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Aggressiveness is a behavioral trait that has the potential to be
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harmful to individuals and society. With an estimated herita-

bility of about 40%, genetics is important in its development.We

performed an exploratory genome-wide association (GWA)

analysis of childhood aggressiveness in attention deficit hyper-

activity disorder (ADHD) to gain insight into the underlying

biological processes associated with this trait. Our primary

sample consisted of 1,060 adult ADHD patients (aADHD). To

further explore the genetic architecture of childhood aggres-

siveness, we performed enrichment analyses of suggestive

genome-wide associations observed in aADHD among GWA

signals of dimensions of oppositionality (defiant/vindictive

and irritable dimensions) in childhood ADHD (cADHD).

No single polymorphism reached genome-wide significance

(P< 5.00E-08). The strongest signal in aADHD was observed

at rs10826548,within a longnoncodingRNAgene (beta¼�1.66,

standard error (SE)¼ 0.34, P¼ 1.07E-06), closely followed by

rs35974940 in the neurotrimin gene (beta¼ 3.23, SE¼ 0.67,

P¼ 1.26E-06). The top GWA SNPs observed in aADHD showed

significant enrichment of signals from both the defiant/vindic-

tive dimension (Fisher’s P-value¼ 2.28E-06) and the irritable

dimension in cADHD (Fisher’s P-value¼ 0.0061). In sum, our

results identify a number of biologically interesting markers

possibly underlying childhood aggressiveness and provide tar-

gets for further genetic exploration of aggressiveness across

psychiatric disorders. � 2016 The Authors. American Journal of Medical

Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
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INTRODUCTION

Aggressiveness can be defined as any behavior directed toward an

individual with the immediate intent to cause harm [Anderson and

Bushman, 2002]. Violence, which is strongly related to aggres-

siveness, is the sixth leading cause of burden of disease for people

aged 15–44 years worldwide [WHO, 2008]. To date, most inter-

ventions designed to reduce violence risk typically have small effects,

reflecting our limited understanding of its causes and stressing the

need for further studies [Moffitt, 2005; McGuire, 2008].

As a complex phenomenon, aggressiveness spans across numer-

ous facets of human behavior, ranging from emotional lability and

temperamental traits (e.g., hot-tempered, short fuse, irritable) to

physical violence [Lesch et al., 2012]. These traits are frequently

found among youth with attention deficit hyperactivity disorder

(ADHD), a common child and adolescent psychiatric disorder

with a prevalence of about 5% and a rate of persistence into

adulthood of about 50% [Faraone et al., 2015]. ADHD is defined

by symptoms of inattention and hyperactivity/impulsivity, and

youth with ADHD often have co-existing disorders, some of which

are closely related to aggressiveness and violence, such as conduct

disorder (CD) and/or oppositional defiant disorder (ODD) and

disorders characterized by symptoms defined within the broader

term of antisocial behavior [Dalsgaard et al., 2002]. These disorders

put youth with ADHD at high risk of problems associated with

aggressiveness in adulthood [Klassen et al., 2010], especially when

the aggressive behavior has an early onset [Hofvander et al., 2009].
This can be illustrated by the fact that around 30% of youth and

25% of adult prison inmates are found to qualify for an ADHD

diagnosis [Young et al., 2014]. Studies of childhood aggressiveness

in adults can, therefore, be of great importance to improve our

understanding of adult ADHD.

The etiology of ADHD as well as traits of aggressiveness is

complex, with genetics playing an important role. The heritability

of ADHD has been estimated to be up to 88% across the lifespan

[Larsson et al., 2013], whereas the estimates of genetic influence on

aggression vary across studies, collectively reaching about 40–50%

[Brendgen et al., 2006; Tuvblad and Baker, 2011]. Such diversity in

the estimation of aggression heritability may result from inconsis-

tency in measures across studies. Several different aggression

measures have been utilized to assess the genetic and environmen-

tal influences on its development [Veroude et al., 2015], reflecting

that there is no consensus regarding its definition [Ramirez and

Andreu, 2006]. Furthermore, the estimates of aggressiveness are

influenced by the age of the study participants. The literature

reports stability of aggressiveness between childhood and adult-

hood, with adolescence as a transient period with little stability in

this trait [Moffitt, 2005]. Genes seem to explain little variation in

adolescent aggression, but are likely to account for individual

differences in childhood and adult aggression [Lyons et al.,

1995]. Also, given higher levels of aggression in males and higher

genetic load inmales with antisocial behavior compared to females,

it is an open question whether genetic propensity is of greater

importance in one sex over the other [Miles and Carey, 1997;

Tuvblad and Baker, 2011]. Interestingly, similar considerations of

age and sex effects are also present in studies of ADHD as well as

when ADHD is co-morbid with aggressive behavior [Faraone

et al., 1991, 2015].

Given that ADHD and aggression often co-occur and that both

traits are heritable, twin studies have noted the possibility of shared

genetic etiology between ADHD and aggression. A common

genetic factor has been reported among ADHD and symptoms

of aggression in 9–10-year-old children [Tuvblad et al., 2009].

Likewise, it has been suggested that impulsivity and aggression are

genetically mediated to a similar extent [Seroczynski et al., 1999].

