
Inversion of seismic AVA data

for porosity and saturation

Brikt Apeland

Thesis for the degree

Master of Science

Department of Earth Science

University of Bergen

27th June 2013



2



Abstract

Rock physics serves as the link between reservoir parameters and the effective elastic reservoir proper-

ties, and Amplitude Variation with Angle (AVA) modelling serves as the link between elastic properties

and reflection coefficients. AVA inversion is one of the techniques that is being used to estimate sub-

surface physical parameters such as saturation and porosity. A non-interacting compliance model is

used to find the effective elastic parameters of the dry rock. Woods equation is then used along with

Gassman-Biot theory to calculate the effective elastic parameters of a fluid saturated rock. This in-

formation is used as input for AVA modelling from elastic properties to reflection coefficients using the

Zoeppritz equations or Aki-Richards approximation.

The modelling error introduced by Aki-Richards approximation is investigated for two-layer models

that differ according to reservoir models with varying saturations and porosities. Further, the effect

of this modelling error is investigated in a one-step unbiased inversion algorithm from AVA data to

saturation and porosity. Also, the implications of assuming constant crack density in a spatial varying

reservoir is investigated. Inversion tests indicate that Aki-Richards approximation may give valid

porosity estimates in a less computationally expensive manner than the Zoeppritz equations.

A time-continuous formulation of Aki-Richards approximation is adopted for AVA modelling from a

stratified earth model with a reservoir section. It is used along with the rock physics model in two-step

inversion algorithms. The first step is from AVA data to the elastic properties of the stratified earth

models and the second step is from effective elastic reservoir properties to saturation and porosity.

Well logs may serve as additional information as prior models into the inversion algorithms. Two-

step inversion algorithms with prior models within the framework of both a frequentist and Bayesian

interpretation of probability theory are demonstrated.
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Chapter 1

Introduction

Acquisition of reflection seismics is extensively used in exploration for hydrocarbons in clastic depos-

itional settings. A basic procedure uses seismic sources, such as explosives, vibrators and air guns, to

generate seismic waves and record the propagated signal in order to build an image of the subsurface.

The recorded seismic signal shows the variation in amplitude and phase as a function of source-receiver

distance and two-way travel-time. Exploration for hydrocarbons is increasingly challenging and re-

quires more expensive investments. Also, it is a paradox that we know very little about a reservoir

during the initial phases when important production plans and investment plans are made. Seismic

amplitudes and the degree to which they change with offset, amplitude variation with offset (AVO),

have proven substantial risk reduction than using structural information alone. If the seismic data is

mapped into angle of incidence, the method is called amplitude variation with angle (AVA). Detailed

investigation of the amplitude of reflections on a seismic section can provide important information

about the reservoir properties. The presence of gas or oil in a pore space of rocks lowers the velocity

as compared to water for instance.

Acquiring estimates of saturation and porosity can enable us to distinguish between commercial and

non-commercial quantities of hydrocarbons, or optimize well locations and production plans prior

to production. Advances in seismic acquisition and processing enables us to quantify such reservoir

properties with increasing accuracy. Amplitude versus angle (AVA) inversion is a quantitative seismic

pre-stack technique. The aim is to physically explain the amplitude variation with angle, or equivalently

offset, through rock properties. A prerequisite is that sufficient pre-processing has been performed on

the seismic sections such that seismic amplitudes can be assumed to represent reflection coefficients.

There are three important aspects of a processing sequence tailored for AVA inversion Yilmaz (2001).

The relative amplitudes of the seismic data must be preserved throughout the analysis in order to

recognize amplitude variation with angle related to lithology and fluid content. Second, the processing

sequence must retain the broadest possible signal band in the data with a flat spectrum within the

passband. Finally, the pre-stack amplitude inversion need to be related to reflection events in their

migrated position.



2 Introduction

Effective elastic
reservoir properties

Reservoir parameters AVA data

AVA inversionRock physics inversion

AVA modellingRock physics modelling

One-step AVA inversion

Figure 1.1: Schematic illustration of the relations between AVA data, effective elastic reservoir prop-
erties and reservoir parameters.

The Zoeppritz equations and its approximations provide a link between the effective elastic reservoir

properties and the amplitudes of transmitted and reflected waves at a given interface. A reservoir

model can in turn provide a link between effective elastic properties and reservoir parameters such as

saturation and porosity. Using these physical models, one can construct an inverse problem that relates

the observed reflection coefficients to accurate information about the effective elastic properties and

the corresponding saturation and porosity. The inversion may either be done as a two-step procedure,

from AVA data to effective elastic reservoir properties and on to saturation and porosity, or as a

one-step procedure from AVA data directly to saturation and porosity.

This thesis is organized as follows:

Chapter 2 gives an introduction to the rock physics principles that are used in the forward modelling.

A porous sandstone is modelled with a basis in the non-interacting compliance approachHornby et al.

(1994) and the Gassmann-Biot theoryBiot (1956); Gassmann (1951). The model is then calibrated to

wells from the Oseberg fieldLarsen (2010). A gas and water saturated reservoir rock and an oil and

water saturated rock is then modelled for varying water saturations and porosities.

Chapter 3 gives an introduction to the principles that are used for forward modelling of seismic

amplitude versus angle. The Zoeppritz equations and the Aki-Richards linearized approximation to

the reflection coefficients are presented. Following this they are compared and their accuracy in forward

modelling is investigated. This is done for reservoir models, for either a gas-water pore fluid or an

oil-water pore fluid, with varying saturations and porosities for a fixed overburden.

Chapter 4 gives a short introduction to nonlinear and linearized discrete inversion theory. The various

inversion algorithms that are used later on are discussed.

Chapter 5 demonstrates how the modelling error in Aki-Richards approximation effects the inversion

for water saturation and porosity. The forward modelling for PP-reflection coefficients is either done

with the Zoeppritz equations or Aki-Richards approximation. ’Real’ AVA data is then synthesized
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using the Zoeppritz equations. Following this, the inverse problem is solved in a one-step inversion

procedure directly from AVA data to water saturation and porosity. Also, the effects of assuming

constant crack density in a reservoir with spatial variability is investigated

Chapter 6 introduces two-step AVA inversion algorithms. Seismic AVA data is first inverted for strat-

ified elastic earth models by linearized inversion algorithms. The elastic properties of the reservoir

sections in the inverted elastic earth models are then used for rock physics inversion for water satura-

tion and porosity. A second aim is to compare classical and Bayesian two-step inversion algorithms.

Chapter 7 summarizes the most important conclusions and discuss the possibilities for future work.



Chapter 2

Rock physics

2.1 Effective properties of dry rocks

Rocks can be described by parameters such as the properties of the individual elements of the compos-

ite, the volume fractions of the components, the geometric details of the shapes and spatial distributions

of components at the micro-scale. They are as such inherently heterogenous materials to some extent.

However, the macroscopic physical parameters are controlled by the average of the microscopic para-

meters. A statistically homogenous medium is heterogenous on a small scale, but appears homogenous

on a larger scale. It is possible to describe the physical response of such a statistically homogen-

ous medium in terms of effective properties. The effective properties are introduced by replacing the

real discontinuous medium by an effective continuous medium. There are a number of approaches

that can be utilized according to the assumptions that are appropriate. They include the T-matrix

approach (Jakobsen et al., 2003), Self consistent method (Berryman, 1980; Budansky, 1965; Hornby

et al., 1994) which includes scattering between inclusions, and differential medium theory (Brugge-

man, 1935; Hornby et al., 1994). An overview of different approaches for averaging is given by Hudson

(1991).

The non-interacting compliance approach (Hornby et al., 1994) for the effective elastic properties is

based upon the continuum hypothesis and an averaging process. The continuum hypothesis gives a

macroscopic description of a volume of heterogenous material that is small compared to the length scale

of interest and large compared to the microstructure. Physical quantities like mass and momentum

inside the volume can be considered as being continuously distributed over the entire volume, V. The

local stress tensor at position x is denoted by σij(x) and the average static stress field within V is

given by Hill (1963):

σ̄ij (x) =
1

V

∫
V

σijdV (2.1)
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and the average strain field, ε:

ε̄ij (x) =
1

V

∫
V

εijdV (2.2)

Hooke’s law for the effective elastic medium is defined by introducing an effective stiffness tensor, c∗,

or equivalently an effective compliance tensor, s∗ (Hornby et al., 1994). The relation between average

stress (2.1) and strain (2.2) can thus be written as:

σ̄ = c∗ε̄ (2.3)

ε̄ = s∗σ̄ (2.4)

The effective stiffness and compliance does not vary on loading in a linear deformation regime. A

composite material of several homogenous phases embedded in a matrix material in such a regime has

average stress and average strain relations:

σ̄ =
N∑
n=0

vnσ
(n) (2.5)

ε̄ =
N∑
n=0

vnε
(n) (2.6)

vn is the relative volume constituent of the n’th phase, σ(n) is the stress imposed on the n’ th phase

and ε(n) is the strain in the n’th phase. Applying Hooke’s law on eq.(2.5) yields:

σ̄ =
N∑
n=0

vnc
(n)ε(n) (2.7)

where c(n) is the stiffness tensor of the n’th phase. The average strain over the matrix material can be

eliminated by multiplying eq.(2.6) by the matrix stiffness tensor, c(0), and subtracting it from eq.(2.7):

(
I−c(0)s∗

)
σ̄ =

N∑
n=1

vn
(
c(n) − c(0)

)
ε(n) (2.8)

where I is the fourth order identity tensor. Further, it is assumed that there exists a tensor, K(n),

that relates the imposed stress, σ̄, linearly to the average strain in each phase, ε(n) = K(n)σ̄ (Hudson

and Knopoff, 1989). This expression may in turn be substituted into eq.(2.8) in order to eliminate the

strain in each phase: (
I−c(0)s∗

)
σ̄ =

N∑
n=1

vn
(
c(n) − c(0)

)
K(n)σ̄ (2.9)

The effective matrix compliance is the inverse of the effective matrix stiffness, s(0), such that s(0)c(0) = I.

An expression for the effective compliance may be obtained by multiplying eq.(2.9) by the effective



6 Rock physics

matrix compliance and eliminating the average stress:

s∗ = s(0) −
N∑
n=1

vn
(
s(0)c(n) − I

)
K(n) (2.10)

Eshelby (1957) defined the K-tensor for an imposed stress field for an ellipsoidal inclusion in an infinite

homogenous matrix as:

K(n) =
[
c(0)

(
I + G(n)

(
c(n) − c(0)

))]−1
(2.11)

where G(n) is Green’s tensor, G(n) = −s(n)s(0), and s(n) is a tensor for an ellipsoid inclusion. The

components of s(n) can be calculated analytically for an isotropic matrix material (Torquato, 2002).

The resulting K(n)-tensor will be valid for fully aligned non-interacting inclusions. It is necessary

to average over a orientation distribution function to make it applicable to isotropic materials. The

isotropic average of K(n) can be expressed in terms of Lames parameters (Sayers, 1994):

15λ = k11 + k33 + 5k12 + 8k13 − 4k44

30µ = 7k11 + 2k33 − 5k12 − 4k13 + 12k44 (2.12)

It is straightforward to calculate the corresponding isotropic K(n)-tensor from the Lames parameters

(2.12).

When a rock is loaded under an increment of compression, an increment of pore-pressure change is

induced, which resists compression and therefore stiffens the rock. The cavities that are modelled by the

non-interacting compliance approach are isolated with respect to flow. Fluid inclusions would simulate

very-high-frequency saturated rock behavior that is appropriate to ultrasonic laboratory conditions.

However, for the lower frequencies used in seismic exploration, there is time for wave-induced pore-

pressure increments to flow and equilibrate. Thus, it is more appropriate to use the non-interacting

compliance approach to find the effective elastic properties of a dry rock as a starting pointMavko

et al. (2003). Empty pores may be described by a setting a vanishing inclusion stiffness, c(n) = 0, in

eq.(2.10). The effective dry bulk, Kd and shear, µd, moduli can be written in terms of the elements in

the effective stiffness matrix, which is the inverse of the effective compliance matrix (2.10):

Kd = c∗44 µd = c∗11 −
4

3
c∗44 (2.13)

2.2 The effect of saturation on elastic properties

The Gassmann-Biot theory (Biot, 1956; Gassmann, 1951) is the most widely used model to describe

the saturated rock properties that is valid for low frequencies from the dry rock properties. It assumes

a homogenous matrix and fluid, that the pores are fully saturated and connected, and that there is

statistical isotropy of the pore space such that the saturated medium is isotropic. The effective bulk
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under these assumptions is given by:

K∗ = Kd +
α2

φ
Kf

+ (α−φ)
Km

(2.14)

Km is the effective bulk modulus of the matrix material, φ is the porosity, Kf is the effective bulk

modulus of the fluid, Kd is the effective bulk modulus of the dry rock, K∗ is the effective bulk modulus

of the saturated rock and α = 1− Kd

Km
. The effective shear modulus, µ∗, will not change from the dry

shear modulus, µd, since fluids do not have any shear resistance:

µ∗ = µd (2.15)

The effective fluid modulus of a homogenous mix of several phases can be regarded as an analogue to

resistances in series by the equation of Wood (1955):

1

Kf

=
N∑

i=1

Si

Ki

(2.16)

where Si is the saturation and Ki is the bulk modulus of the i’th fluid phase. The saturation is given

as a fraction of the total fluid volume:
N∑

i=1

Si = 1, and it will need to be equal to the total pore volume

for it to be compatible with the Gassmann-Biot theory. The effective fluid density, ρf , can be regarded

as an analogue to resistances in parallel (Guéguen and Palciauskas, 1994):

ρf =
N∑

i=1

Siρi (2.17)

where ρi is the density of each fluid phase. A similar argument is valid for the effective matrix bulk

modulus and density, ρm, if it consists of several minerals. The effective density of the saturated rock,

ρ∗, is straight forward with this in mind:

ρ∗ = ρm (1− φ) + ρfφ (2.18)

Finally, the effective velocities in the saturated rock are given by:

V∗S =

√
µ∗

ρ∗
(2.19)

and

V∗P =

√
K∗ + 4

3
µ∗

ρ∗
(2.20)
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2.3 Numerical results

2.3.1 The rock physics model

A rock physical model was constructed with the aid of three different components: the matrix material,

the geometric structure of the dry rock and the pore fluid. Pure quartz sandstone formed the basis

of the matrix material, which is the stiffest part of the reservoir rock, with elastic properties listed in

table 2.1. However, the dry rock properties are also greatly influenced by the geometric structure of

the porosity. In this thesis, we have used a mixture of spherical inclusions and very low aspect ratio

inclusions, representing the pores and the cracks respectively. The non-interacting compliance (2.10)

approach was used to add them as empty inclusions into the matrix material. They were modelled as

two separate phases and averaged over an orientation distribution function (2.12) such that they would

give an isotropic response on a macroscopic scale. Inclusions with very high aspect ratios will give a

stiffer rock than low aspect ratios. The dry bulk and shear moduli was found from the effective dry

stiffness matrix (2.13). Two different rock physical models with a basis in these dry rock properties

were chosen for varying fluid phases. A homogenous mixture of two different fluid phases, chosen to be

either gas and water or oil and water, was chosen as pore fluids. The effective bulk modulus of the fluid

was calculated by the equation of Wood (2.16), and the effective fluid density was calculated by (2.17).

