
University of Bergen

Department of Informatics

Algorithms

Parallel algorithms for computing
k-connectivity.

Student:
Joachim Haakonsen

Supervisor:
Professor Fredrik Manne

Master Thesis

March 16, 2017

Acknowledgement

I would like to thank my supervisor for the patience he have shown me. He have given
me a calm and reliable presence in times of pressing matters and without his guidance

this would not have been possible. I would also like to thank my fellow graduate students
for the wonderful time I have had during my stay at the Department of Informatics. At
last I would like to address a special thanks to my brother who have helped me see this

through, and Ida Ryland who have encouraged and helped me all the way.

Contents

1 Introduction 1
1.1 Notation . 4
1.2 Graphs . 4

1.2.1 Trees . 5
1.3 Connectivity . 7
1.4 Cut . 8

1.4.1 Minimum Cut . 9
1.5 K-connectivity . 12
1.6 Parallelization . 13

1.6.1 OpenMP . 14

2 A Simple Algorithm for Finding All k-Edge-Connected Components 15
2.1 Brute Force . 15
2.2 A Simple Algorithm . 16

2.2.1 Auxiliary Graph . 16
2.2.2 Algorithm . 19

3 Sequential Implementation 21
3.1 Implementing the Algorithm . 21

3.1.1 Minimum s-t cut . 22
3.1.2 Constructing the Auxiliary graph 25
3.1.3 Retrieve Information from the Auxiliary Graph 26

3.2 Correctness Check . 28

4 Parallel Algorithm 31
4.1 Identifying Areas to Parallelize . 31
4.2 Parallel Implementation . 32

4.2.1 Parallel Algorithm for Constructing the Auxiliary Graph 32

5 Parallel Algorithm Analysis 35
5.1 Previous Work . 35

iii

iv CONTENTS

5.2 Test Conditions . 36
5.3 Results and Analysis . 36

6 Conclusion 43

A Sekvensial Algorithm 47

B Parallel Algorithm 57

Chapter 1

Introduction

Connectivity of graphs is a widely studied subject in Computer Science, that applies to
many real world problems. Especially in the field of Communication, where reliability is
a big concern, it is important to know that the network is still operational if something
were to happen to some part of the network.

With a communication network in mind, we represent the network by a graph, as seen
in Figure 1.1. The graph consisting of vertices (circles) and edges (lines) that represent
routes of transmission. The vertices can communicate by edges and relay information
by passing the information to a new vertex via an edge until it reaches the intended
destination.

When transmitting a message from a vertex s to a vertex t, it is crucial that there is
a path from s to t in the network. This is why communication networks need to be fail
safe. One example is emergency communication networks which are built in a redundant
fashion. There are several redundant standards based on ring network topology. The
main idea is that there are always two disjoint paths between every pair of vertices in the
network, one path in each direction around the ring. Thus if s is communicating with t,
and a tree fell and destroyed a network line or station, it would still be possible for s and

1

s

2 3

t

4

Figure 1.1: Ring Network

1

2 CHAPTER 1. INTRODUCTION

s

1

2

3

4

5

t

Figure 1.2: A graph with 2-edge-connectivity illustrated by red edges

t to communicate through another path in the network. This is made possible since the
connectivity in the network guarantees that at least two trees would have to fall at the
same time in two different locations to make s and t disconnected from each other.

The connectivity is determined by the minimum number of vertices or edges whose
deletion makes the graph disconnected. We will in this thesis be focusing on the k-
connectivity for both a pair s,t of vertices and the graph G. Where a pair s,t of vertices
are k-edge-connected if by removing any k-1 edges the graph G is still connected, i.e.,
there is still a path between s and t in G. The pair of vertices can also be said to be
k-vertex-connected if by removing any k-1 vertices the graph G is still connected. A graph
is k-connected where k is equal to the minimum k-connected pair s,t of vertices of the
graph G.

The connectivity of a graph has a strong relationship to other fundamental problems
in theoretical Computer Science such as minimum cut, which is the minimum cut between
two vertices, and maximum flow. Where the k-connectivity between a s,t pair is equal to
the s-t minimum cut in the graph G. Based on the max-flow min-cut theorem by Ford
and Fulkerson [1956] that showed the duality of minimum cut and maximum flow, we will
be using both a maximum flow and a minimum cut algorithm in this thesis to find the
k-connectivity of the graph G.

The approach for finding the k-connectivity will be based on the paper ”A Simple
Algorithm for finding All k-Edge-Connected Components” by Tianhao Wang et al. [13].
By utilizing an auxiliary graph the approach reduces the number of maximum flow calls
the algorithm utilizes in contrast to a brute force approach.

Many approaches have been devised for solving k-edge connected components in a
graph and finding the k-edge connectivity of a graph. Mainly these subjects have been
studied for finding either the connectivity or the components. In the implementation of
the algorithm for finding all k-edge connected components we subsequently end up with
the k-edge connectivity for all pair of vertices in the graph.

In this thesis we will introduce the reader to the fundamental theory for what we will

3

present. We then give a description of the algorithm proposed by Tianhao Wang et al.
[13], before we introduce our implementation of the algorithm. We will first present the
sequential implementation of the algorithm, then we modify the algorithm to a parallel
implementation. At the end of this paper we will present the results of the sequential and
parallel algorithm, before ending with a conclusion of the results.

4 CHAPTER 1. INTRODUCTION

1.1 Notation

In this thesis we define a graph G as an ordered pair G = (V,E), where V is the set of
vertices and E is the set of edges in G, and each edge is a pair of vertices from V . The
|V | is used to address the size of the set V . A is used for referring to the auxiliary graph.
A set L = {} is a set which is set to have no elements and it is called an empty set. A
set C is minimum if removing more elements from C would change its property. A set C
is maximum if adding more elements to C would change its property. A set U ⊆ V (G)
is connected if G[U] is a connected graph. The expression D \C is the removal of all the
elements in C from set D. O(∆) is used for big O notation.

1.2 Graphs

A vertex, also known as a node or point, represents an object. The edges represents the
relations between the objects. One simple example is a social network where a vertex
represents a person, or a user, and edges expresses social bounds between vertices. The
set of edges is represented by a pair of vertices (v, u) ∈ E, where v ∈ V and u ∈ V , and u
and v are the vertices incident to the edge. A vertex in the graph not present in any edge
in G is called an isolated vertex, since it has no relation to any other of the vertices in G.

Edges of a graph can either be directed or undirected, all depending on the relation
that are being expressed. In a directed graph the edges is a set of ordered pairs of vertices
(u, v) ∈ E, where u has a relation to v and v has no relation to u unless (v, u) ∈ E. In
other words, the bond between the vertices is directed from one vertex to another. We
call u the tail and v the head of the edge as depicted in Figure 1.3b. For an undirected
graph the edges is a set of unordered pairs of vertices, <u, v> ∈ E, thus the relation
between u and v goes both ways in contrast from a directed graph. Thus having both
<u, v> and <u, v> in E would be redundant since they express the same relation. We
can easily see this in Figure 1.3a.

If a graph contains multi-edges and self-edges it is a multi-graph, as illustrated in
Figure 1.3c. Multi-edges simply refers to the occurrence of edges which point to the same
pair of vertices. A self-edge is an edge where a vertex is pointing to itself. The rest of
this thesis we will not take in to consideration multi-graphs, multi-edges or self-edges.

The edges and vertices of a graph can be weighted or unweighted. An edge with weight
w can be a symbolic representation of the strength of a relation between two vertices in a
graph. The weight can represent the capacity of an edge in a flow network, limiting the
flow that can flow through it. A vertex weight w can be a symbolic representation of the
presence a vertex has in the graph, i.e., it may represent the number of visitors a web
page have had during a time period, in a graph of web pages. This can be useful when
looking for causes of web pages having more visitors then others. Do web pages with

1.2. GRAPHS 5

large number of visitors link to other pages with large number of visitors? This could be
useful when analyzing consumer behavior and identifying patterns in different consumer
segments.

An undirected weighted graph is illustrated in Figure 1.3d. Weights are assigned to
each edges in the graph and each edge has its own weight associate with it, i.e., we∀e ∈ E.
Similarly, vertices can have a weight w associated to it, wv ∀ v ∈ V .

A graph is said to be dense if the number of edges is close to the maximal number of
edges, or sparse if the number of edges are close to the number of vertices in G. Let D
be the measure of the graph density, then we can measure D for an undirected graph by
the expression:

D =
2|E|

|V |(|V | − 1)
.

For a directed graph the graph density is measured by the expression:

D =
|E|

|V |(|V | − 1)
.

An acyclic graph is a graph without cycles. In a directed graph this is called a
Directed Acyclic Graph (DAG). A DAG is a finite directed graph for which there exists a
topological ordering of the vertices. This means that while traversing the vertices in order,
one would never encounter an edge leading back to a vertex while preceding the vertices
in order. Then for every edge, if there exists such a topological ordering, it will point
from a vertex to a vertex succeeding that vertex in the ordering. A connected acyclic
undirected graph is a graph where the number of edges is equal to the number of vertices
subtracted by 1. It is easy to see that if the graph is connected then it must be minimally
connected, since adding an edge to the graph would create a cycle.

1.2.1 Trees

A tree is a mathematical structure that can be viewed as an acyclic undirected graph
where every pair of vertices are connected through exactly one simple path in the graph.
A collection of trees are called a forest. A tree is an acyclic connected graph. Thus there
can not exist any cycles which, as mentioned, is exactly that of an acyclic undirected
graph. The vertices of a tree can be split into two groups, the internal and external
vertices of the tree. An internal vertex has degree at least 2, and can be seen as a fork
in the graph structure allowing paths to branch outwards from the center of the tree.
External vertices, usually referred to as the leaves of the tree, have degree exactly 1 and
are the end vertices of the tree. In Figure 1.3e, the internal vertices are 1, 2, 3 and the
leaves are 4, 5, 6. A tree with at most two branches at each fork and at most two leaves
connected to a fork is called a binary tree. Figure 1.3e and 1.3f are both binary trees.

6 CHAPTER 1. INTRODUCTION

1

2

3

4

(a) Undirected Graph

1

2

3

4

(b) Directed Graph

1

3

5

2 4

(c) Multi Graph

1

2

3

4

2

1

2

4

1

(d) Undirected Weighted Graph

1

2

3

45

6

(e) A Tree

1

2 3

456

(f) A Rooted Tree

Figure 1.3

1.3. CONNECTIVITY 7

A rooted tree is a tree where a vertex is picked and marked to distinguish it from the
other vertices of the graph. This vertex is called a root vertex and is the root of the tree.
The root vertex, marked red in Figure 1.3f is vertex 1. A rooted tree is usually depicted
with the root at the top and edges directed away from the root called branches, referred
to as a branching or an out-tree. The edges can also be directed towards the root, called
an in-tree.

A vertex u is called a parent of a vertex v if it is adjacent to v and the distance from
the root to u is smaller than the distance from the root to v. The vertex v is called a child
of u since it is adjacent to u, and its distance to the root are longer than the distance
between the root and u. In Figure 1.3e vertex 3 is the parent of the vertices 4, 5 , and 4, 5
are the children of vertex 3. In a rooted tree every vertex have a unique parent, except
for the root. For rooted trees internal vertices are the vertices that have children and the
leaves are childless vertices. In Figure 1.3f the internal vertices are 1, 2, 3 and the leaves
are 6, 5, 4.

Similarly to family trees, rooted trees have ancestors and descendants. If two vertices
appear in a simple path between the root and a leaf vertex, then the vertex closer to the
root in the path is called an ancestor and the vertex farther away is called a descendant.
Vertices in a rooted tree can also be divided into internal vertices and leaves.

Trees have a lot of nice properties that make them ideal to use as a data structure.
Its acyclic characteristics along side with its decisive vertex to vertex connection makes
it ideal for use in searching and more. The structure is being exploited in areas such as
statistics, data mining and machine learning. In this thesis we will take advantage of the
rooted tree structure to store results of our partial calculations. We will then do look ups
in the tree for fast retrieval of information. The root vertex is crucial for maintaining the
information of the partial calculations without loss of information.

1.3 Connectivity

A graph is said to be connected when for every pair of vertices in the graph there exist
a simple path connecting them, such that no vertices are isolated. Subsequently a graph
is disconnected if there exist a pair of vertices such that there exist no simple path with
the vertices as its endpoints in the graph. As an example, a single vertex is a connected
graph where as a graph with more than 2 vertices and no edges is disconnected.

In an undirected graph G, two vertices u and v are connected if there exists a simple
path from u to v in G. If no such simple path exist, then the two vertices are in disjoint
parts of G making both the graph disconnected and the vertices u and v disconnected.

In Figure 1.4 a there exist a path between vertex 1 and 7, and we can say that they
are connected. This is true for all pairs of vertices depicted in 1.4 a making the graph
connected. The graph depicted in Figure 1.4 b does not have a path between 1 and 7

8 CHAPTER 1. INTRODUCTION

1

2

3

4

5

6

7

(a) Connected Graph

1

2

3

7

5

6

(b) Disconnected Graph

Figure 1.4

making the vertices and the graph disconnected.

Connectivity is an important issue, especially when talking about infrastructure. The
connectivity or dis-connectivity can be a matter of avoiding catastrophic consequences.
This is why important infrastructure such as the emergency network is designed with a
high connectivity, to make sure it never fails.

1.4 Cut

It is often difficult to say something about the connectivity of a graph. The approach
used in this thesis, uses the notation of a cut to classify the connectivity of the graph.
For the rest of this thesis we will assume that a graph is connected, as the cut for an
unconnected graph is trivial. A cut C of a graph G is defined as the partitioning of the
vertices into two disjoint subsets S, T ⊆ V (G) : [C = (S, T) s.t v ∈ S ⇐⇒ v /∈ T and
u ∈ T ⇐⇒ u /∈ S]

The only path between vertices in different subsets exists through what is called a
cut-set. A cut-set can either consist of edges or vertices. The vertex cut-set CV is a
subset of the vertices of the graph CV ⊆ V (G) if and only if the removal of the set CV ,
V (G) \ CV = {v ∈ V (G) : v /∈ CV }, results in G being disconnected, i.e., in Figure 1.4 a
the vertex labeled 4 is a vertex cut-set resulting in the graph depicted in Figure 1.4 b.

