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Abstract

Quantitative seismic interpretation has become an important
and critical technology for improved hydrocarbon exploration
and production. However, this is typically a resource-demanding
process that requires information from several well logs, building
a representative velocity model, and, of course, high-quality seismic
data. Therefore, it is very challenging to perform in an exploration
or appraisal phase with limited well control. Conventional seismic
interpretation and qualitative analysis of amplitude variations
with offset (AVO) are more common tools in these phases. Here,
we demonstrate a method for predicting quantitative reservoir
properties and facies using AVO data and a rock-physics model
calibrated with well-log data. This is achieved using a probabilistic
inversion method that combines stochastic inversion with Bayes’
theorem. The method honors the nonuniqueness of the problem
and calculates probabilities for the various solutions. To evaluate
the performance of the method and the quality of the results, we
compare them with similar reservoir property predictions obtained
using the same method on seismic-in-
version data. Even though both ap-
proaches use the same method, the input
data have some fundamental differences,
and some of the modeling assumptions
are not the same. Considering these dif-
ferences, the two approaches produce
comparable predictions. This opens up
the possibility to perform quantitative
interpretation in earlier phases than what
is common today, and it might provide
the analyst with better control of the
various assumptions that are introduced
in the work process.

Introduction

Seismic amplitude variations with
offset (AVO) for reflections between two
layers depend on the elastic properties and
densities of both layers, which in turn are
affected by hydrocarbon saturation and
lithology. These amplitude variations can

Increasing
fluid factor

the intercept R, crossplotted versus the gradient G. Typically, the
data will exhibit a background trend of decreasing G with increasing
R, and a fluid factor can be defined as the perpendicular distance
from this projection line to the data (Smith and Gidlow, 1987).
Figure 1 shows the fluid factor for a vertical seismic section
from the Norwegian Sea, slicing through and extending beyond
a gas-sandstone discovery well (black dashed line). The fluid factor
has been used to identify possible hydrocarbon prospects on the
section. For example, we identify the hydrocarbon reservoir forma-
tions as well as some brightening right below the base Cretaceous
unconformity (BCU) when moving off the structural high. Farther
north, however, the graben anomalies have proven to be false
(Avseth etal., 2016). Similarly, more detailed interpretation maps
can be produced by highlighting various facies using the intercept
versus gradient crossplot. Nevertheless, it is still a coarse interpreta-
tion method not suitable for quantitative interpretation.
Quantitative predictions of physical parameters from prestack
seismic data can be done through AVO inversion. For this,

be modeled using the Zoeppritz equations

Figure 1. Vertical section covering and extending beyond a known gas-sandstone reservoir in the Norwegian Sea,

(Mavko et al., 2009). AVO can be used as showing (a) negative fluid factor for top response plotted in yellow (while bottom response of reservoir is positive
adirect hydrocarbon indicator by studying  and plotted in blue) and (b) crossplot of R, versus G used in deriving the fluid factor.
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various approximations of the Zoepptriz equations are used,
each with specific assumptions and limitations. Typical predicted
parameters are acoustic impedance and ¥;/¥; ratio, acoustic and
elastic impedance, or the product of Lamé’s parameter, lambda
times density and shear modulus times density (Avseth et al.,
2005). Many different methods can be applied in AVO inversion,
including stochastic and probabilistic types of inversions, which
use Bayes’ theorem (Tarantola, 2005). Geostatistical methods
can then be applied when combining the predicted properties
with measurements from well logs for quantitative interpretation
of the reservoir quality.

The inverse rock-physics modeling (IRPM) approach of Jo-
hansen et al. (2013) is a generic method for predicting reservoir
parameters, such as porosity, lithology, and fluid saturation, from
various types of inputs and rock-physics models. It has been dem-
onstrated previously on well-log and seismic-inversion data. In this
paper, we extend IRPM to use AVO data as input for direct quan-
titative prediction of reservoir parameters. Here, we have assumed
an interface between a cap rock with known elastic properties and
a layer for which properties are modeled using the chosen rock-
physics model; the predicted reservoir parameters are for this second
layer. Hence, IRPM on AVO data makes predictions located at the
interface between the layers, while IRPM on seismic data makes
predictions at each specific subsurface location. To evaluate the per-
formance of this new type of AVO IRPM, we compare the results
with results that use IRPM on seismic-inversion data.

