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Summary 

Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized 

by lymphocytic infiltrates of exocrine glands, notably the salivary and lacrimal glands 

combined with immune-mediated glandular destruction. The disease is chronic, 

disabling and there is no cure. Diagnosis of the disease is difficult, with the symptoms 

of the disease (dryness of the mouth and eyes, and fatigue) frequent in the population 

as a side effect of many drugs, other co-morbidities or aging. Many cases of pSS are 

hence misclassified or go unidentified. Like other autoimmune diseases pSS 

progression and phenotype are heterogeneous with many clinical presentations 

limited to local manifestations, while others develop extraglandular manifestations as 

well as life threatening conditions such as B cell lymphomas. New disease markers 

for pSS that are specific for diagnosis or useful to predict disease development have 

the potential to radically change how we treat, diagnose and define the disease.  

The work contained in this thesis focused on the use of flow cytometry based assays 

in the search for disease markers for the identification and stratification of pSS 

patients.  

In paper I we assessed a multiplex flow cytometry protocol used for the measurement 

of MAPK/ERK and JAK/STAT signaling networks in peripheral blood mononuclear 

cells for inter-assay precision for experimental variables (phospho-protein measured, 

cell type and stimulant). In addition, three different blood collection tubes were 

assessed for their effect on basal and induced intracellular signaling in different cell 

subsets. The method showed a high level of precision with median coefficients of 

variation under 10 %, while the use of heparin as an anti-coagulant was superior in 

retaining immune cell responsiveness compared to citrate. Citrate strongly affected 

NK cell responses to stimuli, while CPT based isolation methods were associated 

with higher basal phosphorylation.  

In papers II and III the flow cytometry protocol presented in paper I was used to 

compare basal and IFNα or TLR7 and -9 stimulation induced phosphorylation states 
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in immune cells from pSS patients and healthy individuals. Both basal and induced 

phosphorylation differed significantly between pSS patients and healthy individuals, 

while induced phosphorylation also differed between by patient sungroups. 

In paper IV, we compared immune cell quantities in peripheral blood of patients with 

pSS and healthy individuals, and associated changes with clinical manifestations of 

the disease. Primary Sjögren’s syndrome patients displayed decreased absolute counts 

of diverse subtypes of lymphocytes and increases of monocytes and granulocytes 

compared to healthy individuals. Greater decreases of lymphocytes were associated 

with differing patient phenotype. 

In conclusion analysis of both intracellular signaling pathways and cell quantification 

are promising techniques for the identification of biomarkers that could be used in 

diagnosis and stratification of pSS.  
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1. Introduction 

1.1. The immune system 
The immune system has evolved in order to maintain and protect the integrity of the 

organism. The system decides which cells, microorganisms and substances must be 

removed, as well as controlling the balance of others, for example commensal 

microbial flora [1] thus maintaining homeostasis and the integrity of the organism. 

The immune system is therefore integral to an organism’s health, protecting against 

threats from infectious agents and abnormal self. This maintenance of homeostasis 

and biological integrity requires a delicate balance that protects the host from 

potential infectious agents, while minimizing potential collateral damage brought 

about by their control. A loss of balance in these processes may promote the 

emergence of serious infections or conversely immune system driven pathological 

inflammatory conditions.  

Immune system driven pathological conditions can result from malfunctions within 

the innate arm of the immune system, with associated diseases termed auto-

inflammatory [2]. Diseases involving the malfunction of the adaptive immune system 

are termed auto-immune, Sjögren’s syndrome (SS) is included in this group [2]. The 

diverse range of environmental and biological threats and the high cost of 

inappropriate immune responses have provided a strong evolutionary driving force. 

This evolutionary drive has resulted in a highly complex and coordinated web of 

cellular interactions allowing for a fine tuned control, consisting of many stops, 

balances and feedbacks. In-turn this complexity allows for diverse points of origin 

that malfunction can occur in the system as well as propagate. Inconsequence 

malfunction within the immune system can lead to highly diverse sets of disease 

pathogenesis and manifestations.  

Broadly speaking the vertebrate immune system can be divided into 2 distinct but 

interconnected functional divisions- the innate and the adaptive immune system. It is 
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generally accepted that the innate immune system provides a rapid, non-specific 

response to infection and the adaptive response is slow but highly specific [3].  

1.2. Innate immunity  

The innate immune response is initiated at the site of infection through pre-formed 

cells and immune factors, thus responding without delay. The innate immune system 

is composed of anatomical barriers (skin, mucous membranes etc.) and cellular 

components including neutrophils, basophils, mast cells, monocytes, macrophages, 

dendritic cells (DCs), natural killer T (NKT) and innate lymphoid cells including 

natural killer (NK) cells. Additionally, innate defence mechanisms include a number 

of soluble factors- complement proteins, natural antibodies, and cytokines that protect 

the host against various infectious agents [3]. 

Recognition of threats to the host by the innate immune system is driven through a 

number of different mechanisms that work in combination to trigger a particular 

immune response. Recognition of microbial threats is primarily through direct 

detection by a limited number of germ-line encoded pattern recognition receptors 

(PRRs) that identify evolutionary conserved invariant features of microbes, termed 

pathogen associated molecular patterns [4] or perhaps more accurately microbe 

associated molecular patterns.  

Pattern recognition receptors divide into two groups: secreted PRRs and cell-

associated PRRs (transmembrane and intracellular signal-transducing receptors) [5]. 

Secreted PRRs include antimicrobial peptides, collectins, lectins and pentraxins, and 

have a number of functions including direct microbial killing and enhancing 

phagocytosis [5]. Cell-associated PRRs are expressed constitutively on many types of 

innate immune cells and include a number of plasma bound and intracellular 

receptors, for example Toll-like receptors (TLR), C-type lectin receptors, nucleotide-

binding oligomerization domain-like receptors and retinoic acid- inducible gene 

(RIG)-like receptors [6].  
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Toll-like receptors can detect molecules termed damage associated molecular patterns 

[7, 8]. These molecules are normally hidden from PRRs through 

compartmentalization or sequestration and are released during cell lysis and tissue 

damage [8]. Phagocytes including monocytes, macrophages, neutrophils and DCs use 

this system to identify, engulf and destroy microbes, dead cells and tissue debris. 

After encountering pathogens, phagocytes produce and secrete proinflammatory 

cytokines that can induce DC maturation allowing them to prime immune responses, 

with maturation stimulus influencing the type of immune response [9] (see section 

1.4.1. ). Additionally, cells of the innate immune system can detect non-self through 

the monitoring of molecules normally expressed by healthy cells. This strategy is 

utilized by NK cells where identification of the major histocompatibility complex 

(MHC) class I prevents activation of an immune response, while cells with no or low 

expression of MHC will be killed [3, 10].  

1.3. Adaptive immunity 

The main cellular components of the adaptive immune system are B and T 

lymphocytes. B cells express a membrane bound immunoglobulin (Ig) known as the 

B cell receptor (BCR) which can bind soluble antigen in its native form. Following 

activation B cells differentiate into memory and effector B cells known as plasma 

cells [11]. Plasma cells are capable of secreting antigen specific Ig known as 

antibodies which play a diverse range of functions for example blocking infectivity 

(blocking attachment, entry into host cells, inhibiting pathogen lifecycle), killing 

pathogens, activation of complement, antibody-dependent cellular cytotoxicity and 

increasing phagocytosis [12].  

T cells express a T cell receptor (TCR) which recognises antigen presented on MHC. 

T cells can be divided into two subsets based on expression of the co-receptors cluster 

of differentiation (CD) 4 and CD8. Activation of naïve T cells causes proliferation 

and differentiation into memory T cells and effector T cells, with CD8+ naïve T cells 

differentiating into cytotoxic T cells, and CD4+ naïve T cells into helper T (Th) cells 

or regulatory T cells (Treg) [11]. These subsets of T cells play different roles in the 
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immune response with CD4+ Th cells helping direct the immune response through 

the secretion of cytokines (see section 1.4.3. ), while CD8+ cytotoxic T cells kill 

cancerous and virus infected cells.   

Unlike receptors of the innate system, BCR and TCR are not encoded in the germ line 

but are generated de novo in each organism through the recombination of genes. This 

allows for the generation of an almost unlimited spectrum of antigen specific 

receptors [11, 13, 14]. The high diversity of possible receptors allows for a more 

specific and stronger response and is essential in adapting for rapidly mutating threats 

[11]. Because of the high diversity of possible receptor specificity, prior to infection 

low levels of immune cells displaying each receptor for its cognate antigen (peptide 

or protein capable of inducing an immune response) are present. A strong immune 

response therefore requires not only lymphoid activation and maturation but 

significant clonal expansion [11, 15]. This creates a time lag during which period the 

body relies on the non-specific innate immune response for protection. Secondary 

encounters of the antigen are however rapid with the adaptive immune response 

producing a specific immunological memory of the infection [11, 15]. This rapid 

secondary response depends on the generation of memory B and T cells. These cells 

develop from naïve progenitor cells throughout the course of infection and remain 

circulating in the blood and lymph long after the infection’s clearance [11].  

1.4. Coordination of the immune response 

1.4.1. Innate control of the adaptive response 

The coordination of an immune response is finely tuned and takes place at many 

levels. Induction of adaptive immunity is dependent not only on direct antigen 

recognition by the antigen receptors but also signals delivered by the innate immune 

system. This system was suggested over two decades ago by Charles A. Janeway Jr, 

when he postulated that the recognition of pathogen associated molecular patterns by 

the innate system delivers essential signals to the adaptive immune system [4]. The 

evolution of this system allows for an extra layer of self and non-self discrimination 
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and distinction between harmful and benign microbes [4]. Innate control of the 

adaptive arm of the immune response has also been recognized as being a critical step 

in determining the nature of the adaptive response, with the nature of the pathogen 

determining the PRRs it activates, which in turn dictates the immune response 

elicited against it [5].  

Antigen presenting cells (APCs), in particular DCs, continually monitor lymphoid 

and non-lymphoid sites. The detection of viral or microbial cell components through 

PRRs, induces endocytosis or phagocytosis of the microbe. This leads to activation of 

the immature DCs and loss of endocytic capacity and induction of migratory 

properties. The activated DCs then migrate to draining lymph nodes and mature 

allowing them to present antigen to T cells [16].  

Innate instruction of the adaptive response occurs initially at this point through the 

interaction between APCs and T cells [17]. Antigen recognition by TCR requires 

antigen presentation by the APCs in context of a MHC molecule. MHC molecules 

consist of four classes − MHC class I and II which encode polymorphic cell surface 

antigens, as well as class III and IV [18]. MHC class I molecules are present on most 

nucleated cells and are responsible for the presentation of intracellular antigen, or 

extracellular antigen through cross presentation by DCs [19]. MHC class II in 

contrast is limited to professional APCs − DCs, macrophages and B cells in 

particular, and presents extracellular antigen following endocytosis and digestion in 

lysosomes [20]. MHC class III and IV molecules include a number of proteins not 

involved in antigen presentation including complement proteins, cytokines, and heat-

shock proteins [18, 21].  

MHC class I bound antigen is recognised by CD8+ cytotoxic T cells, while CD4+ Th 

cells recognise antigen presented by MHC class II molecules. Recognition by the 

TCR of the MHC − cognate antigen complex is required for activation of naïve T 

cells in addition to two other signals, expression of co-stimulatory molecules B7 

(CD80/CD86) on APCs and recognition by CD28 on the T cell, and stimulation of 

the T cell with cytokines secreted by the APCs [22]. Activated CD4+ Th cells can in 
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turn provide a second signal to naïve B cells bound to its cognate antigen that require 

an additional signal for activation in what is termed T cell-dependent activation. This 

produces higher affinity and functionally more versatile antibodies then T cell-

independent B cell activation where the additional signal is provided through TLRs or 

crosslinking of BCR [11].  

1.4.2. Intercellular communication in the immune 

response 

An essential component of the immune response is the coordination of activities 

between cellular players. To accomplish these coordinated responses, cells send, 

receive and integrate a multitude of signals in extensive and highly complex 

networks, informing other cells of changes in their environment. These signals arise 

from direct cell to cell interactions or through the detection of soluble cell signaling 

molecules. Mechanisms of action of signaling molecules can be categorised as 

autocrine (acts on the cytokine secreting cell itself), paracrine (acts on cells in close 

proximity), juxtacrine (requiring cell to cell contact) and endocrine (acts on cells in 

distant regions of the body) (Figure 1). Additionally, the molecule may display a 

number of functional properties including pleiotropism, redundancy, additive, 

synergism and antagonism [23].  

Figure 1. Mechanisms of action of intercellular signaling molecules. Figure was 
produced using Servier Medical Art. 
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The immune system incorporates a number of specialized molecules to communicate 

between cells. However, the principle cell signaling molecule of the immune system 

is the cytokine. Cytokines are a diverse group of molecules whose primary function is 

the regulation and coordination of immune responses. For example, they help B cells 

to produce antibodies, undergo class switching and affinity maturation; as well as 

recruiting, activating, and maintaining CD8 T cells, macrophages, neutrophils as well 

as other effector cells [24]. During the initial immune response the combination of 

cytokines produced by cells involved in the innate immune response creates a 

cytokine profile. The cytokine profile along with other signals including the type and 

amount of antigen and co-stimulatory molecules directs the differentiation of 

different T-cell subsets, in particular the Th cells [25]. The differentiation of these 

cells determines their cytokine secretion profile and plays a crucial role in 

determining the ultimate direction of the adaptive immune response.  

1.4.3. The helper T cell paradigm 

Th cells are divided into three major subsets- Th1, Th2 and Th17, based on their 

effector functions and cytokines secreted (Figure 2). The major role of Th 1 cells is 

the defence of the host from intracellular pathogens through promoting macrophages 

and cytotoxic T cell immune responses. Th1 cell differentiation from naive T cell is 

driven by interferon (IFN) γ and interleukin (IL)-12 and the transcription factors T-

bet and signal transducers and activator of transcription (STAT) 4. Th1 cells in turn 

support further Th1 differentiation through producing IFNγ and IL-12 while 

suppressing the Th2 driven response through inhibitory action of IFNγ [24].  

Th2 cells drive immune responses requiring humoral components to eliminate the 

pathogen, in particular through IgE production, eosinophil recruitment and clearance 

of extracellular parasites. IL-4 along with IL-2, IL-7, TSLP (thymic stromal 

lymphopoietin) with the transcription factors GATA3 and STAT5 drive Th2 

differentiation. Th2 cells produce IL-4 in a positive feedback loop with IL-4 also 

suppressing Th1 driven responses. Th17 cells play crucial roles during immune 
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responses against extracellular bacteria and fungi; they are IL-23 responsive and 

produce many cytokines not produced by Th1 or Th2 cells including IL-17A, IL-17F 

and IL-22. Th17 differentiation is driven by tumor growth factor (TGF)-β, IL-6, IL-

21 and IL-23 with the transcription factors RORγt/STAT3 [24].  

 

Figure 2. Overview of the basic CD4 Th cell subsets and the transcription factors 
and cytokines involved in their induction and their effector profile. Figure adapted 
from Deenick and Tangye (2007) [26]. 

1.4.4. Type I interferon in the immune response  

The IFN family is comprised of type I (including IFNα and IFNβ among others), type 

II (IFNγ) and type III (IFNλ) IFN and were named based on their ability to interfere 

with viral replication [27]. Type I IFN in humans consist of more than 13 structurally 

similar cytokines which all signal through the same receptor known as the IFN type I 

receptor (IFNAR), which in turn influences IFN-stimulated genes generally through 

the actions of IFN regulatory factors (IRF) [28]. All nucleated cells can be induced to 
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produce type I IFN [29], however plasmacytoid DCs (pDCs) which account for 0.2 to 

0.8 % of peripheral blood mononuclear cells (PBMC) constitutively express IRF7 and 

can produce 100 to 1000 times more type I IFN than other blood cells upon viral 

infection [30].  

Type I IFN is produced in response to bacteria, viruses or microbial nucleic acids 

through activation of PRRs including TLRs, RIG-like receptors and nucleotide-

binding oligomerization domain-like receptors. On the cell surface TLR4 induces 

type I IFN following recognition of lipopolysaccharide from bacteria, and signals 

through the adaptor molecule TIR-domain-containing adapter-inducing IFN-β 

(TRIF), which activates TANK binding kinase 1, which in turn leads to the activation 

of IRF3 [28].    

Four TLRs detect viral nucleic acids, with TLR3 recognizing double stranded 

ribonucleic acid (RNA), TLR7 and 8 recognizes single stranded RNA and TLR9 

recognizing non-methylated viralCpG-containing deoxyribonucleic acid (DNA). 

Unlike TLR4, the TLR3, -7,  -8 and -9 are expressed on endosomal membranes and 

their activation therefore requires the endocytosis of the virus and digestion of the 

viral envelope and capsid protein by host cell enzymes [31]. Alternatively, these TLR 

in pDCs can recognize some viruses following autophagy of infected cells [32]. Like 

TLR4, production of type I IFN through TLR3 uses the TRIF, TANK binding kinase 

1 and IRF3 [28]. In contrast to TLR3 and TLR4, production of type I IFN through 

TLR7, -8 and -9 is through the adaptor myeloid differentiation primary response gene 

88 (MyD88) in complex with TNF receptor associated factor (TRAF) 6 and 

interleukin-1 receptor-associated kinase (IRAK) 1 and 4, which activates IRF-3, -5 

and -7 [33]. An overview of TLR and their respective ligands, activated pathways and 

induced products is given in Figure 3. 
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Figure 3. TLR ligand specificities. TLRs recognize diverse PAMPs from bacteria, 
viruses, protozoa, and fungi. Following TLR binding to its respective ligand, NF-κB 
and IRF3/7 can be activated dependent on the ligand and TLR. Activation of TLR 
induced pathways can lead to the production of type I IFN and proinflammatory 
cytokines. Figure and text adapted from West et al. 2006 [34].  
  
The majority of cells also express cytosolic RNA helicases receptors of the RIG-like 

receptors superfamily including RNA helicases RIG-1, MDA5 (Melanoma 

Differentiation-Associated protein 5) and LGP2 (Laboratory of Genetics and 

Physiology 2). These receptors sense RNA which induces downstream signaling by 

interacting with the adaptor protein MAVS (mitochondrial antiviral-signaling 

protein). MAVS allows for the activation of TANK-binding kinase 1- IkB kinase 

(IKK)ε, which is responsible for the activation of IRF3 and -7, and IKKα and IKKβ, 

responsible for NF-kB activation resulting in type I IFN production [35]. Expression 

of IRF5 and -7 is also upregulated by type I IFN [36, 37], thereby cells without 

constitutive expression of IRF5 or -7 require a signal through IRF3 to activate type I 

IFN expression and “prime” the cell to produce type I IFN [30]. 