An edge cut-set CE is a subset of the edges of the graph CE ⊆ E(G) if and only if the
removal of the set CE, V (G)\CE = {e ∈ E(G) : e /∈ CE}, results in G being disconnected.
In Figure 1.5 a the edges to the vertex labeled 7, marked red, would be an edge cut-set
of the graph. CE = {(7, 5), (7, 6)} would be the edges in the cut, and the removal of the
edges would lead to vertex 7 being isolated from the rest of the graph, as seen in Figure
1.5 b.

When a start vertex s and target vertex t are specified the cut, C = (S, T), is referred

1.4. CUT 9

1

2

3

4

5

6

7

(a) Cut Edges in Red

1

2

3

4

5

6

7

(b) Cut Edges Removed

Figure 1.5

to as a s-t cut, where s ∈ S and t ∈ T .

There are several ways to measure the size of the cut, depending on the instance of the
graph. In an unweighted graph the size of the cut C are the number of edges (vertices) in
the edge (vertex) cut-set, or more formally size(C) = |CE| (size(C) = |CV |). Where as for
a weighted graph the size of the cut is the sum of the edge (vertex) weights corresponding
to edges (vertices) in the edge (vertex) cut-set, size(C) = ∀ e

∑
e ∈ CE

we. Consequently for a

vertex cut-set, we have that the cut size in an unweighted graph is the number of vertices
in vertex cut-set size(C) = |CV |. The cut size in a weighted graph is the sum of all the
vertex weights corresponding to vertices in the vertex cut-set, size(C) =

∑
∀v∈CV

wv.

Now that we know how to measure a cut, it may not come as a surprise that cuts are
a classic minimization/ maximization problem. In minimum (maximum) cut, the task
is to find an optimum answer so that the cut is minimal (maximal). While minimum
cut is known to be P-complete, the max cut problem is known to be NP-complete. To
prove that maximum cut is in NP, one would have to provide a certificate and check in
polynomial time that the given certificate is a yes-instance. This would in the case of
maximum cut be a partition of the vertices in to two sets such that the size of the cut
is maximal for the graph. In ”Reducibility among combinatorial problems” by Karp [6]
max cut was one of the 21 problems whose NP-hardness was proven. Since then it has
been a widely studied subject.

We will in this thesis focus on minimum cut for determining the connectivity of the
graph.

1.4.1 Minimum Cut

Cuts are a classic minimization problem well-studied in the area of Computer Science.
Finding the minimum cut of a graph, is the task of finding a cut of minimal size. We say
that a cut is of minimum size if there does not exist any other cut in the graph of strictly

10 CHAPTER 1. INTRODUCTION

S

2

3

4

5

6

T

12

3

3

5

4

2

4 10

8

(a) Flow Graph, with Source S and Target T

S

2

3

4

5

6

T

12

0

0
5

1

0

0

6

6

0

3

3

0

3

2

4

4

2

(b) Residual Graph of the Flow Graph

Figure 1.6

smaller size. There are many variations of the minimum cut problem, depending on how
a cut is defined and measured. This trait makes the minimum cut problem an algorithm
that is applicable for a variety of real world application such as distributed computing,
network reliability and baseball elimination to mention a few.

An example of a minimum cut problem is that of finding the minimum s-t cut of the
graph. Where given an undirected graph G, we want to find a set CE(CV) of minimal size,
such that G′ = G − CE(G − CV) separates s and t into two disjoint parts of G′ making
G′ disconnected.

There exists many algorithms for solving minimum cut. In 1956 the famous Max-
Flow-Min-Cut theorem by Ford and Fulkerson [3], showed the duality of the minimum s-t
cut and maximum flow. The theorem states that the size of the minimum s-t cut is equal
to the maximum capacity flow through a single source, single sink network. We will in
this thesis use a flow algorithm to find the minimum cut.

A flow graph is a directed weighted graph as seen in Figure 1.6a. The objective is to
maximize the flow that run through the flow graph from a source vertex to a sink vertex.
With the constraints that the capacity of each edge is not exceeded, and incoming flow is
equal to out going flow at each intermediate vertex. In a possible analogy, the source can
be seen as the power station trying to push enough current through the power grid to a
industrial plant with a high demand power consumption to be able drift its operations.
It then becomes crucial that there is enough capacity in the power grid to allow for the
current flow to make its way from the source to the sink.

A residual graph is used to keep track of the flow that passes through each edge. A
residual graph is a directed weighted graph. Given a flow graph G, the residual graph Gr

is constructed with a flow f associated with each edge such that:

1. V (G) = V (Gr)

1.4. CUT 11

2. ∀ e ∈ E(G) there ∃ x ∈ E(Gr) with a capacity of cx = ce − fe

3. ∀ e = (u, v) ∈ E(G) there ∃ (v, u) ∈ E(Gr) with a capacity equal to fe

A vertex can only be reached through an edge with capacity greater than 0, so as long
as there exists a path from source to sink in Gr there is potential to increase the flow.

The maximum flow algorithm only operates on directed graphs. This means that given
an undirected graph G = (V,E), the graph has to be transformed to a directed graph
G′ = (V ′, E ′). To construct G′ from G, set V ′ = V and start with E ′ as an empty set.
Then for all edges <u, v> ∈ E, add two directed edges, (u, v) and (v, u) to E ′.

We then design the maximum flow algorithm, based on Edmonds–Karp algorithm[2]
for maximum flow:

Algorithm 1.1 Max Flow

Input: Given a flow graph G, source vertex s, sink vertex t
Create a residual graph Gr from G, and set maxF = 0
while ∃ a path from source to sink in Gr do

set f =∞
for all e ∈ path do

if ce<f then
f = ce

end if
end for
maxF += f

end while
return maxF

The running time varies depending on the implementation. Edmonds–Karp algorithm
for finding maximum flow runs in O(|V ||E|2). It is possible to alter the algorithm so that
the vertices on each side of the cut is also returned along with the maximum flow/minimum
cut size. An approach for finding the vertices on the source side, is simply running a depth
first search algorithm on the residual graph from the source not allowing transitions from
a vertex to another vertex over edges that have capacity 0. Along the way, the algorithm
marks all the visited vertices and adds them to the source side cut-set. The vertices not
marked by the depth first search (DFS) belongs on the sink side cut-set, since it is not
possible for the algorithm to move from the source side of the cut to the sink side. This
is due to the fact that we have maximized the flow and there can therefore not exists
any edges with capacity left from one side of the cut to the other side. If one such edge
existed, than that would mean that the flow returned is not maximal and thereby the cut
would not be a cut.

If we set all edges corresponding weight to be equal to 1, in other words we let the
weight reflect the presence of an edge in the graph, then the k-edge connectivity of a graph

12 CHAPTER 1. INTRODUCTION

is equal to the smallest size minimum s-t cut of the graph. Thus the k-edge connectivity
tells us the minimum number of edges whose removal would make the graph disconnected.
Which indicates how strong of a connectivity a graph and its components have.

1.5 K-connectivity

The k-connectivity of a graph can be measured over the edges or the vertices. We will
call k-connectivity over the edges for k-edge-connectivity and k-connectivity for vertices k-
vertex-connectivity. A vertex is k-edge connected to itself for all k>0. The k-connectivity
between a pair of vertices in an undirected graph is the equivalent of the minimum s-t
cut. For a pair of vertices (u, v), let Cu,v be the minimum cut between source u and sink
v and let Cv,u be the minimum cut between source v and sink u. Then the k-connectivity
between (u, v) is the smallest cut of Cu,v and Cv,u, i.e. k = min(Cu,v, Cv,u).

A graph G = (V,E) is said to be k-edge-connected if there does not exist a set of k−1
edges such that their removal from the graph would make the graph G disconnected.
Equivalently, a graph G is k-vertex-connected if there does not exist a set of k−1 vertices
such that their removal from the graph would make G disconnected. Determining the
edge connectivity of the graph is the equivalent of finding the global minimum cut of the
graph. In this thesis we will focus on the k-edge connectivity.

A pair of vertices are k-edge-connected if there does not exist any edge sets CE, where
|CE|<k, whose removal from the graph disconnects the two vertices. This means that
there are at least k edge disjoint paths between the two vertices in the graph. Thus if
a pair of vertices are k-edge-connected then they must also be l-edge-connected for any
integer l<k.

A connected component of G is a maximal set X ⊆ V such that all vertices in X are
connected. X is called a k-edge-connected component if X is a maximal subset of V , and
every pair of vertices u, v ∈ X are k-edge-connected, i.e. if G is k-edge connected, then it
is itself a k-edge component.

Previous studies on finding the k-edge connectivity of a graph have focused on finding
the k-edge connected components in undirected graphs for some small integer k.

When k = 1 this is equivalent to finding the connected components of the graph,
which can be done with a DFS in linear time. This is the same as finding the number of
connected components, since k = 1 would represent the presence of an edge.

For k = 2, Tarjan presented an algorithm [10] to find 2-edge connected components of
the graph using DFS in linear time.

For k = 3, there exists many practical linear time algorithms using DFS to solve the
problem in linear time [8, 11, 12]. These approaches utilizes what is called the DFS tree,
which is a partitioning of the edges of the graph into tree edges and back edges. Tree
edges would be an edge in a tree graph. Where a back edge would be an edge which

1.6. PARALLELIZATION 13

introduces an cycle in the tree, and each back edge in the tree can be seen as increasing
the connectivity between vertices. The first linear time algorithm was developed by Galil
and Italiano [4]. Their approach is quite complex and involves a reduction from 3-edge
connectivity problem to the 3-vertex connectivity problem, then running Hopcroft and
Tarjan’s algorithm for 3-vertex-connectivity to solve the problem.

For a general k, it has been showed by Matula [7] that edge connectivity for a graph
can be determined in O(V E) time, and that given k in advance, testing if the graph is
k-edge connected can be done in time O(k|V |2). In 1993 Nagamochi and Watanabe [9]
gave an algorithm, given an integer k, for finding all k-edge connected components in a
directed or undirected graph in time O(V min(k, V,

√
E)E). Nagamochi and Tbaraki [8]

also showed a reduction proving that any k-edge connected undirected graph G = (V,E),
has a k-edge connected spanning sub-graph G′ = (V,E ′)s.t.|E ′| = O(k|V |). They reduced
the time complexity for undirected graphs to O(|E|+ k2|V |2). Based on the observation
that if the cardinality of a cut C = (S, V − S) s.t. |C|<k, then the edge connectivity of
any two vertices u ∈ S and v ∈ V − S is also strictly less than k. Then we know that
for all pair of vertices <u, v> where a precalculated cut exists s.t. u ∈ S and v ∈ V − S,
there is no need to consider such a pair since u and v must be in different components.
Thus it is enough with O(|V |) time for finding the minimum s-t cuts of vertex pairs.

1.6 Parallelization

Parallelization is a field in Computer Science where the goal is to reduce the running time
of an algorithm by solving parts of the problem in concurrent operations. To do tasks in
parallel is nothing new, the idea has been used through out history to solve tasks of great
magnitude. It is not hard to imagine that a single person building a house would take a
whole lot more time than 10 persons building a house. This is what parallel programing
is about, to distribute the work load that is being processed among several processors.

Parallel processing is the processing of program instructions by dividing them among
multiple processors, with the objective of running a program in less time. Not every task
is suitable to be parallelized. It is the developers job to look for regions of code whose
instructions can be shared among the processors. Usually this is focused on distributing
the work of loops to the processors. In many programs, a calculation can depend on the
result of some previous calculation to be finished before itself can be processed. In these
situations it is critical to identify the dependencies and make the calculations in the right
order to get the correct solution.

In an ideal world, adding more processors to distribute the computation load on, would
mean that a program would run faster. But this is not always true, since adding more
processors leads to more overhead in the system setting up the processors for the task,
i.e. more administrative work for the program to distribute the work optimally. Which

14 CHAPTER 1. INTRODUCTION

is kind of a paradox as you usually are looking for an optimum.

The program in this thesis will be run on a symmetric multiprocessor (SMP) system.
SMP is a computer architecture running a single operating system with two or more
homogeneous processors operating with a shared common memory. A processor can be
assigned any task, and more processors can be added to improve the performance.

In the early years, different vendors of SMP systems had their own notation to specify
how the work of a program were dispersed out to the individual processors of the system,
as well as to enforce an ordering of accesses by different threads to shared data. These
notations mainly took form through instructions or directives that could be added to
programs written in a sequential language. This meant that one program written for one
SMP, did not necessarily execute on another SMP by a different vendor. This is why we
use openMP for parallelizing the program in this thesis.

1.6.1 OpenMP

OpenMP is a specification for a set of compiler directives, library routines, and envi-
ronment variables jointly defined by a group of major computer hardware and software
vendors, that makes it possible to parallelize code across hardware and software. It can
be used to specify high-level parallelism in Fortran and C/C++ programs, making the
programs both portable and scalable.

OpenMP was defined by the openMP ARB group in the latter half of the 1990s to
provide a common means for programming a broad range of SMP architectures. The first
version, consisting of a set of directives that could be used with Fortran, was introduced
to the public in late 1997.

Chapter 2

A Simple Algorithm for Finding All
k-Edge-Connected Components

In this chapter we will first present a naive approach for finding the k-edge connectivity
of a graph. Then we will present the algorithm proposed by Tianhao Wang et al. [13]
that not only finds the k-edge connectivity of the graph, but subsequently finds all k-edge
connected components.

2.1 Brute Force

A naive approach for solving the k-edge connectivity for a graph G = (V,E), is to find
the smallest minimum s-t cut between every pair of vertices in G. From this statement
it is possible to design an algorithm that uses two loops to cycle through every pair of
vertices to find the smallest minimum s-t cut.

Algorithm 2.1 is an example of such an implementation. It loops through every pair of
vertices and calculates the minimum cut, between the two vertices, using a maximum flow
algorithm. Each time it compares the cut size with the previous cut size, keeping track
of the smallest cut size it have encountered. When the algorithm finishes, processing all
the vertices, it returns the smallest minimum s-t cut in G.

The running time of Algorithm 2.1 is O(|V |2F), where F is the running time of the
minimum cut algorithm that is used. Using Edmonds-Karp maximum flow algorithm to
compute the cut, the running time is O(|V |2 ∗ (|V ||E|2)). Can we do better? First thing
to notice is that in an undirected graph the s-t cut between <v, u> is equal to the s-t cut
between <u, v>. This observation leads us to an algorithm with a slightly better running

time
V 2

2
∗ (V E2), but it still gives an asymptotic running time of O(V 2 ∗ (V E2)). To get

a better time complexity we have to do something more clever.