Inverse rock-physics modeling on AVO data

Johansen et al. (2013) showed how inverse rock-physics model-
ing (IRPM) can give physically consistent predictions of porosity,
lithology, and fluid saturation (PLF) from, e.g., acoustic impedance
and V,/V; ratio. This is a nonlinear and underdetermined problem
with nonunique solutions. In IRPM, the predictions are obtained
making an exhaustive search in so-called forward-modeled con-
straint cubes for PLF properties matching the input data. Bredesen
etal. (2015) demonstrated the use of IRPM on seismic-inversion
data, where uncertainties in input and model data were handled
using probability density functions and a Monte Carlo simulation
in the forward-modeling step of the constraint cubes. Probabilities
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of how well the data fit the model for the joint predictions of the
PLF parameters can then be calculated. Using the definitions by
Cooke and Cant (2010), this variation of IRPM can be described
as a stochastic and probabilistic type of inversion.

In this study, we extend IRPM to use AVO data as input.
‘While IRPM on seismic-inversion data reflects properties at
subsurface locations, IRPM on AVO data makes predictions at
the interfaces between two layers. The predictions depend on the
properties of the layer above and below the interface, referred to
as top and bottom layers, respectively. Therefore, we extend the
forward modeling of the constraint cubes to use fixed properties
for one of the layers, while the properties of the other layer are
modeled using a rock-physics model with a range of possible PLE.
For example, when considering the interface between the cap rock
and the reservoir, we assign fixed cap-rock properties to the top
layer and the reservoir rock-physics model to the bottom layer.
Forward-modeled intercept R, and gradient G constraint cubes
shown in Figure 2 are then calculated according to

zZ -7
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where R, Z,, and Z, are normal reflection coeflicient and acoustic
impedances for the top and bottom layers, respectively. The P-wave
and S-wave normal reflection coefficients (RP and R,) are calculated
using P- and S-wave impedances, respectively.

Figure 3 shows an example in which we have applied IRPM
to AVO data for a synthetic wedge model with a 25 Hz Ricker
wavelet. The layer properties are equivalent to those for the known
reservoir in the Norwegian Sea data set, which is used for dem-
onstration of the method later in this paper. Specifically, the
reservoir rock properties have been estimated using the representa-
tive rock-physics model given a porosity, lithology, and gas satura-
tion of 0.24, 0, and 1, respectively. We will use the synthetic
example to explain the various steps in the modeling.

First, we have extracted the AVO data from angle gathers,
simply using far- versus near-stack attributes (Avseth et al., 2008),
where uncalibrated R, is set equal to the near-stack data and
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Figure 2. Forward-modeled rock-physics constraint cubes for (a) intercept R, and (b) gradient G. The varying porosity, lithology, and saturation are the reservoir

properties of the layer below the interface, i.e., bottom layer.
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uncalibrated G is estimated from far-stack minus near-stack data,
where the far stack has been properly balanced relative to the near
stack (see Figure 3a). However, this results in relative AVO data,
i€, Ry pepuive 304 G- For IRPM we need absolute (or scaled)
values. A typical approach is to use modeled synthetic seismograms
in a well position. An alternative method is to perform variance
or covariance matching of modeled and observed background
trends (Avseth et al., 2003). In this study, we use a simple scalar
correction to estimate the absolute or scaled AVO attributes:

and G, = f5 e » @

Rp, wea = S3° Rp, relative

where fz, /6, R and G,  are scaling factors and scaled R
and G, respectively. More generally, when R, and G are derived
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Figure 3. Example of AVO IRPM on synthetic wedge model, showing (a) relative R, and G for wedge model with density = 2.5 g/em?, ¥, =

layer 1 and 3 (cap rock), and density = 2.1 g/cm?, V, = 3.1 km/s and V; =

from least-squares regressions and therefore are interdependent,
the correction may involve a mixing of the two reflectivities:
Giea = o1 Crapuive * fo2™ R, rerane FlOWever, such mixing corrections
are outside the scope of this paper, and we will only use single
scaling factor as a first-order correction, which is less data demand-
ing and appropriate in an exploration setting. Still, the calibration
of the scaling factors is critical, as it governs the possibility of
using rock-physics models to correlate reservoir properties to the
AVO attributes. For this, we utilize rock-physics templates (Avseth
etal., 2005) and “extend” these to the R, - G domain (see Figure
3b). In the synthetic case, the calibration process is trivial as we
have full control over all the parameters; we adjust the scaling
factors to achieve a good fit between the green data point (repre-
sentative of the response at the interface) and a modeled R, and
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2.9 km/s and V= 1.6 km/s for

