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Summary 
This thesis is devoted to studies of long term storage of carbon dioxide in geological formations such 
as saline aquifers. The goal of the thesis is to contribute to the development of a totally integrated 
storage evaluation tool which considers reactive transport as well as geomechanics. Our secondary 
goal was to investigate the effects of introducing a fracture in the confining cap rock with respect to 
the mechanical and chemical aspects of gas injections.  
 
In order to safely assume that injected gas will not escape the geological formation, it is imperative 
to obtain knowledge about reservoirs and the dynamics connected carbon dioxide injections. 
Laboratory experiments can only provide limited knowledge and large scale projects are 
economically not feasible and will only produce results after several years. The best approach would 
be to develop and utilize reservoir simulators capable of predicting the chemical and mechanical 
behaviour. However such simulators need benchmarking and comparison with respect to injections 
in real reservoirs.  
 
There is no need to look further than our own continental shelf to find operational fields with pilot 
projects of CO2 injections. The SACS-project (Saline Aquifer Carbon dioxide storage) was initiated in 
1996 at the Sleipner field and has been continuously monitored is a valuable source of data for 
simulation comparisons.    
 
The coupled codes calledknown as Retraso CodeBright (RCB) have been used to simulate the 
injection of CO2 in an aquifer. RCB originates from the Technical University of Catalonia, of which the 
team contributing with the two chemical and mechanical parts of the code consisted of Maarten W. 
Saaltink, Carlos Ayora and Sebastia Olivella. [RCB manual] The platform was initially intended for 
standard conditions at 1 atm pressure and 15 celcius. Reservoirs of interest to geological 
sequestration are generally at larger depths, which mean that the governing equations has to deal 
with higher pressures, temperature and stresses than originally intended. 
 
Despite of the intended application of the software, RCB was selected as a candidate for project 
“Observing the effect of long term CO2 storage in saline aquifers” which is carried out in the 
Department of Physics and Technology at the University of Bergen, Norway. [art] As part of this 
project, and as initially intended, the RCB code has received a range of modification in order to apply 
on deep formation CO2 storage. 
  
The simulations were run with conditions similar to those found in the Utsira formation 

supplemented with data from simulations in the FLAC3D model. However, due to limited sources of 

relevant use and the original application of the code platform, I have spent some time learning how 

to apply the code on deep formation conditions. Most of my initial simulations diverged and it’s only 

during the last 3 months that I have succeeded in producing presentable data. 
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1. Abbreviations 
 

T     Temperature (K) 

P     Pressure (bar) 

    Fugacity coefficient (1/P) 

a     Activity 

f    Fugacity 

Z     Compressibility factor 

G     Gibbs free energy of a reaction 

H     Enthalpy 

 S     Entropy 

n     Moles 

M     Molar mass 

m     Mass (g) 

    Chemical potential 

    Activity coefficient for ionic species. 

Ea     Apparent activation energy used for mineral kinetics 

K     Equilibrium constants for reactions 

K    Kinetic constant (n/m2s) 

r     Rate (n/s) 

R     Gas constant (8.3145kJ/nK) 

    Density CO2 or aqueous phase 
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2. Introduction 
 
This thesis is related to the studies of long term storage of carbon dioxide in geological formations 
such as aquifers. It is imperative to obtain knowledge about  
 
The goal of the thesis is to contribute to the development of a totally integrated storage evaluation 
tool which considers reactive transport as well as geomechanics. As an extension of this goal, the 
secondary aim is to investigate the effects of introducing a fracture in the confining cap rock with 
respect to the mechanical and chemical aspects of gas injections.  
 
Information about the changes in earth’s climate has been systematically gathered and compared 
since the middle of the 19th century. The gathered data show trends and changes in the global 
climate. Among these trends the most obvious is the change is in global average temperature and 
the concentration of carbon dioxide in the atmosphere. However, these observations can be said to 
vary naturally without the contribution of human activity. [1] As this thesis does not consider the 
discussions regarding cause and effect of the global warming; the contribution to this debate will 
only be limited to the discussion regarding geological sequestration of CO2 as a viable solution to 
reduce the magnitude of atmospheric emissions. 
 
In the early 21st century the focus on carbon dioxide as a greenhouse gas increased. It is now 
commonly known that carbon dioxide contributes to the greenhouse effect and there is a larger 
acceptance within scientific communities that emission of CO2 gas into the atmosphere is actually 
causing global warming and thus altering the climate. This acceptance has resulted in the 
development and investigation of several methods to store greenhouse gases in order to reduce the 
emissions. To achieve a reduction in the emission of greenhouse gasses there are two obvious and 
equally important solutions: Reduction of atmospheric emissions through new technology and 
through storage. 
 

Injecting the carbon dioxide into geological formations may prove to be a secure storage location for 

long periods of time. However, the injected CO2 will dissolve and dissociate causing the acidity of the 

formation to increase. A higher acidity might affect the mineralogy of the solid matrix. 

In this thesis, a combination of codes known as Retraso CodeBright (RCB) has been used to simulate 

the injection of CO2 in an aquifer. RCB originates from the Technical University of Catalonia, of which 

the team contributing with the two chemical and mechanical parts of the code consisted of Maarten 

W. Saaltink, Carlos Ayora and Sebastia Olivella.  

The platform was initially intended for standard conditions at 1 atm pressure and 15 celcius. Despite 

the intended application of the software, RCB was selected as a candidate for project “Observing the 

effect of long term CO2 storage in saline aquifers” which is carried out in the Department of Physics 

and Technology at the University of Bergen, Norway. As part of this project, and as initially intended, 

the RCB code has received a range of modification in order to apply the code on deep formation CO2 

storage. The larger depths also mean that the code has to deal with higher pressures, temperature 

and stresses than originally intended.  
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The simulations were run with conditions similar to those found in utsira/Flac3D article. However, 

due to limited sources of relevant use and the original application of the code platform, I have spent 

some time learning how to apply the code on deep formation conditions. Most of my initial 

simulations diverged and it’s only during the last 3 months that I have succeeded in... 

With some basic experience and operator knowledge, the simulation platform Retraso CodeBright 

can be described as a rather user friendly software that requires a relatively small amount of time 

and effort to initiate and run. In terms of processing time, each case requires a total simulation time 

ranging from 3 to 7 days, depending on the processing hardware and complexity of the input data. 

The initial 2-layer cases required an average of 3 days to complete a 100 year simulation containing 

60 000 time steps, while the more complex fracture cases presented in this thesis required more 

than 7 days. 

3. Geological sequestration 
This chapter starts with an introduction to the general reservoir layout and the properties of the solid 

matrix and it’s containing fluids. The following chapters contain a more elaborate explanation of the 

most important reservoir properties.  

Much of the material found in this chapter is gathered from personal lecture notes and curriculum 

reading from reservoir subjects.  

3.1.     Carbon dioxide storage in geological formations 
With the increased focus on carbon dioxide as a greenhouse gas, there is a need for solutions that 

give means for secure long term storage. Injecting CO2 into geological formations may prove to be a 

secure storage solution for thousands of years and more. Reservoirs at depths below 1000m, such as 

the Utsira formation, have high pressures due to the overburden stress. In the pressure ranges at 

these depths, CO2 has a density not far from that of a liquid. This enables efficient use of the 

available storage space in the formation. This thesis is mainly focused on the saline aquifer type of 

reservoirs, which can be described as porous formations containing brine or water saturated with 

indigenous species. Operational and depleted oil reservoirs may also be utilized in geological storage. 

Geological storage of CO2 is possible due to a range of mechanisms, such as entrapment below a low 

permeable or impermeable layer that confines the gaseous species, preventing them from reaching 

the surface. Dissolution and dissociation of CO2 in water contained in the formation also plays an 

important role in the storage of CO2. Existing gas and oil reservoirs prove that long-term geological 

storage is possible over millions of years at ideal conditions. That is without earthquakes and similar 

tectonic forces that might induce fractures in the cap rock 

The actual process of carbon dioxide storage will utilize much of the already existing technology and 

equipment used oil companies today. Procedures for drilling, injection, simulations and monitoring 

can easily be adapted to CO2 injection. Since these solutions have already been used for many years 

under varying conditions, the geological storage can be classified as low risk operations. But even 

though the risks of leakage are low, the impact of an eventual has to be assessed with respect to the 

ecological environment and humans.[2] 



11 
 

At the right conditions CO2 gas can escape from the aquifer. With a billion tonnes of injected CO2 and 

additional CO2 concentrations from calcium carbonates, a small fracture can release large quantities 

of the stored gases. External reservoir influences such as production wells or can potentially   

3.2.     Carbon dioxide injection 
Carbon dioxide has to be injected with a pressure higher than that of the local static reservoir 

pressure in order to obtain a desired injection rate. The injected CO2 will displace the surrounding 

formation water and gradually increase the pore pressure of the fluids. [2] At deep reservoir 

conditions CO2 gas has a lower density than that of the formation water. The injected CO2 will thus 

naturally rise in a plume towards the top of the formation due to the buoyancy effect. In a 

heterogeneous reservoir the gas will be distributed unevenly according to the change in local 

permeability. The shape of the gas plume will be greatly influenced by these layers. At some point 

the rising gas will reach the confining layer of low permeable rock and continue the displacement 

laterally, filling any structural traps and fractures in the cap rock. [1] Local fracturing in the vertical 

direction outside (not close to casing) the injection well will change the local pressure distribution 

around the well and may be a tool for reducing the necessary injection pressure. B.Kvamme 

Once CO2 is injected it will start to dissolve into the formation water and the excess mobile CO2 gas 

will migrate buoyantly towards the cap rock and accumulate. The effective storage capacity is 

influenced by the permeability of the fracture. The migration of mobile CO2 gas is important for the 

short time safety of the injection site, as the excess CO2 might reach fractures or abandoned wells 

that could potentially release the injected gas. The dissolved CO2 will further react with the water 

and form carbonic acid which will lower the pH. A lower pH increases the reactivity of the water with 

respect to the minerals present in the formation, minerals such as calcite.  

3.3.     Utsira 
The SACS (Saline Aquifer CO2 Storage) project which is considering the re-injection of CO2 from the 

Sleipner field into the Utsira formation is an interesting pioneer project with valuable information for 

future projects. Since 1996 Statoil has captured CO2 from Sleipner west and injected it into the saline 

formation of Utsira. So far more than 10 million metric tons have been injected in an area covering 

three square kilometres the total 26 000 square kilometres available. That’s more than 1 megaton 

per year. 

The obtained seismic data from the carbon dioxide injection at Utsira makes the formation a rather 

interesting model for benchmarking reservoir simulators. The CO2 injection has been periodically 

monitored by means of seismic surveys, providing a four-dimensional overview of the displacement 

due to the immiscible CO2 front. However, a four-dimensional surveillance does not provide 

information about the reactions between the CO2, water and minerals in the formation. In the 

southern region where the CO2 is being injected, the top of the sand is located at depths between 

600 to 1150m, reaching a maximum thickness of 300m.[3] 
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4. Porosity, permeability and capillarity  
A porous medium consists of a solid matrix filled with small pockets called pores. In a permeable 

porous medium the pores are interconnected in a pore network enabling displacement of a fluid. 

4.1.     Porosity 
Approximately every type of rock and sediment contains pores or voids in multiple shapes and sizes. 

The dimensions vary from the size of a single molecule to the rare extremes such as caverns. Porosity 

is a dimensionless size and can be found for a given sample by dividing the volume occupied by pores 

with the total volume of the sample (Equation 4.1.1). This fraction is the total porosity. 

Total

MatrixTotal

Total

Pore
Tot

V

VV

V

V 


  Equation 4.1.1 

A porous medium consists of a solid matrix with an interconnected network of pores. Both the matrix 

and the pore network are assumed to be continuous, but a fraction of the pores are separated from 

the network and trapped in the solid matrix along with the containing fluid. Hence the total porosity 

is divided into two segments; the efficient porosity and the residual porosity. Equation 4.1.2 shows 

the components of the total porosity. [4]
  

sReEffTot    Equation 4.1.2 

The efficient porosity is the part of the total porosity that is interconnected, allowing any containing 

fluids to be displaced within the network. Pores that are trapped and separated from the network 

make up the residual porosity. Depending on the constituent minerals the total porosity of a rock 

formation may vary from close to zero to over 50%, while the effective porosity is less due to the 

trapped pores.  

An average sedimentary rock consists of mineral grains in multiple shapes and sizes that are crushed 

together at high pressures over time, forming a compact solid with cavities. Porosity changes with 

the properties of the grain size, shape and dispersion. Figure 4.1.1 is an artificial visualization of a 

porous media consisting of spheres or grains in different sizes and packing structure.  

 

Figure 4.1.1 – Artificial porosity. The connection between porosity and packing of minerals[4] 

Most simulation software calculates the porosities using spheres, but in reality the building blocks 

are not perfectly spherical, but rather built up by multiple polygons as shown on the left hand side of 

Figure 4.1.2.   



13 
 

 

Figure 4.1.2 – A thought porous medium with fractures [5] 

The storage capacity of a fluid in a reservoir is determined by the porosity. For a given fluid in a 

multiphase system, the respective amount is also dependant on the pore saturation properties which 

will be explained in Chapter 4.12. In a sedimentary aquifer the water is mainly stored in the pores 

between the granular sandstone. Displacement of water may occur in these pores, but the main 

transmission system is often the fractures as shown on the right hand side of figure xxx. “These 

fractured formations are known as dual porosity aquifers, and their permeability reflects the 

frequency, openness and interconnectivity of the fractures”.[5]  

Pores formed at the same time as the rock are called primary openings. Pores or fractures that have 

appeared after the rock was formed are called secondary openings. Figure 4.2.1 and Figure 4.2.2  

shows the difference between primary and secondary porosity. On the right hand side of Figure 4.2.1 

there are two cases representing a porous media with well-sorted and poorly sorted sand. [6] 

Fractures are caused by formational stress, which in turn usually derives from tectonic forces in folds 

and faults. These are termed natural fractures, as opposed to induced fractures. Induced fractures 

are created by stress from drilling operations or by purposely fracturing a reservoir through hydraulic 

pressure. Most natural fractures are more or less vertical. Horizontal fracture may exist for a short 

distance, propped open by bridging of the irregular surfaces. Most horizontal fractures, however, are 

sealed by overburden pressure. Induced fractures may connect the wellbore to natural fractures that 

would otherwise not contribute to flow capacity. [7] 

Sandstone, like the type found in the Utsira formation, has a porosity ranging from 10 to 40 % 

depending on the cementation and consolidation in the formation. Chalkstone and dolomite has a 

large variation in porosity from 5 to 25 %. Chalkstone has smaller pores compared to the dolomite, 

which means less porosity. On the other hand, chalkstone is easily fractured, causing a small 

increment in porosity and a larger increment in the permeability. Clay and shale has a porosity 

ranging from 20 to 40 % depending on the reservoir depth. [4]  
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4.2.     Permeability 
As explained in the previous chapter, a porous medium may contain a network of pores capable of 

displacing a fluid. The extent of the networks ability to circulate a one-phase fluid like gasses or 

liquids is defined as the mediums absolute permeability “K”.   

The well-sorted sand in Figure 4.2.1 would have a lower permeability than that of poorly sorted sand. 

By introducing a secondary porosity to a respective porous media, the permeability would increase. 

However the total porosity is not influenced in the same magnitude as the permeability. The volume 

of the fractures is often small compared to the total pore volume of the reservoir.  

A fracture is often defined as a high permeability path in a porous rock with a lower permeability. 

Hence the fractures connect multiple pores and act like a highway for the displacement of fluids. 

Fractures may also be filled with a cementing material, such as precipating calcite, leaving the 

fracture with no permeability.[7] 

 

  

Figure 4.2.1 – Primary openings in a porous media[6] 

 

 

Figure 4.2.2 – Secondary openings in a porous media
[6]

 

It is obvious that a pressure difference has to be present in order to displace a fluid through the 

porous formations of a reservoir. The total amount displaced depends on the properties of both the 

fluid and solid matrix. A correlation between the effective porosity and the permeability is natural, 

but the permeability is also dependant on a whole range of other physical factors. Factors like the 

relationship between pore-necks and pore-volumes, the pore size distribution and last, but not least, 

the tortuosity or curving of the flow pathway. 
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4.2.1. Pore neck and pore size ratio 

In many ways the permeability is a measure of the pore neck size. If the neck of a pore is too small 

the permeability might be reduced or nonexistent, depending on the wetting properties and viscosity 

of the fluid. Figure 4.2.3 is a visualisation of a single pore in a porous media. 

 

Figure 4.2.3 – Cross-section of a single pore in a porous media 

The red line indicates the dimension of the pore neck, while the blue line represents the pore 

dimension. In diffusion the tortousity has to be corrected for due to the reduced area of diffusion. 

4.2.2. Tortuosity 

Describing a medium or shape as tortuous means that it, or in this case that the flow path in the pore 

network, is twisted or curved. Potential flow paths in a porous medium can be significantly longer 

than the straight line from A to B. In Figure 4.2.4 below, a straight line is marked by the red arrow, 

and a potential flow path is indicated by the blue line. 

 

Figure 4.2.4 – The tortousity of flow paths in a porous media 
[8]

 

Tortuosity is a curving property contributing to the permeability. One way to describe the path of 

flow is to estimate the real length by connecting multiple finite lines segments along the curved path. 

As shown in Equation 4.2.1, a simple mathematic method can then be used to estimate the 

tortuosity, where LReal is the diagonal line of the flow path, and LA-B is the real path of the flow. 

BA

al

L

L



 Re   Equation 4.2.1 

The dimensionless range of tortuosity usually lies between 1.25 and 1.78. [8] The higher the 

tortuosity of a media, the lower the permeability.  
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4.3.     Diffusion 
By definition diffusion is the movement of an individual component through a mixture caused by a 

physical stimulus like concentration, pressure, temperature or chemical potential. The most common 

cause of diffusion is a concentration gradient of the diffusing component. In order to equalize the 

concentration, the component is moved in a direction so that the gradient is nullified. In cases where 

the gradient is constantly maintained by constantly adding the diffusing component, a steady flow 

will be established in the respective direction.[9]  

Molecular diffusion is typically described mathematically using Fick's laws.  Fick's first law describes 

the relation between diffusive flux and the concentration.  The law says that the flux of a component 

moves from an area of high concentration to an area of low concentration, with a rate proportional 

to the gradient of the concentration. In one dimension the equation for the flux would be: 

x

C
DJ



   Equation 4.3.1 

Where J is the diffusion flux; D is the diffusion coefficient; C is the concentration and χ the length. C 

and χ constitutes the concentration gradient. For a component A diffusing into component B, 

Equation 4.3.1 can be written as: 

 


A

AB

dC
DJ    Equation 4.3.2 

Where DAB  is the respective diffusivity of component A into B. Fick's second law predicts the change 

in concentration over time due to the diffusion. 











 2

2dC
D

t

dC
  Equation 4.3.3 

 

There are many areas of diffusion with respective modifications and assumptions. Components can 

diffuse from any phase to another, gas to gas, liguid to liquid - even from solids to gas as some rocks 

or organic material tend to be porous.   
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4.4.     Viscosity 
Viscosity is a property of liquids and solids alike. A fluid with a high viscosity would flow at a lower 

rate than that of a low viscosity fluid. This is because there is a friction force acting between the 

molecules in the bulk. Gases experience less or none of the friction due to the distance between the 

gas molecules, but at high pressures the viscosity is an important factor that should be included in a 

simulation. 

By definition a liquid flows when shear stress is exerted on it. [9] As shown in Figure 4.4.1, the 

velocity of water flowing in a tube is not constant over the whole cross section. There is a gradient 

velocity increasing from 0 where the fluid meets the wall, to the maximum velocity (v) at the centre 

with an average gradient of v/r.   

 

Figure 4.4.1 – Laminar flow in a two-dimensional cross -section 

For most liquids the velocity gradient is proportional with the shear stress acting on the fluid so that 




v   Equation 4.4.1 

Where the constant ς is the shear stress and η is the viscosity of the liquid [10] In many situations, 

we are concerned with the ratio of the viscous force to the inertial force, the latter characterised by 

the fluid density ρ. Kinematic viscosity can be obtained by dividing the absolute viscosity of a fluid 

with its mass density. The ratio is characterised by the kinematic viscosity (Greek letter nu, ν), 

defined as follows: 

 

where μ is the dynamic viscosity (Pa*s), ρ is the density (kg/m3), and ν is the kinematic viscosity 

(m2/s). 
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4.5.     Henry Darcy 
There is no simple connection between the porosity of a medium and its permeability. The 

permeability is not even a clearly defined physical size by more fundamental constituents. Although, 

permeability can be defined the inverse of the mediums resistance to flow, giving rise to its definition 

through Darcy’s law. Darcy’s law can be used to estimate the permeability of a sample, which is 

measured in units of “darcy”  

Darcy's law, formulated by Henry Darcy, is an equation that describes the flow of a fluid through a 

porous medium. The law is based on the results of his experiments with flowing water through filters 

of sand. He found that the volume flow was proportional with pressure difference through the filter, 

so that: 

pa
A

Q


 

 Equation 4.5.1 

where A is the cross-section of the flow path, Q is the volume flow, ΔP is the pressure difference and 

the constant ”a” is a proportionality constant that depends on the properties of the pore system and 

fluid.[11]  

4.5.1. Darcy’s law – The equation 

Using a two-dimensional example as shown in Figure 4.5.1, Darcy's law is the proportional 

relationship between the discharge rate through a porous medium, the viscosity of the fluid and the 

pressure drop over a given distance.  

 

Figure 4.5.1 – Two dimensional cross -section of flow 

The pressure drop from P1 to P2 over the distance L, enables a volume flow Q to be displaced 

through the cross section A of a sample. Equation 4.5.2 shows the connection between the 

parameters. 

[m]

[Pa]

 [kg/m·s]

[m²] [m³/s]

L

PA
Q









   Equation 4.5.2 

 

In short; the total discharge equals the product of the Permeability in the medium, the cross-section 

of flow, and the pressure drop over a length - divided by the product of the viscosity and distance of 

the pressure drop. Κ is the absolute permeability of the medium, and µ is the viscosity of the fluid.  
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The negative sign in the equation is due to the drop from high to low pressure. In differential form 

Equation 4.5.2 can be written as:

        

 

x

pA
Q








   Equation 4.5.3 

Where dP/dx is the gradient pressure in the direction of the cross-sectional flow.   

With some rearranging, the division of Equation 4.5.3 with the cross-sectional area respectively 

results in Equation 4.5.4.  

Pq 






  Equation 4.5.4 

By further dividing Equation 4.5.4 with the porosity of the media we get Equation 4.5.5.  

P
q













   Equation 4.5.5 

∆P is the gradient pressure and φ the porosity. The darcy flux (q) in Equation 4.5.4, is the cross-

sectional discharge in length over time, while the pore velocity (ν) in Equation 4.5.5 is the real 

velocity experienced by a molecule passing through the porous medium. Dividing Equation 4.5.4 with 

the porosity (φ) takes into account that not all of the porous volume is available for flow. However, 

Darcy’s law is only valid for fluids displaced at rates with a low Reynolds number.[12] 

A porous medium has a permeability of one darcy when the flow is at 1 cm3/ cm2s under the 

influence of a pressure gradient estimated to 1 atm/cm and a viscosity of 1cP (20oC). A common unit 

for permeability is the darcy (D) or more commonly the millidarcy (mD). Other applied units are cm2 

and the SI unit m2. One Darcy is approximately 1*10−12 m2. 

4.5.1.1. Reynolds number 

A fluid flowing through piping behaves in two different ways depending on the relationship between 

the fluid velocity and pressure drop. In experiments conducted by Osborne Reynolds, observations 

proved that at low flow rates the fluid velocity gradient would be parallel with the direction of flow, 

but at higher flow rates waves would form. Hence the flow patterns are divided into laminar and 

turbulent flow. 

Reynolds studied the transition between laminar flow and turbulent flow, and found that the critical 

velocity for the transition depends on the diameter of the flow path, the viscosity, density and the 

average velocity. The dimensionless variable termed the Reynolds number is defined in Equation 

4.5.6.  



vD
Re   Equation 4.5.6 
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Where ρ is the density of the fluid, v is the average velocity, D the diameter of the flow path and µ 

the viscosity. The magnitude of the Reynolds number is independent of the units used as long as they 

are coherent. Observations have shown that the transition from laminar to turbulent flow occurs 

over a wide range of Reynold numbers. [9]  

4.5.2. Darcy’s law, gases and the Klinkenberg effect  

Darcy’s law is known to be valid for liquids at low Reynolds’s numbers; however the law can’t be 

applied to gases without accounting for the compressibility and other deviations from liquids. Due to 

the compressibility of gases the flow (Q) will be dependant on the gas pressure. By assuming that the 

flow rate (Q) is equal to the mean flow rate (Qm) with a mean pressure Pm=(PA+PB)/2 we get Equation 

4.5.7 which is valid for an isothermal gas flow. 

L

PPA
Q BA

m






   Equation 4.5.7 

Qm can be found through Boyles law. For an ideal isotherm gas process we have that PmQm=PAQA. By 

solving this equation with respect to Qm and substituting it into Equation 4.5.7 we obtainEquation 

4.5.8.  
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 Equation 4.5.8 

By further solving Equation 4.5.8 with respect to the permeability (K) we obtain Equation 4.5.9 

A
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


   Equation 4.5.9 

Where KG is the permeability of gases. 

Darcy’s law assumes that gases stick to the pore walls in a flow situation; however this is not the 

case. Viscosity doesn’t have a significant influence due to the distances between the gas molecules.  

A phenomenon called slippage increases the rate of flow more than what is expected according to 

Darcy’s law. The error increases with decreasing gas pressure. Klinkenberg proposed a correction as 

shown in Equation 4.5.10 

L

m

G K
p

b
K )1(    Equation 4.5.10 

where KG is the gas permeability and KL is the permeability for incompressible fluids. The constant b is 

the Klinkenberg factor which depends on the free distance between gas molecules and the size of the 

pores in the porous media. The Kilnkenberg factor is also correlated to the permeability through the 

dimension of the pre necks. Slippage will increase with a decreasing pore neck.[12]  
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4.6.     Relative permeability 
The defined absolute permeability in the previous section assumed that there was only one fluid 

present in the porous medium, and that it didn’t react chemically or physically with the solid 

medium. The permeability of a single phase does not depend on the fluid, seeing that the fluid 

properties are taken care of by the viscosity in Darcy’s law. 

In reservoirs were there are two or more immiscible liquids present, a permeability for each phase 

can be made. These defined permeabilities are independent of the flow rate, pressure gradient and 

the liquid properties; however they are strongly dependent on the properties of the solid porous 

medium. In a reservoir sample the permeabilities show correlations to the saturation of the 

respective phases in the porous medium. These are the effective permeabilities and can be described 

using Darcy’s law. Due to practical reasons the relationship between the effective permeability of the 

phase and the absolute permeability to the medium has been defined as the relative permeability.  

The relative permeability for a respective phase can be written as: 


K

K
k w

rw  relative permeability for water.  Equation 4.6.1 

 


K

K
k o

ro  relative permeability for oil.   Equation 4.6.2 

 


K

K
k

g

rg  relative permeability for gas.  Equation 4.6.3 

The relative permeability does not only depend on the porous medium, but also the relative amount 

of each phase contained is in the medium. This saturation and the interaction between the phases 

are variables that will affect the permeability. [12] 
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4.7.     Surface- and Interfacial tension  
At an atomic level of a fluid there are several forces acting between atoms and molecules. These 

forces are divided into two categories; the electrostatic interactions (coulomb forces) and the van 

der Waal type of dispersion forces. 

4.7.1. Electrostatic interactions 

The electro-negativity of the respective atoms in a molecule can result in an uneven distribution of 

electrons in the system. Due to the uneven distribution of electron the endpoints of a molecule can 

obtain a positive or negative charge. The potential energy between two singular charges would then 

be given by Coulombs equation (Equation 4.7.1): 

|rr|4

qq
E

ji0

ji

c


   Equation 4.7.1 

Where qi is the index charge of the points, εo is the dielectric permittivity of vacuum and| ji rr  |is 

the distance between the charged points in space. [13]  

4.7.2. Van der Waal 

Using the deviation from ideality observed in gas phases as an example, these deviations are 

normally due to the van der Waal type of interactions. At short distances there is a repulsive force 

acting between the molecules and at long distances an attractive force. In Figure 4.7.1 the potential 

of these forces are respectively indicated with a blue and red line. The black line is the Lennard – 

Jones potential which is explained in the next section. 

 

 

  

Figure 4.7.1 – Repulsive and attractive forces 
as a function of distance.  