Finally, the pore fluid was introduced into the dry rock in accordance with the Gassmann-Biot theory

(2.15, 2.14). An isotropic poroelastic medium can then be characterized by the effective P- and S-wave

velocities (2.19, 2.20) as well as the density (2.18). Higher order effects could have been included for

other choices of rock physical models such as the T-matrix approach (Jakobsen et al., 2003). However,

the non-interacting compliance approach is compatible with simple models for pressure effects (Tod,

2002).

2.3.2 Calibration of the rock physics model

A good understanding of the relevant rock physics plays a central role in the characterization of

reservoirs. In order to se the implications of Aki-Richards approximation on reservoir parameters, the

rock physics modelling should give us realistic values of effective stiffnesses. However, higher order

effects are not modelled by the presented procedure, and it does not incorporate deformation of the

inclusions in vicinity of other inclusions and interactions between rocks and fluids. It is sometimes

necessary to modify the rock physics parameters in order to be able to use such a simple rock physical

model. Well logs are often used to calibrate a set of modified rock physical parameters such that the

model match the observed well data. A similar rock physics model has previously been calibrated to

wells from the Oseberg (Larsen, 2010). The frame and fluid moduli that was calibrated will also be

adopted here, but there have been some slight modifications in the geometric structure of the dry rock.

Specifically, the crack density was increased, which softens the rock, whilst the pore aspect ratio was
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increased to spherical pores, which stiffens the rock. The adjustments were performed in such a manner

that the dry rock properties would on the similar values as for the original choice of parameters. The

static parameters used in the rock physics forward modelling are given in table 2.1. A few of the

resulting reservoir parameters violate the assumptions that were given about the reservoir model in a

strict manner. In particular, this is the case for such a high crack density as in table 2.2, but this was

necessary since the reservoir rock would be too stiff otherwise. The choice of this parameter can be

justified since the rock physics model perform more in accordance with elastic properties of the in situ

reservoir rocks.

2.3.3 The sensitivity of the rock physics model with saturation and poros-

ity

In order to investigate the sensitivity of the effective elastic parameters, we assumed full knowledge

of the static parameters given in tables 2.1 and 2.2 such that they could be regarded as a function of

saturation and porosity. A range of porosities from 0% to 40% were plotted against water saturations

from 0% to 100% in order to investigate this dependence. This was done for two different pore fluids

that consisted of either oil-water (figure 2.1) or gas-water (figure 2.2). The upper P-wave velocity

was limited to 3500 m/s in the plots in order to demonstrate the sensitivity for a larger range of

saturations and porosities because there is a very large increase for low porosities and high water

saturations. Increasing porosity caused the effective elastic properties to become more sensitive to

changes in saturation. It was also apparent that the P-wave velocity and the density is more sensitive

to saturation changes than S-wave velocity. This may be attributed to that the shear modulus does

not change with saturation (2.15). A less dense second fluid phase, as in gas instead of oil, causes a

greater density change as one would expect. The P-wave velocity has smooth gradient with respect to

saturation for an oil-water pore fluid. However, a gas-water pore fluid is very sensitive to high water

saturations. The bulk modulus of the gas (table 2.1) yields a low bulk modulus of the fluid (2.16) for

low and intermediate water saturations, and thus causes the reservoir rock to soften more rapidly.
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Table 2.1: The material parameters used in the rock physics forward modelling. The frame and fluid
properties are calibrated to well data from the Oseberg field (Larsen, 2010).

Material κ (GPa) µ (GPa) ρ (Kgm−3)

Quartz 37 44 2650

Frame 37 16.6 2670.6

Gas 35.9× 10−3 0 221.5

Oil 408.85× 10−3 0 671

Water 2173.9× 10−3 0 997.9

Table 2.2: The parameters used to describe the pore geometry in the rock physics forward modelling.

Parameter Value

Crack aspect ratio αc 0.001

Pore aspect ratio αp 1

Crack density 0.8533
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Figure 2.1: The sensitivity of the effective elastic properties to variations in porosity and saturation
for an oil-water saturated reservoir rock
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Chapter 3

Seismic amplitude versus angle

3.1 Reflection coefficients for plane waves

3.1.1 The full Zoeppritz equations

Starting with the equations of motion and Hooke’s law, one can derive and solve the wave equations

for plane elastic waves in isotropic media. Then, using the equations of continuity for the vertical

and tangential components of stress and strain at a layer boundary, plane wave solutions and Snell’s

law that relates propagation angles to wave velocities, one obtains the Zoeppritz equations (Zoeppritz,

1919) for computing the exact relation between the amplitudes of the reflected and transmitted P- and

S- wave. The Zoeppritz equations for an incident P-wave can be written in matrix notation as (Auld,

1990): 
sin θi cosφr − sin θt cosφt

cos θi − sinφr cos θt sinφt

sin 2θi a1 cos 2φr b1 sin 2θt −c1 cos 2φt

cos 2φr −a2 sin 2φr −b2 cos 2φt −c2 sin 2φt




RPP

RPS

TPP

TPS

 =


− sin θi

cos θi

sin 2θi

− cos 2φr

 (3.1)

where:

a1 =
VP1

VS1

b1 =
V2

S2VP1ρ2

V2
S1VP2ρ1

c1 =
VP1VS2ρ2

V2
S1ρ1

a2 =
VS1

VP1

b2 =
VP2ρ2

VP1ρ1

c2 =
VS2ρ2

VP1ρ1

(3.2)

Here VP1, VP2, VS1, VS2, ρ1, ρ2 are the P- and S-wave velocities and the densities above and below

the boundary, θi is incident P-wave angle, θt is transmitted P-wave angle, φr is reflected S-wave angle

and φt is transmitted S-wave angle. The different reflection and transmission angles are related to the
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Figure 3.1: Reflection and refraction of an incident P-wave at a layer boundary. Modified from Yilmaz
(2001).

incident angle by a ray parameter, p, through Snell’s law:

p =
sin θi

VP1

=
sin θt

VP2

=
sinφr

VS1

=
sinφt

VS2

(3.3)

and (3.1) may thus be solved for the reflection and transmission coefficients for an incident P-wave:
RPP

RPS

TPP

TPS

 =


sin θi cosφr − sin θt cosφt

cos θi − sinφr cos θt sinφt

sin 2θi a1 cos 2φr b1 sin 2θt −c1 cos 2φt

cos 2φr −a2 sin 2φr −b2 cos 2φt −c2 sin 2φt


−1 

− sin θi

cos θi

sin 2θi

− cos 2φr

 (3.4)

3.1.2 Aki-Richards approximation

Over the years, a number of linearized approximations to the Zoeppritz equations have been made (Aki

and Richards, 1980; Bortfeld, 1961; Shuey, 1985). Aki and Richards approximation to the reflection

coefficients from the exact Zoeppritz equations is among the more popular. The prerequisite is that

the contrasts in elastic properties are much less than one over the boundary and that the reflection

and transmitted angles do not approach 90◦ (Aki and Richards, 1980). We may then expect that the

converted wave reflection coefficients will be small such that second order terms can be neglected. The

PP-reflectivity can be formulated as a linear combination in terms of fractional changes in P-wave

velocity (VP), S-wave velocity (VS) and density (ρ) across the layer boundary:

rPP (θ) =
1

2

(
1 + tan2 θ

) ∆VP

V̄P

− 4

(
V̄2

S

V̄2
P

sin2 θ

)
∆VS

V̄S

+
1

2

(
1− 4

V̄2
S

V̄2
P

sin2 θ

)
∆ρ

ρ̄
(3.5)
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where V̄P = 1
2

(VP1 + VP2), V̄S = 1
2

(VS1 + VS2), ρ̄ = 1
2

(ρ1 + ρ2), ∆VP = VP2 − VP1,

∆VS = VS2 − VS1, ∆ρ = ρ2 − ρ1 and θ = 1
2

(θi + θt). The average of incident and transmitted P-wave

angle, θ, may be approximated as θi, the incident P-wave angle, if the reflected and transmitted angles

are restricted to the precritical range (Downton and Ursenbach, 2006).

3.2 A comparison of the Zoeppritz equations and Aki-Richards

approximation

3.2.1 Amplitude versus angle modelling

The Zoeppritz equations for an incident P-wave (3.4) yield an exact relationship between the contrast

in elastic parameters over a boundary and the resulting transmission and reflection coefficients for P-

and S-waves for plane waves. However, they do not give us any intuitive understanding of how these

reflection coefficients relate to the various elastic parameters. Further more, since they are nonlinear,

they do not allow for the less computationally expensive modelling and inversion algorithms (Yilmaz,

2001). As mentioned, a prerequisite for Aki-Richards approximation is that the contrast in elastic

properties much less than one over the boundary and that the reflection and transmitted angles do

not approach 90◦. However, it is not clear how small the contrasts in elastic properties should be.

The variation of PP-reflection coefficients as a function of incidence angle was modelled for a set of

pre-critical angles, which also can be referred to as amplitude versus angle (AVA) modelling (Yilmaz,

2001). An isotropic overburden and isotropic reservoir rocks were defined for this purpose. The

reservoir models from section 2.3 gave varying effective elastic reservoir properties for different choices

of saturation and porosity. Thus, this would also result in varying contrasts in elastic properties

across the layer boundary for a fixed overburden. In this section, we investigated how the Zoeppritz

equations (3.4) and Aki-Richards approximation (3.5) agree for different contrasts in elastic properties

that are controlled by saturation and porosity variations. As Aki-Richards approximation is linearized

in terms of contrast in elastic properties, it was expected to agree better for small contrasts. A further

aim will be to identify the range of saturations and porosities the Aki-Richards approximation works

satisfactory for a given reservoir model and overburden.

3.2.2 Main results and discussion

An overburden was chosen in such a manner that it would give a maximum relative contrast of |0.25|
for any of the elastic properties for the range of variation of reservoir parameters. Following this, the

PP-reflection coefficients for varying saturations and porosities were plotted for a small angle (0◦), an

intermediate angle (20◦) and a large angle (40◦) in order to investigate how the AVA data vary with

the reservoir parameters. This is shown for an oil-water pore fluid in figures 3.2 through 3.4 and for
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a gas-water pore fluid in figures 3.5 through 3.7. The upper plots show the data obtained by Aki-

Richards approximation and the center plots shows the data obtained by the Zoeppritz equations. The

lower plots are the corresponding errors, ∆ in the approximation, rPP, relative to the exact reflection

coefficients, R. The error in percent, ∆, for a given incident angle was defined by:

∆ =
(R− rPP)

rPP

× 100 (3.6)

Reflection coefficients close to zero produced very high values of relative error, and for this reason the

upper and lower limit is set to 20% relative error in these plots. On the basis of these figures, a high

(30%) and low (10%) porosity case were chosen for three different saturations (10%, 50% and 95%)

for each of the pore fluids. The dry rock properties are given in table 3.1, and the different cases that

were chosen for oil-water pore fluid and gas-water pore fluid are summarized in table 3.2. In what

follows, the following terminology shall be adopted for the relative contrasts in elastic properties: very

low (< |0.05|), low (< |0.1|), intermediate (< |0.2|) and high(|0.2| <). Figures 3.8 to 3.13 show the

reflection coefficients and the relative error for each of the cases. In each figure, an oil and water

saturated reservoir is shown on the left and a gas and water saturated reservoir is shown on the right

for the same set of saturation and porosity.

CASE 1a. The saturation and the porosity in the AVA modelling were (Sw = 10%, φ = 10%) for an oil

and water saturated reservoir. Figure 3.8 shows the reflection coefficients in the upper left plot which

correspond to an intermediate relative contrast in P- and S-wave velocities and a very low contrast

in relative density (table 3.2). The corresponding bottom left plot shows the error analysis: The

Aki-Richards approximation and the Zoeppritz equations are in agreement for incident angles from

0◦ to 30◦, but the error increases steadily up to −10% after that point. CASE 1b. The saturation and

the porosity in the AVA modelling were (Sw = 10%, φ = 10%) for a gas and water saturated reservoir.

