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PDE Based Algorithms for Smooth Watersheds
Erlend Hodneland*, Xue-Cheng Tai, and Henrik Kalisch

Abstract—Watershed segmentation is useful for a number of
image segmentation problems with a wide range of practical
applications. Traditionally, the tracking of the immersion front is
done by applying a fast sorting algorithm. In this work, we explore
a continuous approach based on a geometric description of the
immersion front which gives rise to a partial differential equation.
The main advantage of using a partial differential equation to
track the immersion front is that the method becomes versa-
tile and may easily be stabilized by introducing regularization
terms. Coupling the geometric approach with a proper “merging
strategy” creates a robust algorithm which minimizes over- and
under-segmentation even without predefined markers. Since
reliable markers defined prior to segmentation can be difficult to
construct automatically for various reasons, being able to treat
marker-free situations is a major advantage of the proposed
method over earlier watershed formulations. The motivation for
themethods developed in this paper is taken from high-throughput
screening of cells. A fully automated segmentation of single cells
enables the extraction of cell properties from large data sets, which
can provide substantial insight into a biological model system.
Applying smoothing to the boundaries can improve the accuracy
in many image analysis tasks requiring a precise delineation of the
plasma membrane of the cell. The proposed segmentation method
is applied to real images containing fluorescently labeled cells, and
the experimental results show that our implementation is robust
and reliable for a variety of challenging segmentation tasks.
Index Terms—Biomedical image processing, partial differential

equations, level set, object segmentation, object recognition, cells
(biology).

I. INTRODUCTION

W ATERSHED segmentation is a widely used andwell de-
scribed tool for image segmentation [1]–[7]. The name

of the method refers to a landscape flooded by water, where the
watersheds are the dividing contours between the basins. These
are the positions where water from different basins meets upon
filling of depressions corresponding to local minima. The appli-
cation of watershed by immersion [1], [7], [8] involves a recur-
sive increase of gray levels similar to a water flooding a land-
scape. One may reformulate watershed by immersion in terms
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of a time-dependent transport equation [9]–[11], and this will be
the basis for the new method proposed in this paper.
Watershed is well suited for the segmentation of objects out-

lined by high intensity ridges. On the other hand, many real-
world objects are distinguishable from background as bright or
dark objects surrounded by pronounced edges. For these cases,
the watershed method can often be applied after the applica-
tion of edge-enhancing pre-processing methods and the gra-
dient operator, thus transforming the intensity based image into
a ridge-based image. Still, for such images the first method of
choice is often intensity based segmentation methods like clus-
tering or level set segmentation. Thus, in this work, we focus on
segmentation of objects that are naturally surrounded by ridges,
where intensity based segmentation methods have insufficient
performance.
The watershed method will normally result in severe over-

segmentation due to a large number of local minima in a typical
data set. Several methods exist to overcome this problem, for
example marker-based algorithms such as [2], [12]–[14] and
hierarchical watershed algorithms [6], [15]–[17].
The marker-based watershed segmentation initializes the

flooding from markers placed inside natural minima of a certain
depth or extent, and then makes the remaining image convex
within each catchment basin. Practically speaking, all remaining
natural minima are filled with a constant, the maximum value
of the local minimum. By this method, the over-segmentation
is implicitly restricted by the number of markers. With the aim
to perform a fully automated segmentation, the markers should
be generated automatically [2], [4], thus reducing the degree
of human intervention for huge data sets. However, automatic
generation of a one-to-one marker set is a non-trivial task in the
presence of large image inhomogeneities and artefacts, thereby
restricting the practical performance of marker-controlled
watershed segmentation. Specifically relevant for the task of
cell segmentation, one solution to the marker problem is to use
data-driven marker generation, i.e. a segmentation of stained
cell nuclei as markers [18]. However, stained nuclei are not
always available due to a limited number of available channels
for fluorescence imaging, as well as the Hoechst staining inter-
fering with the DNA replication, which in some situations can
alter the experimental conditions.
Among the hierarchical watershed algorithms, the viscous

watershed transform [16] applies viscous closing prior to seg-
mentation, thus obtaining a merging of local minima at low
water heights. The hierarchical, graph-based watershed trans-
forms described in [15], [17], also referred to as waterfalls, rely
on intensity similarity of adjacent watershed regions as well as
the definition of significant markers. Our merging protocol is
related to these ideas as we also define significant objects, but
rather use volume as a merging criterion for adjacent regions.
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Our method can easily be extended to include intensity values
as well, depending on the data and whether homogeneous inten-
sity values are to be expected for a continuous object. As pointed
out in [17], a potentially useful trade off between volume and in-
tensities are integrated regional intensities, accounting both for
volume and intensity. In Jalba et al. [19], the authors applied the
waterfall ideas in combination with the minimum spanning tree
(MST) to generate robust and parameter insensitive segmenta-
tions within diffusion tensor imaging (DTI) data sets.
Common for most algorithms dealing with over-segmenta-