Every pair of vertices with a minimum cut larger or equal to some integer k, is k-

15

16CHAPTER 2. A SIMPLE ALGORITHM FOR FINDING ALLK-EDGE-CONNECTED COMPONENTS

Algorithm 2.1 Naive Aglorithm

Input: Given graph G
set k =∞
for s ∈ V (G) do

for t ∈ V (G) do
size = Max Flow(G,s,t)
if k > size then k = size
end if

end for
end for
return k

edge connected in the graph G. By storing information about the cuts during the run
of the algorithm, we could tell which subset of the vertices that belongs to the same
k-edge component in G. In the next section we will introduce a structure for storing
information about the cuts and how to exploit this structure for an improvement of the
time complexity for finding the k-edge connectivity of G.

2.2 A Simple Algorithm

The paper by Tianhao Wang et al.[13] present a simple algorithm for finding all k- edge
connected components for all k>0 in a directed or undirected, simple or multi-graph
G = (V,E). The algorithm calls an s-t maximum flow algorithm 2|V | − 2 times, to
compute the s-t minimum cut between pair of vertices in G. For each result that is
returned by the algorithm, an auxiliary graph is constructed, storing information about
the minimum s-t cuts. In effect, it is tracking the edge connectivity of G and all its
sub-components. The time complexity for constructing the auxiliary graph is O(F |V |),
where F is the time complexity of the s-t max flow algorithm, i.e., for the Edmonds-Karp
algorithm F = O(|V ||E|2). Subsequently, any improvement of the time complexity of F
would imply a reduction on the time complexity of the algorithm.

After its construction the auxiliary graph can be traversed in time O(|V |) to determine
the k-edge connected components of the graph for any value of k > 0, and the minimum
s-t cut between every pair of vertices.

2.2.1 Auxiliary Graph

The algorithm by Tianhao Wang et al. [13] exploits the use of an auxiliary graph A to
store information about the cuts between pair of vertices in a graph G = (V,E). Initially
A is the edgeless representation of G, with a vertex set VA = V and an empty edge set

2.2. A SIMPLE ALGORITHM 17

EA = {}. It is a forest where all the vertices of G are trees in the forest. Edges are added
between the trees, ensuring that no cycles are introduced in A. Gradually transforming
A from a forest into a tree.

To make sure edges are only connecting trees to each other, a set N ⊆ V of candidate
vertices are kept for a vertex s ∈ V . N is initially a collection of all the trees in A, thus
any vertex t can be chosen from N/{s} for an edge <s, t> to be added to A. If N is a
singleton then there exists no vertices that can be connected to s, and the algorithm stops.
The edge is assigned a weight equal to the size of the minimum cut C = (S, T) between s
and t. N is now divided into two partitions, to make sure that connected vertices are not
in the same set. One partition Ns of candidate vertices for s where Ns = S, if s ∈ S, and
the other partition Nt of candidate vertices for t where Nt = T . This process is repeated
with each of the new partitions and the corresponding vertex as input.

The intuition for the construction of the auxiliary graph is based on the fact that the
connectivity between vertices is transitive as proven in the paper by Tianhao Wang et
al. [13]. Let K(u, v) denote the connectivity between vertex u and v. Let K(a, b) = x,
K(b, c) = y, K(a, c) = z, then z ≥ min(x, y). In Figure 2.1b the connectivity between
pair of vertices from the graph depicted in Figure 2.1a have been stored in an auxiliary
graph A. From the figure we can see that during the construction of A a cut was made
between vertex 1 and 2 of size 2, and an edge was added between these two vertices in A.
A cut was also made between vertex 1 and 4 of size 3, and an edge was added between
these two vertices in A. We can then tell that the connectivity between 2 and 4 is equal
to the smallest edge on the path between them, which is 2.

A set of k-edge-connected components in G, for k>0, is a partition of V where each k-
edge connected component is the union of a collection of k+1-edge connected components
in G, i.e. in Figure 2.1a the 2-edge connected component is {1, 2, 3, 4, 5, 6, 7} and 3-
edge connected components are {1, 4}, {2}, {3}, {5}, {6}, {7}. In this case the 2-edge
connected component corresponds to exactly that of the union of all the 3-edge connected

1

2

3

4

5

6

7

(a) Connected Graph

1

2 34

56 7

2 2
3

2
2 2

(b) Auxiliary Graph of 2.1a

Figure 2.1

18CHAPTER 2. A SIMPLE ALGORITHM FOR FINDING ALLK-EDGE-CONNECTED COMPONENTS

components.

Thanks to the nature of the k-edge connected components inherently hierarchical
structure, it is possible to store information about the k-edge connected components in a
compact form, for all k>0.

Given a graph G, let x be the smallest integer such that all the x-edge connected
components of G are singletons. Let Ax be the edgeless spanning forest of A. Then the
collection of all x-edge connected components of G is exactly that of all the connected
vertex sets of Ax. Let Ax−1 be the spanning forest of A obtained by adding edges with
weights equal to x − 1 from A to Ax. Then the collection of all (x − 1)-edge connected
components of G is exactly that of all the connected vertex sets of Ax−1. This leads to the
general statement: for a k<x, let Ak+1 be the spanning forest of A. Then the collection
of all (k + 1)-edge connected components of G is exactly that of all the connected vertex
sets of Ak+1. Let Ak be the spanning forest of A obtained by adding edges with weights
equal to k from A to Ak+1. Then the collection of all k-edge connected components of G
is exactly that of all the connected vertex sets of Ak. This means that if we would like to
know the k-edge connected components of G, we could remove all edges with weights <k
from A. Then all the connected vertex set in A, after the removal of edges with weight
<k, are k-edge connected components in G.

Figure 2.1b illustrates an auxiliary graph A of the graph G depicted in Figure 2.1a.
The 4-edge connected components of G is represented by the edgeless spanning forest of
A, {1}, {2}, {3}, {4}, {5}, {6}, {7}. The 3-edge connected components of G is represented
by the spanning forest of A induced by the edge-set consisting of edges of weights ≥ 3,
{1, 4}, {2}, {3}, {5}, {6}, {7}. The 2-edge connected components of G is represented by
the spanning forest of A induced by the edge-set consisting of edges of weights ≥ 2,
{1, 4, 2, 3, 5, 6, 7}. Since we are only looking at connected graphs, the 1-edge connected
component is equal to G itself.

The auxiliary graph is constructed by the procedure CONSTRUCTION shown in Al-
gorithm 2.2. It is an essential part of the algorithm, which finds and stores information
about the subsets of vertices that are k-edge-connected in G. Thus the algorithm not only
finds the k-edge-connectivity for G, it determines the k-edge-connectivity for all connected
components V ′ ⊆ V .

The auxiliary graph makes the algorithm applicable for a variety of cases. Not only
looking for the connectivity of the entire graph, but also for gaining information regarding
the connectivity between components of the graph.

In the next section we will describe the essence of the algorithm and how to construct
the auxiliary graph.

2.2. A SIMPLE ALGORITHM 19

2.2.2 Algorithm

Given a connected graph G = (V,E), a start vertex s and a sink candidate vertex set
N = V , the algorithm (2.2) randomly picks a vertex t as the sink from N \ {s}, and runs
a maximum flow algorithm to find the minimum s-t cut.

If G is a directed graph it would run the maximum flow algorithm one more time, but
with t as the source and s as the sink vertex. This is done since the size of the cut could
differ. The two cuts, C(S, T) and C ′(S ′, T ′), obtained are then compared. If C ′ is smaller
then C, then C(S, T) = C ′(S ′, T ′). This is due to the fact that the connectivity between
a pair of vertices in a directed graph is the smallest between the minimum s-t cut and
minimum t-s cut.

With the obtained cut C(S, T), the algorithm adds an edge <s, t> to the auxiliary
graph A with weight |C|, symbolizing the connectivity between s and t. In the final step
the algorithm calls itself recursively, first with s as the start vertex and S as the vertex
set, then with t as the start vertex and T as the vertex set. The algorithm terminates
when S and T are reduced to singleton sets.

After the algorithm is finished constructing A, A can be traversed to obtain both the
k-edge connected components and k- edge connectivity of G. To find the k-edge connected
components of G we traverse all the edges in A and all edges with weight<k is deleted.
The connected vertex sets left in A then corresponds to the k-edge connected components
in G. To find the k-edge connectivity of G, we traverse A and remember the lightest edge
e of all edges in A. k is then equal to the edge with lightest weight in A, k = we. Both
these searches can be done in O(|V |) time, from the fact that A is a tree and has |V | − 1
number of edges.

Note that any s-t max flow algorithm can be used by the algorithm to determine the
cut and subsequently the weights of the auxiliary graphs edges.

Algorithm 2.2 A Simple Algorithm for Finding All k-Edge-Connected Components

function Construction(G = (V,E),s,N)
if N = {s} then return
end if
Randomly pick a vertex t from N \ {s}
(x, S, T) = s-t max flow(G,s,t)
(x′, S ′, T ′) = s-t max flow(G,t,s)
if x′<x then x = x′, S = S ′, T = T ′

end if
Add edge <s, t> with weight x to A
Construction(G,s,N

⋂
S)

Construction(G,t,N
⋂

T)
end function

20CHAPTER 2. A SIMPLE ALGORITHM FOR FINDING ALLK-EDGE-CONNECTED COMPONENTS

The algorithm calls 2 maximum flow algorithms for each time CONSTRUCTION is
called. Each time CONSTRUCTION is called a vertex is removed from the set of can-
didate vertices for the sink, until only a singleton set is left. Thus CONSTRUCTION
runs |V | − 1 times. The algorithm computes 2(|V | − 1) maximum flow in total, giving
a running time of O(F |V |) where F is the time complexity of the maximum flow algo-
rithm used. If the input graph is an undirected graph it is enough running 1 maximum
flow instead of 2, which would reduce the number of maximum flows calculations to |V |−1.

In the next chapter we will present our implementation of the algorithm and challenges
that were met during the implementation.

Chapter 3

Sequential Implementation

In this chapter we will present choices that were made when implementing the algorithm
by Tianhao Wang et al.[13] for computing all k-edge connected components. We will then
move on to the implementation of the algorithm, that is split into two parts. We will be
talking about the implementation for finding the minimum s-t cut and the construction
of the auxiliary graph. At the end of this chapter, a naive approach for solving k-edge
connectivity is implemented. The algorithm checks the results stored in the auxiliary
graph for correctness.

3.1 Implementing the Algorithm

The algorithm stores information about each minimum s-t cut in an auxiliary graph. To
construct the auxiliary graph, a maximum flow algorithm is utilized for finding the flow
between pair of vertices in the input graph. There exists a wide variety of maximum
flow algorithms that can be implemented, and we will explain our implementation in this
chapter. The maximum flow algorithm will be used in combination with a collection of
vertex sets for tracking which vertices to run the maximum flow between. We then extract
the cut set from the result of the maximum flow with a depth first search. Each time we
are dividing the vertices into two cut sets, one set with vertices from the source side of the
cut and one set with vertices from the sink side. We add an edge to the auxiliary graph
and then update the vertex set using the cut sets returned from the depth first search.
The information regarding the k-edge connectivity and k-edge connected components of
the input graph can then be retrieved from the auxiliary graph.

We will first introduce the maximum flow implementation before we explain how the
algorithm works and how it constructs the auxiliary graph. Finally we will describe how
to retrieve information from the auxiliary graph regarding the k-edge connectivity and
k-edge connected components.

21

22 CHAPTER 3. SEQUENTIAL IMPLEMENTATION

3.1.1 Minimum s-t cut

Algorithm 3.1 Minimum s-t cut

Input: Given a flow graph G = (V,E), a source vertex s, target vertex t
function Minimum s-t cut(G, s, t) . Start maximum flow

set flow = 0, vertex set S = {}, vertex set T = {}
while BFS reaches t through edges with residual capacity > 0 do

Set x = t
while x 6= s do

choose a neighbour y of x closer to the source
set capacity of edge (x, y)+ = 1
set capacity of edge (y, x)− = 1
set x = y

end while
end while . End maximum flow
push s onto stack L . Start depth first search
mark s
while L not empty do

set x to top element of L
remove top element from L
for all neighbours y of x do

if edge (x, y) capacity > 0 and y not marked then
push y onto stack L
mark y

end if
end for

end while . End depth first search
for all y ∈ V do

if y is marked and y ∈ Ns then Add y to S
else if y ∈ Ns then Add y to T
end if

end for
return flow, S, T

end function

To find the minimum s-t cut we implement a maximum flow algorithm and a depth
first search algorithm. There are several variations for implementing maximum flow. In
this thesis we have chosen to implement Edmonds–Karp algorithm [2] for computing the
maximum flow. The algorithm uses a breadth first search (BFS) to determine the next
augmenting path to choose, starting with the shortest path from a source vertex to a
target vertex, increasing in distance until there exist no paths with capacity > 0 leading
to the sink.

3.1. IMPLEMENTING THE ALGORITHM 23

In this thesis we are only interested in how many edges that are in the cut, and the
maximum flow algorithm reflects this in its implementation. Algorithm 3.1 can process
edges with weights > 1, but it is not done in an optimal way.

Given a flow graph G = (V,E), a source vertex s, target vertex t, and vertex set
Ns ⊆ V , our implementation of the maximum flow algorithm, shown with pseudo code
in Algorithm 3.1, starts with an initial flow of 0. A BFS is run from s, traversing only
edges with residual capacity > 0, either stopping when it reaches t or when all reachable
vertices have been visited. If t was not reached then there exist no augmenting path
to t from s, a path where all edges have residual capacity > 0, and the maximum flow
algorithm is done. When t is reached by the BFS then every vertex v that has been
visited by the BFS has an integer, dist(v) ≥ 0, indicating the distance from s assigned to
it. We then start from t, working our way back, updating capacities. Let x = t. While x
is not equal to s, we find a neighbour vertex y of x with distance closer to s, such that
dist(y) = dist(x)− 1. We update the edges, (x, y)+ = 1 and (y, x)− = 1, and repeat the
process with x = y. When s is reached we run the BFS again, looking for paths to t.