Influenced by major theories on neuronal circuits, genetic

association studies of ADHD and/or aggression have been domi-

nated by candidate gene studies, focusing on the regulation of
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monoaminergic transmission [Faraone et al., 2015; Veroude et al.,

2015]. In line with twin studies, these candidate gene analyses have

provided further support toward a shared genetic component

between ADHD and aggression. Many genes associated with

ADHD point toward the same biological mechanisms as those

associated with aggressive behavior, including genes that are

involved in the synthesis, binding, transport and degradation of

neurotransmitters, especially dopamine and serotonin [Faraone

et al., 2015; Veroude et al., 2015]. It has been reported, for example,

that the genesMAOA, DRD2, DRD4, COMT, SLC6A4, TPH1, and

TPH2 may contribute to the development of ADHD as well as

aggressive behaviors [Gizer et al., 2009; Vassos et al., 2014].

However, these candidate gene studies suffer from the lack of

replication in independent samples (where available) and small

effect sizes suggest that some of these genes play amore limited role

in the susceptibility to ADHD and/or aggressive behavior, or that

their involvement may be limited to rare familial cases [McKinney

et al., 2008; Halmoy et al., 2010; Tiihonen et al., 2014]. Thus, the

overall genetic architecture of ADHD and/or aggression remains

largely unknown and warrants studies using a hypothesis-free

approach [Vassos et al., 2014].

Genome-wide association (GWA) studies allow interrogation

of the entire genome to generate new hypotheses. To date, few

GWA studies have been performed for ADHD and/or aggres-

siveness, with no finding passing the stringent Bonferroni-

corrected genome-wide significance level (P< 5.00E-08) for

either phenotype [Dick et al., 2011; Tielbeek et al., 2012; Mick

et al., 2014; Salvatore et al., 2015]. Nonetheless, as these studies

were generally underpowered, some understanding of biological

processes behind ADHD and/or aggressiveness may emerge from

the convergence of identified nominally significant loci. Previous

GWA studies on aggressive behaviors in ADHD have noted a

number of suggestive association signals, generating biological

hypotheses regarding the etiology of ADHD and/or aggression

[Anney et al., 2008; Aebi et al., 2015]. In addition, a recent GWA

study revealed a positive linear correlation between ADHD

polygenic scores and comorbid aggression scores, indicating

that the presence of aggressive symptoms in ADHD is likely to

index a greater genetic load [Hamshere et al., 2013]. Similarly

hypothesis-free, genome-wide linkage analyses have also reported

evidence of significant co-segregation between ADHD and dis-

ruptive behavior [Jain et al., 2007].

The lack of robust genetic association signals may be explained

by the modest sample sizes and the complex nature of both

ADHD and aggressiveness, where genetic factors are intertwined

with environmental influences [Brendgen et al., 2006]. In addi-

tion, heterogeneity in genetic susceptibility, phenotypic manifes-

tation, and operationalization of aggressiveness may depress

association signals [Cross-Disorder Group of the Psychiatric

Genomics et al., 2013]. The phenotypic heterogeneity in

ADHD may potentially be exacerbated by its high rates of

comorbidity with not only aggressive behaviors, but also

mood and anxiety disorders [Biederman et al., 1992]. Another

possible reason behind the lack of replicable genetic findings is

the limited annotation of the human genome. The annotation

has mostly been focused on protein-coding genes that represent

only �1% of our genome, making it difficult to evaluate possible
biological pathways involved in ADHD and/or aggressiveness, as

the majority of GWA findings tend to reside outside the tradi-

tional protein-coding regions [Dick et al., 2011; Schizophrenia

Working Group of the Psychiatric Genomics, 2014].

In the present study, we aimed to perform exploratory genome-

wide association tests to shed light on the genetic susceptibility loci

and biological processes possibly involved in the etiology of

childhood aggressiveness in ADHD.We utilized the GWAmethod

to analyze childhood aggressiveness in adults with ADHD gathered

in studies across Europe. To minimize phenotypic heterogeneity

between samples, we derived our measure of childhood aggres-

siveness in adult ADHD (aADHD) from the Wender Utah Rating

Scale (WURS). This questionnaire was used as part of the assess-

ment procedure at all sites. As the WURS reflects childhood

recollections, we also explored a possible genetic overlap of associ-

ation signals observed in aADHD with those of irritable and

defiant/vindictive dimensions of ODD in youth with ADHD

(cADHD) [Aebi et al., 2015]. Finally, we performed an examina-

tion of non-protein coding genes in order to obtain a better

understanding of the biological processes underlying childhood

aggressiveness in aADHD.

MATERIALS AND METHODS

Subjects
aADHD samples. Recruitment of adult ADHD patients

was conducted at three sites within an international multi-

center persistent ADHD collaboration (IMpACT, http://www.

impactadhdgenomics.com): Germany, Norway, and Spain. All

individuals were of Caucasian ancestry. Only participants who

gave written informed consent were enrolled in the studies, which

complied with the Declaration of Helsinki.

German sample. Patients with a diagnosis of aADHD were

recruited by experienced psychiatrists at the University of

W€urzburg (W€urzburg, Germany). Unrelated in- and outpatients

of self-reported central-European descent completed a semi-

structured clinical interview according to DSM-IV. Inclusion

criteria were onset before the age of 7 years, lifelong persistence,

current diagnosis and age of recruitment between 18 and 65 years.