Figure 3.8 shows the reflection coefficients in the upper right plot which correspond to intermediate

relative contrasts in velocities and a very low relative contrast in density (table 3.2). In the lower right

plot, there is a close match from 0◦ to 20◦, but the error increases steadily to a maximum of −8% at

an incidence angle of 40◦ beyond this.

CASE 2a. The saturation and the porosity in the AVA modelling were (Sw = 10%, φ = 30%) for an

oil and water saturated reservoir. Figure 3.9 shows the reflection coefficients in the upper left plot

which correspond intermediate relative contrasts in all the elastic properties (table 3.2). The bottom

left plot shows that the reflection coefficients match up to 15◦, but then steadily increase to −6%.

CASE 2b. The saturation and the porosity in the AVA modelling were (Sw = 10%, φ = 30%) for a

gas and water saturated reservoir. Figure 3.9 shows the reflection coefficients in the upper right plot

which correspond to a intermediate relative contrast in P-wave velocity and high contrast in density,

but low contrast in S-wave velocity. However, the reflection coefficients have a close match for the full

range of incident angles, the maximum error is only −3% as shown in the bottom right plot.

CASE 3a. The saturation and the porosity in the AVA modelling were (Sw = 50%, φ = 10%) for an oil
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and water saturated reservoir. Figure 3.10 shows the reflection coefficients in the upper left plot which

correspond to intermediate relative contrasts in S-wave velocity, low in P-wave velocity and very low in

density. The error is low from 0◦ to 30◦, but then increases rapidly with several orders of magnitude,

and this is due to that the reflection coefficients approaches zero. CASE 3b. The saturation and the

porosity in the AVA modelling were (Sw = 50%, φ = 10%) for a gas and water saturated reservoir.

Figure 3.10 shows the reflection coefficients in the upper right plot which correspond to intermediate

relative contrasts in velocities and very low in relative contrast in density. There is a good match

between the reflection coefficients between 0◦ and 20◦, but the error increases steadily to a maximum

of −8% at an incidence angle of 40◦ beyond this.

CASE 4a. The saturation and the porosity in the AVA modelling were (Sw = 50%, φ = 30%) for an

oil and water saturated reservoir. Figure 3.11 shows the reflection coefficients in the upper left plot

which correspond to intermediate relative contrasts in elastic properties. The error increases steadily

from 10◦ incident angle up to a maximum of −7%. CASE 4b. The saturation and the porosity in the

AVA modelling were (Sw = 50%, φ = 30%) for a gas and water saturated reservoir. Figure 3.11 shows

the reflection coefficients in the upper right plot which correspond to an intermediate relative contrast

in P-wave velocity and density, but low for S-wave velocity. As shown in the bottom right plot, the

reflection coefficients have a very good match, the maximum error is only 5%.

CASE 5a. The saturation and the porosity in the AVA modelling were (Sw = 95%, φ = 10%) for an

oil and water saturated reservoir. Figure 3.12 shows the reflection coefficients in the upper left plot

which correspond to a intermediate relative contrast in S-wave velocity, but very low (positive) relative

contrast in P-wave velocity and very low density. The error increases to a maximum of approximately

6% at 24◦, but then declines to about 4% at 40◦. CASE 5b. The saturation and the porosity in the

AVA modelling were (Sw = 95%, φ = 10%) for a gas and water saturated reservoir. Figure 3.12 shows

the reflection coefficients in the upper right plot which correspond to intermediate relative contrasts in

velocities and very low relative contrast in density. The error is low from 0◦ to 30◦, but then increases

rapidly with several orders of magnitude, and this is due to that the reflection coefficients approaches

zero.

CASE 6a. The saturation and the porosity in the AVA modelling were (Sw = 95%, φ = 30%) for an

oil and water saturated reservoir. Figure 3.13 shows the reflection coefficients in the upper left plot

which correspond to a intermediate relative contrast in S-wave velocity and density, but low in P-wave

velocity. The reflection coefficients have a close match for low to intermediate angles, but the error

increases from −5% to − 35% in the interval from 28◦ to 40◦. CASE 6b. The saturation and the

porosity in the AVA modelling were (Sw = 95%, φ = 30%) for a gas and water saturated reservoir.

Figure 3.13 shows the reflection coefficients in the upper right plot which correspond to intermediate

relative contrasts in all elastic properties. The reflection coefficients have a close match from 0◦ to 30◦,

but it increases steadily to a maximum of about −6% at an incidence angle of 40◦ beyond this.

It was apparent from the above analysis of the accuracy of Aki-Richards approximation for PP-
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reflectivity that the error generally increases with incident angle. Conversions between P- and S-waves

were not modeled by the linearized approximation, but such second order effects are more prominent

for higher incident angles (Auld, 1990). Also, it can be noted that the equations for converted re-

flection coefficients in Aki-Richards approximation are insensitive to first-order changes in the P-wave

velocity (Aki and Richards, 1980). However, it is possible to rearrange the terms in eq.(3.5) so that

they become increasingly important with increasing angle of incidence. Thus, lowering the range of

incident angles that is used for the forward modelling would also lower the information content in the

data significantly (Smith and Gidlow, 1987). High relative contrasts in density did not seem to increase

the error as prominent as for high contrasts in velocities. It is also evident that it is not sufficient to

observe the parameters individually, but the deviation from the exact reflection coefficients depend on

all three elastic parameters simultaneously. The magnitude of the relative errors, that were not related

to zero reflectivity, ranges from −3% to −35%. They may occur insignificant at first sight, but it was

not yet clear how this would affect the saturation and porosity estimates in the inverse problem.
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Table 3.1: Elastic properties of the overburden and the dry reservoir rocks

VP (ms−1) VS (ms−1) ρ (Kgm−3)

Overburden 3150 1900 2500

Dry reservoir rock (φ = 10%) 2721 1736 2395

Dry reservoir rock (φ = 20%) 2795 1770 2127

Dry reservoir rock (φ = 25%) 2843 1794 1994

Dry reservoir rock (φ = 30%) 2890 1824 1860
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Table 3.2: Elastic properties and contrasts for various porosities and water saturations.

Oil-water saturated reservoir rock

Case Sw (%) φ (%) VP (ms−1) VS (ms−1) ρ (Kgm−3) ∆VP

V̄P

∆VS

V̄S

∆ρ
ρ̄

1a 0.1 0.1 2822 1688 2467 -0.1098 -0.1182 -0.0133
2a 0.1 0.3 2790 1708 2073 -0.1212 -0.1064 -0.1867
3a 0.5 0.1 2900 1683 2480 -0.0826 -0.1211 -0.0080
4a 0.5 0.3 2806 1692 2113 -0.1155 -0.1158 -0.1678
5a 0.95 0.1 3185 1678 2496 0.0110 -0.1241 -0.0016
6a 0.95 0.3 2948 1675 2158 -0.0663 -0.1259 -0.1468

Gas-water saturated reservoir rock

Case Sw (%) φ (%) VP (ms−1) VS (ms−1) ρ (Kgm−3) ∆VP

V̄P

∆VS

V̄S

∆ρ
ρ̄

1b 0.1 0.1 2679 1702 2425 -0.1616 -0.1099 -0.0305
2b 0.1 0.3 2799 1761 1951 -0.1180 -0.0759 -0.24677
3b 0.5 0.1 2675 1691 2457 -0.1631 -0.1164 -0.0173
4b 0.5 0.3 2740 1720 2045 -0.1392 -0.0994 -0.2002
5b 0.95 0.1 2843 1679 2493 -0.1025 -0.1235 -0.0028
6b 0.95 0.3 2756 1677 2151 -0.1334 -0.1247 -0.1501
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Figure 3.2: The sensitivity of rPP for an oil-water saturated reservoir rock for a fixed incident angle
(0◦): Aki-Richards (top), Zoeppritz equations (center) and the relative error limited to 20% (bottom).
The errors were limited since reflection coefficients close to zero cause very high values of relative error.
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Figure 3.3: The sensitivity of rPP for an oil-water saturated reservoir rock for a fixed incident angle
(20◦): Aki-Richards (top), Zoeppritz equations (center) and the relative error limited to 20% (bottom).
The errors were limited since reflection coefficients close to zero cause very high values of relative error.
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Figure 3.4: The sensitivity of rPP for an oil-water saturated reservoir rock for a fixed incident angle
(40◦): Aki-Richards (top), Zoeppritz equations (center) and the relative error limited to 20% (bottom).
The errors were limited since reflection coefficients close to zero cause very high values of relative error.
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Figure 3.5: The sensitivity of rPP for a gas-water saturated reservoir rock for a fixed incident angle
(0◦): Aki-Richards (top), Zoeppritz equations (center) and the relative error limited to 20% (bottom).
The errors were limited since reflection coefficients close to zero cause very high values of relative error.
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Figure 3.6: The sensitivity of rPP for a gas-water saturated reservoir rock for a fixed incident angle
(20◦): Aki-Richards (top), Zoeppritz equations (center) and the relative error limited to 20% (bottom).
The errors were limited since reflection coefficients close to zero cause very high values of relative error.
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Figure 3.7: The sensitivity of rPP for a gas-water saturated reservoir rock for a fixed incident angle
(40◦): Aki-Richards (top), Zoeppritz equations (center) and the relative error limited to 20% (bottom).
The errors were limited since reflection coefficients close to zero cause very high values of relative error.
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Figure 3.8: Comparison of reflection coefficients as a function of incidence angle using Aki-Richards
(dashed red) approximation and exact Zoeppritz (solid blue). The saturation is Sw = 10% and the
porosity is φ = 10%. An oil and water saturated reservoir on the left and a gas and water saturated
reservoir on the right.
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Figure 3.9: Comparison of reflection coefficients as a function of incidence angle using Aki-Richards
(dashed red) approximation and exact Zoeppritz (solid blue). The saturation is Sw = 10% and the
porosity is φ = 30%. An oil and water saturated reservoir on the left and a gas and water saturated
reservoir on the right.
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Figure 3.10: Comparison of reflection coefficients as a function of incidence angle using Aki-Richards
(dashed red) approximation and exact Zoeppritz (solid blue). The saturation is Sw = 50% and the
porosity is φ = 10%. An oil and water saturated reservoir on the left and a gas and water saturated
reservoir on the right.
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Figure 3.11: Comparison of reflection coefficients as a function of incidence angle using Aki-Richards
(dashed red) approximation and exact Zoeppritz (solid blue). The saturation is Sw = 50% and the
porosity is φ = 30%. An oil and water saturated reservoir on the left and a gas and water saturated
reservoir on the right.
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Figure 3.12: Comparison of reflection coefficients as a function of incidence angle using Aki-Richards
(dashed red) approximation and exact Zoeppritz (solid blue). The saturation is Sw = 95% and the
porosity is φ = 10%. An oil and water saturated reservoir on the left and a gas and water saturated
reservoir on the right.
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Figure 3.13: Comparison of reflection coefficients as a function of incidence angle using Aki-Richards
(dashed red) approximation and exact Zoeppritz (solid blue). The saturation is Sw = 95% and the
porosity is φ = 30%. An oil and water saturated reservoir on the left and a gas and water saturated
reservoir on the right.



Chapter 4

Inversion theory

4.1 Discrete inverse problems

Inverse theory concerns the problem of making quantitative inferences about physical systems from

indirect noisy measurements. A model, m, is a mathematical parameterization of those properties of

a physical system that is required to predict the data, d. The data that is measured in an experiment

always results in a finite number of observations such that we can represent the data as a vector, d.

In practice, it is also necessary to approximate the model by discretizing to a finite dimensional vector

of parameters, m. Commonly, it is assumed that we understand the fundamental physics adequately

such that a forward model operator, G, may be defined that relates the model parameters and the

data. The discrete nonlinear inverse problem is as such defined as (Tarantola, 2005):

G (m) ≈ d (4.1)

The noise in the data, η, will partly consist of unmodelled physics and discretization effects, but it

may also be contaminated by random errors, e, that are not deterministically reproducible. Including

these uncertainties in (4.1) will give (Aster et al., 2005):

G (m) = d+η+e (4.2)

However, it is common to assume that the forward model operator is accurate in inverse problems.

In the case if discrete linear inverse problems, (4.2) can be written in the form of a linear system of

algebraic equations:

Gm=d+e (4.3)

It is necessary to incorporate probability theory in order to make quantitative inferences about physical

systems. However, there are two fundamental different meanings of what is meant by probability. In

the frequentist approach, or the classical approach, there exists an unknown, but true model. It is
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based solely on the data we acquire from the experiments that have been done. On the contrary, the

model is itself a random variable in the Bayesian approach, and the problem is to provide a probability

distribution of the model that provides all our available knowledge. Our knowledge about the model

before the experiment is also incorporated into the solution. The prior information is expressed through

a probability density function, p (m), and should be independent from the data. The second source

of information is given by a conditional probability density function, the likelihood function, f (d|m).