tion is that they are not simulatenously able to deal with the
problem of oscillatory contours. The traditional watershed al-
gorithm has no natural regularizing effect [7]. To avoid highly
oscillating boundaries and to improve the overall segmentation
quality a pre-smoothing of the input data is usually required
for better results. Alternatively, with the aim of developing an
integrated system for automated segmentation, we embed an
anisotropic smoother into the segmentation algorithm in order to
produce a combined model for simultaneous segmentation and
regularization. By these means, the complexity of the algorithm
can be reduced to a single processing step. Previous work on
regularized watersheds has successfully been conducted [4], [6],
[16]. However, the usefulness of [6] was only shown for 2D and
their method will not, in contrary to our proposed method, affect
the number of regions obtained. The viscous watershed trans-
form [16] is conceptually special in the sense of simultaneously
attacking the problem of over-segmentation as well as regular-
ization. It applies a viscous closing with a circular structural ele-
ment to the initial image. However, the viscous closing does not
entirely solve the problem of over-segmentation, and some of
the detected objects can take shapes from the structural elements
being used. The approach in [4] was based on the four-colour
theorem which is not easily extended into higher dimensions for
arbitrary graphs. In this work we develop a versatile algorithm
formally valid in an arbitrary number of dimensions.
Our proposed method to reduce over-segmentation is not de-

pendent on pre-defined markers, but is rather based on regular-
ization and merging of objects within the watershed algorithm.
Formulating the watershed algorithm in terms of a transport
equation, as described in [9], [10], allows a direct regulariza-
tion of the algorithm by the introduction of a correction term
in the equation. We use an anisotropic diffusion operator with
parameter settings chosen such that the normal speed of the wa-
tershed front is not affected, and smoothing takes place in the di-
rection perpendicular to predominant structures. The introduc-
tion of this anisotropic regularization term produces more reg-
ular watershed contours, which are better aligned with smooth
biological structures. The resulting new algorithm has the fol-
lowing main features: it requires no pre-defined markers, it is
automatically regularizing, and efficient in terms of accuracy.
As the model system we have chosen fluorescence mi-

croscopy, which is a particularly useful tool for high-throughput
screening of cells. We demonstrate the robustness and ver-
satility of our algorithm by applying it for segmentation of
various cell types with different stainings. A whole cell seg-
mentation where every cell is outlined represents a basis for
further analysis of single cell properties in huge data sets.
By using automated approaches for image acquisition and

Fig. 1. The idea behind awatershed segmentation is filling of water into a basin,
here represented by a function . There is a two-fold motion pattern. First,
there is a vertical motion of the water surface (horizontal dashed line) as the
basin is filled with water. Second, the moving water front (vertical dashed line),
defined as the points of intersection between the water surface and the basin
function will move horizontally with a speed denoted by , depending on
the shape of as well as the raising speed of the water surface.

post-processing, statistically valid information can easily be
acquired for single cells.
Our main contributions in this work are the following: (i)

Mathematical description and implementation of continuous
watersheds in 3D, allowing for positive and negative speed
functions. (ii) Integration of a regularization term. (iii) An
algorithm allowing for, but not depending on pre-defined
markers to deal with the problem of over-segmentation. (iv)
A comprehensive evaluation of the segmentation performance
as compared to manually defined ground truth images. (v)
Demonstration of usefulness for the task of automated cell
segmentation.

II. METHODOLOGY

A. Watershed by Immersion
Watershed by immersion is motivated by the natural phe-

nomenon of water filling into a number of adjacent basins. In
Fig. 1, we illustrate the geometry of a basin corresponding to
an image function in one dimension. Related to the stage of
the “flooding” process at a time for a given -dimensional
image function defined on , we shall denote the
Eulerian coordinates and the Lagrangian coordinates

. The Lagrangian coordinates are fixed in space for
a given particle, representing the initial position of that particle
at . Using this formulation, a particle with initial position

will be dislocated to position at time
point in the "flooding" process driven by the water front.
Within watershed by immersion, an imagined water filling of

the basin takes place, where the water is “raining” into the
basin. The filling of the basin with water will generate a motion
pattern with two major components, as shown in Fig. 1. First,
there will be a vertical motion of the water surface. Second,
there will be a horizontal motion as the water front is becoming
dislocated horizontally. It is the horizontal motion of the water
front we use for segmentation, but the vertical positioning of the
water surface is used to track the horizontal motion since the
horizontal and the vertical motion are intrinsically connected.
To control the rate at which the waterlevel is rising, we de-

fine a filling function independent of space, representing
the height of the water surface (represented by the horizontal
dashed line in Fig. 1). For our purpose we choose a filling func-
tion for a constant . This choice of will
ensure that the waterlevel at every time point will be at level
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, implying . We shall now derive the hori-
zontal speed of the water front. Applying the
chain rule through the Eulerian coordinates , we arrive
at the condition

(1)

The term is the horizontal motion of the developing water
front. The water front coincides with the level set of , which
has unit normal vectors given by . Note that
only the velocity component along the normal direction will
contribute to motion of the water front. Thus, we get from (1)
that the normal velocity of the water front is

(2)

The above gives the normal speed of the front at every point .
Applying different values of the scaling factor will affect the
global rate of water filling but it will not influence the shape of
the water front. Therefore, without loss of generality we choose

, corresponding to the positively valued speed function

(3)

The watersheds are the dividing boundaries, points in 1D,
curves in 2D and surfaces in 3D where the waterfront from
different basins meet and merge with each other.

