such products. This may or may not
be a realistic view, but this depends on the relative cost of derivative
computations to the operations used to form Hessian vector products
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Case AD Compr. Hess. C(∇f) C(∇2
f · v)

1 No Yes nC(f) (n + 1)C(f)
2 No No nC(f) (n + 1)C(f)
3 Yes Yes 5C(f) 12C(f)
4 Yes No 5C(f) 12C(f)

Table 4.1: The four scenarios plotted for each test function.

from a compressed Hessian. We take the view that when AD is avail-
able, the gradient can be computed at five times the cost of a function
evaluation, and that a Hessian-vector product costs 12 function eval-
uations (see e.g. [18], chapter 7.2). Actual costs in time and memory
are discussed in [14], and these numbers are in accordance with the
numbers used here. Define C(f) as the cost of one function evalua-
tion. As mentioned, for each problem we test four situations. These
are listed in Table 4.1. The first column in the table lists the num-
ber for each case. If we for instance look at case 1, then we see that
AD is not available, but we can determine Hessian-vector products
from a compressed Hessian. Since AD is not available, we calculate
the cost of gradients and Hessian vector products as they would be
if computed with finite difference formulas. The cost of a gradient
is then usually (n + 1) times that of a function evaluation, but since
we (in the context of an iterative optimisation method) already have
the function value, we set the cost to be n times that of a function
value. Similarly for Hessian vector products, this usually requires two
gradients, but since we already have one of the necessary gradients in
the optimisation method, we write only the cost of one gradient. This
cost scheme covers relative costs of gradients to Hessian vector prod-
ucts in the discrete truncated Newton method, where a Hessian vector
product costs the same as an (extra) gradient evaluation. Similarly, it
covers the situation where an analytically available gradient costs the
same as an analytically available Hessian-vector product if we ignore
the relative cost of derivatives to the cost of function values.

We test the three methods on the three problems of [5], as well as
six problems from the CUTEr collection [9], with convergence criterion

‖∇f(x)‖ ≤ 10−4.

For each problem we list four figures, with equivalent cost in func-
tion evaluations along the x-axis, and the norm of the gradient along
the y-axis. For each problem we have AD-derivatives or hand-coded
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derivatives, so the costs in the figures are estimates. The four figures
correspond to the four cases of Table 4.1, with case 1 and 2 in the first
row, and 3 and 4 in the second. The dash-dotted, sometimes oscillat-
ing curve corresponds to L-BFGS, the solid line with stars (one star
for each outer iteration) corresponds to truncated Newton, and the
dashed line corresponds to the hybrid approach. On the HILBERTB
function (Figure 4.7) the L-BFGS and hybrid curves are indistinguish-
able.

On the first three functions, when CPR techniques are available
the curves corresponding to the truncated Newton method take sharp
dips. This sometimes happens for the hybrid method as well, notably
on problem two, but at a slightly later stage than for TN. When CPR
techniques are not available the methods perform quite similarly, with
the hybrid method frequently in second place, regardless of which
method is the fastest.

On the extended Rosenbrock function the curve of the hybrid
method is takes a dip when that of TN does, at a slightly later stage.
When CPR techniques are not available, it performs as good as identi-
cally to L-BFGS (which performs the best) when AD is not available,
and close to it when AD is available (case 4).

On the DIXMAANL problem, the hybrid method performs simi-
larly to TN, which performs the best in three of four cases.

On the chained Rosenbrock problem the hybrid method performs
the best in case two, slightly worse than L-BFGS in case 4 and is able
to benefit from CPR techniques like it did on the second problem, that
is, in a similar fashion as TN but at a slightly later stage.

On the HILBERTB problem, the hybrid method together with
L-BFGS performs the best in all cases.

On the penalty I function we get very interesting curves, which are
in a sense optimal for a hybrid method. Initially, the hybrid method
follows the steepest curve, namely that of L-BFGS, and when L-BFGS
stagnates continues at the pace of TN.

A similar, but less obvious picture appears for the penalty II func-
tion.

5 Concluding Remarks

We have presented a class of hybrid L-BFGS/TN methods, and tested
the performance of one of the members in the class compared with
its corresponding parent methods. In some of our tests, the hybrid
method followed the best curve of its parent methods closely, in other
tests it fell between its two parents.
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Figure 4.1: Problem 1 from [5], well conditioned, ρ = 12, n = 916.
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Figure 4.2: Problem 2 from [5], ill-conditioned, ρ = 12, n = 916.
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Figure 4.3: Problem 3 from [5], quadratic, ρ = 12, n = 916.
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Figure 4.4: Extended Rosenbrock (EXTROSNB), ρ = 2, n = 100.
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Figure 4.5: DIXMAANL, ρ = 9, n = 1500.
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Figure 4.6: Chained Rosenbrock (CHNROSNB), ρ = 3, n = 50.
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Figure 4.7: HILBERTB, ρ = 50, n = 50.
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Figure 4.8: PENALTYI, ρ = 1000, n = 1000.
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Figure 4.9: PENALTYII, ρ = 50, n = 50.
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The exception to this rule comes when TN is able to exploit CPR
techniques effectively at a very early stage by performing many cheap
CG iterations, although the tested hybrid method converges very
quickly when it starts performing many CG iterations as well.

We feel the our preliminary numerical results are very promising,
and that there should exist forcing sequences and possibly dynamic
choices of m which should result in effective methods using little mem-
ory.

We have not discussed preconditioning of the iterative equation
solver (CG in our tests) itself, and this an aspect that should be looked
into in the context of our class. Similarly, other choices than CG
should also be investigated.
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