2.0 km/s for layer 2 (reservoir rock); (b) rock-physics template in the AVO domain, posterior

mean; (c) porosity; (d) lithology; and (e) gas saturation; and (f) is the facies indicator of gas-saturated sandstone when combining the results from interchanging the

top- and bottom-layer properties in the AVO IRPM model.
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G (black cross) with the same porosity, lithology, and fluid
saturation.

‘When working with actual seismic data, this calibration step
is more challenging. But if one extracts a subset of data close to
the well location, a similar approach can be applied. The template
lines, e.g., the red line, which shows modeled gas-saturated
sandstones for the bottom layer with varying porosity, can be used
as a guideline in the calibration process. If possible, it is recom-
mended to use groups of data points that are representative for
transitions between different sets of facies combined with matching
templates, as this will help to constrain the scaling factors. Cali-
brating the scaling factors can be an iterative process, readjusting
the scaling factors after running IRPM on the scaled AVO data
in a region with good understanding of the geology. As the
synthetic case shows, we can have data that extend beyond the
saturated sandstone model line. This might be due to interference,
e.g., because of tuning effects, as is the case here. But it also might
be related to differences in the top- and bottom-layer properties
compared to the specifications in our model. Once the calibration
process is performed on the data subset, the scaling factors are
applied to the whole data set, assuming all the data have the same
survey and processing specifications.

Except for this scaling procedure and the extension to the
constraint cubes, the IRPM process is generic and independent
of having AVO or seismic-inversion data as input. In both cases,
we define a prior probability for brine saturation to be 99.5%; the
remaining probability density is given by a mean, standard devia-
tion, minimum, and maximum value of 0.7,0.19, 0, and 1, respec-
tively. Our reasoning behind this prior is, in general, that the
probability for brine is much higher than hydrocarbon saturation.
In addition, the variance in fluid saturation is typically larger when
making predictions of brine-saturated compared to hydrocarbon-
saturated rocks. Hence, with a relatively good match between the
data and the model for a brine-saturated rock, this prior will favor
a prediction of brine saturation. We use the principle of indifference
when specifying the prior for porosity and lithology to be equal
in the range from 0 to 0.4 and 0 to 1.0, respectively. But because
IRPM is a coupled type of inversion, the brine saturation prior
will also have implications for predicted lithology and porosity;
e.g. for a brine-saturated rock, they will be less influenced by results
correlating with higher hydrocarbon saturations and therefore will
yield a more physically consistent result.

'The Bayesian probability P(¢,c,s|M,,d) for a solution with a
combination of porosity, ¢, lithology, ¢, and fluid saturation, s,
given a particular model, M, and data, 4, is calculated using
Bayes formula:

P(q),c,s

M, d)eP(d[M,.9.c.5)P(#.c.5) ®

To evaluate the solutions, we calculate the posterior mean
porosity, lithology, and saturation. For the wedge model, they are
shown in Figure 3¢, d, and e. We see a clear response at the in-
terface between the cap rock and the reservoir. The effect of the
side lobes is quite visible, but the predictions (in the center) at the
actual interface match quite well with the reservoir model. We
also notice an increase in predicted porosity, volume fraction of
sand, and gas saturation where we have the tuning effect.
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Finally, we define a facies indicator, which is the product of
the posterior distribution and the largest posterior probability to
a solution within the facies specifications. In our modeling, we
have used facies specifications for a gas-sandstone facies (GSF)
to have porosities between 0.1 and 0.35, clay volume fractions
between 0 and 0.4, and gas saturations between 0.60 and 1.0.
Hence, high probabilities for gas sandstones need to satisfy two
main criteria: (1) within the model space, it is more likely to be a
GSF than not, and (2) there exists at least one solution within
GSF which gives a good match between the data and the model.
For the wedge model, the AVO IRPM GSF predictions are
consistent with the model (see Figure 3f), except where the tuning
effect sets in. There the lines become “hollow” creating a charac-
teristic “eye of the needle” shape because the signal interference
has resulted in a decrease in the posterior probability. By inverting
the layer order in the AVO IRPM modeling, the results along
the wedge will also be inverted. This can be used to estimate the
extent of the reservoir layer.