 22

Secreted type I IFN can then activate cells in a paracrine or autocrine manner through 

binding the IFNAR. Binding of the receptor induces activation of Tyk2 and Janus 

Kinase (JAK) 1 which recruits and activates STAT1 and STAT2. STAT1 and STAT2 

heterodimers can form a complex with IRF9, called the IFN-stimulated gene factor 3 

which enters the nucleus and binds to IFN-stimulated response elements (ISRE) 

activating type I IFN induced genes (see Figure 4) [38]. Although the exact biological 

function of many gene products of type I IFN induced genes are unknown, many are 

known to be involved in antiviral responses including myxoma resistance protein 

(MxA) [39, 40], whose expression is stimulated exclusively by IFN-α/β or IFN-λ 

[41]. A large number of products are also associated with angiogenesis, apoptosis and 

cell proliferation [39, 42-44]. Type I IFN induced gene products are also involved in 

initiating type I IFN production (TLR7 and IRF5) [45], as well as down regulating of 

type I IFN response through induction of negative regulators including the suppressor 

of cytokine signaling (SOCS) family [46, 47].   

1.5. Intracellular signaling pathways  

Intercellular signaling allows cells to receive and send messages, however, to respond 

a cell must convey the signal through the cell to appropriate response elements. To 

accomplish this process cells utilize a number of mechanisms which transmit 

information through the cell through conformational changes in proteins. These 

proteins are incorporated in long chains to form pathways as well as interconnected 

networks; with the transfer of information through the cell involving the linking of 

different changes of state. This large scale linking allows incorporation of many 

signals allowing countless finely tuned responses to the multitude of signals the cell 

may receive. Many of these signaling events are transmitted through ligand binding 

which results in changes in the proteins activity. Signal transduction utilizes a number 

of chemical reactions to induces change in protein conformation and activity, many 

of these reactions are however inherently slow [48].  

Cell signaling systems therefore use numerous enzymes as catalysts including protein 

kinases to catalyze phosphorylation reaction and adenylyl cyclase to catalyze the 
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formation of cyclic adenosine monophosphate from adenosine triphosphate. This 

allows changes to occur in timeframes necessary for cellular responses. Additionally, 

cells may use enzymes such as phosphatases which can destroy these protein 

modifications giving another layer of control [48]. A number of major pathways are 

used in intracellular signal transduction; those relevant to this thesis (JAK/STAT, 

Mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) are described in the subsequent section. 

Because the responses and functions of each intracellular signaling molecule are 

diverse the following review is limited to the context of this thesis. 

1.5.1. JAK/STAT 

The JAK / STAT signaling pathway regulates the cellular response to a number of 

cytokines and growth factors. Signal transduction by the pathway utilizes tyrosine 

kinases called JAKs and transcription factors called STATs to transduce a signal 

received by an extracellular receptor to the nucleus. The pathway operates through 

binding of a ligand to the extracellular domain of a JAK associated membrane bound 

receptor results in receptor dimerization and JAK phosphorylation. This in turn 

results in the JAKs phosphorylating the cytoplasmic domain of the cytokine receptor, 

creating a binding site for STAT. The bound STATs tyrosine residues are 

phosphorylated by JAKs, resulting in disassociation of STAT. The phosphorylation 

also promotes STAT dimerization which is essential for nuclear translocation and 

retention as well as DNA binding [49-51].  

The mammalian STAT family consists of 7 different STATs (STAT 1-6, -5a and -

5b), and 4 JAKs (JAK 1-3 and Tyk2). STAT and JAKs are functionally 

heterogeneous, with different ligands resulting in differing combinations and 

responses and signaling specificity. Additional to phosphorylation at tyrosine 

residues, STAT1 and -3 can undergo serine phosphorylation independent of JAK 

through serine kinases including extracellular signal-regulated kinases (ERK) and 

protein kinase C for STAT3, and p38 and protein kinase C for STAT1 [52]. Serine in 
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addition to tyrosine phosphorylation can modulate the transcriptional activity of 

STAT contributing to gene responses adding an additional layer of control [52, 53].     

Type I IFN can activate STAT1 and STAT3 in most cell types, while activation is 

cell type dependent for STAT4, STAT5 and STAT6 [38]. Type I IFN signaling 

through STAT1 is generally accepted to be proinflammatory, antiproliferative and 

proapoptotic and activates a number of STAT1-dependent inflammatory genes 

including chemokine (C-X-C motif) ligand 9 and 10, and B-cell activating factor. In 

contrast, type I IFN signaling through STAT3, STAT4 and STAT5 often promotes 

cell survival, proliferation and differentiation [54]. STAT3 has been observed to be 

capable of negatively regulating IFN responses and has been proposed to inhibit TLR 

signaling either through inducing anti-inflammatory molecules such as IL-10 or direct 

suppression of NF-κB [38, 55].  

Experiments with mice lacking STAT1 indicate that the anti-apoptotic responses in T 

cells to type I IFN are primarily mediated by STAT3 and to a lesser extent 

STAT5A/B [56]. STAT4 is involved in the anti-viral effect and production of IFNγ. 

Switching from type I IFNs activation of STAT1 to STAT4 due to STAT1 inhibition 

by TCR derived signals in CD8+ T cells during lymphocytic choriomeningitis virus 

infection enables optimal antigen-specific CD8+ T cell expansion and production of 

IFNγ promoting immunity to lymphocytic choriomeningitis virus [54, 57].  Mouse 

models of lymphocytic choriomeningitis virus-induced hepatitis and IFNα therapy of 

individuals with hepatitis C also show that that induction of cytotoxicity and 

production of IFNγ in NK cells is dependent on differential STAT1/4 

phosphorylation [58-60].  

These studies show that NK cells display a high basal expression of STAT4 but 

reduced STAT1 compared to other cell subsets. This pre-disposes the cell to STAT4 

activation by type I IFNs and IFNγ expression [58]. Total STAT1 levels are induced 

during viral infections as a result of type I IFN exposure, this change acts to promote 

the activation of STAT1 and increased cell cytotoxicity but limits both the activation 

of STAT4 and IFNγ expression [58-60]. 
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Differential STAT activation therefore in part determines the outcome of type I IFN 

signaling by shifting the balance between suppressive, anti-proliferative, anti-viral 

and proinflammatory gene expression [38] with different STAT complexes formed in 

response to type I IFN controlling the distinct gene expression programmes. For 

example, the IFN-stimulated gene factor 3 complex, composed of STAT1, STAT2 

and IFN-regulatory factor 9 binds to ISRE sequences activating anti-viral genes. In 

contrast, STAT1 homodimers bind to gamma-activated sequences (GAS) and induce 

proinflammatory genes [38] (Figure 4). 

The JAK/STAT pathway is negatively regulated on a number of levels, such as 

suppression of cell surface IFNAR expression [38], type I IFN induction of negative 

regulators including SOCS family members, ubiquitin carboxy-terminal hydrolase 18 

and microRNA [38, 61]. Cross regulation between STATs has also been observed 

with negative regulation of STAT1 by STAT3 occurring through competition for 

common receptor docking sites [62].  
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Figure 4. Signaling pathway activated by type I IFN. Type I IFN can activate a 
number of pathways utilizing STAT and MAPKs initiating different responses. STAT1 
homodimers formed in response to type I IFN bind to IFN activated GAS enhancer 
elements in promoters of IFN stimulated genes. This results in the transcription of 
genes encoding proinflammatory cytokines and apoptotic factors. STAT3 homodimers 
can also be formed in response to type I IFNs; this can result in the transcription of 
both pro and anti-inflammatory cytokines including IL-10. STAT1-STAT2 
heterodimers formed following activation by type I IFNs bind to IFN regulatory 
factor 9 (IRF9) to form the IFN-stimulated gene factor 3 (complex), which binds 
ISRE activating anti-viral and antibacterial genes. Independent of STAT, type I IFN 
can also signal through the phosphoinositide 3-kinase (PI3K)–AKT pathway to 
produce IL-10, mammalian target of rapamycin (mTOR) which regulates mRNA and 
p38 which is an upstream regulator of several genes regulated by ISRE and GAS 
elements. CREB, cyclic adenosine monophosphate-responsive-element-binding 
protein; IFNAR, IFNα/β receptor; IFNGR, IFNγ receptor; JAK, Janus kinase; SBE, 
STAT3-binding element; TBX21, T box 21; TYK2, non-receptor tyrosine kinase 2. 
Figure and text adapted from Gonzalez-Navajas et al. 2012 [63]. 
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1.5.2. The MAPK cascade 

The MAP kinase cascade is among the most prevalent cascades in eukaryotes and 

regulates a number of fundamental cellular processes including proliferation, 

transformation, apoptosis and differentiation [64-66]. The pathway utilizes three 

kinases that act in series. The most upstream referred to as MAPKKK, which 

phosphorylates and activates MAPKK, in turn activating MAPK. MAPK acts as the 

effector of the pathway, acting on hundreds of different substrates including 

transcription factors, transcription suppressors, and chromatin remodeling proteins. In 

mammals there are three main MAPK families − ERKs, JNKs (Jun amino-terminal 

kinases) and p38/SAPKs (stress-activated protein kinases). Activation of MAPK 

requires dual phosphorylation that results in exposure of the kinase active site and 

allows for substrate binding [65, 67].  

The pathway can respond to an extensive number of different stimuli producing 

highly specific and fine turned outcomes. Negative regulators affect the strength and 

duration of the transduced signals, in particular MAPK activity can be inhibited like 

the STAT family through endogenous phosphatases which can dephosphorylate both 

tyrosine and serine/threonine residues within a single substrate [67].  

The ERK1/2 pathway enhances the production of a number of proinflammatory 

cytokines including tumor necrosis factor (TNF) [68], IL-6 [69], and anti-

inflammatory cytokines including IL-10 [70], while p38 activation has been 

implicated in the expression of proinflammatory cytokines including IL-6, IL1β and 

TNFα [71].  

Both ERK and p38 can be activated in the production and response to type I IFN. For 

example, p38 activation in response to type I IFN is required for transcription of 

genes regulated by ISRE and GAS elements in a STAT independent manner (see 

figure 4) [63]. Several studies have also indicated that p38 is required for anti-viral 

and growth inhibitory effects of type I IFN, while ERK participates in the response to 

viral infections [63]. Both ERK1/2 and p38 can also be activated by various TLR 

ligands, activation of AP-1 (activator protein-1) in TLR signaling for example is 
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mostly regulated by MAP kinases including p38 and ERK [72]. AP-1 activation 

through TLR7 or -9 leads to the transcription of genes encoding proinflammatory 

cytokines and chemokines such as TNFα, IL-6, IL-8, and IL-1β [34] (Figure 5). 

These responses are however context dependent, for example signaling through ERK 

in conjunction with STAT3 in B cells following stimulation with TLR7/8 and TLR9 

agonists can induce production of the anti-inflammatory cytokine IL-10 with 

production further enhanced by IFNα in TLR7/8 induced responses [73]. 

1.5.3. NF-κB associated pathways 

The NF-κB protein complex regulates a range of genes controlling the transcription 

of cytokines and antimicrobial effectors as well as genes that regulate cellular 

differentiation, survival and proliferation. In mammals, the NF-κB family is 

composed of two subfamilies – the NF-κB proteins and Rel proteins, and 5 family 

members − p50/p105 (NF-κB1), p52/p100 (NF-κB2), RelA (p65), RelB, and c-Rel 

[74].  

The pathway is known to signal through either the canonical (classical) or non-

canonical (alternative) pathway. In the classical pathway, receptor activation (TCR, 

BCR etc.) leads to activation of IKK complex (IKKα, IKKβ and NEMO). The 

activated IKK complex in turn phosphorylates IkB which is bound to the inactive NF-

κB. The phosphorylation of IkB results in its polyubiquitination and degradation by 

the 26S proteasome. This releases the NF-κB dimers which translocate to the nucleus, 

binding activator regions increasing specific gene transcription. In contrast, the non-

canonical (alternative) pathway relies on the activation of IKKα. IKKα 

phosphorylates p100 resulting in its ubiquitination and proteasomal processing to 

p52. This creates NF-κB p52/RelB complexes that translocate to the nucleus 

upregulating gene transcription [74]. 

Signaling through NF-κB plays an important role in the immune system, regulating 

many genes required in the development of the immune system as well as those 

responsible for both adaptive and innate immune responses. The pathway is utilized 

by a number of receptors involved in the innate response, in particular TLR, where 
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NF-κB is one of the main transcription factors affected by TLR signaling. Both TLR7 

and TLR9 signal through the adaptor MyD88 to NF-κB or IRF7, with the most 

frequently activated form of NF-κB in TLR signaling being a heterodimer composed 

of RelA and p50 [75]. In general, activation of NF- κB, like AP-1 leads to 

proinflammatory cytokines and responses [75, 76], while activation of IRF7 leads to 

the production of type I IFN [77] (Figure 5).  

 

Figure 5. TLR7 and TLR9 mediated signaling. TLR7 and TLR9 reside in endosomal 
compartments of cells. Following binding of TLR to ssRNA (TLR7) or unmethylated 
CpG dinucleotides (TLR9), a MyD88-dependent pathway signals through activation 
of TAK1-mediated NF-κB and MAPK pathways which regulates transcription of 
genes encoding inflammatory cytokines. Alternatively IRF7 forms a signaling 
complex with MyD88, IRAK4, TRAF6, IRAK1 and IKKα. IRF7 is phosphorylated by 
IRAK1 and IKKα, dimerizes and regulates the expression of type I IFNs, including 
IFN-α and IFN-β. Figure adapted from Kawai and Akira 2007 [75].  

 

Although not being the main contributor to type I IFN production, NF-κB activation 

can influence its production and response. IRF3 along with NF-κB and the JAK-
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STAT signaling cascade is essential in positive feedback regulation of type I IFN 

genes and induction of IRF7 expression in early stages of virus infection when 

endogenous level of IRF7 in the cell are low [78]. Activation of NF-κB has also been 

observed to compensate for genetic defects in type I IFN pathway of IRF7 deficient 

mice allowing survival to otherwise lethal poxvirus infections [79].  

1.6. Autoimmunity and autoimmune disease 

Physiological autoimmunity is defined as an immune response against self 

components. Autoimmunity is present in a healthy immune system and is assumed to 

assist in the normal homeostatic mechanisms of the organism, for instance by natural 

autoantibodies that can target self nuclear and cytoplasmic debris enhancing their 

phagocytosis [80]. The mechanisms involved in a switch from physiological 

autoimmunity to pathological autoimmunity are poorly understood, but is 

characterized by a breakdown of self-tolerance leading to an adaptive immune 

response to self-antigens and damage to cells and tissues. 

1.6.1. Tolerance  

Tolerance can broadly be defined as the non-reactivity of the immune system to an 

antigen after repeated exposure. A number of regulatory mechanisms have evolved 

that occur in immature lymphocytes at generative lymphoid organs (central tolerance) 

or in mature lymphocytes in peripheral sites (peripheral tolerance).  

Because of the random recombination of genes used to generate different specificities 

of receptors in immature B and T cells, receptors specific for self-components can be 

produced. To prevent self-targeting, both immature T and B cells undergo negative 

selection (clonal deletion) during their maturation [81, 82]. Central tolerance for B 

cells takes place in the bone marrow where immature B cells that recognise self 

molecules undergo receptor editing resulting in expression of a new Ig light chain, if 

the receptor editing fails the B cell is deleted [81, 83]. Central tolerance for T cells 

takes place in the thymus. T cells undergo positive selection where only T cells that 
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recognise self-MHC molecules are permitted to survive, while negative selection 

removes T cells that bind self peptides above an affinity threshold [82, 84].  

It is known that central tolerance does not prevent all self-reactive cells from entering 

the periphery. A number of mechanisms therefore exist in the periphery that protect 

from these self-reactive cells including anergy, suppression and deletion. Anergy 

occurs in mature B and T cells when they are activated without proper stimulation 

signals. This occurs in mature T cells when the T cell encounters its cognate antigen 

presented by an APC without the co-stimulatory signals (CD28/B7) through non 

expression of B7, or engagement of B7 by CTLA-4 (cytotoxic T-lymphocyte-

associated protein 4) or PD-1 (programmed cell death protein 1) [85, 86].  B cells 

recognising self-antigen without T cell co-stimulation become unresponsive or die 

from apoptosis [87] and T cells chronically stimulated by antigen can be deleted 

through Fas- or Bim-mediated apoptosis pathways [86].  

Immature CD4+ T cells within the thymus that recognise self-antigens strongly may 

develop into natural Tregs, and Tregs known as inducible Tregs can be induced 

through the treatment of naïve peripheral CD4 T cells with TCR stimulation and with 

TGFβ plus IL-2 [24]. Both Treg subsets circulate in the periphery and are thought to 

be involved in self-tolerance and immune modulation exerting their effects through 

the suppression of proliferation and IFN-γ production of effector T cells for example 

[24, 88]. 

1.6.2. Autoimmune diseases − etiology and 

pathogenesis with emphasis on pSS 

Autoimmune diseases comprise a range of organ-specific diseases including multiple 

sclerosis and systemic disorders for instance rheumatoid arthritis (RA), systemic 

lupus erythematosus (SLE) and SS. During their lifetime, 5 to 10% of all individuals 

will go on to develop some kind of autoimmune disease [89]. Common among all 

autoimmune diseases is a breakdown of the systems that maintain tolerance to self-

components, resulting in immune responses to these components and extensive 
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pathology. The development and initiation of an autoimmune disease is thought to 

result from a combination of genetic elements and environmental triggers, with 

pathogenesis occurring long before clinical presentation [90] as depicted in the 

proposed eitopathogenic events in SS (Figure 6). The full picture is however far from 

complete. 

 

Figure 6. Proposed etiopathogenic events prior to diagnosis of Sjögren’s syndrome. 
Figure from Jonsson et al. 2011 [90]. 

 

The central question regarding the etiology of autoimmune diseases is how self-

tolerance fails and how self-reactive lymphocytes are activated. Initiation is thought 

to result from the exposure of predisposed individuals to an environmental trigger. 

Following activation of self-reactive lymphocytes, numerous interacting factors 

propagate the inflammatory response and subsequent tissue damage. These factors 

reinforce each other to perpetuate a response to a persistent self-antigen. For example, 

inflammation induced tissue damage may result in the release and modification of 

other self-antigens and activation of lymphocytes, in a phenomenon known as epitope 

spreading [91]. As a result, autoimmune diseases tend to be chronic, progressive and 

self-perpetuating. Aberrations common in autoimmune diseases that may play a role 

in their propagation include shifts of immune cell subset frequency [92], cell receptor 

expression [93], chemical messengers [94] and autoantibody production [95, 96].  
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Genetics has been identified as an important factor in the development of disease. 

First degree relatives of autoimmune disease patients display generally a five time 

greater risk than the general population of developing an autoimmune disease [97]. 