 

 

The attractive force is classified as London dispersion forces. These forces arise due to the fluctuating 

nature of the electron distribution which in turn creates dipoles capable of interacting over relatively 

large distances. The attractive dispersion forces are weak compared to the repulsion forces at closer 

distances.  When two atoms or molecules continue to approach each other their surrounding 



23 
 

electron densities begin to interpenetrate. Normally such interpenetration would cause bonds to 

form, but in the absence of such possibilities a property named Pauli repulsion causes the energy of 

the system to raise exponentially with the decreasing distance between the two objects. It’s the sum 

of these effects that is modelled with the black line in Figure 4.7.1. [13]  

The Lennard-Jones Model 

The simplest equation used to represent the combination of dispersion and repulsion energies is the 

Lennard-Jones potential (Equation 4.7.2) 

AB

AB

AB

AB
AB

r

b

r

a
rU

612
)(    Equation 4.7.2

 

The constants “a” and ”b” are specific to each respective atom.  Equation 4.7.3 is a more typical form 

of Equation 4.7.2, where the “a” and “b” factors have been replaced with ς and ε.  
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The constant ς, found in Equation 4.7.3 and Figure 4.7.1, is the distance between two atoms at 

minimum energy U(r). ε is the well depth at the same radius.  

The potential energy, described by Equation 4.7.3 as a function of the distance between the 

molecules, is plotted as a black line in Figure 4.7.1. 
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4.8.     Surface tension 
The surface is the region that divides a gas phase from a liquid or solid phase. The region where a 

solid or liquid phase contacts another solid or liquid is called an interface. Figure 4.8.1 below 

visualises the application of the terms with respect to the fluids in contact.   

 

Figure 4.8.1 - Definition of surface and interfacial tension 

In the transition between two phases, Ie from a liquid to a gas phase as shown in Figure 4.8.2, the 

fluids properties change at the surface. Not only the densities, but the intermolecular forces acting 

between the constituents in the transition zone, are totally different from the forces acting in the 

bulk of the phase. 

Molecules in the gas phase are separated by great distances relative to the shorter distances in a 

liquid. Due to the distances and distribution of the molecules in a gas, the liquid will experience close 

to none of the forces acting from the gas phase. Hence the molecules at the surface of the liquid are 

only able to interact with the molecules in the bulk, giving rise to the phenomenon called the surface 

tension.  

 

Figure 4.8.2 – Molecules in bulk and at the surface of the phase 

In Figure 4.8.2 there are two highlighted molecules in the liquid phase. Molecule A is located in the 

bulk of the liquid, and molecule B is located at the surface of the liquid. The two molecules have 

exactly the same properties, but due to the location they will experience a difference in the forces 
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acting between the neighboring molecules. Molecule A has no acting net force, while molecule B at 

the surface is experiencing net force acting into the liquid. Hence a molecule at the surface has 

higher potential energy than a molecule in the bulk, due to the difference in neighboring forces 

acting on the molecules.  

A liquid volume is stable when the potential energy of the molecules is as low as possible. The lowest 

energy possible is acquired when the least amount of molecules is exposed at the surface. That is 

when the area is minimized with respect to the volume of the liquid bulk, or when the fluid is 

perfectly spherical. This physical property is the reason for the spherical shape of for example water 

drops. [14]  

 

 

4.9.     Miscibility 
In the world of fluids some mix and others do not. We have all seen that vegetable oil and water split 

in two phases when combined, while other fluids like ethanol and water mix easily. This is because of 

the intermolecular forces that exist between the molecules in both phases, the same type of forces 

that caused the surface tension explained in the previous chapter. 

In a case where two fluids contact, an Interfacial tension will arise. Depending on the magnitude of 

the forces acting between the molecules of the two phases, the two fluids will either mix or separate. 

The fluids in Figure 4.8.2 consisted of a liquid with an interface towards a gas phase. If the gas phase 

were to be substituted by a liquid phase with properties different from the one already present, we 

would get a situation similar to that in Figure 4.9.1.  

 

Figure 4.9.1 – Miscibility and intermolecular forces[12] 

In Figure 4.9.1 there are two fluids colour-coded red and blue which are represented in two different 

miscibility scenarios. Between the molecules there is a set of arrows representing the intermolecular 

forces. The miscibility, or the ability to mix two fluids, is dependent on which of these binding forces 

are strongest. In case A the forces between the fluids are equal and in case B the forces are stronger 

between molecules of the same kind.  If the forces between molecules of the same kind are the 

strongest, the fluids would be characterized as immiscible. On the other hand, if the forces between 

two molecules of a different kind are the strongest or if all forces are equal, the fluids would be 

characterized as miscible. Reservoir fluids like water, oil and gas are immiscible. At higher pressures 

they do mix to an extent. This is due to the pressure and temperature dependency of interfacial 

tension. [4]  

 



26 
 

Dependencies 

By increasing the pressure at a constant temperature, the distance between the molecules in a fluid 

will decrease. With increasing pressure the distance between the molecules in a gas phase will also 

decrease, but at a higher rate than that of liquid. As the gas approaches a higher density, the 

molecules at the surface of the liquid bulk will eventually experience a decrease in the net force 

acting into the fluid and thus reduce the interfacial tension. 

The temperature dependence of the interfacial tension is related to the internal energy. As the 

temperature rises, the average kinetic energy of the fluids will also increase. With increasing kinetic 

energy the distances between the atoms increase and the attractive forces within the bulk decreases. 

As a result the interfacial tension will be reduced. 

It’s difficult to measure the exact correlation between the changes in interfacial tension, pressure 

and temperature because the composition in the phases will also change at the same time.[2] 

 

Surface active agents – Surfactants 

Surface tension and interfacial tension is dependent on the thermodynamic state of the system and 

can be changed accordingly. But both the surface and interfacial tension can also be reduced or 

entirely removed by adding components known as surfactants.  

Surfactants are generally a long hydrocarbon chain connected to a polar functional group of desired 

properties. The hydrocarbon chain is hydrophobic, which means that it will avoid polar components 

and obtain the configuration or placement with the least amount of energy. In water surfactants will 

spread in the surface region with the hydrophobic tails emerged from the surface. At a critical 

concentration the entire surface area will be occupied and the leftover surfactants will form tiny 

aggregates called micelles. 

Oil and water usually form a thermodynamic unstable emulsion that will separate after time. By 

adding a respective amount of surfactants, the two phases will become miscible and form a 

thermodynamically stable micro-emulsion. However these emulsions require large amounts of 

energy to separate again.[14] 
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4.10. Wetting 
The physical properties of surface tension have been transferred to another phenomenon called 

wetting. In Figure 4.10.1 there are two scenarios were a liquid volume is placed on a solid surface. In 

case A the liquid is completely spread across the solid, while in case B the liquid forms a spherical 

volume resting on the surface. 

 

Figure 4.10.1 – Wetting preferences with respect to a solid 

If the droplet spreads on the surface like in case A, the interfacial contact area between the solid and 

liquid increases.  In translated significance this means that the surface area of the liquid increases, 

while the surface of the solid is reduced.  

In the case of scenario A, the liquid is said to be wetting or spreading across the surface the solid. The 

liquid will spread on the solid surface spontaneously if the total free energy of the system is reduced. 

That is on the cost of the surface area of the solid. 

In mathematical terms the spontaneous wetting can be described as 

SolidSolidLiquidLiquid  
 

 Equation 4.10.1 

where liquid and solid are the respective surface tensions and liquid-solid the interfacial tension 

between the liquid and solid.[12, 14] 

4.10.1. Youngs equation 

The two cases shown in Figure 4.10.1 are extremalities. A volume of liquid normally reaches 

equilibrium where the droplet is neither fully spread nor spherical. Figure 4.10.2 illustrates an 

example where a droplet has reached equilibrium between the described forces from surface and 

interfacial tensions. 

 

 

 

 

 

 

Figure 4.10.2 – A liquid droplet 
at equilibrium on a solid surface
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At equilibrium the forces that seeks to reduce the surface of the solid (solid ) is at equilibrium with 

the two forces that seek to reduce the surface area of the liquid and the interface between the solid 

and liquid, respectively the x component of liquid (liquidcos) and AB . This relationship is 

mathematically described in Young’s equation (Equation 4.10.2): 

  cos   +   =  LiquidSolid-LiquidSolid   Equation 4.10.2 

Young’s equation gives the connection between the interfacial tension and the contact angle as 

shown in Figure 4.10.2 and Figure 4.10.3. 

 

Figure 4.10.3 – Connection between angles and wetting 

where the contact angle is correlated to the degree of wetting:  
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Wetability is dependent on the surface energy of both components. Observations show that liquids 

with low surface tensions wet solids with high surface energy. [11, 14] 
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4.10.2. Young-Laplace 

The Laplace equation is valid for symmetrical interfaces such as those made by droplets. Thomas 

Young introduced a generalized form of the Laplace equation that was valid for curved interfaces as 

well.  

As mentioned, a spherical volume is the geometrical shape that has the least surface area and 

interfacial energy, G. The size and shape will always be a competition between the interfacial tension 

at the surface and the pressure within the volume. 

For a respective sphere the interfacial energy is given by: 

 2r4G   Equation 4.10.3 

Where r is the radi of the sphere and  is the surface tension between two fluids. With a finite 

increment in the surface area, the interfacial energy will change proportionally according to Equation 

4.10.4: 

dr8dG    Equation 4.10.4 

If the volume of the sphere is reduced, an equivalent amount of energy will be released. Reduction of 

volume will be resisted by the internal pressure.  

When the surface of a sphere experiences an increment the volume will undergo a proportional 

change. Equation 4.10.5 describes the relationship between the volume, internal pressure and 

energy. 

Pr
3

4
G 3    Equation 4.10.5 

ΔP is the pressure change over the concave interface between two fluids.  A finite increment in the 

surface area will lead to a finite increment in the volume. The coherent change in energy is given by 

Equation 4.10.6: 

drrP4dG 2   Equation 4.10.6 

At equilibrium dG/dr =0 with respect to the interfacial tension and pressure. By combining Equation 

4.10.4 and Equation 4.10.7 we obtain Equation 4.10.7: 

dr8drrP4 2    Equation 4.10.7 

By rewriting Equation 4.10.7 with respect to ΔP we obtain the Laplace equation: 

r

2
P


   Equation 4.10.8

 

Where ∆P is the pressure difference over the interface between liquid and gas,  is the surface 

tension between liquid and air and r is the radius of the concave surface.  
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Equation 4.10.8 was later generalized by Young so that it would be valid for curved surfaces. 

Equation 4.10.9 is the modified version known as the Young-Laplace equation. 
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For a perfect sphere, R1 would be equal to R2 resulting in the original Laplace equation. For a curved 

surface, R1 would represent one of two axial radi for the respective geometric shape and R2 the 

radius orthogonal to the one represented by R1.[14] 

 

 

4.11. Capillarity 
The definition of capillarity is basically a spontaneous movement of liquid in a capillary tube due to 

interfacial tensions and wetting properties. These surface tensions, as previously explained, derive 

from deviations in molecular attractions at the surface of a liquid resulting in a force pointing into the 

fluid itself. The same properties create a force that spontaneously moves the liquid along the surface 

of the solid. Figure 4.11.1 is a cross section of two pores where water is displacing oil in the pore 

neck. 

 

Figure 4.11.1 – Capillary displacement in a cross -section of a pore 

In a respective water-wetting reservoir, the capillarity effect would cause water to displace oil or gas 

in the permeable pore network. The capillary height or driving pressure depends on the wetting 

preferences of the formation and the radius of the pore and pore necks. The capillary effect is an 

important factor with respect to displacement of a reservoir fluid. 

The capillary pressure will increase when the size of the pores in a media are reduced. Hence the 

capillary pressure has a larger role in the displacement and accumulation of hydrocarbons. A well 

sorted sand stone with small amounts of water would experience a large capillary pressure making it 

an ideal reservoir. 
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4.11.1. The capillary rise method 

The capillary rise method is one of the oldest techniques used to determine the interfacial tension. 

With respect to the age of the method it is still one of the most accurate, operating with errors 

within a few hundredths of a percent. The reason for the accuracy is probably due to the accurate 

and close control of the experimental variables values in addition to the precision work behind the 

theory. 

In a vertical narrow capillary tube mad of glass, as shown in Figure 4.11.2, the fluid will either move 

in or against the direction of gravity depending on the properties of the solid and liquid. If the fluid is 

wetting the solid, the liquid will rise.  

 

Figure 4.11.2 – The capillary rise of a liquid in a wetting tube 

The meniscus that is formed on the top of the liquid pillar can be described by means of Young -

Laplace (Equation 4.10.9). The coefficient ∆P in Equation 4.10.8 and Equation 4.11.1 was defined as 

the pressure difference over the interface between two fluids. In more general terms ∆P is the 

pressure difference between the wetting and non-wetting phase. This means that the capillary effect 

requires that the capillary tube has a wetting preference. By substituting ΔP with the equation for 

overburden liquid pressure we get Equation 4.11.1: 
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Equation 4.11.1 can be rewritten with respect to the liquid column height, so that: 










rg

Cos
h

2
  Equation 4.11.2 

Where θ is the contact angle between the liquid and solid, ∆ρ is the density difference between the 

two fluids, g is the constant of gravity and r is the radius of the capillary tube. Equation 4.11.2 can be 

used to calculate the height of the estimated capillary rise or the interfacial tension. 

 



32 
 

4.12.  Saturation 
A porous media can normally contain more than one fluid and phase at the same time. Using a 

hydrocarbon reservoir as an example, the saturation is the fraction of the total pore volume Vp that 

contains the respective fluid. A hydrocarbon reservoir normally contains fluids like water, oil and gas. 

Equation 4.12.1 to Equation 4.12.3 represent the pore saturations respective to the subscript fluid. 

Water saturation:  Sw = 
p

w

V

V
  Equation 4.12.1 

Oil saturation:   So = 
p

o

V

V
  Equation 4.12.2 

Gas saturation:   Sg = 
p

g

V

V
  Equation 4.12.3 

Normally the entire pore volume is filled with fluids so that the saturation fraction equals 1.0. For a 

hydrocarbon reservoir the saturation equation would be:   

Sw + So + Sg = 1.0  Equation 4.12.4 

 

In pores were there are more than one fluid, the respective flows be will determined by saturation 

on the fluids. Figure 4.12.1 is a representation of two equal pores at a different saturation of oil. The 

pores are water wetting causing a volume of oil to be trapped in the middle of the pore. Due to the 

wetting preference of the formation, a limited amount of oil might be trapped as residual saturation.  

 

Figure 4.12.1 – Two different saturations of a pore.  

The pore on the left hand side of the figure has a high saturation of oil, while in the pore to the right 

has a lower saturation. Oil will be more easily displaced in a network of highly saturated pores. At 

low pore saturations the water will easily flow past and the oil will be retained in the pore.[12]  
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4.13.  Drainage and Imbibition 
 

A process were the wetting phase of a porous medium is displaced of a non-wetting phase is called 

drainage. In contrast, a process where the saturation of the wetting phase is increasing is termed 

imbibition. 

4.13.1. Imbibition 

Figure 4.13.1 represents a typical permeability curve for water/oil in a water-wetting porous 

medium. The curves are related to a process where water is sucked into the pores due to the 

capillary effect plotted as a function of the intruding fluid, that is, the saturation Sw. 

        

 

  

Figure 4.13.1 – Water/oil permeability curves Figure 4.13.2 – Gas /water permeability curves 

Because the medium is water-wetting, there will be a non-reducible degree of water saturation, Siw. 

Due to the mentioned capillary forces the water saturation cannot surpass this value, and the water 

will not be able to flow ie Krw(Siw)=0 . At the same time the oil or intruding fluid has filled most of the 

pore volume and obtained the maximum permeability at the respective saturation. When Sw 

increases Kro wil subside and eventually approach 0 at residual oil saturation. At this point the oil will 

no longer flow. 

If the oil were to be substituted with gas, the water would similarly displace the gas. The water phase 

is still the wetting fluid. Figure 4.1.1 illustrates a typical permeability curves for this scenario. In this 

system the minimum gas saturation is abbreviated Sgr . At this point the gas becomes so 

discontinuous that it no longer will flow and krg=0. 
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4.13.2. Drainage 

Figure 4.13.3 illustrates a scenario where the wetting phase oil, is displaced by a non-wetting gas 

phase. As mentioned, oil is the wetting phase relative to the gas phase; however it is assumed that 

some water remains in the formation, but at irreducible immobile saturations. 

The most important characteristics with drainage process, is that Krg is zero until the gas saturation 

reaches a critical value Sgc before the gas permeability starts to increase. This is because the gas 

phase is not continuant until Sg =Sgc and the gas can only flow through the pores above this value. Kro 

subsides evenly in the area 0 < Sg < Sgc due to the increasing pore volume of immobile gas. When Sg 

increases further, the Kro value will drop until it reaches zero. 

 

Figure 4.13.3 – Gas/oil permeability curves 

Immiscible fluids flowing in a porous medium will create and maintain tortuous pathways through 

the medium. In a laminar flow, these channels will be sustained and stable, but at the point where 

the saturation of the non-wetting fluid subsides, the pathway will collapse and the fluid will become 

immobile. The process is similar for a reduction in the saturation of the wetting fluid. The slippage 

phenomenon is also present in this scenario. 
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5.  Mineral chemistry  
Mineral chemistry, or crystal chemistry, has a focus on the relationships between the structure of 

solids and their chemical composition. This chapter contains a description of the numerous minerals 

found in an aquifer and their coherent properties. 

5.1.     Solids 
Solids inhabit properties that separate them from liquids and gases. Hardness is a general definition 

of such a property, but solids are defined in a more specific manner: “Solids are materials that exhibit 

a long-range regularity of atomic or molecular arrangements.”  

Compared to solids, liquids exhibit a similar order but at a much shorter range. Gases show no order 

at all. By this definition solids such as glass can’t be considered as solids, but as very viscous liquids. If 

the thickness of the glass in a window is measured after 50 years, the bottom would be much thicker 

than the top, although it was originally equally thick. This is due to the thermodynamically unstable 

and viscous nature of the crystalline glass. 

5.2.     Bonding forces 
Chapter 4 contains a brief explanation of non-bonded interactions in gases and liquids. Solids, 

however, are bonded with electron interactions. The type of bonds, along with the number and 

respective size of the bonded atoms, influence the crystal structuring of a solid mineral. The common 

types of bonds found in a solid are listed below:   

Ionic bonds are formed when an atom donates one or more electrons to another atom. The donated 

electrons are removed from the electron donor and reside with the electron acceptor. A classic 

example is table-salt (NaCl/ Sodium chloride). The donor (Na) becomes a cation and the acceptor (Cl) 

an anion, hence Na+ and Cl-. 

  Figure 5.2.1 – Lewis structure  of 
a Ionic bond  (NaCl) 

Covalent bonds, in contrast to ionic bonds, are formed when two atoms share a pair of electrons with 

equivalent energy and opposite spin states. Helium, hydrogen, nitrogen etc are examples of gases 

with covalent bonds. In covalent bonds the electrons are shared equally between the respective 

atoms if they are similar in both size and electro negativity. Figure 5.2.2 is a Lewis description of the 

covalent bond in carbon dioxide. The Lewis structure is a description of the outer shell with respect 

to an atom's electrons. 

 
 Figure 5.2.2 –Lewis structure of a 

covalent bond (CO2) 

If one of the involved atoms is larger and/or more electronegative than the other bonding atom, the 

electron pairs will not be shared equally. Instead the electrons are pulled towards the larger and 

more electronegative element. This is known as a polar covalent bond. By definition the bonding 

electrons in a polar covalent spend more time near one atom than the other.  
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The metallic bond is formed due to valence electrons moving freely around a series of cations, 

effectively binding them together to form a structure. Figure xxx below is a visual representation of 

such metal cations in a pool of shared electrons. 

 

 
Figure 5.2.3 – Metallic bond, 
Illuststration 

Van der Waahls bonds form in multiple ways.  The bonds form due to dipole-dipole interactions 

which is a result of the time average electron concentration in the molecules. This time average 

concentration distorts the charge distribution creating a dipole in the molecule or section of the 

molecule. These dipole moments can also induce dipole moments in other molecules. A larger 

fraction of minerals are often hydrated by water molecules due to non-bonded forces. 

5.3.     Mineral classes 
Minerals are natural occurring homogenous inorganic solids with definite chemical compositions and 

specific repeating arrangements of atoms. The abundance of a particular mineral depends on the 

availability of its constituent elements and whether the bonding is stable for the physical conditions 

present and its ability to withstand alteration.[15]   

5.3.1. Oxides 

The oxide class of minerals can be divided into simple and multiple oxides. The simple oxides consist 

of a single type of atom bonded with oxygen.  Others include corundum (Al2O3), hematite (Fe2O3), 

rutile (TiO2) and magnetite (Fe3O4). The minerals spinel (MgAl2O4) and chromite (FeCr2O4) are 

common multiple oxide minerals. [15] 

5.3.2. Hydroxides 

Hydroxide minerals have OH- groups bond to cations in their structure. The presence of OH- causes 

the bond to stretch to cations to be weaker than in oxides, so they tend to have a lower mineral 

hardness. Brucite (Mg(OH)2), goethite (FeO-OH)  and gibbsite (Al(OH)3) are common hydroxides.[15] 

5.3.3. Silicates 

Silicates are the most common type of minerals encountered on the earth’s surface and crust.  The 

silicate class of minerals is built on the silicon-oxygen tetrahedron.[15] 

5.3.4. Carbonates 

Carbonates are abundant on the earth’s surface. They are formed by chemical and biological 

precipation from seawater, such as calcite (CaCO3). Dolomite (CaMg(CO3)2) is often formed when 

seawater reacts with calcite. [15] 
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5.4.     Minerals 
Most geological formations are constituted by numerous minerals, some in larger fractions than 

others. A sedimentary reservoir is typically made of sandstone and carbonates from shells of organic 

life forms.  Sandstone manly consists of silicates or quartz with varying amounts of calcite made from 

the carbonates. Though there are many other constituent minerals, but only calcite and quartz are 

considered in this thesis. 

 

5.4.1. Calcite 

The mineral calcite is a calcium carbonate by the chemical formula CaCO3 .and it is a widely 

distributed mineral on the earth’s surface. It is a common constituent of sedimentary rocks, 

especially limestone. Calcite is a widely used mineral. It is utilized as a construction material known 

as cement or concrete. Farmers used it as a soil treatment in order to neutralize acids and even as a 

component in food for cattle. Calcite is also used within pharmacy to create antacid tablets. In the 

geological world calcite is the most stable polymorph of calcium carbonate (CaCO3). Calcite can form 

rocks of considerable mass and constitutes a significant part of all three major rock classification 

types.[16] 

     

Figure 5.4.1 – Specimen of limestone, travertine and crystalline marble[16]   

 

 Calcite dissolves in contact with acidic liquids, meaning that calcite can dissolve or precipitate in 

contact with groundwater, in a magnitude and rate depending on the water temperature, pH, and 

initial dissolved ion concentrations. When calcite dissolves it will release carbon dioxide gas. Another 

important property of calcite is the retrograde solubility, meaning that calcite will be less soluble in 

water as the temperature increases. Depending on the reservoir conditions, calcite can return to its 

mineral form and act like cement within the formation. This includes filling entire fractures. On the 

other hand, removal of calcite can dramatically increase the porosity and permeability of the 

rock.[15] 

5.4.2. Quartz 

Quartz is the most abundant mineral in the Earth's crust. It is found in most geological environment 

and is a component in several types of rocks. The density is estimated to 2.6 Kg/m3. Quartz is a 

silicate mineral of which the structure consists of a silica (SiO2) tetrahedral. Quartz belongs to the 

rhombohedral crystal system and in pure crystal form the structure is typically a hexagon prism 

ending with a six-sided pyramid. The unique structure consists of a cork-screwing helix constituted by 

chains of silicon tetrahedrons Pure quartz is colorless or white, and impurities exist in multiple 

coloured varieties.[15] 
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6. Geochemistry 
The geochemistry of a reservoir deals with the chemical aspects of elements present in the 

formation, such as the chemistry of charged species from precipitating minerals and material 

transport throughout the respective formation.   

The simulations that are presented in this thesis include two minerals (calcite and quartz), CO2 gas 

and water - along with the combinations of their constituent species. Hence the following chapters 

will consider the chemistry of these aquifer constituents. 

In order to fully understand the aspects of the geochemistry in the simulation the first part of this 

chapter will explain a few basic thermodynamic concepts. 

6.1.     Concentration and activity 
In basic chemistry the equations of equilibrium, pH and buffers considered ideal solutions without 

any disturbing intermolecular forces. In real solutions these effects have to be accounted for.  

A solution, like water, consists of a polar solvent and dissolved charged species. These charged 

species tend to interact with ion-ion electrostatic forces causing a deviation between estimated 

properties from concentrations and the real properties of a solution. This error is accounted for by 

introducing the physical term activity.  

Activity, ai, is defined through the chemical potential of the individual species in a solution. The 

chemical potential is related to the change in Gibb’s free energy, with respect to the change in a 

component, at constant temperature and pressure, as shown below. 

6.2.     Gibbs free energy 
The conservation of energy is important in all aspects of physics and it is the foundation of the 1st law 

of thermodynamics. In combination with the 2nd law of thermodynamics, which says that any isolated 

system will strive towards maximum entropy, we can obtain a function for Gibbs free energy.  

Equation 6.2.1 is the combined 1st and 2nd law representing the internal energy U for phase s: 
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Equation 6.2.1 

 

The summation n the equation is performed over all the present phases “s” where s=1,2,3,...,n. 

Where S is the entropy, µ is the chemical potential and N is the number of particles respective to a 

constituent compound. The relation to Gibbs free energy is obtained by subtracting d(T(o)S(s))and 

adding d(P(s)V(s))on both sides in a Legendre transformation.  
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Equation 6.2.2
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Equation 6.2.3
 

The resulting function is the Gibbs free energy: 





n

i

s

i

s

i

ssos dNdPVdTSdG
1

)()()()()()( 
 

Equation 6.2.4
 

In a simplified approach, Gibbs free energy can be considered as the available energy level 

constrained by losses in entropy generation. The second term in Equation 6.2.4 is termed the 

technical work, or shaft work since the internal work is subtracted. The third term is the chemical 

work, representing the extraction and insertion of particles in the phase. Removing a molecule from 

a system or a phase is a process consisting of losing the energy of molecule interaction with the 

surroundings and reorganising the system (entropic contribution). The change in Gibbs free energy 

(Equation 6.2.4) at constant pressure and temperature can be obtained through Equation 6.2.5
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Equation 6.2.5 

where the contribution to change in free energy is limited to the chemical work. Gibbs free energy is 

a state variable. Thus the chemical potential is the partial molar Gibbs free energy: 
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Equation 6.2.6

 

If the same system is isolated under an isobaric or isothermal constraint, an irreversible process will 

take place over time, minimizing the Gibbs free energy until the lowest energy is reached. With that 

in mind, the Gibbs free energy can be considered as driving force created by the systems constant 

quest for minimum free energy. [17] 

6.3.     Phase rule and chemical potential 
When we consider the number of degrees of freedom in a heterogeneous system we need to take 

into account the results of the proceeding two sections. If the heterogeneous system is not in a state 

of internal equilibrium, but each phase is, the number of independent variables is π(m+1), because 

for each phase there are (m+1) degrees of freedom, of which a Gibbs-Duhem[17] equation applies to 

each phase. 

If the entire system is in a state of internal equilibrium, then among the π(m+1) variables there are 

(π-1)(m+2) equilibrium relations. Thus the number of degrees of freedom, F, is the number of 

intensive variables used to characterize the system, minus the number of relations or restrictions.  
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At equilibrium, the three following conditions expressing thermal, mechanical and chemical 

equilibrium must be satisfied: 

T(1) =T(2)= ... =T(π) 

P(1)=P(2) = … =P(π) 

µ(1)=µ(2) = … =µ(π) 

Equation 6.3.1 

 

Thus the number of degrees of freedom is equal to the number of components minus the number of 

phases plus two: 

F = π(m+1) - (π-1)(m+2) = m+2-π Equation 6.3.2 

For two components (H2O and CO2) in gas and liquid phase in equilibrium, we need two 

independent thermodynamic variables to uniquely define the system. A uniquely defined system 

means that it could theoretically reach equilibrium over time.[17] 

 

6.3.1. Fugacity 

While extremely important in deciding the equilibrium, the chemical potential lacks an obvious 

physical meaning. The chemical potential does not have any immediate equivalent in the physical 

world and is therefore desirable to express the chemical potential in terms of some auxiliary 

function, fugacity.  [17] 

In gases, the fugacity (ƒi) is the measure of the tendency to escape or expand. It is also defined as the 

respective pressure needed at a prescribed temperature in order to satisfy the ideal gas law for a real 

gas. The fugacity of a gas component “i” is defined by Equation 6.3.3: 
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Equation 6.3.3 

Where yi is the mole fraction of gas component ”i”,  φ(T,P,x) is the fugacity coefficient as a function 

of pressure, temperature and composition. As a function of pressure the fugacity is also in pressure 

units. [2] 

 

6.3.2. Residual thermodynamics 

In a gas phase such as injected CO2 gas, the chemical potential of CO2 can be obtained by 

considering its deviation from ideal gas behaviour; said deviation will be given by fugacity inEquation 

6.3.3. When ideal gas is used as the reference state, the approach is called residual thermodynamics. 
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Equation 6.3.4 
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Equation 6.3.5 

Where φi is called the fugacity coefficient. 
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6.3.3.  Excess thermodynamics 

A different reference or standard state is often convenient when it comes to solutions: an ideal 

solution. An ideal liquid solution is one where, at constant temperature and pressure, the fugacity of 

every component is proportional to some suitable measure of its concentration, usually the mole 

fraction. This approach gives rise to excess thermodynamics.  Activity of component i at some 

temperature, pressure and composition is defined as the ratio of the fugacity of i in the standard 

state (same T, different P and composition).  When the pure component has been selected as the 

standard state, chemical potential of ideal solution will be given by the chemical potential of the 

standard state, μi
o, corrected by the molar fraction as illustrated in Equation 6.3.6. [18] 

i

o

ii xRT ln    Equation 6.3.6 

By introducing the activity coefficient γi in Equation 6.3.6, the deviations from non-ideality in molar 

fractions can be corrected and absorbed the in the activity.   
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Conditions of equilibrium require the equality of chemical potential in all of the phases. In case of 

liquid-vapour equilibrium, this means that absolute chemical potential of a liquid component is equal 

to its value in a gas mixture at saturated pressure. When applied to fugacities, it results in correctly 

defined fugacities also being equal at equilibrium.  If one needs to relate fugacity of vapour and liquid 

at some other pressure point, a correction must be made by integrating over pressure to find the 

corresponding change in chemical potential (so-called Pointing correction). Thus in the general case, 

one obtains the following relationship between vapour and liquid compositions, fugacity and activity 

coefficients: 
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Equation 6.3.8

 

In case of a component at infinite dilution, an approximation entirely applicable to supercritical CO2 

injection into aquifers, the chemical potential of CO2 can be obtained through the general form 

derived from excess thermodynamics: 
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Equation 6.3.9 

where µi
oo is the chemical potential of component “i” in water at infinite dilution, γi

oo is the activity 

coefficient of component “i” in the aqueous solution (The activity coefficient will approach 1 as the 

value of component x vanishes). The third term represents a simplified form of Pointing correction. 