Application to a Norwegian Sea data set

To demonstrate the performance of AVO IRPM, an inter-
preted horizon might be the intuitive choice. But we believe that
AVO analysis should be integrated into the seismic interpretation
workflow, and AVO IRPM might help toward achieving that.
Therefore, we choose to demonstrate IRPM on a vertical section
from a Norwegian Sea data set covering and extending beyond a
discovered mid-Jurassic gas-sandstone reservoir in the Garn and
Ile formations at approximately 2.5 km total depth (Figure 4).

In the well, the thickness of Garn and Ile are approximately
30 m and 60 m, respectively, with a 10 m thick silty-shale, the
Not Formation, between them. We will use the modified dif-
ferential effective medium model (Mavko et al., 2009), which
Bredesen et al. (2015) calibrated using the well-log data. In the
case of the AVO IRPM, this model is applied to the bottom layer.
Data from the discovery well have also been used to calibrate the
cap-rock properties. There were some issues with the cap-rock
measurements above Garn, but the properties seem fairly similar
to those of the Not Formation. Hence, we have mainly used data
from the Not Formation to specify the cap-rock properties applied
to the top layer, having a mean density, P-, and S-wave velocities
of 2.5 g/em?, 3.0 km/s, and 1.6 km/s, respectively.

We calibrate the AVO scaling factors to be 0.00032, using
the AVO rock-physics template on a subset of the vertical section
from around the known reservoir (see Figure 5a). The data plotting
beyond the gas-sandstone model line are mainly from the interface
between the cap rock and Garn. Hence, we have performed our
calibration to make this model line fit the data at the interface
between Not and Ile. Figure 5b shows the calibrated AVO scaling
factor applied to the whole vertical section. Now there are a lot
more data that extend beyond the gas-sandstone model line,
associated with a higher fluid factor.

Figure 6 shows posterior mean PLF for IRPM on both the
AVO and seismic-inversion data. Both approaches predict high
porous, gas-saturated sandstones for the known reservoir. They also
both predict porous, hydrocarbon-saturated sandstones down into
the graben formation, as well as several additional layers beneath
it and the known reservoir, some with predicted gas saturation.
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In Figure 7, we have plotted the probability for gas-sandstone
facies. Both approaches show high probability in the known reservoir
formations. But the probability associated with the Garn Formation
is lower when using the seismic-inversion data compared to the
AVO data as input. We also notice that in both cases the downflank
anomalies, which in Figure 6 showed predictions of porous, high
gas-saturated sandstones, are now much more fragmented. In case
of the AVO IRPM, this is depicted in the shape of “hollow” lines,
similar to the results in the synthetic wedge example.

Discussion

AVO IRPM does not use a wavelet or initial velocity model,
something other quantitative seismic interpretation methods might
require. However, some of the other main assumptions and chal-
lenges are addressed below. We have demonstrated IRPM using
AVO and seismic-inversion data as input. We cannot directly

[c] Relative R, Rel 7,

e

compare the results of the two approaches because they will never
be identical. For example, the IRPM results will reflect the fact
that seismic-inversion data depict properties at a given subsurface
location, while AVO data reflect changes in layer properties located
at the interface between the layers. Hence, the thickness of each
layer is not as easily determined in the case of AVO IRPM compared
to the other approach. Furthermore, if the actual top-layer proper-
ties deviate from our modeling specifications in the AVO IRPM,
the predictions for the two approaches might deviate as well.
Keeping in mind these fundamental differences between the two
approaches gives a basis for comparing the results between them.