B. Watershed With Topographical Distance Functions

Watershed by topographical distance is based on a distance
measure where the watersheds are the points of equal and min-
imum distance from given markers. A much used distance mea-
sure for the watershed transform is the topographical distance
function [20]

(4)

defining the infimum path length between points and along
all possible paths . The topographical distance between a point
and a set is defined as .

In this context, the understanding of is a region or a point
marker. Let , be a set of markers for an index set .
We assume that each is a point. The catchment basin ,
also denoted as the segmentation around marker , is defined
as the points that are topographically closer to than to any
other marker :

(5)

The watersheds are the points not belonging to any catchment
basin, which are the points of equidistance from the two closest
markers. Note that if is convex in then we have the
relation

(6)

This observation connects watershed by topographical distance
to watershed by immersion. Equation (5) shows that the wa-
tershed defined by are exactly the points where water
front from two nearest markers meets if the function is convex
over each . Thus, the watershed given by topographical
distance is the same as the watershed given by water immersion.
The above formulations can be extended to marker regions.
In [9], it was noted that the function is

the viscosity solution of the Eikonal equation

(7)
Fast implementations of this boundary value problem have been
developed by the fast marching method (FMM) [9], [21]–[23].
Extended and formal definitions on continuous watersheds can
be found in [24].

C. Watershed by Immersion Using a Transport Equation
We shall now present other approaches to compute the wa-

tersheds as initial value problems rather than boundary value
problems. Let us consider a function on the
domain . The function consists of densely packed
particles where each particle can be tracked, and the function
can either be expressed using Lagrangian coordinates ,
or equivalently as a function of Eulerian coordinates ,
implying . Given and for a suitable con-
stant , we define the time dependent domain

for any time point . From the definition, assuming that the
function is smooth, the front is moving under the condition

(8)

We shall have the moving front to be the water front for water
immersion, noting that (8) states that is constant on the front.
The material derivative with respect to applied to (8) results in
the evolution equation [25]

(9)

The term represents the velocity of the moving particles
within the front. However, only the normal velocity will con-
tribute to the displacement of the front and we therefore denote
the normal speed function as the absolute component
of pointing to the normal direction which is parallel to .
A positive speed function results in monotonic expansion of
the curve . We also assume a smooth . With these criteria,
the initial value problem in (9) can be phrased as the transport
equation

(10)

where the speed is defined in (3). Implementing this model
for curve evolution is referred to as the watershed level set for
segmentation. Condition (8) is also valid for having a discon-
tinuity around , since
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will lead to the same evolution equation (10) around a disconti-
nuity in as long as the speed function is smooth across the
discontinuity. We also need to supply a proper initial condition

for

if ,
if . (11)

for a given domain . With initial values given by (11), the
solution of (10) can only take values 0 or according to (8)
and the discontinuity of is propagated with the normal speed
. In the following, we shall take for

a given . Then, it is easy to see that the discontinuity of
is exactly the water front by water immersion starting with the
region filled with water.
The usage of a transport equation similar to (10) was applied

by Tek and Kimia (see Eq. (4) of [26]), where this type of shock
inspired segmentation is referred to as reaction-diffusion bub-
bles. The authors also point out the labor intensive manual ini-
tialization of multiple developing fronts. We solve this problem
by automatically treating every minimum in the image as a sep-
arate initialization region, which are later merged according to
merging rules. Furthermore, compared to their approach, we
avoid the usage of the curvature term since this will affect the
speed of the evolving front differently in the convex and con-
cave case, which can lead to segmentation errors.
Solving the Eikonal equation (7) is equivalent to the level set

formulation (10) for . Both the boundary value formula-
tion (7) and the initial value formulation (10) are easily extended
to higher dimensions. However, there are at least two advan-
tages present for the level set formulation, which are the reason
for choosing (10) as ourmodel for curve evolution instead of (7).
First, a diffusion term can easily be introduced into the numer-
ical implementation of the level set framework. Second, nega-
tive speed functions can be a useful extension with the integra-
tion of speed functions based on curve-shape. Locally, negative
speed functions can thus be found to be effective to shape the
watersheds according to given smoothness constraints. Related
ideas were successfully explored in [11] were the concept of
volume flooding was introduced as a speed function depending
on the volume of the segmented region. As an alternative to
measuring the absolute volume one could consider a relative
volume, which could introduce negative speed functions. Neg-
ative speed functions in the sense of have not been ex-
plored in this work. However, negativity by indirect means from
curve contraction due to the regularization effect are accounted
for and represent an important feature of our regularization.

D. Smoothing the Level Curves of Evolution

In order to smooth the level curves, we seek a regularization
term which does not systematically change the normal speed
of the curves since this will greatly alter the position of the
watersheds. One possibility would be to add a regularization
proportional to the mean curvature motion. However, such a
model would slow down convex curves and accelerate con-
cave curves, which would affect the final watershed positions
for small and large objects in a different way, and thereby lead
to poor segmentation.

