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Summary. In this work we present control volume multiscale methods which address
problems on the interaction between pore scale and Darcy scale. For the case when linear
equations govern the flow on the pore scale our solution converges to semi-analytical
solution. Moreover, the method also extends to non-linear problems governed by Navier-
Stokes equations. We show numerical results illustrating the applicability of the method.

1 INTRODUCTION

The standard way of modelling flow in porous media includes applying Darcy’s law.
Initially, this constitutive equation was phenomenologically derived in the middle of 19th
century. In the 20th century it was also shown that under particular assumptions one can
derive it from the Stokes equations on porous geometry2. Stokes equations, however, rely
on several assumptions and are just a linear simplification of full physical problem on the
fine scale. If non-linear Navier-Stokes terms are introduced on the pore scale, Darcy’s law
is amended with non-linear terms. The applications where we can come across such effects
are flows that may occur near wells and in fractured regions in subsurface. Moreover, those
flows are common for industrial and near-surface porous media.

To obtain the flux expression on Darcy (coarse) scale a multiscale modelling can be
applied. The traditional derivations of Darcy type relations on the coarse scale achieve
this by homogenization. From the above discussion, we understand that this approach
relies on a priory assumptions of the nature of the fine scale flow. Furthermore, since
homogenization yields a one-way upscaling, possible feedback from the coarse scale to the
fine scale cannot be captured.

As an alternative, we present a multiscale method that for the coarse scale assumes
only mass conservation on control volumes, that is, no phenomenological relationships are
assumed a priory. The method is designed in the framework of the Heterogeneous Mul-
tiscale Methods (HMM) proposed by E and Engquist4. Additional information needed,
such as a relationship between coarse scale pressure and fluxes, is obtained by locally
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solving continuum mechanics’ equations on the pore scale. While the fine scale solver
accounts for non-linear effects of the pore scale, the coarse solver takes care of slowly
varying effective parameters.

The advantage of our HMM is that it converges to the correct upscaled solution derived
by homogenization when the equations are essentially linear. Moreover, it gives flexibility
of solving a wider range of problems, for which we cannot access the exact solution,
without any need of additional user participation. As our method extends naturally to
this variety of problems and, hence, should give a reasonable approximation that is better
than a solution for a simplified model.

HMMs of such kind were considered previously; in particular, a control volume HMM
formulation was considered by Abdulle and E1. Our method, however, is different not
only in the fine scale problem but also in that it treats discontinuities more consistently
as it is described in Sect. 3.2.

This paper presents an HMM for the problems of interaction between pore scale and
Darcy scale. Our HMM is formulated on the coarse scale as a control volume method
consistent with two-point flux approximation. The paper sketches the method algorithm
and describes possible ways to optimize it.

Our numerical results test the algorithm for various aspects:

• convergence to semi-analytical homogenisation solution for linear flow regime;
• handling of heterogeneous porous media with discontinuities;
• difference of the presented method to linearised problems for non-linear regimes.

2 MODEL PROBLEM

The goal of our work is to investigate how the HMM framework can produce a solution
to the coarse scale problem that accounts for the interplay between the coarse and the
fine scale. As a model problems we choose an artificial pore structure that is periodic on
macro subdomains. For simplicity only 2D porous media are considered, and the upscaled
permeability is assumed to be aligned with the coarse grid.

For the coarse scale we only use the (physically justified) continuity equation that
provides mass conservation. We consider both problems with incompressible flow,

∇ · ~u = f, (1a)

and weakly compressible flow on the form

φpt +∇ · ~u = f, (1b)

ρp = cρ.

In the equations above ~u is flux density vector, f is the mass source, p is the pressure, ρ
is density, φ is the porosity, and c is compressibility.
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a. b.

Figure 1: Building blocks of the multiscale method from the coarse grid perspective (a)
and an example of a fine scale cell problem with triangulation (b).

As for the fine scale we study the Navier-Stokes equations on porous geometries like
on Fig. 1b. The governing equations in this case are (1a) and

ρ~u · ∇~u = −∇p+ µ∆~u+ ~g, (2)

where µ is viscosity, ~u is velocity and g represents body forces. Time dependent terms are
omitted from the equations (1a,2) since we will only consider fine scale sub-problems that
equilibrate much faster than the typical time scale of the coarse problem. For analysis
purposes we will also consider Stokes equation, which is obtained by setting ρ~u · ∇~u = 0
in (2).

3 DESCRIPTION OF THE MULTISCALE METHOD

The method is formulated within the HMM framework4. To describe the method one
should choose a fine scale method, a coarse method and operators to project information
between the two. This section describes our choice of method’s components.