It is a measure of how likely a model is to produce a set of data. After incorporating the experiment

into our prior knowledge we obtain a posterior PDF, q (m|d). Bayes’ theorem can be stated as follows

(Tarantola, 2005):

q (m|d) =
f (d|m)p (m)∫

all models
f (d|m)p (m)dm

(4.4)

In order to find the solution that best fit our data, we choose the model that minimizes a certain

misfit, or objective function. A common basis for the measure of the misfit is the 2-norm of the

residual vector. The residual vector is defined as the difference between the data and the theoretical

predictions. The unconstrained model that minimize the 2-norm of the residual vector is the least

squares solution (Aster et al., 2005). It is calculated by minimizing the following objective function,

J (m):

J (m) = ||d−G (m)||22 (4.5)

Ill-posed behavior is a fundamental feature of most inverse problems, and may be characterized by the

existence, uniqueness and instability of the solution. Existence refers to that there may be no model

that exactly fits the data. Uniqueness implies that no unique solution may exist even if an exact solution

exists. Finally, instability is concerned with that a small change in the data may lead to large change

in the estimated model, and this is also known as ill-conditioned inverse problems. Regularization is

the process of stabilizing the inversion process of such a problem by imposing constraints that bias

the solution(Menke, 2012). A consequence of the limitations that are put on the solution is that the

model resolution is decreased in order to improve the stability.

4.2 Linearized inversion

The least squares solution for a discrete linearized inverse problem is given by the normal equations:

GTGm=GTd (4.6)

mL2=
(
GTG

)−1
GTd (4.7)

In statistical terms, the least squares solution is said to be unbiased because the expected solution is

the true model. However, the unconstrained solution is as mentioned very often ill-conditioned. That

is, a small change in the data would give a large change in the estimated model.
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4.2.1 Tikhonov regularization

Tikhonov regularization is a popular method, that is based upon the frequentist interpretation of

probability, for stabilizing the solution by imposing constraints to it. It is implemented by minimizing

a measure of the model, a penalty functional, in addition to the residual norm by the following objective

function:

J (m) =
1

2
||Gm−d||22 +

λ2

2
||Lm||22 (4.8)

where L is an appropriate finite difference operator, or roughening matrix, and λ is a regularization

parameter. If the roughening matrix is chosen as the identity matrix it will minimize the norm, if it is

a first-order derivative operator it will emphasize flatness of the solution, and a second-order derivative

operator will emphasize smoothness. It is also possible to add multiple terms in order to emphasize on

several aspects of the solution. The regularization parameter, λ, determines how hard the constraints

on the solution should be. There exits an optimal value of the regularization parameter because a

higher value will introduce an increasing bias into the solution. The optimal regularization parameter

can be identified by methods such as the discrepancy principle, L-curve analysis or generalized cross-

validation (Aster et al., 2005). In this thesis, we will find the optimal value of the regularization

parameter by Morozovs discrepancy principle (Morozov et al., 1984). One should pick the largest

regularization parameter such that the inverted model, mλ, fits the data to some tolerance, δ, based

upon the length of the residual vector:

||Gmλ−d||22 ≤ δ (4.9)

The solution of (4.8) is given by:

mλ =
(
GTG + λ2LTL

)−1
GTd (4.10)

A generalized inverse matrix, G#, may be defined from this:

G# =
(
GTG + λ2LTL

)−1
GT (4.11)

It relates the inverse model to the data:

mλ = G#d = G#d (4.12)

Resolution matrices, Rmλ
, are often used to get a qualitative idea of the bias in the solution:

Rmλ
= G#G (4.13)

The blurring illustrated by the resolution matrix would occur even if the data contained no errors. It

illustrates how well the inverse problem could be solved for perfect data for a given generalized inverse
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(4.11) and forward model operator. The trace of the resolution matrix can be used as a measure of

the bias because an unbiased solution has an identity covariance matrix.

It is also possible to put constraints on the solution that bias it towards an expected value, m0. A

formulation of the optimization problem for a Tikhonov inversion with a prior is given by the following

objective function:

J (m) =
1

2
||Gm−d||22 +

λ2

2
||Lm− Lm0||22 (4.14)

The model that minimizes this objective fundtion is given by:

mλ =
(
GTG + λ2LTL

)−1 (
GTd + λ2LTLm0

)
(4.15)

4.2.2 Bayesian linearized inversion

The general problem of Bayesian methods is to calculate the posterior distribution (4.4). There exists

analytical solutions for a linear model given that the a priori information and data have multivariate

normal distributions (Tarantola, 2005). The prior distribution has an expectation vector given by the

prior model µ = m0, and an associated covariance matrix Cm0 :

p (m) = e−
1
2

(m−m0)TC−1
m0

(m−m0) (4.16)

It is possible to incorporate data points with random errors into the calculation to find the best solution

from a statistical point of view. A joint probability density function can be expressed as a conditional

PDF for each observation if we have independent measurements. The likelihood function, L (d|m), is

then given as:

L (d|m) = f1 (d1|m) · f2 (d2|m) · · · fm (dm|m) (4.17)

The Gaussian uncertainties in the data are given by a diagonal covariance matrix, Cd. According to

the maximum likelihood principle, which is to select the model that maximizes the likelihood function,

it can be written as:

max L (d|m) = max f (d|m) = e−
1
2

(Gm−d)TC−1
d (Gm−d) (4.18)

It is possible to find analytical expression for the the maximum a posteriori solution, mmap and the

associated posterior covariance matrix, Cm′ . The starting point is to note that it is not necessary to

solve the integral in (4.4):

q (m|d) ∝ f (d|m)p (m) (4.19)
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The arguments in the distributions can then be set equal to the posterior distribution:

− 1

2
(Gm− d)T C−1

d (Gm− d)− 1

2
(m−m0)T C−1

m0
(m−m0) =

− 1

2
(m−mmap)T C−1

m′ (m−mmap) (4.20)

This is equivalent to minimizing an objective function, J (m):

J (m) =
1

2
(Gm− d)T C−1

d (Gm− d) +
1

2
(m−m0)T C−1

m0
(m−m0) (4.21)

It can be shown that this is a standard linear least squares problem (4.7). The maximum a posteriori

solution is given by the following expression:

mmap =
(
GTC−1

d G+C−1
m0

)−1 (
GTC−1

d d+C−1
m0

m0

)
(4.22)

The associated posteriori covariance matrix is given by (Tarantola, 2005):

Cm′ =
(
GTC−1

d G+C−1
m0

)−1
(4.23)

It is common to interpret the results by calculating confidence intervals from the diagonal elements of

the posterior covariance matrix. The 95% confidence intervals are for instance given by (Aster et al.,

2005):

m± 1.96 · diag (Cm′) (4.24)

4.3 Bayesian nonlinear inversion

The solution of a posterior PDF (4.4) based on Gaussian statistics is given by:

q (m|d) = Ne−J(m) (4.25)

where N is a normalization constant. Following a similar argument as for the linearized case, the

objective function is given by (Tarantola, 2005):

J (m) =
1

2

[
(G (m)− d)T C−1

d (G (m)− d) + (m−mprior)
T C−1

m (m−mprior)
]

(4.26)

If we have an uninformative prior (4.25) reduces to only a term describing the likelihood function

multiplied by a normalization constant:

q (m|d) = Ne−
1
2

(G(m)−d)TC−1
d (G(m)−d) (4.27)
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The posterior PDF is a joint probability density function for the model parameters. In order to

quantify the uncertainties in the inverted model parameters, a calculation of marginal PDFs is required

(Tarantola, 2005):

qi (mi) =

∫
q (m|d) dm1 · · · dmi−1dmi+1 · · · dmn (4.28)

The integral over the entire model space must be equal to unity, and (4.30) can be used to find the

normalization constant in (4.25): ∫
all models

Ne−J(m) = 1 (4.29)∫
all models

e−J(m) =
1

N
(4.30)

Marginal PDFs (4.28) can be found by numerical integration with respect to the other model para-

meters or by Monte Carlo simulation. Finding the marginal PDFs by numerical integration requires

us to discretize the forward model dense enough to incorporate all the features of the posterior PDF

(4.25).



Chapter 5

One-step inversion methods

5.1 Introduction

Conventionally, effective elastic reservoir parameters have been obtained by three parameter AVA

inversion for a single interface. Following this, a rock physics model can act as a link between reservoir

parameters, such as water saturation and porosity, and the effective elastic reservoir properties that is

used for a second inversion step (Avseth et al., 2005). The first inversion step from AVA data to elastic

properties can be performed by either nonlinear inversion methods (Dahl and Ursin, 1991; Gouveia and

Scales, 1998) or linearized inversion methods (Lörtzer and Berkhout, 1992; Smith and Gidlow, 1987).

Linearized estimates may simplify the study of the relation between AVA data and effective elastic

reservoir properties in the event of weak contrasts in elastic properties across a reflector. The main

drawback in using linearized estimates is that the accuracy may not always be satisfactory. An error

analysis for the forward modelling of AVA data using the full Zoeppritz equations and Aki-Richards

approximation for varying reservoir models was done in chapter 3. However, it was not yet clear what

implications the accuracy of Aki-Richards approximation had for determination of water saturation

and porosity. In order to investigate this relation, we performed inversion tests from AVA data to

saturation and porosity using either Aki-Richards approximation or the full Zoeppritz equations using

the same reservoir models as in chapter 3. It was imperative to obtain unbiased estimates of water

saturation and porosity in order to identify the effect of the AVA modelling error. Nonlinear inversion

approaches are generally more robust than linearized inversion approaches (Sambridge and Mosegaard,

2002). One-step unregularized inversion approaches directly from AVA data to water saturation and

porosity were therefore chosen.
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5.2 Amplitude versus angle inversion tests

5.2.1 Inversion procedure

A nonlinear Bayesian approach, as discussed in section 4.3, was adopted to do the inversion from

AVA data, rPP (θ), to a reservoir model determined by saturation and porosity, mres = (Sw, φ) in one

step. This was done for a know overburden (table 3.1) such that the AVA data only was a function of

saturation and porosity, rPPcalc
= G (mres). It was assumed that the AVA data were uncorrelated and

had Gaussian uncertainties defined by a diagonal covariance matrix, Cd. An uninformative prior was

implemented such that the objective function, J (mres), was given by:

J (mres) =
1

2
(G (mres)− rPP)T C−1

d (G (mres)− rPP) (5.1)

A solution to the posterior PDF based on Gaussian statistics is given by (4.25).

q (mres|rPP) = Ne−J(mres) (5.2)

The first step was to calculate the normalization constant (4.30) which in our case was given by:

1

N
=

∫ Sw=1

Sw=0

∫ φ=0.4

φ=0

e−J(mres)dφdSw (5.3)

The model was further discretized into K grid points for φ, such that ∆φ = 0.0025, and into L grid

points for Sw, such that ∆Sw = 0.025. The integral was evaluated by numerical integration by the

trapezoidal rule:

1

N
≈ ∆Sw∆φ

4

K∑
k=1

L∑
l=1

[
e−J(φk+1,Swl+1) + e−J(φk,Swl)

]
(5.4)

This was feasible since the number of model parameters we inverted for was only two. Once the

normalization constant had been obtained, the posterior PDFs for each of the cases were found by

(4.27). The corresponding marginal PDF (4.28) for water saturation is given by:

qSw (Sw) ≈ N · ∆φ

2

K∑
k=1

[
e−J(φk+1,Sw) + e−J(φk,Sw)

]
(5.5)

and for porosity as:

qφ (φ) ≈ N · ∆Sw

2

L∑
l=1

[
e−J(φ,dSwl+1) + e−J(φ,dSwl)

]
(5.6)

It was thus possible to find global maximum a posteriori solutions for the model parameters since we

were able to calculate the exact marginal PDFs.

In what follows, ’true’ reflection AVA data was generated by using a combination of the rock physics
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models with varying porosity and saturation from chapter 3 (table 3.2) and the Zoeppritz equations.

The standard deviations associated with the true data, σi, were 5% of the corresponding reflection

coefficient, and the diagonal elements of the data covariance matrix, Cd, were thus given by:

σ2
i = (0.05 · rPP (θi))

2 (5.7)

The aim was to recover the true reservoir parameters from synthetic reflection coefficient data that

was obtained by forward modelling by Aki-Richards approximations as well as the exact Zoeppritz

equations. That is, the forward model operator, G, differ for the two methods, but the observed AVA

data remained the same. The work flow is summarized in figure 5.1.

5.2.2 Inversion results

Figures 5.2 to 5.13 show the results for cases with varying porosity and saturations listed in table 3.2).

The same choice of reservoir parameters is shown for alternating oil-water (case a) and gas-water (case

b) pore fluid in order to demonstrate the effect of the sensitivity of the reservoir model. The lower

plots in each figure represent the marginal PDFs for the water saturation, Sw, and the porosity, φ.

Marginal PDFs obtained using the Zoeppritz equations and Aki-Richards approximation, are shown

as solid blue lines and the dashed red lines respectively. The corresponding normalized a posteriori

distributions are shown in the upper plots: The forward model for the upper left plots are calculated

by Aki-Richards approximation and the upper right plots are calculated by the Zoeppritz equations.

CASE 1a. The true set of parameters that were inverted for were Sw = 10% and φ = 10% for an

oil-water saturated reservoir rock. Figure 5.2 shows the normalized a posteriori distributions for this

particular case and the corresponding marginal PDFs. Clearly, the maximum of the marginal PDFs

obtained via the exact reflection coefficients were close to the true values. There was only a very small

overestimate for Aki-Richards approximation (dashed red) relative to the exact reflection coefficients

(solid blue) for porosity. However, there was a shift in saturation for Aki-Richards approximation

such that there was an overestimate in water saturation of about 10%. In this particular case, we

may conclude that Aki-Richards approximation introduced significant error for the inversion of water

saturation, but the porosity had an acceptable solution with small uncertainty.