What we really want to find is the minimum s-t cut between the vertices. We already
know the size of the cut from the maximum flow algorithm, but not the cut sets. It is
possible to find the cut sets using a depth first search algorithm. Starting the search from
s, we mark this vertex as visited, and push s onto a stack L. As long as there are elements
on the stack L to be processed: let x be the top element of L and remove the top element
from L. Iterate through all neighbours of x. If a neighbour y exist, such that the edge
(x, y) has capacity > 0 and y is not marked, then push y onto the stack and mark y as
visited. Repeat the process until L is empty. When the search is finished, all vertices that
have been marked belongs to the source side S of the cut. This comes from the fact that
all edges crossing between the cut sets have a residual capacity of 0 after the maximum
flow have finished. Thus it is not possible to cross the cut starting from the source vertex,
traversing only edges with residual capacity > 0.

The final part of the maximum flow algorithm is to add the marked vertices to the
vertex set S, and unmarked vertices to the vertex set T . Then the algorithm returns the
flow along with the two cut sets S and T .

The running time of the implementation is O(|V ||E|2) for the Edmonds–Karp maxi-
mum flow algorithm [2]. The depth first search algorithm for finding the cut sets runs in
time O(|V | + |E|). In total, the running time of the implemented algorithm for finding
the s-t minimum cut is O(|V ||E|2) + O(|V |+ |E|), or simply O(|V ||E|2).

In the next section we will introduce the implementation of the algorithm and how
the auxiliary graph is constructed with the maximum flow algorithm as a subroutine.

24 CHAPTER 3. SEQUENTIAL IMPLEMENTATION

Algorithm 3.2 The Algorithm

Input: Given graph G = (V,E)
Let A = (V,E ′) where E ′ = {} . The auxiliary graph
Choose a root vertex for A
for all x ∈ V do Nx = {}
end for
Nroot = V
add root to Q
while Q is not empty do

set s to first element of Q
if size of Ns < 2 then

remove first element of Q
else

set t to be a vertex from Ns \ {s}
construct a flow graph F of G
C(c, S, T) = Minimum s-t cut(F ,s,t)
add the directed edge (s, t) to E ′ with weight = c
add t to Q
for all x ∈ Ns do

if x ∈ T then
add x to Nt

remove x from Ns

end if
end for

end if
end while

3.1. IMPLEMENTING THE ALGORITHM 25

3.1.2 Constructing the Auxiliary graph

It can be argued that the auxiliary graph is the most important structure of the algorithm,
as it is in a sense the essence of the algorithm. The implemented auxiliary graph is a tree
structure, but unlike the algorithm by Tianhao Wang et al.[13], it is a rooted tree. This
is partially due to the necessity of a vertex set that keeps track of the vertices that can
be connected in A, and partially to make it more convenient to parallelize the code. The
construction of A is shown in Algorithm 3.2.

Given a graph G = (V,E), Algorithm 3.2 starts by initializing the auxiliary graph A
to have the same vertex set as G and an empty edge set, A = (V,E ′) s.t E ′ = {}. A
vertex is then chosen from V to be the root vertex for A. For every vertex x ∈ V , a set
Nx is maintained for tracking which vertices are candidates to be the target vertex in the
minimum s-t cut between the two vertices. Initially N is an empty set for every vertex in
V . We then start by letting N for the root vertex to be equal to V , Nroot = V . This can
be done since A initially is a forest where all vertices are isolated (trees), thus adding an
edge between any pair of vertices can not create a cycle.

We are now ready to start the algorithm. To keep track of which vertices that are
viable as a source vertex by the algorithm, a Queue Q is used. The only vertex that can
be processed to start with is the root, so we add the root to Q. As long as Q is not empty
we do the following: we set s to be the the first element on Q. If Qs < 2 then there exist
no vertex to be chosen as sink vertex for the maximum flow algorithm with s as source,
so we remove s from Q. If Qs > 1, let t be a vertex in Qs \ s. We then construct a flow
graph F from G, and run the maximum flow algorithm with flow graph F , source s and
sink t. The maximum flow algorithm returns the cut sets S and T along with size of the
flow c. To store the information about the retrieved cut between s and t, a directed edge
(s, t) is added to the edge set E ′ from A and t is added to Q. It now becomes crucial to
correctly update the candidate vertex set for s and t respectively. To avoid corrupting
the information and introducing cycles in A the cut sets returned must be processed. We
are only interested in vertices in Ns, as described in the algorithm by Tianhao Wang et
al.[13], therefore we only add a vertex x to Nt, the candidate vertex set for t, if x ∈ T
and x ∈ Ns. Then we remove x from Ns as it is no longer a candidate vertex for s. We
do this for all vertices in T . The algorithm continues until there are no more vertices in
Q.

Algorithm 3.2 runs the maximum flow algorithm a total of O(|V |) times. Combin-
ing this with the run time of the maximum flow algorithm we get a total run time of
O(|V |2|E|2).

Now that the auxiliary graph is constructed, it is possible to extract information about
the k-edge connectivity and k-edge connected components of G. In the next subsection
we will describe how this information can be retrieved.

26 CHAPTER 3. SEQUENTIAL IMPLEMENTATION

3.1.3 Retrieve Information from the Auxiliary Graph

After the auxiliary graph A has been constructed we can retrieve information about the
k-edge connectivity and k-edge connected components of the input graph G = (V,E).
This information can easily be extracted by simply traversing A, Finding the k-edge
connected component of G can be done by deleting edges in A with weight less than
k, which can be done in O(|V |) time since A is a tree. The connected components left
in A, then corresponds to the k-connected components of G. Algorithm 3.3 shows how
the k-edge connectivity between two vertices in G can be retrieved from A. It first finds
the path between the two vertices and returns the weight of the edge with the lightest
weight on that path. The weight returned indicates the k-edge connectivity between the
two vertices. This algorithm will also be used by the algorithm that verifies that the
information stored in A is correct.

Given auxiliary graph A = (V,E ′), the root vertex of A, s ∈ V and t ∈ V , Algorithm
3.3 finds k by doing a depth first search. Initially k = ∞. It needs two stacks to track
the path from the root to each of the target vertices sStack for path to s and tStack for
path to t. Since A is a directed tree every search has to start at the root to be able to
search the complete tree, thus the root is added to both the sStack and the tStack.

The algorithm then starts traversing A, adding a vertex to the two stacks every time
it advances away from the root and removing a vertex from the two stacks every time
it moves closer to the root. When we find a vertex corresponding to either s or t, the
stack corresponding to this vertex is blocked from further changes. The algorithm then
continues searching for the other vertex in the same manner, adding a vertex to its stack
every time it advances away from the root and removing a vertex when it moves closer
to the root. Stopping when the last vertex is found. The two stacks now contains the
path between the root and the corresponding vertex. At some point these two paths must
intersect each other since A is a tree. If we find the intersection we have the path between
the two vertices in A. In fact every edge on the path to the intersection is on the path
between the two vertices.

The algorithm finds the intersection by comparing the distances of the vertices from
the root, remembering the lightest weight of an edge it has encountered along the way. If
the paths from the two vertices are at different distance from the root, then we remove
the top vertex from the stack which is furthest away from the root. Then we compare
k to the weight of the edge between the removed vertex u and the top vertex v of the
stack. If k is larger then the edge (v, u) weight, set k = weight of (v, u). If the paths
from the two vertices to the root is at the same distance from the root we compare the
top vertex of the two stacks. If they are different we are not at the intersection, so we
remove the top vertex from both stacks. We then compare k to the weight of the edges,
setting k equal to the lightest weight if k is larger. When the top vertex of both stacks
are the same, we have found the intersection. The k we are left with then corresponds to

3.1. IMPLEMENTING THE ALGORITHM 27

Algorithm 3.3 Retrieve k-edge Connectivity

Input: Auxiliary graph A = (V,E′), root vertex of A, s ∈ V , t ∈ V
function Get-k(A, root, s, t) . Start depth first search

k =∞
push root onto stack sStack
push root onto stack tStack
mark root
while (tStack top 6= t or sStack top 6= s) and dfsStack not empty do

set x to top element of dfsStack
if there exists a neighbour y of x not marked then

mark y
if top element of sStack 6= s then push y onto stack tStack
end if
if top element of tStack 6= t then push y onto stack tStack
end if

else
if top element of sStack 6= s then remove top element from sStack
end if
if top element of tStack 6= t then remove top element from tStack
end if

end if
end while . End depth first search
while sStack not empty and tStack not empty do . Find k-edge connectivity from A

if sStack size < tStack size then
set x to top element of tStack
remove top element from tStack
set y to top element of tStack
if weight of edge (y, x) ∈ A < k then k = weight (y, x)
end if

else if tStack size < sStack size then
set x to top element of sStack
remove top element from sStack
set y to top element of sStack
if weight of edge (y, x) ∈ A < k then k = weight (y, x)
end if

else if tStack size = sStack size then
set x to top element of sStack
set y to top element of tStack
if x = y then sStack = {} and tStack = {}
else remove top element from sStack and tStack

set x2 to top element of sStack
set y2 to top element of tStack
if weight of edge (x2, x) ∈ A < k then k = weight (x2, x)
end if
if weight of edge (y2, y) ∈ A < k then k = weight (y2, y)
end if

end if
end if

end while . End Find k-edge connectivity from A
return k

end function

28 CHAPTER 3. SEQUENTIAL IMPLEMENTATION

the k-edge connectivity between the two vertices, and it is returned by the algorithm.

The running time of the algorithm is O(|V |). It simply traverses the edges of a tree.

In the next section, we will describe the an algorithm that verifies the information
stored in the auxiliary graph, using Algorithm 3.3 as a subroutine.

3.2 Correctness Check

To check the correctness of the auxiliary graph that were constructed above, a naive algo-
rithm for finding the k-edge connectivity between every pair of vertices were implemented.
The cut size between a pair of vertices is calculated with a maximum flow algorithm, seen
in algorithm 3.4 below. A depth first search algorithm is then used to retrieve the cut
size stored in the auxiliary graph, and the size of the two cuts are compared.

The correctness of the cut in the graph is checked for every pair of vertices s and
t. It is enough to verify that the cut is correct in one direction from s to t, since the
implemented algorithm only operates on undirected graphs.

Given a graph G = (V,E), Auxiliary graph A = (V,E ′) and the root vertex of A,
Algorithm 3.4 verifies the correctness of A for every pair of vertices s and t in V . The
maximum flow between s and t is calculated and the size of the flow is then compared to
the k-edge connectivity, between the two vertices, stored in the auxiliary graph. Algorithm
3.3 is used as a subroutine to retrieve the k-edge connectivity. If the the two results does
not match a message is printed.

We have O(|V |2) pair of vertices to compare the maximum flow and cut size between.
The maximum flow algorithms running time is O(|V ||E|2) and to find the cut in the
auxiliary graph with a depth first search takes O(|V | + |E|) time. Since the auxiliary
graph is a tree, we have |V | = |E|, the running time of the depth first search can be
written O(|V |). This brings us to a total of O(|V |2((|V ||E|2) + (|V |)) = O(|V |3|E|2).

Running the check for correctness can take a long time. To help counter this time
consuming operation, the check was parallelized with an openMP for loop in the imple-
mentation.

In the next Chapter we will introduce the parallelization of A.

3.2. CORRECTNESS CHECK 29

Algorithm 3.4 Maximum Flow

Input: Given graph G = (V,E), Auxiliary graph A = (V,E ′), root vertex of A
for all s ∈ V do

for all t ∈ V \ {s} do
set flow = 0 . Start maximum flow
while BFS reaches t through edges with residual capacity > 0 do

Set x = t
while x 6= s do

choose a neighbour y of x closer to the source
set capacity of edge (x, y)+ = 1
set capacity of edge (y, x)− = 1
set x = y

end while
end while . End maximum flow
k =Get-k(A, root, s, t)
if k 6= flow then PrintError : k 6= flow
end if

end for
end for

30 CHAPTER 3. SEQUENTIAL IMPLEMENTATION

Chapter 4

Parallel Algorithm

In this chapter we will describe how we identified potential areas in the algorithm for
parallelization, and then give a short argumentation for the areas we choose for imple-
menting a parallel algorithm. We will then describe how we did the implementation of
the parallel algorithm and the decisions taken during the design.

4.1 Identifying Areas to Parallelize

The algorithm described in Chapter 2 can be divided into two parts. Where the first
part of the algorithm is the construction of the auxiliary graph, that can be done with a
fixed amount of calls to an maximum flow algorithm. This leads us to the second part of
the algorithm which is the maximum flow algorithm. Both of these parts, comprising the
algorithm, would be possible to parallelize.

Parallelizing a maximum flow algorithm is a complicated task to implement. This is
due to the fact that the maximum flow algorithm often are implemented as an augmenting
path algorithm, which pushes flow along edges from the source to the sink, making changes
to the edges as it goes. This in turn would have to be handled by the algorithm when
parallelized, leading to the need for locks to lock down edges as they are processed.

In this thesis we have chosen not to parallelize the maximum flow algorithm, due
to the reason explained above, but instead we have set our focus on how to parallelize
the construction of the Auxiliary graph. The first observation that were made is that
each thread, in an parallelized algorithm, can run its own instance of the maximum flow
algorithm for the computation of the connectivity between two vertices in a graph. The
second observation is that adding an edge in the auxiliary graph can be done in parallel
given that the data structure is fixed and not a dynamic structure.

The auxiliary graph demands a certain order to which vertices can be connected in it.
First of all it is important that it is a tree structure for it to have the desired properties.

31

32 CHAPTER 4. PARALLEL ALGORITHM

Secondly, an edge can only exist between the two vertices in the auxiliary graph after the
maximum flow algorithm have processed the vertices and a cut between the two vertices
have been found. This makes the process of constructing the auxiliary graph not too
optimal for parallelization, as the process involves starting with one task that must be
solved before two new tasks are ready for processing. Given large enough graphs this
should not be a problem as we should be able to divide the graph up pretty quickly.

When distributing the tasks it is critical to not hand out the same task twice, thus the
distribution of tasks becomes a process where we must use locks to ensure the safeness of
the process. The same lock must also be used when adding tasks for distribution, as an
insertion removal.

In the next section we will describe how we parallelized the algorithm and present our
implementation.

4.2 Parallel Implementation

In the implementation of the algorithm there are parts of the sequential algorithm that
can be reused without needing any form of alteration. The parts that can be reused is the
minimum s-t cut algorithm 3.1, the algorithm for retrieval of the cut from the auxiliary
graph 3.3 and the algorithm for correctness check of the auxiliary graph 3.4.