Exclusion criteria were the appearance of symptoms restricted to

the duration of any otherAxis I disorder; current diagnosis of active

alcohol or other drug abuse or dependence; lifetime diagnosis of

bipolar I disorder, schizophrenia, or any other psychotic disorder;

and an IQ score below 80. For a more detailed sample description,

please confer previous publications [Reif et al., 2009; Franke et al.,

2010]. The study was approved by the Ethic Committee of the

University of W€urzburg (W€urzburg, Germany).

Norwegian sample. Participants were recruited at the Univer-

sity of Bergen (UiB, Bergen, Norway) as described elsewhere

[Halmoy et al., 2009]. In short, adult patients with ADHD were

recruited through a Norwegian national medical registry as well as

by psychologists and psychiatrists working at outpatient clinics. All

patients had been previously diagnosed with ADHD using either

DSM-IV or ICD-10. The ICD-10 criteria were adapted to theDSM-

IV criteria by allowing the inattentive subtype as sufficient for the

ADHD diagnosis. Individuals with other neuropsychiatric disor-

ders were not excluded as long as the ADHD criteria were fulfilled.

http://www.impactadhdgenomics.com
http://www.impactadhdgenomics.com
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Individuals with IQ below 70 were excluded from the study. All

participants provided either blood or saliva samples for DNA

extraction. The study was approved by the regional committee

for medical and health research ethics, western Norway.

Spanish sample. Participants were recruited at the Depart-

ment of Psychiatry from the Hospital Universitari Vall d’Hebron

(HUVH, Barcelona, Spain) as described elsewhere [Sanchez-Mora

et al., 2015]. Patients were adults of Caucasian origin and met

Diagnostic and Statistical Manual for Mental Disorders-IV (DSM-

IV) criteria for ADHD. The diagnosis of ADHDwas evaluated with

the Structured Clinical Interview for DSM-IV Axis I and II Dis-

orders (SCID-I and SCID-II) and the Conner’s Adult ADHD

Diagnostic Interview for DSM-IV (CAADID Parts I and II).

Consensus eligibility criteria for the current study were a diagnosis

of ADHD according to the diagnostic criteria of DSM-IV, onset

before the age of 7 years via retrospective diagnosis (which was

confirmed by a family member, wherever possible), lifelong per-

sistence and current diagnosis. DNA was extracted from either

peripheral blood or saliva samples. The study was approved by the

ethics committee of the institution.

cADHD sample. Youth with ADHD were participants in the

International Multicentre ADHD Genetics (IMAGE) study,

recruited in 12 children and adolescent psychiatry clinics repre-

senting eight countries across Europe. Approval was obtained by

the Institutional Review Board of SUNY Upstate Medical Univer-

sity and from ethical review boards within each country. A detailed

description of the study design and assessment procedures has been

provided in previous publications [Muller et al., 2011a,b]. In short,

entry criteria for probands were a clinical diagnosis of ADHD

according to DSM-IV-based structured interviews and access to

one or both biological parents and one or more full siblings for

DNAcollection and clinical assessment. Exclusion criteria included

autism, epilepsy, IQ< 70, brain disorders, and any genetic or

medical disorder associated with externalizing behaviors that

might mimic ADHD.
Measures of Aggressiveness
aADHD samples. The adult measure of childhood aggres-

siveness in the aADHD samples was derived from the Wender

Utah Rating Scale (WURS) [Ward et al., 1993]. The WURS is a

questionnaire used for retrospective assessment of childhood

symptoms of ADHD in adults. An exploratory factor analysis

(EFA) was run to determine the latent structure of the WURS.

The EFA consisted of a principal component analysis with Varimax

rotation and yielded three factors with Eigen values above one.

From themain factor explaining the greatest amount of variance in

responses to the WURS (30.7%), the top six items with the highest

loadings (0.74–0.82) all represented prototypical elements of

aggressiveness: “temper outburst/tantrums,” “angry,” “hot- or

short-tempered/low boiling point,” “disobedient with parents/

rebellious/sassy,” “losing control of myself,” and “irritable,” For

each item, the participant was asked to evaluate if she/he as a child

was (or had) a specific symptom and to rate it according to the

following four response categories: “not at all/very slightly” (0),

“mildly” (1), “moderately” (2), quite a bit” (3), or “verymuch” (4).

The arithmetic sum of the responses of the aforementioned items
was adopted as a continuous measure of aggressiveness, ranging

from 0 to 24. Supplementary Figure S1 shows the distribution of

this measure across genders in the three aADHD datasets.