A low-frequency depth trend has been used in the seismic
inversion but not in the AVO IRPM. In addition to the lack of
interfaces in the overburden, as can be seen from the input data
(Figure 4), this might be a reason for differences in IRPM predic-
tions in the overburden. Below BCU, the results of main features
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Figure 4. Vertical section covering and extending beyond a known gas-sandstone reservoir in the Norwegian Sea, showing (a) P-wave acoustic impedance, (b) V,/V ratio,

(c) relative intercept R,, and (d) relative gradient G.
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Figure 5. Intercept and gradient data from (a) a subsection of the known reservoir and (b) the whole vertical section, plotted in a rock-physics template.
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are in agreement for the most part. For example, the porous
sandstone layers beneath dense shale layers and predicted hydro-
carbons are comparable; deviation is larger in layers with lower
probability of hydrocarbons. Other layer combinations, e.g.,
gas-water contacts or sandstone above shale, can be tested easily
to improve the interpretation even further. Combining such results
can be used to estimate layer thicknesses.

The strongest hydrocarbon response beyond the known res-
ervoir was found downflank into the graben formation, but it
became fragmented when studying the facies indicator of a gas
sandstone. However, testing other properties for the top layer
might give a different result. For example, it is believed that the
cap rock in the bottom of the graben is either a hard carbonaceous
layer or soft organic-rich shale interval. Nevertheless, these anoma-
lies still might be false positives; for example, Avseth et al. (2016)
show that the presence of a hard carbonaceous layer in the graben
creates refraction energy that interferes with primary reflections
on high incidence angles at the target. It is always important to
honor local geologic variability during the AVO analysis. More-
over, the data are uncertain and the inversion is also uncertain,
nonunique, and will depend on numerous assumptions.

‘We have used the simple two-term AVO relation in our model-
ing and approximated R, and G from near- and far- minus near-
angle stacks. More advanced and sophisticated methods, such as
AVO regression or reflectivity inversion, might give more accurate
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results. However, they typically require higher data quality. For
example, the overall attenuation Q-factor compensation in the
Norwegian Sea data set is not good enough to do an intercept-
gradient inversion. Applying regression on common-depth points
(CDPs) can also be more susceptible to noise. Such methods are
also more time consuming and resource demanding, and smaller
companies might have access only to angle stacks and not the full
angle gathers. However, if full angle gathers are available, these
should be inspected for quality control of the identified anomalies
to verify that they are not due to various artifacts.

Tuning effects and interference due to thin layers is challenging
when working with AVO, but the Norwegian Sea data set is
broadband data with better resolution and less side lobes compared
to conventional seismic data. In the synthetic example, we saw
the effect on the AVO response and IRPM predictions where we
had a tuning effect at the pinch out of the wedge model, reducing
the probability of a gas sandstone. A similar pattern is observed
in the graben formation for the Norwegian Sea data set, where
interference and other wave propagation effects related to curvature
and large velocity contrasts have distorted the far-angle amplitudes
(Avseth et al., 2016).

'The calibration of the scaling factors for R and G is critical.
Contrary to the case for the Norwegian Sea data set, in general they
will not be the same. But a rescaling of G had been done for this
data set prior to our modeling. Without this rescaling, the calibration

03

@ Posterior mean porosity

025
02
0.15
0.1

005

08
06
04
02

0 quartz

1 gas
08
06
04

02

Figure 6. (a) Predicted posterior mean porosity, (b) lithology, and (c) gas saturation when using seismic-inversion data as input and (d), (e), and (f) when using AVO data

as input.
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Figure 7. Facies indicator of a gas-sandstone reservoir (a) when using seismic-inversion data as input and (b) when using AVO data as input.

strategy would still be the same: calibrate using rock physics and
AVO modeling trend lines on a subset of the data we have good
knowledge of, e.g., the interface between the cap rock and the
gas-sandstone reservoir at the well location. Finally, we assume the
same scaling factors can be applied to the whole section.

The applied rock-physics model has been calibrated against the
hydrocarbon reservoir zones based on data from the well log. Hence,
the model is best suited for characterizing this type of reservoir
sandstone; one needs to be cautious when making predictions away
from the known well location. However, because this is a physically
and not statistically driven method, we can test various rock types
more easily, e.g., accounting for increased cementation and con-
solidation with increased depth. The physically consistent solutions
can then be combined and interpreted to extract more information
from existing seismic data in a reservoir prediction process.