Genome wide association studies in human autoimmune disorders have identified 

many alleles which pose a risk. The strongest associations have been found within the 

MHC locus, in particular HLA (Human leukocyte antigen) class II molecule HLA-

DR3 which is linked to SS, SLE and autoimmune myositis. Several non-MHC 

susceptibility genes have also been identified. In SS, IRF5, STAT4, BLK and IL12A 

have significant associations [97], of which IRF5 and STAT4 have an additive effect 

[98]. Such findings support the concept of a quantitative threshold of immune 

signaling, where the small effect of many alleles could combine to enhance 

susceptibility to autoimmunity [97].  

Genetic differences do not however offer the full picture, autoimmune diseases occur 

in both monozygotic twins in no more than 20-30% of the cases thus indicating 

environmental factors also play a critical part [97]. Environmental factors thought to 

play a role in autoimmunity commonly act on pathways in which gene 

polymorphisms associate with disease [97]. For example, infectious agents like 

viruses are thought to trigger autoimmunity by interaction with PRRs such as TLRs 

and several genetic variants associated with SS feature in downstream signaling from 

TLRs or their regulation, including IFR5 [99, 100], IL-10 [101], IκBα (nuclear factor 

of kappa light polypeptide gene enhance in B-cell inhibitor, alpha) [102] and TNIP1 

(TNFAIP3 interacting protein 1) [100]. 

A common feature of autoimmune diseases is their higher prevalence in females. The 

strongest sex ratio biases are observed in SS, SLE, autoimmune thyroid disease and 

scleroderma where the ratio of women to men is 7:1 to 10:1 [103]. Sex hormones or 

sex-linked genes therefore likely influence the susceptibility of developing an 

autoimmune disease. Significant evidence exists for a hormonal role in primary 

Sjögren’s syndrome (pSS), for example in pSS patients the common age of onset is 

around menopause and mouse studies show that estrogen is protective to the 

development of pSS, and ovariectomy leads to SS like disease [104]. An X 
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chromosome additive effect is also observed with females with triple X syndrome 

(47, XXX) showing a higher prevalence of both pSS and SLE then normal 46, XX 

females [105] indicating possible influence of sex-linked genes. 

1.6.3. The interferon signature in autoimmunity 

It has been reported that patients with various autoimmune diseases including SLE, 

RA and SS display an increased expression of type I IFN regulated genes in both 

PBMC and tissue known as the type I IFN signature, [106, 107]. In SLE about half of 

adults display an IFN signature [108], which correlates with disease severity and 

activity [106, 108]. Further, the signature has been observed to be stable over time, 

despite flares of the disease [109, 110]. In RA incidences of an IFN signature in 

patients has been reported in a approximately 25- 50% of assessed patients [111, 

112]. Over half of pSS patients with pSS exhibit a type I IFN signature [113]. 

Patients with pSS exhibiting a type I IFN signature display higher ESSDAI 

(European League Against Rheumatism SS disease activity index) scores; higher 

levels of anti Ro and La autoantibodies; higher serum IgG; lower C3 and lower 

absolute counts of lymphocytes and neutrophils [113].  

At least three possible mechanisms are speculated to be behind the type I IFN 

signature in autoimmune diseases, with contributions of each likely differing among 

diseases and between patients with similar disease [106]. The first possible 

mechanism is type I IFN production through type I IFN producing cells, in particular 

pDCs which are activated in the majority of diseases displaying a type I IFN 

signature [106]. A number of type I IFN inducers, in particular immune complexes 

are present in many autoimmune diseases including pSS. Immune complexes of 

autoantibodies and auto antigen that contain self nucleic acids can activate TLR7 and 

-9 which in turn induce the production of type I IFN [106].  

The second mechanism involves genetic factors. High proportions of identified risk 

genes identified for development of autoimmune diseases encode products involved 

in type I IFN system including those involved in the production of or response to type 

I IFNs. Gene polymorphisms of IRF5 have been associated with SLE and pSS 
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patients [114, 115]. Further, IRF5 expression is elevated in SLE patients [116], is 

activated in these individuals [117] and is associated with serum IFNα activity [118]. 

In addition, STAT4 is also identified as a risk gene in SLE, RA and pSS and confers 

increased sensitivity to IFNα in SLE patients [119-121]. Polymorphisms in TYK2 

(tyrosine kinase 2) which is required for signaling through the IFNAR are also 

associated with SLE [122] and confer an increased sensitivity to IFN. 

The third mechanism involves a lack of regulation of pDCs or expression of IRGs. 

Normally, following the clearing of an infection, the type I IFN system is switched 

off and the immune system returns to homeostasis [45]. There is evidence in 

autoimmune disease indicating a loss of this regulation. For example, monocytes 

from healthy individuals reduce the IFNα production of pDCs stimulated with RNA 

containing immune complexes in PBMC cultures, while monocytes from SLE 

patients are less inhibitory [123]. In pSS patients, anti-Ro52 antibodies may also 

interfere with type I IFN negative feedback [124]. Ro52 which is also known as 

tripartite motif-containing protein 21 is an IFN-inducible E3 ubiquitin-protein ligase 

that promotes ubiquitination and proteasomal degradation of IRF3 and IRF7 [125, 

126]. Anti-Ro52 antibodies from SS patients have been observed to inhibit the E3 

ligase activity of Ro52 [127] potentially removing its negative regulation of IRF3 and 

IRF7.       

Increases in type I IFN activity in autoimmune diseases could manifest in a number 

of ways. Type I IFN can exert their effects on immune cells either directly or 

indirectly through the induction of chemokines, cytokines or by stimulation of cell 

types which participate in the activation of other immune cells. For example, type I 

IFN can act as an immune adjuvant and increase the expression of MHC class I 

molecules [128], enhance NK cell cytotoxicity and their ability to produce IFNγ 

[129], stimulate production of IgG subtypes and induce long-lived antibody 

production and immunological memory [130], and CD4 T cell differentiation into 

IFN-γ- secreting Th1 T cells [131].  
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In SS, a transient or persistent viral infection of epithelial cells leading to a 

genetically determined amplified induction of type I IFN production in particular 

IFNα by locally recruited pDCs, has been postulated as a likely scenario in its 

development (an overview of this model is depicted in Figure 7). This further leads to 

activation of glandular epithelial cells through increased expression of MHC and 

costimulatory molecules, and apoptosis or necrosis of the epithelial cell releasing 

potential autoantigens including RNA binding SS antigen A (SSA) and SS antigen B 

(SSB) [132]. Effects of IFN as mentioned previously could lead to the production of 

autoantibodies. Once produced, autoantibodies will form immune complexes with 

their respective autoantigen.  

The immune complexes can in turn activate type I IFN pathways through TLR 

dependent and independent triggering of IFN producing cells, for example by pDCs 

after internalization via the Fc receptor for IgG, FcγRIIa. Produced IFN can then 

sustain a positive feedback and promote autoimmunity through many of the 

mechanisms mentioned previously and lead to impaired function in affected salivary 

and lacrimal glands [132]. Where there is a large amount of inflammatory mediators 

or migration of autoimmune cells to other organs, extraglandular manifestations 

(EGM) may occur [132]. Autoantibodies may also participate in the development of 

EGM through the formation of immune complexes which can lead to organ damage 

or directly target organs, for example anti-Ro52 antibodies can bind fetal 

cardiomyocytes potentially causing congenital heart block [132].   
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Figure 7. Disease model of SS in minor salivary glands. Viral infection of epithelial 
cells leads to production of IFNα by pDCs leading to increased necrosis or apoptosis 
of the epithelial cells. Necrosis or apoptosis leads to exposure of SSA/SSB 
ribonucleoproteins. B cells produce autoantibodies against the ribonucleoproteins 
and form immune complexes which are internalized by pDCs though association with 
the Fc receptor for IgG, FcγRIIa, resulting in production of IFNα. IFNα can then 
stimulate DC maturation, activation of T cell and production of autoantibodies by B 
cells which further facilitate an autoimmune loop. DC, dendritic cell; FcγRIIa, Fc 
receptor for IgG FcγRIIa; IFNα, interferon alpha, PDC, plasmacytoid dendritic cell; 
RNP, ribonucleoprotein. Figure and text adapted from Nordmark et al. 2006 [132]. 

    

1.6.4. Challenges in the diagnosis and treatment of 

autoimmune diseases 

As autoimmune rheumatic diseases share many common features and clinical 

presentations including arthralgia and arthritis, myalgia, sicca symptoms, and 
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pulmonary, renal, and neurological involvement, they impose significant diagnostic 

challenges [133]. Correct diagnosis is crucial because of distinctions in clinical 

course, treatment options (which may have significant adverse effects) and prognosis 

of the diseases [133]. Up to 50% of patients with apparent autoimmune rheumatic 

diseases cannot be diagnosed in the first 12 months. Some of these unclassified 

patients will progress to a defined autoimmune rheumatic disease within 5 years, 

while a small proportion resolve completely, and most remain symptomatic but 

undefined [133]. In some cases, features from two autoimmune rheumatic diseases 

can be present, with management largely guided by the dominant clinical phenotype 

[133]. Delays in diagnosis after a patient becomes symptomatic are further 

exacerbated with significant evidence demonstrating that many autoimmune diseases 

have a pre-clinical period of development, for instance specific autoantibodies are 

present up to 18-20 years before symptom onset in pSS [134, 135]. 

Significant strides have been made in the recognition of cells and molecules that are 

important in the pathophysiology of autoimmune diseases. This has led to the 

identification of a number of potential targets and the development of a number of 

compounds that modulate or inhibit survival of B cells, inhibit T cell function, and 

inhibit cytokines and complement [136]. Identification of the role of B cell in 

autoimmune pathophysiology has led to treatments including rituximab and 

belimumab, monoclonal antibodies that deplete B cells [136]. However, significant 

difficulties have been encountered from the transition from bench to bedside of 

promising drug candidates. This failure may stem from the complex interplay of the 

cells and secreted products of the immune system. Additionally, the high degree of 

heterogeneity within a disease and the inclusion of unsuitable patients in clinical trials 

may impact whether a compound meets its endpoint in trials [136].        

1.7. Sjögren’s syndrome 

Sjögren’s syndrome is a systemic autoimmune disease characterized by lymphocytic 

infiltrates of the exocrine glands notably salivary and lacrimal glands combined with 

immune-mediated glandular destruction [90]. Estimates of prevalence vary due to 
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differences in diagnostic criteria but pSS has been estimated to affect about 0.1 to 4% 

of the global population [137], with more stringent estimates being 0.05% [137], 

0.16% [138] and 0.09% [139] using the revised American–European Consensus 

Group (AECC) criteria [140].  

The hallmarks of the disease are a dryness of the mouth (xerostomia) and the eyes 

(keratoconjunctivitis sicca) that result from immune-mediated glandular destruction 

[90]. This dryness and other clinical manifestations lead to a significant decrease of 

life quality of those affected by the disease. Sjögren’s syndrome can occur alone, 

termed pSS or associated with other autoimmune disorders, most commonly SLE, 

RA or scleroderma, termed secondary SS [141]. The disease predominantly affects 

women at a 9:1 ratio to men, with a peak incidence between the 4th and 6th decade of 

life [90].    

1.7.1. Clinical features 

Patients with pSS can display a diverse number of both local and systemic clinical 

features. As mentioned previously, SS exhibits local manifestations through oral and 

ocular dryness resulting from disease mediated destruction and dysfunction of 

salivary and lachrymal glands [90]. The resulting oral dryness can lead to increased 

oral infections (primarily candidiasis), mucosal friability and dental caries [90]. 

Ocular dryness can result in damage of the corneal and conjunctival epithelia, as well 

as discomfort, and functional disability through visual impairment. Ocular 

manifestations may also lead to complications including corneal ulceration and eyelid 

infections [142].  

Systemic manifestations in pSS are highly diverse, and 30 to 70% of patients develop 

systemic involvement before or after diagnosis of pSS [142]. Primary Sjögren’s 

syndrome patients frequently display increased fatigue and musculoskeletal 

manifestations including arthralgias and myalgias. Skin involvement, in particular 

xerosis, is frequently encountered in addition to Raynaud’s phenomenon, purpura and 

annular erythema [142]. Pulmonary involvement in pSS consists of various forms of 

airways disease (bronchiectasis, obstructive airway disease) and interstitial lung 
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disease [143]. Patients with pSS may present involvement of the entire 

gastrointestinal tract. Epigastric pain, dyspepsia and nausea can occur, pSS patients 

may also exhibit jejunitis, sigmoiditis, and inflammatory bowel disease [144]. 

Association with chronic liver diseases is well documented, with increased incidences 

of hepatomegaly, pruritus, palmar erythema and jaundice among patients [144].     

1.7.2. Diagnosis and treatment 

Diagnosis of SS as used by the papers incorporated in this thesis is based on the 

AECC for SS (Table 1). It is noted however that the American College of 

Rheumatology and the Sjögren’s International Collaborative Clinical Alliance 

(SICCA) have recently published their updated criteria for use in individuals with 

signs and / or symptoms suggestive of SS [145]. The AECC criteria comprises of a 

questionnaire on subjective symptoms, and objective tests for oral and ocular dryness. 

To be classified with pSS, patients must display lymphocytic infiltration in minor 

salivary glands, with a focus score ≥ 1 (50 lymphocytes per 4 mm2), or autoantibodies 

(anti-Ro/SSA and/or anti-La/SSB) as well as oral and ocular features [140]. In 

practice the diagnosis of SS might be difficult, as SS presents symptoms 

characteristic of multiple disease phenotypes, medication side effects and general 

aging. 
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Table 1. American-European Classification Criteria (AECC) for Sjögren’s syndrome 

Note: Diagnosis of pSS requires four out of six criteria, including item 4 or item 6. 
Diagnosis of secondary SS requires a well-defined connective tissue disease and any 
one from items 1-2 and any two from items 3-5. Table from Vitali et al., 2002 [140]. 

 

Currently there is no cure or treatment of the disease, with management based on 

symptom relief and prevention of complications. Initial therapy includes sialogogues 

and eyedrops [146]. Systemic manifestations may be treated with non-steroidal anti-

inflammatory drugs including hydroxychloroquine (HCQ), and in case of visceral 

involvement (vasculitis, neuropathy, nephritis etc.), corticosteroids [146]. However, 

there are no evidence based guidelines for the management of pSS, with therapeutic 

treatment based on personal experience, expert opinion, and reported studies [146]. 

The lack of effective treatments and guidelines is linked to the poor understanding of 

the disease etiology and pathogenesis. Study of disease etiology is difficult in part 

because of a long delay between disease onset and presentation of clinical symptoms. 

Additionally, because of the heterogeneity of the disease, development of new 

therapies may require targeting subgroups of patients to achieve levels of efficacy 

required to pass clinical trials.  

 

1. Ocular symptoms: a positive response to at least one of the following three questions:                           
    Have you had persistent feeling of dry eyes for more than three months? 
    Do you have a recurrent sensation of a foreign body in the eyes? 
    Do you use tear substitutes more than three times a day? 
2. Oral symptoms: a positive response to a least one of the following three questions: 
    Have you had a daily feeling of dry mouth for more than three months? 
    Have you had recurrently or persistently swollen salivary glands? 
    Do you frequently drink liquids while swallowing dry foods? 
3. Ocular signs: a positive result for at least one of the following two tests: 
    Schirmer’s test, performed without anaesthesia (≤ 5mm in 5 min) 
    Rose bengal score or lissamine green score ≥ 4 (according to Bijsterveld’s scoring system) 
4. Histopathology: a focus score ≥ 1 (50 lymphocytes per 4 mm2) in minor salivary glands 
5. Oral signs: a positive result for at least one of the following three tests: 
    Unstimulated whole salivary flow (≤ 1.5 ml in 15 min) 
    Parotid sialography showing presence of diffuse destruction without major duct obstruction 
    Salivary scintigraphy showing delayed uptake, reduced concentration or delayed excretion of tracer 
6. Serology: presence of autoantibodies (anti-Ro/SSA and/or anti-La/SSB) in serum 
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1.7.3. Health care costs 

Primary Sjögren’s syndrome imposes a significant impact on the health care system, 

as well as a significant economic burden. An analysis of healthcare usage by pSS 

patients in the United Kingdom by Callaghan et al. 2005 [147] showed that health 

care costs for pSS patients were doubled compared to a control group (age matched, 

female Caucasians without inflammatory rheumatic conditions). These costs were a 

consequence of increased visits to healthcare providers (dentists, ophthalmologists, 

general practitioners, and rheumatologists), hospital stays, diagnostic costs and drug 

therapy. The indirect cost of pSS through loss of economic productivity (through 

labour and other activities including housework and childcare) is not well 

documented compared to healthy members of the population. However, Bowman et 

al. 2010 [148] estimated costs to be comparable to RA patients (69 to 83%). The 

authors concluded that indirect costs were due primarily as a result of lower 

probabilities of holding a job and reduced work schedules due to illness. 

1.8. Biomarkers 

Biomarkers traditionally are anatomical, physiological, biochemical, molecular 

parameters or imaging features, that can be used in diagnostics of a disease, 

monitoring or predicting the effect of treatments, as well as measuring disease 

progression or predicting future severity [149]. Most often the term biomarker has 

largely been limited to molecular or biochemical markers [150]. Biomarkers can be 

classified as a) antecedent biomarkers − assess the risk of developing the disease, b) 

screening biomarkers − identify individuals with subclinical disease, c) diagnostic 

biomarkers − aid in diagnostic of overt disease, d) staging biomarkers − estimate 

disease severity and e) prognostic biomarkers that provide information on the course 

of the disease, predict response to therapy, or monitor efficacy of a therapeutic 

strategy [150]. Traditional biomarkers are used widely in the clinic, e.g. the 

measurement of blood pressure to assess cardiovascular health, or blood glucose 

levels for diabetes, as well as in research. Probably one of the most well-known 

examples is the Philadelphia chromosome, where a shortened chromosome 22 
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resulting from a translocation between chromosomes 9 and 22 is associated with 

chronic myelogenous leukemia. The translocation results in the creation of the BCR-

ABL oncogene and a gene product with increased tyrosine kinase activity that 

induces the onset of leukemia [151]. Researchers were able to use this knowledge to 

predict which patients would benefit from tyrosine-kinase inhibitors, resulting in the 

development of the drug imatinib (Gleevec) [151]. 

1.8.1. Biomarkers in rheumatology 

Biomarkers currently used in the practice of rheumatology include genetic markers, 

gene expression products, autoantibodies, cytokines and growth factors, tissue 

abnormalities  and quantities and relative numbers of cell subtypes [149]. Overall 

development and implementation of new biomarkers in the practice of rheumatology 

in the last decade has been poor compared to their use in research and treatments of 

cancers. Very few markers are currently available for indicating disease progression, 

severity, management and diagnosis, and there is no dispute that new biomarkers in 

rheumatology are needed. For example, a significant proportion of individuals 

receiving anti-TNF therapy in the treatment of both RA [152] and psoriasis [153] 

have an inadequate response.  