The chemical potentials at infinite dissolution, as a function of temperature, can be found by 

assuming equilibrium between fluid and aqueous phase: 
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Equation 6.3.10 
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This approach is valid at low pressures where the solubility is relatively low. Chemical potential 

expansion of water in solution can be expanded around zero concentration as follows: 
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Equation 6.3.11 

Where µw
0 is the chemical potential of pure water. This equation can be combined with the Gibbs-

Duhem equation for experimental values of solubility for a system of two components: 
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Equation 6.3.12 

Where  γC is the activity coefficient of CO2 in the water-CO2 system and x is the mole fraction of 

dissolved CO2. 

 

 



43 
 

7. Aqueous solutions and minerals   
Water is one of the most abundant liquids on the planet; hence the chemistry which involves water is 

very important. Aquifers are porous formations containing vast amounts of water. This sub chapter 

will consider the most important aspects of water chemistry. 

7.1. Water 
Water is the most abundant liquid on the planet. In addition to the vast amounts in the form of 

seawater, lakes and rivers - water can also be found in the atmosphere, the soil and in fractures and 

porous media at large depths.  

Water exhibits dipolar characteristics due to O-H bonding explained in, which is the reason for its 

high boiling point and ampholytic properties.  The dipolar nature is important for stabilizing charged 

species solved in the liquid phase. Using table salt as an example, Na+ and Cl- would experience an 

electrostatic coulomb attraction from the respective dipoles of the water molecule 

 

Figure 7.1.1 – Charged species separated by water molecules[15] 

As the salt is solved in liquid water, the dipoles are orientated so that the ionic charge matches the 

opposing dipole charge. Figure 7.1.1 also shows that the ions are separated by the dipole alignment 

of water which effectively lowers the attraction between the ions.[15] 

7.1.1. Acids and bases in water 

Acids are molecules with functional groups that dissociates in water by transferring protons (H+) to 

the solution. This free proton has a tendency to form complexes or clusters with the H2O molecules 

and is thereby often abbreviated as H3O+ (Hydronium). The concentration of H+ or H3O+ is often used 

to determine the pH value of the respective solution. 

The pH scale is a logarithmic expression of the acidity or alkalinity of a solution of which pH is defined 

as the negative logarithm of the H+ ion concentration in moles per cubic centimeter.  

pH = -log CH+ = -log[H3O+]  Equation 7.1.1 

 

Water or solutions with pH-values lower than 7.0 are said to be acidic, while solutions with pH levels 

above 7.0 are termed alkaline. 
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Alterations in pH concentrations are generally due to additions of acids or alkaline bases. Water is an 

ampholytic liquid capable of acting both as an acid and base depending on the pH of the liquid. H2O 

can self-dissociate in order to produce H+ and OH- according to the reaction described in Equation 

7.1.2.  

H2O ⇌ H+ +OH-  Equation 7.1.2 

 

As mentioned pH is defined as the negative logarithm of the H+ concentration, but this is not exactly 

the case. The pH value is actually connected to the activity of H+ in a solution. The equilibrium 

constant for the reaction, with respect to the activity of the species, would then be: 
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The activity of species is not possible to measure experimentally. Instead a relationship to Gibbs free 

energy is utilized in Equation 7.1.4 in order to calculate the pH values.  

RT3026.2

G
Klog

0

R
OH2 


   Equation 7.1.4

 

 

Equation 7.1.4 is known as the law of mass action, which is defined by the chemical potential and its 

connection to Gibbs free energy through stoichiometric coefficients. K or the equilibrium constant is 

dependant on standard states which is an important fact in consideration of equilibrium constants. 

The negative number is a conversion from ln(K) to log10 (K) and R is the universal gas constant. [15] 

7.1.2. pH changes in water due to CO2 dissolution 

With a given concentration of CO2 gas in the atmosphere, small amounts of the gas will dissolve at 

the surface region of water. Eventually the dissolved CO2 will obtain equilibrium with carbonic acid, 

or aqueous CO2, according to Equation 7.1.5. 

CO2 + H2O ⇌ H2CO3  Equation 7.1.5 

 

The equilibrium between dissolved carbon dioxide and carbonic acid will shift to the right or left 

depending on increments in thermodynamic conditions like pressure and temperature. At right 

conditions carbonic acid will further dissociate in water according to Equation 7.1.6. 

2H2O +H2CO3 ⇌ H2O + HCO3
- + H3O+ ⇌ CO3

−2 + 2H3O+  Equation 7.1.6 
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Equation 7.1.6 shows the transition from carbonic acid (H2CO3) to bicarbonate (HCO3
-) and carbonate 

(CO3
2-). Depending on the pH of the solution an equilibrium favoring one of the three mentioned 

species will form. Carbonic acid will dominate at pH values below 6.34. Bicarbonate will dominate at 

pH values from 6.34 to 10.33, while the equilibrium favors carbonate above pH values of 10.33. 

Acids like HCl and H2SO4 are strong acids since they dissociate almost completely in H2O. Weak acids 

like carbonic acid H2CO3, have remnants in the form of naturally charged species in the solution. Ie 

HCO3
-. [15] 

7.1.3. pH buffers 

When an acid or an alkali is added to a solution the, pH value will normally either increase or 

decrease.  However, for a fluid containing a significant concentration of a weak acid and its coherent 

salt, this would not be the case. The weak acid and its salt would regulate pH by dissociating between 

the salt and acid form and thus keep the pH at the same value. A solution with these properties is 

called a pH buffer. 

A buffer solution must contain a relatively large concentration of acid and base in order to react with 

any –OH or H+ ions that may be added to the solution. The acid or base component must be inert 

and not consume each other in a neutralization reaction. 

The dissolution of carbon dioxide in water was briefly discussed in the previous chapter. 

OH-+ HCO3
- ⇌ CO3

2-+ H2O  Equation 7.1.7 

 

If an amount of acid is added to a buffered solution, the reaction in Equation 7.1.7 would proceed to 

the left. The carbonate salt (CO3
2-) would consume the added H+ and form bicarbonate (HCO3

-). By 

adding an alkali instead of an acid, the reaction would proceed in the opposite direction, neutralizing 

the alkaline base. In other words, bicarbonate would donate H+ by dissociating to carbonate. [15] 

A buffered solution can only neutralize a limited amount of added acids and bases. This is due to the 

limited amount of buffering species solved in the solution. The buffer capacity is thus dependant on 

the magnitude of the solved acid and conjugate base. The larger the amount, the grater the buffer 

capacity. 

 

Because calcite is the salt of a weak acid, the solid will dissolve in contact with any stronger acid.  

CaCO3 (s) + 2H+ = Ca2+CO2 (aq) + H2O  

The reaction product CO2 may participate in several other reactions 

H2CO3 = CO2 (aq) + H2O 

H2CO3 = H+ + HCO3
- = 2H+ + CO3

-2 
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7.1.4. Alkalinity  

Alkalinity is similar but not to be mistaken with basicity. By definition alkalinity is a solutions ability to 

neutralize added acids, measured by the number of charged species affected by the change in pH. 

The difference between alkalinity and basicity can be illustrated with CO2 and calcite.  

If the pH of a buffered solution is altered by dissolving an amount of CO2 gas, only the basicity of the 

solution will be affected and the alkalinity will remain unchanged. This is because the net reaction of 

dissolution produces the same number of positively contributing species (H+) as negative 

contributing species (HCO3- and/or CO3--).  

However, addition of CO2 to a solution in contact with a solid mineral can affect the total alkalinity – 

Especially in solutions that contain carbonate minerals. The precipitation of carbonate rock has a 

strong influence on the alkalinity. This is because carbonate rock is composed of CaCO3 and its 

dissociation will add Ca+2 and CO3−2 to the solution. Ca+2 will not influence alkalinity, but CO3−2 

will increase alkalinity.  

In natural waters carbonate alkalinity tends to make up most of the total alkalinity. This is because of 

the common occurrence of carbonates in addition to the presence of carbon dioxide in the 

atmosphere. [15] 

7.2. Mineral solubility 
Sometimes a solid or charged specie will be more soluble as the condition of a fluid changes. 

Temperature, pressure, pH and even introduction of common ions will shift the solubility in a positive 

or negative direction. 

If a given mineral is solved in pure water and a solution containing common mineral ions, the mineral 

would experience a difference in solubility. The solution containing the initial concentration of ions 

would allow less of the mineral to be dissolved compared to that of the pure water. This is known as 

the common ion effect. This means that the solubility of minerals decreases when ions from the 

reaction of the mineral dissolution already exist in the solution. 

 

7.2.1. Molar solubility product - Ksp 

For calcite, the reaction of dissolution in water is given by Equation 7.2.1: 

CaCO3 (s) => Ca2+ (aq) +CO3
2- 

(aq)  Equation 7.2.1 

of which the equilibrium constant is given by Equation 7.2.2: 

] (s) CaCO3[

]CO][ Ca[
K

-2

aq)( 3

2

(aq)



   Equation 7.2.2 

Where K is the equilibrium constant for the reaction and [CaCO3] is the concentration of the 

respective specie. 
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The total solubility product of a mineral (Ksp) is equal to the equilibrium constant (K) when the 

activity of the solid (s) and activity-coefficient of the aqueous species (aq) is unity. Hence the 

Solubility of the mineral is given by Equation 7.2.3 below. 

]AB[

]B[]A[
Ksp

2 
 =

]0.1[

]B[]A[ 2 
= ]B[]A[ 2       Equation 7.2.3 

 

The concentration of a solid in a solution is always 1.0 which means that the Ksp is equal to the 

product of the concentration respective to each charged species in the reaction.  

Water exposed to the atmosphere has typically obtained equilibrium between dissolved CO2 and 

carbonic acid according to Equation 7.1.5. The pH value of pure water exposed to CO2 gas would 

eventually reach equilibrium due to the buffering effect of dissolved CO2. For a pure solution the 

equilibrium pH should stabilize around 5.5. 

If a given amount of calcite is placed in a similar acidic solution at standard conditions, the pH value 

would reach 8.26. Further investigations respective to the concentrations of the species should show 

that there is more solved CO2 than calcite in the solution. This is due to the initial CO2 (aq) 

concentration.[15] 

7.2.2. Solubility of carbonates 

Calcite has previously been considered as a key component in buffering and alkalinity. Calcite will 

react accordingly when in contact with water:  

CaCO3 (s) => Ca2+ (aq) +CO3
2- 

(aq)  Equation 7.2.4 

OH-+ HCO3
- ⇌ CO3

2-+ H2O  Equation 7.2.5 

As mentioned, if a solution of water is exposed to carbon dioxide, carbonic acid will form. Normally 

calcite has a low solubility in cold water, but if calcite is exposed to a buffered acidic solution, the 

calcite mineral will react with carbonic acid and form bi- carbonate (HCO3
-). Bicarbonate is much 

more soluble in water than calcite, thus the solubility of calcite can be said to depend on the acidity 

of the water. Temperature does also have an impact on the solubility. Calcite has a retrograde 

solubility, meaning that the amount of soluble calcite decreases as the temperature increases. The 

mentioned properties allow calcite to dissolve in one location and precipitate in another location 

where the water has a lower temperature or higher pH value. [15, 19] 

 

 

 

 

Figure 7.2.1 – Solubility of calcite in water at various partial pressures of CO2 as a function of 

temperature represent the solubility of calcite in water as a function the temperature and salt 
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content. The graph shows that the solubility of calcite increases with decreasing temperature and 

increasing salt content 

 

Figure 7.2.1 – Solubility of calcite in water at various partial pressures of CO2 as a function of temperature 

 

 

7.2.3. Solubility of silicates 

The solubility of quartz is relatively low in water compared to the solubility of CO2 and calcite. Quartz 

is the least soluble Si-mineral and hence the most thermodynamically stable SiO2 polymorph. 

Equation 7.2.6 shows the reaction of dissolution for quartz. 

SiO2 (s qtz) ⇌ SiO2 (aq)  Equation 7.2.6 

 

Equation 7.2.6 defines the dissolved quarts as SiO2 (aq) which is often termed silicic acid (H4SiO4
o). 

Silicid acid is formed according to Equation 7.2.7. 

SiO2 (aq) qtz + 2H2O (l) ⇌ H4SiO4
o 

(aq)  Equation 7.2.7 

 

H4SiO4
o 

(aq) is a weak acid that dissociates in alkaline solutions by protolysing according to Equation 

7.2.8. The concentration of H3SiO4
- increases with the pH-value of the solution.[15] 

H4SiO4
o ⇌ H3SiO4

- + H+  Equation 7.2.8 
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Figure 7.2.2 shows that the solubility silica is low in acidic concentrations below pH 9. Silicic acid 

(H4SiO4
o) is the favoured species in this pH range. At pH values above 9 the dissociated forms of silicic 

acid (H3SiO4
- and H2SiO4

-) are more dominant. 

 

Figure 7.2.2 – Change in solubility for Silicates with increasing with pH[15] 

The figure also shows that the quartz solubility is independent of the pH at values below 9, while its 

only when the silicid acid start to protolyse to form H3SiO4
- and H2SiO4

-, that the solubility increases. 

This could be translated to a proportionality between the solubility of quartz and silicid acid, however 

it is a wrong assumption. The pH value of the solution does not affect the solubility of Si minerals, but 

rather the reaction rate of the dissolution.[15] This will be explained in more detail in the following 

chapters. 
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7.3. Reaction kinetics 
Thermodynamics can predict the direction of a reaction, but not the speed or rate of the respective 

process. Nor can it predict the path of a reaction. Reaction kinetics is exactly what the name implies; 

calculations of reaction rates respective to the chemical processes. 

Reaction kinetics considers the energy required to pass the barrier between reactants and products. 

For all reactions there is a medium, ie a solution, where one or more reactants are distributed with 

uneven energy levels in terms of kinetic energy. In order to initiate a reaction this kinetic energy has 

to surpass the energy barrier between the product and reactant. The minimum energy required is 

termed the activation energy, Ea.  

If the activation energy is large relevant to a given thermodynamically state, a fewer number of 

species would obtain the necessary energy to cross the threshold between product and reactant. 

Hence there would be close to no noticeable presence until a needed period of time has passed. In 

short, the higher the activation energy of a reaction, the slower the rates of the process will be. 

For a reaction between two species A and B that forms the products C and D, reaction and reaction 

rate can be written as: 

 

A + B ⇌C +D   

]B][A[k
dt

]A[d
r

   Equation 7.3.1 

Or; 

 

2A + B ⇌ C + D   

]B[]A[k
dt

]A[d 2

r

   Equation 7.3.2 

 

Where d[A]/dt is the change in concentration of specie A over the infinite time dt. The constant –kr
+ 

is the rate constant for the reaction. Equation 7.3.1 is overall a second order reaction while Equation 

7.3.2 is overall a third order reaction.  

These are very simplified equatiuns that assume 1st order kinetics. A more modern equation is 

presented in equation xxx 

The order of a reaction is given by the sum of powers to concentration of the components. 

Compared to a second order reaction, the third order reaction in Equation 7.3.2 would experience a 

double increase in rate of change in specie A if the concentration of specie B were to be doubled. 

This is due to the second order in [A] and overall third order of the reaction.[15] 



51 
 

 

 



52 
 

7.3.1. First order reactions 

A more relevant reaction to reservoir chemistry is the first order type as shown in Equation 7.3.3. An 

example of a first order reaction is that of a minerals precipitation and dissolution in water.  

For the dissolution of specie A  

A ⇌ B + C  Equation 7.3.3 

the first order reaction rate can be written as 

]A[k
dt

]A[d
r

   Equation 7.3.4 

A trivial integration of Equation 7.3.4 results in a decay rate type of equation with respect to the 

concentration of A. The decay rate of specie A would then be: 

)kexp(]A[]A[d r

o    Equation 7.3.5 

Where Ao and kr
+is the initial concentration and rate constant of specie A.[15] 

 

7.3.2. Intermediate steps 

Sometimes there are intermediate steps between a reactant and the final product. For a reaction A 

to C there is an intermediate step called B. This intermediate might include a reconfiguration of the 

molecule structure from A to B so that the reaction can continue to step C.   

A       ⇌      B     ⇌      C  Equation 7.3.6 

In Equation 7.3.6 the reaction would have two rate constants, kA
+ and kB

+.  

If rate constant for formation of C (kB
+) is larger than that of the formation of B (kA

+ ), the rate for the 

overall reaction would be governed by first step. The step with the slowest rate would then be the 

limiting factor of the reaction.[15] 
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7.3.3. Reaction rates for calcite 

As explained earlier calcite has a retrograde precipation with respect to the temperature. The rate of 

this precipation is also dependant on the pH of and the CO2 pressure of the solution. Figure 7.3.1 is a 

graph representing the rate of dissolution as a function of pH and CO2 pressure. 

 

  Figure 7.3.1 – The reaction rate of calcite plotted against the pH of the solution[2] 

The trends Figure 7.3.1 show that the dissolution rate of calcite increases with decreasing CO2 

pressure and pH. At high pH values the rate decreases due to the backwards precipitation.[2] 
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7.3.4. Reaction rates for Quartz 

It is confirmed that the rate constants are dependent on the temperature and to an extent the 

pressure. Another property of the solvent that affects the reaction rates is the pH. 

Previously we considered the solubility and dissolution of quartz and observed a correlation between 

the pH and solubility product of quartz. This correlation is also present when comparing the reaction 

rate with the pH value.  

 

Figure 7.3.2 – Precipation rate of quartz plotted against the pH[15] 

The dissolution of quartz does not depend on the respective amount reacting, but rather the surface 

exposed to the solution. Figure 7.3.2 shows a slight increase in the reaction rate of dissolution below 

pH 3. At pH values above 3 the reaction rate increases with the pH.  

If the reaction of quartz precipation contained more than one step, the trend in  Figure 7.3.2 could 

be explained by a rate controlling complex that is dependant on the pH. Silicic acid could be that 

complex, but the positive trend below pH 3 says otherwise. At pH values in the range of the first 

increment, the silicic acid should remain unchanged. 

The surface of the quartz mineral develops a charge dependant on the pH of the contacting solution. 

At high pH values the charge is at its most negative and decreases as the pH value approaches 2.5. 

Quartz has a crystalline structure consisting of silica bound to oxygen in a tetrahedral shape. At the 

surface of the mineral the silica is bound to a hydroxide (Si-OH). When the pH increases, the fraction 

of charged surface grid also increases in the form of Si-O- . 

It is imperative to notice that the equilibrium constant and solubility is independent of the pH, and 

that the reaction rate increases with the pH. Compared to calcite the precipation rate of quartz is 

relatively low and often causes a super saturation in natural waters.[15] 

7.3.5. Solubility, Acidity and porosity 

The solubility and complexation of minerals in an aquifer is important with respect to change in 

porosity. Depending on the rates of the precipation reactions, the size of the pores on pore necks will 

change and influence the chemical and mechanical properties of the entire reservoir.  

Take the precipation of calcite as an example: As the amount of calcite precipated into the water 

contained in the aquifer increases, the pH value will increase proportionally. At a certain point this 
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increment in pH will cause the precipation of quartz to increase with respect to the reaction rates. At 

some point this will reduce the stability of the pore walls. 

8. Poroelasticity and geomechanical model 
As described in chapter 4, a porous medium consists of a solid matrix with an interconnected 

network of pores. In a reservoir these pores are often filled with fluids like water, oil or methane gas. 

A porous media with an elastic solid matrix and a viscous fluid is characterized as poroelastic. The 

poroelastic medium is defined by its porosity, permeability and the properties of the solid matrix and 

fluid. 

A poroelastic consideration deals with four basic variables. These include stress (ςij), strain (єij), pore 

pressure (p) and the change in fluid content. To give an understanding of poroelasticity the following 

chapters will define a few relevant terms. 

8.1. Stress and strain  
The minerals that make constitutes the crust of the earth are constantly exposed to forces. Such 

forces may cause deformation or changes the shape of the mineral. Gravity is one of the most 

commonly known forces. Gravitation is directly exerted on all objects with a mass, and indirectly 

through contact between the said objects. The mineral crust of the earth is connected through a 

solid matrix framework where the force of gravity is transferred through contact between 

neighboring solid particles. 

This translation of overburden pressure is the foundation for the theories of surface traction and 

deformation. Surface traction or stress, is defined as the force per unit area exerted on the surface of 

a particle. [20] 

A

F
T




   Equation 8.1.1 

 

Stress and strain are synonymously used in context with traction and deformation. However, stress 

and strain are mathematical terms, while traction and deformation are related to the physical 

processes.  

The traction can be divided into external and internal tractions. External tractions (T) represent the 

net force per unit area (ΔF) acting on a finite segment of the body’s surface (Δs) as shown in Equation 

8.1.2:  

ds

dF

s

F
limT

0s








  Equation 8.1.2 

 

The internal traction as shown in the right hand side of Figure 8.1.1, is defined according to the 

external traction since it is a propegation of the applied external pressure. 
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Figure 8.1.1 - External and internal surface traction[21] 

In point a given point P within a solid particle as shown in figure xxx, the traction for a point P can be 

defined similar to the external tractions (T). [21] 

ds

dF

s

F
limP

0s








  Equation 8.1.3 

The traction vectors are typically not orthogonal, but angled at the surface. The axial constituents of 

this angled vector are termed the normal and shear traction.  

Stress, or traction, can be divided into three orthogonal components in the xyz directions, as shown 

in Figure 8.1.2. Amongst these axial components, the direct stress is the component normal to the 

respective surface, while the other two are called shear stresses and are tangential to the same 

surface. The direct stress influences the volume of the material and is resisted by the body’s bulk 

modulus. The shear stress deforms the material without influencing the volume and is resisted by the 

body’s shear modulus.  

Figure 8.1.2 is a visualisation of an infinitesimal cube representing a point P in the matrix of a porous 

media.  With three stress components on each of the six sides we can find the stress state. One 

component represents direct stress and the two other, the shear components. The stress 

components are total stress in the respective direction. By assuming that the cube is in static 

equilibrium the number of required components can be lowered to from a total of 18 to 9 in three 

planes.  

 

 Figure YY.  

 

Figure 8.1.2 - Stress 
state for a cube in a 
point P.[20] 
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For a component ςij, “i“ is the stress on a plane along the direction of “j”. The normal stresses (ς i=j ) 

are parallel to the normal of the respective surfaces, and the shear stresses (ς i=/=j) are parallel to the 

surface. By assuming static equilibrium, we assume that stresses diagonal to each other are identical 

so that ς ij equals ς ji. These nine components or tensors can be placed in a matrix according to 

Equation 8.1.4 which is also known as the tensor matrix. 























zzzyzx

yzyyyx

xzxyxx

 
 Equation 8.1.4 

Shear stresses have different suffixes and are often denoted by τ.[21, 22] 

8.2. Pore pressure 
Pore pressure (p) is simply the pressure of the fluid occupying the respective pore space. The pore 

pressure is measured in a fluid reservoir which is in static equilibrium with the pore.  

Together with the mechanical quantities stress and strain, the fluid quantities of pore pressure and 

fluid content constitute four variables that can be combined into two pairs of dependant and 

independent variables. The four possible permutations of these variables, together with the tensor 

stress and strain, is the foundation for several poroelastic moduli. [20] 

8.3. Poroelastic properties 
The theory of linear poroelasticity describes the interaction between mechanical effects and adding 

or removing fluid from rock. 

The intensive properties of the confined fluids in a pore are dependent on extensive properties of the 

solid matrix. If an intensive variable like the pressure or density of a fluid is altered, then the 

extensive pore volume of the matrix might experience a proportional change (I.e. pressure 

depletion). This relationship is termed as a fluid – solid coupling. 

Solid - fluid coupling, on the other hand, occurs when a net change in stress induces a change in fluid 

properties. Changes in fluid properties like mass or pressure may also induce a change in volume of 

the porous media. This is termed fluid – solid coupling.  

With respect to the solid – fluid coupling, the magnitude depends on a range of factors including the 

compressibility of the solid matrix, pores and solid grains. The compressibility of the fluid trapped in 

the pores also important. [20] 

The pore compression and subsidence of the sea floor at the Sleipner reservoir occurred due to a 

decline in the fluid pressure. As the hydrocarbons were removed from the reservoir the by means of 

fluid expansion and pore compressibility, the solid matrix started to collapse causing the sea floor 

supporting platform to subside. Even though measures put in action to maintain the pressure the 

effect was and prolonged by chemical reactions and further weakening of the calcite rich formation.  



58 
 

8.3.1. Hydraulic fracturing 

The poroelastic expression for the circumferential stress can be used to estimate the breakdown 

pressure in hydraulic fracturing. (Haimson and FairHuast, 1969) The assumption is made that 

breakdown occurs when the Terzaghi effective stress equals the tensile strength T in Equation 8.3.1: 

Tp    Equation 8.3.1 
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9. Flow equations  
This chapter contains the description of the flow equations used in the respective modules of the 

coupled RCB code. 

9.1. Reactive transport 
In the reactive module Retraso, the mechanical and reactive flow is governed by three laws: 

 Diffusion with respect to Fick’s law  

 Advection with respect to Darcy’s law 

 Dispersion with respect to the local heterogeneities of the solid rock matrix and flow pattern 

 

Figure 9.1.1 – Schematic illustration of the iteration in Retraso 

Figure 9.1.1 illustrates the iterative process in the reactive module, along with the considered 

balance variable and governing laws.  

9.1.1. Diffusion 

The diffusion is governed by Fick’s laws. According to the description in chapter 4.3, the flux is 

obtained by means of Fick’s first law: 

scm

mole

cm

cmmole
scm

x

c
DJ

2

3
2

0
][

]/[
]/[ 




   

Equation 9.1.1 

The diffusion factor D0 is dependent on the tortousity and reduced area of diffusion (bottlenecks) in 

the porous medium. For a respective formation segment the diffusion factor is corrected according 

to equation xxx: 

02
DDCorrected 












   

Equation 9.1.2 
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Where ø is the porosity, χ is the change in diffusion area and τ is the correction for the tortousity in 

the permeable path of flow. 

9.1.2. Advection 

Advection is transport of dissolved solid particles, governed by Darcy’s law with respect to the 

concentration of the solid particles. As such the flux of solid particles is obtained by means of 

equation xxx: 

CqJ Darcyadv  




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
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
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Equation 9.1.3 

Where q is the Darcy flux and C is the concentration. The Darcy flux is described in equation xxx, 

chapter xxx. 


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Equation 9.1.4 

9.1.3. Dispersion 

The velocity of the dispersion front is dependent on the heterogeneity of the reservoir. At initial 

conditions the liquid would be displaced in a piston while changes in permeability will blablabla 

CDJ disdisp  .
  

Equation 9.1.5 

Where ø is the porosity, Ddis is the dispersion tensor and  C is the concentration gradient. In the 

two-dimensional model, there are two considered axial tensors in x and y direction. The dispersion in 

each direction is obtained by equation xxx and xxx: 

xLL vD 
 

xTT vD   

 

Equation 9.1.6 

Where alpha represents the longitudinal and transversal dispersivity [m] in the x and y directions. Vx 

is the linear velocity [m/s] of the dispersion front. 
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9.2. Geomechanics 

9.2.1. Mass forces 

Forces acting on each particle in the body due to relative movements of particles: deformation 

kl

K

ijklij eH 


3

1

  
 

Equation 9.2.1 

Where ςij is the stress tensor, Hijkl the material property or elasticity tensor and ekl is the strain tensor 

as described in equation xxx: 
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Where ui is the displacement in direction “i” of a fixed coordinate system. χi is the displacement 

coordinate of which “i” equals x, y and z.  