cADHD sample. The dimensions of oppositionality were

assessed using the long form of the revised Conners Parent Rating

Scale (CPRS-R:L) [Conners et al., 1998]. The defiant/vindictive

and irritable dimensions of ODD were defined on theoretical

grounds as described elsewhere [Aebi et al., 2015], and reflect

two previously described dimensions of ODD [Stringaris et al.,

2012; Aebi et al., 2013].
Genotype Data
Genotyping of each sample was performed by each of the four

participating groups, individually. To maximize available genetic

information among examined datasets, genetic imputation was

carried out independently at each site.
aADHD Samples
German sample. Genotyping of participants was performed

on Illumina’s PsychChip array (Illumina, San Diego, CA) at the

Broad Institute (Cambridge,MA) using the PsychChip 15048346 B

manifest. Genotypes were assigned in Illumina’s GenomeStudio

v2010.3, using the calling algorithm/genotyping module version

1.8.4. Quality control procedures were performed as described

previously, with lightly modified exclusion criteria (SNPs exhibit-

ing missingness above 98%; minor allele frequency below 5%;

failingHardy–Weinberg equilibrium test [P< 10�4]) [Zayats et al.,

2015]. Genotype imputation was performed with SHAPEIT/

IMPUTE2 pipeline as described elsewhere, using 1000 Genomes

Phase 3 data as a reference [Marchini et al., 2007;Howie et al., 2009;

Cross-Disorder Group of the Psychiatric Genomics, 2013].

Norwegian sample. Participants were genotyped on Human

OmniExpress-12v1-1_B (Illumina, San Diego, CA) platform at the

deCODE Genetics facility (Reykjavik, Iceland). Genotyping and

quality control procedures are described elsewhere [Zayats et al.,

2015]. Imputation was performed utilizing IMPUTE software as

previously detailed [Marchini et al., 2007;Howie et al., 2009; Cross-

Disorder Group of the Psychiatric Genomics, 2013].

Spanish sample. Genome-wide genotyping was performed

with the Illumina HumanOmni1-Quad BeadChip platform. Qual-

ity control was implemented at the individual and SNP level using

PLINK and included filtering subjects with low call rate (<98%) or

gender discrepancy followed by filtering SNPs with minor allele

frequency (MAF)< 0.01, Hardy–Weinberg equilibrium test

P-values< 1e-06 or call rate< 0.99 in either cases or controls.

Imputation was performed using BEAGLE software [Browning

and Browning, 2007].

cADHD sample. Sample collection and DNA isolation has

been described previously [Brookes et al., 2006]. Genome-wide

genotyping and quality control was performed as part of the GAIN

study using the Perlegen 600K genotyping platform, as previously

described [Neale et al., 2008]. The imputationwas performed using

MACH and the Hapmap 2 (Release 22 Build 36) reference data set

[Li et al., 2010]. Quality control was performed on the imputed

data, and SNPs with imputation quality scores lower than 0.30, a
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minor allele frequency lower than 0.01, and those failing the

Hardy–Weinberg equilibrium test at a threshold of P� 10�5

were excluded. SNPs and subjects with missingness rates higher

than 0.05 were removed from the data.
Statistical Analyses
The age and gender distributions between the aADHDand cADHD

samples were assessed using x2 for gender and ANOVA for age.

Genome-wide association (GWA) of aggressiveness. In the

aADHD sample, single nucleotide polymorphisms (SNPs) were

tested for association with the WURS-derived measure of aggres-

siveness in the form of linear regression carried out in PLINK using

post-imputation dosage data [Purcell et al., 2007]. Regression

models were adjusted for age and sex. Genotype data of each site

were first processed individually. The results were then combined

with the use of fixed-effects inverse variance meta-analysis in

METAL [Willer et al., 2010]. Only SNPswithminor allele frequency

(MAF)equal toor above1%and imputation INFOmeasure equal to

or above 0.6 were included in the analyses. Genomic control, QQ

plotting, and regional plotting of top loci were applied to check the

integrity of test statistics [Devlin and Roeder, 1999; Cuellar-Partida

et al., 2015]. The genomic inflation factor was calculated using

METAL [Willer et al., 2010]. A genome-wide significance threshold

of 5.00E-08 was adopted to correct for multiple testing.

GWA analyses of irritable and defiant/vindictive dimensions of

ODD in cADHD sample was performed in PLINK software in the

form of linear regression adjusted for sex and age [Purcell

et al., 2007]. Details of the analyses are described elsewhere

[Aebi et al., 2015].

Gene-based and Gene-set association of aggressiveness in the

aADHD meta-analyzed sample. Gene-based and gene-set path-

way analysis were performed in the aADHD sample carried out in

MAGMA software [de Leeuw et al., 2015]. First, a degree of

association was calculated for each gene based on METAL-derived

individual SNPs’ P-values, using 1000 Genomes CEU dataset as a

reference panel to correct for linkage disequilibrium (LD)

[Genomes Project et al., 2012]. To evaluate each gene’s contribu-

tion to examined gene-sets (gene-set pathway analysis), the P-value

of each gene was converted to a Z-value and used as an outcome

variable in a regression model with gene-set membership as a

predictor. Gene size and gene-sets’ gene density were added as

covariates to adjust for possible confounding effects and prevent

spurious association.

For gene-based tests, we assessed the association with both

protein and non-protein-coding genes. The protein-coding gene

list was curated from the catalog of known genes downloaded from

the Genome Browser of the University of California Santa Cruz

(UCSC, CA). The non-protein-coding genes were examined in the

form of long non-coding RNA (lncRNA) genes detailed in the

aforementioned catalog. For gene-set pathway analysis, we exam-

ined structural categories of gene ontology (GO, http://

geneontology.org), with respect to cellular function, biological

process and cellular compartments. To achieve meaningful statis-

tics and interpretation of the results, we restricted our pathway

analysis to those GO terms that contained SNPs in at least 10 genes

per term in our aADHD data.
Genome-wide enrichment analyses between GWA results in

aADHD and cADHD samples. Prior to performing enrichment

analyses, the genetic data in both aADHD and cADHD samples

were pruned to remove correlated loci in linkage disequilibrium

(LD) with each other. A pairwise correlation coefficient (r2)

threshold of 0.2 and the 1000 Genomes CEU reference dataset

were used to identify independent SNPs, as previously described

[Lindgren et al., 2009; Genomes Project et al., 2012].