Alternatively, we propose to apply anisotropic diffusion
within the framework of coherence enhancing diffusion [27].
For this model the diffusion is directed along the tangential
directions of the water front, smoothing out small oscillations.
For suitable parameters this type of smoothing will not sig-
nificantly change the locations of the front since it is volume
preserving. Adding the anisotropic diffusion operator to the
initial value problem in (10) leads to a regularized model for
curve evolution, described by

(12)

where is a diffusion tensor of second order, and is
a scaling factor for the diffusion strength. Define the symmetric
structure tensor

(13)

where means convolved with a Gaussian with stan-
dard deviation . Let us take the 3D problem as an example
for our explanations. Since is Hermitian, a diffusion tensor
with the same eigenvectors as can be defined as
where is the rotation matrix whose columns are the eigen-
vectors of the structure tensor , and is a diag-
onal matrix. The difference to the eigenvalue decomposition of
lies in the change of eigenvalues to tunable conductivity coef-

ficients . These parameters can be used to control the diffusion
along the direction of eigenvectors of the structure tensor. Con-
sidering an object in 3D, defined by a level surface of , our
aim is to smooth the function along the tangential directions
of the surface. Assuming sorted eigenvalues ,
the largest intensity variation takes place along the third eigen-
vector, corresponding to the direction across the most high in-
tensity boundary. A scale invariant set of locally defined param-
eters reflecting local anisotropic properties can be defined by

(14)

and the conductivity values can from this be chosen as
, , for a small and pos-

itive [27]. This will ensure little diffusion across the
boundary and promote a strong diffusion in the tangent plane of
the boundary. More homogeneously valued conductivity coeffi-
cients will lead to a higher degree of isotropic diffusion. For the
remaining, implementing the continuous model for regularized
curve evolution described in (12)–(14) is referred to as regular-
ized watershed level set for segmentation.

E. Strategies to Avoid Over- and Under-Segmentation Within
Watershed Segmentation
“Non-marker” controlled watershed algorithms can suffer

from severe over segmentation due to the large number of
naturally occurring minima in real images. Each minima point
will produce one region in the final watershed. This problem
can be partly overcome in at least two ways: Using hierarchical
watersheds [15]–[19], [28] or using predefined markers as in
[2], [12]–[14]. These approaches for dealing with over and
under segmentation are equivalent in terms of the mathemat-
ical understanding of rising the waterlevel or computing the
topographical distance function, but they may vary practically
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due to the merging process taking place in the first approach.
In this paper we essentially follow the first approach and define
new markers each time when a local minimum is under the
waterlevel. When the water level raises, there are new regions
(or points) that are immersed by the water. Whenever a new
region is under the water level, we will add a new marker to
make this region and start to trace the water front from these
new regions as well. We will trace the water front as the water
level raises and detect the places when one water front meets
another one and these points are defined as the watersheds.
We trace the water front from eachmarker by solving the (reg-

ularized) watershed level set through (12)–(14). This implies
solving different initial value problems each time a new marker
is added. By this approach we obtain fronts approaching the ob-
ject boundaries from two sides. However, instead of merging
the objects after computing the entire watershed transform we
merge the objects on the “fly”. This approach simplifies the
merging since we can assign an object to a parent object with
a higher certainty. The merging approach is further explained
in Supplementary material, Appendix B.

III. NUMERICAL IMPLEMENTATION

A. Methods for Watershed Segmentation

In tests given later, we will use four methods for watershed
segmentation and compare their performances. The methods we
use are:
(i) Watershed by immersion.
(ii) Watershed level set.
(iii) Regularized watershed level set.
(iv) The viscous watershed transform [16].
While (i) is a traditional watershed algorithm used as a ref-
erence, (ii) and (iii) are new methods based on the formula-
tion of watershed immersion in terms of the transport equation
(ii) and the regularized transport equations (iii). Method (iv)
is not new [16], and is used as reference to a state-of-the-art
method. This algorithm was chosen as a state-of-the-art algo-
rithm dealing with both over-segmentation as well as regular-
ization. All methods (i)–(iv) use the samemerging algorithm de-
scribed in Supplementary material, Algorithm 2 For the normal
speed in (3) we add a small regularization parameter

to avoid singularities by dividing with zero. Therefore
we redefine the speed function as .

B. Watershed by Immersion, Method (i)

This algorithm serves as a referencemethod, and is closely re-
lated to the standard watershed method described in [7]. In this
algorithm all voxels in the image are sorted from low to high
image values. The immersion is simulated by removing voxels
from the queue as the waterlevel is rising above each voxel's
intensity value, and they are assigned to various parent objects.
We could not use the unmodified version in [7] because that
method is marker dependent in order to function properly. The
reference method would thereby depend on input variables that
our proposed methods are not depending on. Therefore, the ref-
erencemethod (i) differs from the original algorithm in [7] as we
apply the merging algorithm described in Algorithm 2 instead

of pre-defined input markers. Each voxel is thereby assigned to
a parent object based on the merging rules described in Supple-
mentary material, Appendix A.