The minimum s-t cut algorithm will be used by each of the individual threads to
calculate the cut between the pair of vertices that the thread is processing at that time,
running the minimum s-t cut algorithm locally. Thus there is no interference from the
other threads made to this process.

When we want to retrieve the cut from the auxiliary graph there is no alteration made
to the data structure itself, we only read the information stored in the auxiliary graph.
This process can also be done without concern of interference from the other threads.

The correctness check can also be used as this can be run after the computation is
done in a sequential fashion, or as stated in Section 3.2 it can be parallelized with out
concern using the openMP for loop.

We will now describe how the construction of the auxiliary graph were parallelized
and implemented.

4.2.1 Parallel Algorithm for Constructing the Auxiliary Graph

The parallel construction of the auxiliary graph was implemented with the idea that the
first task would be computed, giving two new task to compute that again would yield two
new tasks for each the previous task and so on. This starting procedure leads to a limited
amount of task to be available at the start, but the number of tasks grows quickly.

Given a graph G = (V,E), Algorithm 4.1 starts by initializing the auxiliary graph A

4.2. PARALLEL IMPLEMENTATION 33

to have the same vertex set as G and an empty edge set, A = (V,E ′) s.t E ′ = {}. It then
chooses a vertex root from V , with highest degree, to be the root vertex for A. For every
vertex x ∈ V , a set Nx is maintained for tracking which vertices are candidates to be the
target vertex in the minimum s-t cut between the two vertices. Initially N is an empty
set for every vertex in V . We then start by letting N for the root vertex to be equal to
V , Nroot = V . This can be done since A initially is a forest where all vertices are isolated
(trees), thus adding an edge between any pair of vertices can not create a cycle.

We add the root to a queue Q then initialize the private variable s for every thread p
to be sp = −1, the reason for this will be made clear shortly. As long as A is not a tree,
we do the following: If Q contains tasks to be handed out for processing. One of the tasks
is assigned to a thread, if the thread does not already have a task. We continue in this
manner until either there are no more tasks on Q to be divided out or there are no more
unoccupied threads. If the vertex set Nsp of candidate vertices for vertex sp contains less
than 2 elements this means vertex s− p is processed, then we free up the thread working
this vertex and set its private variable sp = −1 so to not point to any vertex. If vertex
set Nsp is greater than 1 and the threads private variable sp is pointing to a vertex in V
then we have additional tasks to complete.

Set the private variable tp to be vertex from Nsp \ {sp}, with highest degree, for a
thread p and construct a private flow graph Fp from G. The thread then runs minimum
s-t cut algorithm 3.1 calculating and returning the cut. With the returned cut the edge
(sp, tp) is added to the edge E ′ of A with weight equal to the size of the cut. Now we must
update the candidate vertex set for sp and tp respectively. The vertices to be divided are
those present in Nsp . For every vertex x ∈ T , if x ∈ Nsp add x to Ntp then remove x from
Nsp as it is now the candidate vertex for tp and not sp. At last, after the vertex sets have
been updated we add tp to Q as it is now ready to be processed. When A is a tree we are
done.

A critical part of the algorithm is the adding and removing of tasks from Q. It is
important that this happens in an orderly fashion as to not interfere with the algorithms
calculations.

One of the challenges with the implementation is to make sure that there is a task
for each of the threads to process. This is what the algorithm tries to counter with
picking vertices of higher degree in an attempt to produce larger cut sets when running
the minimum cut algorithm, so that larger tasks can be divided among the threads. A
problem with this solution is that a vertex with high degree can have mostly neighbours
of degree 1 resulting in a lot of tasks involving none computation, thus countering the
cascading effect of a task creating two new tasks. This implies that depending on the
properties of the graph having more threads does not necessarily means a faster running
algorithm.

Testing have to be done in order to assert the assumptions made in the implementation
of the algorithm, that more threads can process a graph faster. In order to assert the

34 CHAPTER 4. PARALLEL ALGORITHM

assumptions made in the implementation of the algorithm we have to run tests on the
parallel algorithm and analyse the results which we will do in the next chapter.

Algorithm 4.1 The Parallel Algorithm

Input: Given graph G = (V,E)
Let A = (V,E ′) where E ′ = {} . The auxiliary graph
Choose a vertex from V with highest degree to be root vertex for A
for all x ∈ V do Nx = {}
end for
Nroot = V
add root to Q
Initialize the private variable sp for each thread p to be −1
while |E ′| < |V | do

if Q not empty then Only one thread p can enter at any time
set thread p’s private variable sp to first element of Q

end if
if size of Nsp < 2 then

set sp = −1
else if sp ∈ V then

set thread p’s private variable tp to be a vertex from Nsp \ {sp} with highest
degree

construct a private flow graph Fp of G for thread p
Cp(cp, Sp, Tp) = Minimum s-t cut(Fp,sp,tp)
add the directed edge (sp, tp) to E ′ with weight = cp
for all xp ∈ Nsp do

if xp ∈ Tp then
add xp to Ntp

remove xp from Nsp

end if
end for
add tp to Q

end if
end while

Chapter 5

Parallel Algorithm Analysis

In this chapter we will delve into the results collected from running the algorithm. We
will present the measured running time for both the sequential and parallel algorithm,
before we compare the variation of the running time between the sequential and parallel
algorithm. Next we will measure the running times of the parallel algorithm against the
running time of the sequential algorithm, giving insight into the potential reduction in
the running time provided more threads or in other words more machine power. Before
we proceed with presenting the measures of the efficiency of the parallel algorithm with
respect to the number of threads used. But first we will give a brief introduction to
previous work done on the subject before we set up some test conditions for the results
made.

5.1 Previous Work

Computing both the k-edge components of a graph and finding the k-edge connectivity
of the graph are two well studied subjects. These subjects have mainly been studied
separately in the previous work done, with the solution of one subject have lead to a
partial solution to the other, and vica versa. As mentioned in Section 1.5 Most of these
studies has been based on knowing some predetermined fact about the problem being
solved.

A study done on something similar to the approach we have taken is the Gomory-Hu
Tree, introduced by R. E. Gomory and T. C. Hu in 1961 [5], where the minimum s-t
cut between every pair of vertices is stored in a tree structure. The approach is based
on doing |V | − 1 maximum flow computations and storing the corresponding cuts in an
auxiliary graph. Thus it is possible to find the k-edge connectivity in the Gomory-Hu
tree, but not the k-edge connected components as it would require a different design for
storing the cuts in a tree structure.

35

36 CHAPTER 5. PARALLEL ALGORITHM ANALYSIS

The uniqueness of the algorithm implemented in this thesis, is that not only does it
find and store information about the k-edge connected components of the graph, but it
also finds the k-edge connectivity between all pairs of vertices in the graph. All made
possible by the auxiliary graph constructed.

5.2 Test Conditions

The algorithm have been evaluated on a variety of graphs from the The UF Sparse Matrix
Collection by Tim Davis[1]. This is a large collection of graphs used for benchmarks testing
for algorithms and during development of IT solutions. The graphs used for testing differ
in size and graph density. To conduct the tests, the graphs described in Table 5.1 were
selected on the criteria that they should vary in size and density. Starting with sparse
and small graphs at the top, then denser and bigger graphs at the end. Except for power
which is the sparsest graph in the graph collection.

To run the algorithms a super computer situated at the Department of Informatics,
at the University of Bergen, were administrated as the test environment. All the runs
were executed and timed on the computer to ensure that the run time environment were
identical for each execution of the algorithm. Thus no biases could arise due to different
hardware or software.

The sequential algorithm were run on the different graphs timing the running time for
each run. Then the parallel algorithm were run with different number of threads on each
graph, all while timing the running time. The number of threads used were set in a scale
to the power of 2, with a range from 1 to 32, doubling the potential machine power each
time the thread count was increased. When scaling the number of threads in this manner
we would expect the result of the running time for an efficient algorithm to exhibit, to
some extent, the same traits. Leading to the work load of each thread becoming smaller
and smaller as the number of threads are increased, an efficient algorithm would be able
to optimally distribute the workload thus becoming even more efficient. When timing the
algorithm, we only evaluate the algorithm itself ignoring initial setup of data structures.
Seeing that we are interested in the potential reduction on the running time, by utilizing
more threads or machine power.

In the next section we will present the running times measured during the test runs.

5.3 Results and Analysis

Our hypothesis was that for smaller graphs the parallel algorithm would have running
times close to the sequential algorithm, and that for larger graphs the expected running
time of the parallel algorithm would outperform the sequential algorithm, at an increased
rate when the number of threads were increased.

5.3. RESULTS AND ANALYSIS 37

Graph Name Number of Vertices Number of Edges

bcspwr05 443 1033
bcspwr06 1454 3377
bcspwr08 1624 3837

G49 3000 6000
power 4941 6594
c-20 2921 12803
c-23 3969 17524
c-32 5975 30223

Table 5.1: Graph Information

Threads bcspwr05 bcspwr06 bcspwr08 G49 power c-20 c-23 c-32

sequential 0.01946 0.20619 0.27451 0.442992 2.62954 2.40613 3.76468 7.718381
1 0.01897 0.20292 0.28213 0.13330 2.87303 2.11639 3.35760 6.57627
2 0.01152 0.11860 0.19366 0.20195 1.59667 1.85601 2.46516 5.15860
4 0.00852 0.09282 0.09906 0.304398 0.89373 1.67829 2.20961 5.47688
8 0.0074 0.05185 0.06699 0.29588 1.17854 1.90471 2.25752 5.58682
16 0.011792 0.06677 0.08695 0.51916 0.49330 2.44702 3.16193 7.24083
32 0.016706 0.12787 0.1806 0.98011 0.8377 5.0904 6.75289 15.06856

Table 5.2: Running Time in Seconds

The running time is a measure of the amount of resources the algorithm requires to
run. In Table 5.2 the running time of the sequential and the parallel algorithm is displayed,
measured in seconds. In the left most column of the table, the number of threads used
during the run time of the algorithm is shown or ”sequential” for the row with reference
to the sequential algorithm. The top row of the table describes which graph the running
time corresponds to. To analyse the data it is not ideal with a table as it does not convey
allot of information.

Figure 5.1 is a visualization of the data in the table, plotted in a line chart. In the
plot we can see that the running time becomes larger as the size of the graph increases,
but it is hard to extract more information than this from the chart. At the start of the
plot it is hard to distinguish any significant details about the different algorithms, and we
would have to enlarge that area if we wanted to analyse it.

From the results, the first thing to notice is that the running time for the parallel
algorithm and the sequential algorithm did not differ to much from each other. In Figure
5.1 we see that the parallel algorithm were in some cases vastly more time consuming than
the sequential algorithm, as were especially noticeable when the number of threads is set

38 CHAPTER 5. PARALLEL ALGORITHM ANALYSIS

to 32, except for in the case of the power graph. When the thread count were less than
this, the parallel algorithm seems to perform marginally better then sequential algorithm.
There are no leading thread count based on the running time that made it stand out as
the preferred number of threads. In fact almost all the thread counts had at some point
the best performing running time.

Ideally the running time would go down for each thread the algorithm have available,
but this behavior is none existing in our implementation. Some latency must be expected
when spawning extra threads. Given a thread needs to start its own copy of the algo-
rithm, initialize its own private data structures and variables before starting to compute.
Overhead is important to take into account when parallelizing since it can lead to an
increase of the running time.

A semi-log of Figure 5.1 helps to smooth out the large variation of the plots in the
figure. In a semi-log plot the variation in running time becomes smaller, but the actual
plot itself becomes clearer. This is due to the fact that we disregard the actual time scale
of the running times in favor of the log scale of the running times. This means that the
difference in running time will appear smaller then they actually are, as we have decreased
the time scale. But we have attained a clearer insight into the little details of the running
times.

Run Time

sequential

1

2

4

8

16

32

bcspwr05
bcspwr06

bcspwr08
G49

power
c-20

c-23
c-32

0

2

4

6

8

10

Graphs

Ti
m

e
(S

ec
on

ds
)

Figure 5.1: Timing of the Algorithms

Figure 5.2 is a semi-log plot of the running times in Figure 5.1. In the plot we see that

5.3. RESULTS AND ANALYSIS 39

the parallel algorithm for the most part have a better running time then the sequential
algorithm, especially in regards to the thread count of 2, 4 and 8. But we also see that
even though the thread count were more than doubled, the running time still did not
decrease. Hinting that some of the threads were ideal during some part of the execution
of the algorithm, which can be seen in the two cases with thread count of 16 and 32. In
addition, we observed that the two cases varies the most in its performance, that is they
do not seem to steadily outperform the other running times. The running time of the
parallel algorithm were not as ideal as we expected.

Semi-Log Plot Run Time

sequential

1

2

4

8

16

32

bcspwr05
bcspwr06

bcspwr08
G49

power
c-20

c-23
c-32

0

0.01

0.1

1

10

Graphs

Lo
g(

 T
im

e
(S

ec
on

ds
))

Figure 5.2: Log Plot Of the Timing

The speed up for a parallel algorithm is computed from the fastest known sequential
algorithm Ts over the parallel algorithm Tp, where p is the number of threads. Both
algorithms should be given the same work when comparing the algorithm, in this paper
the same graph. The speed up S is then defined:

S =
Ts

Tp

.

It is a ratio for the sequential running time up against the parallel running time. In
Figure 5.3, the speed up for the parallel algorithm have been plotted in a chart. On the
x-axis we have the number of threads, and the line represents the speed up for different
number of threads for solving the same graph. Ideally the desired speed up would be

40 CHAPTER 5. PARALLEL ALGORITHM ANALYSIS

equal to the number of threads sharing the work, but this is infrequently achieved. The
speed up reveals information of how well the parallel algorithm compares to the sequential
algorithm.

To analyse the discrepancies between our hypothesis and results, we will now have a
look at the speed plot in Figure 5.3. In the plot we can see that there are some outliers
where the parallel algorithm actually performed pretty decent, especially for the power
graph with a thread count of 16 where the speed up were more than 5 times better then
the sequential. When 4 threads were used, some speed up were achieved for the smaller
sparser graphs, while the bigger denser graphs had consistently marginally speed up or
none. The algorithm using 8 threads had the most consecutive result. It outperformed
the other thread counts for bcspwr05, bcspwr06 and bcspwr08. And it performed close to
as good as the best performing thread counts on c-20, c-23 and c-32. The only deviations
for the performance of the algorithm running on 8 threads where for the power and g49
graphs. An outlier to take note on is that there were a speed up of around 3 for graph G49
with one thread, which is strange since this should be close to the equivalent of running
the sequential algorithm.