9.2.2. Linear elasticity 

When the last sum in equation xxx can be said to approach zero, we have linear elasticity. The linear 

part of the strain tensor is given by equation xxx 
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9.2.3. Navier stokes 

0)( ,,  ijijiiji FuGGu    

The lame consant lambda is obtained through equation xxx: 
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Where E is the Young modulus and v is the Poisson’s ratio. Likewise the shear modulus and thermal 

modulus can be obtained by equation xxx and xxx. The factor Θ is simply the temperature 

relationship given by: 0TT   
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10. Simulation software 
In the introduction of this thesis the simulation software RetrasoCodeBright was briefly introduced. 

This chapter contains a more elaborate description of the two coupled modules that constitute the 

program abbreviated as RCB. The contained material is largely gathered from the previous work of 

PhD Shunping Liu and Professor Bjørn kvamme [ref] 

The version of the code applied in this thesis as received a range of modifications. It has been 

rewritten and extended to account for CO2 storage simulations in saline aquifers located at large 

depths. More specifically code has been rewritten to account for non-ideal gas through corrections 

of gas density and gas solubility in all transport terms, in addition to improvements in the Newton-

Raphson method used to solve the flow and mechanics in RCB in order to ease the convergence even 

under high gas injection pressures. 

10.1. RetrasoCodeBright 
RCB is the result of coupling the two different codes consisting of a reactive transport module and 

geomechanical transport module that also considers flow and heat transport. CodeBright, an 

abbreviation of “COupled DEformation of BRIne Gas and Heat Transport”, was designed for the 

thermo-hydraulic-mechanical analysis of three-dimensional multiphase saline formations. The other 

module Retraso, short for “REactive TRAnsport of Solutes”, solves the two-dimensional reactive 

transport problems.[ Ref ccp2 SPL BK] 

The original form of Retraso CodeBright (RCB) was developed at the Technical University of 

Catalonia, Barcelona. The team contributing with the two parts consisted of Maarten W. Saaltink, 

Carlos Ayora and Sebastia Olivella. At the time the platform was initially intended for standard 

conditions at 1 atm pressure and 15 Celsius, but due to the design of implicit coupling between the 

two modules Retraso and CodeBright the code was perfect for CO2 injection calculations. [Refccp2] 

Due to these promising properties, project “Observing the effect of long term CO2 storage in saline 

aquifers” adopted the code with aim modify the equations in order to simulate reservoirs at large 

depths. The project is carried out at the Department of Physics and Technology at the University Of 

Bergen.  The main focus of the project is to develop a modeling method that can be used in more 

common situations. [Ref ] 

As mentioned the RCB coupled code is improved by doing three main corrections in its 

implementation.  

 The first two are the corrections for fugacity coefficients and Poynting corrections in the gas 

(CO2)/liquid equilibrium respectively in CodeBright part and Retraso part. These corrections 

are essentially straightforward to implement.  

 The third correction is the density correction in the gas flow equations. These corrections 

also essentially straightforward give that the compressibility factors are known.  

 The other optimization is done by modifying the conventional Newton-Raphson method 

which introduces a relaxation factor to make the iterative process converge faster. (Spl bk) 
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10.2. Governing equations and algorithms in CodeBright module 
RCB formulates the flow problem in a porous media with a multiphase approach that includes the 

solid matrix and its contained fluids.  

During a single time step the geomechanical module of the coupled code (CodeBright) first calculates 

the mass flow, heat flow and geomechanical deformation. These variables, along with the physical 

properties and state conditions such as fluid pressure, flux, temperature and hydraulic saturation, 

are then sent to the chemical module (Retraso).  

As shown in figure xxx both the CodeBright module and Retraso module utilize the Newton-Raphson 

iteration method to solve the linear algebraic systems of governing equations.  

The data received from CodeBright is processed in several sub-groups which consider the integration 

the individual fluxes of molecules and ions, while at the same time taking into account possible 

reactions between the reservoir fluids and the solid matrix. These reactions can either be considered 

in an equilibrium approximation or a kinetic formulation.[23] Eventual changes in porosity as a result 

of advection, mineral dissolution/erosion and precipitation are updated according to commonly used 

correlations[23].  All of the updated values from Retraso are then transferred back to the CodeBright 

module so that the next time step can be initiated. 

 

 

Figure 10.2.1 – graphical representation of the communication and iteration processes in the two modules; Retraso and 
CodeBright. Schematic coupling of the two modules 

 

With respect to the modifications of the original code the following section will describe the basic 

changes in detail. The coupling between the two modules is also schematically illustrated in Figure 

10.2.1 



65 
 

The governing equations for non-isothermal multiphase flow of water and gas through porous 

deformable saline media have been presented by Olivella et al. [4]. In the user manual  

These equations can be categorized into four main groups, which are balance equations, constitutive 

equations, equilibrium relationships and definition constraints. 

10.2.1.1. Mass balance of water and gas phase 

In CodeBright the equations of mass balance were obtained in a compositional approach where 

water, air and species of salts were considered rather than liquid, gas and solid. The mass balance of 

water and air is obtained according to Equation xxx and xxx:  
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Where the variables in both equations are defined as: 
  

Ѳm
n - is the fraction of component “n” in phase “m”  

Sm  - is the hydraulic saturation of phase “m” i.e. the fraction of pore volume occupied phase “m” 

 Φ  - is the porosity 

Jm
n  - is the total flux of component “n” in phase “m” 

ƒn  - is an external source or drain of component “n”  
 

The two first terms in the mass balance of water represents the change in the mass of water within 

the gas and liquid phase, while the third term represent the flux of water in gas and liquid phase. 

Together the three terms constitutes the amount of water added or removed from the respective 

area, ƒw. The amount of component “n” in phase “m” represented by Ѳm
n in equation xxx and xxx 

can also be defined as: 

ωm
n x ρm 

 

  

 

Where ωm
n is the mass fraction of component “n” in phase “m” and ρm is the density of phase “m” 
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10.2.1.2. Mass balance of solid 

The mass balance for the solid phase considers the molality change of the mineral matrix. An infinite 

change can be described according to equation xxx: 

0)())1(( 



ss j

t
  

  

where θs 
is the mass of solid per unit volume of solid, js is the flux of solid and φ is the porosity. By 

solving equation xxx with respect to the porosity we obtain equation xxx which represents the 

change in porosity. 
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The introduced variable u is the solid displacements. 

10.2.1.3. Momentum balance of the medium 

The momentum balance reduces to the equilibrium of stresses if the inertial terms are neglected: 

0 b    

where  is stress tensor and b is the vector of body force.  

10.2.1.4. Internal energy balance of the medium   

By taking into account the internal energy, E, for the three phases - the internal energy balance for 

the porous medium can be expressed according to equation xxx: 

Q
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where the factor
Qf  is an internal or external energy supply. 

The first three terms in the equation represent the change in energy within the three phases. In the 

fourth term, ic represents the energy flux by conduction in the porous medium, while three remaining 

terms constitutes the advective flux of energy due to the motion of masses.   

10.2.2. Constitutive equations and equilibrium restrictions 

In association with this formulation there is a set of necessary constitutive and equilibrium laws. 

Table xxx contains a list of the laws that should be incorporated in the general formulation. The 

dependent variables that are computed using each of the laws are also presented in the same table.  

Here we need to explain some of the most important constitutive and equilibrium laws. 

The Generalized Darcy’s law is used to compute the advective flux, q, of the  phase ( l  for 

liquid, g  for gas). It is expressed as: 
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where k is the tensor of intrinsic permeability ( 2m ) , rk  is the relative permeability of the phase, 

 is the phase’s dynamic viscosity (Pa s) and g is the gravity vector( -2ms ). Her we need to point out 

that the dynamic viscosity  highly depends on temperature (T ) and the relative permeability 

( rk  ). 

 

The Van Genuchten’s *12+ retention curves expressing saturation as a function of liquid or gas 

pressure is used. It is: 
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where 0P and n are scale pressure and shape parameters. The relative permeability rk  depends on 

saturation ( lS ) which in its turn depends on lP and
gP . 

The relative permeability ( rk  ) in eq. (7) is a function of the saturation. In various expressions, the 

Van Genuchten is the most widely used, which is: 

2
1

))1(1( n
n

lll SSk   

  

 

Where n is still the shape parameter, but it does not necessarily have the same value. 

 

Constitutive equations Variable name Variable(s) 

Darcy’s law Liquid and gas advective flux 

 

,l gq q  

Fick’s law Vapor and gas non-advective flux 

 

,w a

g li i  

Fourier’s law Conductive heat flux 

 
ci  

Retention curve Liquid phase degree of saturation 

 

,l gS S  



68 
 

Mechanical constitutive model Stress tensor 

 

  

Phase density Liquid density 

 
l  

Gas law Gas density 

 
g  

 

Equilibrium restrictions Variable name Variable 

 

Henry’s law Mass fraction gas dissolved h

l  

Psychometric law Vapor mass fraction w

g  

 

10.2.3. Time subdivision in CodeBright 

In the coupled code RCB, both CodeBright and Retraso perform the numerical iterations in a Newton-

Raphson approach in order to solve the highly non-linear equations. However, the time subdivisions 

in the two modules are different. 

In CodeBright the time interval approach is governed by several criteria. Between an iterated time t 

and the following time-step t+1, there is a time interval dt. The next time step would then be 

calculated according to equation xxx 

 

nextupdatednext Fdtdt    

 

Where dtnext and dtupdated represents the next time interval and the adjusted time interval, according 

to the residuals at time t+1. The time factor Fnext is the predicted factor for the next time step, which 

is always larger than zero and ranges between the empirical values of 0.1 to 1.4. The factor itself is 

calculated based on the relative error of the variables in the previous time-step. If the relative error is 

larger than the prescribed value, the time increment dt will be reduced according to the magnitude 

of deviation in order to ease the convergence. 

For each independent variable, there are four parameters of error tolerance that constitutes the 

criteria of convergence. These four include the maximum absolute error, the maximum relative error, 

the maximum mass balance error and the maximum correction per iteration. Together they adjust 

the updated time interval to the most ideal magnitude for the iterative process. If the residual at 

time 1t  is large enough then dtupdated will be reduced accordingly. If the same residual at time 1t  is 

small enough then dtupdated will be increased.    

Boundary conditions 
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The pressure in a CO2 injection scenario is relatively high. If the simulations were to directly apply 

the prescribed injection pressure as an initial boundary condition, it would cause large pressure 

gradients around the injection point which in turn would cause convergence problems in the 

surrounding nodes and elements. Based on this understanding, a lower pressure slightly above the 

natural pressure gradient in the area must be applied as the initial boundary condition. In order to 

obtain the originally prescribed injection pressure, the code will utilize a pressure ramp loading in 

one or more time intervals. The simulations that will be presented later, demonstrates the applied 

function of pressure ramp loading. However, this section will further focus on the equations of 

boundary conditions.       

In the thermo-hydraulic calculations performed by CodeBright, the state variables Pl, Pg and T are 

always used as boundary conditions in combination with a few user-prescribed parameters when 

specific requirements need defining in the thermo-hydraulic system. CodeBright expresses nodal 

flow rates for every component (water, air and heat) and every phase (liquid, gas) as function of the 

state variables and available prescribed values, specified by the user.   

The mass balance of water, air and energy were defined in equation xxx to xxx. Based on these 

equations, the boundary conditions and expressions for the source/sink terms (
wf ,

af and
Qf  )  

have to be rewritten for water, air and heat.  

The mass flow rate of water as a component of the gas phase and liquid phase can be written as: 
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Where the superscript 0 stands for the prescribed values, and the terms Δ( - )dt/Δt allow for 

imposing a linear variation of the respective variable during the time step.  

This general form of boundary condition includes three terms of which the first term represents the 

mass inflow or outflow governed by flow rate of gas ( 0

gj
) or liquid ( 0

lj
). The second term represents 

mass inflow or outflow that takes place with respect to the defined nodal gas phase pressure ( 0

gP ) or 

liquid phase pressure (Pl 
0). The coefficients 

g or
l  are leakage coefficients. The third term is the 

mass inflow or outflow that takes place when the mass fraction of vapor or water in liquid phase is 

prescribed at the boundary.  
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The phase respective fluxes of a component are the sum of equation xxx and xxx. Hence the total 

boundary condition of water can be obtained by equation xxx: 

w w w

g lj j j    

   

Similarly, the mass flow rate of air as a component of the gas phase and liquid phase are: 
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And the total boundary condition of air is: 

a a a

g lj j j    

   

For the energy balance equation, the boundary condition also has a similar form 
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11. Reactive transport in Retraso part 
The reactive module in the coupled RCB code is written with a “state of the art” geochemical solver 

which has capabilities of treating aqueous complexation (including redox reactions), adsorptions and 

precipitation/dissolution of minerals along with gas dissolution. The precipitation, dissolution and 

aqueous complexation can be modeled in either an equilibrium or kinetic approach. 

In the current version, the code has been extended from ideal gas to realistic fluid description using 

an equation of state. Calculations of densities and fugacity coefficients can either be handled through 

an interface which utilizes an equation of state, or through an interpolation approach using tabulated 

values for pure CO2. The simulations presented in this thesis utilizes the Soave Relich Kwong (SRK) 

equation of state [9] which is applied on the density calculations and fugacity calculations 

considering the CO2 phase and dissolution of CO2 into the groundwater 

The dissolution and precipitation of the formation minerals in CO2 injection scenarios are slow 

natural processes, where the kinetic law [10] is applied in RCB. The mathematical equations for the 

system are highly non-linear and are solved numerically [7, 8]. 

11.1.1. Kinetic rate laws 

In RetrasoCodeBright the rates of mineral dissolution and precipitation is calculated according to the 

general expression formulated by Lasaga et al. [10] (see also Saaltink et.al. [7]): 

 ,

1 1

exp 1
k

mk
mki mk

N Ns
a m P

m m m mk i m

k i

E
r k acc

RT


 

 

 
   

 
 

 

 

Where rm is the mineral dissolution rate in moles of mineral per volume of rock and unit time, km 

is the experimental reaction constant in the same units as the dissolution rate. The exponential 

term containing the activation energy Ea, is a function of the temperature including temperature 

dependencies defined in equation xxx to xxx. Ώm is the saturation ratio, or the ratio between the 

ion activity product and the solubility product as defined in Equation xxx below: 
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The logarithm of Ώm is known as the saturation index SIm 

The system reaches the minimum free energy at equilibrium when m
 = 1 or mSI

 = 0. The 

parameters   and   must be determined from experiments.  
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The term inside the parenthesis in Equation 29, called the far-from-equilibrium function, decreases 

the reaction rate in a non-linear way, as the solution approaches to equilibrium.  

The extra subscript "actual" on the activity a in equation (30) distinguishes the actual non-

equilibrium activity for the equilibrium activity in equation (31). c in equation (31) is either 

concentration or mole-fractions depending on the actual units used for the K-values.  

and a similar consistent formulation will occur in equation (30) for the real concentrations and 

corresponding activity coefficients γ for actual non-equilibrium conditions.  

The term ip

iacc accounts for the catalytic effect of some species (particularly of H+) and the value of 

pi is determined by fitting experimental data.  

For reactions which are slow at ambient conditions the experiments are carried out at temperatures 

which are sufficiently high to result in dissolution within reasonable reaction times.  

Scaling of the rate constants are normally done through the Arrhenius equation: 
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where 0k
 is a constant and ,a mE

 is the apparent activation energy of the overall reaction process, 

which for most minerals range from 30 to 80 kJ/mol [10]. Parameters 0k
 and ,a mE

 are determined 

from experiments performed at different temperatures. 

 

11.1.2. Time subdivision in Retraso 

Both code CodeBright and code Retraso adapt Newton-Raphson iteration method to solve the highly 

non-linear equations. Nevertheless the method to subdivide the time in one time step in code 

CodeBright and code Retraso is different. 

After one Newton iteration at time 1t  code Retraso will judge whether this iteration is successful 

by compare the residual of solutions of time 1t  and time t , noted as 1tr  , is within the prescribed 

error accepted area. If not, next time interval will be reduced to /dt fd , where dt is the last time 

interval, fd is the time decrease factor which is bigger than 1.0. Then calculation goes back to repeat 

the iteration of time 1t  .  

If convergence has been achieved, Retraso will judge whether the number of iteration niter  is within 

the prescribed area, that is ( min, max)thr thr . If niter is bigger than maxthr , /dt dt fd . If niter is 

smaller than minthr , meaning that it has taken a very few iteration steps to converge, dt will be 

increased to *dt fi , where fi means the time increasing factor, which is bigger than 1.0. Otherwise, 
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niter is between the accepted areas. No matter which routine is taken, calculation will go to the next 

time step. 

 

11.1.3. Boundary conditions 

Since we have taken the pressure ramp loading method in CodeBright part and code Retraso, in its 

turn, does not allow varying boundary injection pressure, we have to instead use the CO2 molar 

fraction as the boundary condition. No matter how different the injecting pressure is changed, the 

CO2 molar fraction will be kept to be a constant.   

For every chemical component a boundary condition equation in Retraso is to be written for the 

mass balance. Retraso permits two types of boundary conditions. In the first type, a component mass 

flux is calculated by multiplying the boundary flux of a phase ( lj  , liquid,
gj , gas) by a total 

concentration of a component, which is that of the node of the boundary ( au , concentration of total 

aqueous species, or
gu , concentration of gas) or an externally specified one ( 0( )au or 0( )gu ), 

depending on whether the phase enters or leaves the medium: 

0( )l l am j u   0lj      

l l am j u   0lj   

 

 

0( )g g gm j u   0gj      

g g gm j u   0gj   

 

The second one is a mixed condition according to the following expressions: 

 
0(( ) )l l a am u u    

     

 
0(( ) )g g a am u u    

      

where l and g are leakage coefficients. A fixed concentration can be simulated by giving these 

leakage coefficient very high values. The first type is more preferred for advection dominated cases, 

whereas a fixed concentration is more preferred for diffusion dominated cases. 

The values of the external total concentrations ( 0( )au or 0( )gu ) should be given for every 

component. For the aqueous phase, Retraso first calculates the concentrations of the primary species 

by choosing one of the equations in Table 3. Then the total aqueous concentrations will be calculated 

by equation (28). 
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Table 3 Options for calculating the chemical composition of the boundary 

Option                                                  Equation 

Total aqueous component             0( )au = fixed 

Charge balance                               0
( ) 0i ai

i

z c 
 

Activity                                           0( )a = fixed 

Equilibrium with mineral                0( ) 1m   

Equilibrium with gas                       0( )fp = fixed 
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12. User interfaces and simulation software  
This chapter contains an overview and description of the respective software used in the simulations.  

12.1. Visual retraco 
Visual Retraso is a software - tool used to create the input files needed for the simulations in RCB 

which is explained in the following section. The input files contain the grid layout, the description of 

the zones and the initial conditions within each of the respective areas of the reservoir.   

Initially the software goes through a step-by-step progression where chemical elements, species, 

zones and constants are described. More detailed descriptions of each reservoir zone, containing 

specifications such as elasticity, retention curves and CO2 viscosity, can be added after the initial 

setup of the grid. Figure 10.2.1 is screenshot of the VGUM interface. 

In connection to the tweaking of Retraso CodeBright, Visual retraso is also altered at a code level. 

Hence the input files require some treatment afterwards in order to be compatible with Retraso 

CodeBright.  

 

Figure 10.2.1 – VGUM interface 

Most functions in the program are accessible through the main toolbar. The initial setup of the 

simulations has a step by step process guided by the program itself. Appendix XX contains a detailed 

explanation for the process of creating the input files. Appendix xxx further explains corrections that 

must be done to ensure compatibility with respect to RCB 
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12.2. GiD 
“GiD is an interactive graphical user interface used for the definition, preparation and visualization of 
all the data related to a numerical simulation. This data includes the definition of the geometry, 
materials, conditions, solution information and other parameters. The program can generate a mesh 
for finite element, finite volume or finite difference analysis and write the information for a numerical 
simulation program in its desired format. It is also possible to run these numerical simulations from 
within GiD and then visualize the results of the analysis. 
 
GiD can be customized and configured by users so that the data required for their own solver modules 
may be generated. These solver modules may then be included within the GiD software system. 
 
The program works, when defining the geometry, in a similar way to a CAD (Computer Aided Design) 
system but with some differences. The most important of these is that the geometry is constructed in 
a hierarchical mode. This means that an entity of higher level (dimension) is constructed over entities 
of lower level; two adjacent entities will then share the same lower level entity. 
 
All materials, conditions and solution parameters can be defined on the geometry itself, separately 
from the mesh as the meshing is only done once the problem has been fully defined. The advantages 
of this are that, using associative data structures, modifications to the geometry can be made and all 
other information will automatically be updated and ready for the analysis run. 
 
Full graphic visualization of the geometry, mesh and conditions is available for comprehensive 
checking of the model before the analysis run is started. More comprehensive graphic visualization 
features are provided to evaluate the solution results after the analysis run. This post-processing user 
interface can also be customized depending on the analysis type and the results provided. “[24] 
 
 
In relevance to this thesis GiD is utilized as a postprocessor for the output-files created in the RCB 
code. All the needed data are programmed to be written in a single compiled resource script, or file, 
named 1_flavia depending on the user settings. This file contains everything from the deformation to 
the pH and stress simulated in the reservoir through 100 years. 
 
Post-processed data from the flavia file is rendered as a two-dimensional contour plot where the 
available primary colours display the respective changes over time in an animation. With the settings 
used during the initial stages of creating the input files, each flavia file contains 60 000 time steps 
over 100 years. Each of the time steps are marked with a timestamp, allowing the user to select any 
relevant time steps for comparison.  
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13. Simulations 
The main goal of this thesis is to utilize the Retraso CodeBright software on carbon dioxide injection 

and further investigate the possibilities of simulating fractures in the containing layer of cap rock. 

The entire simulation, from the creation of the input-files to the post-processing, has been run on a 

stationary computer. This particular computer is a bit more than average as it is equipped with 16 

gigabytes of memory, two quad-core “Intel Xeon 2.66 GHz” processors backed up by a high capacity 

air-cooling system. Depending on the complexity of the respective simulations, the total simulation 

time might vary from three days to over a week.  

A set of eight cases were obtained by applying a cubic data-plan containing eight indexed points as 

shown in Figure 13.3.1. In lack of real field data from relevant reservoir systems, the eight 

simulations presented in his thesis are simplified models based on approximations to values in 

published articles. The papers from H. Hellevang and the TOUGH2 FLAC3D article are the two main 

sources for the relevant data, however there are some deviations from the provided data. These 

respective variables are altered according to advice based on the previous experiences of Shunping 

Liu.  

The reactive module is the most common source of convergence problems among several of the 

existing simulation codes. As such, several of the applied variables are adjusted according to earlier 

experience in use of the simulation software. 

This chapter contains detailed information for the simulation build of the eight presented cases. In 

addition there are some descriptions of preliminary work and utilized applications. 

 

13.1. Prior work and related projects 
As mentioned there are two main sources for the used variables in this thesis. The papers written by 

PhD Hellevang have contributed to the chemical composition of the reservoir, whereas the article 

based on the TOUGH2 FLAC3D project has contributed to the geomechanical values.  A short 

description of the two papers sources: 

13.1.1. ATHENA and the SACS project at Utsira  

As a part of the NFR project No. 151400/210 “Model studies of safe long term storage of CO2 in 

aquifers”, PhD Helge Hellevang presented his thesis in 2006. His paper focused the interactions 

between CO2, saline water and minerals during geological storage of CO2.  

The main aim of the project was to investigate the potential of 

long term CO2 disposal in deep saline aquifers and reservoirs 

by means of computational techniques. Further, the 

specifications of the considered reservoir are an approach to 

the values from the ongoing CO2 injection at the Utsira 

formation from the Sleipner West facility. 

The central task for the project was to develop a Secondary 

Oil Migration (SOM) simulator to a full reactive transport 

simulator for CO2 storage problems. CO2 injections represent complex and difficult processes, which 

13.1.1 – Graphical representation of the pH 
development generated by ATHENA. 
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push computational resources to its limits. The presented version of the SOM simulator was renamed 

to ATHENA. [3] In addition to the ATHENA simulator there are more papers covering the ACCRETE 

code. 

13.1.2. TOUGH2 FLAC3D 

In 2001 Jonny Rutqvist and Chin-Fu Tsang submitted an article that described a study of cap rock 

hydromechanical changes associated with CO2-injection into a brine formation. The numerical study 

considered hydromechanical changes during the deep underground injections of supercritical CO2 in 

a hypothetical brine aquifer/caprock system.   

Similar to RCB, the utilized software comprised two coupled computer codes: TOUGH2 and FLAC-3D 

According to the article, the TOUGH2 code was designed for geohydrological analysis of a multi-

phase, multi-component fluid flow and heat transport, while the FLAC-3D code, for rock and soil 

mechanics with thermomechanical and hydromechanical interactions. The two codes were coupled 

together in order to analyse coupled multi-phase flow, heat transport, and rock deformations.  

The article considered a 3000m long and 200m thick 

reservoir model at 1500m depth, confined by a 100m 

thick cap rock. Slightly off-centre to the right of the 

injection point there was introduced a virtual fracture 

with the width of 10m. Above and below the central 

formation there were two large formations designed to 

create boundaries for the investigated aquifer. During 

the simulation the injection pressure of CO2 was 

prescribed to approach the local lithostatic pressure of 

the reservoir. When the pressure approached the 

respective values, there is an increased chance of 

hydraulic fracturing. However, due to the equivalent 

increments in the pressure increments, the contained 

formation water was allowed to relax and thus reduce the probability of artificial fracturing. [25] 

 

 

 

 

 

 

 

 

13.1.2 – Graphical representation of the reservoir 
build at 1500 meters depth 
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13.2. Basic simulation setup 
The cases presented in this thesis are two-dimensional geometries limited to a 1000 m long and 250 

m high model, of which the vertical and horizontal axis are respectively divided into 50 and 25 

elements. Each element is 20 m long and 10 m high. In order to define the width of the fracture, 

there was added an additional 4m-wide element as clearly illustrated in the middle of Figure 13.2.1.  

Visual Retraso and RCB require that the model is divided into defined zones with respect to the local 

chemical and mechanical properties. The geometry is thus segmented into the 5 following zones: The 

injection aquifer, the upper aquifer and two cap rock zones divided by a fracture zone. The fracture 

zone is situated in the middle of the geometry, enabling the gas to flow from the injection aquifer 

through the cap rock and into the top aquifer.  

 

Figure 13.2.1 – Graphical representation of the reservoir zones 

The lower boundary of the injection aquifer is located at -1200m below the sea floor. Similar depths 

are found in a range of aquifers including the Utsira formation off the coast of Norway. 

[Hellevangref] From the lower boundary, the aquifer extends 150m to the cap rock located at -

1050m. Contributing with another 50m to the total thickness, the cap rock divides the injection 

aquifer from the upper aquifer.  The 50m thick upper aquifer is placed upon the cap rock in order to 

observe the gas plume that will form as the gas seeps through the fracture. The injection point of 

carbon dioxide is located on lower the right hand side of the bottom aquifer.  

13.2.1. Introduced fracture  

Situated in the middle of the reservoir, there is fracture is dimensioned to a width of 4m. The 

fracture effectively separates the cap rock layer and creates a highly permeable bridge between the 

two reservoirs. As shown in Figure 13.2.1 the fracture zone is described by one grid element, which 

explains the irregular width. By dimensioning the width of the said element, the magnitude of the 

fracture is adjusted accordingly.  

By definition the highly permeable zone can be described as a virtual fracture defined by its 

permeability and porosity. Ideally a fracture should be described hydrodynamically, however related 

software information on how to define a fracture as hydrodynamically is hard to obtain. 

Correspondence with one of the programmers, Maarten Saaltlink [ref], indicated that it should be 

possible to define a fracture hydrodynamically by means of a one-dimensional fracture placed in a 

two-dimensional grid. His comments were however not applicable to the virtual retraso software 

itself and thus temporarily a dead end.  
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Manually describing the same procedure is also not feasible, seeing that a simple grid file contains 

between 1000 to 1500 nodes in 5 blocks, arranged in a partly symmetric pattern. [ref appendix] The 

number of nodes constituting the grid obviously depends on the size of the simulated reservoir. Due 

to the lack of a functional procedure, the hydrodynamically approach was discarded and replaced by 

the geomechanical virtual fracture approach. Xxx at xxx have utilized the same method while 

simulation CO2 injections in the TOUGH2 FLAC3D model. [ref]  

The final dimensioning of the virtual fracture is based on a set of preliminary simulations where the 

width was altered in a range between 10 m and 1 cm. Observations showed that setups similar to the 

model presented in this thesis, converged with fracture dimensions ranging from 10m to 4m without 

significant problems. At lower widths the iteration process would reduce the time- steps and end the 

simulation within a few minutes. Due to these conversion problems the virtual fracture was set to 4m 

in the final simulations. 

13.2.2. Initial pressure, temperature and stress 

Visual retraso and RCB has the option to solve or iterate on changes in liquid pressure, gas pressure, 

temperature and displacements. At default settings only the liquid pressure will be considered and 

the other properties will remain uniformly constant if nothing else is specified. At normal reservoir 

conditions properties like pressure, temperature and stress are neither uniform nor constant. As such 

it is imperative to define these properties in gradients respective to depth and densities.   