3.1 The coarse scale control volume method

The coarse scale equation is discretized by a two-point-flux-style control volume method.
The unknowns are pressures in the cell centers denoted pl and pr on Fig. 1a. Along with
the cell center pressures, auxiliary variables ql,r denoting fluxes between neighbouring cells
are considered. The method ensures local mass conservation, in other words for each cell
it satisfies

d

dt

∫
τl

ρlφdx+

∮
∂τl

ρ~u · ~nds =

∫
τl

fdx, (3)

where ∂τl is the border of the cell τl and ~n is an outgoing unit normal. As we are using
the simplified continuity equations (1) the method will ensure that the corresponding
equation is satisfied locally in the integral sense instead; for (1b) it takes the form:
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d

dt

∫
τl

plφdx+

∮
∂τl

~u · ~nds =

∫
τl

fdx. (4)

The second term is nothing more than a sum of fluxes (such as ql,r) over all edges of τl.
As previously mentioned the constitutive relationship between primary pressure vari-

able and fluxes are not known a priori. The fluxes ql,r can be found from a formal
relationship

ql,r = F (~xl, ~xr, pl, pr, ρl, ρr) (5)

by interpolating information from fine scale problems. Here, ~x is the coordinate and
subscripts denote the cells.

Before projecting coarse scale pressures to the fine scale, an auxiliary pressure pm is
introduced on all edges. Then we interpolate linearly between pl and pm and project the
pressure values to form boundary conditions of the fine scale problem at point (~xm+~xl)/2
as shown on Fig. 1a. After solving the fine scale problem (see remark 1) we integrate the
component of the velocity that is parallel to the flow direction (~xm − ~xl) across the cell
and obtain ql,m by scaling the result (see also remark 2).

In order to omit pm and hence obtain ql,r we solve the equation ql,m = ql,r = qm,r, that
is coupled naturally to the two fine scale problems associated with the coarse edge; see
Fig. 1a. This equation is true under the assumption that for this local coarse problem the
flow is only happening between the cells l and r driven by the corresponding pressures
and ρ is constant, i.e. (1a) is valid.

Equipped with flux expressions on each edge, one can perform coarse scale time step-
ping, discretizing equation in time by backward Euler or solve the system by the Newton
method for the stationary case.

Remark 1 : Fine scale. We define our fine scale problem as a PDE on a domain, that
for simplicity is taken to be a square. The size of this square is equal to the period of the
porous media ε, and it is positioned around the coarse sampling point. In homogenization,
this fine scale problem is referred to as a cell problem.

The boundary conditions for velocity are: no flow in the solid grains σ and on their
boundaries, and periodicity on the square edges; see Fig. 1b. Pressure is also periodically
transversal to the flow and has a jump of a given ∆p in the direction of the flow. This
boundary value problem is consistent with the homogenization cell problem for Stokes flow
(see Sect. 4.1 for more details).

To solve the fine scale problem we use the lowest order Taylor-Hood finite element
method on a triangular grid (see Fig. 1b) as implemented in FEniCs5.
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Remark 2 : Optimization of the algorithm. In order to reduce the total compu-
tational time we reuse fine scale computations if possible. If for a given cell problem α
and pressure drop p we have computed Fα(p0) and Fα(p1), such that p0 ≤ p ≤ p1 and
|Fα(p1)− Fα(p0)| < δ then we approximate Fα(p) by linear interpolation between the two
values. In the case where no information is available an on-demand solver is invoked for
the fine scale problem and the resulting flux is stored for future use.

We can also reduce the computational cost by reformulating half of the original prob-
lem (5) F (~xl, pl, ρl) to a one parametric dimensionless problem Fα(p̃) where α corresponds
to geometry in point ~xl. The resulting problem can be solved by techniques described in
this remark.

3.2 Handling discontinuities

The method proposed in this paper differs from the control volume HMM proposed
earlier, e.g. by Abdulle and E1, in how the coarse scale sampling is performed. In1, the
sampling domains are located in the middle of the border between coarse cells. In contrast,
we use two domains, one in each cell, between the center of the cell and the center of the
considered border. The old approach resembles control volume finite elements, whereas
our approach coincides with two-point flux approximation.

For problems with continuous parameter fields both methods perform similarly, and
our method tends to be slower due to more sampling points. The extra sampling points
are however necessary to get a proper coarse flux expression for porous media with dis-
continuities.

It is natural to assume that the discontinuities can be resolved by the coarse grid in
average (see the red line on Fig. 1a). A perturbation of order ε << H in the interface
can cause the old method to give an arbitrary wrong sample. For the problems where
the scale of discontinuities is small (of order l) or where the grid is non-uniform the old
approach will give an error of order H/l. Our approach however will give an error that
is only proportional to the ε perturbation of discontinuity; thus this sampling strategy is
superior to using a single point only.

4 NUMERICAL EXPERIMENTS

Numerical experiments presented below show applicability of the discussed method.
In Sect. 4.1 it is shown that our method converges to homogenization solution for Stokes
flow. In Sect. 4.2 we show full flexibility of the proposed method on a heterogeneous
domain with discontinuity using realistic parameters. The final example demonstrates
the importance of using a non-linear approximation on the fine scale and relates it to
various applications.