Speed Up

bcspwr05

bcspwr06

bcspwr08

G49

power

c-20

c-23

c-32

1 2 4 8 16 32
0

2

4

6

8

Threads

S
pe

ed
 U

p
R

at
io

Figure 5.3: Speed Up Achieved with Parallel Algorithm

For more granular information of the parallel algorithm, knowing how efficiently a
thread operates can be a good indication of the overall performance of the algorithm.
The parallel efficiency is measured as the speed up above but instead of thinking of

5.3. RESULTS AND ANALYSIS 41

the algorithm as a whole process, we want to measure each of the p individual threads
distribution of the tasks. We define the parallel efficiency E to be:

E =
T1

Tp ∗ p
.

In Figure 5.4 the efficiency of the parallel algorithm is displayed, with the number of
threads on the x-axis and the efficiency score on the y-axis. The line tells us how efficiently
we are using all the threads available to the algorithm. It is important to be aware that
only strong scaling were done when measuring the efficiency due to the workings of the
algorithm the possibility to perform weak scaling were not possible. In strong scaling
the goal is to keep the problem sized fixed increasing the number of threads to find an
optimally number of threads to use for solving the problem as efficiently as possible. For
weak scaling the goal is to keep the problem size fixed for each thread and a larger number
of threads are used to solve an increasingly bigger problem.

Prior results are pointing at some potential speed up for the overall cases when the
number of threads were increased, but the results are varying depending on the graphs.
Looking at the efficiency plot in Figure 5.4 we observe that the marginal efficiency is
exponentially decreasing, as expected, when adding the additional threads. in addition,
we observe that after the thread count of 8 the marginal efficiency are drawing close to
zero.

These findings are supported by the results shown in Figure 5.5. We observe that
there are still some marginal efficiency to be gained with a thread count of 16 but, when
we get to a thread count of 32 the marginal efficiency are close to zero.

Figure 5.5 shows the same information as Figure 5.4 in a log log plot. From this log
log plot it becomes more clearly where the point of diminishing return is located in the
plot.

Looking at the log log plot in Figure 5.5 we get a clearer illustration of the degree of
the efficiency. From the plot we see that the decrease of efficiency is starting to take effect
right from the starter supporting our previous observations.

Some of the limitations on the efficiency and speed up of the parallel algorithm, stems
from the construction procedure of the auxiliary graph limiting the work that can be
processed concurrently. This could lead to threads spending significant time in an idle
state, which is not optimal in regards to a high efficiency.

The parallel algorithms tries to cut down on time the threads spends in an idle state by
choosing vertices with high degree to process first, with the goal of splitting the graph into
larger cuts for threads to process. The effect of this procedure seems to vary depending
on the graph and number of threads.

In the next chapter we will state our conclusion.

42 CHAPTER 5. PARALLEL ALGORITHM ANALYSIS

Efficiency

bcspwr05

bcspwr06

bcspwr08

G49

power

c-20

c-23

c-32

6 12 18 24 30
0

1

2

3

4

Threads

P
ar

al
le

l E
ffi

ci
en

cy

Figure 5.4: Efficiency of the Parallel Algorithm

Efficiency Log-Log

bcspwr05

bcspwr06

bcspwr08

G49

power

c-20

c-23

c-32

1 5 10
0.01

0.1

1

Threads

Lo
g(

 P
ar

al
le

l E
ffi

ci
en

cy
)

Figure 5.5: Semi-Log Efficiency of the Parallel Algorithm

Chapter 6

Conclusion

The properties of the graphs and the work load distribution due to the structure of the
algorithm seem to have mixed effects on the running time. The results are indicating that
the properties of the graphs have an direct implication on the marginal efficiency gained
by adding additional threads. This is supported by the findings that more threads seems
to be creating throttle necks. It is not always important to use more threads but rather
ensuring an efficient flow of the process to avoid the creation of to many bottle necks that
limits the execution.

With these results in mined, it should be looked into if knowing the property of the
graph would be the best way of identifying the optimal thread count for optimizing the
running time of a parallel algorithm. To improve on the algorithm some sort of heuristic
for deciding which vertices are processed during the algorithm could be implemented in
the future. There is also the possibility of, instead of letting the threads process individual
cuts for construction of the tree, parallelizing the cut algorithm. Based on the observation
that the running time of the algorithm is O(F |V |) where F is the running time of the cut
algorithm used. This implies that the algorithm could be implemented with a better cut
algorithm to cut down on the running time, but it would not lead to an increase in the
efficiency of the parallel algorithm

43

44 CHAPTER 6. CONCLUSION

Bibliography

[1] T. A. Davis and Y. Hu. Acm transactions on mathematical software. The University
of Florida Sparse Matrix Collection, 38(1):1:1–1:25, 2001.

[2] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. J. ACM, 19(2):248–264, April 1972.

[3] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum flow through a
network. Information Theory, IEEE Transactions on, 2(4):117–119, Dec 1956.

[4] Zvi Galil and Giuseppe F. Italiano. Reducing edge connectivity to vertex connectivity.
SIGACT News, 22(1):57–61, March 1991.

[5] R. E. Gomory and T. C. Hu. Multi-terminal network flows. 9(4):551–570, December
1961.

[6] Richard M. Karp, Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger.
Reducibility among Combinatorial Problems, pages 85–103. Springer US, Boston,
MA, 1972.

[7] David W. Matula. Determining edge connectivity in 0(nm). In Proceedings of the 28th
Annual Symposium on Foundations of Computer Science, SFCS ’87, pages 249–251,
Washington, DC, USA, 1987. IEEE Computer Society.

[8] Hiroshi Nagamochi and Toshihide Ibaraki. A linear time algorithm for computing 3-
edge-connected components in a multigraph. Japan Journal of Industrial and Applied
Mathematics, 9(2):163, 1992.

[9] WATANABE T NAGAMOCHI H. Computing k-edge-connected components of a
multigraph. IEICE transactions on fundamentals of electronics, communications
and computer science, E76A(4):513–517, 1993.

[10] R.Endre Tarjan. A note on finding the bridges of a graph. Information Processing
Letters, 2(6):160 – 161, 1974.

45

46 BIBLIOGRAPHY

[11] Yung H. Tsin. A simple 3-edge-connected component algorithm. Theory of Comput-
ing Systems, 40(2):125–142, 2007.

[12] Yung H. Tsin. Yet another optimal algorithm for 3-edge-connectivity. Journal of
Discrete Algorithms, 7(1):130 – 146, 2009. Selected papers from the 1st International
Workshop on Similarity Search and Applications (SISAP)1st International Workshop
on Similarity Search and Applications (SISAP).

[13] Tianhao Wang, Yong Zhang, Francis Y. L. Chin, Hing-Fung Ting, Yung H. Tsin, and
Sheung-Hung Poon. A simple algorithm for finding all k-edge-connected components.
PLOS ONE, 10(9):1–10, 09 2015.

Appendix A

Sekvensial Algorithm

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <s t r i ng>
#include <vector>
#include <queue>
#include <stack>
#include <time . h>
#include <omp . h>

#define MAX LEN 400
#define CHUNK 50

using namespace std ;

int main (int argc , char ∗argv []) {
int V,E, s , t , i , j , f low , flowAux , temp , nrVert icesOnSourceSide ,

↪→ num items read , e r r =0;/∗ B r g j r e s om t i l I n f i n i t y . OK! ∗/
double d ;
double s ta r t , end ;
int NUM THREADS = a t o i (argv [2]) ;
omp set dynamic (0) ;
/∗SET THE BUFFER TO NULL SO WRITTING TO FILE DOES NOT WAIT∗/
s e tbu f (stdout , NULL) ;

/∗OPEN FILE∗/
char l i n e [MAX LEN] ;
i f (argc <1){

p r i n t f (”No arguments g iven \n”) ;
return 0 ;
}
s t r i n g f i l e S t r i n g = ” . / . . / Graphs/” + s t r i n g (argv [1]) ;

47

48 APPENDIX A. SEKVENSIAL ALGORITHM

FILE ∗ pFi l e ;
pF i l e = fopen (f i l e S t r i n g . c s t r () , ” r ”) ;
i f (pF i l e==NULL) {

p r i n t f (”Could not open %s !\n” , argv [1]) ;
f c l o s e (pF i l e) ;
return 0 ;

}

/∗READ BANNER∗/
do {

i f (f g e t s (l i n e , 200 , pF i l e) == NULL) {
p r i n t f (”Preamature EOF of %s whi l e read ing banner\n” , argv

↪→ [1]) ;
return 0 ;

}
}while (l i n e [0] == ’%’) ;

/∗READ NR OF NODES AND EDGES∗/
i f (s s c a n f (l i n e , ”%d %d %d” , &V, &j , &E) != 3)
do{

num items read = f s c a n f (pFi le , ”%d %d %d” , &V, &j , &E) ;
i f (num items read == −1) {

p r i n t f (”Preamature EOF of %s whi l e read ing nr o f Nodes and
↪→ Edges\n” , argv [1]) ;

return 0 ;
}

}while (num items read != 3) ;

/∗VECTOR & DATA SETUP∗/
vector<vector<int> > G(V, vector<int>()) ; //The Graph
vector<vector<int> > W(V, vector<int>()) ; //The Weight o f an edge ,

↪→ w i l l a lways be one .
vector<int> v i s i t e d (V, 0) ; //The v i s i t e d l i s t used by DFS and

↪→ BFS
queue<int> Q; //The Queue
stack<int> S ; //The Stack

/∗READ EDGES∗/
for (i = 0 ; i<E; i++){
// i f (f s c an f (pFi le , ”%d %d %f ” , &s , &t , &d) !=3){ //IF edges g iven

↪→ with FLOATE weigh t
// i f (f s c an f (pFi le , ”%d %d %d” , &s , &t , &j) !=3){ //IF edges g iven

↪→ with we igh t
i f (f s c a n f (pFi le , ”%d %d” , &s , &t) !=2){ //IF edges on ly g iven by

↪→ node pa i r
p r i n t f (”Preamature EOF of %s whi l e read ing edges \n” , argv [1]) ;
return 0 ;
}
i f (s != t) {

49

G[(s % V)] . push back ((t % V)) ;
G[(t % V)] . push back ((s % V)) ;
W[(s % V)] . push back (1) ;
W[(t % V)] . push back (1) ;
}
}
f c l o s e (pF i l e) ;
p r i n t f (”Read f i l e %s done , nodes=%d & edges=%d\n” , argv [1] ,V,E) ;

/∗CHECK THAT GRAPH IS CONNECTED∗/
Q. push (0) ;
v i s i t e d [0]++;
while (Q. s i z e ()) {
for (i = 0 ; i < G[Q. f r o n t ()] . s i z e () ; i++){
i f (v i s i t e d [G[Q. f r o n t ()] [i]] <1) {
Q. push (G[Q. f r o n t ()] [i]) ;
v i s i t e d [G[Q. f r o n t ()] [i]]++;
}
}
Q. pop () ;
}

for (i = 0 ; i < V; i++){
i f (v i s i t e d [i]==0){ p r i n t f (”Graph i s not connected !\n Program

↪→ terminated \n”) ; return 0 ;}
}

/∗SETUP AUXILIARY GRAPH∗/
vector<int> f i r s t C h i l d (V) ; //Pointer to f i r s t c h i l d
vector<int> nrOfChi lds (V) ;
vector<int> ch i ldID (V) ; //ID of c h i l d po in ted to
vector<int> QStart (V) ;
vector<int> QEnd(V) ;
vector<int> nextChi ld (V) ;
vector<int> weight (V) ;
vector<int> setQ (V) ;
queue<int> AuxQ;
int ch i ldPos =0;
int root =0;

for (i =1; i<V; i++){
i f (G[root] . s i z e ()<G[i] . s i z e ())
root = i ;

}

nrOfChi lds [root]=0;
QStart [root] = 1 ; /∗ Vurderer i k k e seg s e l v som en kandidat t i l

↪→ s ink node∗/
QEnd[root] = V;

50 APPENDIX A. SEKVENSIAL ALGORITHM

for (i = 0 ; i < V; i++){
setQ [i]= i ;
f i r s t C h i l d [i]=−1;
}
setQ [0] = root ; //Swapping the roo t and 0 so t ha t
setQ [root] = 0 ; //Root d o n t cons ider i t s s e l f as t a r g e t

/∗START ALGORITHM∗/
s t a r t = omp get wtime () ;
AuxQ. push (root) ;
while (AuxQ. s i z e ()) {

s=AuxQ. f r o n t () ;
i f ((QEnd[s] − QStart [s]) <= 0) {
AuxQ. pop () ;
continue ;
}

t = setQ [QStart [s]] ;

for (i = 1 ; i < (QEnd[s]−QStart [s]) ; i++){
i f (G[t] . s i z e ()<G[setQ [QStart [s]+ i]] . s i z e ())
t=setQ [QStart [s]+ i] ;

}

AuxQ. push (t) ;
/∗MAXIMUM FLOW START∗/
f l ow = 0 ;
for (i = 0 ; i < V; i++){
for (j = 0 ; j < W[i] . s i z e () ; j++){
W[i] [j] = 1 ;
}
}
while (true) {
/∗DISTANS BFS START∗/
v i s i t e d . a s s i g n (V,−1) ;
Q. push (s) ;
v i s i t e d [s]=0;
while (Q. s i z e ()) {

temp = Q. f r o n t () ;
Q. pop () ;
for (i = 0 ; i < G[temp] . s i z e () ; i++){
i f (v i s i t e d [G[temp] [i]]<0 && W[temp] [i]>0){
Q. push (G[temp] [i]) ;
v i s i t e d [G[temp] [i]] = v i s i t e d [temp]+1;
i f (G[temp] [i]==t) {Q = queue<int>() ; break ;}
}
}
}
i f (v i s i t e d [t]<0){break ;}