Conclusions

‘We have demonstrated a method using AVO data for reservoir
characterizations and compared the results with those we get
when using seismic-inversion data. Considering the inherent
differences between the two approaches, they yield results in
which the main features of facies, porosity, lithology, and fluid
saturation predictions are in agreement, despite having used very
simple methods for approximating the AVO attributes. In par-
ticular, both cases provide good response and quite consistent
predictions of the reservoir properties for a gas-sandstone discovery
in the Norwegian Sea, which are also in agreement with the
well-log measurements. This is a very encouraging result, as AVO
data are far more common than seismic-inversion data. Hence,
the presented method provides a less resource-demanding alterna-
tive for quantitative seismic interpretation. We have shown that
this can provide valuable input when doing seismic interpretation,
in addition to being useful for reservoir prediction, e.g., to derisk
appraisal or exploration wells. K
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Sea sandstones
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Abstract

Understanding how physical properties and seismic signatures of present day rocks are related
to ancient geological processes is important for enhanced reservoir characterization. In this
paper, we have studied this relationship for the Kobbe Formation sandstones in the Barents
Sea. These rocks show anomalous low shear velocities and high V,,/V,-ratios, which does not
agree well with conventional rock physics models for moderately to well consolidated sandstones.
They have been buried relatively deeply and subsequently uplifted 1-2km. We compared well log
data of the Kobbe sandstone with velocity-depth trends modeled by integrating basin modelling
principles and rock physics. We found that more accurate velocity predictions were obtained
when first honoring mechanical and chemical compaction during burial, followed by generation
of microcracks during uplift. We suspect that these microcracks are formed as overburden is
eroded away, leading to changes in the subsurface stress-field. Moreover, the Kobbe Formation is
typically heterogeneous and characterized by structural clays and mica that can reduce rigidity
of grain contacts. By accounting for depositional and burial history, our velocity predictions
become more consistent with geophysical observables. Our approach yields more robust velocity

predictions which is important in prospect risking and uplift estimates.

Introduction

Present day rock physics properties and related seismic signatures are primarily governed by the
rock composition, as well as porosity and microstructure which evolve through burial history.
The seismic response of siliciclastic reservoirs changes with burial as porosity reduces with in-

creasing compaction leading to rock stiffening and increasing seismic velocities. However, in areas
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with large tectonic activity in the past resulting in significant deformation and uplift episodes,
anomalous velocity trends are often observed but not fully understood in terms of geological
processes. Our main objective is to demonstrate how rock physics can be combined with basin
modelling to better understand how complex geological history may influence seismic properties

to infer better prospect evaluations of uplifted reservoirs.

In a sedimentary basin, rock properties change continuously from time of deposition through
burial via mechanical and chemical processes and subsequent exhumation. Bjgrlykke (2010)
presents a three-phase conceptual burial history curve for exhumed siliciclastic sandstones as
shown in Figure 1. First, after deposition, mechanical compaction leads to crushing and packing
of grains, where smaller grain fragments fill in and reduce the pore volume. When temperatures
reach around 70 °C, chemical compaction becomes dominating where precipitating quartz ce-
ment further lower porosities and consolidates the granular sands. Finally, tectonic events and
glacio-isostatic compensation trigger episodes of uplift where rocks are cooled down and overbur-
den is eroded away, which in turn leads to a net expansion and stress release of the consolidated
rocks (Bjerlykke 2010; Ogata et al. 2014; Senger 2013).
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Figure 1: A burial history curve divided into various comcaption phases and uplift. Adapted
from Bjgrlykke (2010).

The rock physics behavior associated with mechanical and chemical compaction is theoreti-
cally well understood (e.g. Avseth et al. (2005)). However, for uplifted consolidated reservoirs,
the stress relaxation makes the rocks behave more brittle such that microcracks and fractures
can form or reactivate (Makurat et al. 1992; Holt 1994; Mandl 2000; Doré et al. 2002; Slatt
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2006; Fossen et al. 2007; Lotveit 2009; Bjerlykke 2010; Ogata et al. 2014; Senger 2013). This is
important because pores with low aspect ratios have a major impact on rock physics properties
by decreasing the compressional and shear stiffness of rocks (Kuster and Toksoéz 1974; Berryman
1990a, 1990b; Hudson 1981; Guéguen and Palciauskas 1994; Jakobsen et al. 2003; Markov et al.
2005). Hence, linking basin history with rock physics is key to get an insight of how reservoir
properties and seismic velocities evolves through time (Helset et al. 2004; Avseth et al. 2005;
Bjorlykke 2010; Dreege et al. 2014).