CASE 1b. The true set of parameters that were inverted for were Sw = 10% and φ = 10% for a gas-

water saturated reservoir rock. Figure 5.3 shows the normalized a posteriori distributions for this

particular case and the corresponding marginal PDFs. Clearly, the maximum of the marginal PDFs

obtained via the exact reflection coefficients were close to the true values. However, the for the marginal

PDFs obtained via Aki-Richards approximation, the maximum presented a large overestimate in water

saturation with a large uncertainty. There was a minor shift to the right for the maximum of the

porosity with a relatively small uncertainty. The Aki-Richards approximation introduced significant

error for the inversion of water saturation, but the porosity estimate was acceptable in this particular
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case.

CASE 2a. The true set of parameters that were inverted for were Sw = 10% and φ = 30% for an

oil-water saturated reservoir rock. Figure 5.4 shows the normalized a posteriori distributions for this

particular case and the corresponding marginal PDFs. Again, the maximum of the marginal PDFs

obtained via the exact reflection coefficients were close to the true values. There was a a very small

overestimate in porosity for Aki-Richards approximation with a relatively narrow distribution, although

wider than for case 1. However, there was an overestimate of about 20% in water saturation with a

wide distribution, which implied large uncertainty in the estimate. We may conclude that the water

saturation estimate was unsatisfactory, but the porosity estimate was acceptable in this case.

CASE 2b. The true set of parameters that were inverted for were Sw = 10% and φ = 30% for a gas-

water saturated reservoir rock. Figure 5.5 shows the normalized a posteriori distributions for this

particular case and the corresponding marginal PDFs. Again, the maximum of the marginal PDFs

obtained via the exact reflection coefficients were close to the true values. However, for the marginal

PDFs obtained via Aki-Richards approximation, the maximum presented a large overestimate in water

saturation with a large uncertainty. There was a minor shift to the right for the maximum of the

porosity with a moderate uncertainty. The approximation introduced significant error for the inversion

of water saturation, but the porosity estimate was acceptable in this particular case.

CASE 3a. The true set of parameters that were inverted for were Sw = 50% and φ = 10% for an

oil-water saturated reservoir rock. Figure 5.6 shows the normalized a posteriori distributions for this

particular case and the corresponding marginal PDFs. The maximum of the marginal PDFs for both

water saturation and porosity were close to the true values for the exact reflection coefficients. There

was a small overestimate in saturation (5%) with a narrow distribution, and a minute shift to the

right with a narrow distribution from the true porosity value for Aki-Richards approximation. We

may conclude that the results were very satisfactory in this case.

CASE 3b. The true set of parameters that were inverted for were Sw = 50% and φ = 10% for a

gas-water saturated reservoir rock. Figure 5.7 shows the normalized a posteriori distributions for

this particular case and the corresponding marginal PDFs. The maximum of the marginal PDFs

obtained via the exact reflection coefficients were close to the true values, but for the marginal PDFs

obtained via Aki-Richards approximation, the maximum had a large overestimate in the case of water

saturation with a high uncertainty. A small overestimate with a small uncertainty was observed in

the corresponding maximum for porosity. We may conclude that the water saturation estimate was

unsatisfactory, but the porosity estimate was satisfactory in this particular case.

CASE 4a. The true set of parameters that were inverted for were Sw = 50% and φ = 30% for an

oil-water saturated reservoir rock. Figure 5.8 shows the normalized a posteriori distributions for this

particular case and the corresponding marginal PDFs. Clearly, the maximum of the marginal PDFs

obtained via the exact reflection coefficients were close to the true values. There was only a very

small overestimate for Aki-Richards approximation for porosity with a narrow distribution. However,
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there was a shift in saturation for Aki-Richards approximation such that therewas an overestimate in

water saturation of about 10% with a relatively wide distribution. We may conclude that the water

saturation estimate was unsatisfactory, but the porosity estimate was acceptable in this case.

CASE 4b. The true set of parameters that were inverted for were Sw = 50% and φ = 30% for a gas-

water saturated reservoir rock. Figure 5.9 shows the normalized a posteriori distributions for this

particular case and the corresponding marginal PDFs. Again, the maximum of the marginal PDFs

obtained via the exact reflection coefficients were close to the true values. However, for the marginal

PDFs obtained via Aki-Richards approximation, the maximum presented a large overestimate in water

saturation with a large uncertainty. There was a minor shift to the right for the maximum of the

porosity with a moderate uncertainty. The approximation introduced significant error for the inversion

of water saturation, but the porosity estimate was acceptable in this particular case.

CASE 5a. The true set of parameters that were inverted for were Sw = 95% and φ = 10% for an

oil-water saturated reservoir rock. Figure 5.10 shows the normalized a posteriori distributions for this

particular case and the corresponding marginal PDFs. The maximum of the marginal PDFs for both

water saturation and porosity were close to the true values for the exact reflection coefficients. There

were only minute shifts to the right from the true porosity and the true water saturation for Aki-

Richards approximation. Also, the distributions were very narrow, which implies low uncertainties.

We may conclude that the results were very satisfactory in this case.

CASE 5b. The true set of parameters that were inverted for were Sw = 95% and φ = 10% for a gas-

water saturated reservoir rock. Figure 5.11 shows the normalized a posteriori distributions for this

particular case and the corresponding marginal PDFs. Clearly, the maximum of the marginal PDFs

were close to the true values for both saturation and porosity for the exact reflection coefficients. There

was only a very small overestimate for Aki-Richards approximation for porosity, and no observable

shift in water saturation. Also, there are very low uncertainties in the both the estimates obtained

from Aki-Richards approximation and from the exact reflection coefficients. We may conclude that

the results were very satisfactory in this case.

CASE 6a. The true set of parameters that were inverted for were Sw = 95% and φ = 30% for an

oil-water saturated reservoir rock. Figure 5.10 shows the normalized a posteriori distributions for this

particular case and the corresponding marginal PDFs. Again, the maximum of the marginal PDFs for

both water saturation and porosity were close to the true values for the exact reflection coefficients,

and there were only minute shifts to the right from the true porosity and the true water saturation for

Aki-Richards approximation. The distributions were even narrower than for case 5. We may conclude

that the results were very satisfactory in this case.

CASE 6b. The true set of parameters that were inverted for were Sw = 95% and φ = 30% for a gas-

water saturated reservoir rock. Figure 5.13 shows the normalized a posteriori distributions for this

particular case and the corresponding marginal PDFs. Again, the maximum of the marginal PDFs

were close to the true values for both saturation and porosity for the exact reflection coefficients. There
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was no observable shift in water saturation and a small underestimate in porosity from the maximum

of the marginal PDFs for the reflection coefficients obtained by Aki-Richards approximation. The

distributions were also narrow for both the exact and approximate reflection coefficients. However,

the marginal PDFs for porosity were multimodal, but the smaller peak was relatively insignificant

compared to the maximum peak. We may conclude that Aki-Richards approximation did not introduce

any significant error for the inversion of the reservoir parameters in this case.

5.3 Synthetic data examples

5.3.1 A random Gaussian reservoir model

Reservoirs are in reality complex media which may exhibit a large degree of spatial variation. The pore

geometry that was used in the rock physics model pose an uncertainty for AVA inversion. Calibrations

that were done for the rock physics model are maybe exact in the immediate vicinity of the well. A

variable crack density would not only affect the dry rock properties, but would also have implications

for the spatial variability of saturation through variable permeability (Guéguen and Palciauskas, 1994).

The heterogeneity of a reservoir model may be modelled by adding random Gaussian perturbations

to the rock physics parameters, mresi . Spatial correlations may be modelled by an autocorrelation

function on the form (Baig and Dahlen, 2004):

Ng (||x− x′||) = τ 2mresi
2e

(
−||x−x′||

a2

)
(5.8)

where a is the correlation length and τ is the RMS strength of the percentage heterogeneity in the

model parameter given as:

τ =
δmresi

2 (x)

mresi
2

(5.9)

An oil and water saturated reservoir model was constructed using the procedure in chapter 2 with

a basis in the reservoir parameters in tables 2.1 and 2.2. The number of grid blocks was set to 51

for an inline and cross line distance from 0 m to 1040 m. A background porosity was chosen as

φ = 30% and a background crack density was chosen as ε = 0.8533. Heterogeneities were added by

setting the correlation length to a = 100 meters with RMS strengths of the percentage heterogeneity

for porosity set to 0.08 and for crack density to 0.04. Following this, the water saturation was set to

either Sw = 50% or Sw = 10% depending on a higher or lower crack density than the background crack

density. Figure 5.14 shows the resulting spatial distributions of the true reservoir parameters. The

corresponding effective elastic reservoir properties are shown in figure 5.15.
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5.3.2 Inversion tests with variable and constant crack density

’True’ PP-reflection coefficient data were generated for each grid block in the reservoir model using

the Zoeppritz equations. The overburden (table 3.1) and range of incident angles (0◦ to 40◦) were as

before. Also, the Gaussian data uncertainties were set to 5% of the corresponding reflection coefficient

as before. The work flow for the AVA inversion (figure 5.1) was the same as for a single grid block with

some modifications. Effective elastic properties were calculated for both a reservoir model with the

true crack densities and a reservoir model with constant crack density. Synthetic reflection coefficient

data was then obtained by forward modelling with the Zoeppritz equations and the Aki-Richards

approximation. The aim was to investigate what implications modelling error due to variable crack

density would have for the inverse problem. Maximum a posteriori solutions were found for each grid

block using the by minimizing the objective function (5.1) by a systematic search method. However,

there was not performed any uncertainty analysis in this case.

Figures 5.16 and 5.16 show the inversion results for porosity. In each figure, the top plot is the true

model, the centre plot is the inversion results using the true crack density and the bottom plot is the

inversion results using a constant crack density equal to the background crack density. The inversion

results obtained by forward modelling with the Zoeppritz equations are shown in figure 5.16. Clearly,

the inversion results using the exact crack density were very satisfactory. There were only minute

differences to the true model. It was apparent that the accuracy of the inversion results using the

constant crack density was decreased. Next, the inversion results obtained by forward modelling with

Aki-Richards approximation are shown in figure 5.17. Clearly, the inversion results using the exact

crack density were satisfactory. Again, the accuracy of the inversion results using the constant crack

density was decreased. We may conclude that the modelling errors introduced by assuming constant

crack density has a greater effect than the modelling errors introduced by Aki-Richards approximation

for porosity estimates.

Figures 5.18 and 5.19 show the inversion results for water saturation. In each figure, the top plot is

the true model, the centre plot is the inversion results using the true crack density and the bottom

plot is the inversion results using a constant crack density equal to the background crack density. The

inversion results obtained by forward modelling with the Zoeppritz equations are shown in figure 5.18.

Clearly, the inversion results using the exact crack density were very satisfactory. There were only

minute differences to the true model. It was apparent that the accuracy of the inversion results using

the constant crack density was decreased. Next, the inversion results obtained by forward modelling

with Aki-Richards approximation are shown in figure 5.19. The inversion results using the exact

crack density were unsatisfactory. Again, the accuracy of the inversion results using the constant

crack density was decreased. We may conclude that the modelling errors introduced by Aki-Richards

approximation is sufficient to cause inaccurate water saturation estimates.
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5.4 Discussion

In the forward modelling, the effective elastic properties for a choice of reservoir parameters were

first calculated. Thus, the relative error in the reflection coefficients obtained from Aki-Richards

approximation compared to the exact reflection coefficients depend on the combined change in P-wave

velocity, S-wave velocity and density over a boundary. High magnitudes of relative error were caused

by intermediate contrasts in all three elastic parameters, or by a high contrast in a single elastic

parameter. Therefore there was no direct correlation between the magnitude of the relative error in

the reflection coefficients and reservoir properties. However, it was apparent that the relative error

increased for higher incident angles.

In the AVA inversion test, the accuracy depends both on the sensitivity of the reservoir model with

respect to saturation and porosity and the contrast in elastic properties. A more rapid change in

elastic properties will allow for higher relative contrasts in elastic properties while the level of accuracy

is maintained. This proved to be the case for both a gas-water and an oil-water saturated pore

fluid. Thus, the static reservoir parameters (table 2.1) posed a significant source of error since the

accuracy depends on the sensitivity of the reservoir model. The accuracy of the porosity estimates

were satisfactory for all the chosen cases. However, the water saturation estimates were generally

only satisfactory for high water saturations, for which the reservoir model was especially sensitive.

An exemption from this observation was case 3 which had successful water saturation and porosity

estimates with low uncertainty. This was due to the especially low contrasts in elastic properties for

this case.

The static rock physics parameter may have large implications for the accuracy of saturation and poros-

ity estimates. Assumptions about constant crack density in a reservoir with variable crack density was

especially important for porosity estimates. The modelling error in crack density was more domin-

ant than the modelling error introduced by Aki-Richards approximation. Conversely, Aki-Richards

approximation dominant to modelling errors in crack density for water saturation estimates.