In the process of defining the zone properties in Visual Retraso, the initial temperature, pressure and 

stress can either be specified as constant or in a field approach under the section for “Initial value of 

flow (THM) unknowns”. However, the field approach is complicated and lacks detailed descriptions 

on how to set it up.  With the help of a small program developed in Fortran by PhD student Shunping 

Liu, it is possible to alter the grid file manually with respect to the initial pressure and stress. By 

means of a few simple tweaks on my behalf, the same code was enabled to perform a similar 

operation with respect to the temperature as well. Following is a short description of the 

functionality of the program. 

Gradient software 

In order to calculate the gradient values, the application reads a file containing the second block of a 

grid file. This block contains information about the formation build and axial position of the 

respective nodes. The combination of these values is used to create two separate files with gradient 

values of pressure, temperature and overbearing stress. All the gradient values must be manually 

moved to the original input-file by pasting it into the coherent blocks below the source data. The 

equations responsible for the calculations will be briefly presented in the following section. 

 

 Figure 13.2.2 – Schematic overview of the 
modification process with respect to initial 
pressure, temperature and stress. The 
second block of the generated 1_GRI.inp 
file is extracted and processed in the 
Fortran code. Two new files containing the 
gradient values are then substituted in the 
original file. Respectively the 3rd and 4th 
block. 
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Pressure 

The pressure is defined with a simplified formula involving the reservoir depth and a gradient factor. 

Equation xxx can be used in combination with the created grid file to obtain the pressure at a 

respective depth. 

m

MPa
yPPy 01.0max 

 

 
Equation 13.2.1

 

 

where Py is the pressure at “y” meters depth, Pmax is the maximum pressure at the lower aquifer 

boundary and y is the representation of the depth according to the grid file. At 1190m depth the 

pressure is obtained according to equation xxx: 

m

MPa
mMPaP m 01.010121190 

 

 
Equation 13.2.2

 

 

In this case “y” is equal to 10 because the grid file regards the lower left hand side corner in figure 

xxx as origo and positive direction for the y-axis is upwards. In other terms “y” can be defined as:  

y = ymax – ycurrent 

 

 
Equation 13.2.3 

 

where ymax is the maximum depth and ycurrent the investigated depth. 

Temperature 

As mentioned the fluid pressure, temperature and matrix displacement can be solved by RCB. While 

both stress and the fluid pressures are solved in the presented simulations, the temperature remains 

constant throughout the reservoir due to convergence problems when applying the solver.  

The initial approach was to define the reservoir uniformly at 25oC, however with a simple expansion 

of the gradient software applied to the generated input files; the reservoir temperatures have also 

been appended with vertical gradients. This extension will allow a more realistic description of the 

dissolution and precipitation occurring in the aquifer. 

Similar to the setup for the pressure gradient, the temperature is also calculated by an equation 

considering the reservoir depth and a temperature gradient factor: 
 

m

C
yTT

o

y 036.0max 
 

 
Equation 13.2.4
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where Ty the temperature at “y” meters depth,  Tmax is the highest temperature with respect to the 

current gradient factor and “y” is the considered depth.  

With a lower aquifer boundary at 1200 meters, the current gradient of 0.036oC per meter warrants a 

higher temperature of 43.2oC. At 1190 meters depth the temperature is obtained according to 

equation xxx: 

C
m

C
mCT o

o
o

m 84.42036.0102.431190   Equation 13.2.5 

 

This approach is just a temporary setup, as work is done to further improve and allow temperature 

solving. Although a constant gradient temperature can be satisfactory, it is imperative to adjust local 

increments with respect to changes in pressure, density and chemical reactions. For example: As the 

temperature rises, less carbon dioxide gas and calcite will be able to dissolve in the solution and thus 

the pH–ranges will be significantly altered. 

Stress 

In contrast to the pressure and temperature, the stress is calculated at centre of each element. The 

average solid density is estimated to 2.26 Kg/m3 for the formation. [ref flac density] Thus the total 

stress can be obtained according to equation xxx  







6100.1

g
y solid

  
 

Equation 13.2.6 

 

where ρsolid is the density of the solid matrix and g the gravitational acceleration. The variable ∆y is a 

simplified positioning of the stress in an element with respect to the vertical coordinates. The stress 

at the lower aquifer boundary is obtained according to equation xxx: 

[MPa] 26.49=
100.1

/81.91000/26.2

2

)11901200(
6

23

1195








smmKgm
m  Equation 13.2.7 

 

All simulations presented in this thesis are run with realistic gravity combined with an initial 

geometry defined in linear gradients of overbearing pressure and stress. These gradients are 

calculated with respect to gravity, fluid column and the density of the porous medium.  

 

Table xxx below contains an overview of the gradient values with respect to the formation zones. The 

values are given in ranges as they change according to the depth. 
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Parameter 

 

 

Lower  

aquifer 

Cap rock and 

fracture 

Upper 

Aquifer 

Depth [m] 1200 - 1050 1050 - 1000 1000 - 950 

Pressure range, P [MPa] 12.0 - 10.5 10.5 - 10.0 10.0 - 9.5 

 

Mean Stress range,  [MPa] 21.17 - 24.28 24.49 - 25.39 25.61 - 26.49 

 

Temperature range, [
o
C] 43.2 - 38.16 37.8 - 36.36 36.00 - 34.2 

CO2 initial injection pressure, Pg [MPa] 

 

12.3 - - 

CO2 final injection pressure, Pg
 
[MPa] 

 

27.0 - - 

Gas and liquid outgoing pressure, P [MPa]  

 

12.0 - 9.5 

Table 13.2.1  Initial and boundary conditions. Initial values are given as a range because they vary with depth in each 
formation. CO2 injection pressure is raised from initially 12.3 MPa to 27.0 MPa in 315 days, after that it is kept constant 
at 27.0 MPa.  

 

Some simulation programs place low permeable formations above and below the model in order to 

create a pressure boundary for the fluids in the aquifer. [flac3d] Visual Retraso and RCB, however, 

perform the same operation by introducing boundary pressure zones at the top and bottom of the 

model. The aquifer is thus confined vertically and kept open on the sides. In table xxx the lower row 

identifies these boundary conditions as the outgoing pressure of gas and liquid in units of MPa. With 

respect to the density and depth of the reservoir, these boundary pressures are set to 12 MPa at the 

bottom boundary condition and 9.5 MPa at the upper boundary condition.  
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13.2.1. Carbon dioxide injection and ramp pressure 

Preliminary attempts at simulating CO2 injection at initially high pressures failed due to convergence 

problems. In order to avoid these problems, which are apparently caused by large pressure gradients 

in the surrounding nodes and elements, the injection pressure is gradually increased in several small 

increments. This procedure is feasible by manually introducing a ramp loading approach defined with 

time intervals and pressure set-points in the input files.  

A lower pressure change over a specified time interval smoothens out the steep gradient changes in 

the system and eases the convergence of the Newton iteration process. However, each increment 

with respect to the applied time interval is limited to a maximum increment of 25%. This is an 

observation based on trial and error in process of setting up the increments. As the pressure 

increases, the solver will allow a larger pressure increment in the same time interval. The eight cases 

found in this thesis are thus appended with five pressure increments as described in figure xxx and 

table xxx.  

 

 

Figure 13.2.3 – Graphical representation of the pressure increments 

 

The first four increments are set to reach the higher pressure set point within 480 time-steps or 315 

days, while the fifth increment is stable at the set pressure in the remaining hundred years of the 

simulation.  
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Table xxx contains a more detailed overview of the pressure development. 

Increment 
number 

Time interval Number of 
time steps 

Initial pressure 
[MPa] 

Pressure incr. 
[MPa] 

Final pressure 

[MPa] 

1 78.7 days 120 12.3 1.7 14.0 

2 78.7 days 120 - 3.5 17.5 

3 78.7 days 120 - 4.5 22.0 

4 78.7 days 120 - 5.0 27.0 

5 ~99 years 59520 - - 27.0 

Table 13.2.2 – Detailed description of the injection pressure development  

Each of the first four steps is set to run for 78.7 days or 120 time-steps. The final injection pressure 

after this time is constant 27.0 MPa over the duration of 100 years. 

The injection point of the carbon dioxide gas is located at the bottom boundary of the lower aquifer                    

as illustrated in the lower right hand side of figure xxx. At 1200 meters the surrounding pressure is 12 

MPa, warranting a higher injection pressure in order to obtain a desired rate of flow. As such the 

initial injection pressure is set to 12.3 MPa.  

13.3. The simulation data plan 
Any reasonble investigation related to observing  the effects of altering several variables requires a 

data plan. Figure xxx and table xxx below shows the cubic setup of the eight cases presented in this 

thesis. The lower layer in fiqure xxx marked by red corners, represent cases with low calcite volume 

fractions while the blue corners represent the high calcite volume fractions. By moving from point A 

to B along the axis of variable 1, the porosity of the fracture will increase. In a similar fashion, moving 

from point A to D will increase the permeability. As a combination of the variation from point A to D 

and B, the variables are at their highest bounds point C. 

 

Figure 13.3.1 – Cubical representation of the data plan 

The lower bound values used in Case A, as described in table xxx2, are equal to the values of the fault 

presented in the TOUGH2 FLAC3D article [ref]. With respect to the mineral composition, the lower 
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bound value of the same case is similar to that found in Utsira [ref] - That is, a simplified model 

approached with only two constituent minerals as opposed to the more detailed description 

obtained in the PhD thesis H. Hellevang.[ref] Table xxx1 contains the indexed values of the  variables 

that are applied in the dataplan.      

Variable/Index 

 

 Lower bound (-1) Higher bound (+1) 

Variable 1 – Fracture porosity 0,05 0,2 

Variable 2 – Fracture Permeability [m2] 1e-12 (1D) 1e-10 (100D) 

Variable 3 – Reservoir composition  4 % calcite 16% calcite 

Table 13.3.1 – Indexed values of the variables used in the data plan 

The first two variables are included to investigate the effects on reservoir properties such as 

displacements and chemical reactions. A variation in the mineral composition with respect to calcite 

is also included to investigate correlations between the changes in volume fractions of calcite, 

dissolved CO2 and changes in porosity due to dissolution and precipitation. The setup in table xxx is 

the foundation for the simulation plan presented in table xxx.  

A number of three variables require eight simulations to obtain all the possible combinations of the 

variables. These combinations are listed in the table xxx below with respect to each case and its 

index. 

Case 

 

Index Variable 1 – Fracture 
porosity 

 

Variable 2 – Fracture 
Permeability 

 

Variable 3 – Mineral 
composition 

 

A (-1)(-1)(-1) 0.05 1.0e-12 4% calcite 

B (+1)(-1)(-1) 0.2 1.0e-12 4% calcite 

C (+1)(+1)(-1) 0.2 1.0e-10 4% calcite 

D (-1)(+1)(-1) 0.05 1.0e-10 4% calcite 

A2 (-1) (-1)(+1) 0.05 1.0e-12 16% calcite 

B2 (+1)(-1)(+1) 0.2 1.0e-12 16% calcite 

C2 (+1)(+1)(+1) 0.2 1.0e-10 16% calcite 

D2 (-1)(+1)(+1) 0.05 1.0e-10 16% calcite 

Table 13.3.2 – Table containing the settings for the eight cases. The variables are systematically altered in order to obtain 
easily analysable results. 

Case A is simulated with the lowest values, while Case C2 has the highest values. The second column 

in table xxx represents the index of the cubical positioning. As a reference the lower left corner A in 

figure xxx is indexed with (-1)(-1)(-1)  
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13.4.  More detailed simulation setup 
 

In Visual Retraso all the constituent elements, minerals and coherent solved species have to be 

specified in order to determine the number of independent components contained in the system. 

The chosen primary constituents (C, Ca, H2O, H+ and Si) are the foundation for the available primary 

and secondary species. Further it is advised to limit the selection to the most abundant species for 

each component in order to avoid convergence problems BK. Depending on the physical conditions, 

the software may choose the primary species and the coherent range of secondary species. This can 

also be done manually, however it is advised to let the software perform the selection. The choice of 

the aqueous primary species is not unique and the programmed method of selecting the primary and 

secondary species is based on the approach developed by Peter Lichtner. The same approach is 

utilized in other codes such as MPATH and used by Carl Steefel for the code 1DREACT [20, 21] BK.  

There will only be one injected gas present in the reservoir in the form of pure CO2 with nitrogen as 

the reference gas. Table xxx shows the chemical build of all the simulations, and table xxx contains 

the volume fraction and reactive surface of calcite and quartz with respect to each simulation.  

 

Species 
 
 

Injection- and 
upper aquifer 

Cap rock Fracture; 
5% porosity 

Fracture; 
20% porosity  

Primary elements C 
Ca 
H2O 
H

+
 

Si 

C 
Ca 
H2O 
H

+
 

Si 

C 
Ca 
H2O 
H

+
 

Si 

C 
Ca 
H2O 
H

+
 

Si 
Aqueous species 
 
 
 
 
(Primary and 
Secondary 
Aqueous species ) 

Ca
+2

 
H2O 
HCO3

-
 

H
+
 

SiO2(aq) 
CaCO3(aq) 
CaH2SiO4(aq) 
CaHCO3

+
 

CaOH
+
 

CO2(aq) 
CO3

-2
 

OH- 
H2SiO4

-2
 

HSiO3
-
 

Ca
+2

 
H2O 
HCO3

-
 

H
+
 

SiO2(aq) 
CaCO3(aq) 
CaH2SiO4(aq) 
CaHCO3

+
 

CaOH
+
 

CO2(aq) 
CO3

-2
 

OH- 
H2SiO4

-2
 

HSiO3
-
 

Ca
+2

 
H2O 
HCO3

-
 

H
+
 

SiO2(aq) 
CaCO3(aq) 
CaH2SiO4(aq) 
CaHCO3

+
 

CaOH
+
 

CO2(aq) 
CO3

-2
 

OH- 
H2SiO4

-2
 

HSiO3
-
 

Ca
+2

 
H2O 
HCO3

-
 

H
+
 

SiO2(aq) 
CaCO3(aq) 
CaH2SiO4(aq) 
CaHCO3

+
 

CaOH
+
 

CO2(aq) 
CO3

-2
 

OH- 
H2SiO4

-2
 

HSiO3
-
 

Table 13.4.1 – Initial selection of chemical components, with respect to the primary and secondary aqueous species.  

 
Based on the constituent elements selected for the simulations presented in this thesis, the primary 
aqueous species are limited to Ca+2, H2O, HCO3

-, H+ and SiO2(aq). The secondary aqueous species of 
table xxx are generated by the program based on the initial water concentrations found in table xxx 
at 25oC. 
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Species 
 
 

Injection- and 
upper aquifer 

Cap rock Fracture; 
5% porosity 

Fracture; 
20% porosity  

Mineral volume 
fraction with 4% 
calcite [m

3
/m

3
] 

 

Calcite(0.036),  
Quartz(0.864) 

Calcite(0.0396), 
Quartz(0.9504) 
 

Calcite (0.038),  
Quartz (0.912) 

Calcite (0.032),  
Quartz (0.768) 

Mineral reactive 
surface with 4% 
calcite, [m

2
/m

3
] 

 

Calcite (36),  
Quartz (864) 

Calcite(39.6), 
Quartz(950) 
 

Calcite(38), 
Quartz(912) 

Calcite(38), 
Quartz(912) 

Mineral volume 
fraction with 16% 
calcite, [m

3
/m

3
] 

Calcite 
(0.144),  
Quartz (0.756) 

Calcite(0.1584), 
Quartz(0.8316) 

Calcite (0.152),  
Quartz (0.798) 

Calcite (0.128),  
Quartz (0.672) 

Mineral reactive 
surface with 16% 
calcite, [m

2
/m

3
] 

 

Calcite(144), 
Quartz(756) 

Calcite(158), 
Quartz(831) 

Calcite(152), 
Quartz(798) 

Calcite(128), 
Quartz(672) 

Gas CO2 CO2 

 
CO2 CO2 

 
Table 13.4.2 – Initial composition of minerals and gases.  

As defined in table xxx, calcite and quartz needs a defined reactive surface with respect to the 

volume fraction of the minerals. The exact or closest approach to real reactive surface values is not 

an exact approach. As such the calculation of volume fraction and surface reactive area of calcite and 

quartz in the formation is adapted according to the paper by S.P.White (2002) [ref] 

Initial water concentrations 

With a specified set of elements, primary and secondary aqueous species, the solvers requires 

defined initial concentrations and constraints with respect to the dissolved species. There are several 

types of constraints, but only three are necessary in for these simulations. Normally the 

concentration of dissolved species is described with a total concentration approach, but when there 

is a need to limit the maximum concentration, a mineral equilibrium approach would be wiser. With 

respect to bicarbonate, the charged specie originating from dissolved calcite and carbon dioxide, the 

initial amount in the solution is constrained by the solubility product of calcite.    

Element Specie Constraint type Constraint 
mineral/gas 

Constraint 
value 

First guess 
concentration 

Concentration 
units 

C HCO3
- Mineral 

equilibrium 
Calcite - 1e-5 mol/Kg 

Ca Ca2+ Total 
concentration 

- 1e-4 1e-4 mol/Kg 

H+ OH- Activity 

 

- 8.0 8.0 pH 

H2O H2O Total 
concentration 

- 1.0 1.0 mol/Kg 

Si SiO2 Total - 1e-8 1e-8 mol/Kg 
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Table 13.4.3 – Initial water concentrations and constraints 

The values presented in the table are oral recommendations passed on from Maarten Saaltlink by 

Shunpiung Liu. Although in the same range as the values presented by Hellevang [ref] they are 

significantly different. The initial pH value for the entire reservoir solution is adjusted to pH 8 and 

constrained by the activity of OH-. Any change in initial pH will be according to the dissolution of 

calcite and carbon dioxide.  Dissolution of CO2 will lower the pH of the solution, while dissolved 

calcite buffers the solution to a higher pH value.  

Reactive flow 

As explained in chapter xxx, the reactive module (Retraso) considers reactive flow by means of 

diffusion, advection and dispersion. These approaches are governed by the permeability, dispersivity 

and diffusion properties of the respective zones in the reservoir. The different zones of the geometry 

are defined with different initial permeabilities. The initial dispersivity and molecular diffusion is 

constant in all of the zones. The data for permeability, dispersion and diffusion in the different zones 

can be found in Table xxx.  

 

Table 13.4.4 - gfadhfahadhagh 

The permeability’s in the table are similar to those found in the TOUGH2 Flac3D article *ref].  

The Dispersivity and molecular diffusion 

Må være store enn l/H 

Tutorial!””  

 

 

 

 

 

(aq) concentration 

 Injection  
aquifer 

Cap Rock Fracture Upper  

aquifer 

Permeability [m2] 1e-13 1e-17 Table 13.3.2 1e-13 

Longitudinal Dispersivity [m] 11 11 11 11 

Transversal Dispersivity [m] 21 21 21 21 

Molecular Diffusion [m2/s] 1e-10 1e-10 1e-10 1e-10 
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Geomechanical properties 

In the simulations we have used a poroelastic model with Young Modulus equal to 3000 MPa for the 

Aquifer and Cap Rock, while the Fracture is set to 1500 MPa. All the zones in the geometry are 

operating with a Poisson’s ratio equal to 0.2. Kinetic geochemical reactions are assumed for all fluid-

mineral reactions. 

Property 
 
 

Injection 
Aquifer 
 

Cap rock Fracture 
 

Upper 
Aquifer 
 

Young’s modulus, E [GPa] 0.3 
 

0.3 0.15 
 

0.3 
 

Poisson’s ratio, [v] 0.2 
 

0.2 0.2 
 

0.2 
 

Permeability [mD]  
 

   

Porosity  0.1 
 

0.01 Table 13.3.2 0.1 

Saturated rock density, ρs  
[kg/m3] 

2.26 
 

2.26 2.26 2.26 

Zero stress porosity, Φ0 0.1 
 

0.01 Table 13.3.2 0.1 

Zero stress permeability, k0 
[m2] 1.0e-13 1.0e-17 Table 13.3.2 1.0e-13 

 Irreducible gas and liquid saturation, 
Srg 

0 
 

0 0 0 

Van Genuchten’s gas-entry 
pressure,P0 

[MPa], (at zero stress)  
0.0196 0.196 0.196 0.0196 

Van Genuchten’s Surface tension at 
same Temperature [xx] 

0.072 0.072 0.072 0.072 

Van Genuchten’s exponent, [m] 0.457 0.457 0.457 0.457 

Table 13.4.5 – Material properties 

Irreducible water saturation in petroleum reservoirs is an entirely nature-driven process influenced 

only by competition between capillarity and gravity forces. Irreducible water saturation between 20 

to 40 percent is common, however values ranging from as low as 5% to 60% have also been reported 

for some north sea reservoirs. [26] The origina 

The original programe used 0 at surface conditions. 

Currently the fracture is defined and simulated in a hydromechanical approach, but the ultimate 

future goal would be to simulate the fracture hydrodynamically without the defined parameters in 

table xxx and xxx. 
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13.5.     RCB sampling and GiD  
In Visual Retraso the temporal discretization for the simulations is set to 3000 time steps over 5 years 

(1.58e8s), which results in a time interval of 52666.67 seconds or 14.6 hours per time step. This 

ration is transferred to the extended simulation of 100 years according to the setup described in 

table xxx.  

The change in simulated properties at the end of each time-step will be written to a database-file 

called 1_flavia. As mentioned the time subdivision allows increments in the time intervals in order to 

ease the convergence process. These interval changes are further reflected in the presented time-

steps in GiD read from the flavia file.  
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14. Results and discussion 
Chapter 14 contains the results from eight cases designed according to the data plan. Due to the vast 

amount of produced data and information, it is not feasible to include every figure in this section. 

Only the most important highlights will thus be represented in the form of figures and tables. As 

such, this chapter does not include all the required figures to obtain a necessary overview of the 

respective simulations. Larger quantities of the produced graphical representations of relevant 

properties are placed in Appendix I to VII. It is thus advised that the reader confers to the respective 

appendix for additional information while reviewing the results and discussions.  

 

14.1. Simulations and convergence problems 
Out of eight presented simulations, only four managed to cover a hundred years of simulation time. 

The most probable reason for the reduced runtime lay in convergence problems in either the 

geomechanical or the reactive module. Table 13.2.1 below lists the simulation and the total duration 

of simulation for each case.  

Case Total simulation 

time (years) 

Significant dissolution 

or precipitation 

Other 

A 100 -  

B 100 - High gas storage efficiency 

C 100 -  

D 30 Yes  

A2 50 Yes  

B2 100 Yes High gas storage efficiency 

C2 50 Yes  

D2 30 Yes  

Table 14.1.1 – Overview of the total simulation time with respect to each simulation.  

Observations show the simulations representing the low volume fractions of calcite had a higher rate 

of convergence compared to the cases with larger amounts of calcite. Additional information, 

included in the table xxx, indicates that there is a correlation between the convergence problems and 

iterations in the reactive module of RCB. The details will be discussed in chapter xxx. 
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14.2. Break-through of injected carbon dioxide 
As part of the original simulation build, the injection pressure for all the eight cases were designed to 

reach 27 MPa after 315 days. However, the reservoir pressure did not reach the set point due to an 

early gas break-through.  

As the CO2
 saturation increases in the injection aquifer, the CO2 flows more easily, effectively 

increasing the injection rate over time. However, when the front of the gas saturated fluid reaches 

the fracture, the saturated zone acts as a highway from the injection point and the pressure will 

consequently drop to that of the resistance in the reservoir. Table xxx contains the respective time of 

breakthrough for each case. A set of chosen state variables at the same time-step is also presented in 

table xxx.  

The values presented in table xxx are gathered from the last recorded closest to the actual 

breakthrough. The time-step length differed from simulation to simulation due to a reduction in time 

intervals where convergence problems occur.  As such the contained values at breakthrough can only 

be considered as a mere guide when comparing the cases.  

Case Time step Time [s] Time [d] 

Case  A 80 2.20939e7 255.71 

Case  B 98 2.21236e7 256.06 

Case  C 83 2.21282e7 256.11 

Case  D 100 2.21453e7 256.31 

Case  A2 81 2.20798e7 255.55 

Case  B2 107 2.21263e7 256.09 

Case  C2 95 2.21712e7 256.61 

Case  D2 87 2.21224e7 256.05 

 

Table 14.2.1 – The estimated breakthrough time and maximum values for 
gas pressure, gas density and |Gas phase flux| 

The time of gas break-through is not exact, but limited to the output data closest to the actual break-

through. Even so, the presented times of breakthrough for all eight cases are relatively equal with an 

error of [256.06 ± 0.53] days. There seems to be a trend between case A and A2, which have an 

earlier breakthrough than the other cases.  
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14.3. Point evolution 
The grid consists of 1275 elements and 1352 nodes. To present the point evolution of gas pressure, 

gas density and |gas phase flux|, a set of four nodes have been selected for evaluation purposes. 

Figure xxx below illustrates the relative positioning of the sampled nodes, forming a line between the 

fracture and injection point.  Values extracted from the respective points are presented in the 

following figures and tables.  

 

Figure 14.3.1 – Graphical representation of the geological formation appended with illustrated points of measurement. 
These points are represented in time evolution graphs throughout the section of results and appendix xxx.  

 

Figure xxx to xxx represents point evolutions of the change in the respective properties over time. As 

illustrated in figure xxx there are four considered positions. Each position is systematically 

represented with one colour in all eight simulations. With reference to figure xxx; the red, green, 

gray and blue lines respectively represent the pressure in and between the injection point and 

fracture. Listing the descriptions from the top as found in figure xxx: 

Red  – Measured values at the injection point 

Green  – Measured values in the neighboring diagonal node, 22.4 meters from the injection point 

Gray  – Measured values at the centre of a diagonal line between the injection point and fracture 

Blue  – Measured values at the centre of the fracture 

All the presented graphs in this section and appendix xxx, are obtained by means of existing 

functions in the pre-processor GiD. The measured points and the relevant properties are selected 

manually through graphical interfaces and then plotted in the time evolution diagram.  
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Figure 14.3.2 – Point evolution of the gas pressure in case A 

 

As clearly illustrated in figure xxx, the pressure is highest at the injection point and dissipates with an 

increasing distance from the gas injection. The mentioned gas break-through is represented by the 

significant pressure drop at the very beginning of the time scale. A small spike in the gas pressure 

within fracture, represented by the blue line, indicates that the pressure front barely reached the 

fracture prior to the gas break-through.  

With respect to further evaluations of the simulations, the measured results will be based on two 

points in time; the point of gas breakthrough and at 30 years of CO2 injection. The latter is chosen so 

that all cases have available data.  

By applying a rough estimate of 10 years between each marker on the x-axis in figure xxx, the visual 

observations indicate that the injection pressure after 30 years of gas injection is close to stabilized 

slightly above 13 MPa. By reducing the timescale in figure xxx from 100 years to 2 years, the gas 

breakthrough becomes more detailed with respect to the ramp pressure loading.  
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Figure 14.3.3 – Point evolution of the pressure development in case A. The time scale is limited to two years. 

 

The more narrow time interval applied in figure xxx is presented in a smaller time-scale with a higher 

resolution in figure xxx.  The overview of the pressure increments in the CO2 injection show a 

significant pressure drop over a very short time-span. The four measured points also displays a 

latency in the pressure evolution between the nodes. The red line, which represents the injection 

pressure, clearly illustrates the ramp loading by finite changes in the pressure incline of the time 

evolution. The magnitude and the evolution of the pressure front is illustrated by the sequential 

increase at at each measured node  

Similar to the pressure development, the pressure correlated gas density presented in figure xxx, 

follows the same described trends   

 

 

 

 

 

The measured density is highest at the injection point, followed by the neighboring nodes and the 

fracture. However, after 60 years there is a slightly observable increase in the gas density within the 

fracture.    
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Figure 14.3.4 – Point evolution of the gas density in case A 

More interestingly, the increase in gas density is supported by an increasing total gas flux within the 

same point of the fracture.  As shown in figure xxx, the flux in the fracture (blue) overlaps and crosses 

the flux evolution in the aquifer (purple).  

 

 

Figure 14.3.5 – Point evolution of the total gas phase flux in case A 

The scale of the vertical axis makes it hard define where one line starts and the other ends. As such, a 

more detailed close-up of the two gas flux evolutions in and near the fracture is illustrated in figure 

xxx. 

 

The difference in flux is clearly evident and most likely due to the much narrower path through the 

fracture.  Figure xxx provides. 
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Figure 14.3.6 – Point evolution of the total gas phase flux [m/s] in case A 

A closer investigation shows that there is an increasing difference between the entering and exiting 

flux through the fracture. The deviation is only natural, as the gradient pressure reduces the density 

of the flowing fluids, and thereby increases the permeability through the porous fracture 

 

Figure 14.3.7 - Point evolution of the total gas phase flux [m/s] in case A 

Observations in the presented figures of case A are similar in all of the other cases. Although the case 

specific variations that are presented in the next section, are also present in the graphs. The graphs 

allow a visual interpretation of the reservoir developments with respect to time.  The tables in the 

next section enable further detailed discussion of the eight cases.  