51

/∗DISTANS BFS END∗/

else { /∗AUGMENTH PATH∗/
temp = t ;
POOL: while (temp != s) {
for (i = 0 ; i < G[temp] . s i z e () ; i++){
i f (v i s i t e d [G[temp] [i]] == (v i s i t e d [temp]−1)) {
for (j = 0 ; j < G[G[temp] [i]] . s i z e () ; j++){
i f (G[G[temp] [i]] [j]==temp && W[G[temp] [i]] [j]>0){
W[temp] [i]++;
W[G[temp] [i]] [j]−−;
temp = G[temp] [i] ;
goto POOL;
}
}
}
}
}
f l ow += 1 ;
}
}
/∗MAXIMUM FLOW END∗/
/∗FIND THE CUT START∗/
v i s i t e d . a s s i g n (V,−1) ;
temp = (QEnd[s]−QStart [s]) ;

for (i = 0 ; i < temp ; ++i)
{

v i s i t e d [setQ [QStart [s]+ i]] = 0 ;
}
S . push (s) ;
v i s i t e d [s]=2;
v i s i t e d [t]=2;
nrVert icesOnSourceSide =0;
while (S . s i z e ()) {

temp = S . top () ;
S . pop () ;
for (int i = 0 ; i < G[temp] . s i z e () ; ++i)
{
i f (v i s i t e d [G[temp] [i]]==0 && W[temp] [i]>0){

v i s i t e d [G[temp] [i]]++;
S . push (G[temp] [i]) ;
nrVert icesOnSourceSide++;
} else i f (v i s i t e d [G[temp] [i]]==−1 && W[temp] [i]>0){

S . push (G[temp] [i]) ;
v i s i t e d [G[temp] [i]]−−;
}
}
}

52 APPENDIX A. SEKVENSIAL ALGORITHM

/∗FIND THE CUT END∗/
/∗PARTIOTION THE VERTICES AND UPDATE AUX GRAPH START∗/
int l ength = (QEnd[s]−QStart [s]) ;
QEnd[t] = QEnd[s] ; /∗Sink ta r over source s ine endpoint ∗/
QEnd[s] = QStart [s] + nrVert icesOnSourceSide ;
QStart [t] = QEnd[s]+1;

j =0;
nrVert icesOnSourceSide =0;
for (i = 0 ; i < l ength ; ++i)
{
i f (v i s i t e d [setQ [QStart [s]+ i]]==1){
setQ [QStart [s]+(nrVert icesOnSourceSide++)]=setQ [QStart [s]+ i] ;
}
else i f ((v i s i t e d [setQ [QStart [s]+ i]]) ==0){

v i s i t e d [setQ [QStart [s]+ i]] = 2 ;
temp = setQ [QStart [t]+(j)] ;
setQ [QStart [t]+(j++)]=setQ [QStart [s]+ i] ;
setQ [QStart [s]+(i−−)] = temp ;
}
}
setQ [QEnd[s]]= t ;

i f (nrOfChi lds [s]==0){
f i r s t C h i l d [s] = ch i ldPos ;
nextChi ld [ch i ldPos] = ch i ldPos ;
} else {

temp = f i r s t C h i l d [s] ;
for (i = 1 ; i < nrOfChi lds [s] ; i++){
temp = nextChi ld [temp] ;
}
nextChi ld [temp] = ch i ldPos ;
}
weight [ch i ldPos] = f low ;
ch i ldID [ch i ldPos++]=t ;
nrOfChi lds [s]++;
/∗PARTIOTION THE VERTICES AND UPDATE AUX GRAPH END∗/
}
end = omp get wtime () ;
double seconds = end−s t a r t ;
i f (seconds <360.0)

p r i n t f (”\nDone ! Time used was %f seconds \n Edges in t r e e = %d\n\n” ,
↪→ seconds , ch i ldPos) ;

else
p r i n t f (”\nDone ! Time used was %f minutes\n Edges in t r e e = %d\n\n” , (

↪→ seconds /60 . 0) , ch i ldPos) ;
/∗END ALGORITHM∗/

/∗REGION TO CHECK IF RESULT IS CORRECT(Maximum f low vs Aux i l i a r y graph

53

↪→) ∗/
//Check t ha t a l l Ver t i c e s are in Aux i l i a r y graph
v i s i t e d . a s s i g n (V, 0) ;
for (i = 0 ; i < V; ++i)
{

v i s i t e d [ch i ld ID [i]]++;
}
v i s i t e d [root]++;
for (i = 0 ; i < V; ++i)
{
i f (v i s i t e d [i]<1)

p r i n t f (” Vertex %i i s miss ing in Aux i l i a ry graph” , i) ;
i f (v i s i t e d [i]==2)

p r i n t f (” Vertex %i something wrong\n” , i) ;
}
//The Real check
p r i n t f (” Test ing f o r c o r r e c t n e s s \n”) ;
s t a r t = omp get wtime () ;
#pragma omp p a r a l l e l for schedu le (dynamic , CHUNK) num threads (

↪→ NUM THREADS) private (i , j , s , t , f low , flowAux , temp , v i s i t e d ,Q)
↪→ f i r s t p r i v a t e (W)

for (int k = 0 ; k < V; k++){
for (int l = k+1; l < V; l++){
/∗MAXIMUM FLOW START∗/
s=k ; t=l ;
f low = 0 ;
for (i = 0 ; i < V; i++){
for (j = 0 ; j < W[i] . s i z e () ; j++){
W[i] [j] = 1 ;
}
}
while (true) {

/∗DISTANS BFS START∗/
v i s i t e d . a s s i g n (V,−1) ;
Q. push (s) ;
v i s i t e d [s]=0;
while (Q. s i z e ()) {

temp = Q. f r o n t () ;
Q. pop () ;
for (i = 0 ; i < G[temp] . s i z e () ; i++){
i f (v i s i t e d [G[temp] [i]]<0 && W[temp] [i]>0){
Q. push (G[temp] [i]) ;
v i s i t e d [G[temp] [i]] = v i s i t e d [temp]+1;
i f (G[temp] [i]==t) {Q = queue<int>() ; break ;}
}
}
}
i f (v i s i t e d [t]<0){break ;}

54 APPENDIX A. SEKVENSIAL ALGORITHM

/∗DISTANS BFS END∗/

else {
temp = t ;
LOOP: while (temp != s) {
for (i = 0 ; i < G[temp] . s i z e () ; i++){
i f (v i s i t e d [G[temp] [i]] == (v i s i t e d [temp]−1)) {
for (j = 0 ; j < G[G[temp] [i]] . s i z e () ; j++){
i f (G[G[temp] [i]] [j]==temp && W[G[temp] [i]] [j]>0){
W[temp] [i]++;
W[G[temp] [i]] [j]−−;
temp = G[temp] [i] ;
goto LOOP;
}
}
}

}
}
f l ow += 1 ;
}
}
/∗MAXIMUM FLOW END∗/

/∗FIND FLOW NR FROM AUXILIARY GRAPH∗/
flowAux = E;

int cur , next , sFound=1,tFound=1;
v i s i t e d . a s s i g n (V, 0) ; /∗ bruke d i s t an s t i l ho lde s t y r p hvor

↪→ mange barn som er t r a v e r s e r t og b e s k t . ∗/
stack<int> df sStack ;
stack<int> nextStack ;
stack<int> sStack ;
stack<int> tStack ;
d f sStack . push (root) ;
sStack . push (root) ;
tStack . push (root) ;
i f (s == root) {sFound=0;}
i f (t == root) {tFound=0;}
while ((sFound | | tFound) && ! d f sStack . empty ()) {

cur = dfsStack . top () ;
i f (nrOfChi lds [cur]> v i s i t e d [cur]) {
i f (v i s i t e d [cur]==0){next = f i r s t C h i l d [cur] ; }
else {

next = nextStack . top () ;
nextStack . pop () ;
}
df sStack . push (ch i ldID [next]) ;

55

i f (sFound) {
sStack . push (next) ;
i f (ch i ldID [next]==s) {sFound=0;}
}
i f (tFound) {
tStack . push (next) ;
i f (ch i ldID [next]==t) {tFound=0;}
}
nextStack . push (nextChi ld [next]) ;
v i s i t e d [cur]++;
} else {

df sStack . pop () ;
i f (d f sStack . s i z e ()<nextStack . s i z e ()) {nextStack . pop () ;}
i f (sFound) { sStack . pop () ;}
i f (tFound) { tStack . pop () ;}
}
}
sFound=chi ldID [sStack . top ()] ;
tFound=chi ldID [tStack . top ()] ;
while (! sStack . empty () && ! tStack . empty ()) {
i f (sStack . s i z e ()<tStack . s i z e ()) {
i f (flowAux>weight [tStack . top ()]) { flowAux = weight [tStack . top ()] ; }
tStack . pop () ;
}
else i f (tStack . s i z e ()<sStack . s i z e ()) {
i f (flowAux>weight [sStack . top ()]) { flowAux = weight [sStack . top ()] ; }
sStack . pop () ;
}
else i f (sStack . s i z e ()==tStack . s i z e ()) {
i f (sStack . top ()==tStack . top ()) {
break ;
}
else {
i f (flowAux>weight [sStack . top ()]) { flowAux = weight [sStack . top ()] ; }
sStack . pop () ;
i f (flowAux>weight [tStack . top ()]) { flowAux = weight [tStack . top ()] ; }
tStack . pop () ;
}
}
}
i f (flowAux == E)

p r i n t f (”\nCould not f i n d f low in Aux i l i a ry graph . Should not happen
↪→ ever , ever !\n\n”) ;

else i f (flowAux!= f low)
p r i n t f (”%i ERROR − s=%i | t=%i f low from Aux i l i a ry %i ,% i graph=%i

↪→ f l ow from MAX−FLOW=%i \n” , e r r++,s , t , sFound , tFound , flowAux ,
↪→ f l ow) ;

}

56 APPENDIX A. SEKVENSIAL ALGORITHM

}
end = omp get wtime () ;
f loat t e s t i ngSeconds = end−s t a r t ;
i f (t e s t ingSeconds <360.0)

p r i n t f (”\nDone ! Test ing f i n i s h e d in %f seconds \n” , t e s t ingSeconds) ;
else

p r i n t f (”\nDone ! Test ing f i n i s h e d in %f minutes\n” , (t e s t i ngSeconds
↪→ /60 .0)) ;

i f (e r r==0)
p r i n t f (”<−−−−−−−−−−−−−−−−−−−−−−−−−>\n<−> Success ! <−>\n

↪→ <−−−−−−−−−−−−−−−−−−−−−−−−−>\n”) ;
else

p r i n t f (”\n : (\n!−!−! Nr o f e r r o r s are %i !−!−!\n” , e r r) ;

return 0 ;
}

Appendix B

Parallel Algorithm

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <s t r i ng>
#include <vector>
#include <queue>
#include <stack>
#include <time . h>
#include <omp . h>

#define MAX LEN 400
#define CHUNK 50

using namespace std ;

int main (int argc , char ∗argv []) {
int V,E, s=−1,t , i , j , f low , flowAux , temp , nrVert icesOnSourceSide ,

↪→ num items read , e r r =0;
double d ;
double s ta r t , end ;
omp set dynamic (0) ;
/∗SET THE BUFFER TO NULL SO WRITTING TO FILE DOES NOT WAIT∗/
s e tbu f (stdout , NULL) ;

/∗OPEN FILE∗/
char l i n e [MAX LEN] ;
i f (argc <1){

p r i n t f (”No arguments g iven \n”) ;
return 0 ;
}
s t r i n g f i l e S t r i n g = ” . / . . / Graphs/” + s t r i n g (argv [1]) + ” . mtx” ;
FILE ∗ pFi l e ;
pF i l e = fopen (f i l e S t r i n g . c s t r () , ” r ”) ;

57

58 APPENDIX B. PARALLEL ALGORITHM

i f (pF i l e==NULL) {
p r i n t f (”Could not open %s !\n” , argv [1]) ;
f c l o s e (pF i l e) ;
return 0 ;

}

/∗READ BANNER∗/
do {

i f (f g e t s (l i n e , 200 , pF i l e) == NULL) {
p r i n t f (”Preamature EOF of %s whi l e read ing banner\n” , argv

↪→ [1]) ;
return 0 ;

}
}while (l i n e [0] == ’%’) ;

/∗READ NR OF NODES AND EDGES∗/
i f (s s c a n f (l i n e , ”%d %d %d” , &V, &j , &E) != 3)
do{

num items read = f s c a n f (pFi le , ”%d %d %d” , &V, &j , &E) ;
i f (num items read == −1) {

p r i n t f (”Preamature EOF of %s whi l e read ing nr o f Nodes and
↪→ Edges\n” , argv [1]) ;

return 0 ;
}

}while (num items read != 3) ;

/∗VECTOR & DATA SETUP∗/
vector<vector<int> > G(V, vector<int>()) ;
vector<vector<int> > W(V, vector<int>()) ;
vector<int> v i s i t e d (V, 0) ;
queue<int> Q;
stack<int> S ;

/∗READ EDGES∗/
for (i = 0 ; i<E; i++){
i f (f s c a n f (pFi le , ”%d %d %f ” , &s , &t , &d) !=3){ //IF edges g iven wi th

↪→ FLOATE weigh t
// i f (f s c an f (pFi le , ”%d %d %d” , &s , &t , &j) !=3){ //IF edges g iven

↪→ with we igh t
// i f (f s c an f (pFi le , ”%d %d” , &s , &t) !=2){ //IF edges on ly g iven

↪→ by node pa i r
p r i n t f (”Preamature EOF of %s whi l e read ing edges \n” , argv [1]) ;
return 0 ;
}
i f (s != t) {
G[(s % V)] . push back ((t % V)) ;
G[(t % V)] . push back ((s % V)) ;
W[(s % V)] . push back (1) ;
W[(t % V)] . push back (1) ;

59

}
}
f c l o s e (pF i l e) ;
p r i n t f (”Read f i l e %s done , nodes=%d & edges=%d\n\n” , argv [1] ,V,E) ;

/∗CHECK THAT GRAPH IS CONNECTED∗/
Q. push (0) ;
v i s i t e d [0]++;
while (Q. s i z e ()) {
for (i = 0 ; i < G[Q. f r o n t ()] . s i z e () ; i++){
i f (v i s i t e d [G[Q. f r o n t ()] [i]] <1) {
Q. push (G[Q. f r o n t ()] [i]) ;
v i s i t e d [G[Q. f r o n t ()] [i]]++;
}
}
Q. pop () ;
}

for (i = 0 ; i < V; i++){
i f (v i s i t e d [i]==0){ p r i n t f (”Graph i s not connected !\n Program