C. Watershed Level Set (Method (ii)) and Regularized
Watershed Level Set (Method (iii))

Watershed level set and regularized watershed level set are
the implementation of (12). They only differ within the regu-
larization parameter , where for watershed level set
and for regularized watershed level set. Thus, we omit
the coherence enhancing diffusion operator for watershed level
set. Details on initialization of markers and usage of predefined
markers can be found in Supplementary material, Appendix B
and C, respectively. Further algorithmic details are described in
Supplementary material, Algorithm 1.
The partial differential equation is solved by operator split-

ting, where the transport part is discretized using upwinding and
coherence enhancing diffusion by standard finite differences.
Further details on discretization and numerical implementation
are found in Appendixes D, E and F, in Supplementary ma-
terial. Software can be downloaded from https://github.com/
ehodneland/watertransport.git.

D. Method for Evaluation of Segmentation Quality

For the quantitative analysis in Section IV-B we computed
three evaluation parameters, and the average
cell surface area . Within a set of segmented regions

and , a matrix of Dice coefficients between any
two regions and was computed as

(15)

The segmented regions are disconnected components within
(see Supplementary material Appendix B) at the end of

water raising, and are corresponding regions from a manual
segmentation. We also computed matrices of precision and
sensitivity,

(16)

The matrix will be a measure of over-segmentation, and
correspondingly the matrix will be a measure of under-
segmentation. Then, we used the Hungarian algorithm for an
optimal matching between the evaluation scores in and , as
described in [13]. The final evaluation scores of segmentation
quality are obtained by normalizing the non-zero row values of
with (cell volume)/(sum of all cell volumes) within the image,

and thereafter summing the values into weighted coefficient
arrays , or , corresponding to ,
respectively. we refer to as the weighted Dice coefficient,
and and are precision and sensitity coefficients re-
flecting under- and over segmentation. The evaluation param-
eters have per definition a lower limit of 0 and an upper theo-
retical limit of 1. Values of reflect a
poor and a high-quality segmentation, respectively.
We also computed the average cell surface area for each of

the algorithms. The surface area of the binarized, single cell
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within (similarly for ) can be approximated using the total
variation

(17)

leading to the average surface area upon averaging over .
For the benchmarking experiments of the Broad institute data

sets in Section IV-C we used the recommended evaluation cri-
teria described as “ ” at the Broad
Bioimage Benchmark Collection in order to enable a compar-
ison of performance with previous publications using the same
data sets: ‘To compare an algorithms results to the manual out-
lines, define the relevant boundary pixels as the pixels that are
on the boundary found by the algorithm and that are not adjacent
to any background pixels. For each relevant pixel, compute the
Euclidean distance to the corresponding pixel on the manually
found outline. Report the percentage of relevant pixels that are
within two pixels of the corresponding pixel on the manually
found outline.’ (cited from http://www.broadinstitute.org/bbbc/
index.html)

IV. EXPERIMENTAL RESULTS
We performed three types of experimental tests. In

Section IV-A we present a qualitative comparison of methods
(i)–(iii). In Section IV-B we perform a 3D segmentation
of manually annotated datasets, and compare the results to
a state-of-the-art software for cell segmentation, CellPro-
filer [29]. In Section IV-C we apply methods (i)–(iii) and a
state-of-the-art method, the viscous watershed transform (iv)
[16], to benchmarking datasets from the Broad institute. For
all experiments we applied (14) for method (iii),
and the software package Cellsegm [18] was used for object
classification of the watershed regions into cells or background.

A. Qualitative Image Analysis
For all experiments described in this section we applied

methods (i)–(iii) defined in Section III-A. The example im-
ages employed for demonstrating the segmentation algorithm
contain cells imaged using fluorescence microscopy. Two
different cell lines were used for demonstration: (i) PC12
(pheochromocytoma 12) cells and (ii) HeLa Kyoto cells. Both
cell lines were stained with a plasma membrane staining, wheat
germ agglutinin Alexa Fluor 488 conjugate (WGA-AF-488).
WGA-AF-488 stains the plasma membrane and is later biolog-
ically internalized. It diffuses into the cells, resulting in a bright
staining of intracellular membranes, mainly vesicular. Those
membranes can be recognized by the segmentation algorithm
and can lead to false definitions of cell borders, and is a major
reason for the need of a regularization term.
Within the examples of Figs. 2–4 we used the following pa-

rameter settings: , , and (only
method (iii)) and . For Figs. 2 (E-F), we
instead used .
The example in Fig. 2 shows two PC12 cells. The detected

ridges (the plasma membrane of the cells) are outlined by the
black segmentation contours surrounding the dark cell interior.

Fig. 2. Segmentation of a PC12 cell in 2D using the watershed algorithm. The
dividing watershed lines are marked in black and superimposed onto the image
to visualize their location. (A) Unprocessed image, (B) segmentation by water-
shed by immersion, (C) watershed level set, and (D) regularized watershed level
set. For this cell the watershed lines are precisely located on the crest lines of the
cell for all presented methods. In (E-F) we applied a lower value of , re-
sulting in over-segmentation for watershed level set (E) but not for regularized
watershed level set (F). This is due to the connecting properties of the regular-
ization, affecting over-segmentation.

Fig. 3. Segmentation of HeLa Kyoto cells in 2D .
Description as in Fig. 2 (A)–(D). These images contain a more oscillatory and
inhomogeneous signal compared to Fig. 2. The arrow points to a region where
the regularized watershed has performed better not only in terms of smoothness,
but also in terms of improved object detection.