4.1 Verification of convergence for the Stokes flow

For method validation, it is of interest to verify that the multiscale method gives correct
result to problems with a well known solution. In the paper Alyaev et al3, an a priori error
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Figure 2: A coarse scale pressure solution to a linear problem (a) and convergence of
solution to the reference (b).

estimate for the HMM described here is proved for the case of incompressible Stokes-type
flow. The error between the homogenization solution2 and the fully discrete solution has
the form

∥∥∥p − pH,hMS

∥∥∥
L2
≤ C

((
h

ε

)α
+H

)
, (6)

where the terms represent the propagation of the fine scale error and the coarse scale error
respectively. The sizes involved in (6) are shown on Figures 1a and 1b: H is the coarse
cell size, ε is the period of the porous medium and h is the fine grid size. The parameter
1 ≤ α < 2 comes from the estimate for Taylor-Hood elements for Stokes problem and
depends on the cell geometry6. The analysis3 shows that the coarse scale error in the
pressure is proportional to the fine scale error in velocity that is C (h/ε)α. The coarse
scale error is the error of the two-point flux approximation, which is well analysed and
verified in the literature.

Here we present a verification of the propagation of the fine scale error specific for this
method. We consider a quarter of a 5-well problem and look for a coarse scale solution in
a square domain with no-flow Neumann boundary conditions except for the right-bottom
cell that has zero Dirichlet condition (Fig. 2a). In the top-left corner cell the forcing term
is introduced. The fine scale structure is taken from Fig. 1b. For the comparison H and
ε are fixed. We consider the relative error between solution on h grid and a reference grid
with very small cells. Figure 2b shows that the L2 error in coarse scale pressure is indeed
proportional to the error in the coarse flux and the rate of convergence is not lower when
expected (α ≈ 2 for our geometry Fig. 1b).

4.2 Non-linear compressible flow in heterogeneous media

This numerical example shows the full potential of the HMM described in this paper.
We consider weakly compressible non-Darcy flow of water in the domain consisting of
2 regions: a low permeable region with anisotropic porous structure as on Fig. 1b in
the middle and an isotropic high permeable region made of circular grains in the square
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Figure 3: Permeability field structure (a) and a solution after a number of time steps (b)
for the heterogeneous problem.
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Figure 4: Comparison of linear and non-linear fluxes for the cell problem on Fig. 1b (a),
dynamics of injection and production error in time for the linear approximation (b) and
spatial distribution of relative non-linear effects in flux for the heterogeneous example (c).

arrangement forming a frame; see Fig. 3a. In analogy to the previous example we place
an injector in one corner and a producer in the opposite corner. The pressure in the
producer increases linearly in time for a number of steps and then remains constant.

Figure 3b shows a solution before injection stops. There are 3 noticeable features of
the solution: fast decrease of pressure around the injector before the low permeable region
(forming a peak) with a little build-up on the border of it; almost linear variation within
the low-permeable region; and a smaller (due to compressibility) negative peak in the
production point.

To investigate the importance of non-linearities on the fine scale, we first consider the
coarse flux as a function of the pressure drop over a single edge when the pore geometry
is as shown in Fig. 1b. Figure 4a shows the dependency of the non-dimensional mean
flux to the non-dimensional pressure drop, that can be interpreted as a scaled Reynolds
number squared. As seen from the figure the difference between the linear approximation
and the true flux reaches 35% even in the non-turbulent stationary regime.

Next, let us consider again the problem from Fig. 3 and compare it to the same problem
but with linear flux approximation. Fig. 4b shows how the deviation in the injection and
production will evolve in time. As expected higher pressure drop results in higher influence
of the non-linear flow on the fine scale, and which persists after the solution reaches steady-
state. For this problem the linear constitutive law overestimates the production by almost
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10% which can be crucial for applications such as oil recovery.
Finally, we consider the spatial distribution of the error when using a linear flux relation

for the heterogeneous example. Fig. 4c shows the relative magnitude of the difference
between a linear approximation and the true flux. As expected, the non-linear effects
are largest near the injection and production wells, where the pressure drop is highest.
Predictably, error is also significant throughout high permeable channels forming the outer
part of the domain, in particular there are large errors close to the boundary between the
two permeability regions. Comparing with Fig. 3, we see that non-linear flux effects can
be important not only in regions with large pressure drops, but also close to material
discontinuities, where flow focusing may occur. The small error in the low permeable
region was to be expected, since the pressure drop is much smaller there.

5 CONCLUSIONS

We have presented a new control volume multiscale method for handling effects on the
pore and Darcy scale. The method utilizes either Stokes or Navier-Stokes formulations of
the fine scale problem, coupled with an incompressible or weakly compressible conserva-
tion law on the coarse scale. The coarse-scale fluxes are treated by a multi-scale extension
of the standard two-point flux approximation, and this makes the scheme capable of
handling discontinuities that are resolved by the coarse grid.

Our numerical results verify analytically obtained convergence estimates of the method
for problems where a homogenized coarse-scale formulation is known. Furthermore, we
illustrate the applicability of the method to non-linear flows on heterogeneous domains,
observing that non-linear flow formulations may be of importance not only near wells,
but also in regions where high flow rates are induced by material heterogeneities.
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