Additional and more detailed versions of the graphs are available in Appendix xxx.  (High resolution 

images are also available on the compact disk.) 
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14.4.     Tables 
GiD is equipped with an auto-limit function for the colour scales, which represent change in aquifer 

properties versus time. The auto-limit function is adjusted to the higher and lower bounds of the 

obtained values throughout the simulated 100 years. Hence the values from the auto-limited scales 

are used to estimate the maximum values of the respective properties at gas breakthrough.  

 

At gas breakthrough 

 

The previous figures contained a graphical representation of the point evolution in the reservoir. Due 

to the large difference in the variables and simulation time, it is hard to compare the variations 

between the eight simulations. As such the same evaluated points have been manually sampled at 

breakthrough and after 30 years of CO2 injection. Table xxx and xxx below, represents the measured 

injection values and the measured values in the reservoir at the time of breakthrough 

 

Case Maximum gas 

pressure [MPa] 

Maximum gas density 

[kg/m3] 

Maximum Injection  

|Gas phase flux| [m/s] 

A 23.479 844.28 0.010307 

B 23.503 844.45 0.010304 

C 23.506 844.47 0.010302 

D 23.520 844.57 0.010287 

A2 23.468 844.21 0.010304 

B2 23.502 844.44 0.010295 

C2 23.504 844.46 0.010270 

D2 23.337 843.29 0.010119 

Table 14.4.1 – Overview of the maximum values in the injection zone prior to gas break-through. 

 

There is no major difference between the values in the injection zone. With a rapidly increasing 

injection pressure and coherent gas flux, the observed variations can easily be a result of the 

variation in time between the measured steps of each case.  
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Case Gas pressure [MPa] Gas density [kg/m3] |Gas phase flux| [m/s] 

A 11.918 727.88 1.13649e-6 

B 11.935 728.15 1.22047e-6 

C 11.953 728.42 1.25963e-6 

D 11.911 727.77 1.06363e-6 

A2 11.914 727.81 1.53580e-6 

B2 11.913 727.79 1.07479e-6 

C2 11.896 727.54 1.51358e-6 

D2 11.887 727.39 1.07651e-6 

Table 14.4.2 – Overview of values in the centre of the injection aquifer prior to the gas break-through. 

The measured point in the centre of the aquifer  

After 30 years of carbon dioxide sequestration 

As observed in Figure 14.3.2 to Figure 14.3.7, the variables in the injection point have dropped to a 

fraction of the breakthrough conditions after 30 years of gas injection. Table 14.4.3 shows that there 

are still no major differences between the injection conditions of each case. It is only further away 

from the injection point that the main differences between the simulations are revealed. These 

differences are presented in Table 14.4.4. 

Case Maximum gas 
pressure [MPa] 

Maximum gas density 
[g/dm3] 

Maximum Injection 

|Gas phase flux| [m/s] 

A 13.212 746.77 0.0010210 

B 13.214 746.80 0.0010223 

C 13.213 746.79 0.0010209 

D 13.217 746.84 0.0010211 

A2 13.213 746.78 0.0010208 

B2 13.215 745.65 0.0010222 

C2 13.213 746.78 0.0010209 

D2 13.213 746.79 0.0010208 

Table 14.4.3 – Overview of the maximum values in the injection zone after 30 years of CO2 injection. Stationary after 30 
years 

The injection conditions in Case A and C are close to equivalent, whereas Case B and D deviate in 

opposite directions. Case D and D2 have a higher gas flux than the other cases, but there is no 
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significant deviation in the two remaining variables of pressure and density. Case B and B2, on the 

other hand, have a higher gas density, gas pressure along with a significantly lower gas flux. 

Case Gas pressure [MPa] Gas density [g/dm3] |Gas phase flux| [m/s] 

A 11.412 719.68 6.92378e-6 

B 11.455 720.39 4.19042e-6 

C 11.412 719.68 6.93292e-6 

D 11.411 719.65 7.22319e-6 

A2 11.412 719.68 6.92267e-6 

B2 11.455 720.39 4.19060e-6 

C2 11.412 719.68 6.93603e-6 

D2 11.410 719.65 7.03577e-6 

Table 14.4.4 – Overview of measured values in the centre of the injection aquifer after 30 years of CO2 injection. 
Stationary after 30 years Stationary after 30 years 

The higher pressure and density combined with the significantly lower flux, indicates that there is a 

lower permeability in the fracture for case B and B2. Likewise, the higher flux in case D and D2 

indicates a higher flux through the fracture.  

In order to validate the assumptions based on the measured values in the injection point and aquifer 

at 30 years of CO2 injection, at set of equivalent measurements were carried for the for the fracture. 

The obtained values are presented in Table 14.4.5 and 2.3.6. 
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Fracture 

The deviating values in Table 14.4.4 indicated that there might be a variation in the gas flux through 

the fracture for the eight cases. Further investigation of the fluid properties at the entrance and exit 

of the fracture verified these assumptions. Table 14.4.5 below presents the measured fluid 

properties in the fracture prior to the gas breakthrough, while Table 14.4.6 evaluates the same 

variables after 30 years of CO2 injection. 

  Flux [m/s] Pressure [MPa] Density [kg/m3] 

Case In Out In Out In Out 

A 6.49418E-06 4.85330E-06 10.699 10.163 707.12 696.79 

B 4.61086E-06 3.30092E-06 10.860 10.142 710.07 696.35 

C 5.39608E-06 4.29888E-06 10.701 10.169 707.18 696.90 

D 6.25724E-06 4.70109E-06 10.663 10.170 706.46 696.93 

A2 6.11543E-06 4.56386E-06 10.682 10.148 706.81 696.48 

B2 4.48420E-06 3.13746E-06 10.852 10.139 709.94 696.31 

C2 6.68983E-06 5.07324E-06 10.687 10.155 706.90 696.62 

D2 7.30248E-06 5.47114E-06 10.651 10.160 706.24 696.72 

Table 14.4.5 - Overview of the measured values at the entrance and exit of the fracture, prior to the gas breakthrough 

Table 14.4.5 and 2.3.6 clearly show that the assumptions based on the fluid properties in Table 

14.4.3 and 2.3.4 are correct. The measured deviations in the injection point and center of the aquifer 

are in fact due to the changes in the permeability through the fracture. 

  Flux [m/s] Pressure [MPa] Density [kg/m3] 

Case In Out In Out In Out 

A 4,21102E-05 3,87227E-05 10,601 10,102 705,30 695,55 

B 2,17089E-05 2,27710E-05 10,828 10,075 709,49 695,00 

C 4,23604E-05 3,87636E-05 10,598 10,102 705,25 695,55 

D 4,71445E-05 3,91665E-05 10,549 10,111 704,33 695,73 

A2 4,21102E-05 3,87227E-05 10,601 10,102 705,30 695,55 

B2 2,17102E-05 2,27711E-05 10,828 10,075 709,49 695,00 

C2 4,23908E-05 3,87840E-05 10,598 10,102 705,25 695,55 

D2 4,71666E-05 3,91757E-05 10,549 10,111 704,33 695,73 

Table 14.4.6 - Overview of the measured values at the entrance and exit of the fracture, after 30 years of CO2 injection. 
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The overall measurements prior to the gas breakthrough are significantly larger than the 

measurements after 30 years. Similar to the trend of the fluxes at the center of the aquifer, the flux 

of Case B/B2 and D/D2 show significant differences in opposite directions. The result of these 

deviations is graphically illustrated by saturation profiles in Figure 14.5.5 and Figure 14.5.8, in 

addition to the pH profile of Figure 14.5.9. 

14.5.     Graphical representations 
Additional and more detailed versions of the figures presented in this section are available in the 

appendix. As the figures from the eight cases are relatively similar, only the most significant details 

will be presented. Otherwise the presentations will be limited to the development in case A. 

Gas Pressure profile 

In all of the cases, the pressure front moves ahead of the CO2 front with the highest reservoir 

pressures close to the injection point. As pointed out in the pressure diagram (Figure 14.3.2), the 

reservoir experiences a gas breakthrough shortly after 255 days. That is less than 15 days before the 

graphical representation at 9 months as illustrated in Figure 14.5.1 (Image a3). 

 a1 

 a2 

 a3 

 a4  

Figure 14.5.1 – Pressure development in case A. a1 (1 month), a2 (3 months), a3 (9 months) and a4 (2 
years) 
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The initial pressure gradient ranging from 9.5 to 15 MPa is still intact on the left hand side of the 

graphical illustrations. On the right hand side, the pressure front builds up under the cap rock and 

proceeds in the direction of the fracture. By applying the same pressure scale as in Figure 14.5.1, the 

graphical representation of the last image before the gas breakthrough is presented in Figure 14.5.2. 

The pressure profile is clearly dominated by the buoyant behaviour of the injected gas, as the 

pressure builds up under the cap rock and proceeds towards the fracture.   

 

Figure 14.5.2 – Graphical representation of the pressure profile at the time of gas breakthrough. The 
colourless field in the injection zone is simply values outside the set pressure scale. 

After the gas breakthrough the magnitude of the overall pressure is reduced; although the front itself 

does not subside and continues to move forwards. This is because the pressure in the injection zone 

stabilizes at a magnitude larger than that of the pressure in the front and continues to provide the 

necessary driving force. 

 

Gas density profile 

The distribution and development in gas density is directly correlated to the overbearing fluid column 

pressure and injection pressure. Figure 14.5.3 below is the highest measured density for Case A, 

where the density peaks at 844 [Kg/m3] prior to the gas breakthrough. 

 

Figure 14.5.3 – Graphical representation of the gas density at the time of gas breakthrough [Kg/m3] 

Figure 14.5.4 contains estimated values for the density of CO2 as a function of pressure and 

temperature. The graph itself is obtained from a powerpoint presentation created by GasTEK and 

Project invest at www.tel-tek.no[27] 

At the injection point of case A the temperature can be estimated to 40oC, and the pressure of 

23.479 MPa is obtained in Table 14.4.1. By comparing the estimated value of density for case A, with 

graphs in Figure 14.5.4, one can obtain indications on whether the CO2 calculations of the model are 

representative.  

http://www.tel-tek.no/
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At the respective conditions, the extrapolated density at 40oC and 23.479 MPa, indicates that the 

calculated density in the simulation is a bit lower. Similar to the deviations in the injection zone prior 

to gas breakthrough, the density in the centre of the reservoir after 30 years of CO2 injection present 

a lower density than the values presented in the graph.  

 

Density of CO2
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Figure 14.5.4 – The density of CO2 as a function of pressure and temperature.[27] 

The deviation in density is important with respect to the permeability of the mobile CO2 gas phase. A 

lower gas density means that the phase has a higher permeability. 

Appendix IIX and contains a general overview of the graphical representation of pressure, density, 

flux and liquid saturation at breakthrough.  
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14.5.1. Liquid saturation profile 

As shown in the time evolution contained in appendix I, the injected carbon dioxide rises buoyantly 

towards the cap rock and forms a plume stretching towards the fracture located at the centre of the 

reservoir cap rock. As expected the development of the liquid saturation profile is greatly dominated 

by the positioning and properties of the introduced fracture. Large amounts of carbon dioxide gas is 

diverged through the highly permeable zone and transported to the upper aquifer creating a new 

plume of gas.  

The most significant observation related to the liquid saturation profile for the eight cases, is the 

difference between case B/B2 and the other simulations. As shown in Figure 14.5.5, the two cases 

have a larger area of liquid saturation influenced by the gas injection and hence a greater storage 

efficiency. In addition to the observations in case B and B2, there are also noticeable differences in 

the thickness of the “saturation tail” between the remaining simulations. Observations from the 

development in liquid saturation after 30 years show that the saturation tail of case A and C are close 

to equal, while case D has a much thinner tail. The same trend is present in the other cases with high 

calcite volume fractions (A2- D2). 

By comparing the values presented in the Table 14.4.6 for the B and D simulation series, there is a 

clear correlation between the storage efficiency and the flux through the fracture. As mentioned, the 

B series has a significantly lower gas phase flux, while the D series has a noticeable higher flux. 

Basically the lower the flux of the escaping gas, the more gas will pass the fracture and saturate the 

remaining zones.  
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Figure 14.5.5 – A Graphical representation of the development in liquid saturation for the eight represented cases. There 
are two represented points in time. The first row is represents 30 years of CO2 injection and the second 100 years. Due to 
the explained convergence problems some figures are not available.  

 

The development in liquid saturation after 50 and 100 years of CO2 injection, show that the observed 

trend between the saturation tails are still valid for the observations that were noted at 30 years of 

CO2 injection. Due to the fracture’s highly dominating role of redirecting carbon dioxide flow, large 

portions of the aquifer are consequently left unexploited at the end of the simulations.  

14.5.2. Calcite dissolutions and gas saturation 

Computer animations with a more frequent rate of time-steps, show quick bursts of changes in liquid 

saturation outside the main gas-saturated profile. Figure 14.5.6 below represents the saturation 

profile of case A after 3 months of simulation time. The yellow circles within the figure indicate 

several significant bursts of gas.  Similar bursts are observable in all the eight cases, whether the case 

is simulated with high or low amounts of initial mineral calcite. 

 

 

Figure 14.5.6 - Liquid saturation after 3 months  

Because calcite is the salt of a weak acid, the solid will dissolve in contact with any stronger acid such 

carbonic acid or silicic acid. It is with good reason to believe that the cause of these illustrated burst 

of gas are related to the dissolution of calcite according to equation Equation 14.5.1.  

CaCO3 (s) + 2H+ = Ca2+CO2 (aq) + H2O   Equation 14.5.1 

The dissolved calcite, in the form of CO2 gas, can further dissolve and buffer the solution according to 

Equation 7.1.5 in chapter 7. 

Further observations show that the magnitude and rate of these gas bursts are much higher in the 

cases with high calcite content. This is only natural as there more calcite present. 

14.5.3. Reservoir deformation / displacements 

In addition to graphically representing the liquid saturation, the overview in Figure 14.5.5 and 

Appendix I are appended with the deformation of the reservoir. All of the eight simulations are 

illustrated with the same factor of 1.37715e6 as shown in Figure 14.5.7.  

The visualized deformation of the figures are not equivalent to the real diplacements, but a visual 

representation created in order to observe the differences between the simulations. The lower the 

deformation factor the more extreeme the visualization will become. 
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Figure 14.5.7 – The deformation factor for the eight simulations at any given time-step. 

 In transferred terminology this means that each mm of displacement in the figure is equivalent to 

1.37715e6 mm in the model. Note that none of the figures contained in this thesis can be used to 

measure the deformation as the scale is altered when inserting the figures from the source files. As 

mentioned, the original files are included on the digital medium found on the final page of the thesis. 

The method of comparing the different cases consists of simple visual observations aided by 

graphical programs that include functions such as: 

- Superposing and comparing images by altering the opacity of the layers 

- Simple but exact measurements of angles by means of traced boundary lines 

The simple method of comparing the simulations showed that the deformation in both the high and 

low calcite content of Case A, C and D were equal after 30 and 100 years of co2 injection. Case B and 

B2 have an equivalent deformation, but the pair differs from the other cases as illustrated in Figure 

14.5.8. 

a11 

b11 

Figure 14.5.8 – Graphical representation of the geological deformation in the reservoir in Case A and B after 100 years of 
CO2 injection 

In terms of deviation between the simulations, case A, C and D had an incline of 5o, while case B had 

an incline of 3o. All of cases also present a finite bend over the element that constitutes the fracture. 

The deviation between the two illustrated figures of deformation is probably due to the significant 

difference in the total gas flux which results in an increased storage efficiency. Furthermore, the 

slight bend over the fracture zone might be due to the increased pressure of the escaping gas plume. 
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14.5.4. pH profile 

Chapter 7.2 explained that an aquifer system containing carbonate minerals will be geochemically 

buffered through the release of carbonate ions from the dissolved minerals. The graphical 

representation of the pH profiles in Figure 14.5.9 show that the buffering of the formation water is 

substantial and that the pH value does not drop below 7.0 in any of the formation regions. The 

magnitude and shape of the pH profile is strongly correlated to the profile of the gas saturation. 

Observations from the eight cases, whether high or low calcite content, show that the pH and 

saturation profile in simulation series A, B, C and D are similarly shaped, but with one exception.  

The tail which is present in the gas saturation profile does not appear at the same extent as in the 

profile of the pH values. This observation is most evident case B, where the presence of the large gas 

saturation tail is merely indicated by a veil of a finite increase in pH value. Plausible causes for the 

absence could be explained by a lacking advection of solid calcite particles in the respective area, or 

lack in transport of dissolved charged species due to the leakage through the fracture. 

 

 

 

Figure 14.5.9 - A Graphical representation of the development in the pH profile for the eight represented cases. There are 
two represented points in time. The first row is represents 30 years of CO2 injection and the second 100 years. Due to the 
explained convergence problems some figures are not available 

As expected there are small observable differences in the pH values between the cases of low and 

high calcite content.  Although hard to visually observe in the resized figures, the low fraction calcite 

models have a slightly more advanced pH front than the cases with high calcite content. There is also 

a noticeable difference in the magnitude of pH influence through the fracture. A larger increase in 

the fracture porosity could increase the permeability and flux enough to alter the speed of the pH 

front and extent of pH changes in the fracture. 
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As shown in Figure 14.5.10 and Figure 14.5.11, the fracture and centre of the gas plume in the upper 

aquifer has a slightly larger green pH-zone in the simulations with low amounts of calcite. The flux 

through the fracture is equivalent in both cases, which gives reason to believe that the deviation has 

arisen due to the lower calcite content allowing more unsaturated reservoir fluids to reach the 

fracture.   

B

B2  

Figure 14.5.10 – Graphical representation of the pH profile in case B and B2 after 50 years of CO2 injection.  

 

14.5.5. pH and saturation 

The formation water at the bottom boundary of the injection aquifer will be saturated with dissolved 

CO2 and calcite within the first months of CO2 injection. The solubility CO2 gas and calcite is 

dependent on the local pressure and temperature. A higher local pressure reduces the vapor 

pressure of CO2, and thus increases the solubility of the gas. Hence the solubility will increase with a 

closing distance to the injection point. 

On the other hand, calcite has a retrograde solubility with respect to the temperature. At the bottom 

of the aquifer the temperature is at its highest. In addition, the pressure would contribute to local 

temperature changes, but in this thesis the solver is not applied. As such the gradient temperature 

will remain constant during the simulation. The effects of the dynamic carbonate solubility in the 

injection zone are illustrated in Figure 14.5.14with respect to porosity changes. 

Compared to the conditions close to the cap rock, the solution at the bottom boundary is exposed to 

higher temperatures and pressures. As the fluids buoyantly rise towards the cap rock, the pressure 

will decrease simultaneously with the temperature. When the pressure drops, the CO2 will be less 

soluble in the aqueous phase and evaporates accordingly. This combination of reduced CO2 solubility 

and the reduced temperature will allow more dissolved calcite in the solution.  

As shown in Figure 14.5.11 and Appendix II, the pH stabilizes at a distance from the injection point by 

evaporating excess CO2 and/or precipitating solid calcite particles. After 50 years the pH in the area 

close to the cap rock starts to increase (See Figure 14.5.10). This is most likely due to transport 

(advection) of released carbonate particles in combination with the introduced gradient temperature 

and pressure.  
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In the same time interval as the buffering of the solution below the cap rock in case A and A2, there 

is another phenomenon taking place vertically below the fracture. Although only evident in case A2 

of Figure 14.5.11, further investigations show that several other cases hold similar characteristics.  

A 

 A2  

Figure 14.5.11 – Graphical illustration of the pH profile in case A and A2 after 50 years of CO2 injection 

As mentioned case A did not experience the same anomaly, but it did show tendencies at the exact 

same spot. The only difference between the two cases is the composition of the mineral matrix. As 

such, the cause of the deviation must be a result increased amount of calcite, more specifically the 

potential larger dissolution of calcite in the fracture. Table 14.4.6 showed a slight difference in the 

flux through the fracture for the two cases. The difference might be significant enough to alter the 

flux in the reservoir, and thus inhibit the mechanics behind the formation of the anomaly. 

The trend between Case A and A2 proves to be applicable on the remaining cases. The simulations 

with high calcite content have a higher fraction the same anomaly. Similar to Case A, the pH 

evolution in Case B and C does not form the pH spot below the fracture, but rather show a tendency 

in the same area. Case D has a significantly higher flux than the other low calcite simulations, and 

according to the speculations related to flux differences between A and A2, it developed a similar pH 

anomaly.  The spot was however of a lower magnitude as shown in Figure 14.5.12. 

Table 14.5.1 contains a general overview of the development in pH singularities for all eight cases 

with respect to the time of formation. To keep it simple, the time of formation is defined at the first 

observation of the yellow pH representation according to the scale in Figure 14.5.12. 

Case Images Exact Max 

value 

Case Images Exact Max 

value 

A - - - A2 48.2 years 47.16  

B - - - B2 - - - 

C - - - C2 50 years 48.68  

D 30 years 25.65  D2 30 Years 24.21  
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Table 14.5.1 – A general overview of the development in pH singularities for all eight cases.  

 In Table 14.5.1 there were four cases that developed the abnormal pH point below the fracture. 

These points are presented in Figure 14.5.12 below. Case D and D2 represent the pH after 30 years, 

while A2 and C2present the pH after 48.2 and 50 years. 

D  D2  

 A2 C2  

Figure 14.5.12 – Graphical representation of the pH anomalies according to the time of first 
observation. Case D and D2 represent the pH after 30 years, while A2 and C2present the pH 
after 50 years. 
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As mentioned there is small observable deviation in the pH values between the cases of low and high 

calcite content. It is difficult to notice the difference in the normal figures, however image d and d2 

in Figure 14.5.12 shows a distinctive difference between the two cases.  

Similar to the tail of the liquid saturation, the advancement of the pH front is correlated to the 

fractural gas phase flux. The higher the flux, the less the horizontal advance of the pH front. With 

respect to Case A2 and C2, the magnitude of the gas flux also appears to influence the maximum pH 

value within the anomalies. The extent of this difference could be larger as there is almost a two year 

time difference between the two images.  

After 50 years of CO2 injection, the gas saturation is much higher than after 30 years of gas injection. 

The saturation at the interface between the liquid and gas zone would thus be higher. A higher 

saturation of CO2 results in a lower pH value and thus a higher rate of calcite dissolution. The 

increased rate would allow a quicker buffering of the system, explaining the significant differences 

between image D/D2 and A2/C2 in figure Figure 14.5.12. 
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14.5.6. Total gas phase flux profile 

The magnitude of the total gas phase flux is described in detail in Table 14.4.1 to Table 14.4.6. The 

case specific gas fluxes are further described by graphs in Appendix IIX and more detailed figure 

series in Appendix V.  

Figure 14.5.13 below is a graphical representation of the total gas phase flux for case A. The scale is 

adjusted to a lower magnitude in order to better illustrate the flux between the injection point and 

fracture. As illustrated, there is an overall increase in the gas phase flux over time. The increments 

are correlated to the increasing gas saturation of the respective area, which alters the viscosity and 

thereby increases the permeability of the saturated zone.  

a4

a7

a9

a11  

Figure 14.5.13 – Graphical representation of the total gas phase flux in case A, after 2 years (a4), 15 years (a7) 50 years 
(a9) and 100 years (a11) of CO2 injection. 

With respect to the figure, the largest flux in the eight represented cases is located in the injection 

zone, followed by the increasing flux through the fracture. The flux between these two points is 

greatly dominated by the buoyancy of the gas, which produces a higher flux near the cap rock and a 

lower flux near the bottom of the formation. The increasing flux through the fracture is due to a 

combination of the gas saturation, gas density, the change in porosity and the driving pressure 

gradient over the length of the fracture. In order to retain the same rate of flow as in the reservoir, 

the entering gas is compressed, increasing the gas density and thus the flux through the fracture. 



115 
 

The total CO2 injection at Utsira is estimated to 1 million tons of gas per year. By means of the flux, 

density and two-dimensional cross section, the estimated flux at breakthrough can be calculated for 

case A: 
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Where “per meter” is the linear flux in the two-dimensional formation. 8.7 Kg/s m is equivalent to 

0.27 million ton CO2 per year per meter. In other words the injection in the simulations is but a 

fraction of the yearly Utsira injection.  

14.5.7. Change in Porosity  

With respect ot the ramp loading of the injection pressure, there are no pressure situations that can 

cause hydraulic fracturing. Any change in porosity is thus related to the change in mineral volume 

fraction of calcite. As explained in chapter 7.2, calcite has a retrograde temperature dependency, and 

the reaction rate is dependent on the pH value of the solution. As such, calcite has a higher solubility 

at lower temperatures and a higher reaction rate in acidic solutions. 

As expected the eight cases show finite alterations of porosity both in the cap rock and aquifer. Close 

to after 50 years of CO2 injection, the cases show a uniform low increase of porosity in the cap rock. 

The magnitude is within the order of 1e-5%, which is not of major significance.  More significant are 

the cases that form anomalies below the fracture as described in Table 14.5.2 and illustrated in 

Figure 14.5.14. Further investigation show that the location and time of appearance is equivalent to 

that of the anomalies found in the pH description (Table 14.5.1 and Table 14.5.3). 

Case Increased porosity by location Reduced porosity by location 

 Below fracture Injection zone Below fracture Injection zone 

A - - - - 

B - - - - 

C - - - - 

D Yes  - - - 

A2 Yes - Yes  Yes 

B2 - - - Yes 

C2 Yes - - Yes 

D2 Yes - Yes Yes 

Table 14.5.2 – Overview of the porosity changes in the eight cases.  
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 In addition to the increased porosity below the fracture, two cases also exhibited a reduction of 

porosity on the right hand side of the anomaly. The porosity change itself is relatively small with a 

magnitude around 1e-4 percent, but disregarding the magnitude, the observations are significant 

with respect to precipitation calcite. It indicates that the introduced gradient pressure and 

temperature works in combination with the reactive module of RCB. 

 

Case Increased porosity below fracture Reduced porosity below fracture 

 First observation Magnitude First observation Magnitude 

D  26.9 years 9e-3 - - 

A2  47.5 years 5e-3  48,6 years e-4 

C2  49.3 years 4e-3 -* - 

D2  24.6 years 5,7e-2 29 years e-4 

Table 14.5.3 – Overview of the magnitude and initial formation of porosity changes in the eight cases.  

As shown in Table 14.5.3, Case D and D2 experience the largest increase in local porosity, while case 

A2 and C2 develop a smaller increment.  

 

Dissolution and precipitation in the solid matrix  

After thirty to fifty years of carbon dioxide injection there are noticeable changes in the porosity right 

below the fracture and in the surrounding area of the injection point as shown in Figure 14.5.14. The 

areas marked in dark blue are the sections of the reservoir which have an initial porosity equal to 0.1, 

whereas the remaining white areas represent porosities outside the set scale of the graphical 

representation. The white belt stretching across the figure is thus due to the lower porosity of the 

cap rock and fracture.  

 

Figure 14.5.14 - Change in porosity after 50 years 

The white spots within the dark blue aquifer are much more interesting, as the porosity is initially 

uniform at 10%. Any significant changes to this zone would be a result of dissolution or precipitation 

of carbonates. Contribution from dissolved quartz is neglible as the reaction rate is low and would 

require a reaction times equivalent to several thousands of years compared to the much more rapid 

dissolution rate of calcite. 
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A small area around the injection point is experiencing a reduction in porosity. Figure 18 below is a 

graphical representation of the precipitation in the lower left hand side corner of figure 15. The 

precipitation peaks within 2 to 5 years and steadily decreases as the simulation approaches 30 years. 

The change of porosity in this section is present at an early stage, whereas the increments in the 

porosity of figure 15 and 16 first appear after 30 years. 

A closer view of Figure 14.5.14 shows the small section with an increased porosity. Although the 

change is noticeable, the increment is rather small ranging from 0.1 to 0.1006 which is less than 6e-2 

percent. 

 

Figure 14.5.15 - Close up of Figure 14.5.14 with respect to increased porosity.  

The white field to the left hand side of the same figure represents values outside the set scale of 

porosity, in this case that is the reduced porosity due to precipitation of calcite. Figure 14.5.16 below 

contains a better graphical representation the same precipitation area.  

 

Figure 14.5.16 – Close up of Figure 14.5.14 with respect to decreased porosity 

With a change in initial porosity within a range of 0.0 to 0.000004, the largest increment due to 

precipitation is only a tenth of the equivalent change due to dissolution. As mentioned there is also a 

zone around the injection point that is experiencing a decreased porosity. Figure 14.5.17 below is a 

graphical representation of the precipitation in the lower left hand side corner of Figure 14.5.14. 

Over 50 years the precipitation peaks within 2 to 5 years and steadily decreases as the simulation 

approaches 50 years. The change of porosity in this section is present at an early stage, whereas the 

increased porosity in Figure 14.5.15 only appears after 30 years. 
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Figure 14.5.17 - Change in porosity around the injection zone over 50 years. BYTTES UT 

 

As mentioned, the pH of the CO2 saturated injection zone stabilizes at a distance from the injection 

point.  In the injection point there is a very high pressure causing large gradients extending into the 

aquifer.  As the gas and liquid is transported away from the point of injection, the pressure will fall 

significantly. This pressure drop causes a reduction in the fugacity of the CO2 gas, which evidently 

shifts the equation of reaction in favor of aqueous CO2 and calcite. Hence the oversaturated solution 

is left with two options of removing excess carbonates; either by evaporating excess CO2 and/or 

precipitating solid calcite particles. 