The main conclusion is that it is generally safer to use the Zoeppritz equations for porosity and water

saturation estimates. However, Aki-Richards approximation seems to give satisfactory results for

porosity estimates with relatively low uncertainties. This can prove useful since linearized estimates

are less computationally expensive.
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Rock Physics
Parameters

(Sw, φ)

Effective
elastic model

(Vp, Vs, ρ)

Calculated AVA
data (Aki-Richards

Approximation)
or

Calculated AVA data
(Exact Zoeppritz)

Observed AVA data
(Exact Zoeppritz
from true model)

Objective
function

J(m)

Iterate Parameters (Sw, φ)

Figure 5.1: Schematic work flow diagram for estimation of porosity and saturation from inversion of
AVA data using a rock physics model.
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Figure 5.2: An oil and water saturated reservoir (Sw = 10%, φ = 10%). The posterior distribution for
Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.
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Figure 5.3: A gas and water saturated reservoir (Sw = 10%, φ = 10%). The posterior distribution for
Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.
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Figure 5.4: An oil and water saturated reservoir (Sw = 10%, φ = 30%). The posterior distribution for
Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.
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Figure 5.5: A gas and water saturated reservoir (Sw = 10%, φ = 30%). The posterior distribution for
Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.
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Figure 5.6: An oil and water saturated reservoir (Sw = 50%, φ = 10%). The posterior distribution for
Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.
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Figure 5.7: A gas and water saturated reservoir (Sw = 50%, φ = 10%). The posterior distribution for
Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.
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Figure 5.8: An oil and water saturated reservoir (Sw = 50%, φ = 30%). The posterior distribution for
Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.
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Figure 5.9: A gas and water saturated reservoir (Sw = 50%, φ = 30%). The posterior distribution for
Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.
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Figure 5.10: An oil and water saturated reservoir (Sw = 95%, φ = 10%). The posterior distribution
for Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.
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Figure 5.11: A gas and water saturated reservoir (Sw = 95%, φ = 10%). The posterior distribution
for Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.
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Figure 5.12: An oil and water saturated reservoir (Sw = 95%, φ = 30%). The posterior distribution
for Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.
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Figure 5.13: A gas and water saturated reservoir (Sw = 95%, φ = 30%). The posterior distribution
for Aki-Richards approximation (top left) and the Zoeppritz equations (top right). The corresponding
marginal distributions for water saturation (bottom left) and porosity (bottom right). The dashed
lines are for Aki-Richards approximation and the full line is for the Zoeppritz equations.



60 One-step inversion methods
X

−
lin

e
 d

is
ta

n
c
e
 (

m
) True φ (%)

 

 

0 200 400 600 800 1000

−1000

−500

0

0.25

0.3

0.35

X
−

lin
e
 d

is
ta

n
c
e
 (

m
) True Sw (%)

 

 

0 200 400 600 800 1000

−1000

−500

0

0.2

0.4

X
−

lin
e
 d

is
ta

n
c
e
 (

m
)

Innline distance(m)

True ǫ

 

 

0 200 400 600 800 1000

−1000

−500

0

0.8

0.9

Figure 5.14: The true spatial distribution of the reservoir parameters for an oil and water saturated
reservoir. Porosity (top), water saturation (centre) and the crack density (bottom).
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Figure 5.15: The effective elastic reservoir parameters. P-wave velocity (top), S-wave velocity (centre)
and density (bottom).
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Figure 5.16: The map solutions for porosity from PP-reflection coefficient AVA data with 5% data
uncertainty using the Zoeppritz equations for forward AVA modelling. True porosity (top), the inverted
porosity using the true crack density (centre) and the inverted porosity using a constant crack density
(bottom).
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Figure 5.17: The map solutions for porosity from PP-reflection coefficient AVA data with 5% data
uncertainty using Aki-Richards approximation for forward AVA modelling. True porosity (top), the
inverted porosity using the true crack density (centre) and the inverted porosity using a constant crack
density (bottom).
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Figure 5.18: The map solutions for water saturation from PP-reflection coefficient AVA data with 5%
data uncertainty using the Zoeppritz equations for forward modelling. True water saturation (top),
the inverted water saturation using the true crack density (centre) and the inverted water saturation
using a constant crack density (bottom).



Discussion 65

X
−

lin
e
 d

is
ta

n
c
e
 (

m
) True Sw (%)

 

 

0 200 400 600 800 1000

−1000

−500

0

0

0.2

0.4

X
−

lin
e
 d

is
ta

n
c
e
 (

m
) Inverted Sw (%) (true ǫ)

 

 

0 200 400 600 800 1000

−1000

−500

0

0

0.2

0.4

Innline distance(m)

X
−

lin
e
 d

is
ta

n
c
e
 (

m
) Inverted Sw (%) (constant ǫ)

 

 

0 200 400 600 800 1000

−1000

−500

0

0

0.2

0.4

Figure 5.19: The map solutions for water saturation from PP-reflection coefficient AVA data with
5% data uncertainty using Aki-Richards approximation for forward modelling. True water saturation
(top), the inverted water saturation using the true crack density (centre) and the inverted water
saturation using a constant crack density (bottom).



Chapter 6

Two-step inversion methods

6.1 Introduction

In the following chapter, the aim is to perform two-step inversion procedures from AVA data modelled

from a stratified elastic earth model with a reservoir section. The first inversion step is from AVA data

to effective elastic reservoir parameters and the second inversion step is from effective elastic reservoir

parameters to reservoir parameters, such as water saturation and porosity, using a rock physics model.

The first step will follow a linearized inversion procedure based upon the algorithm presented by

Buland and Omre (2003). An aim is to extend this algorithm by doing a rock physics inversion for

an interface in the reservoir section in the inverted elastic earth model. Originally, the first inversion

step was formulated in a Bayesian setting. This complicates the process of putting constraints on

the temporal variability of the elastic earth models. The desired model properties are controlled by

specification of the a priori model statistics. However, the length scale of the velocity and density

variation is to a large extent unknown. This implies that our a priori knowledge of the earth’s interior

is rather poor (Scales and Sneider, 1997). A second aim will therefore be to reformulate the linearized

inversion algorithm within the framework of a classical interpretation of statistics.

There are several aspects that advocate a two-step procedure rather than a one-step inversion procedure

(Avseth et al., 2005). Linearized estimates are less computationally expensive than nonlinear estimates.

Further, the effective elastic properties are very useful for many processing sequences of seismic data.

In addition, it allows us verify the inversion results with other sources of information such as well logs

and production data.

Lörtzer and Berkhout (1992) formulated a linearized inversion algorithm for relative contrasts in elastic

properties for several interfaces in a time-window. This method was later extended to incorporate a

time-continuous formulation of Aki-Richards approximation and a source wavelet (Buland and Omre,

2003; Stolt and Weglein, 1985). A major advantage of this formulation was that the time-continuous

formulation of Aki-Richards approximation is a linear combination of the elastic parameters. Also, it
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made it possible to put constraints on the temporal variation of the elastic parameters.

6.2 Forward modelling

6.2.1 The time-continuous reflectivity function

A depth dependent elastic earth model can be regarded as an ensemble of a large number of lay-

ers. Lörtzer and Berkhout (1992) formulated a linearized inversion algorithm from one-dimensional

reflectivity function to relative contrasts in elastic properties for several interfaces in a time-window.

The thickness of each layer should reflect the spatial variability such that the elastic parameters can be

considered constant within each layer, and they should exhibit only small changes from one layer to the

next. This method was later extended to incorporate a time-continuous formulation of Aki-Richards

approximation and a source wavelet (Buland and Omre, 2003; Stolt and Weglein, 1985). A major ad-

vantage of this formulation was that the time-continuous formulation of Aki-Richards approximation

is a linear combination of the elastic parameters. Also, it made it possible to put constraints on the

temporal variation of the elastic parameters. This is done by assuming that a set of time dependent

model parameters are logarithmic such that:

m (t) = [ln VP (t) , ln VS (t) , ln ρ (t)]T (6.1)

The time-continuous PP-reflectivity function is then given as:

rPP (t, θ) =
1

2

(
1 + tan2 (t, θ)

) ∂
∂t

ln VP (t)− 4

(
V̄2

S (t)

V̄2
P (t)

sin2 (t, θ)

)
ln VS (t)

+
1

2

(
1− 4

V̄2
S (t)

V̄2
P (t)

sin2 (t, θ)

)
∂

∂t
ln ρ (t) (6.2)

Similar expressions are also straightforward for the converted reflectivity.

Buland and Omre (2003) implemented a matrix formulation of the time-continuous formulation of

Aki-Richards approximation. Each of the model parameters (6.1) need to be discritized into NT time

samples, and the dimension of the resulting column vector, m, would be (3× NT)× 1:

m = [ln VP1 · · · ln VPNT
, ln VS1 · · · ln VSNT

, ln ρ1 · · · ln ρNT
]T (6.3)

If the values of a function are only given at a number of discrete points then the derivative can be

computed numerically with the aid of finite-difference, discrete Taylor approximations. A simple choice

is the forward finite-difference approximation to the first order derivative with a first-order accuracy.
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The 1D derivative of a function, f, given at equidistant points is thus for a single point, xi:

f ′i ≈
(fi+1 − fi)

(xi+1 − xi)
(6.4)

It is possible to represent the derivative by an operator, DFD, a matrix that contains the coefficients

in the finite-difference approximation to a derivative:

DFD =


−1 1 · · · 0

0
. . . . . . 0

0 · · · −1 −1

 (6.5)

A finite-difference operator with dimension (NM = NT− 1)× NT, may be defined for each of the

model parameters in (6.3). They can in turn be combined into a block-diagonal matrix with dimension

(3× NM)× (3× NT):

D =

 DFD 0 0

0 DFD 0

0 0 DFD

 (6.6)

The differentiated earth model represents a time-continuous model of fractional changes in elastic

properties, c:

c =

 cVP

cVS

cρ

 =

 DFD 0 0

0 DFD 0

0 0 DFD


 ln VP

ln Vs

lnρ

 (6.7)

Three coefficients may defined from the time-continuous P-to-P reflectivity function (6.2) for a discrete

angle, na, and a time sample, nt:

ana,nt =
1

2

(
1 + tan2 θna

)
nt

bna,nt = −4

(
V̄2

S

V̄2
P

sin2 θna

)
nt

cna,nt =
1

2

(
1− 4

V̄2
S

V̄2
P

sin2 θna

)
nt

(6.8)

A set of diagonal matrices, AVP
(θna), AVS

(θna) and Aρ (θna) containing discrete time samples for a

fixed angle, are created for each of the three coefficients. Assuming there is NT discrete time samples
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in (6.3), the dimension of each of the diagonal matrices is NT× NM:

AVP
(θna) =


1
2

(1 + tan2 θna)1 · · · 0
...

. . .
...

0 · · · 1
2

(1 + tan2 θna)NM

 (6.9)

AVS
(θna) =


−4
(

V̄2
S

V̄2
P

sin2 θna

)
1
· · · 0

...
. . .

...

0 · · · −4
(

V̄2
S

V̄2
P

sin2 θna

)
NM

 (6.10)

Aρ (θna) =


1
2

(
1− 4

V̄2
S

V̄2
P

sin2 θna

)
1
· · · 0

...
. . .

...

0 · · · 1
2

(
1− 4

V̄2
S

V̄2
P

sin2 θna

)
NM

 (6.11)

They are in turn used to define a block-matrix, A, that is built from such time dependent diagonal

matrices for each of the discrete angles:

A =


AVP

(θ1) AVS
(θ1) Aρ (θ1)

...
...

...

AVP
(θNA) AVS

(θNA) Aρ (θNA)

 (6.12)

The dimension of the block-matrix (6.12) in the case of NA discrete angles is then (NT× NA)× (3× NM).

The time-continuous PP-reflectivity function (6.2) can thus be given as a product between the block-

matrix and the derivative of the model vector (6.7):

rPP =


rPP(θ1)
...

rPP(θNA)




AVP
(θ1) AVS

(θ1) Aρ (θ1)
...

...
...

AVP
(θNA) AVS

(θNA) Aρ (θNA)


 cVP

cVS

cρ

 (6.13)

The dimension of the resulting PP-reflectivity vector is (NT× NA)× 1.

6.2.2 Seismic waveform modelling by the convolutional model

The characteristic pressure wave created by an impulsive source is called the signature of the source,

and it can be described as band-limited wavelets of finite duration. As the wavelet propagates through

the subsurface its overall amplitude decays because of waveform dispersion and the frequency content

changes due to absorption. A basic assumption in the convolutional model is that the source waveform

is stationary, it does not change as it travels through the subsurface (Yilmaz, 2001). The reflectivity

can then be regarded as a filter that acts on the source wavelet as it propagates through the subsurface.

A spike as a source wavelet would give back the impulse response of the filter, which in this case would
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be the reflectivity series. It is necessary to sample the functions associated with the source wavelet,w,

and reflectivity, rPP, at regular intervals. Suppose that the length of the discrete time series is NT

for the reflectivity and NW for the source wavelet. A linear convolution of them in the time domain

would give a new time series associated with a recorded seismic trace, s, that has N = (NW + NT)− 1

samples (Mæland, 2005). The elements in the vector, s, are given by:

sn =
n∑

k=0

rkwn−k (6.14)

for n = 0, . . . , (N− 1). The linear convolutional matrix for a single incident angle, wθna , is thus:

wθna =



w1 (θna) 0 · · · 0

w2 (θna) w1 (θna) 0 · · · 0
...

. . . . . . . . . · · · 0

wNW (θna) · · · · · · w1 (θna) · · · 0

0
. . . · · · · · · . . . 0

...
. . . wNW (θna) · · · · · · w1 (θna)

0
. . . · · · ...

...
. . . . . .

...

0 0 · · · 0 wNW (θna)



(6.15)

It has dimensions N× NT. A block-diagonal wavelet matrix, W, that contains one linear convolution

matrix for each angle, can be defined from this:

W =


wθ1 · · · 0

...
. . .

...

0 · · · wθNA

 (6.16)

It has dimensions (NA× N)× (NA× NT). The convolution is performed by multiplying the PP-

reflectivity vector, r, with the block-diagonal wavelet matrix, W, and the resulting seismic data is

thus given by (Buland and El Ouair, 2006):

d=


d(θ1)
...

d(θNA)

 =


wθ1 · · · 0

...
. . .

...