Enrichment was examined by means of Fisher’s test performed

in the R software, assessing the difference in proportion of

SNPs revealing association P-values below 0.05 in the cADHD

sample according to suggestive association in the aADHD sample

(P-value belowor equal to 1.00E-03 versusP-value above 1.00E-03)

[Rahmioglu et al., 2015]. Consistency in directionality of SNP

effects with indication of enrichment between aADHD and

cADHD samples was tested as linear regression on the effect

(beta) of each SNP for aADHD as an outcome and for cADHD

(either irritable or defiant/vindictive dimensions of ODD, respec-

tively) as predictor variables [Do et al., 2013].

Examination of previously reported aggressiveness-related

candidate GWA loci. We assembled a list of previously reported

candidate GWA loci associated with aggressive behavior by

systematic literature search the catalog of published genome-

wide association studies provided by National Human Genome

Research Institute (NHGRI) (https://www.genome.gov/26525384),

using key words of “aggression,” “anger,” “violence,” as well as

“conduct disorder” and “antisocial personality disorder.” Each

identified candidate GWA locus was then looked up in meta-

analyzed aADHD sample.
RESULTS

Subjects, Measure of Aggressiveness, and
GWA Analyses
In total, 1,060adultpatientsaswell as750childrenandadolescentswith

ADHD were available for the analyses. The age ranges in the aADHD

samples were 17–75 in the German sample, 18–57 in the Norwegian

sample, and 17–60 in the Spanish sample. In the cADHD sample, the

age range was 5–17. Details of the final samples are summarized in

Table I. Supplementary Figure S1 presents the distribution of the

selected measure of aggressiveness in each aADHD dataset.

After quality control of imputed SNPs in the adult samples,

9.301.568 SNPs were available for the analyses in the German

sample, 8.910.491 SNPs in the Norwegian sample, and 6.683.176

SNPs in the Spanish sample. Among these three datasets, 7.576.458

autosomal SNPs were present in at least two and, thus, were meta-

analyzed to assess genetic architecture of childhood aggressiveness

in aADHD. In cADHD sample, 1.871.025 autosomal SNPs were

available for the analyses.

IndividualGWAanalyses revealednogenome-wide significanthits

(P� 5.00E-08) in either aADHD sample (not shown) nor in the

cADHD sample (Supplementary Table SI and Fig. S2). None of the

variants in the meta-analysis reached the Bonferroni-corrected

genome-wide significance level (P� 5.00E-08) either. The strongest

signal was observed at rs10826548 on chromosome 10 located within

the transcript of a long noncoding RNA (lncRNA) (beta¼�1.66,

http://geneontology.org
http://geneontology.org
https://www.genome.gov/26525384


TABLE I. Details of the ADHD Patient Samples

aADHD samples

IMpACT site Number of participants Females (%) Age (mean� SD) Aggressiveness score (mean� SD)

Germany 368 53.0 35.18� 10.53 11.33� 5.17

Norway 293 52.6 32.61� 11.00 12.10� 6.39

Spain 399 32.3 31.31� 12.39 10.19� 6.15

Total 1,060 45.1 33.01� 11.51 11.11� 5.94

cADHD sample

ODD scores (mean� SD)

Number of participants Femalesa (%) Ageb (mean� SD) Irritable Defiant/vindictive

IMAGE 750 12.3 10.67� 2.77 7.75� 3.06 8.95� 4.18

SD, standard deviation.
Aggressiveness score was derived from WURS in the aADHD sample. In the cADHD sample, dimensions of oppositionality (irritable and defiant/vindictive dimensions) were examined [Aebi et al., 2015].
aDifference in the proportion of females between the aADHD and cADHD samples: P< 2.2E-16 (x2 test).
bDifference in age between the aADHD and cADHD samples: P< 2.2E-16 (ANOVA).

738 AMERICAN JOURNAL OF MEDICAL GENETICS PART B
standard error (SE)¼ 0.34, P-value¼ 1.07E-06) (Fig. 1), closely

followedby rs35974940 in the neurotrimin (NTM) gene (beta¼ 3.23,

SE¼ 0.67, P-value¼ 1.26E-06) (Fig. 2). Top associated markers

(P� 1.00E-05) are summarized in Supplementary Table SII. The

genomic inflation factor was close to one for all individual andmeta-

GWA analyses in aADHD.QQplots of GWA analyses in aADHD are

presented in Supplementary Figure S3.

Gene-Based and Gene-Set Association
of Aggressiveness in the aADHD
Meta-Analyzed Sample
Among annotated protein-coding genes, 17.595 hadmore than one

SNP present in the aADHDdata. The strongest signal was noted for

the WD repeat domain 62 (WDR62) gene (P-value¼ 4.84E-05).