For unconsolidated high-porosity sandstones at shallow depths, a group of rock physics models
referred to as granular medium models are often used. For instance, the Hertz-Mindlin contact
theory (Mindlin 1949) combined with a modified lower Hashin-Shtrikman (HS) bound (Walpole
1966a, 1966b) can be used to model porosity-sorting effects as grain fragments infill pore space.
When porosity is further reduced by deposited cement at greater depths, Dvorkin and Nur (1996)
contact cement theory (CCT) combined with an upper HS bound is often used to model porosity-
cementation effects (Avseth et al. 2005, 2010). For deeper and more consolidated sandstones we
apply so-called inclusion models which focus more on the pore geometry rather than grain prop-
erties, e.g. the differential effective medium (DEM) model (Berryman 1992). As such, various
rock physics models can be systematically applied to describe burial effects where velocities grad-
ually are expected to increase with depth. Mavko et al. (2009) provides a throughout overview

of various rock physics models that can be applied to different rock types.

As demonstrated later in this paper, such conventional rock physics workflows have shown er-
roneous results when applied to exhumed sandstone reservoirs. The Kobbe sandstone Formation
in the Barents Sea is one example that has regionally experienced deep burial and porosity loss
due to compaction and subsequent 1-2km uplift (Nyland et al. 1992; Riis and Fjeldskaar 1992;
Japsen and Chalmers 2000; Doré et al. 2002; Ohm et al. 2008; Henriksen et al. 2011; Porten 2012;
Line 2015). However, velocity predictions using the aforementioned CCT model (in combination
with Hashin-Shtrikman bounds) yields moderate to dramatic overpredictions for the compres-
sional and shear wave velocities, respectively. Shear velocity predictions based on contact theory
are known to be erroneously high as grain contacts are assumed to be uniform, allowing stresses
to propagate in a homogeneous manner. Several authors have demonstrated this shortcoming
of the contact theory (Dvorkin and Nur 1996; Makse et al. 1999; Jenkins et al. 2005; Bachrach
and Avseth 2008; Duffaut and Landrg 2010; Sain 2010), and Bachrach and Avseth (2008) sug-
gested to use a reduced shear factor to compensate for the fact that granular media are often
characterized by non-uniform grain contacts and heterogeneous stress distributions leading to
weakening effective tangential shear stiffness. This reduced shear can be obtained by assuming
some of the grain contacts to have zero friction in the conventional contact theory. However, this
is an empirical adjustment for a physical effect not accounted for by the contact theory, as no

grains are really slipping during seismic wave propagation. Even after we do this adjustment, we
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are not able to explain the low shear moduli observed for the well consolidated Kobbe Formation

sandstones.

Furthermore, in another test we applied the more recently developed model of Avseth et al.
(2014), where CCT and DEM are combined for low-to-intermediate porosity sandstones. The re-
sults showed fairly good predictions when including cracklike pore geometries in the rock physics
modelling. We therefore suspect that the anomalous low velocities seen in the Kobbe Formation
sandstones are related to microcracks and fractures generated during uplift and overburden un-

loading.

In this paper we extend upon these results using basin modelling to constrain rock physics
modelling of the Kobbe Formation sandstones. Based on local knowledge of burial history,
we model rock texture in terms of quartz cement volume and porosity evolution as introduced
by Walderhaug (1994a, 1996)and Lander and Walderhaug (1999). These parameters are then
directly used in the appropriate rock physics formulas for prediction of velocities based on basin
modelling of the burial history. In this study, well log data from the 7226 /2-1 Ververis and 7224 /6-
1 Arenaria discoveries on the Bjarmeland platform are considered together with the 7122/7-3 Go-
liat discovery in the Hammerfest basin, see map and seismic composite line in Figure 2. Whereas
Arenaria and Ververis are distanced by approximately 60 km, Goliat is located 180-240 km fur-

ther south-west.