0 · · · wθNA




rPP(θ1)
...

rPP(θNA)

 (6.17)

The dimension of the data vector is (NA× N)× 1. Following the preceding derivation, the symbolic

form for the seismic data can be expressed as:

d = Wr = WAc = WADm (6.18)
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6.2.3 Numerical implementation

In the forward modelling, the first step was to generate a set of synthetic well logs for the elastic earth

properties. It would represent a layered earth model with an oil-water saturated reservoir section.

Effective elastic reservoir properties were first defined using the procedure in section 2.3. The water

saturation and porosity were set to Sw = 95% and φ = 30% for the reservoir section. It corresponds

to a AVA inversion test that was successful, case 6a, in section 5.2.2. Thus, the overburden was

also chosen to give similar contrasts in elastic properties at the layer boundary in order to create an

analogue. However, the elastic properties were set to have a slight linear increase in elastic properties

through the overburden. In addition, a homogeneous top layer and an underburden were chosen such

that there were four layers in total. Also, the thicknesses of the layers were set such that the total

depth through the earth model was 1000 meters. The synthetic well logs are summarized in table 6.1.

The synthetic well logs represented an earth model in depth, but the model parameters in the waveform

forward modelling were required to be a function of time. Hence, the earth model was discretized

into partitions of dz = 10 meters. Further, a vector of cumulative travel times, T, was calculated by

integrating the travel time to each interface. A one-way travel time vector, t, with a constant sampling

interval of dt = 2 ms was defined within the range of the cumulative travel times. Following this, the

earth model was transformed from T to t using a linear interpolation scheme. The elastic 1D model

in time is shown for an earth model with an oil and water saturated reservoir section in figure 6.2.

The true earth model was first made logarithmic and put as a column vector, mt (6.3). Following

this, every second angle in an interval of incident angles, θ, from 0◦ to 40◦ were chosen for the forward

modelling, and the coefficients in the block-matrix formulation of Aki-Richards approximation, A

(6.12), were calculated from the true model. This concluded the calculation of the reflectivity series,

r, for the earth model.

A Ricker wavelet with a centre frequency, f0 = 30Hz, was chosen as the source wavelet. They are

zero-phase wavelets with a central peak and two smaller side lobes. The mathematical formula for a

Ricker wavelet is given by (Ryan, 1994):

w (t) =
(
1− 2π2f2

0t2
)

exp
(
−π2f2

0t2
)

(6.19)

This wavelet was discretized using a sampling interval of dt = 2ms, and then it was put on block-

diagonal wavelet form, W (6.16). Thus, we were able to calculate the seismic data by waveform

forward modelling as (6.18):

d = Wr = WAc = WADm (6.20)

The forward model operator, that relates the model and the data, is as such G = WAD. A seismogram

for the earth model with an oil and water saturated reservoir section is shown in figure 6.3, and the

work flow in the forward modelling is summarized in figure 6.1.
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6.3 Inversion tests

The seismic data that was modelled from the set of synthetic well logs was contaminated by various

amounts of zero mean Gaussian noise. In particular, we defined the data errors as a percentage, p, of

the maximum amplitude in the seismic data such that they were identically distributed:

σ2
d = (p ·max |d|)2 (6.21)

The data covariance matrix, Cd, was then simply the variance times the identity matrix. Three

different percentages of the maximum amplitude, p = 10−5, 10−4 and 10−3, provided increasing noise

levels that was used to test the robustness of the inversion. Ultimately, the aim was to recover the

reservoir parameters that were used in the forward modelling for the reservoir section. The first step

was linearized waveform inversion for the elastic earth model and the second step was rock physics

inversion for saturation and porosity for a known overburden. This was tested for two different inversion

algorithms within the frequentist or Bayesian framework of statistics.

6.3.1 A classical approach to a two-step inversion with a prior model

Very ill-conditioned problems may be made more stable by searching for solutions that are close to a

prior model, m0. A common choice is to smooth well logs that define the prior model (Buland and

Omre, 2003). The modified optimization problem for Tikhonov regularization with a prior is given by:

J (m) =
1

2
||Gm− dobs||22 +

λ2
0

2
||m−m0||22 +

λ2
1

2
||Lm||22 (6.22)

A solution to this optimization problem is given by:

mλ =
(
GTG + λ2

0I + λ2
1L

TL
)−1 (

GTdobs + λ2
0Im0

)
(6.23)

It was necessary to define a prior model in accordance with the logarithmic model parameters, m (6.3).

Synthetic well logs were in our case obtained by smoothing the true earth model in depth by fitting a

3rd degree polynomial. The conversion from depth in meters to depth in time was done as in section

6.2.3. Following this, the prior model was made logarithmic and put on vector form as in (6.3).

The relation between the true data and the observed data was given by:

dobs = dtrue + e, e ∼ N (0,Cd) (6.24)

The optimal regularization parameters were found by Morozovs discrepancy principle (4.9). It was

implemented by an iterative empirical procedure where S = 0.8 was a decay constant and the regular-
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ization parameters would be exponentially reduced by each iteration, n:

λ0 = Sn

λ1 = 2λ0 (6.25)

After each iteration, the norm of the data residuals was calculated by: ||Gmλ − dobs||. An optimal

choice of regularization parameters was reached when the norm of the data residuals was less than or

equal to the norm of the noise, ||e||. A threshold level for when to stop the iterations was therefore

chosen as δ = ||e||. Thus, we could conclude the first inversion step to an elastic earth model using a

classical Tikhonov inversion with prior for minimization.

Following this, the logarithm was removed from all the model parameters by multiplying each com-

ponent by an exponential function. The inverted elastic earth model, mλ, from the first step was

split into three parts corresponding to the elastic parameters. Time samples from the middle of the

reservoir sections were subsequently chosen from each of them into a vector of observed elastic reser-

voir properties, mcalc. The reservoir model was further discretized into K grid points for φ, such that

∆φ = 0.0025, and into L grid points for Sw, such that ∆Sw = 0.025. An unconstrained least squares

procedure, (4.5), was chosen for the second inversion step from elastic parameters to saturation and

porosity. Effective elastic reservoir properties, mcalc = G (Sw.φ), was calculated for each combination

of saturation and porosity and compared to the observed elastic properties:

J (mcalc) = ||mobs −mcalc||22 (6.26)

Finally, the inverted reservoir model was the combination of water saturation and porosity that gave

the smallest residual norm. The work flow for a classical approach to a two-step inversion with a prior

model is summarized in figure 6.4.

Inversion results

The classical approach to a two-step inversion with a prior model was tested on seismic data (figure

6.3) that had been modelled from an earth model (figure 6.2) with an oil and water saturated reservoir

section which corresponded to case 6a in table 3.2. Figures 6.6 to 6.8 show the the first inversion step

to elastic earth models for three cases dealing with increasing noise levels in the seismic data. In each

figure, the left plot is the P-wave velocity, the centre plot is the S-wave velocity and the right plot is

the density. The solid red line is the true model, the dashed green line is the prior model and the solid

blue line is the inverted model, mλ.

Case 1a. The percentage noise of the maximum amplitude in the seismic data was set to p = 10−5 using

(6.21). Figure 6.6 shows the result for the first inversion step for this particular case. A selection of the

regularization parameters for this noise level is shown in the top plot of figure 6.5. The regularization
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level was minor due to such a low noise level: λ0 = 0.840 and λ1 = 2 · λ0. Clearly, the inverted model

(solid blue) followed the true model (solid red) for all three elastic parameters. There were only small

deviations from the true model. Following this, the second inversion step from the elastic earth model

to water saturation and porosity gave Sw = 95% and φ = 29.75%. Compared to the true values, that

was exactly the water saturation and only a minor deviation in porosity. We may conclude that both

the inverted elastic earth model and the inverted water saturation and porosity were very satisfactory

in this case.

Case 2a. The percentage noise of the maximum amplitude in the seismic data was set to p = 10−4

using (6.21). Figure 6.7 shows the result for the first inversion step for this particular case. A selection

of the regularization parameters for this noise level is shown in the centre plot of figure 6.5. It was

necessary to increase the regularization parameters, λ0 = 0.827 and λ1 = 2 · λ0, in order to stabilize

the solution for the higher noise level. Clearly, the inverted model (solid blue) followed the true model

(solid red) for all three elastic parameters. There were only small deviations from the true solution.

Following this, the second inversion step from the elastic earth model to water saturation and porosity

gave Sw = 97.5% and φ = 30%. Compared to the true values, that was exactly the porosity and only

a minor deviation in water saturation. We may conclude that both the inverted elastic earth model

and the inverted water saturation and porosity were very satisfactory in this case.

Case 3a. The percentage noise of the maximum amplitude in the seismic data was set to p = 10−3

using (6.21). Figure 6.8 hows the result for the first inversion step for this particular case. A selection

of the regularization parameters for this noise level is shown in the centre plot of figure 6.5. It was

necessary to increase the regularization parameters substantially, λ0 = 0.87 and λ1 = 2 · λ0, in order

to stabilize the solution. The inverted model (solid blue) appeared to be very biased towards the

prior model: the deviations from the true model (solid red) increased substantially for the sections

were the prior model was more inaccurate. Following this, the second inversion step from the elastic

earth model to water saturation and porosity gave Sw = 97.5% and φ = 29.5%. Compared to the true

values, that was only a minor deviation in water saturation and porosity. We may conclude that the

inverted elastic earth model was satisfactory for a sufficiently accurate prior model and the inverted

water saturation and porosity was very satisfactory in this case.

6.3.2 A Bayesian approach to a two-step inversion

Inversion Procedure

A Bayesian linearized inversion procedure was used for the first inversion step from seismic data

to elastic earth models. In section 4.2.2, an analytical solution for a Bayesian linearized inversion

was presented. A prerequisite is that both the prior model and the data has multivariate normal

distributions. The expectation of the prior model, m0, was defined in the same manner as for Tikhonov

with prior. In addition, an associated block-diagonal prior model covariance matrix, Cm0 , was defined
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as:

Cm0 =

 CVP
0 0

0 CVS
0

0 0 Cρ

 (6.27)

The parameter distributions were assumed identical such that σ2
m0

= 0.052. The optimization problem

is given by the following objective function (4.21):

J (m) =
1

2
(Gm− d)T C−1

d (Gm− d) +
1

2
(m−m0)T C−1

m0
(m−m0) (6.28)

A maximum a posteriori solution, mmap, is then given by (4.22):

mmap =
(
GTC−1

d G+C−1
m0

)−1 (
GTC−1

d d+C−1
m0

m0

)
(6.29)

and the corresponding posterior covariance matrix, Cm′ (4.23):

Cm′ =
(
GTC−1

d G+C−1
m0

)−1
(6.30)

It was important to keep in mind that the model parameters were logarithmic when the 95% confidence

interval for the posterior distribution was calculated:

mmap ± emmap+1.96·diag(Cm′ ) (6.31)

A nonlinear Bayesian inversion procedure with an uninformative prior, as discussed in section 4.3,

was adopted for the second inversion step from elastic parameters to saturation and porosity. Two

column vectors of expectation values, µm′ , and variances, σ2
m′ , for the inverted elastic earth models,

were split into parts corresponding to the elastic parameters. Time samples from the middle of the

reservoir sections were subsequently chosen from each of them. Following this, a vector of observed

elastic reservoir properties, mobs, and a corresponding diagonal covariance matrix, Cobs, could be

defined. Further, it had been assumed that the effective elastic properties were a function of only

saturation and porosity, mres = [Sw, φ], in the forward modelling, mcalc = G (mres). In order to find

an optimal choice of reservoir parameters for the observed effective elastic reservoir properties, an

objective function J (mres), was defined as:

J (mres) = (mcalc −mobs)
T C−1

obs (mcalc −mobs) (6.32)

A solution of a posterior PDF based on Gaussian statistics is given by (4.25).

q (m|d) = N · e−J(m) (6.33)

The posterior and marginal PDFs for porosity and saturation were calculated by following the same
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procedure as in section 5.2. The work flow for both inversion steps are summarized in figure 6.9.

Inversion results

The Bayesian approach to a two-step inversion was tested on seismic data (figure 6.3) that had been

modelled from an earth model (figure 6.2) with an oil and water saturated reservoir section which

corresponded to case 6a in table 3.2. Figures 6.10 to 6.12 show the results for the first inversion step

for the three cases with increasing noise levels. In each figure, the left plot is the P-wave velocity,

the centre plot is the S-wave velocity and the right plot is the density. The solid blue lines are the

maximum a posteriori solution, the dashed blue lines are 95% confidence intervals for the map solution,

the dashed green lines are 95% confidence intervals for the prior model and solid red lines is the true

model. Figures 6.13 to 6.15 show the corresponding results for the second inversion step from elastic

earth models to water saturation and porosity. In each figure, the top plot is the posterior distribution,

the centre plot is the marginal distribution of water saturation (solid blue line) and the bottom plot

is the marginal distribution of porosity (solid blue line). The true values are marked as solid red lines

in the centre and bottom plot.

Case 1c. The percentage noise of the maximum amplitude in the seismic data was set to p = 10−5

using (6.21). Figure 6.10 shows the result for the first inversion step for this particular case. The

percent wise decrease of the mean width of the 95% confidence intervals from the prior model to the

posterior model was 83% for P-wave velocity, 82% for S-wave velocity and 83% for density. Clearly, the

inverted model (solid blue) match the true model (solid red) perfectly for all three elastic parameters.

Figure 6.13 shows the result for the second inversion step for this particular case. The maxima of the

marginal distributions for both water saturation and porosity (solid blue lines) were close to the true

values (solid red lines). Also, the width of the marginal distributions were relatively narrow, which

indicates low uncertainty. We may conclude that both inversion steps gave very satisfactory results.