The use of appropriate biomarkers might enable identification of non-responders 

before therapy is initiated, decreasing costs and preventing unwanted complications 

from a therapy that was not going to be effective. Further, biomarkers may allow for 

shorter diagnosis time and therapeutic intervention. The identification of pre-clinical 

autoimmune disease may enable therapeutic intervention to prevent disease 

progression [154]. An outline of different types of biomarkers that could be used 

during the course of SS is given in Figure 8.  
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Figure 8.  Potential for different types of biomarkers during the proposed 
etiopathogenic events prior to diagnosis of Sjögren’s syndrome. Figure adopted from 
Nicolas Delaleu. 

 

A few factors exist that explain the disparity between the success in the use of 

biomarkers in the treatment of cancers and rheumatic diseases. First, most rheumatic 

diseases can be considered syndromes in that they are classified based on a set of 

identifying features; they do not however manifest, progress or respond the same way 

in different patients because of differences in genetic, hormonal, environmental and 

other factors. This substantial heterogeneity poses significant difficulties not just in 

regards to treatment and identification of disease, but also in the development of 

biomarkers. Second, unlike cancers, the mechanisms that underpin rheumatic disease 

development and progression are also not well understood; therefore development of 

biomarkers relating to these underlying mechanisms is impeded. Finally, because of 

the complexity of the immune system and the high amount of crosstalk between cells 

it also seems unlikely that single biomarkers would be adequate to relate clinical 

symptoms to disease mechanisms or predict outcomes of interest.  
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Despite the challenges involved with the development of biomarkers in rheumatic 

diseases, progress is being made. Autoantibodies can offer prognostic and diagnosis 

information due to specificity for particular clinical phenotypes and are routinely 

used in clinical evaluation [133]. RA can be divided based on positivity for anti-

citrullinated protein antibodies, with positivity representing a more severe form of the 

disease [155]. Multiple sclerosis can be classified according to whether the disease is 

driven by Th1 or Th17 cells, with IFN-β treatment ineffective against Th17- cell 

driven disease [156]. Increases in the type I IFN signature in RA patients treated with 

a TNF-α inhibitor indicate poor clinical outcome [157], and a type I IFN signature in 

RA is also predictive of nonresponse to B-cell depleting therapy [158, 159]. A type I 

IFN signature in SLE correlates with more severe disease and cerebritis, nephritis, 

and hematological involvement [108]. T cell surface levels of CD44 isoforms − 

CD44v3 and CD44v6 in SLE have been found to correlate with disease activity 

scores, positivity of anti-dsDNA, and the presence of lupus nephritis, indicating their 

use as possible biomarkers for disease activity [160]. In the future it is hoped that 

biomarkers could aid in the management of rheumatic diseases by establishing a 

molecular taxonomy of the diseases as well as facilitating the stratification of current 

clinical classification into subtypes that may guide clinical decision making 

processes. 

1.8.2. Biomarker discovery  

The goal of biomarker discovery is the identification of measurements that predict 

clinical data or outcomes. Research into potential biomarkers may include the 

analysis and measurement of proteins [161], gene expression [162], metabolites [163] 

and cellular processes [164] among others. The process to the implementation of a 

new candidate biomarker requires numerous steps. First suitable candidates are 

identified; this is accomplished by two strategies- deductive reasoning and an 

unbiased approach. The use of deductive reasoning to identify candidates based on 

preexisting understanding of the pathophysiology of disease, while an unbiased 

approach can be employed where molecular and proteomic techniques are used to 

identify candidate biomarkers on differential expression between normal and diseased 
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states [150]. In case of the “unbiased” strategy, the identification of the candidate is 

followed by quantification, where an alternative method is used to confirm the 

differential expression. The candidate marker then requires confirmation whether the 

candidate has adequate potential for success to justify further investigation. This 

requires analysis to be extended to large number of samples to include a broad range 

of patients and controls, in an effort to access the specificity of the biomarker. The 

final step requires the validation of the marker in a clinical setting, this involves the 

systematic study of other clinical covariates and of pathophysiologically related 

condition associations between the marker and disease state [150].   

When successfully validated, a number of properties determine whether a biomarker 

is useful in a clinical setting. First and foremost the strength and consistency of the 

biomarker’s association with the outcome, or disease [150]. The importance of these 

factors can vary depending on a biomarker’s intended use. Biomarkers used to screen 

large healthy populations for disease need to be specific, while cost effective. 

Markers used to monitor disease or treatment response in a few individuals can be 

more expensive as well as less sensitive and specific as the patient can be repeatedly 

tested [150]. Second, whether it improves or provides new information compared to 

existing tests [150]. Third, the assay costs, accessibility and difficulty of 

interpretation. And lastly whether the biomarker helps the clinician manage patients 

or provide benefit to the patients welfare (such as psychological benefits) [150]. 
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2. Aims 

The main objectives of the presented work were to identify changes in immune cells 

from peripheral blood in pSS patients that could be used as biomarkers for patient 

identification and stratification. Thus, the following aims were outlined:    

1. Analyze MAPK/ERK and JAK/STAT signaling networks in human peripheral 

blood cells by measuring intracellular phosphorylation states by flow 

cytometry. Compare phosphorylation states in unstimulated and stimulated 

immune cells from patients with pSS and healthy individuals. Evaluate 

signaling profiles against the clinical manifestations of the disease (papers I, II 

and III). We hypothesized that aberrant intracellular signaling could play a 

significant role in the pathogenesis of pSS. Hence study of intracellular 

signaling could allow for new insights of their role in autoimmune diseases 

and enable development of new diagnostic and stratification tools, improve 

current therapies and identify new therapeutic targets. 

 

2. Quantify immune cells in peripheral blood of patients with pSS and compare 

against healthy individuals and associate clinical manifestations of the disease 

with immune cell subset counts (paper IV). Immune cell makeup of cellular 

infiltrates of exocrine glands have been documented to change with degree of 

infiltrate severity in pSS [165, 166] and associate with different clinical feature 

[167]. Shifts in immune cell proportions and concentrations have been noted in 

the peripheral blood of pSS patients compared to healthy individuals [168-

171]. We hypothesized that shifts in immune cell concentrations in peripheral 

blood could be informative of disease progression and co-morbidities. Hence 

the study could allow for development of diagnostic and stratification tools, 

possibly improving current therapies 
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3. Methodological aspects 

The following section describes the main methods and techniques used during the 

course of completion of the thesis. 

3.1. Flow cytometry as a tool in biomarker discovery 

Flow cytometry is a laser-based analysis technology used in the characterisation of 

particles (most commonly cells) in a fluid. The instrument is capable of performing 

multiple quantitative measurements on a particle rapidly and simultaneously. Prior to 

measurement, particles in suspension are hydrodynamically focused so that they 

separate from each other within a fluid stream. The stream passes through one or 

more lasers, with the resulting florescent and scattered light detected by 

photomultiplier tube(s) (PMT) (Figure 9), where it is amplified converted to a voltage 

pulse and then a digital value. Although measurements are performed on a large 

number of particles, the strength of the method lies in the fact that each measurement 

is performed on a single particle, allowing identification and grouping of individual 

particles for example as cellular subpopulations. The method draws on the use of 

fluorescent reagents, most commonly fluorchrome coupled monoclonal antibodies, to 

further identify the characteristics of individual particles. The fluorchrome can be 

excited by a specific wavelength of light provided by a laser, and emits on a lower 

specific wavelength. The emitted light of specific wavelength is discriminated by the 

use of appropriate optical filters before detection of the emitted light, greatly 

increasing the number of parameters that can be detected. Because of the ability of 

flow cytometry to measure multiple parameters at a single cell level it is increasingly 

being recognized as a valuable tool in biomarker research.  
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Figure 9. Schematic of a flow cytometer. A single cell suspension is 
hydrodynamically focused to intersect an argon-ion laser. Signals are collected by a 
forward angle light scatter detector, a side-scatter detector, and multiple 
fluorescence emission detectors. The signals are amplified and converted to digital 
form for analysis. Text adapted and figure from Brown and Wittwer 2000 [172]. 

 

For example, flow cytometry assays have been utilized for biomarker detection 

through measurement of receptor occupancy for generating pharmacodynamics 

biomarker data, informative in identifying optimal drug doses [173], activation status 

in diagnosing pulmonary active tuberculosis [174], fusion proteins in cell lysates of 

leukemia patients [175] and phosphorylation of intracellular signaling proteins to 

identify neutralizing antibodies in multiple sclerosis patients treated with IFN-β 

[176].    

3.2. Phosphoflow cytometry 

Phospho-specific flow cytometry, also known as phosphoflow, combines the 

identification of individual cells and subtypes through CD markers, with the analysis 

of activated intracellular signal transduction pathways [177]. Phosphoflow allows for 

the observation of these individual cells and distinct cellular subsets, revealing 

dysfunctions that may otherwise be masked in complex cell mixtures [177]. This 

approach has been in continuous development for application in diagnostics since its 
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first proof-of-principle in risk stratification of acute myeloid leukaemia [178] and 

holds great promise in identifying the role of signaling events in autoimmune disease. 

Identification of dysfunctions in intracellular signaling in patients with autoimmune 

diseases could help direct research into targeted treatments and diagnostic indicators, 

and when coupled with clinical outcomes provide biomarkers for therapeutic 

efficacy. 

The identification of the activation of signaling is through the detection of 

phosphorylation on proteins involved in signal transduction or transcription. 

Compared to the detection of surface markers, phosphoflow cytometry faces different 

challenges. First, the targets are intracellular and are inaccessible to antibody, and 

second, after stimulation, phosphorylation is a transitional event and therefore the 

phosphorylated protein is not stable [177]. To overcome these problems, cells are 

generally fixed with formaldehyde or paraformaldehyde to cross-link the phospho-

proteins and stabilize them for detection. The fixed cells are then permeabilized to 

allow for the entry of phospho-specific antibodies [177]. Use of the fixation and 

permeabilization agent is chosen based on the balance between stability of essential 

surface markers to permeabilization treatment while optimizing the detection of the 

phosphorylation. Hence all antibodies used for surface marker detection should be 

validated on cells following permeabilization and fixation. The basic steps of the 

method are depicted in Figure 10. 

Methodology between paper II and III varies slightly. Prior to fixation, cells were 

resuspended by pipetting in paper III. This step was added due to excessive cell 

losses during prior testing of the assay. The cell loss was presumably because of 

sedimentation of cells during long incubation, followed by poor resuspension because 

of the low volume of a fixative. This likely lead to clumping of cells and cell loss. In 

paper II an alternative adjustment to the methodology was made, the fixative was pre-

diluted before addition to cells, increasing the volume added and improving 

resuspension and minimising cell clumping.   
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Figure 10. Basic steps in phosphoflow cytometry. (1) A heterogeneous sample of cells 
is treated with two different stimuli to induce distinct signaling cascades and 
phosphorylation of two target proteins. (2) The cells are then fixed, permeabilized, 
and stained with fluorophore-conjugated phospho-specific antibodies to the 
phosphorylated forms of the proteins and surface markers to identify cell type. (3) 
The cells are then analyzed on a flow cytometer. Figure and text adapted from 
Krutzik et al. 2004 [177]. 

 

Phosphoflow cytometry is capable of detecting abnormal signaling in peripheral 

blood samples from patients. These changes have been successfully used in the 

prediction of disease outcomes and treatment responses. For example, individual 

differences in activation-induced signaling of phospho-proteins have produced patient 

classifications that are predictive of response to therapy in acute myeloid leukemia 

[178], informed on IFN-β activity in the treatment of multiple sclerosis [176] and on 

clinical efficacy of DC-vaccinations in glioblastoma patients [179]. 
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3.3. Quantitative analysis by flow cytometry 

Flow cytometry can be used to provide accurate measures of relative cellular 

abundance of various cell subtypes in heterogeneous samples such as peripheral 

blood. However, technical limitations preclude most flow cytometers from accurate 

absolute quantifications. This is because only a fraction of the specimen is sampled 

by the forward scatter-activation system, while defined volumes require the 

assumption of uniform cell suspension [180]. Analysis of cellular populations based 

on relative abundance results in a significant loss of information and can give false 

impressions in regards to the changes within leukocyte populations. For example, the 

use of a drug that depletes CD20+ B cells would result in an increase in T cell 

percentages because of the B cell depletion, although the absolute number of T cells 

remains the same. Historically, the need for absolute counts was highlighted in 

acquired immune deficiency syndrome diagnosis, where CD4+ T cell counts ≤200 μl 

of peripheral blood has been included as an defining event, as these measurements are 

useful predictors for the onset of opportunistic diseases such as Pneumocystis carinii 

pneumonia [181].        
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3.4. Antibody selection and panel design 

A list of all antibodies and their targets used in the papers encompassed in this thesis 

is displayed in Table 2, further details can be found in the respective papers.  

Table 2. Antibodies used in flow cytometry experiments  

Fluorochrome Target Cell Clone Supplier Paper 
Alexa fluor® 
488 

CD20 B cells H1 BD 
Biosciences 

I, II, III 

PE CD56 NK, NKT 
cells 

N901 Beckmann 
Coulter 

I, II, III 

BV786 CD3 T, NKT cells SK7 BD 
Biosciences 

I, II, III 

PerCp-
CyTM5.5 

ERK1/2 
(pT202/pY204) 

N/A 20A BD 
Biosciences 

I, II, III 

PerCp-
CyTM5.5 

STAT1 
(pY701)  

N/A 4a BD 
Biosciences 

I, II, III 

PerCp-
CyTM5.5 

STAT3 
(pY705) 

N/A 4/P-STAT3 BD 
Biosciences 

I, II, III 

PE-CyTM7 NF-κB p65 
(pS529) 

N/A K10-895.12.50 BD 
Biosciences 

I, II, III 

PE-CyTM7 p38 MAPK 
(pT202/pY204) 

N/A 36/p38 BD 
Biosciences 

I, II, III 

PE-CyTM7 STAT5 
(pY694) 

N/A 47 / 
STAT5(pY694) 

BD 
Biosciences 

I, II, III 

Alexa fluor® 
647 

STAT4 
(pY693) 

N/A 38/p-STAT4 BD 
Biosciences 

I, II, III 

Alexa fluor® 
647 

STAT1 
(pS727) 

N/A K51-856 BD 
Biosciences 

I, II, III 

Alexa fluor® 
647 

STAT3 
(pS727) 

N/A 49/p-STAT3 BD 
Biosciences 

I, II, III 

Qdot® 605 CD45 Leukocytes HI30 Molecular 
probes 

IV 

APC-CyTM7 CD16 Granulocytes, 
monocytes, 
NK cells 

3G8 BD 
Biosciences 

IV 

FITC CD14 Monocytes MEM-18 Immunotools IV 
Horizon V500 CD3 T cells UCHT1 BD 

Biosciences 
IV 

Pacific blueTM CD4 Helper T cells RPA-T4 BD 
Biosciences 

IV 

PerCP-
CyTM5.5 

CD8 Cytotoxic T 
cells 

RPA-T8 Biolegends IV 

PE-CyTM7 CD56 NK, NKT 
cells 

NCAM16.2 BD 
Biosciences 

IV 

Alexa Fluor® 
647 

CD20 B cells 2H7 Biolegends IV 

PE CD38 Activation 
marker 

HB7 eBiosciences IV 
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The antibodies used for the identification of cells through identification of 

combinations of certain cell surface molecules were chosen based on their ability to 

differentiate the main cell subsets in peripheral blood (paper IV) or PBMC (paper I – 

III). Antibodies used in the analysis of intracellular cell signaling pathways were 

chosen due to ability to be induced by TLR7 and -9 stimulation or IFNα and 

prominent roles in inflammatory or anti-inflammatory immune responses.  

All antibodies used were titrated for their specific experimental conditions to find 

optimal staining for phenotypic and phospho-antigens. For papers I – III, antibodies 

to phospho-antigens were titrated on unstimulated and stimulated samples to find the 

concentration required to maximise fold change. Additionally, final concentrations 

were chosen where small changes in antibody concentrations gave little differences in 

fold change. Phenotypic markers were titrated to give good separation of negative 

and positive populations, while minimising high levels of staining which might 

spillover into channels used to measure phospho-antigens.  

For paper IV phenotypic and activation markers were titrated to maximise the 

difference between the negative and positive population where no shift of the 

negative due to non-specific binding occurs. This is important for the successful use 

of fluorescent minus one controls. Additionally, barcoding dyes (papers I – III) were 

titrated with concentration of dyes in the 3 x 3 matrix selected based on their ability 

to resolve each sample in the matrix, as well as minimising spillover into critical 

channels as assessed by a barcode only control. 

Antibodies used in phosphoflow (papers I − III) were tested with their respective 

fixation and permeabilization agents as epitopes are sensitive to fixation and 

permeabilization agents which can result in a loss of recognition and changes in 

staining intensity of antibodies.  

Choice of fluorophores used in the antibody panel were based on wavelength of 

available lasers and the filters on the flow cytometer with bright fluorophores used 

for rare antigens, and dim for common antigen (CD45, CD3); however some 

concession had to made to to availability. For example, we had to use the use PerCp-
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CyTM5.5 for ERK1/2, STAT1 (pY701) and STAT3 (pY705), which is relatively dim. 

Choices were also based on minimising spillover into important and sensitive 

channels reducing the need for compensation and subsequent introduction of error.  

3.5. Fluorescent cell barcoding 

Papers I − III utilized fluorescent cell barcoding of PBMCs as outlined in Krutzik et 

al. 2011 [182]. Following fixation and permeabilization with methanol, PBMCs were 

stained according to a 3 x 3 barcoding grid using 3 levels of pacific orange and 

pacific blue succinimidyl ester dyes prior to combining the 9 samples together. The 

dyes are reactive to amine functional groups present primarily on protein lysine side 

chains and at the N-terminus, while non-reacted dyes are subsequently washed off 

[182]. This allows for simultaneous antibody staining and data acquisition, with the 

different samples being distinguishable during software analysis based on their 

fluorescence intensity of the barcoding dyes. The procedure eliminates variation 

between samples measured together thus increasing assay robustness while also 

reducing antibody consumption and sample acquisition time. Because of the 

reduction in antibody consumption and increased throughput the method is suited to 

tasks requiring the measurement of many samples [182].   

3.6. Flow cytometric controls  

Critical to successful application of flow cytometry is the use of appropriate controls. 

Controls are essential in flow cytometry as they provide context from which one may 

interpret test samples. Flow cytometry experiments commonly contain at least three 

types of controls: setup, gating controls and biological comparisons controls [183]. 