Fig. 4. Segmentation of HeLa Kyoto cells in 2D. Description as in Fig. 2,
(A)–(D). The segmentation is smoother in the right panel using regularized wa-
tershed level set. Lower row: Magnification of an area (indicated by the square
in the upper row) where all methods found an object within, but only method
(iii) found a smooth object. As a consequence of this, the object was discarded
as a cell in (B) and (C) by the cell classification algorithm assuming a certain
degree of convexity. However, in (D), using regularized watershed level set, the
object was smooth enough to become a cell.

The segmentation of the two cells was similar and successful
for all three methods applied to this high-quality data set. This
shows that in the presence of little noise and artefacts the reg-
ularized watershed level set has a similar performance to wa-
tershed level set. However, there can be differences in terms
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TABLE I
COMPARATIVE EVALUATION OF SEGMENTATION QUALITY BETWEEN TWO MANUAL OBSERVERS , AND BETWEEN EACH OF THE MANUAL OBSERVERS

TO THE PROPOSED METHODS (I)–(III), AND CELLPROFILER. FOR REGULARIZED WATERSHED LEVEL SET WE USED TWO DIFFERENT SETTINGS OF THE
REGULARIZATION PARAMETER , . THE EVALUATION PARAMETERS ARE DESCRIBED IN Section III-D. SINCE ANY OF THE
TWO OBSERVERS HAVE EQUALLY GOOD EXPERTIZE IN RECOGNIZING CELLS, WE ALSO COMPUTED ADJUSTED SCORES , WHICH ARE THE

RAW SCORES AFTER SUBTRACTING THE INTER-OBSERVER DISAGREEMENT . THE BEST EVALUATION RESULTS COMPARED TO ANY OF THE MANUAL
OBSERVERS ARE MARKED IN BOLD, AND THE BEST, ADJUSTED DICE COEFFICIENT WAS ACHIEVED BY REGULARIZED WATERSHED LEVEL SET

of merging, highlighted in Fig. 2 (E-F). Here, we used a lower
value of , generating an over-segmentation for (E, water-
shed level set) but not for (F, regularized watershed level set).
This example illustrates how the regularization is able to reduce
over-segmentation by connecting nearby, small objects.
The example in Fig. 3 demonstrates segmentation of HeLa

Kyoto cells. The boundaries of this cell type are typically more
oscillatory than those seen for the PC12 cells. Clearly, regular-
ized watershed level set has smoother boundaries than the two
other methods. The arrow points to an interesting feature of the
regularization. The diffusion protocol creates a more homoge-
neous front of , thus affecting the order of merging. In this
example, due to this effect, regularized watershed level set re-
sulted in a smooth and geometrically improved object than was
obtained by watershed level set.
Fig. 4 demonstrates another image for segmentation of HeLa

Kyoto cells. Similar to Fig. 3, the boundaries are relatively os-
cillatory for watershed by immersion and watershed level set
applied to the unprocessed image. However, this is not the case
for the regularized watershed level set. Related to the oscillatory
cell indicated by an arrow in Fig. 3, another example is seen in
the lower row of Fig. 4. However, in this case, the highly irreg-
ular shape of the object found by watershed level set led to a in-
correct rejection of this object as a cell due to lack of convexity.
The settings used for cell classification by cellsegm.clas-
sifycells were , ,

, , ,
.

B. Quantitative Image Analysis

A quantitative comparative analysis of the segmentation
quality of the proposed methods was also conducted with
manually annotated cells used as a gold standard. The manual
segmentation was accomplished by two experts in cell biology,
and are in the following denoted as and . The perfor-
mance of Cellprofiler [29] was also included. We used four
data sets in 3D for this analysis, taken from two different ex-
perimental conditions. The parameters reflecting segmentation
quality are reported in Table I for the four data sets, showing

Fig. 5. Segmentation of HeLa Kyoto cells in 3D for one image stack. (A) Un-
processed image, (B) segmentation by watershed by immersion, method (i),
(C) watershed level set, method (ii), (D) regularized watershed level set, method
(iii), and (E) manual segmentation by . Clearly, the regularized watershed
level set provides a smoother segmentation than methods (i) and (ii). Top to
bottom: Every second focal section from the same 3D image stack, starting with
section number one. Note that the manual outline in (E) labels the interior of the
cells, whereas the white lines in (B–D) highlights the plasma membrane. This
might be interpreted as missing cells in the lower row.

improved volume segmentation for regularized watershed level
set (method (iii)) compared to methods (i) and (ii). Segmen-
tation results for three watershed methods are compared to
manual segmentation in Fig. 5 for the first image stack among
the four data sets used. The four rows in cross-sections taken
at four different focal sections with respect to the z-axis. From
this figure as well as Fig. 6 can see that the object boundaries
within the regularized watershed level set are smoother than
within the other methods. This is also quantitatively shown
in Table II, reporting the average cell surface area of the
segmentation, where the regularized watershed level set has
a surface area being far closes to manual annotation than the
other two methods. The settings used for cell classification
by cellsegm.classifycells were ,
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Fig. 6. Surface plots for watershed by immersion (left), watershed level set (middle) and regularized watershed level set (right) applied to a 3D data set. The
surface is smoother for the regularized watershed level set.