When it comes to the anomaly in porosity below the fracture, the mechanism is probably connected 

to the phase fluxes in the region. By examination of the gas and liquid phase flux after 50 years, 

Figure 14.5.18 and Figure 14.5.19 indicates that the considered point is located directly between the 

flux interface of liquid and gas.  

 

Figure 14.5.18 – Graphical representation of the gas phase flux after 50 years  

The gas phase flux is dominated by the fracture, which in turn influences the magnitude and profile 

of the liquid phase flux as shown in Figure 14.5.19.   

 

Figure 14.5.19 –Graphical representation of the total liquid phase flux 50 years  



119 
 

By creating a hybrid image of the two graphical representations, Figure 14.5.20 shows that the 

interface between total liquid and gas phase flux fits almost perfectly with each other.  

 

Figure 14.5.20 - A hybrid image consisting of both liquid and gas phase flux. Liquid flux is represented with black arrows, 
while gas flux is represented with white arrows. The flow above the cap rock is liquid phase flux. BYTTES UT 

The water surrounded within the gas phase flux is saturated by dissolved gas and calcite. The 

buffering from calcite increases the pH value to above 8 and thereby reduces the mineral dissolution 

rate. At the interface shown in Figure 14.5.20, the conditions are quite different.  

CO2 gas is continuously transported into low saturated liquid and dissolved. The dissolution of CO2 

lowers the pH and shifts the chemical reaction in favor of dissolved calcite. A constant dissolution of 

carbon dioxide at the interface, combined with the buoyancy of gas, creates a flux vector of acidic 

water that flows through the very area of the porosity changes in Figure 14.5.14. At the same time 

some of the saturated acidic water will move into the high pH zone within the gas flux and cause 

precipitation of carbonates. The magnitude of the precipitation is reduced due to dissipating 

pressure and a lower temperature. 

 

14.5.8. Vertical and horizontal stress profiles  

The increase in liquid pore pressure due to the injected CO2 has caused a change in the mean 

effective stresses of the reservoir.  

The change in the mean effective stress of the aquifer and cap rock, results in a poro-elastic 

expansion of the rock mass and a corresponding uplift or displacement of the ground surface as 

shown in Figure 14.5.8.  
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14.5.9. Sxx, Lateral stress 

The most noticeable changes in the lateral stress of case A, as illustrated in Figure 14.5.21, are 

limited to the lower parts of the injection aquifer and right above the cap rock.  

The area at the center of the bottom aquifer boundary is experiencing a steady increase in 

compaction, reaching a lower limited of -3 MPa. As shown in Figure 14.5.21, the area of compaction 

arches between the two corners of the aquifer, and extends two gradient diagonally towards the cap 

rock at each side. The abnormalities located on the left hand side of the images, derive from 

consequent error located in either GiD or RCB and should be disregarded.  

The lateral stress is highest in the area above the fracture where the escaping gas meets the upper 

pressure boundary. The expansion, or positive stress, is limited to a maximum of 6MPa. 

 

a1

a4

a7

a11  

Figure 14.5.21 – Graphical representation of the lateral stress after 1 month (a1), 2 years (a4), 30 years (a7) and 100 years 
(a11) of CO2 injection 

As illustrated in appendix xxx, the observations are similar in all of the eight cases, only differentiated 

by the shape of the symmetrical time evolution. 
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14.5.10. Syy, Vertical stress 

The change in overbearing stress is limited to some compaction at the bottom of the reservoir; 

however the stress is mostly expansive peaking in the area directly above the fracture. The reduced 

effective stress in this area will influence the local permeability of the escaping gas due to the pore 

expansion. 

1a

2a

50a  

Figure 14.5.22 – Graphical repre3sentation of the vertical stress after 1 month (1a), 2 years (4a) and 50 years (9a) of CO2 
gas injection. 

As presented in appendix VIII, there are little or no deviations in vertical stress for the presented 

cases. The main development in vertical stress is limited to the gas plume zone above the fracture. 

After 100 years of CO2 injection, the only noticeable change in overbearing stress is the extent of the 

yellow coloured expansion around the plume. It is this pore expansion that induces the observed 

bending deformation at the vertical line above the fracture.  
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15. Discussion 
Chapter 15 is divided into three primary sections. In the first section I will generally discuss the 

simulation software. The second section contains discussions related to the results, while the third 

section presents further work and possible extensions of this thesis. 

15.1. The software 
In this thesis the newly developed and modified coupled code RCB was applied to simulations of 

multiphase flow of CO2 and saline water. The reactive and geomechanical modules consider both the 

rock deformation and chemical kinetics of mineral dissolution.  

The code has proved to be applicable to two dimensional simulations of medium sized reservoirs 

over longer time intervals. As presented in the results, the reactive module Reatraso crashed due to 

unexpected pH and porosity developments below the virtual fracture. A revision of the uncertain 

approach of defining the reactive surface of the volume fraction could prove to reduce the reactive 

chemical convergence problems. As such, a further study and development of the existing equations 

in the module should also be done in order to evaluate the rigidity of the equations in the numerical 

Newton-Raphson approach. 

In lack of relevant data from reactive reservoirs, the simulation cases were somewhat simplified 

approximations to articles and test sites such as the Utsira formation. With this in mind the results 

from the simulations in this thesis should only be regarded qualitatively because the presented 

quantitative results are very sensitive to the defined rock properties - especially the description of 

the correlated variables of stress, porosity and permeability in the fracture.  

The flux of CO2 through the fracture depends on the parameters utilized in the calculation of the 

stress, porosity and permeability. To achieve more realistic results, the variables should be calibrated 

with respect to known data from considered formations. 

15.2. The results 
 

Future work related to the consideration of fractures should attempt to use a hydrodynamical 

approach, as well as enabling the temperature solver, to simulate the flow through the fracture and 

obtain a more realistic description of the local flow and geomechanical changes. This is because the 

increasing gas saturation could change the elasticity of the fluids passing through the fracture, and 

thus induce a fractural collapse. Another scenario is that dissolved calcite might experience a 

significant enough temperature change in the fracture and precipitate in a magnitude that might 

reduce, or in the best case block the highly permeable path through the confining cap rock.  

While the initial stress and pressure is defined in gradients and iterated, the reservoir temperature is 

constant as defined in the setup of the simulations. This is not an ideal solution as calcite and 

reaction kinetics in general is dependent on the temperature. A temperature gradient is especially 

important for calcite due to its retrograde precipitation at increasing temperatures. If the conditions 

are right the calcite can dissolve in one section of the reservoir and precipitate at a different location. 

In some cases such scenarios can reduce the permeability of affected area. 
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There are two components contributing to the alkalinity of the aquifer solution. Dissolved calcite and 

CO2 is in equilibrium with carbonic acid and its charged species. A change in either temperature or pH 

would force the equilibrium to shift in one of two directions, causing further dissolution of the two 

components or precipitation of solid calcite. 

At large depths the temperature is higher than that of the overbearing formations. The solubility of 

calcite, along with CO2, would therefore increase if the saline water were to be displaced vertically 

towards a weakness in the confining cap rock.  In a similar context the solubility of carbonates would 

also decrease if the pH value should increase.  

The largest reduction of mean stress was observed above the virtual fracture where the escaping CO2 

gas met the pressure boundary zone. The reduction of mean stress is not only important for the 

mentioned permeability changes. If the code allows it, the increased pore pressure could cause 

hydraulic fracturing or even introduce shear slip scenarios induced by the shear component of the 

stress. 

When the pressure increases slowly, fluid has time to diffuse into the neighboring rock formation, 

which then expands and locally increases the total stress. Because of the geometry of the extensive 

horizontal aquifer, the total stresses increase more in the horizontal than in the vertical direction. 

This has two consequences. Firstly, it will prevent reduction of effective stress in the horizontal 

direction and thereby prevent the formation of vertical hydraulic fractures  
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15.3. Further work 
 

Hydrodynamic fracture description 

The eight simulated cases presented in this thesis have treated the fracture in a simplified 

hydromechanical approach. However, there is an additional and more realistic way of defining a 

fracture in the current version of the RCB code.   

The hydromechanical approach defined the fracture as a highly permeable zone dimensioned by an 

element smaller than the other elements of the modeled grid. A hydrodynamic approach would treat 

a respective fracture with hydrodynamic boundary conditions calculated by the original set of chosen 

flow equations. Further applications of this approach would allow the inclusion of fracturing 

dynamics considering the stress and pore pressure. That is, whenever the stress plus the pore 

pressure in a respective section of the formation exceed the tensile strength of the section, a 

fracture analysis will be initiated. 

More complex mineral description in the saline aquifer 

The initial water concentration and mineral specifications are greatly simplified in this thesis. Future 

studies should strive to incorporate more minerals and aqueous species in order to approach real 

reservoir conditions. Most of the minerals presented in the papers of Helge Hellevang are already 

included in the master database; as such it should be easy fully define the system by adding the 

kinetic values in the kinetics database.  

As an extension of the mineral description, it would be feasible to create more complex reservoir 

with several layers of different properties. The current simulations presented in this thesis are 

homogenously described in the 5 defined zones. The work of including several mineral species is 

already in progress; however the progress substantially delayed due to unexpected numerical 

convergence problems. 

Add temperature gradients and solve on the changes by adding definitions of heat conduction 

Naturally, some of my preliminary work in approaching the case presented in the TOUGH FLAC3D 

article showed that a more complex definition of the zones resulted in a positive influence on the 

iteration process.  All attempts at creating a equivalent model failed due to convergence problems. It 

is unknown whether it is the geomechanical specifications or the sheer size of the reservoir that 

caused the numerical problems. However, the combined iterations on pressure, temperature, stress 

and displacements reduced the increments in the time subdivisions of the two modules after 

allowing the code to solve the temperature changes.  

As such it is believed that a better definition of the thermal variables, such as heat conductivity, and 

maybe some alterations to the equations might ease the conversion and allow simulations of larger 

reservoirs. 

 

Apply logarithmically scaled elements around the injection point.  
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Another approach to help ease the conversion would be to apply logarithmically scaling of the grid in 

troubled areas such as the injection point or the presented porosity and pH anomalies. A more dense 

nodal distribution would reduce the gradient interval between each nod and thus reduce the need of 

incrementing the time subdivisions. In order to obtain a logarithmic grid, the input file generator 

Visual Retraso must undergo a series of tweaks to improve and repair the current versions.  

There are two available compilations in beta versions that each has their strength and weaknesses. 

The current applied version R64 is fully functional except for its faulty logarithmic definition. While 

the newer version R71 is improved in that aspect, the generation of grid files is only successful in one 

of 50 cases. 

Gas mixtures 

The addition of gas mixtures is one of the simplest extensions since the code already has an 

integrated general equation of state. As mentioned in chapter xxx, the EOS is already applied on 

density corrections so the main alteration would be to use the estimated mixture compressibility 

factor. The database in Retraso Codebright is also equipped to handle reactions which involve 

dissolved H2S. In order to allow calculations on gas mixtures, the existing equations for pure CO2 

solubility have to be rewritten to account for mixed gas solubility. Even though the interactions 

between CH4 and CO2 are interesting, the preliminary simulations should be limited to H2S due to 

the low solubility of CH4 in water. Other constituents of exhaust fumes like nitrogen and oxygen have 

an even lower solubility’s. BK 

Relative permeability 

In RCB it is possible to add a code to change the permeability’s and relative permeability’s for every 

time step. The code that has been used here updates the permeability’s as a function of changes in 

porosities due to mineral dissolution or mineral precipitation. It should be possible to add relative 

permeability in the nearest future and this will enable more realistic descriptions of surface 

reactions. BK 

Hydrate sealing effects 

There are many reservoirs that can be used for CO2 storage. Some of them are located in regions 

with low temperatures and depths that can form hydrates. Hydrates do not close pore spaces, 

however they will reduce the permeability and allow CO2 get more time as to dissolve into the 

surrounding groundwater. In RCB it is possible to include this be adding an extra mineral reaction in 

which hydrates form at the CO2 interface. A study of the possibilities is already initiated by a PhD 

student, however further investigation is needed. BK The Utsira formation is too warm for hydrate 

formation whereas the Snøhvit injection site has the required cold temperatures in the upper 

section. If the CO2 plume reaches the upper layers hydrates might form.  
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16. Conclusions 
 
The main goal of the thesis was to contribute in the development of a totally integrated CO2 storage 
evaluation tool which considers reactive transport as well as geomechanics. As an extension of this 
goal, the secondary aim was to investigate the effects of introducing a fracture in the confining cap 
rock with respect to the mechanical and chemical aspects of gas injections.  
 
The work presented in this thesis shows that the coupled code can easily be applied on simple 
medium sized reservoirs. Although not as rigorous as one would want it to be, the chemical module 
managed to complete 4 of the eight simulations. For most simulators, the source of convergence 
problems was often connected to chemical reactions in the reactive module. In the presented 
simulations this was exactly the case.  
 
The rapid dissolution of calcite after respectively 30 and 50 years of CO2 injection caused spikes in 
both porosity changes and pH evolution. It is believed that these rapid changes, related to the 
chemical module, caused the time subdivision in Retraso to reduce the time intervals close to zero 
and eventually cause a breakpoint in the coupled code when the Newton-Raphson iteration failed. 
 
With respect to the second goal of the thesis, the introduction of a fracture in the confining cap rock 

resulted in a leak that dominated both the liquid saturation and pH profiles through the flux of the 

escaping fluids.  The leakage of CO2 gas through the fracture redirected most of the injected gas so 

that large areas in several cases were left as unused potential storage space. The calcite buffering of 

the system was substantial. As illustrated by the pH plot in figure Figure 14.5.9, observations 

conclude that the pH did not drop below 7 for any of the zones in the reservoir. After 100 years of 

CO2 injection and calcite buffering, the dissolution of quartz based minerals was close to non-

existent.  

Observations from the simulations showed that once the saturation of the gas phase increased in the 

fracture, so did the flux and the relative permeability. After a respective amount of time the 

saturation reached a point where the entire reservoir experienced a gas breakthrough. The pressure 

was then reduced to the shear resistance in the reservoir. The buoyant CO2 migration through the 

fracture was further accelerated due to the combined effects of relative permeability, viscosity 

changes and pressure-induced changes in density. The general reduction in the effective mean stress, 

caused by the escaping CO2 gas, also contributed to the increased permeability of the fracture 

through increased pore pressure and expansion. 

The introduction of a fracture in a confining rock formation will cause major gas leaks to an extent 

that dominates the flow in the reservoir, as such it’s not recommended to use reservoirs in unstable 

geological areas that are in danger of earthquakes and propagation of small fractures.  
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Appendix A – Input files for the simulation 
Included on the disk 

Appendix B – Guide to creating input files in Visual Retraso 
General guidelines for the creation of input- files, initiation of a simulations and the process of 

viewing results in the postprocessor. In order to save pages the file has been included on the disc. 
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Appendix I 
 

 

 

 

 

 

 

 

 

 

Liquid saturation 

 

Appendix I contains a range of graphical representations of the liquid saturation thorough a 100 year 

simulated carbon dioxide injection. There are a total of 8 cases or runs with a maximum of 11 images 

representing the respective times of injection. However, some cases are incomplete with respect to 

total simulation time and images. This is due to convergence problems. 

Each set of images have their respective gradient colour indicator which illustrates the saturation 

condition at any given time and position. The higher limit is always 1.0 and the lower limit is 

alternating according to the lower boundary of saturation for the entire simulation. 

All figures are also deformed with a factor of 1.37715e6 to illustrate displacements. In translated 

meaning this gives a relationship between the dimensions of the figure, the respective factor and the 

true deformed reservoir matrix. One millimetre of grid movement is equivalent to xxx real units 
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17.1. Case A 

 

(a1) – Liquid saturation after 1 month 

 

(a2) – Liquid saturation after 3 months 

 

(a3) – Liquid saturation after 9 months 

 

(a4) – Liquid saturation after 2 years 

 

(a5) – Liquid saturation after 5 years 

 

(a6) – Liquid saturation after 10 years 

 

(a7) – Liquid saturation after 15 years 

 

 

(a8) – Liquid saturation after 30 years 

 

(a9) – Liquid saturation after 50 years 

 

(a10) – Liquid saturation after 75 years 

 

(a11) – Liquid saturation after 100 years 

 

 

 

 

Figure 14.5.1 – Graphical 
representation of the 
liquid saturation over 100 
years. 

 
Deformation with a 
factor of 1.37715e+6 
is also applied to the 
grid. 
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17.2. Case B 

 

(b1) – Liquid saturation after 1 month 

 

(b2) – Liquid saturation after 3 months 

 

(b3) – Liquid saturation after 9 months 

 

(b4) – Liquid saturation after 2 years 

 

(b5) – Liquid saturation after 5 years 

 

(b6) – Liquid saturation after 10 years 

 

(b7) – Liquid saturation after 15 years 

 

(b8) – Liquid saturation after 30 years 

 

(b9) – Liquid saturation after 50 years 

 

(b10) – Liquid saturation after 75 years 

 

(b11) – Liquid saturation after 100 years 

 

 

 

 

Figure 17.2.1 – Graphical 
representation of the 
liquid saturation over 100 
years. 

 
Deformation with a 
factor of 1.37715e+6 
is also applied to the 
grid. 
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17.3. Case C 

 

(c1) – Liquid saturation after 1 month 

 

(c2) – Liquid saturation after 3 months 

 

(c3) – Liquid saturation after 9 months 

 

(c4) – Liquid saturation after 2 years 

 

(c5) – Liquid saturation after 5 years 

 

(c6) – Liquid saturation after 10 years 

 

(c7) – Liquid saturation after 15 years 

 

(c8) – Liquid saturation after 30 years 

 

(c9) – Liquid saturation after 50 years 

 

(c10) – Liquid saturation after 75 years 

 

(c11) – Liquid saturation after 100 years 

 

 

 

Figure 17.3.1 – Graphical 
representation of the 
liquid saturation over 100 
years. 

 
Deformation with a 
factor of 1.37715e+6 
is also applied to the 
grid. 
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17.4. Case D 

 

(d1) – Liquid saturation after 1 month 

 

(d2) – Liquid saturation after 3 months 

 

(d3) – Liquid saturation after 9 months 

 

(d4) – Liquid saturation after 2 years 

 

(d5) – Liquid saturation after 5 years 

 

(d6) – Liquid saturation after 10 years 

 

(d7) – Liquid saturation after 15 years 

 

(d8) – Liquid saturation after 30 years 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.4.1 - Figure xx – 
Graphical representation 
of the liquid saturation 
over 30 years.  

Deformation with a 
factor of 1.37715e+6 is 
also applied to the grid. 
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17.5. Case A2 

 

(A1) – Liquid saturation after 1 month 

 

(A2) – Liquid saturation after 3 months 

 

(A3) – Liquid saturation after 9 months 

 

(A4) – Liquid saturation after 2 years 

 

(A5) – Liquid saturation after 5 years 

 

(A6) – Liquid saturation after 10 years 

 

(A7) – Liquid saturation after 15 years 

 

(A8) – Liquid saturation after 30 years  

 

(A9) – Liquid saturation after 48.7 years 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.5.1 - Graphical 
representation of the 
liquid saturation over 50 
years. 

 
Deformation with a 
factor of 1.37715e+6 
is also applied to the 
grid. 
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17.6. Case B2 

 

(B1) – Liquid saturation after 1 month 

 

(B2) – Liquid saturation after 3 months 

 

(B3) – Liquid saturation after 9 months 

 

(B4) – Liquid saturation after 2 years 

 

(B5) – Liquid saturation after 5 years 

 

(B6) – Liquid saturation after 10 years 

 

(C7) – Liquid saturation after 15 years 

 

 

(B8) – Liquid saturation after 30 years 

 

(B9) – Liquid saturation after 50 years 

 

(B10) – Liquid saturation after 75 years 

 

(B11) – Liquid saturation after 100 years 

 

 

 

 

Figure 17.6.1 – Graphical 
representation of the 
liquid saturation over 100 
years. 

 
Deformation with a 
factor of 1.37715e+6 
is also applied to the 
grid. 

 

 

 



136 
 

17.7. Case C2 

 

(C1) – Liquid saturation after 1 month 

 

(C2) – Liquid saturation after 3 months 

 

(C3) – Liquid saturation after 9 months 

 

(C4) – Liquid saturation after 2 years 

 

(C5) – Liquid saturation after 5 years 

 

(C6) – Liquid saturation after 10 years 

 

(C7) – Liquid saturation after 15 years 

 

 

(C8) – Liquid saturation after 30 years 

 

(C9) – Liquid saturation after 50 years 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.7.1 – Graphical 
representation of the 
liquid saturation over 100 
years. 

Deformation with a 
factor of 1.37715e+6 
is also applied to the 
grid. 
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17.8. Case D2 

 

(D1) – Liquid saturation after 1 month 

 

(D2) – Liquid saturation after 3 months 

 

(D3) – Liquid saturation after 9 months 

 

(D4) – Liquid saturation after 2 years 

 

(D5) – Liquid saturation after 5 years 

 

(D6) – Liquid saturation after 10 years 

 

(D7) – Liquid saturation after 15 years 

 

 

(D8) – Liquid saturation after 30 years 

 

(D9) – Liquid saturation after 33 years 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.8.1 - Graphical 
representation of the 
liquid saturation over 30 
years. 

 
Deformation with a 
factor of 1.37715e+6 
is also applied to the 
grid. 
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Appendix II 
 

 

 

 

 

 

 

 

 

 

Aquifer pH values 

 

Appendix II contains a range of graphical representations for the pH values thorough a 100 year 

simulated carbon dioxide injection. There are a total of 8 cases or runs with a maximum of 11 images 

representing the respective times of injection. However, some cases are incomplete with respect to 

total simulation time and images. This is due to convergence problems. 

Each set of images have their respective gradient color indicator which illustrates the saturation 

condition at any given time and position. The higher limit is always 12.51 and the lower limit 7.964. 

These values are manually set so that a comparison of the cases is feasible.  

Some of the cases are further specified by means of enlarged images of specific areas of interest. 

These include anomalies in case A, A2 and B2. 
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17.9. Case A 

 

(a1) – pH value after 1 month 

 

(a2) – pH value after 3 months 

 

(a3) – pH value after 9 months 

 

(a4) – pH value after 2 years 

 

(a5) – pH value after 5 years 

 

(a6) – pH value after 10 years 

 

(a7) – pH value after 15 years 

 

 

 

(a8) – pH value after 30 years  

 

(a9) – pH value after 50 years 

 

(a10) – pH value after 75 years 

 

(a11) – pH value after 100 years 

 

 

 

 

 

Figure 17.8.1 - Graphical 
representation of the 
change in ph value over 
100 years. 
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17.10. Case B 

 

(b1) – pH value after 1 month 

 

(b2) – pH value after 3 months 

 

(b3) – pH value after 9 months 

 

(b4) – pH value after 2 years 

 

(b5) – pH value after 5 years 

 

(b6) – pH value after 10 years 

 

(b7) – pH value after 15 years 

 

 

 

(b8) – pH value after 30 years  

 

(b9) – pH value after 50 years 

 

(b10) – pH value after 75 years 

 

(b11) – pH value after 100 years 

 

 

 

 

 

Figure 17.10.1 

Figure xx – Graphical 
representation of the 
change in ph value 
over 100 years. 
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17.11. Case C 

 

(c1) – pH value after 1 month 

 

(c2) – pH value after 3 months 

 

(c3) – pH value after 9 months 

 

(c4) – pH value after 2 years 

 

(c5) – pH value after 5 years 

 

(c6) – pH value after 10 years 

 

(c7) – pH value after 15 years 

 

 

 

(c8) – pH value after 30 years  

 

(c9) – pH value after 50 years 

 

(c10) – pH value after 75 years 

 

(c11) – pH value after 100 years 

 

 

 

 

 

Figure 17.11.1 – Graphical 
representation of the 
change in ph value over 
100 years. 
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17.12. Case D 

 

(d1) – pH value after 1 month 

 

(d2) – pH value after 3 months 

 

(d3) – pH value after 9 months 

 

(d4) – pH value after 2 years 

 

(d5) – pH value after 5 years 

 

(d6) – pH value after 10 years 

 

(d7) – pH value after 15 years 

 

(d8) – pH value after 30 years  

 

 

(dd) – Closer view of the pH anomaly below 

the fracture in figure d8 

 

 

 

Figure 17.12.1 – Graphical 
representation of the 
change in ph value over 
100 years. 
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17.13. Case A2 

 

(A1) – pH value after 1 month 

 

(A2) – pH value after 3 months 

 

(A3) – pH value after 9 months 

 

(A4) – pH value after 2 years 

 

(A5) – pH value after 5 years 

 

(A6) – pH value after 10 years 

 

(A7) – pH value after 15 years 

 

(A8) – pH value after 30 years  

 

(A9) – pH value after 47.8 years 

 

(AA) – Closer view of pH point below the 

fracture in figure A9 

 

Figure 17.13.1 - Graphical 
representation of the 
change in ph value over 
100 years. 
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17.14. Case B2 

 

(B1) – pH value after 1 month 

 

(B2) – pH value after 3 months 

 

(B3) – pH value after 9 months 

 

(B4) – pH value after 2 years 

 

(B5) – pH value after 5 years 

 

(B6) – pH value after 10 years 

 

(B7) – pH value after 15 years 

 

 

 

(B8) – pH value after 30 years  

 

(B9) – pH value after 50 years 

 

(B10) – pH value after 75 years 

 

(B11) – pH value after 100 years 

 

 

 

 

 

Figure 17.14.1 - Graphical 
representation of the 
change in ph value over 
100 years. 
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17.15. Case C2 

 

(C1) – pH value after 1 month 

 

(C2) – pH value after 3 months 

 

(C3) – pH value after 9 months 

 

(C4) – pH value after 2 years 

 

(C5) – pH value after 5 years 

 

(C6) – pH value after 10 years 

 

(C7) – pH value after 15 years 

 

 

(C8) – pH value after 30 years  

 

(C9) – pH value after 50 years 

 

(CC) – Closer view of pH point below the 

fracture in figure C9 

 

Figure 17.15.1 - Graphical 
representation of the 
change in ph value over 
100 years. 
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17.16. Case D2 

 

(D1) – pH value after 1 month 

 

(D2) – pH value after 3 months 

 

(D3) – pH value after 9 months 

 

(D4) – pH value after 2 years 

 

(D5) – pH value after 5 years 

 

(D6) – pH value after 10 years 

 

(D7) – pH value after 15 years 

 

 

 

(D8) – pH value after 30 years  

 

 

(DD) – Closer view of pH point below the 

fracture in figure A8 

 

 

Figure 17.16.1 - Graphical 
representation of the 
change in ph value over 
100 years. 

 
 

 

 

 



147 
 

17.17. pH values 
Simulation pH limits  

Case A 

 
 

 

Case B 

 
 

 

Case C 

 
 

 

Case D 

 
 

 

Simulation pH limits  

Case A2 

 
 

 

Case B2 

 
 

 

Case C2 

 
 

 

Case D2 
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Appendix III 
 

 

 

 

 

 

 

 

 

 

Change in Porosity 

Appendix III contains a range of graphical representations for the porosity changes over 100 years of 

simulated carbon dioxide injection.  

The figures contained in this appendix represent the change in porosity due to precipitation and 

dissolution 
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17.18. Case A 

 

Figure 17.17.1 - Graphical representation of the initial Porosity  

 

Figure 17.17.2 - Graphical representation of the porosity after 100 years!!!!!!XXX!!!!!!! 