↪→ terminated \n”) ; return 0 ;}
}

/∗SETUP AUXILIARY GRAPH∗/
vector<int> f i r s t C h i l d (V) ; //Pointer to f i r s t c h i l d
vector<int> nrOfChi lds (V) ;
vector<int> ch i ldID (V) ; //ID of c h i l d po in ted to
vector<int> QStart (V) ;
vector<int> QEnd(V) ;
vector<int> nextChi ld (V) ;
vector<int> weight (V) ;
vector<int> setQ (V) ;
int ch i ldPos =0;

int root =0;

//Chose the b i g g e s t node as s t a r t node .
for (i =1; i<V; i++){
i f (G[root] . s i z e ()<G[i] . s i z e ())
root = i ;

}

nrOfChi lds [root]=0;
QStart [root] = 1 ; /∗ Vurderer i k k e seg s e l v som en kandidat t i l

↪→ s ink node∗/
QEnd[root] = V;
for (i = 0 ; i < V; i++){

setQ [i]= i ;
f i r s t C h i l d [i]=−1;

60 APPENDIX B. PARALLEL ALGORITHM

}
setQ [0] = root ; //Swapping the roo t and 0 so t ha t
setQ [root] = 0 ; //Root d o n t cons ider i t s s e l f as t a r g e t

/∗START ALGORITHM∗/
p r i n t f (”Number o f Threads reques ted was %i \n” , a t o i (argv [2])) ;
s t a r t = omp get wtime () ;
#pragma omp p a r a l l e l num threads (a t o i (argv [2])) private (i , j , t , s , f low ,

↪→ flowAux , temp , v i s i t e d ,Q, S , nrVert icesOnSourceSide) f i r s t p r i v a t e (W
↪→)

{
s=−1;

int workingThreads = 1 ;
int chi ldPosPid ;
i =0;
i f (omp get thread num ()==0){
s=root ;
}
while (workingThreads) {

i f (s<0){
#pragma omp c r i t i c a l (AddRemoveWork)
{
i f (!AuxQ. empty ()) {
s = AuxQ. f r o n t () ;
AuxQ. pop () ;
}
}
}

i f (s<0 | | (QEnd[s] − QStart [s]) <= 0) {
i f (ch i ldPos==(V−1))

workingThreads−−;
s=−1;
continue ;
}

t = setQ [QStart [s]] ;
for (i =1; i <(QEnd [s]−QStart [s]) ; i++){
i f (G[t] . s i z e () < G[setQ [QStart [s]+ i]] . s i z e ())
t=setQ [QStart [s]+ i] ;

}

/∗MAXIMUM FLOW START∗/
f l ow = 0 ;
for (i = 0 ; i < V; i++){
for (j = 0 ; j < W[i] . s i z e () ; j++){
W[i] [j] = 1 ;
}

61

}
while (true) {
/∗DISTANS BFS START∗/
v i s i t e d . a s s i g n (V,−1) ;
Q. push (s) ;
v i s i t e d [s]=0;
while (Q. s i z e ()) {

temp = Q. f r o n t () ;
Q. pop () ;
for (i = 0 ; i < G[temp] . s i z e () ; i++){
i f (v i s i t e d [G[temp] [i]]<0 && W[temp] [i]>0){
Q. push (G[temp] [i]) ;
v i s i t e d [G[temp] [i]] = v i s i t e d [temp]+1;
i f (G[temp] [i]==t) {Q = queue<int>() ; break ;}
}
}
}
i f (v i s i t e d [t]<0){break ;} // the r e are no more paths to t a r g e t
/∗DISTANS BFS END∗/

else { /∗AUGMENTH PATH∗/
temp = t ;
POOL: while (temp != s) {
for (i = 0 ; i < G[temp] . s i z e () ; i++){
i f (v i s i t e d [G[temp] [i]] == (v i s i t e d [temp]−1)) {
for (j = 0 ; j < G[G[temp] [i]] . s i z e () ; j++){
i f (G[G[temp] [i]] [j]==temp && W[G[temp] [i]] [j]>0){
W[temp] [i]++;
W[G[temp] [i]] [j]−−;
temp = G[temp] [i] ;
goto POOL;
}
}
}
}
}
f l ow += 1 ;
}
}
/∗MAXIMUM FLOW END∗/
/∗FIND THE CUT START∗/
v i s i t e d . a s s i g n (V,−1) ;
temp = (QEnd[s]−QStart [s]) ;

for (i = 0 ; i < temp ; ++i)
{

v i s i t e d [setQ [QStart [s]+ i]] = 0 ; //Only want v e r t i c e s t ha t are in
↪→ the s e t to be in the cut

}

62 APPENDIX B. PARALLEL ALGORITHM

S . push (s) ;
v i s i t e d [s]=2;
v i s i t e d [t]=2;
nrVert icesOnSourceSide =0;
while (S . s i z e ()) { //DFS to f i nd cut source−s i d e

temp = S . top () ;
S . pop () ;
for (int i = 0 ; i < G[temp] . s i z e () ; ++i)
{
i f (v i s i t e d [G[temp] [i]]==0 && W[temp] [i]>0){

v i s i t e d [G[temp] [i]]++;
S . push (G[temp] [i]) ;
nrVert icesOnSourceSide++;
} else i f (v i s i t e d [G[temp] [i]]==−1 && W[temp] [i]>0){

S . push (G[temp] [i]) ;
v i s i t e d [G[temp] [i]]−−;
}
}
}
/∗FIND THE CUT END∗/
/∗PARTIOTION THE VERTICES AND UPDATE AUX GRAPH START∗/
#pragma omp c r i t i c a l (UpdateAux)
{

chi ldPosPid = ch i ldPos++;
}
int l ength = (QEnd[s]−QStart [s]) ;
QEnd[t] = QEnd[s] ; /∗Sink ta r over source s ine endpoint ∗/
QEnd[s] = QStart [s] + nrVert icesOnSourceSide ;
QStart [t] = QEnd[s]+1;

j =0;
nrVert icesOnSourceSide =0;
for (i = 0 ; i < l ength ; ++i) //Updating the s e t a f t e r the cut
{
i f (v i s i t e d [setQ [QStart [s]+ i]]==1){
setQ [QStart [s]+(nrVert icesOnSourceSide++)]=setQ [QStart [s]+ i] ;
}
else i f ((v i s i t e d [setQ [QStart [s]+ i]]) ==0){

v i s i t e d [setQ [QStart [s]+ i]] = 2 ;
temp = setQ [QStart [t]+(j)] ;
setQ [QStart [t]+(j++)]=setQ [QStart [s]+ i] ;
setQ [QStart [s]+(i−−)] = temp ;
}
}
setQ [QEnd[s]]= t ;

i f (nrOfChi lds [s]==0){ // i f source have no prev c h i l d s t h i s i s
↪→ f i r s t c h i l d

f i r s t C h i l d [s] = chi ldPosPid ;

63

nextChi ld [ch i ldPosPid] = chi ldPosPid ;
} else {

temp = f i r s t C h i l d [s] ;
for (i = 1 ; i < nrOfChi lds [s] ; i++){ // i f source have prev ch i l d ,

↪→ must f i nd po in t e r to l a s t c h i l d
temp = nextChi ld [temp] ;
}
nextChi ld [temp] = chi ldPosPid ;
}
weight [ch i ldPosPid] = f low ;
ch i ldID [ch i ldPosPid++]=t ;
nrOfChi lds [s]++;

/∗PARTIOTION THE VERTICES AND UPDATE AUX GRAPH END∗/

#pragma omp c r i t i c a l (AddRemoveWork)
{
i f (workingThreads>=0){
AuxQ. push (t) ;
i f (! (workingThreads <0))
workingThreads++;

}
}
}
}
end = omp get wtime () ;
double seconds = end−s t a r t ;
i f (seconds <360.0)

p r i n t f (”\nDone ! Time used was %f seconds \n Edges in t r e e = %d\n\n” ,
↪→ seconds , ch i ldPos) ;

else
p r i n t f (”\nDone ! Time used was %f minutes\n Edges in t r e e = %d\n\n” , (

↪→ seconds /60 . 0) , ch i ldPos) ;
/∗END ALGORITHM∗/
//

↪→ −−−//
↪→

/∗REGION TO CHECK IF RESULT IS CORRECT(Maximum f low vs Aux i l i a r y graph
↪→) ∗/

//Check t ha t a l l Ver t i c e s are in Aux i l i a r y graph
v i s i t e d . a s s i g n (V, 0) ;
for (i = 0 ; i < V; ++i)
{

v i s i t e d [ch i ld ID [i]]++;
}
v i s i t e d [root]++;
for (i = 0 ; i < V; ++i)
{
i f (v i s i t e d [i]<1)

64 APPENDIX B. PARALLEL ALGORITHM

p r i n t f (” Vertex %i i s miss ing in Aux i l i a ry graph” , i) ;
}
//The Real check
p r i n t f (” Test ing f o r c o r r e c t n e s s \n”) ;
s t a r t = omp get wtime () ;
#pragma omp p a r a l l e l for schedu le (dynamic , CHUNK) num threads (a t o i (

↪→ argv [3])) private (i , j , s , t , f low , flowAux , temp , v i s i t e d ,Q)
↪→ f i r s t p r i v a t e (W)

for (int k = 0 ; k < V; k++){
for (int l = k+1; l < V; l++){
/∗MAXIMUM FLOW START∗/
s=k ; t=l ;
f low = 0 ;
for (i = 0 ; i < V; i++){
for (j = 0 ; j < W[i] . s i z e () ; j++){
W[i] [j] = 1 ;
}
}
while (true) {

/∗DISTANS BFS START∗/
v i s i t e d . a s s i g n (V,−1) ;
Q. push (s) ;
v i s i t e d [s]=0;
while (Q. s i z e ()) {

temp = Q. f r o n t () ;
Q. pop () ;
for (i = 0 ; i < G[temp] . s i z e () ; i++){
i f (v i s i t e d [G[temp] [i]]<0 && W[temp] [i]>0){
Q. push (G[temp] [i]) ;
v i s i t e d [G[temp] [i]] = v i s i t e d [temp]+1;
i f (G[temp] [i]==t) {Q = queue<int>() ; break ;}
}
}
}
i f (v i s i t e d [t]<0){break ;}
/∗DISTANS BFS END∗/

else {
temp = t ;
LOOP: while (temp != s) {
for (i = 0 ; i < G[temp] . s i z e () ; i++){
i f (v i s i t e d [G[temp] [i]] == (v i s i t e d [temp]−1)) {
for (j = 0 ; j < G[G[temp] [i]] . s i z e () ; j++){
i f (G[G[temp] [i]] [j]==temp && W[G[temp] [i]] [j]>0){
W[temp] [i]++;
W[G[temp] [i]] [j]−−;
temp = G[temp] [i] ;
goto LOOP;

65

}
}
}

}
}
f l ow += 1 ;
}
}
/∗MAXIMUM FLOW END∗/

/∗FIND FLOW NR FROM AUXILIARY GRAPH∗/
flowAux = E;

int cur , next , sFound=1,tFound=1;
v i s i t e d . a s s i g n (V, 0) ;
stack<int> df sStack ;
stack<int> nextStack ;
stack<int> sStack ;
stack<int> tStack ;
d f sStack . push (root) ;
sStack . push (root) ;
tStack . push (root) ;
i f (s == root) {sFound=0;}
i f (t == root) {tFound=0;}
while ((sFound | | tFound) && ! d f sStack . empty ()) {

cur = dfsStack . top () ;
i f (nrOfChi lds [cur]> v i s i t e d [cur]) {
i f (v i s i t e d [cur]==0){next = f i r s t C h i l d [cur] ; }
else {

next = nextStack . top () ;
nextStack . pop () ;
}
df sStack . push (ch i ldID [next]) ;
i f (sFound) {
sStack . push (next) ;
i f (ch i ldID [next]==s) {sFound=0;}
}
i f (tFound) {
tStack . push (next) ;
i f (ch i ldID [next]==t) {tFound=0;}
}
nextStack . push (nextChi ld [next]) ;
v i s i t e d [cur]++;
} else {

df sStack . pop () ;
i f (d f sStack . s i z e ()<nextStack . s i z e ()) {nextStack . pop () ;}
i f (sFound) { sStack . pop () ;}

66 APPENDIX B. PARALLEL ALGORITHM

i f (tFound) { tStack . pop () ;}
}
}
sFound=chi ldID [sStack . top ()] ;
tFound=chi ldID [tStack . top ()] ;
while (! sStack . empty () && ! tStack . empty ()) {
i f (sStack . s i z e ()<tStack . s i z e ()) {
i f (flowAux>weight [tStack . top ()]) { flowAux = weight [tStack . top ()] ; }
tStack . pop () ;
}
else i f (tStack . s i z e ()<sStack . s i z e ()) {
i f (flowAux>weight [sStack . top ()]) { flowAux = weight [sStack . top ()] ; }
sStack . pop () ;
}
else i f (sStack . s i z e ()==tStack . s i z e ()) {
i f (sStack . top ()==tStack . top ()) {
break ;
}
else {
i f (flowAux>weight [sStack . top ()]) { flowAux = weight [sStack . top ()] ; }
sStack . pop () ;
i f (flowAux>weight [tStack . top ()]) { flowAux = weight [tStack . top ()] ; }
tStack . pop () ;
}
}
}
i f (flowAux == E)

p r i n t f (”\nCould not f i n d f low in Aux i l i a ry graph . Should not happen
↪→ ever , ever !\n\n”) ;

else i f (flowAux!= f low)
p r i n t f (”%i ERROR − s=%i | t=%i f low from Aux i l i a ry %i ,% i graph=%i

↪→ f l ow from MAX−FLOW=%i \n” , e r r++,s , t , sFound , tFound , flowAux ,
↪→ f l ow) ;

}
}
end = omp get wtime () ;
double t e s t i ngSeconds = end−s t a r t ;
i f (t e s t ingSeconds <360.0)

p r i n t f (”\nDone ! Test ing f i n i s h e d in %f seconds \n” , t e s t ingSeconds) ;
else

p r i n t f (”\nDone ! Test ing f i n i s h e d in %f minutes\n” , (t e s t i ngSeconds
↪→ /60 .0)) ;

i f (e r r==0)
p r i n t f (”<−−−−−−−−−−−−−−−−−−−−−−−−−>\n<−> Success ! <−>\n

↪→ <−−−−−−−−−−−−−−−−−−−−−−−−−>\n”) ;
else

p r i n t f (”\n : (\n!−!−! Nr o f e r r o r s are %i !−!−!\n” , e r r) ;

return 0 ;

67

}