Supplementary Table SIII summarizes the top protein-coding genes

(P� 1.00E-03) observed in aADHD sample. None of the protein-

coding gene-based tests survived the correction formultiple testing.

Among lncRNAgenes, 22.696 hadmore than one SNPpresent in

our aADHD data. The strongest association was observed for

ENST00000427806 (P-value¼ 3.04E-05). The top lncRNA genes

(P� 1.00E-03) detected in this study are reported in Supplemen-

tary Table SIV. None of the non-protein-coding gene-based tests

survived the correction for multiple testing.

Among GO pathways, 1.945 terms contained SNPs in at least 10

genes per term in the aADHDdata. Themost prominent association

wasobserved for negative regulationof I-kappaBkinase/NF-kappaB

signaling pathway (GO:0043124 term, P-value¼ 7.26E-04). Sup-

plementary Table SV reports topGO terms (P� 0.01) recognized in

this study. None of the GO pathways survived the correction for

multiple testing.

Genome-Wide Enrichment Analyses Between
GWA Results in aADHD and cADHD Samples
To assess potential genome-wide overlap of association signals

between measures of childhood aggressiveness in aADHD and
cADHD, we investigated the independent (r2< 0.2) GWA sig-

nals of suggestive significance (P� 1.00E-03) in aADHD for

enrichment in GWA signals of either defiant/vindictive or

irritable dimensions in cADHD. Given our modest sample

size, only those SNPs were considered in cADHD results that

revealed a P-value below or equal to 0.05 to avoid the examina-

tion of effects with a wide confidence interval. The top GWA

SNPs of WURS-derived childhood aggressiveness in aADHD

showed significant enrichment of signals from both the

defiant/vindictive dimension (Fisher’s P-value¼ 2.28E-06) and

the irritable dimension in cADHD GWA analysis (Fisher’s

P-value¼ 0.0061; Fig. 3A).

Next, we examined the directionality of effects of variants with

association signals in both aADHD and cADHD samples (P� 1.00

E-03 in aADHD and P< 0.05 in cADHD). Significant correlation

between betas was observed in assessment of both oppositional

dimensions in cADHD and childhood aggressiveness in aADHD

(P¼ 0.0053 and 0.0045 for defiant/vindictive and irritable dimen-

sions respectively), but the direction of the relationship was nega-

tive (Fig. 3B andC). Supplementary Table SVII summarizes the top

hits (P� 1-00E-05) observed in GWA meta-analysis of childhood

aggressiveness in aADHD and their corresponding statistics

observed in cADHD.
Examination of Previously Reported
Aggressiveness-Related Candidate Genes
and GWA Loci
Among previously reported aggressiveness-related GWA loci,

several SNPs noted to be associated with anger, conduct disorder

and adult anti-social personality disorder revealed P-values

below 0.05 in our study (Supplementary Table SVIII). The

strongest signal in the GWA analysis of childhood aggressiveness

in aADHD among the aforementioned loci was observed for

rs4889240 in the PKD1L2 (polycystic kidney disease 1-like 2)

gene (beta¼�0.73, SE¼ 0.25, P-value¼ 0.0039), previously



FIG. 1. Plot of the locus surrounding rs10826548. SNPs are plotted by position on chromosome 10 against GWA P-values for aggressive

behavior measure in aADHD. Estimated recombination rates from HapMap are plotted in bright red to reflect local LD structure. The SNPs

surrounding rs10826548 are color-coded to reflect their LD with it (according to pair-wise r2 values from the HapMap CEU database). SNPs

with LD r2� 0.2 are plotted at the bottom of the graph with LD color-coding specified in the top right corner. “Genes” refers to protein-coding

genes in the presented region. “lincRNAsAllCellTypeTopView” reflects the data from lncRNA USCS track in brain tissue. “tfbsConsSites” reflects

the TFBS UCSC track.
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reported to be associated with CD symptom count in ADHD

patients. The same SNP also revealed nominally significant

association in the same direction with the defiant/vindictive

dimension (beta¼�0.54, SE¼ 0.21, P-value¼ 0.0094), but not

with the irritable dimension in cADHD. In this result, one should

keep in mind that the cADHD described here is a subsample of

the sample in which the original finding for rs4889240 was

described [Aebi et al., 2015]. Full results of our literature search

are presented in Supplementary Table SVIII.
DISCUSSION

In this study, we performed a genome-wide exploration of child-

hood aggressiveness as reported retrospectively by adult patients

with ADHD (aADHD), examining both conventional protein-

coding and lncRNA genes. We also explored the overlap with

parent-reported oppositional behavior in youth with ADHD

(cADHD) and evaluated previously reported aggression-related

GWA loci. Given our modest sample size (1060 aADHD patients)



FIG. 2. Plot of the locus surrounding rs35974940. SNPs are plotted by position on chromosome 11 against GWA P-values for aggressive

behavior measure in aADHD. Estimated recombination rates from HapMap are plotted in bright red to reflect local LD structure. The SNPs

surrounding rs35974940 are color-coded to reflect their LD with it (according to pair-wise r2 values from the HapMap CEU database). SNPs

with LD r2� 0.2 are plotted at the bottom of the graph with LD color-coding specified in the top right corner. “Genes” refers to protein-coding

genes in the presented region. “lincRNAsAllCellTypeTopView” reflects the data from lncRNA USCS track in brain tissue. “tfbsConsSites” reflects

the TFBS UCSC track.
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and the anticipated small effect of common polymorphisms in

complex traits, it is not surprising that we did not observe any

genome-wide significant SNPs (P< 5.00E-08). Nonetheless, we

were able to identify several nominally significant variants

(P� 1.00E-05) in biologically interesting genes for follow-up

studies of aggressiveness in ADHD, a feature of the disorder

that has received little attention so far.