TABLE II
AVERAGE SURFACE AREA PER CELL, . THE SURFACE AREA
USING REGULARIZED WATERSHED LEVEL SET IS CLOSER TO

THE MANUAL SEGMENTATION THAN THE OTHER METHODS. THIS
RESULT IS DUE TO LESS OSCILLATIONS OF THE CELL BOUNDARIES

USING REGULARIZED WATERSHED LEVEL SET

, , ,
, .

C. Benchmarking Image Segmentation
In order to compare our methods to a state-of-the-art

approach for regularized watershed segmentation we imple-
mented the viscous watershed transform (iv), oil immersion,
as described in [16]. The viscous watershed transform created
strong over-segmentation and we therefore had to integrate the
same merging algorithm that was applied for methods (i)–(iii).
Applying ways of controlling over-segmentation is in line with
[16].
We used benchmarking image set BBBC007v1 version 1

(Drosophila Kc167 cells stained for DNA and actin, using
DNA stain for marker detection, actin stain for segmentation)
[30], as well as BBBC018v1 (HT29 human colon cancer cell
line, using Hoechst stain for marker detection, actin stain for
segmentation), available from the Broad Bioimage Bench-
mark Collection [31]. For the data set BBBC007v1 version
1, Jones et al. [30] obtained a performance of 64% according
to the “ ” evaluation criteria of the
Broad Bioimage Benchmark Collection, although it is not
clear from the publication whether they only used boundary
pixels between adjacent cells (see criteria for evaluation in
Section III-D). Parameter settings used are shown in Table III.
For classification of watershed regions into cells or background
we applied cellsegm.classifycells with three fea-
tures: minimum and maximum cell volume (given as number of
pixels in the Table), as well as the presence of a nucleus marker.
The minimum cell volume, measured in number of pixels, was
set to , the same parameter also used for the segmenta-
tion. Binary nucleus markers were generated using CellSegm
[18] by the subroutine cellsegm.segmct with the option
adaptive thresholding ' and threshold value

. The “ ” evaluation criterion as

TABLE III
PARAMETER SETTINGS FOR THE BENCHMARKING DATA SETS FROM

THE BROAD INSTITUTE USED IN Section IV-C

TABLE IV
RESULTS APPLYING THE PROPOSED METHODS TO BENCHMARKING DATA

SETS FROM THE BROAD INSTITUTE USED IN Section IV-C. THE NUMBERS ARE
PERCENTAGE SUCCESS “ ” (see Section III-D). BOLD
INDICATES BEST PERFORMANCE. IMAGE SETS I AND II REFER TO Table III,

, , and

well as parameter settings are reported in Table IV. These data
sets were challenging to accurately segment for whole cells.
Regularized watershed level set has the highest performance
among the tested methods, and also higher than reported in [30]
for image set BBBC007v1.

V. DISCUSSION

Themotivation for the current studywas to develop improved
methods for automated segmentation of ridge defined structures,
as opposed to intensity based structures. As a highly useful ap-
plication we have chosen the task of automated segmentation of
cells, which is a powerful tool for automated single cell detec-
tion within imaging data. Such analysis can lead to significant
biological insight with respect to cell functionality and behavior
in response to drug treatment. Operational real-time segmen-
tation is a challenging task mainly due to inevitable intensity
variations both on the cell boundaries and inside the cells. Still,
a labelling of cells, preferably as a surface staining, provides
images with high-intensity signals located at the plasma mem-
brane, thus being suitable for a segmentation of separated as
well as clustered cells. We refer to this kind of objects as ridge
defined objects. Data with these characteristics have the advan-
tage that one can distinguish also between adjacent objects due
to the high signal on boundaries. This type of single object seg-
mentation is not easy to accomplish for objects characterized by
high or low interior intensities, as the signal between adjacent
objects can be more or less constant.
Watershed segmentation is adequate for ridge segmentation

as it simulates water flooding by detecting segmentation con-
tours along the ridges of the objects. However, traditional wa-
tershed segmentation has major challenges related to over-seg-
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mentation and unregularized contours. The problems connected
to over-segmentation can possibly be handled using a marker-
controlled watershed. However, while this approach improves
the segmentation, it introduces the difficulty of finding high
quality markers, which can be a substantial challenge for real
world images. Several attempts have been made to solve the
over-segmentation either by marker-based [2], [12]–[14] or hi-
erarchial watershed algorithms [6], [15]–[17], but the success of
these algorithms is strongly data dependent, and the challenges
posed by over- and under-segmentation will continuously be
further debated and improved in future. As a contribution to re-
duce the general dependence on pre-definedmarkers in the cases
where high-quality markers are not easily available, we have in
this work developed an algorithm independent of initial marker
regions. We shall not refer to our method as “marker-free” since
markers are introduced into the level set function during itera-
tions. However, our algorithm requires no prior knowledge of
marker placement or number of markers. Every minimum in the
image is considered a potential marker, and regions appearing
from raising of the waterlevel are merged on the fly. This ap-
proach is potentially more stable than merging a high number of
small regions after convergence since the overall object shape
can be hard to assemble correctly. In our proposed merging ap-
proach, only a single volume parameter is used to control the
merging, such that two large regions will not merge if they have
a large probability of being individual cells. This merging pro-
tocol can easily be extended into more complex schemes based
on a variety of classificators and descriptors.
We have also attacked the challenge of oscillatory contours