Setup controls are used in the setup or checking the setup of the instrument. Gating 

controls are used to help distinguish specific from non-specific binding. This allows 

for determination of positivity and negativity and accurate setting of gates. Biological 

controls are those that provide biologically relevant comparison conditions, for 

example healthy donor samples. A comprehensive overview of the subject can be 

found in a paper written by Maecker and Trotter 2006 [183]. 
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Various flow cytometry controls were utilized for each assay. All flow cytometry 

based assays included in the thesis (papers I − IV) utilized BD cytometer setup and 

tracking beads for determining minimum baseline PMT voltages for assays, and 

monitoring cytometer setup and performance (laser alignment, laser time delay, 

sensitivity etc.). In addition, initial experimental setups utilized single antibody 

stained and unstained cell samples were used for optimization of PMT voltages. 

Additionally, PMT voltages were set to minimise spillover into channels for 

measurement of phospho-epitopes to reduced measurement errors caused by 

compensation. This was of particular importance in barcoded samples (paper I – III) 

where a barcoded sample that has not been stained with antibody (Barcode only 

control) was also used to check that the median fluorescence intensity (MFI) on other 

parameters of interest did not fluctuate in response to barcode intensities. 

All experiments (papers I − IV) included single fluorescent stained compensation 

controls (beads or cells) for the measurement and removal of fluorescent spillover 

before subsequent analysis. Fluorescent minus one controls where samples that 

include all antibody conjugates present in test samples minus one conjugate were 

used in the setting of cell population gates in paper IV when there was no clear 

division between positive and negative population. In stimulation assays (papers I − 

III), unstimulated samples were used to distinguish positive from negative events. In 

additional the assays utilized cryopreserved PBMC from a single donor, frozen in 

multiple aliquots, thawed and processed with each experimental run unstimulated and 

stimulated as a positive control to monitor inter-assay variation and for inter-assay 

normalization.  

For quantitative analysis (paper IV) internal microsphere counting standards were 

measured co-currently with cells during sample acquisition.  
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3.7. Collection of peripheral blood and cryopreservation 

of PBMC  

In all papers peripheral blood from pSS patients or healthy individuals was utilized. 

Patients were recruited from the Department of Rheumatology, Haukeland University 

Hospital, Bergen, Norway (papers II − IV). All patients fulfilled the pSS AECC [140] 

and displayed no additional autoimmune diseases or lymphoma. Healthy individuals 

were recruited from the blood bank at the Haukeland University Hospital in Bergen, 

Norway (papers I − IV). All individuals provided written informed consent. The 

study was approved by the regional ethical committee (#2009/686). Samples from 

pSS patients and healthy individuals were collected in parallel to reduce the 

influences of seasonal effects.  

Because blood samples from patients were often sporadic, cryopreservation (papers I 

– III) was used to minimise time and possible time associated variation between 

assays, as well as maximize the number of samples analysed per assay. To maximise 

cell recovery, cell health and cellular response following cryopreservation and 

thawing, serum support mediums such as fetal calf serum are commonly used during 

freezing. To avoid unspecific stimulation that could result from use of fetal calf 

serum and possible batch to batch effects, we used a non-Animal Origin, Chemically 

Defined Freeze Medium-  ProFreezeTM-CDM, in addition to the serum free cell media 

X vivo-20TM and dimethyl sulfoxide. PBMC samples were frozen with a CoolCell® 

freezing chamber at -70 °C overnight before being moved to a -150 °C for long term 

storage. The CoolCell® freezing chamber ensured a consistent and reproducible -1 

°C/minute cell freezing rate [184]. This controlled temperature reduction and the use 

of a cryoprotectant such as dimethyl sulfoxide minimises damage to the cells by 

increasing permeability of the plasma membrane, as well as disrupting the formation 

of larger ice crystals [184, 185]. Thawing was accomplished rapidly (37°C) to avoid 

ice recrystallization and osmotic stresses, and based on reported higher cell viability 

and recovery than passive thawing [184]. 
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3.8. Stimulation of patient and healthy donor PBMC  

In papers I – III PBMC samples were stimulated in vitro. Stimulants were titrated, 

concentration of stimulants that produced robust and strong responses were used in 

subsequent assays. Sterile conditions were adhered to as to prevent contamination 

with bacteria or other compounds which could activate pathways in cells. Stimulation 

was performed following a 2 hour resting period to allow for a reduction in basal 

levels of cell signaling in PBMC following thawing. Stimulation was performed in a 

chemically defined, serum-free hematopoietic cell medium- X vivo-20TM, as opposed 

to media supplemented with fetal calf serum which is commonly used. The reasoning 

behind this was to avoid batch to batch variations of fetal calf serum, as well as to 

avoid potential stimulation of immune cells by components of fetal calf serum.  

In papers II and III the stimulants IFNα2b, TLR7 ligand CL097, TLR9 ligand ODN 

2006 and TLR9 ligand ODN2395 were used. ODN 2006 and ODN 2395 are type B 

and C CpG oligonucleotide, respectively. CpG ODNs are synthetic oligonucleotides 

that contain unmethylated CpG dinucleotides in a particular context, and are present 

in greater frequency in bacterial and viral DNA compared to human DNA [186]. 

Type C triggers IRF7 mediated intracellular signaling pathways from early 

endosomes leading to strong IFNα induction, while type B and C stimulates NF-κB 

mediated signaling from late endosomes resulting in strong B cell activation [187]. 

CL097 is a derivative of the imidazoquinoline compound R848 and mimics viral 

components (ssRNA). TLR7 and -9 ligands were used in assays as viral infection is a 

suspected trigger behind pSS. In addition, pSS is associated with a type I IFN 

signature, with TLR7 and -9 activation capable of inducing pathways involved in the 

production of type I IFNs. IFNα2b was used because as one of the major type I IFNs 

it is capable of inducing type I IFN gene expression through activation of the JAK / 

STAT pathway. 

 

 



 59

3.9. Gene expression 

In papers II and III gene expression of MxA, 2'-5' oligoadenylate synthetase 1 

(OAS1), interferon-induced protein 44 (IFI44), Guanylate Binding Protein 1 (GBP1) 

and 18S rRNA was measured, to investigate relationship between IFN responsive 

gene expression and cell signaling. 18S rRNA was used as reference gene, and 

relative expression levels were calculated as 2- Ct. 18S rRNA was used as a reference 

gene because of its invariant expression level throughout tissues and cells. 

Additionally, 18S rRNA is seen to be more reliable than other commonly used 

reference genes [188]. 

The type I IFN-inducible genes MxA, IFI44 and OAS1, and IFNγ responsive gene 

GBP1 were measured because of the association of a type I IFN signature with 

increased disease activity in pSS [113]. MxA has been shown to be a reliable 

biomarker for identifying systemic type I IFN bioactivity in pSS patients [189], and is 

inducable by type I and III IFN [190]. IFI44 and OAS1 are strongly induced by IFN 

[191, 192], with IFI44 only activated by type I IFN and not type II [192]. GBP1 is 

most abundantly induced by IFNγ than IFNα [193]. 

The IFN score was calculated according to Feng et al. [194] by standardizing 

expression levels using mean and SD of the healthy controls for the respective gene 

and using the following formula: 

෍  ଷ
௜ ൌ ݃݁݊݁ ݅௣ௌௌ െ ݉݁ܽ݊ ݃݁݊݁ ݅஼௧௥ܵܦ ሺ݃݁݊݁ ݅஼௧௥ሻ  

where i = each of the 3 type I IFN-inducible genes (MxA, IFI44, OAS1) , gene ipSS = 

the gene expression level in each pSS patient, and gene iCtr = the gene expression in 

controls. To set a threshold, 3 x SD of healthy controls was utilized. 

Associations with increased type I IFN-inducible gene expression and patients with a 

positive type I IFN score with potentiated intracellular signaling pathways may 

indicate a mechanistic links between the features.   
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3.10. Data analysis 

Initial visualization and analysis of flow cytometry data was either through cytobank 

[195] (papers I − III) or Flowjo (Tree Star) (papers II − IV). Identification of immune 

cell populations was based on light scatter properties or relative expression of CD 

markers, with culture conditions also identified in papers I – IV based on their 

staining intensity of amine-reactive dyes. In paper IV, leukocyte subtypes counts per 

microliter of blood were calculated based on event count within gate relative to a 

bead standard in the respective sample and total number of beads in the sample, with 

the absolute counts obtained by dividing the number of positive cell events by the 

number of bead events, and then multiplying by the BD TrucountTM bead 

concentration. In papers I − III MFI was recorded in channels used to measure 

phosphor antibodies.  

3.10.1. Principal component analysis 

Multivariate data can be difficult to visualize and interpret because of the sheer 

number of data points, therefore principal component analysis (PCA) was used to 

identify important variables and visualize the datasets (papers II − IV). PCA is a 

mathematical algorithm that reduces dimensionality of the data while retaining most 

of the variation in the data set [196]. It does this by creating new uncorrelated 

variables that successively maximize variance and are linear functions of those in the 

original dataset. The new variables are termed principal components [196]. The 

largest variability is explained by the first principal component and each successive 

principal component explains less variability then the prior one [197]. Samples can 

then be visualized in a score plot allowing for the identification of patterns within the 

data [197].  

Variables are visualized in loading plots and are interpreted in conjunction with the 

score plot to identify the influence each variable has on the spread of samples in the 

score plot. Variables are treated as vectors and the position of variables on the 

loading plot are informative of their relationship to one another [196]. Variables close 
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to the origin contribute little to the clustering of samples on the score plot, while 

variables on opposite sides are inversely correlated to one another. PCA was 

performed through either the software R version 3.3.1. (http://www.r-project.org/) 

(paper IV) or Unscrambler® (CAMO) (papers II − III).  

3.9.2. Hierarchical clustering 

Unsupervised hierarchical clustering was used for identification of subgroups within 

pSS patients in paper IV. Hierarchical clustering seeks to build a hierarchy of clusters 

where objects (pSS patients in this thesis) that are more similar cluster closer 

together. The basic process of hierarchical clustering involves- 1. Assigning each 

object to its own cluster, where distances between the clusters equal the similarities 

between the objects they contain. 2. Finding the most similar pair of clusters and 

merge them into a single cluster. 3. Computing distances (similarities) between the 

new cluster and each of the old clusters. 4. Repeating 2 and 3 until all objects are 

contained in a single cluster. Ward’s method was used for hierarchical clustering in 

this thesis. Ward’s method merges 2 clusters based on the size of an error sum-of-

squares criterion, where each merger seeks to minimize the increase in the total 

within-cluster error sum of squares [198]. Hierarchical clustering was performed with 

the software R version 3.3.1.  (http://www.r-project.org/) and R package FactoMineR 

[199]. 

3.10.3. Statistics 

As papers II – IV were exploratory no post-hoc tests were conducted, results are 

reported in full in supplementary information. Because many measurements showed 

skewed distributions, non parametric unpaired Mann-Whitney tests were used for 

univariate comparisons of continuous measures − cell quantities and clinical data 

(paper IV) and MFI specific for cell type and time points (papers II and III), and 

correlations were performed using Spearman’s rank test. Pearson’s chi-squared test 

(χ2) was used for comparisons of categorical data (paper IV). Repeated measures one-

way analysis of variance, with the Greenhouse correction and Holm-Sidak’s multiple 
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comparisons test was used when comparing fold change (arcsinh) in channels 

measuring phosphorylated proteins in PBMC for three different isolation methods 

(paper I). Fold change was calculated through Microsoft Excel using the formula 

(ASINH (MFI stimulated/cofactor)) – (ASINH (MFI unstimulated/cofactor)), with an 

assigned cofactor of 150. Coefficient of variation (CV) values for process triplicates 

reported in paper I were calculated in Microsoft excel from MFI values of target 

phospho-proteins normalized against their respective unstimulated samples. All 

statistical group comparisons were done through Prism 6 (GraphPad Software, Inc., 

USA).   
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4. Summary of the main results 

Paper I 

An optimized multiplex flow cytometry protocol for the analysis of intracellular 

signaling in peripheral blood mononuclear cells. 

A multiplex flow cytometry protocol was assessed for inter-assay precision for 

experimental variables (phospho-protein measured, cell type and stimulant). 

Coefficient of variations calculated from process triplicates of normalized MFI of 

phospho-proteins displayed median CVs under 10% when grouped according to cell 

type, stimulation agent and phospho-protein measured, while the CV for each 

triplicate did not exceed 20% indicating good reproducibility of the protocol. The 

protocol was used in papers II and III. Additionally, three blood collection 

methodologies were assessed − lithium-heparin tubes followed by density gradient 

centrifugation, and CPT sodium citrate or sodium heparin tubes. Heparin tubes were 

observed to give stronger activation following stimulation with recombinant human 

IFNα2b and PMA compared to citrate, with citrate strongly affected NK cell 

responses to stimuli, CPT based isolation methods were associated with higher basal 

phosphorylation [200]. 

The lithium-heparin peripheral blood collection protocol was therefore used for 

subsequent experiments (papers II and III).  

Paper II 

Single cell based phosphorylation profiling identifies alterations in Toll-like 

receptor 7 and -9 signaling in patients with primary Sjögren’s syndrome 

The multiplex flow cytometry protocol optimized in paper I was used to make 

quantitative basal measurements of the phospho-proteins ERK1/2, NF-κB p65, 

STAT1 (Y701), STAT1 (S727), STAT3 (Y705), STAT3 (S727), STAT4 (Y693), p38 

and STAT5 (Y694) in T cells, B cells and NK cells from female pSS patients and age 
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matched female healthy individuals, and measurements over a 4 hour time period  

following TLR7 and -9 stimulation. Basal and TLR7 and -9 stimulation induced 

measurements showed significant differences in the phosphorylation profiles between 

samples from pSS patients and healthy individuals. 

PCA showed that basal phosphorylation profiles could be used to differentiate pSS 

patients from healthy donor samples through stronger phosphorylation in NK and T 

cells relative to B cells. PCA using induced MFI at 15 minutes (MFI15min – MFIbasal) 

after TLR7 and -9 stimulation showed a spatial shift of EGM- patients away from 

healthy individual samples, while spatial groupings of the majority of EGM+, SSA- 

and medicated patients overlapped with healthy individual samples. The loading plots 

indicated the shift was primarily through stronger induction of phosphorylation in B 

cells from EGM- for NF-κB, P38 and STAT3 S727 following TLR 7 and -9 

stimulation. 

74% of the patients had a positive IFN signature. These patients differed from the 

IFN signature negative patients regarding their phosphorylation profiles, in particular 

with increased induction of phosphorylation of P38, NF-κB and STAT3 S727 in B 

cells following TLR7 and -9 stimulation. TLR7 and -9 stimulation induced 

phosphorylation of P38, NF-κB and STAT3 S727 in B cells correlated with the gene 

expression of 3 type I IFN inducible genes.   

Paper III 

Aberrant cell signaling in peripheral blood mononuclear cells upon interferon 

alpha stimulation in patients with primary Sjögren’s syndrome associates with 

type I interferon signature  

The multiplex flow cytometry protocol optimized in paper I was used to make 

quantitative basal measurements of the phospho-proteins ERK1/2, NF-κB p65, 

STAT1 (Y701), STAT1 (S727), STAT3 (Y705), STAT3 (S727), STAT4 (Y693), p38 

and STAT5 (Y694) in T cells, B cells and NK cells from female pSS patients and age 
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matched female healthy individuals, and measurements over a 4 hour time period 

following stimulation with IFNα2b.  

Cells derived from pSS patients displayed small but significant increases in the basal 

phosphorylation level of numerous signaling proteins compared to cells from healthy 

individuals. The phosphorylation profiles following stimulation with IFNα2b differed 

significantly between pSS patients and healthy individuals, especially regarding 

STAT1 Y701.  

PCA was used to further investigate the induced MFI at 15 minutes (MFI15min – 

MFIbasal) after stimulation with IFNα2b and search for groupings which may be 

associated with SSA autoantibody and EGM expression. Spatial grouping pSS patient 

samples following PCA exhibited a skewed distribution away from healthy individual 

samples with movement dominated by induced phosphorylation of STAT1 Y701 in T 

cells, NK and B cells. Medicated and SSA autoantibody negative patients grouped 

closer to healthy individuals samples than non-medicated and SSA autoantibody 

positive patients.  

A type I IFN signature was found in 64% of patients. Increased STAT1 

phosphorylation in B cells was limited to type I IFN signature positive patients 

compared to healthy individuals and IFN negative patients. NK cells from type I IFN 

positive patients displayed reduced phosphorylation of STAT1 S727, STAT4 Y693 

and P38, and increased phosphorylation of STAT1 Y701 compared to healthy 

individuals and type I IFN negative patients, even if not always reaching statistical 

significance. IFNα induced phosphorylation of STAT1 Y701 in B cells correlated 

with type I inducible gene expression.  
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Paper IV 

Patients with primary Sjögren’s syndrome have alterations in absolute 

quantities of various peripheral leukocyte populations  

Flow cytometry was used for quantitative counts of leukocyte populations in 

peripheral blood of patients with pSS and age and sex matched healthy individuals. 

Comparisons of quantities of each immune cell subtype in peripheral blood were 

made between pSS patients and healthy individuals, SSA+ or SSB+ patients and 

SSA-SSB- patients, and EGM+ and EGM- patients. Reductions in the concentration 

of lymphocyte subsets and increases in monocytes and granulocytes in the peripheral 

blood of pSS patients compared to healthy individuals were observed. EGM+ and 

SSA+ or SSB+ patients exhibited greater reductions in lymphocyte subsets then 

EGM- and SSA-SSB- patients. Hierarchical clustering identified a subset of patients 

with higher concentrations of NKT cells, CD56hi NK cells, CD20+CD38- B cells and 

CD8+CD38- T cells that was associated with weaker clinical symptoms than the 

other clusters as indicated by their lower prevalence of organ-specific EGM and SSA 

and/or SSB autoantibodies, possibly marking a milder disease phenotype.  
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5. Discussion 

The developed phosphoflow protocol presented in paper I was reliable as given by 

reported CVs between assays. The largest variations in phosphorylation 

measurements were observed for monocytes, followed by CD3+CD56+ cells and 

CD20+ B cells. A number of factors could be attributed to this observation including 

the number of cells measured; CD3+ T cells which were the most abundant cell 

subset analyzed displayed the lowest level of variation for example. Additionally, 

variation in the health of cells might have influenced the result, different cell subsets 

may respond to freezing / thawing differently or react differently in culture.  

The inclusion of a fixable live-dead dye could further exclude dead cells by removing 

background due to the non-specific binding of antibodies to dead cells [201]. Prior 

screening of PBMC samples however indicated viability of greater than 95 % and 

negligible levels of apoptotic cells using Muse® Annexin V and Dead Cell Assay 

Kit. However, as this assay does not differentiate between cell subsets there could 

potentially be higher levels of apoptosis in rarer subsets. We cannot therefore exclude 

the effect of apoptotic cells in changes in signaling profiles in rarer subsets. This 

could be the case for signaling differences of NK cells observed in papers II and III. 