The strongest signal in the performed single-point GWA tests

of childhood aggressiveness in aADHD was noted for rs10826548
(beta¼�1.16, SE¼ 0.34, P¼ 1.07E-06, Supplementary

Table SI). This variant resides in the transcript of a lncRNA

with uncertain coding potential (TCONS_00018147) (Fig. 1).

Non-protein coding RNAs play a critical role in the regulation of

gene expression and have been previously associated with neu-

ropsychiatric disorders, including ADHD [Perkins et al., 2005;

Gonzalez-Giraldo et al., 2015; Zayats et al., 2015]. In addition, it

has recently been observed that SNPs previously associated

with neurological and psychiatric conditions may be highly



FIG. 3. Enrichment and direction of effect among GWA signals of oppositional dimensions in cADHD and WURS-derived childhood

aggressiveness in aADHD. Part A reflects the proportion of SNPs nominally associated (P< 0.05) with each examined oppositional dimension

in cADHD (defiant/vindictive and irritable) among suggestive signals (P� 1.00E-03) of association with childhood aggressiveness in aADHD.

Reported P-values are those of Fisher’s exact test. Parts B and C reflect directions of effect of 24 independent nominally significant loci in

GWA analyses of defiant/vindictive dimension in cADHD and childhood aggressiveness in aADHD (part B) as well as 17 independent nominally

significant loci in GWA analyses of irritable dimension in cADHD and childhood aggressiveness in aADHD (part C). Linear regression r2

measures and P-values are shown.
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concentrated in the regions of long non-protein coding RNA

genes [Ning et al., 2014].

The second most significant locus identified in this study is

located within the neurotrimin (NTM) gene (intronic rs35974940,

P¼ 1.26E-06, Supplementary Table SI and Fig. S2). NTM is a

protein-coding gene, encoding a member of glycosylphosphatidy-

linositol (GPI)-anchored cell adhesion molecules, containing

immunoglobulin (Ig) domain. These proteins are predominantly

expressed in the central nervous system (CNS) [Struyk et al., 1995].

Among the association signals observed in NTM gene, several

have the potential to alter its expression. As determined in

the TRANSFAC database implemented in the SNPinfo server

of the National Institute of Environmental Health Sciences

(http://snpinfo.niehs.nih.gov), rs34588147 and rs35665773 (GWA
P-values of 3.59E-06 and 3.25E-06, respectively, Supplementary

Table SI) are transcription factor binding sites (TFBS) (Fig. 2).

Moreover, two other SNPs in high linkage disequilibrium with the

aforementioned ones (rs12804059 and rs7119590, r2¼ 1 in CEU

population) also represent TFBS. Notably, differential expression

of NTM between two major brain regions linked to aggression

subtypes—prefrontal cortex and amygdala—was observed in

early prenatal stage of human brain development (P¼ 0.015,

http://www.brainspan.org).

Gene expression regulationduringneuronal development as one of

thepossiblemechanismsbehindaggressiveness in aADHDwas further

affirmed by our top associated lncRNA gene—ENST00000427806

(P¼ 3.04E-05, Supplementary Table SIV). The target gene of

this lncRNA has been predicted to be the protein-coding ST6

http://snpinfo.niehs.nih.gov
http://www.brainspan.org
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(alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalac-

tosaminide alpha-2,6-sialyltransferase 5 (ST6GALNAC5) gene

[Vucicevic et al., 2015]. The protein encoded by ST6GALNAC5 is a

member of sialyltransferases, with reported function in cell adhesion

through cell–cell and cell–extracellular matrix interactions [Tsuchida

et al., 2003]. Intriguingly, ST6GALNAC5, similarly to NTM, also

revealed differential expression in the aggression-related structures

of prefrontal cortex and amygdala in early prenatal stages of human

brain development (P¼ 0.013; http://www.brainspan.org).

As the adult measure of aggressiveness was derived from self-

reported experiences in childhood, we examined the possibility of

overlap of its GWA signals with those from GWA analyses of two

oppositional dimensions in a cADHD sample.We observed a slight

enrichment of association signals between the nominally associated

loci in aADHD and those observed in the GWA of both the defiant/

vindictive and the irritable ODD dimensions examined in cADHD

(Fig. 3). However, it is noteworthy that the aADHD and cADHD

samples were imputed using different reference panels with dispa-

rate genomic coverage.

Surprisingly, the correlationbetween thedirectionof effectsof the

aforementioned SNPs was negative (Fig. 3B and C). Such an inverse

relationship in effect directionality between parent-reported ODD

dimensions and adult retrospective report of childhood aggres-

siveness is most likely a chance finding due to our study being

under-powered. It might also be related to phenotypic and genetic

heterogeneity of the examined samples. There were considerable

differences in thepercentage of females between the aADHDand the

cADHD samples (Table I), which could indicate such mechanisms.