within the traditional watershed segmentation. The regulariza-
tion is a challenging task, partly because one must allow sharp
corners at the vertex where three or more objects meet, take
into account elongated protrusions often present in cells, and at
the same create smooth contours. We have integrated a regular-
ization term based on coherence enhancing diffusion, resulting
in method (iii). The regularization allows smoother segmen-
tation contours for the segmentation, such as demonstrated in
Figs. 3–6. Coherence enhancing diffusion was chosen as diffu-
sion operator since it is volume preserving, and does not change
the average speed of the front. The diffusion term has the ef-
fect of smoothing the contours while preserving the general
segmentation accuracy, and it can also partly combine smooth-
ness and at the same time allow for segmentation of elongated
protrusions. We also demonstrated that the regularization fur-
ther than pure smoothing has an effect on over-segmentation
as it is capable of joining nearby, small objects during itera-
tions (Fig. 2 (E-F)). Moreover, the regularization will affect the
smoothness of the propagating front, which will lead to a dif-
ferent merging order (Figs. 3 and 4). Both these effects can have
a positive outcome on the segmentation.
It appears from our data that method (iii) handles noisy data

better than the other methods without the need for prepro-
cessing filters. Our method thus combines segmentation and
regularization, instead of traditional, sequential processing,
with detection of markers, filtering and segmentation. In this
respect, the proposed method represents an integrated system
combining all these processing steps into one. This property
can have several advantages with respect to both computa-

tional time and also computational complexity and quality
assessment, since a multi-stage system can be challenging to
debug. The improved smoothness of the plasma membrane as
seen in regularized watershed level set can represent a major
improvement for the task of cell feature extraction on the
plasma membrane [32]. A slightly misplaced contour will lead
to significant errors when sampling a signal on the thin water-
shed surface. As a further consequence of smooth contours, the
proposed method will have improved performance for the task
of extracting average surface area of the cells.
The connection between a watershed segmentation phrased

as the stationary Eikonal equation or a time-dependent transport
equation was previously described mathematically [9]–[11],
[21] and also experimentally demonstrated for the Eikonal
equation [10], [11]. We have in this publication mathematically
further elaborated on watershed immersion by a time-depen-
dent transport equation. Furthermore, we present experimental
results from 3D watershed immersion as a transport equation.
In particular, the transport equation allows for positive and neg-
ative speed functions, which in terms of flexibility advocates
this approach compared to the stationary Eikonal equation for
immersion.
The proposed methods were compared to the performance of

CellProfiler, the viscous watershed transform, as well as liter-
ature reports on benchmarking data sets. All comparison was
based on manually annotated data sets. Regarding the Dice co-
efficients, the regularized watershed level set had slightly im-
proved performance compared to watershed by immersion and
watershed level set, and also compared to the performance of
CellProfiler. Dice coefficients reflect the accuracy of the overall
segmentation volume (cfr. Table I), and the obtained results are
therefore not surprising since the regularization mainly modifies
a oscillatory surface into a smooth surface, whichwill contribute
little to overall volume estimates of the segmentation. More es-
sential is the improved surface smoothness obtained by the reg-
ularized watershed level set compared to the other methods (cfr.
Table II). Thus, we claim that the regularized watershed level set
is the method of choice among the investigated methods. The re-
sults also revealed nomajor differences in performance between
two different settings of the regularization parameter .
Further, comparison of methods (i)–(iii) with the viscous

watershed transform applied to benchmarking data sets of the
Broad institute revealed that the best performance was achieved
by the regularized watershed level set. Also compared to [30]
we achieved improved segmentation results.
The performance of our proposed watershed segmentation by

immersion was demonstrated both with and without the inclu-
sion of a regularization term. The included regularization term
can be considered as one particularly useful idea on how the
proposed PDE framework allows for easy integration of addi-
tional constraints affecting the segmentation in a desired direc-
tion. Further extensions can be shape priors, and differentially
and locally varying regularization terms, possibly inferring neg-
ative speed functions. However, implementation of these exten-
sions is outside the scope of the current work.
Despite promising results of our method we suggest regular-

ization terms in general must be used with care since not all
objects are expected to be smooth. Many real-world images de-
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pict non-smooth objects, and other types of regularization tech-
niques can be better suited. This is the reason why we have
chosen to focus on a strictly defined application, segmentation
of biological structures (cells), to suggest an important field of
application where our method could make an impact. Still, the
mathematical formulation and algorithmic implementation are
versatile and can have general implications, even outside the
field of image segmentation.
In conclusion we have proposed a PDE based watershed

level-set method with simultaneous regularization of the wa-
tershed contours. Our method requires no pre-defined markers,
but can also be used with pre-defined markers for applications
where high-quality markers exist. Our algorithm provides
accurate segmentations, regularization and controls over-seg-
mentation within the same numerical framework. The method
was evaluated for the task of cell segmentation of fluorescently
labeled cells, and was found to perform better in terms of Dice
coeffients, surface smoothness and boundary overlap (“O”)
than a traditional watershed immersion method without regu-
larization, and also compared to state-of-the art segmentation
methods.
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