Increased pecentages of apoptotic NK cells are a feature of pSS patients [170]. 

Therefore differences in signaling observed in NK cells in pSS may be a consequence 

of this.    

Greater variation was also observed in cells stimulated with LPS and PMA. The 

increased variation following LPS stimulation could result from the fact that the 

major responders are monocytes and B cells, therefore variation could be more 

associated with the cell type rather than the stimulant. Alternatively, variation may be 

a consequence of pathway kinetics following induction by the stimulant. Because of 

technical limitation, in particular multiple targets, 15 minutes was used in 

stimulations. This timescale is not optimal for all stimulants or phospho targets and 

may influence observed variation. For example, a rapidly decaying phosphorylation 

following PMA stimulation may increase error associated with small differences in 
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fixation times relative to other targets displaying less rapid phosphorylation / de-

phosphorylation.    

Variation was larger in measurements of STAT4 Y693, STAT1 S727, P38 and 

STAT5 Y694 than the other antibodies used in the assay. The greater variation in the 

phospho-epitope staining is likely a consequence of the strength of the signal, with 

STAT4 Y693, STAT1 S727 and P38 giving the lowest basal MFI measurements, and 

STAT5 Y694 showing the 5th lowest basal measurements of the 9 targets. 

The use of lithium-heparin tubes for blood collection and density gradient 

centrifugation with lymphoprep™ for PBMC isolation gave consistently lower basal 

measurements than the isolation methods, utilizing CPT™ with sodium citrate or 

sodium heparin. The cause is unclear, but may result from lower viability, increasing 

levels of non-specific staining or difference in the induction of the pathways caused 

by the different isolation methods.     

The use of lithium-heparin as an anti-coagulant was superior in retaining PBMC 

responsiveness compared to sodium citrate and sodium heparin over multiple 

signaling pathways and cell types.  

Citrate in particular strongly reduced levels of phosphorylation in multiple signaling 

pathways. Interestingly, this effect was stronger in NK cells, in particular the 

decreased response of STAT4 Y693. One would expect that the differences in 

signaling could be due to the different mechanisms of action of both sodium citrate 

and heparin as anti-coagulants. Citrate acts as an anti-coagulant presumably by 

sequestering Ca++ ions [202], in contrast, heparin binds to and enhances the inhibitory 

activity of the plasma protein anti-thrombin against several serine proteases of the 

coagulation system [203]. A previous study comparing lithium-heparin, sodium 

heparin and sodium citrate anti-coagulants on cytomegalovirus-specific responses, 

analyzed by IFNγ assays on PBMC and whole blood, yielded higher CMV-specific 

responses in whole blood using lithium-heparin [204] also indicating an edge for it as 

an anti-coagulant of choice. 
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Measurements of induced and basal signalling in papers II and III demonstrated cell 

specific differences in phosphorylation of signaling molecules in PBMC between 

groups (pSS and healthy individuals, and presence of autoantibody or EGM). As 

mentioned previously, the strength of phosphoflow is the ability to resolve the 

phosphorylation status of proteins in individual cells. However, this benefit is in part 

dependent on the analytical methodology used downstream from these measurements. 

During data analysis we used MFI in identified populations. Differences observed 

could therefore be a result of shifts of sub populations within the T, B and NK cell 

subsets rather than potentiation of a signaling pathways. Subpopulations could 

display different responses to the stimuli or basal phosphorylation levels thus 

affecting the MFI for the observed cell subset. Phosphorylation curves do not 

however indicate any sub-responses (e.g. bimodal curves), though shifts could be 

slight and still have a significant effect on median MFI of the population. Population 

shifts were observed in paper IV and by other authors [168, 169].  

Basal phosphorylation was measured in both papers II and III, and comparisons 

between pSS patients and healthy individuals corresponded well. Greater spread of 

measurements and lower differences between pSS and healthy individuals were 

however observed in paper III. The differences are likely resultant from a change in 

the methodology between the two papers as mentioned previously.   

We detected increased basal levels of STAT5 Y694 phosphorylation in T and NK 

cells. Increased basal levels of STAT5 phosphorylation have previously been shown 

in T cells from pSS patients compared to healthy donors [205]. However, in contrast 

to our study, the authors also found significant differences in B cells for basal 

phosphorylation of STAT5 Y694 and no differences for phosphorylation of STAT1 

Y701 in T cells [205]. Moreover, Ramos et al. found significant differences in basal 

phosphorylation levels of STAT3 Y705 in T cells [206] which is in contrast to our 

findings. These differences are likely the result of the use of cryopreserved PBMCs 

and long culture period (6 hours) in our study, as both other studies used freshly 

isolated cells. 
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Increased induction of NF-κB, P38 and STAT3 S727 were observed in B cells 

following stimulation with TLR7 and -9 following exclusion of patient prescribed 

medications. Their induction was also stronger in patients without EGM. The cause 

or the functional relevance of the aberrant phosphorylation is unknown. B cells for 

their part do not differ in TLR7 and -9 expression between pSS patients and healthy 

individuals, which may affect their response to their respective ligands [207]. 

However, increased secretion of a number of cytokines and chemokines have been 

observed following stimulation of B cells with TLR7 and -9 ligands including IFNα 

following stimulation with TLR7 ligands [208]. Additionally, NF-κB can bind to 

promoter regions of many genes including proinflammatory cytokines such as TNFα 

and IL1β [79] which can be secreted by B cells [209]. TNFα and IL1β are present at 

higher concentration in peripheral blood of pSS patients along with increased 

numbers of TNFα and IL1β secreting cells [210, 211]. 

A number of polymorphisms associated with pSS and autoantibody presence in pSS 

could potentially effect signaling through NF-κB, P38 and STAT3 S727. TANK 

(TNF receptor associated factors family member-associated NF-κB activator) for 

example encodes a protein that is a negative regulator of proinflammatory cytokine 

production induced by TLR signaling, and is thought to suppresses TLR signaling by 

controlling the ubiquitination of TRAF [212]. Changes to its function could 

potentially affect all three of the fore mentioned pathways following TLR 

stimulation. Mice deficient in TANK spontaneously developed lupus-like 

autoimmune nephritis [212] indicating a role in autoimmunity, while pSS patients 

with germinal centre like structures shows a positive association with polymorphisms 

in the gene [213]. A20 (Antiapoptotic signaling protein) encoded by TNFAIP3 

(tumour necrosis factor-alpha-induced protein 3) is also a negative regulator of TLR 

stimulated activation of NF-κB and polymorphisms in TNFAIP3 are associated with 

SS [214]. Additionally, an association with two polymorphism in TNIP1 (inhibitor of 

nuclear factor kappa-B kinase subunit epsilon) that encodes ABIN1 (A20-binding 

inhibitor of NF-κB) a repressors of NF-κB and of IKBKE (Inhibitor of nuclear factor 

kappa-B kinase subunit epsilon), which is an NF-κB activator, and antibody-positive 
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pSS has been observed in a Scandinavian cohort [215]. Many of these associations 

are however weak and often poorly reproducible indicating a possible redundancy in 

the system with many polymorphisms likely to have similar consequences on a 

pathway.  

Increased STAT1 Y701 activation in response to IFNα confirms previous work of 

Pertovaara et al. 2016 [216] where B cells in peripheral blood from pSS patients 

exhibited significantly increased STAT1 Y701 phosphorylation following stimulation 

with IFNα, while T cells displayed a non-significant but increased response to IFNα 

stimulation [216]. Phosphorylation of STAT1 in B cells and monocytes from pSS 

patients has also previously been observed be potentiated following stimulation with 

IFNγ and IL6, and CD4+ T cells following stimulation with IL6 [216]. Therefore, as 

noted by Pertovaara, et al. 2016 [216] it seems unlikely that differences are through 

receptor expression and more likely through commonalities in their signaling 

pathways. 

Increased responses through STAT1 following IFNα stimulation in pSS patients is in 

contrast to SLE patients, where decreased responses have been observed [217]. 

Interestingly, increased serum levels of IFNα have been found in SLE patients most 

notably during disease flares [218, 219], while serum IFNα concentrations from pSS 

have differed significantly with groups finding no change [220], decreases [221] and 

increases [222, 223] compared to healthy individuals. Approximately half the patients 

in both diseases display a type I IFN signature [108, 113]; the fore mentioned 

differing response to IFNα may indicate different mechanisms behind increased type 

I IFN gene expression. A primarily TLR driven increase in IFNα production leading 

to up regulation of IFN regulated genes may dominate in SLE leading to increased 

type I IFNs, whereas pSS patients show an increased responsiveness to type I IFN. 

The existence of two differing mechanisms driving increased IFN regulated gene 

expression in pSS could explain the inconclusive efficacy of HCQ in pSS patients 

[224-226] in contrast to SLE [227]. Because the therapeutic effect of HCQ is 

attributed to its suppression of endosomal TLR activation [228], it would likely be 
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more effective in treating diseases with a primarily TLR driven pathogenesis or co-

morbidities.  

In contrast to STAT1, IFNα induced repression of phosphorylation of numerous other 

signaling proteins were observed. STAT3 S727 for example, although not significant 

in our study, indicated slightly reduced phosphorylation following IFNα stimulation 

in T and B cells, which was significant in T cells following removal of medicated 

patients, while phosphorylation of STAT5 in B and T cells was reduced. This finding 

was similar to reports for SLE, where Huang et al. 2011 observed reduced responses 

of STAT3 and STAT5 to IFNα in T and B cells [217]. Additionally, a similar pattern 

of responses (increased STAT1 induction and reduced induction of other) 120 

minutes following TLR7 and -9 stimulation, further indicating a predisposition to 

STAT1 activation over other pathways.    

Papers II and III documented strong deregulation in NK cell signaling pathways. As 

mentioned previously, NK cells display high basal expression of STAT4 and reduced 

STAT1 compared to other cell subsets [58]. This pre-disposes the cells for STAT4 

activation by type I IFNs and IFNγ production [58]. Total STAT1 levels are then 

induced during viral infections as a result of IFN exposure and this change acts to 

promote the activation of STAT1 and promotes cell cytotoxicity but limits both the 

activation of STAT4 and IFNγ expression [58-60, 129].  

Our study showed increased basal signaling by NK cells through STAT1 Y701 and 

STAT1 S727. Following exposure of NK cells to IFNα the response through STAT1 

Y701 was greatly increased, while responses through STAT4 Y693 were decreased. 

A similar response was also observed after 120 minutes following stimulation with 

TLR7 and -9 ligands, possibly through self stimulation with cell produced cytokines 

in culture. Such a profile would likely polarize NK cells in pSS towards a low IFNγ 

producing phenotype and increased cell cytotoxicity [58-60, 129]. However, no 

increase in NK cell killing ability has been observed on a per cell basis compared to 

healthy individuals in pSS patients [170]. Interestingly NK cells from pSS patients 

are hypo-responsive to IFNα induced cell cytotoxicity [229].  
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Whether this aberrant profile is an association with polymorphisms in STAT4 

commonly associated with pSS [121] is unknown, however pSS is associated with a 

polymorphism in NKp30, an NK-specific activating receptor that regulates cross talk 

between NK and DCs and type II IFN secretion [230], indicating a possible role of 

the IFNγ / cell cytotoxicity axis in NK cells in pSS. Further, low relative 

phosphorylation of STAT4 to STAT1 in response to IFNα in NK cells resembles 

profiles of individuals with hepatitis C infections receiving IFNα therapy [59]. Our 

finding of higher STAT1 to STAT4 activation is perhaps not surprising with systemic 

autoimmunity being noted to mimic many features of viral immunity [231].  

STAT3 was also reduced in NK cells 120 minutes following TLR7 and -9 

stimulation. Activation of STAT3 is involved in the prevention of apoptosis and 

enhances cell survival and proliferation [232]. Reduced STAT3 activation in NK cells 

may therefore be associated with the decreased numbers of NK cells, decreased 

cytotoxicity and increased percentages of apoptotic NK cells documented in pSS 

patients [170].   

PCA utilizing the IFNα induced sample dataset indicated a stronger induction of 

STAT1 Y701 by IFNα in B cells of SSA autoantibody positive patients. The 

connection between type I IFN and activation of autoreactive B cells is well 

established through observation of patients undergoing IFNα therapy developing de 

novo autoantibodies or increased titers of pre-existing autoantibodies [233, 234]. 

Similarly B cells displayed stronger induction of NF-κB and STAT3 S727 following 

TLR7 and -9 stimulation in SSA autoantibody positive patient. These differences 

could represent shifts in B cell subpopulations, for example pSS patient have shifts in 

B cell subpopulations based on their expression of CD38 and IgD [235]. Different 

subpopulations could display different levels of signaling components, such changes 

have been documented during B cell development for NF-κB complexes [236]. 

Differences in subset responses to TLR7 and -9 stimulation as well as IFNα therefore 

could explain the displayed potentiated signaling in pSS patients. 
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PCA following TLR7 and -9 stimulation also suggests that it is possible to subdivide 

pSS patients based on presence of EGM. EGM- patients displayed enhanced TLR 

responses through NF-κB, p38 and STAT3 S727 in B cells compared to EGM+ 

patients. This finding was regardless of the use of glucocorticoid prednisone, which 

inhibits NF-κB activation [237], and HCQ which inhibits TLR7 and -9 signaling 

[238]. The reason for the lack of EGM in patients with increased signaling following 

TLR7 and -9 stimulation is unclear, of interest is the observation that the same 

patients with high TLR signaling all showed lower responses to IFNα (data not 

included in study) suggesting a negative regulatory effect or differing pathogenesis. 

SOCS1 mRNA expression levels have been found to be up-regulated in PBMC from 

pSS patients [216] and can be induced by TLR ligands including CpG-DNA [239]. 

Additionally, SOCS1 mRNA expression in these patients did not correlate with the 

IFNα, IFNγ and IL-6-stimulated pSTAT1 levels in B cells and monocytes or with the 

IL-6-stimulated pSTAT1 levels in CD4+ T cells which could potentially induce the 

expression of SOCS1 mRNA [240]. As SOCS1 can suppress signaling from a 

number of cytokine, IFNα included [241]. It is possible the lower responses of these 

patients to IFNα could result from a TLR driven increased expression of SOCS1.  

Patients prescribed medication displayed increased responses through STAT3 S727 

in T cells following IFNα stimulation, although little effect of the medication on 

STAT1 Y701 activation was observed. This indicates medication could at least in 

part affect the relative responses of the JAK/STAT pathways perhaps indirectly 

through inhibiting TLR induced expression of products regulating or promoting IFNα 

responses, whether this translate into therapeutic benefits is uncertain.  

The expression of type I IFN genes (OAS1, IFI44 and MxA) in PBMC from pSS 

patients showed a positive correlation with induction of STAT3 S727, NF-κB and 

P38 phosphorylation in B cells in response to TLR7 and -9 stimulation.  

Associations with increased induction by TLR7 and -9 and increased type I IFN gene 

expression could exist for a number of reasons. For example, promoters for early type 

I IFNs (IFNα4 and IFNβ) have NF-κB response elements that are essential for 
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constitutive and early expression of IFNβ following viral infection [242], therefore 

increased responsiveness of NF-κB could potentially drive increase early type I IFN 

expression. Additionally, NF-κB is activated together with IRF3/IRF7 following 

direct viral invasion of the cytoplasm through cytoplasmic RNA helicases [6]. 

Together they induce antiviral genes, including those that encode IFNα and IFNβ [6], 

potentiated NF-κB signaling could thereby affect this induction. Further, as many of 

the same components also function in NF-κB, STAT3 S727 and P38 TLR driven 

responses as in other type I IFN inducible pathways, it is plausible higher levels of 

type I IFN gene expression is indirectly associated with the increased responses of 

STAT3 S727, NF-κB and P38. 

Alternatively increased expression of type I IFN induced genes could potentiate 

TLR7 and -9 driven pathways through changing the relative positive and negative 

regulators of the fore mentioned signaling pathways. 

Induction of STAT1 Y701 in B cells following stimulation with IFNα showed a 

positive correlation with the expression of Type I IFN genes, while the majority of 

other pathways showed negative correlations. This indicates that potentiation of this 

pathway could play a role in type I IFN induction or induction of type I IFN could 

play a role in the potentiation of these pathways.  

Absolute counts of T lymphocytes were observed to be decreased in pSS patients 

compared to healthy individuals primarily through a non-specific loss of CD4+ T 

cells and to a lesser degree CD8+ through the loss of inactivated cells. Additionally, 

pSS patients displayed reductions in B cells through the reduction of inactivated cells 

as well as reductions in NK cells. These findings are in line with previous reports 

showing reductions in lymphocyte subsets in peripheral blood of pSS patients 

compared to healthy individuals [168-171].  

The losses in CD38- B cells and CD38- CD4+ and CD8+T cells, as well as NK cells 

tended to be stronger in SSA+ or SSB+ patients than SSA-SSB- patients as well as 

EGM+ patients compared to EGM- patients. Previous haemocytometer based counts 

of leukocytes in peripheral blood by Sudzius et al. 2015 [168] have shown that both 
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SSA-SSB- and SSA+ or SSB+ pSS patients, display decreases in absolute counts of T 

cells, CD4+ T cells and CD8+ T cells compared to healthy individuals. The decreases 

were more pronounced in SSA+ and/or SSB+ patients. In addition, autoantibody 

positive patients had decreases in NK and NKT cells compared to healthy 

individuals. 

Their findings correspond well to our observations with larger decreases in our study 

observed in SSA+ patients, although quantities of T cells in SSA- patients and 

healthy individuals were not significantly different, nor were quantities of CD8+ T 

cells for SSA-SSB-, and SSA+ or SSB+ compared to healthy individuals. In addition 

absolute counts using a mass cytometer by Mingueneau et al. 2016 [169] similarly 

found reductions in CD4+ T cells for both SSA+ and SSA- pSS patients, and NK 

cells in SSA+ pSS patients compared to healthy donor samples but no differences in 

B nor CD8+ T cells in either group.  

In our previous papers (II and III) increased activation of STAT1 Y701 was observed, 

both basal and following induction with IFNα. Signaling through STAT1 is a 

requirement for the antiproliferative effects of IFNα [243]. The increased activation 

of STAT1 may in part explain the low counts of lymphocytes in pSS observed by us 

and others [168, 169]. IFNα has previously been speculated to in part explain 

lymphopenia observed in SLE patients [218], while lymphopenia has been 

hypothesised as a requirement in the induction of autoimmunity [244, 245] , with the 

two-hit model of autoimmunity stating that autoimmunity requires two insults to hit 

together − lymphopenia and the absence of responsiveness of T cells to TGF-β [246, 

247]. Further, B-cell activating factor is expressed at higher concentrations in serum 

of pSS patients [248, 249] and can rescue high-affinity self-reactive B cells from 

peripheral deletion. This has been observed to be inhibited at high levels of 

intercellular competition [250]. An increased response to IFNα therefore could play a 

role in pSS pathogenesis through its antiproliferative effects. Although we do not 

have direct evidence of a connection between lymphopenia and increased IFNα 

responses, both lower lymphocyte counts and stronger IFNα response through 
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STAT1 Y701 were similarly positively associated with incidences of SSA 

autoantibodies and prevalence of EGM in patients. 