The workflow presented in this paper and demonstrated on Barents Sea well log data, can
also be useful for other areas with deep burial followed by considerable uplift. The methodology
can be used to improve our ability to predict reservoir quality from seismic signatures in areas
with complex burial history. A similar approach can also be done to improve the understanding
of cap-rock shales and source rocks that have undergone large tectonic uplifts. However, in this

study we focus mainly on reservoir sandstones.

Sedimentology and burial history of Kobbe Formation sand-

stones in the Barents Sea

During the Triassic, the Barents Sea was characterized by a broad and shallow epicontinental
basin (Glgrstad-Clark et al. 2011), and Triassic deposits were predominantly siliciclastics derived
from the rising Uralian Mountains to the southeast and the Fennoscandian Shield to the south.
During the Early to Middle Triassic, the southwestern Barents Sea was gradually filled by a
northwesterly propagating wedge system, episodically interrupted by recurring transgressions.
During this time, in the Anisian age, the prolific Kobbe Formation sandstones were deposited.

These are shallow marine to continental sandstones with varying reservoir quality and thickness.
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Figure 2: Regional map of the study area showing the gas (red) and oil (green) discoveries of Ververis,
Arenaria and Goliat. A 2D seismic composite line tied to the three discovery wells shows a rough
interpretation of some geological boundaries exhibiting clear reflection events.

The Kobbe Formation Sandstones are typically moderately quartz-rich, with fair amounts of pla-
gioclase and lithic rock fragments, hence they are typically classified as sublitharenites or lithic
arenites as shown in Figure 3 (Porten 2012). Moreover, they are very fine- to medium-grained,
well sorted sandstones with varying clay content (Porten 2012). Presence of clay coatings has
often inhibited quartz overgrowths, preserving its primary porosity (Line 2015). However, the
presence of detrital clay and mica-dominated rock fragments has made the sandstones more prone
to mechanical packing, resulting in quite low intergranular porosity before quartz cementation
started. Petrophysical analysis performed in the various wells reveals the heterogeneity and vary-
ing reservoir quality of the Kobbe Formation. In Goliat, thicker sequences of high-porous clean
quartz sands are present, whereas in Ververis and Arenaria, more detrital clay and other rock

fragments yield more shaly intervals.

After deposition, the Kobbe Formation has been exposed to repeated episodes of tectonic
uplift. Wide spread rifting associated with the Central Atlantic sea-floor spreading character-

ized the late Middle Jurassic to Early Cretaceous period, and during that period the Loppa
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Figure 3: Triangular plot of quartz, feldspar and rock fragment composition from petrophysical inter-
pretations of the Kobbe Formation sandstones. Adapted from Pettijohn et al. (1972).

and Stappen Highs were uplifted and Triassic sediments were locally exposed to erosion, with
deposition into the surrounding deep basins in the western Barents Sea. Also the Cenozoic
was dominated by regional uplift and erosion in the Barents Sea region, with uplift increasing
north-northwestwards (Henriksen et al. 2011; Faleide et al. 1993). The region was tectonically
quiet during the Oligicene-Miocene, while a new basin-wide uplift episode took place in Plio-
Pleistocene (5-0 Mya) associated with glacio-isostatic compensation (Anell et al. 2009). The
maximum burial of the Kobbe sandstones likely occurred sometime during the Cenozoic or Neo-
gene, and was typically 1 to 2 km deeper than present day (Doré et al. 2002; Ohm et al. 2008;
Lgtveit 2009; Henriksen et al. 2011).

To build the burial history curves for the Kobbe Formation for the three wells investi-
gated, PetroMod 1D™ simulations were performed based on depths published by the Norwegian
Petroleum Directorate (NPD). Boundary conditions of paleo heatflow and paleo sea depth are
based on current regional understanding, whereas sediment-water contact temperature was im-
plemented into the model according to Wygrala (1989). The resulting models are consistent
with present day depths and temperatures, and the paleoheatflows are also calibrated to vitrinite

trends from well data.

The resulting burial history curves for top and base Kobbe Formation in Ververis, Arenaria
and Goliat are shown in Figure 4a, b and ¢, respectively. For convenience, we define 70 °C at
a constant depth which is not entirely consistent with the dynamic heat flow used in the burial

history modelling. A linear relationship between temperature and burial depth is assumed with a