 

17.19. Case B 

 

Figure 17.19.1 - Graphical representation of the Initial porosity 

 

Figure 17.19.2 - Graphical representation of the porosity after 100 years 
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17.20. Case C 
 

 

Figure 17.20.1 - Graphical representation of the Initial porosity 

 

Figure 17.20.2 - Graphical representation of the porosity after 100 years 

 

17.21. Case D 

 

Figure 17.21.1 - Porosity after 30 years 

 

Figure 17.21.2 – Initial porosity 
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Figure 17.21.3 - porosity after 30 years in the cap rock 

 

porosity after 30 years 

 

porosity after 32,1 years 

 

Close up of the porosity after 30 years 
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Figure 17.21.4 - Close up of anomaly in figure at 32.1 years 
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17.22. Case A2 

 

Figure 17.22.1 -Change in porosity after 30 years 

 

Figure 17.22.2 -Change in porosity after 48,7 years 

 

Figure 17.22.3 -Close view of porosity change in figure xxx 
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Figure 17.22.4 -Precipitation after 30 years 

 

Figure 17.22.5 -Precipitation after 48.7 years 

  

Figure 17.22.6 -Close view of the precipitation after 48.7 years 

 

  

Figure 17.22.7 - view of the precipitation after 48.7 years Close view of 
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Precipitation timeline 

 

(D1) – Precipitation after 1 month 

 

(D2) – Precipitation after 3 months 

 

(D3) – Precipitation after 9 months 

 

(D4) – Precipitation after 2 years 

 

(D5) – Precipitation after 5 years 

 

(D6) – Precipitation after 10 years 

 

(D7) – Precipitation after 15 years 

 

(D8) – Precipitation after 30 years
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17.23. Case B2 

 

Figure 17.23.1 -Graphical representation of the porosity initial porosity 

 

Figure 17.23.2 -Graphical representation of the porosity after 100 years 

 

Figure 17.23.3 – Porosity in cap rock after 30 years 
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Precipitation timeline 

 

(C1) – Precipitation after 1 month 

 

(C2) – Precipitation after 3 months 

 

(C3) – Precipitation after 9 months 

 

(C4) – Precipitation after 2 years 

 

(C5) – Precipitation after 5 years 

 

(C6) – Precipitation after 10 years 

 

 

 

(C7) – Precipitation after 15 years 

 

(C8) – Precipitation after 30 years  

 

(C9) – Precipitation after 50 years 

 

(C10) – Precipitation after 75 years 

 

(C11) – Precipitation after 100 years 
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17.24. Case C2 

 

Figure 17.24.1 – Initial Porosity 

 

Figure 17.24.2 – Porosity after 30 years 

 

Figure 17.24.3 – P=orosity after 50 years 

 

Figure 17.24.4 -Close up of the porosity at 50 years 

 

Figure 17.24.5 – Precipitations after 30 tyears 
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Figure 17.24.6 - (C1) – Close up of the precipitation after 30 

 

Figure 17.24.7 -(C1) – Precipitation after 50 years 

 

Figure 17.24.8 -(C1) – Clo9se up of precipitations after 50 years 
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Precipitation timeline 

 

(C1) – Precipitation after 1 

 

(C1) – Precipitation after 3 

 

(C1) – Precipitation after 9 

 

(C1) – Precipitation after 2 

 

(C1) – Precipitation after 5 

 

(C1) – Precipitation after 10 

 

(C1) – Precipitation after 15 

 

(C1) – Precipitation after 30 

 

(C1) – Precipitation after 50
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17.25. Case D2 

 

Figure 17.25.1 - Graphical representation of the initial porosity with automatic limits 

 

Figure 17.25.2 - Graphical representation of the porosity after 30 years 

 

 

Figure 17.25.3 - Graphical representation of the porosity after 30 years 

 

Figure 17.25.4 - Graphical representation of the porosity after 30 years 
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Figure 17.25.5 - Graphical representation of the porosity after 33 years 

 

Figure 17.25.6 – Close view of the graphical representation of the porosity after 33 years 

 

30 

 

Close 30 
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Close 30 -2  

 

Figure 17.25.7 -(C1) – Precipitation after 33 

 

Figure 17.25.8 - Precipitation after Close 33 
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Precipitation after 1 month 

 

(C1) – Precipitation after 3 months 

 

(C1) – Precipitation after 9 months 

 

(C1) – Precipitation after 2 years 

 

(C1) – Precipitation after 5 years 

 

(C1) – Precipitation after 10 years 

 

(D) – Precipitation after 15 years 

 

(C1) – Precipitation after 30 years 

 

(C1) – Precipitation after 33 years 
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Appendix IV 
 

 

 

 

 

 

 

 

 

 

Gas Pressure 

 

Appendix IV contains a range of graphical representations for the gas pressures in the two first years 

of the simulated carbon dioxide injection. There are a total of 8 cases or runs with a maximum of 11 

images representing the respective times of injection. However, some cases are incomplete with 

respect to total simulation time and images. This is due to convergence problems. 

Each set of images have their respective gradient color indicator which illustrates the saturation 

condition at any given time and position. The higher limit is always 15.0 MPa and the lower limit is 

9.5 MPa. These values are chosen based on the settling values after the gas breakthrough and to 

obtain a decent graphical representation at high pressures. 

Some figures contain a white spot in the injection corner. White spots represent areas which contain 

pressures outside the defined color interval. These pressures are better described in Appendix VI – 

Carbon dioxide breakthrough. 
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17.26. Case A 

 

(a1) – Gas pressure after 1 month 

 

(a2) – Gas pressure after 3 months 

 

(a3) – Gas pressure after 9 months 

 

(a4) – Gas pressure after 2 years 

 

Figure 17.25.1 - Graphical 
representation of the 
change in gas pressure 
over 2 years. 
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17.27. Case B 

 

(b1) – Gas pressure after 1 month 

 

(b2) – Gas pressure after 3 months 

 

(b3) – Gas pressure after 9 months 

 

(b4) – Gas pressure after 2 years 

 

Figure 17.27.1 - Graphical 
representation of the 
change in gas pressure 
over 2 years. 
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17.28. Case C 

 

(c1) – Gas pressure after 1 month 

 

(c2) – Gas pressure after 3 months 

 

(c3) – Gas pressure after 9 months 

 

(c4) – Gas pressure after 2 years 

 

Figure 17.28.1 - Graphical 
representation of the 
change in gas pressure 
over 2 years. 
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17.29. Case D 

 

(d1) – Gas pressure after 1 month 

 

(d2) – Gas pressure after 3 months 

 

(d3) – Gas pressure after 9 months 

 

(d4) – Gas pressure after 2 years 

 

Figure 17.29.1 - Graphical 
representation of the 
change in gas pressure 
over 2 years. 
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17.30. Case A2 

 

(A1) – Gas pressure after 1 month 

 

(A2) – Gas pressure after 3 months 

 

(A3) – Gas pressure after 9 months 

 

(A4) – Gas pressure after 2 years 

 

Figure 17.30.1 - Graphical 
representation of the 
change in gas pressure 
over 2 years. 
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17.31. Case B2 

 

(B1) – Gas pressure after 1 month 

 

(B2) – Gas pressure after 3 months 

 

(B3) – Gas pressure after 9 months 

 

(B4) – Gas pressure after 2 years 

 

Figure 17.31.1 - Graphical 
representation of the 
change in gas pressure 
over 2 years. 
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17.32. Case C2 

 

(C1) – Gas pressure after 1 month 

 

(C2) – Gas pressure after 3 months 

 

(C3) – Gas pressure after 9 months 

 

(C4) – Gas pressure after 2 years 

 

Figure 17.32.1 - Graphical 
representation of the 
change in gas pressure 
over 2 years. 
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17.33. Case D2 

 

(D1) – Gas pressure after 1 month 

 

(D2) – Gas pressure after 3 months 

 

(D3) – Gas pressure after 9 months 

 

(D4) – Gas pressure after 2 years 

 

Figure 17.33.1 - Graphical 
representation of the 
change in gas pressure 
over 2 years. 
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Appendix V 
 

 

 

 

 

 

 

 

 

 

|Gas Phase Flux| 

 

Appendix V contains a range of graphical representations for the net gas phase flux thorough a 100 

years of simulated carbon dioxide injection. There are a total of 8 cases or runs with a maximum of 

11 images representing the respective times of injection. However, some cases are incomplete with 

respect to total simulation time and images. This is due to convergence problems. 

Each set of images have their respective gradient color indicator which illustrates the saturation 

condition at any given time and position. The higher limit is always 0.0102 and the lower limit 0.0. 

Where possible, the last time-step in each case, is appended with an enlarged image of the 

respective flux in the fracture region.   
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17.34. Case A 

 

(a1) – Gas Phase flux after 1 month 

 

(a2) Gas Phase flux after 3 months 

 

(a3) – Gas Phase flux after 9 months 

 

(a4) – Gas Phase flux after 2 years 

 

(a5) – Gas Phase flux after 5 years 

 

(a6) – Gas Phase flux after 10 years 

 

(a7) – Gas Phase flux after 15 years 

 

(a8) – Gas Phase flux after 30 years  

 

(a9) – Gas Phase flux after 50 years 

 

(a10) – Gas Phase flux after 75 years 

 

(a11) – Gas Phase flux after 100 years 

 

 

 

 

 

 

 

Figure 17.34.1 - Graphical 
representation of the Gas 
Phase flux over 100 
years. 
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17.35. Run B 

 

(b1) – Gas Phase flux after 1 month 

 

(b2) Gas Phase flux after 3 months 

 

(b3) – Gas Phase flux after 9 months 

 

(b4) – Gas Phase flux after 2 years 

 

(b5) – Gas Phase flux after 5 years 

 

(b6) – Gas Phase flux after 10 years 

 

(b7) – Gas Phase flux after 15 years 

 

(b8) – Gas Phase flux after 30 years  

 

(b9) – Gas Phase flux after 50 years 

 

(b10) – Gas Phase flux after 75 years 

 

(b11) – Gas Phase flux after 100 years 

 

 

 

 

 

Figure 17.35.1 - Graphical 
representation of the Gas 
Phase flux over 100 
years. 
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17.36. Case C 

 

(c1) – Gas Phase flux after 1 month 

 

(c2) Gas Phase flux after 3 months 

 

(c3) – Gas Phase flux after 9 months 

 

(c4) – Gas Phase flux after 2 years 

 

(c5) – Gas Phase flux after 5 years 

 

(c6) – Gas Phase flux after 10 years 

 

(c7) – Gas Phase flux after 15 years 

 

(c8) – Gas Phase flux after 30 years  

 

(c9) – Gas Phase flux after 50 years 

 

(c10) – Gas Phase flux after 75 years 

 

(c11) – Gas Phase flux after 100 years 

 

 

 

 

 

Figure 17.36.1 - Graphical 
representation of the Gas 
Phase flux over 100 
years. 
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17.37. Case D 

 

(d1) – Gas Phase flux after 1 month 

 

(d2) Gas Phase flux after 3 months 

 

(d3) – Gas Phase flux after 9 months 

 

(d4) – Gas Phase flux after 2 years 

 

(d5) – Gas Phase flux after 5 years 

 

(d6) – Gas Phase flux after 10 years 

 

(d7) – Gas Phase flux after 15 years 

 

(d8) – Gas Phase flux after 30 years  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.37.1 - Graphical 
representation of the Gas 
Phase flux over 100 
years. 
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17.38. Case A2 

 

(A1) – Gas Phase flux after 1 month 

 

(A2) Gas Phase flux after 3 months 

 

(A3) – Gas Phase flux after 9 months 

 

(A4) – Gas Phase flux after 2 years 

 

(A5) – Gas Phase flux after 5 years 

 

(A6) – Gas Phase flux after 10 years 

 

(A7) – Gas Phase flux after 15 years 

 

 

(A8) – Gas Phase flux after 30 years  

 

(A9) – Gas Phase flux after 48.7 years 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.38.1 - Graphical 
representation of the Gas 
Phase flux over 100 
years. 
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17.39. Case B2 

 

(B1) – Gas Phase flux after 1 month 

 

(B2) Gas Phase flux after 3 months 

 

(B3) – Gas Phase flux after 9 months 

 

(B4) – Gas Phase flux after 2 years 

 

(B5) – Gas Phase flux after 5 years 

 

(B6) – Gas Phase flux after 10 years 

 

(B7) – Gas Phase flux after 15 years 

 

(B8) – Gas Phase flux after 30 years  

 

(B9) – Gas Phase flux after 50 years 

 

(B10) – Gas Phase flux after 75 years 

 

(B11) – Gas Phase flux after 100 years 

 

 

 

 

 

Figure 17.39.1 - Graphical 
representation of the Gas 
Phase flux over 100 
years. 
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17.40. Case C2 

 

(C1) – Gas Phase flux after 1 month 

 

(C2) Gas Phase flux after 3 months 

 

(C3) – Gas Phase flux after 9 months 

 

(C4) – Gas Phase flux after 2 years 

 

(C5) – Gas Phase flux after 5 years 

 

(C6) – Gas Phase flux after 10 years 

 

(C7) – Gas Phase flux after 15 years 

 

(C8) – Gas Phase flux after 30 years  

 

(C9) – Gas Phase flux after 50 years 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.40.1 - Graphical 
representation of the Gas 
Phase flux over 100 
years. 
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17.41. Case D2 

 

(D1) – Gas Phase flux after 1 month 

 

(D2) Gas Phase flux after 3 months 

 

(D3) – Gas Phase flux after 9 months 

 

(D4) – Gas Phase flux after 2 years 

 

(D5) – Gas Phase flux after 5 years 

 

(D6) – Gas Phase flux after 10 years 

 

(D7) – Gas Phase flux after 15 years 

 

(D8) – Gas Phase flux after 30 years  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.41.1 - Graphical 
representation of the Gas 
Phase flux over 100 
years. 
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Appendix VI 
 

 

 

 

 

 

 

 

 

 

Breakthrough of Carbon dioxide 

 

Appendix VI contains graphical representations for the gas pressure, gas density and gas phase flux at 

the time-step in closest vicinity of the actual CO2 breakthrough. For each case the breakthrough is 

manually located by comparing the graphical representation respective to each time-step. At a 

certain interval the pressure, and the coherent properties like density and phase flux, will drop 

significantly and thereby allow the selection of a representative image.  

Each set of images have their respective gradient colour indicator which illustrates the aquifer 

condition at any given time and position. The gradient limits are equal for the respective properties 

throughout appendix VI. 

 Appendix IIX contains a more elaborate pressure, density and phase flux trends in the form of point 

evaluation graphs. 
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17.42. Case A 

 

Figure 17.42.1 - Gas Pressure 

 

 

Figure 17.42.2 - Gas density 

 

 

Figure 17.42.3 - |Gas Phase Flux| 

 

 

Figure 17.42.4 - Liquid saturation 
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17.43. Case B 

 

Figure 17.43.1 - Gas Pressure 

 

 

Figure 17.43.2 - Gas density 

 

 

Figure 17.43.3 - |Gas Phase Flux| 

 

 

Figure 17.43.4 - Liquid saturation 
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17.44. Case C 

 

Figure 17.44.1 - Gas Pressure 

 

 

Figure 17.44.2 - Gas density 

 

 

Figure 17.44.3 - |Gas Phase Flux| 

 

 

Figure 17.44.4 - Liquid saturation 
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17.45. Case D 

 

Figure 17.45.1 - Gas Pressure 

 

 

Figure 17.45.2 - Gas density 

 

 

Figure 17.45.3 - |Gas Phase Flux| 

 

 

Figure 17.45.4 - Liquid saturation 
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17.46. Case A2 

 

Figure 17.46.1 - Gas Pressure 

 

 

Figure 17.46.2 - Gas density 

 

 

Figure 17.46.3 - |Gas Phase Flux| 

 

 

Figure 17.46.4 - Liquid saturation 
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17.47. Case B2 

 

Figure 17.47.1 - Gas Pressure 

 

 

Figure 17.47.2 - Gas density 

 

 

Figure 17.47.3 - |Gas Phase Flux| 

 

 

Figure 17.47.4 - Liquid saturation 
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17.48. Case C2 

 

Figure 17.48.1 - Gas Pressure 

 

 

Figure 17.48.2 - Gas density 

 

 

Figure 17.48.3 - |Gas Phase Flux| 

 

 

Figure 17.48.4 - Liquid saturation 
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17.49. Case D2 

 

Figure 17.49.1 - Gas Pressure 

 

 

Figure 17.49.2 - Gas density 

 

 

Figure 17.49.3 - |Gas Phase Flux| 

 

 

Figure 17.49.4 - Liquid saturation 
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Appendix VII 
 

 

 

 

 

 

 

 

 

 

- Graphs- 
Properties plotted against time 

 

Appendix IIX contains several graphs respective to each case, with gaseous properties plotted against 

time thorough 100 years of simulated carbon dioxide injection. There are a total of 8 cases or runs 

with 4 graphs each.  

The two first graphs in each case are that of pressure and density plotted against time. The two 

remaining graphs represent the net gas phase flux, where the last graph is more accurate with 

respect to the lower overlapping fluxes. It is imperative to be aware that some of the simulations are 

incomplete due to conversion problems; hence the x- axes are not equal in all cases. 

The four lines constituting the graphs represent four points in the reservoir. Node 1 and 2 are located 

in the injection zone, while node 3 and 4 are placed linearly between the injection point and the 

fracture. Node 4 is more precise located in the middle of the fracture. 
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17.50. Case A 

 

Figure 17.50.1 - Gas pressure plotted against time in run A 

 

Figure 17.50.2 - Gas density plotted against time in run A 
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Figure 17.50.3 - Gas phase flux plotted against time in run A 

 

Figure 17.50.4 - Gas phase flux plotted against time in run A 
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17.51. Case B 

 

Figure 17.51.1 - Gas pressure plotted against time in run B 

 

Figure 17.51.2 - Gas density plotted against time in run B 
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Figure 17.51.3 -Gas phase flux plotted against time in run B 

 

Figure 17.51.4 - Gas phase flux plotted against time in run B 
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17.52. Case C 

 

Figure 17.52.1 - Gas pressure in MPa plotted against time in run C 

 

Figure 17.52.2 - Gas density plotted against time in run C 
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Figure 17.52.3 - Gas phase flux plotted against time in run C 

 

Figure 17.52.4 - Gas phase flux plotted against time in run C 
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17.53. Case D 

 

Figure 17.53.1 - Gas pressure plotted against time in run D 

 

Figure 17.53.2 - Gas density plotted against time in run D 
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Figure 17.53.3 - Gas phase flux  plotted against time in run D 

 

Figure 17.53.4 - Gas phase flux plotted against time in run D 
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17.54. Case A2 

 

Figure 17.54.1 - Gas pressure plotted against time in run A2 

 

Figure 17.54.2 - Gas density plotted against time in run A2 
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Figure 17.54.3 - Gas phase flux plotted against time in run A2 

 

Figure 17.54.4 - Gas phase flux plotted against time in run A2 
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17.55. Case B2 

 

Figure 17.55.1 - Gas pressure plotted against time in run B2 

 

Figure 17.55.2 - Gas density plotted against time in run B2 
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Figure 17.55.3 - Gas phase flux plotted against time in run B2 

 

Figure 17.55.4 - Gas phase flux plotted against time in run B2 
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17.56. Case C2 

 

Figure 17.56.1 - Gas pressure plotted against time in run C2 

 

Figure 17.56.2 - Gas density plotted against time in run C2 
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Figure 17.56.3 - Gas phase flux plotted against time in run C2 

 
Figure 17.56.4 - Gas density plotted against time in run C2 
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17.57. Case D2 

 

Figure 17.57.1 - Gas pressure plotted against time in run D2 

 

Figure 17.57.2 - Gas density plotted against time in run D2 
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Figure 17.57.3 - Gas phase flux plotted against time in run D2 

 

Figure 17.57.4 - Gas phase flux plotted against time in run D2 
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17.1. Tables 
GiD is equipped with an auto-limit function for the colour interval representing the changes in 

aquifer properties versus time. The auto-limit function is adjusted to the higher and lower bounds of 

the values present throughout the 100 simulated years. Hence the values from the auto-limited 

scales can be used to estimate the extremal values of a respective property.  

 

 Estimated Breakthrough time 
by means of nearest time-step 

Maximum values at CO2 breakthrough 

Simulation GiD 
Step # 

Time (s) Time (d) Gas 
pressure 

[MPa] 

Gas density 
[Kg/m3] 

Gas phase flux 
[m/s] 

Case A 80 2.20939e7 255.71 23.479 844.28 0.010307 

Case B 98 2.21236e7 256.06 23.503 844.45 0.010304 

Case C 83 2.21282e7 256.11 23.506 844.47 0.010302 

Case D 100 2.21453e7 256.31 23.520 844.57 0.010287 

Case A2 81 2.20798e7 255,55 23.468 844.21 0.010304 

Case B2 107 2.21263e7 256,09 23.502 844.44 0.010295 

Case C2 95 2.21712e7 256,61 23.504 844.46 0.010270 

Case D2 83 2.05620e7 237.99 23.337 843.29 0.010119 

Table 17.1.1 – The estimated breakthrough time and maximum values for gas pressure, gas density and |Gas phase flux|. 
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Appendix VIII 
 

 

 

 

 

 

 

 

 

 

Stress in lateral direction - Sxx 

 

Appendix VII contains a range of graphical representations for the lateral stress, Sxx, through 100 

years of simulated carbon dioxide injection. There are a total of 8 cases or runs with a maximum of 

11 images representing the respective times of injection. However, some cases are incomplete with 

respect to total simulation time and images. This is due to convergence problems. 

Each set of images have their respective gradient color indicator which illustrates the saturation 

condition at any given time and position. The higher limit is always 6.0 and the lower limit (-3.0). 

At the left hand side of all the figures in appendix VII there are several errors or anomalies that are 

not related to the results of the simulation. These spots are assumed to be descendants from the grid 

input files created in visual retraso or an error in the RCB code itself.   

The gradient values represent the total stress in the respective direction. The x and y axis are 

extending positively from the lower left hand side corner. All negative values represent compression, 

while positive values represent tension.[Sebastia Olivella] 
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17.2. Case A 

 

(a1) – Lateral stress after 1 month 

 

(a2) – Lateral stress after 3 months 

 

(a3) – Lateral stress after 9 months 

 

(a4) – Lateral stress after 2 years 

 

(a5) – Lateral stress after 5 years 

 

(a6) – Lateral stress after 10 years 

 

(a7) – Lateral stress after 15 years 

 

(a8) – Lateral stress after 30 years  

 

(a9) – Lateral stress after 50 years 

 

(a10) – Lateral stress after 75 years 

 

(a11) – Lateral stress after 100 years 

 

 

 

 

 

Figure 17.1.1 - Graphical 
representation of the 
change in lateral stress 
over 100 years. 
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17.3. Case B 

 

(b1) – Lateral stress after 1 month 

 

(b2) – Lateral stress after 3 months 

 

(b3) – Lateral stress after 9 months 

 

(b4) – Lateral stress after 2 years 

 

(b5) – Lateral stress after 5 years 

 

(b6) – Lateral stress after 10 years 

 

(b7) – Lateral stress after 15 years 

 

(b8) – Lateral stress after 30 years  

 

(b9) – Lateral stress after 50 years 

 

(b10) – Lateral stress after 75 years 

 

(b11) – Lateral stress after 100 years 

 

 

 

 

 

Figure 17.3.1 - Graphical 
representation of the 
change in lateral stress 
over 100 years. 
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17.4. Case C 

 

(d1) – Lateral stress after 1 month 

 

(d2) – Lateral stress after 3 months 

 

(d3) – Lateral stress after 9 months 

 

(d4) – Lateral stress after 2 years 

 

(d5) – Lateral stress after 5 years 

 

(d6) – Lateral stress after 10 years 

 

(d7) – Lateral stress after 15 years 

 

 

 

(db) – Lateral stress after 30 years  

 

(d9) – Lateral stress after 50 years 

 

(d10) – Lateral stress after 75 years 

 

(d11) – Lateral stress after 100 years 

 

 

 

 

 

Figure 17.4.1 - Graphical 
representation of the 
change in lateral stress 
over 100 years. 
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17.5. Case D 

 

(d1) – Lateral stress after 1 month 

 

(d2) – Lateral stress after 3 months 

 

(d3) – Lateral stress after 9 months 

 

(d4) – Lateral stress after 2 years 

 

(d5) – Lateral stress after 5 years 

 

(d6) – Lateral stress after 10 years 

 

(d7) – Lateral stress after 15 years 

 

 

 

(d8) – Lateral stress after 30 years  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.5.1 - Graphical 
representation of the 
change in lateral stress 
over 30 years. 
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17.6. Case A2 

 

(A1) – Lateral stress after 1 month 

 

(A2) – Lateral stress after 3 months 

 

(A3) – Lateral stress after 9 months 

 

(A4) – Lateral stress after 2 years 

 

(A5) – Lateral stress after 5 years 

 

(A6) – Lateral stress after 10 years 

 

(A7) – Lateral stress after 15 years 

 

(A8) – Lateral stress after 30 years  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.6.1 - Graphical 
representation of the 
change in lateral stress 
over 100 years. 
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17.7. Case B2 

 

(B1) – Lateral stress after 1 month 

 

(B2) – Lateral stress after 3 months 

 

(B3) – Lateral stress after 9 months 

 

(B4) – Lateral stress after 2 years 

 

(B5) – Lateral stress after 5 years 

 

(B6) – Lateral stress after 10 years 

 

(B7) – Lateral stress after 15 years 

 

(B8) – Lateral stress after 30 years  

 

(B9) – Lateral stress after 50 years 

 

(B10) – Lateral stress after 75 years 

 

(B11) – Lateral stress after 100 years 

 

 

 

 

Figure 17.7.1 - Graphical 
representation of the 
change in lateral stress 
over 100 years. 
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17.8. Case C2 

 

(C1) – Lateral stress after 1 month 

 

(C2) – Lateral stress after 3 months 

 

(C3) – Lateral stress after 9 months 

 

(C4) – Lateral stress after 2 years 

 

(C5) – Lateral stress after 5 years 

 

(C6) – Lateral stress after 10 years 

 

(C7) – Lateral stress after 15 years 

 

(C8) – Lateral stress after 30 years  

 

(C9) – Lateral stress after 50 years 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.8.1 - Graphical 
representation of the 
change in lateral stress 
over 50 years. 
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17.9. Case D2 

 

(D1) – Lateral stress after 1 month 

 

(D2) – Lateral stress after 3 months 

 

(D3) – Lateral stress after 9 months 

 

(D4) – Lateral stress after 2 years 

 

(D5) – Lateral stress after 5 years 

 

(D6) – Lateral stress after 10 years 

 

(D7) – Lateral stress after 15 years 

 

(D8) – Lateral stress after 30 years  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.9.1 - Graphical 
representation of the 
change in lateral stress 
over 30 years. 
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Appendix IIX 
 

 

 

 

 

 

 

 

 

 

Stress in vertical direction – Syy 

Appendix VIII contains a range of graphical representations for the verticallateral stress, Syy, through 

100 years of simulated carbon dioxide injection. There are a total of 8 cases or runs with a maximum 

of 5 images representing the respective times of injection. However, some cases are incomplete with 

respect to total simulation time and images. This is due to convergence problems. 

Each set of images have their respective gradient color indicator which illustrates the saturation 

condition at any given time and position. The higher limit is always 10.0 and the lower limit (-3.0). 

The gradient values represent the total stress in the respective direction. The x and y axis are 

extending positively from the lower left hand side corner. All negative values represent compression, 

while positive values represent tension.[Sebastia Olivella] 
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17.10. Case A 

 

(A1) – Vertical stress after 1 month 

 

(A2) – Vertical stress after 3 months 

 

(A3) – Vertical stress after 9 months 

 

(A4) – Vertical stress after 2 years 

 

(A5) – Vertical stress after 50 years 

 

Figure 17.10.1 - Graphical 
representation of the 
change in vertical stress 
over 50 years. 

 

 

 

17.11. Case B 

 

(B1) – Vertical stress after 1 month 

 

(B2) – Vertical stress after 3 months 

 

(B3) – Vertical stress after 9 months 

 

(B4) – Vertical stress after 2 years 

 

(B5) – Vertical stress after 50 years 

 

Figure 17.11.1 - Graphical 
representation of the 
change in vertical stress 
over 50 years. 
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17.12. Case C 

 

(C1) – Vertical stress after 1 month 

 

(C2) – Vertical stress after 3 months 

 

(C3) – Vertical stress after 9 months 

 

(C4) – Vertical stress after 2 years 

 

(C5) – Vertical stress after 50 years 

 

Figure 17.12.1 - Graphical 
representation of the 
change in vertical stress 
over 50 years. 

 

 

 

17.13. Case D 

 

(D1) – Vertical stress after 1 month 

 

(D2) – Vertical stress after 3 months 

 

(D3) – Vertical stress after 9 months 

 

(D4) – Vertical stress after 2 years 

 

(D5) – Vertical stress after 50 years 

 

Figure 17.13.1 - Graphical 
representation of the 
change in vertical stress 
over 50 years. 
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17.14. Run A2 

 

(A1) – Vertical stress after 1 month 

 

(A2) – Vertical stress after 3 months 

 

(A3) – Vertical stress after 9 months 

 

(A4) – Vertical stress after 2 years 

 

(A9) – Vertical stress after 50 years 

 

Figure 17.14.1 - Graphical 
representation of the 
change in vertical stress 
over 50 years. 

 

 

 

17.15. Run B2 

 

(B1) – Vertical stress after 1 month 

 

(B2) – Vertical stress after 3 months 

 

(B3) – Vertical stress after 9 months 

 

(B4) – Vertical stress after 2 years 

 

(B5) – Vertical stress after 50 years 

 

Figure 17.15.1 - Graphical 
representation of the 
change in vertical stress 
over 50 years. 
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17.16. Run C2 

 

(C1) – Vertical stress after 1 month 

 

(C2) – Vertical stress after 3 months 

 

(C3) – Vertical stress after 9 months 

 

(C4) – Vertical stress after 2 years 

 

(C5) – Vertical stress after 50 years 

 

Figure 17.16.1 - Graphical 
representation of the 
change in vertical stress 
over 50 years. 

 

17.17. Run D2 

 

(C1) – Vertical stress after 1 month 

 

(C2) – Vertical stress after 3 months 

 

(C3) – Vertical stress after 9 months 

 

(C4) – Vertical stress after 2 years 

 

(C5) – Vertical stress after 50 years 

 

Figure 17.17.1 - Graphical 
representation of the 
change in vertical stress 
over 50 years. 

 

 