Peripheral blood cell counts likely reflect systemic inflammation, organ involvement 

in the disease, systemic disease activity, as well as medical therapy which is 

discussed later. As mentioned previously lymphopenia is likely involved in 

autoimmune etiology and pathogenesis. Thereby non-specific decreases in 

lymphocyte counts may provide an indicator of autoimmunity with reduced counts 

also in RA [251], insulin-dependent diabetes mellitus [252] and SLE [253] among 

others, and inflammation in general, and not a specific disease. The use of cell count 

in diagnosis however is not without precedent in rheumatology where presence of 

lymphopenia or leukopenia is used in SLE diagnosis in conjunction with other 

measures [254]. Although lymphopenia may give an indication of worsening disease, 

it is unlikely to be reflective of an individual disease or disease subtype unless used in 

conjunction with other criteria or if changes reflect organ involvement or other 

disease differentiating features.  

A number of factors limit the significance of the findings presented, in particular the 

use of medication by patients with in the cohort, sample size and clinical information 

available regarding the cohort.  

Numerous patients included in these studies were receiving prednisolone or HCQ. 

HCQ inhibits TLR7 and -9 signaling [228, 255] and this was evident in reduction of 

TLR stimulation driven signaling in patients using the drug. Similarly the activation 

of NF-κB is inhibited by commonly used medications including sodium salicylate 

(aspirin) [256, 257] and ibuprofen [237].  

Differences in cell concentrations between pSS patients and healthy individuals 

remained significant with the removal of patients receiving medication. However, this 

does not exclude the possibility that medications used by patients could similarly 

affect cell concentrations. Prednisolone has been observed to cause leucocytosis in 

patients with leucocytosis associated diseases, through increases in granulocytes, 

monocytes and lymphopenia [258]. The observations were temporal with increased 



 78

counts of monocytes and granulocytes for the 15 to 21 days of the study, while 

lymphocyte counts were decreased after 8 days and remained decreased for the 

reminder of the study. Another report following administration of prednisolone to 

individuals with fever of unknown origin showed rapid decreases in lymphocyte and 

monocyte counts, followed by a rebound in their number over a 24 hour period [259].  

Little evidence in published literature indicates an association with HCQ and 

lymphopenia nor increased granulocytes or monocyte counts with the exception of 

HCQ inducing apoptosis in a dose and time dependent manner (up to 48 hours) in in-

vitro cultures of lymphocytes from SLE patients and healthy individuals in a single 

study [260].  

The reported effects of medications commonly prescribed to pSS patients indicate 

that interpretation of results could in part be confounded by their use, in particular 

prednisolone. Only a small number of patients included in this study were prescribed 

prednisolone (13 / 86), while more patients were prescribed HCQ (27 / 86). No 

information regarding time of administration or dose of medication relative to blood 

sampling time was avaliable. Further, medication is typically used to treat 

complications in pSS therefore discerning between the effects of the presence of 

EGM and the increased use of medication is difficult.  

Sample sizes used in each study allowed for enough power to differ between healthy 

individuals and pSS patients, as well as basic subdivisions of the pSS cohort (EGM, 

autoantibodies and medication). Further dissections and comparisons of groups for 

example by EGM patients using medication resulted in very small group sizes 

increasing the possibility of chance associations, therefore these were not included.   

The pSS cohort used in the study lacked information which may be beneficial in 

future studies. For example, we previously mentioned medication can have an effect 

on both quantities of immune cells, as well as intracellular signaling. Although the 

impact of medication was examined in our study, we have no knowledge on the dose 

or the time of administration of medication relative to sampling period. Additionally, 

ESSDAI (EULAR SS Disease Activity Index) which gives a single measurement of 
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disease activity [261] was not available in many patients included in the study so it 

was excluded from analysis. This feature could be used to assess whether degree of 

signaling or lymphopenia for example are associated with worsening of disease 

activity and should be included in future analysis. Further, time since diagnosis or 

presentation of clinical symptoms could enable the assessment of how measured 

variables may change over the course of the disease.  

Subjects used as controls in the studies were obtained from the blood bank at the 

Haukeland University Hospital in Bergen. It is unlikely that profiles of these 

individuals would represent individuals commonly encountered in a clinical situation. 

Therefore their use in assessing markers for identification of pSS is questionable. 

More appropriate controls would likely include individuals displaying sicca 

symptoms. 
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6. Summary and conclusion 

Measurements of basal and induced intracellular pathways in mononuclear cells from 

peripheral blood from pSS and healthy individuals are informative of sample identity 

(healthy individual or pSS patients) and the expression of autoantibodies or systemic 

manifestations in pSS patients. Increased phosphorylation of induced pathways can 

be further linked with a type I IFN signature in patients. Our results suggest that the 

type I IFN signature in pSS could result through increased responsiveness of TLR7 

and -9 possibly through increased expression of type I IFNs, as well as enhanced 

activation of STAT1 by IFNα in these patients.  

Cell concentrations of leukocytes in peripheral blood were also associated with 

sample identity (healthy individual or pSS patients), systemic involvement and 

autoantibodies and allowed for identification of a cohort without organ associated 

EGM.  

Both the phosphorylation of signaling molecules and concentrations of leukocytes in 

peripheral blood are likely affected by anti-inflammatory and immune modulating 

drugs commonly used in the treatment of the disease, thereby limiting their potential 

use in disease stratification.  

Because of the heterogeneity of the disease cohort, and non-independence of many 

factors, clear conclusion regarding how measured markers are influenced by disease 

manifestations is problematic.  

Both measures however show promise for stratification and identification of pSS. 

Future research utilizing larger sample sizes and more defined cohorts is required, in 

particular further dissection of patient groups by EGM expression and medication use 

are therefore required in future work attempting to stratify the disease. Biomarkers 

for identification of pSS patients require more appropriate controls, for example 

individuals displaying sicca symptoms, in addition to potential biomarkers usefulness 

being assessed in relation to current classification criteria.  
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7. Future perspectives 

A significant positive correlation was observed between the expression of type I IFN 

genes in PBMC and phosphorylation of STAT1 Y701 in response to IFNα in B cells. 

Of interest is whether the increased gene expression associates at a single cell level in 

a cell subset specific manner and whether this corresponds to the cell subsets 

displaying increased responsiveness; or throughout all immune cells. Analysis of type 

I IFN induced genes was conducted in PBMC without prior cell stimulation, 

measurements following IFNα stimulation in different cell subsets should also be 

conducted. Single cell analysis of gene expression [262] is therefore of interest. 

Similarly positive correlation between expression of type I IFN genes in PBMC and 

phosphorylation of NF-κB, P38 and STAT3 S727 following stimulation of TLR7 and 

-9 were observed. Whether this relates to a cell specific increased induction of type I 

IFN should be investigated, or other molecules involved in type I IFN pathways.    

The enhanced TLR7 and -9 responses through NF-κB, P38 and STAT3 S727 in B 

cells in patients without EGM compared to those with EGM should be further 

investigated. In particular, the possibility of a greater use of medication not 

prescribed by the patient’s rheumatologist by EGM+ patients such as sodium 

salicylate (aspirin) [256, 257] and ibuprofen [237] should be excluded, a more 

defined cohort is therefore required to confirm this observation. If confirmed, further 

investigating of these groups should include whether they display differences in 

single nucleotide polymorphisms associated with the pathways or whether the groups 

display different concentrations of components involved in the fore mentioned 

signaling cascades. Identifying pathologically different subgroups would help in 

identifying potential therapeutic targets in SS, for example patients with B cells 

showing increased induction of cell signaling following TLR7 and -9 stimulation may 

respond better to HCQ.  

The cause of the increased pathway induction should be examined. As previously 

mentioned a number of polymorphisms have been associated with pSS which play a 

role in signal transduction. Subdividing patients by polymorphisms and associating 
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with signaling profiles may allow for identification of genetic profiles which lead to 

similar signaling profiles thus facilitating patient stratification. Additionally, it is 

likely that feedbacks taking part in the cell signaling cascades will change the relative 

concentrations of signaling components and their positive and negative regulators. 

Relative concentration at a single cell level should be investigated.   

Finally, TLR7 ligand CL097 and TLR9 ligands ODN 2006 and ODN2395 were used 

in combination in the TLR signaling assay due to limited availability of PBMC for 

each patient. It will be informative to know whether the differences encountered in 

phosphorylation following induction by TLR stimulation is specific to a particular 

TLR.  

A number of modifications could be made with regards to future studies attempting to 

identify potential biomarkers in pSS. Selection of targets in papers II and III was 

largely through a mixture of an unbiased approach and the use of a deductive 

reasoning. In contrast, targets used in paper IV reflect a general phenotyping panel to 

identify common cell types in peripheral blood. The identification of cells or 

combinations of cells associated with the disease or its progression through 

identification of cells lost to these processes or increased activation / migration may 

be more effective for patient stratification. For example Maehara et al. [263] 

described that the expression of Th2 and certain Tfh-related molecules were 

associated with lymphocytic accumulation and ectopic GC formation. Therefore 

follicular Th cells in pSS may be a suitable target for peripheral blood analysis if 

these are lost in the blood during these processes. Additionally, cells which have 

previously been observed to differ between similar diseases may provide information 

to help differentiate between similar autoimmune diseases. For example Szabo et al. 

[264] detected increased proportions of double-negative B cells and plasmablasts in 

SLE, while they were decreased in pSS. And as mentioned previously changes in B 

cell subpopulations based on their expression of CD38 and IgD have been 

documented in pSS patients [235] which appear to be specific to pSS when compared 

to RA and SLE [265]. 
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The strong associations of autoimmunity with type I IFN suggest pDCs should be 

included in future analysis; the phosphorylation of IRF3, IRF5 and IRF7 which 

activate type I IFN genes following activation of TLR7 and -9 is of special interest. 

Signaling through RIG-1 is involved in the production of type I IFN in the majority 

of cell types and therefore measurement of this pathway should also be considered. 

Monitoring of IRF9 and STAT2 is also of extreme interest due to their involvement 

in type I IFN responsive antiviral pathways [266]. 

Because of limitations imposed on the number of targets that can be measured 

simultaneously by fluorescence spectral overlap in flow cytometry we limited our 

analysis to 8 different fluorochromes in 3 different panels in papers II and III in an 

attempt to minimize the effects on channels used for measuring phosphorylated 

proteins, while paper IV utilized 9 different fluorochromes in the analysis. Due to the 

exploratory nature of our analysis analyzing more targets simultaneously would be 

beneficial. Mass cytometry can allow for a more in depth analysis [267] as antibodies 

are labelled with isotopes instead of fluorochromes. Therefore fluorescent overlaps of 

emissions do not need to be removed during analysis as per conventional flow 

cytometry. This allows for the measurement of greater numbers of markers 

simultaneously allowing for greater refinement of interesting populations. Mass 

cytometry would allow for the analysis of over 40 markers simultaneously, allowing 

the user to ask questions about relative expression of each phosphorylated proteins to 

one in another in each cell. Greater resolution of cell subtypes will also provide 

further information, for example if these changes are due to shifts in cell subtype 

population of potentiated signaling.  
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Phosphoflow cytometry is increasingly being used as a tool for the discovery of biomarkers used in the treatment
andmonitoring of disease and therapy. The ability tomeasure numerous phospho-protein targets simultaneous-
ly at a single cell level accurately and rapidly provides significant advantages over other methods. We here dis-
cuss important considerations required to successfully implement these methods. Three different blood
collection tubes (lithium-heparin tubes, CPT with sodium citrate and CPT with sodium heparin) were evaluated,
with PBMC isolated through lithium-heparin tubes/lymphoprep displaying reduced basal and increased stimula-
tion induced phosphorylation compared to the other twomethods. Further, we provide a protocol outlining an 8
color assay developed for the study of intracellular signaling in peripheral bloodmononuclear cells. The assay al-
lows for the quantitative measurement of the phospho-proteins ERK1/2, NF-κB p65, Stat1 (Y701), Stat1 (S727),
Stat3 (Y705), Stat3 (S727), Stat4 (Y693), p38 and Stat5 (Y694), as well as the identification of T cells, B cells, nat-
ural killer cells and monocytes. The assay additionally incorporates fluorescent cell barcoding, reducing assay
costs and increasing throughput while increasing data robustness. Inter-assay precision was assessed over a
month long period for all experimental variables (phospho-protein measured, cell type and stimulant). Coeffi-
cient of variations (CVs) calculated from process triplicates of normalized median fluorescence intensity (MFI)
of the phospho-proteins displayed median CVs under 10% when grouped according to cell type, stimulation
agent and phospho-protein measured, while the CV for each triplicate did not exceed 20%.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

By using highly specific fluorochrome conjugated antibodies, flow
cytometry allows for quantitative multi-parameter analysis of single
cells within complex cell populations. The additional use of fluoro-
chrome conjugated antibodies to the phosphorylated forms of mole-
cules phosphorylated during signaling cascades allows for the analysis
of signalingnetworkswithin complex cell populations such as peripher-
al blood mononuclear cells (PBMCs). This provides quantitative data of
phosphorylation events at a single cell level; without the need for prior
separation of the cells of interest (Krutzik and Nolan, 2003). The path-
way of interest can be further investigated through its activation either

in vivo or in vitro. This technique termed phospho-flow cytometry has
shown significant promise in stratification of disease (Irish et al., 2004,
Brown et al., 2015), monitoring disease progression (Cesano et al.,
2013) and identification of biomarkers for monitoring therapeutic in-
tervention (Gavasso et al., 2014). Additionally the method can be used
in conjunction with fluorescent cell barcoding to enable a higher
throughput while minimizing reagent consumption and maximizing
data robustness through the multiplexing of samples prior to staining;
making this method ideal for profiling of multiple samples (Krutzik
et al., 2011).

We here provide a protocol outlining an 8 color assay developed for
the study of intracellular signaling in PBMCs. In the procedure, PBMCs
are stimulated, fixed, permeabilized and stained with 3 different anti-
body panels to identify various cell types - T cells, B cells and natural kill-
er (NK) cells, and phospho-proteins-NF-κB p65 (pS529), ERK 1/2
(pT202/pY204), P38 (pT180/pY182), Stat4 (pY693), Stat1 (pY701),
Stat1 (pS727), Stat3 (pY705), Stat5 (pY694) and Stat3 (pS727). Addi-
tionally, we utilize 2 amine reactive dyes, Pacific Orange™ (PO) and Pa-
cific Blue™ (PB) to barcode 9 different samples, allowing for a higher
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throughput while minimizing antibody consumption. Further, we dis-
cuss important issues related to the testing and development of in-
house assays such as the choice of the blood collection tube.

2. Materials and methods

A schematic representation of the work flow and gating strategy is
shown in Fig. 1.

2.1. Antibodies

The following phospho-specific monoclonal antibodies were used in
3 different panels during theflow cytometry protocol: Alexa Fluor ®647
conjugated anti-Stat4 (pY693, clone 38/p-Stat4, panel 1), anti-Stat 1
(pS727, clone K51-856, panel 2) and anti-Stat3 (pS727, clone 49/p-
Stat3, panel 3); PerCP-Cy™5.5 conjugated anti-ERK1/2 (pT202/pY204,
clone 20A, panel 1), anti-Stat1 (pY701, clone 4a, panel 2) and anti-
Stat3 (pY705, clone 4/P-STAT3, panel 3); and PE-Cy™7 conjugated
anti-p38 MAPK (pT180/pY182, clone 36/p38, panel 2), and anti NF-κB
p65 (pS529, clone K10-895.12.50, panel 1), anti-Stat5 (pY694, clone
47/Stat5(pY694), panel 3) (all from BD Biosciences, San Jose, CA, USA).
Cell surface markers incorporated in the assays were BV786 conjugated
anti-CD3 (clone SK7, BD Horizon™), Alexa Fluor® 488 conjugated anti-
CD20 (clone H1 (FB1), BD Biosciences) and PE conjugated anti-CD56
(clone N901, Beckmann Coulter, CA, USA).

2.2. Blood collection

Blood was collected at the blood bank at the Haukeland University
Hospital in Bergen, Norway. All blood donors provided written in-
formed consent. Peripheral blood was collected in Lithium-heparin
tubes (BD diagnostics) and peripheral blood mononuclear cells
(PBMCs) were isolated by density gradient centrifugation with
lymphoprep™ (Axis-Shield, Oslo, Norway) as permanufactures instruc-
tions. For the experiments analyzing the effect of the isolation method,
BD Vacutainer® CPT™ with Sodium Citrate or Sodium Heparin (BD di-
agnostics) were utilized. PBMCs were washed twice with phosphate
buffered saline (PBS; Lonza, Basel, Switzerland) before being resus-
pended in ice cold 50%X-vivo 20™ and 42.5% Profreeze™-CDMnon-an-
imal origin (NAO) chemically defined freezemedium (both from Lonza)
and 7.5% DMSO (Hybrid max, Sigma D2650) at 3 to 5 × 106 cells/ml.
PBMCs were then frozen in a CoolCell® (Biocision; San Rafael, CA,
USA) freezing chamber at −70 °C overnight before being moved to a
−150 °C freezer for approximately 6 months.