It has been shown that both age and sex are important factors in

genetic influences inADHDandaggression [Lyons et al., 1995;Miles

and Carey, 1997; Tuvblad and Baker, 2011; Faraone et al., 2015]. In

addition, the aggressiveness in the cADHD sample was determined

by parent-report, whereas in the aADHD sample, it was based on

retrospective self-report. The correlationbetweenparent-report and

self-report has been shown to be generally poor [Achenbach et al.,

1987], as also discussed in a recent study that found little overlap

between samples of cADHD and aADHD [Moffitt et al., 2015].

Hence, the measures of aggressiveness in the cADHD and the

aADHD samples are different. Furthermore, the youth and adult

ADHD samples may also be heterogeneous because childhood

ADHD does not always persist into adulthood [Faraone et al.,

2006; Moffitt et al., 2015]. Thus, to gain better understanding of

the genetic overlap between childhood aggression in aADHD and

oppositional dimensions in cADHD, this relationship should be

examined in larger sample using more rigorous statistical methods,

such as those developed to test specifically for genetic correlation

among various traits [Yang et al., 2011; Bulik-Sullivan et al.,

2015a,b]. This was not possible to implement in the current study

due to our modest sample size.

Examination of previously reported aggressiveness-related GWA

loci revealedmodest commonality in genetic architecture between the

childhood measures of aggressiveness in both cADHD and aADHD,

as well as in CD and anti-social personality disorder (Supplementary

Table SVIII). This observation may be in line with formerly reported

phenotypic overlap between these conditions, although to which

extent this overlap can be transmitted to various subtypes of aggres-

siveness remains to be determined [Storebo and Simonsen, 2013].
This study should be viewed in light of its limitations. One

explanation for not observing any genome-wide significant loci

(P< 5.00E-08) could be our relatively modest sample size and

examination of common variants only (MAF> 1%). This study

had 63% power to detect common variants with small effect size of

explaining 0.5% of variability under an additive model and

an alpha level of 0.05 (http://genome.sph.umich.edu/wiki/

Power_Calculations: Quantitative_Traits). This may also be

observed in the distribution of the QQ plots (Supplementary

Fig. S3).

Another explanation for the lack of significant findings may lay

in phenotypic variability. Clinical heterogeneity may weaken true

association signals due to the use of different assessment protocols

or real genetic heterogeneity among subtypes of ADHD[McClellan

and King, 2010]. There are several methodological caveats to

assessing aggressiveness [Moffitt et al., 2015]. As our samples

consist of outpatients, we investigate a broader and perhaps

“softer” aspect of aggressiveness than say, for example, if we

were to study prison inmates and/or juvenile offenders. However,

this approach provides us with access to the vast majority of

aggressive behaviors, which may not come to be written in official

records [Moffitt, 2005]. Furthermore, we lack assessment of dif-

ferent subtypes of aggressive behavior that may be related to

different genotypes.

Considering the different direction of effects and different

measures of aggression in the cADHD and the aADHD samples,

analyzing the adult samples and the youth sample together could

potentially have obscured the genetic association signal. This is why

we refrained from performing meta-analysis across all samples.

Nonetheless, the WURS includes a host of symptoms related to

various elements of aggressiveness, which, based on our factor

analysis as well as previous research [Ward et al., 1993] seem to be

of key importance to the phenotype of aADHD, and the ODD

measures have also been validated in previous studies of cADHD

[Stringaris et al., 2012; Aebi et al., 2013]. Our approach may add to

the discussion of the Negative Valence System in the Research

Domain Criteria (RDoC) of the National Institute of Mental

Health (NIMH) of how to conceptualize and operationalize

aggressiveness as a dimension across different samples and dis-

orders [Verona and Bresin, 2015; Veroude et al., 2015].

We lacked information on current substance abuse in our

aADHD sample. Substance abuse is known to be frequently

comorbidwithADHDandmay confound the relationship between

ADHD and current aggressiveness. However, we utilized a retro-

spective measure of childhood aggressiveness that is likely to reflect

behavior over a longer period of time and should, thus, be less

affected by volatile environmental influences [Gulberg-Kj€ar and
Johansson, 2009].

Finally, since the genome-wide genotyping arrays consist of

SNPs only, wewere not able to assess the contribution of previously

reported variable tandem repeats (e.g., those in MAOA) that were

noted to be associated with aggressive behaviors and/or ADHD.

Taken together with evidence from previous studies, our results

implicate mechanisms of cell adhesion as well as regulation of gene

expression in the etiology of childhood aggressiveness in ADHD.

As there is a substantial degree of overlap in aggressiveness among

neuropsychiatric disorders, it could be beneficial to analyze

http://www.brainspan.org
http://genome.sph.umich.edu/wiki/Power_Calculations: Quantitative_Traits
http://genome.sph.umich.edu/wiki/Power_Calculations: Quantitative_Traits


BREVIK ET AL. 743
conditions where aggression is present together in order to pin-

point biological processes in dysfunctional forms of aggressiveness.

Further studies including samples of both children, adolescents and

adults, adopting multimodal measures and longitudinal designs

are warranted. Such studies may help our understanding as to

which extent various subtypes of aggression are mediated by

different mechanisms.
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