2.3. Cell culture and stimulation

Before stimulation, cryopreserved PBMCs were rapidly thawed
using a water bath set to 37 °C and washed once in prewarmed X-vivo
20™ by centrifugation at 300g for 5min. The cells were then resuspend-
ed in X-vivo 20™ and rested at 37 °C at 5% CO2 for 30min before the cell

Fig. 1. Schematic representation of the work flow and gating strategy used in the analysis of intracellular signaling pathways in PBMCs. Blood was collected in Lithium-heparin tubes (BD
diagnostics), and PBMCs were isolated by density gradient centrifugation before cryopreservation. At a later date PBMCs samples were thawed and rested in serum free media and then
divided into 9 wells and stimulated as described in materials and methods. After stimulation, samples were fixed, permeabilized and stained with different concentrations of pacific blue
(PB) andpacific orange (PO) dyes. Sampleswerewashed to remove excess dye and combined into one tube and stainedwithfluorochrome conjugated antibodies as given inMaterials and
methods. Sampleswere analyzedonaflowcytometer, single cellswere gatedbased on their forward scatter area (FSC-A) and forward scatterwidth (FSC-W), followedby intact cells based
on side scatter area (SSC-A) and FSC-A. The different stimulation conditions were then identified through the intensities of their PB and PO stains. Cell subtypes were identified based on
their FSC-A and SSC-A scatter properties as either monocytes or lymphocytes. Lymphocytes were then subtyped as B cells (CD20+), T cells (CD3+CD56−), NK cells (CD3−CD56+) or
CD3+CD56+ NKT cells based on surface antigen expression. Cells within each subtype were analyzed based on the change of MFI in each stimulation condition relative to the
unstimulated reference sample. Data was analyzed, scatter graphs and heat maps were produced in cytobank (Kotecha et al., 2010).
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concentration was adjusted to 1.25 × 106 cells/ml in X-vivo 20™ and
400 μl was dispensed into 9 wells of a Megablock® 96 well plate
(Starstedt, Nümbrecht, Germany). The cells were rested at 37 °C with
5% CO2 for 11/2 h to decrease basal phosphorylation levels. Following,
the PBMCs were either left unstimulated (2 samples) or were stimulat-
ed for 15 min with cytokines (100 ng/ml), LPS (10 μg/ml; Sigma-Al-
drich) or PMA (100 ng/ml; Sigma-Aldrich) at 37 °C with 5% CO2.
Recombinant human (rh) interleukin-10 CHO (IL-10), interleukin-2
(IL-2), interleukin-6 (IL-6), interferon-alpha 2 beta (IFNα2β), IFN-
gamma (IFNγ) were from ImmunoTools (Friesoythe, Germany). Lyoph-
ilized cytokines and LPS were reconstituted in X-vivo 20™, while PMA
was reconstituted in DMSO. All compounds were diluted in 100 μl X-
vivo 20™ and added to 400 μl of cells resulting in a final cell concentra-
tion of 1 × 106 cells/ml during stimulation. All assayswere performed in
serum free media (X vivo-20™) to allow for a constant stimulation en-
vironment for the PBMCs and avoid unspecific stimulation.

2.4. Fluorescent cell barcoding and phospho-epitope staining for flow
cytometry

PBMCswere fixed by adding 16% PFA (ElectronMicroscopy Sciences
(Hatfield, PA, USA) warmed to 37 °C directly into the culture medium
resulting in a final PFA concentration of 1.5%. The samples were mixed
thoroughly by pipetting. The cells were fixed at RT for 10 min before
pelleting at 1000 g for 5 min. The PBMCs were then vigorously resus-
pended by vortexing in 50 μl PBS before drop wise addition of 1 ml ice
cold methanol and incubation on ice for 30 min. The permeabilized
cells were kept overnight at −80 °C. After washing with PBS, the
PBMCs were stained according to a 3 × 3 barcoding grid (9 stimulation
conditions) using 3 levels of pacific orange (PO) and pacific blue (PB)
succinimidyl ester dyes (PB 100, 25 and 6.3 ng/ml; PO 250, 70 and
0 ng/ml; Life Technologies, Grand Island, NY, USA) for 30 min in the
dark at 4 °C in a volume of 1 ml. Barcoded PBMCs were then washed
once and the 9 different dye concentration/combination samples were
combined into one sample. The sample was washed and incubated
with 1 μl Fc receptor block (Miltenyi Biotec, Bergisch Gladbach, Germa-
ny) per 1 × 106 cells for 10 min on ice. Following, the sample was
subdivided into 3 volumes and incubated for 30 min at RT in the dark
with the 3 different antibody staining panels. An aliquot of the barcoded
cells was collected before addition of antibody as a barcoding only con-
trol. The samples were thenwashed twice and re-suspended in staining
medium containing 2 mM EDTA (Sigma-Aldrich) prior to analysis.

2.5. Analysis

Samples were acquired on a LSRI Fortessa flow cytometer (BD Bio-
sciences, San Jose, CA, USA) with BDFACSDiVa™ Software (BD Biosci-
ences) at the Bergen Flow Cytometry Core Facility, University of
Bergen, Norway. The flow cytometer was equipped with 407, 488, 561
and 635 nm lasers, and emission filters for PerCP-Cy5.5 (LP: 685, BP:
695/40), Alexa fluor-488 (LP: 505, BP: 530/30), PE-Cy7 (LP: 750, BP:
780/60), PE (LP: −, BP: 582/15), APC (LP: −, BP: 670/14), Pacific blue
(LP: −, BP:450/50), Pacific orange (LP: 570, BP: 585/42) and BV 786
(LP: 750, BP: 780/60). The cytometer was routinely calibrated with BD
cytometer setup and tracking beads (BD Biosciences). A minimum of
200,000 events in the intact cell gatewas collected for each sample. Gat-
ingwas conducted as shown in Fig. 1: First, single cellswere gated based
on forward scatter area (FSC-A) and forward scatter width (FSC-W)
properties, followed by intact cells based on side scatter area (SSC-A)
and FSC-A. The different stimulation conditions were then identified
through the intensities of their PB and PO stains against SSC-A. Cell sub-
types were identified based on their FSC-A and SSC-A scatter properties
as either monocytes or lymphocytes. Lymphocytes were further
subtyped as B cells (CD20+), T cells (CD3+CD56−), NK cells
(CD3−CD56+) or CD3+CD56+ NKT cells based on surface antigen
expression. The fold change (arcsinh) was calculated from median

fluorescence intensity values (MFI) of unstimulated controls to MFI of
each stimulated samples for each identified PBMC subtype. Fold change
(arcsinh) was calculated through Cytobank or alternatively through
Microsoft Excel using the formula (ASINH (MFI stimulated/cofactor)) -
(ASINH (MFI unstimulated/cofactor)), with an assigned cofactor of
150. To assess the precision of the multiplexed assay complete process
triplicateswere run using cryopreserved PBMCs from3 different donors
over a 1month period. MFI values of target phospho-proteinswere nor-
malized against their respective unstimulated samples and coefficient
of variation (CV) values were calculated based on the normalized tripli-
cate values. Additionally we cryopreserved PBMCs from a single donor
with unstimulated and stimulated samples run in each assay for a pos-
itive control, inter-assay normalization, assessing assay to assay vari-
ability and calculating relative basal phosphorylation level in the
unstimulated sample.

3. Results

3.1. The PBMC isolation method affects their signaling profile in a cell and
pathway dependent manner

We first compared the effect of different PBMC isolation methods.
The signaling profile of PBMCs separated using CPT sodiumcitrate or so-
dium heparin tubes as well as collection with lithium-heparin tubes
followed by density gradient separation of PBMCs are shown in Fig. 2.
The figure shows fold changes (arcsinh) for monocytes, T cells
(CD3+), NK cells (CD3−CD56+), CD3+CD56+ NKT cells and B
cells CD20+) measured in channels for pERK, pNF-κB, pP38, pStat1
S727, pStat1 Y701, pStat3 S727 pStat3 Y705, pStat4 Y693 and pStat5
Y694.Measurementsweremade for all 3 donor PBMCs and fold changes
were calculated by comparing unstimulated samples to their respective
stimulated samples for each donor and basalmeasurementswere calcu-
lated against an unstimulated single donor control. The signaling profile
was affected in a cell and pathway dependent manner. Differences
among the groups were assessed through repeated measures one-way
ANOVA, with the Greenhouse-Geisser correction and Holm-Sidak's
multiple comparisons test, p ˃ 0.05 was considered significant. Basal
measurements of cells derived from different PBMC isolation methods
differed significantly. Lithium-heparin tubes followed by density gradi-
ent separation of PBMCs showed significantly lower basal phosphoryla-
tion of Erk1/2, P38, Stat1 Y701, Stat3 S727 and Stat5 Y694 in multiple
cell types than those isolated through CPT sodium citrate or sodium
heparin tubes. PBMC samples showed significant differences in fold
changes following stimulation between PBMC isolation methods. Fold
changes of PBMCs isolated using tubes with heparin additives were
comparable, but differed significantly from the citrate tube. In particular
a decreased phosphorylation fold change for NF-κB, Stat1 Y701, Stat3
Y705 and Stat5 Y694 following stimulation when compared to their re-
spective unstimulated controls was exhibited. These differences were
shown in multiple cell types but were most notable in NK cells, where
for example pStat4 had mean fold change of 1.29 when peripheral
blood was collected in lithium-heparin tubes compared to 0.337 with
CPT tubes with sodium citrate. These decreases were often not corre-
sponding with increases in basal signaling (e.g. Stat4 Y693 and Stat3
S727 in NK cells) and therefore do not explain the observed repression

3.2. Phosphoflow distinguishes cell and treatment specific signaling profiles

Examples of results from following the described method is shown
as a heat map in Fig. 3A. The figure displays a scale indicating fold
change (arcsinh) relative to their respective unstimulated sample. Dif-
ferent cell subsets in PBMCs are activated to different degrees depen-
dent on the agent used in cell stimulation. Interferon α was shown to
activate multiple phospho-proteins, this was strongly shown in pStat4
and pStat1 (Y701) and to lesser degrees pStat3 (Y705), pStat3 (S727)
and pStat5, with the level of activation dependent on cell type. While
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Fig. 2. Effect of PBMC isolation method on cell signaling. The Isolation method is displayed at the base of the figure with lithium-heparin (LH) tubes, CPT with sodium-citrate (CPT-C) or
sodium-heparin (CPT-H) shown. Cell type is shown on top and phospho-protein measured on the right of the figure. The axis for phosphorylation fold change (arcsinh) following
stimulation and basal fold differences (arcsinh) are shown on the left hand side of the figure. Basal fold differences are shown on the left hand side of the figure (A) and are
represented by grey bars while fold changes following stimulation are shown on the right (B). The bars show the mean and standard deviation. The PBMC isolation method was
shown to have an effect on degree of signaling in PBMCs after stimulation with PMA and interferon α for 15 min and basal levels. These effects varied with cell type and kinase
measured. In most cases peripheral blood mononuclear cells isolated using CPT (CPT-H and CPT-C) showed higher degrees of basal phosphorylation then PBMCs isolated by lithium-
heparin tubes and density gradient centrifugation. Heparin based isolation methods resulted in stronger post stimulation fold changes. A repeated measure one-way ANOVA, with the
Greenhouse-Geisser correction and Holm-Sidak's multiple comparisons test was used to analyze differences between groups, significant p values are denoted as * ≤ 0.05, ** ≤ 0.01,
*** ≤ 0.001, **** ≤ 0.0001.
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IFNγ activation profile displayed greater cell subset specificity, strong
activation was limited to pStat1 (Y701), pStat1 (S727), pStat3 (Y705),
pStat3 (S727) and pStat5 in monocytes; as well as pStat1 (Y701) in B
cells. Interleukin-10 showed a greater degree of specificity in
phospho-protein activation, strong induction was shown in pStat3
(Y705) in all cell types with relatively lower levels of activation of
pStat3 (S727). Interleukin-2 activation was largely limited to activation
of pStat5 in T cells, NK cells and CD3+CD56+NKT cells. IL-6 activation
was more pronounced in T cells in particular pStat1 (Y701), pStat3
(Y705) and pStat3 (S727); while LPS displayed a higher levels of activa-
tion in monocytes of NF-κB and P38. PMA showed high phospho-pro-
tein activation in diverse cell types, with strong activation of ERK 1/2,
NF-κB, P38 and Stat3 (S727).

3.3. Multiplex assay shows good reproducibility over phosphor-proteins,
cell types and stimulations

To assess the precision of the established assay; PBMCs from 3 sepa-
rate donors were isolated and cryopreserved. Subsequently on 3

separate occasions over a 1 month period, PBMCs for each donor were
thawed and processed as described in the method. Data of measured
MFI for each phospho-protein under each stimulation conditionwas nor-
malized against the corresponding unstimulated controls for each
phospho-protein, cell type and donor. The coefficient of variation (CV;
100 ∗ standard deviation/mean) was calculated for the 3 replicates for
each normalized phospho-protein MFI measurement in each cell type
and stimulation agent. The results generated were grouped for each
phospho-protein, cell type and stimulation agent and are shown in Fig.
3B. The data indicates excellent precision ofmeasurements; with robust-
ness of the assay also shown to be dependent on cell type and phospho-
protein measured, as well as stimulation agent. The assay was shown to
be more precise in measurements of pERK 1/2, pNF-κB, pStat1 (Y701),
pStat3 (Y705) and pStat3 (S727) than pStat4, pStat1 (S727), pP38 and
pStat5 with median CVs of 3.36%, 4.62%, 5.81%, 3.56%, 5.05%, 3.98%,
3.16%, 2.80% and 4.79%, respectively, with 95% of the results having CVs
within 10% (pERK 1/2, pNF-κB, pStat1(Y701), pStat3(Y701),
pStat3(S727)) and 15% (pStat4, pStat1(S727), pP38, pStat5). CVs for
the triplicate phospho-protein measurements of T cells (2.88%) and NK

Fig. 3. Phosphoflow distinguishes cell and treatment specific signaling profiles. A. Heat map representation of the stimulation profile of PBMCs. Data was generated as outlined in the
protocol with antibody panels used in the analysis shown to the right of the maps. All cells were gated according to the schematic shown in Fig. 1. The columns represent the cell
subsets, T cells, B cells, NK cells, CD3+CD56+ cells and monocytes. Each row represents a sample stimulated with a cytokine or chemical, with the phospho-specific antibody
detected shown at the base of each map. The color of each block represents the fold change (arcsinh) in the channel corresponding to the analyzed phosphorylated protein relative to
the un-stimulated sample, and the degree of change shown in the scale at the figure base. Data was analyzed and heat maps produced in cytobank (Kotecha et al., 2010). B. Precision
of flow cytometry based phospho-protein measurements of PBMCs from 3 different donors. Analysis of PBMCs shows excellent precision of normalized MFI values of phospho-
proteins. CV values for the multiplexed assays measured in complete process triplicates, grouped according to cell type analyzed (upper panel. n = 189), stimulation agent (medium
panel. n = 135) and phospho-protein measured (lower panel. n = 105). Upper panel: The cell specific group median assay CVs were 4.76% (monocytes), 2.88% (CD3+ T cells), 3.64%
(CD56+ NK cells), 4.61% (CD3+CD56+ cells) and 4.73% (CD20+ B cells), with 95% of the results having CVs within 10% (CD3+ T cells and CD56+ NK cells) and 13% (monocytes,
CD3+CD56+ cells and CD20+ B cells). Medium panel: CV values grouped by stimulation agent showed medians of 3.84% (IFNα), 4.27% (IFNγ), 3.8% (IL-10), 2.88% (IL-2), 3.64% (IL-
6), 5.62% (LPS) and 4.96% (PMA), with 95% of the results having CVs within 10% (IFNα and IL-6), 12% (IFNγ, IL-10, IL-2 and PMA), and 15% (LPS). Lower panel: CV values grouped by
phospho-protein measured had median assay CVs of 3.36% (pERK 1/2), 4.62% (pNfκB), 5.81% (pStat4), 3.56% (pStat1(Y701)), 5.05% (pStat1(S727)), 3.98% (pP38), 3.16%
(pStat3(Y705)), 2.80% (pStat3(S727)) and 4.79% (pStat5), with 95% of the results having CVs within 10% (pERK 1/2, pNfκB, pStat1(Y701), pStat3(Y701), pStat3(S727)) and 15%
(pStat4, pStat1(S727), pP38, pStat5). Box plots show the medium value plotted as a line with each box displaying the distribution of the inner quartiles and vertical lines showing 95%
of the data.
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cells (3.64%) were lower than those of monocytes (4.76%),
CD3+CD56+ cells (4.61%) and B cells (4.73%). 95% of the results had
CVswithin 10% for CD3+T cells and CD56+NK cells and13% formono-
cytes, CD3+CD56+ cells and CD20+ B cells. Additionally, assay preci-
sion was shown to be greater using cytokine based stimulation
(median CVs of 3.84% (IFNα), 4.27% (IFNγ), 3.8% (IL-10), 2.88% (IL-2),
and 3.64% (IL-6)) than LPS (5.62%) or PMA (4.94%). Still, 95% of the re-
sults had CVs below 10% (IFNα and IL-6), 12% (IFNγ, IL-10, IL-2 and
PMA) and 15% (LPS).

4. Discussion and conclusion

The monitoring of phosphorylation in signal transduction pathways
is increasingly being seen as a relevant tool in the treatment of disease
with multiple research groups showing its promise in the monitoring
(Huang et al., 2011) and prognosis (Brown et al., 2015) of disease, as
well predicting and monitoring therapeutic treatments (Everson et al.,
2014, Gavasso et al., 2014). Phosphoflow cytometry which can quanti-
tate the level of phosphorylation in numerous phospho-protein targets
simultaneously at a cell type-specific, single cell level provides an ideal
tool for these research endeavors. Accurate measures require well test-
ed and validated panels showing consistent and reproducible results.
Here we presented 3 panels for an optimized 8 color multiplexed
phosphoflow assays for the analysis of cryopreserved PBMC samples.
The assays incorporates monoclonal antibodies specific for phospho-
proteins ERK 1/2, NF-κB p65, Stat1 (Y701), Stat1 (S727), Stat3 (Y705),
Stat3 (S727), Stat4, Stat1 (S727), P38 and Stat5. These targets were cho-
sen as their activation is involved in numerous immune responses.
Moreover, associations have been shownwith dysregulation of intracel-
lular signaling molecules involved in immune responses and autoim-
munity (O'Shea and Plenge, 2012). The assay incorporates markers for
common cell lineages in peripheral blood - T cells, B cells and NK cells;
while monocytes were identified using their scatter properties. Addi-
tionally the assays utilize a 9× barcoding matrix allowing up to 9 sam-
ples to be measured simultaneously as 1 sample. This significantly
reduces antibody consumption and flow cytometry acquisition times,
significantly reducing the cost and time required to process and mea-
sure multiple samples, while additionally increasing data robustness.
The use of heparin as an anti-coagulant was shown to be superior in
retaining PBMC responsiveness compared to citrate. Citrate strongly af-
fected NK cell responses to stimuli in multiple kinases, while CPT based
isolation methods were associated with higher basal phosphorylation.
Because of the varied response in PBMC subtypes we recommend
prior testing before committing on blood collection methodology. Care
should be taken to assess the isolation procedures effect on responses
by different cell type. Additionally the resting period prior to PBMC
stimulation should be optimized with regards to isolation protocol
used to minimize basal signaling. As an example to illustrate the

strength of this method we measured multiple phospho-proteins
under multiple stimulation conditions simultaneously within a single
barcoded sample in triplicates for 3 different donors. The assay showed
excellent inter-assayprecision over amonth long periodwith CVs calcu-
lated against process triplicates of normalized MFI of the phospho-pro-
teins displaying median CVs of under 10% when grouped by cell type,
stimulation agent and phospho-proteinmeasured, while the CV derived
from each normalized triplicate measurement did not exceed 20%.
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