Case 2c. The percentage noise of the maximum amplitude in the seismic data was set to p = 10−4

using (6.21). Figure 6.11 shows the result for the first inversion step for this particular case. The

percent wise decrease of the mean width of the 95% confidence intervals from the prior model to the

posterior model was 54% for P-wave velocity, 50% for S-wave velocity and 54% for density. Clearly,

the inverted model (solid blue) match the true model (solid red) almost perfectly for all three elastic

parameters. Figure 6.14 shows the result for the second inversion step for this particular case. The

maxima of the marginal distributions for both water saturation and porosity (solid blue lines) were

close to the true values (solid red lines). There was only a small underestimate in porosity. However,

the width of the marginal distributions were considerably wider than for case 1c. We may conclude

that both inversion steps gave satisfactory results.

Case 3c. The percentage noise of the maximum amplitude in the seismic data was set to p = 10−3

using (6.21). Figure 6.12 shows the result for the first inversion step for this particular case. The

percent wise decrease of the mean width of the 95% confidence intervals from the prior model to the
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posterior model was reduced to 42% for P-wave velocity, only 27% for S-wave velocity and 32% for

density. Clearly, the inverted model (solid blue) match the true model (solid red) closely for all three

elastic parameters. Figure 6.15 shows the result for the second inversion step for this particular case.

The maxima of the marginal distributions for both water saturation and porosity (solid blue lines) were

close to the true values (solid red lines). There was only a small underestimate in porosity. However,

the width of the marginal distributions were very wide, which indicates high uncertainty. We may

conclude that both inversion steps gave satisfactory results. However, the second inversion step had

very high uncertainties in water saturation and porosity.

6.4 Discussion

Three parameter AVA inversion is a very ill-conditioned problem for conventional noise levels and

acquisition geometries. That is, a small amount of noise will result in large parameter deviations.

A common approach to this problem has been to rearrange Aki-Richards approximation for other

parameterizations (Fatti et al., 1994; Shuey, 1985; Smith and Gidlow, 1987). Following this, hard con-

straints were generally put on the density reflectivity in order to improve the stability of the problem.

This is undesirable since density estimates are necessary in order to quantify several rock physical

parameters such as saturation (Avseth et al., 2005). An alternative approach could be to increase the

range of incident angles in the AVA data since the density reflectivity is associated with large incident

angles (Drufuca and Mazzotti, 1995; Shuey, 1985). However, the accuracy of linearized approxima-

tions to the reflection coefficients, such as Aki-Richards approximation, decreases with higher incident

angles as demonstrated in chapter 3. The best option would be to improve the stability by inclusion

of mode converted waves and shear waves into the inversion algorithm (De Haas and Berkhout, 1988).

This is often not an option in marine seismic surveys since shear waves cannot travel trough water. A

final option, and the most viable alternative (Martinez and McMechan, 1991), would be to stabilize

the solution by inclusion of a prior model into the object function as was chosen here.

The classical approach to a two-step inversion with a prior gave very satisfactory results for the two

lowest noise levels. It was evident that the choice of prior model would determine the chance of success

for highest noise. An advantage of choosing a classical approach to inversion is that the regularization

parameters are determined from the observed data. Further, we do not put any statistical constraints

on the prior model. However, the Bayesian approach to a two-step inversion presents a good framework

for statistical analysis of the inversion results. Also, all questions about model resolution are addressed

by the posterior PDFs in each inversion step. In the first inversion step, the reduction in the mean

width of the 95% confidence intervals from the prior model to the posterior model implied that the

resolution of P-wave velocity is superior to that of the S-wave velocity and density. As for the second

inversion step, the width of the distributions implied that the water saturation and porosity may be

determined for low to medium data uncertainty. High data uncertainties would likely not give any

good estimates of water saturation and porosity since the marginal PDFs are very wide.
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The main conclusion is that linearized inversion from PP-reflection coefficients AVA data to three

elastic parameters may be stabilized by prior models from well logs. Inversion from elastic reservoir

properties to water saturation and porosity is feasible was feasible for the two lowest noise levels. A

Bayesian two-step inversion algorithm should only be used when you can justify characterizing the

prior information probabilistically. A classical two-step inversion algorithm is a viable alternative, but

does not provide the same framework for statistical analysis of the inversion results.
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Table 6.1: The elastic properties of an earth model with an oil and water saturated reservoir section.

Layer VP (ms−1) VS (ms−1) ρ (Kgm−3) Thickness (m)

1 3050 1800 2470 290

2 (Top) 3120 1870 2490

2 (Bottom) 3150 1900 2500 200

3 (Reservoir rock) 2948 1675 2158 410

4 (Underburden) 3120 1870 2490 100
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Rock Physics Para-
meters (Sw, φ)

Elastic reservoir
model V ∗P , V

∗
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Elastic earth model
in depth VP,VS,ρ
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Continuous model
parameters in time m

Seismic data in the
time-angle domain

dtrue=WADm

Generate a Ricker
wavelet, W,
with a centre

frequency of 30 Hz.

Calculate the
coefficients in A

from the true model.

Figure 6.1: The work flow for waveform modelling with Aki-Richards approximation in the time-angle
domain.
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Figure 6.2: An elastic earth model with an oil and water saturated reservoir section
(φ = 30%, Sw = 95%). P-wave velocity (left), S-wave velocity (centre) and density (right).
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Figure 6.3: The synthetic seismogram obtained by waveform modelling with Aki-Richards approxim-
ation. An earth model with an oil and water saturated reservoir section.
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Observed seismic data:
dobs = dtrue + e
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object function: J (m)
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Solve the object function by:
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)−1(
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)

Choose L as a
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Set λ0 = Sn and λ1 = 2 · λ0

for S = 0.8 and n = 1.

Solve the object function for
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Calculate the misfit: ||Gmλ − dobs||
and the norm of the noise: ||e||

Continue if ||e|| ≥
||Gmλ − dobs||,

otherwise
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regularization.

n = n + 1

Pick a time sample from the inver-
ted model that defines the observed

elastic reservoir properties: mobs

Do a rock physics inver-
sion by an unconstrained
least squares procedure.

Figure 6.4: A work flow for a classical approach to a two step inversion with a prior model. The first
inversion step is from AVA data for a stratified earth model to an elastic 1D model using Tikhonov
inversion with prior. The second inversion step is from a time sample corresponding to the reservoir
section to water saturation and porosity by an unconstrained least squares procedure.
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Figure 6.5: Selection of the regularization parameters for the penalty functionals in the Tikhonov
solution. Every iteration, n, reduces the them exponentially as: λ0 = Jn and λ1 = 2 · λ0. The red
dotted line is a threshold which marks the norm of the gaussian data errors. A model with an oil and
water saturated reservoir section: Case 1 (top), case 2 (center) and case 3 (bottom).
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Figure 6.6: The inverted model (solid blue line), the true model (solid red) and the prior model (dashed
green lines). A case with the noise level set to σ2

d = (10−5 ·max |d|)2
(case 1a).
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Figure 6.7: The inverted model (solid blue line), the true model (solid red) and the prior model (dashed
green lines). A case with the noise level set to σ2

d = (10−4 ·max |d|)2
(case 2a).
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Figure 6.8: The inverted model (solid blue line), the true model (solid red) and the prior model (dashed
green lines). A case with the noise level set to σ2

d = (10−3 ·max |d|)2
(case 3a).
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Iterate (Sw, φ)

Calculate posterior and
marginal distributions of
Sw and φ from J (Sw,φ).

Figure 6.9: A work flow for a Bayesian approach to a two step inversion. The first inversion step is from
AVA data for a stratified earth model to an elastic 1D model using a linearized Bayesian procedure for
minimization. The second inversion step is from a time sample corresponding to the reservoir section
to water saturation and porosity by an nonlinear Bayesian inversion with an uninformative prior.
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Figure 6.10: The map solution (solid blue line) with 95% prediction intervals (dashed blue lines)
and 95% prediction intervals for the prior model (dashed green lines). A model with an oil and
water saturated reservoir section (φ = 30%, Sw = 95%) (solid red line) and the noise level set to
σ2

d = (10−5 ·max |d|)2
(case 1b).
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Figure 6.11: The map solution (solid blue line) with 95% prediction intervals (dashed blue lines)
and 95% prediction intervals for the prior model (dashed green lines). A model with an oil and
water saturated reservoir section (φ = 30%, Sw = 95%) (solid red line) and the noise level set to
σ2

d = (10−4 ·max |d|)2
(case 2b).
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Figure 6.12: The map solution (solid blue line) with 95% prediction intervals (dashed blue lines)
and 95% prediction intervals for the prior model (dashed green lines). A model with an oil and
water saturated reservoir section (φ = 30%, Sw = 95%) (solid red line) and the noise level set to
σ2

d = (10−3 ·max |d|)2
(case 3b).
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Figure 6.13: The rock physics inversion for a model with an oil and water saturated reservoir section
(φ = 30%, Sw = 95%) (solid red lines) and the noise level set to σ2

d = (10−5 ·max |d|)2
case (1b). The

posterior distribution (top), marginal distribution of saturation (center) and marginal distribution of
porosity (bottom). A Bayesian approach to a two-step inversion was adopted.
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Figure 6.14: The rock physics inversion for a model with an oil and water saturated reservoir section
(φ = 30%, Sw = 95%) (solid red lines) and the noise level set to σ2

d = (10−4 ·max |d|)2
(case 2b). The

posterior distribution (top), marginal distribution of saturation (center) and marginal distribution of
porosity (bottom). A Bayesian approach to a two-step inversion was adopted.



94 Two-step inversion methods

0 0.2 0.4 0.6 0.8 1

0
0.1

0.2
0.3

0.4
0

20

40

S w (% )φ (% )

P
o
st
e
ri
o
r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

M
a
rg

in
a
l

S w (% )

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

M
a
rg

in
a
l

φ (% )

Figure 6.15: The rock physics inversion for a model with an oil and water saturated reservoir section
(φ = 30%, Sw = 95%) (solid red lines) and the noise level set to σ2

d = (10−3 ·max |d|)2
(case 3b). The

posterior distribution (top), marginal distribution of saturation (center) and marginal distribution of
porosity (bottom). A Bayesian approach to a two-step inversion was adopted.



Chapter 7

Concluding remarks and suggestions for

future work

7.1 Concluding remarks

The main topic of this thesis was to perform inversion of seismic AVA data to saturation and porosity

using a rock physics model. Along with this, three secondary objectives were investigated. First, the

effect of the error introduced by Aki-Richards approximation in AVA modelling for determination of

saturation and porosity by a one-step inversion procedure. Secondly, the effect of spatial variations

in crack density for determination of saturation and porosity. Following this, two-step inversions

algorithms from AVA data to stratified elastic earth models with a reservoir section and on to saturation

and porosity were demonstrated.

It was demonstrated that the deviation from the exact reflection coefficient increases as the angle of

incidence increases. The error depends on the combination of relative contrasts in elastic properties.

There are other modelling errors which have not been taking into account in this thesis: First, the

incident angles and the coefficients in both the Zoeppritz equations and Aki-Richards approximation

need to be assessed prior to AVA inversion (Yilmaz, 2001). Secondly, rocks often are often weakly

anisotropic due to preferred orientation of features such as the presence of clay minerals and cracks

(Hornby et al., 1994; Thomsen, 1993). However, this is beyond the scope of this thesis since they

would severely increase the complexity of the modelling and the inversion.

Inversion tests from AVA data to saturation and porosity using either Aki-Richards approximation or

the full Zoeppritz equations were performed. The accuracy of the estimates depended on the relative

contrasts in elastic properties as well as the sensitivity of the effective elastic reservoir properties for

varying saturation and porosity. It was found that it is generally safer to use the Zoeppritz equations for

both water saturation and porosity. However, Aki-Richards approximation gave satisfactory results

for porosity estimates in a less computationally expensive manner. The sensitivity of the effective
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elastic reservoir properties with varying saturation and porosity pose a major uncertainty in this

analysis. Another choice of rock physics model would change the outcome. Also, for a given rock

physics model, the static reservoir parameters provide a second complication as one would expect

uncertainties associated with spatial variability and measurement errors. This was demonstrated for

a reservoir with variable crack density.

Finally, two-step inversion procedures were tested on AVA data that had been modelled for a stratified

elastic earth model with a reservoir section. The first inversion step was from AVA data to effective

elastic reservoir parameters and the second inversion step was from effective elastic reservoir parameters

to water saturation and porosity. Prior models were therefore included as additional information into

the objective functions. The inversions were then successful for the two lowest noise levels. A Bayesian

two-step inversion algorithm provided an excellent framework for statistical analysis. However, it is not

always feasible to justify characterizing the prior information probabilistically. The classical approach

to a two-step algorithm was a viable alternative, but it does not provide the same framework for

statistical analysis of the inversion results. There also exists methods for assessing confidence intervals

for the inverted model in a classical interpretation of uncertainty (Aster et al., 2005). However, the bias

introduced by the regularization may cause us to severely underestimate the uncertainty (Van Wijk

et al., 2002). Also, where the classical approach requires a separate analysis, all questions about model

resolution are answered by the posterior PDFs in a Bayesian setting.

7.2 Suggestions for further work

A suggestion for further work would be to incorporate shear and mode converted waves into a joint

AVA inversion procedure for rock physics parameters. A further aim could be to extend a two-step

inversion algorithm to time-lapse AVA inversion for changes in saturation and pressure. Alternatively

joint inversion of PP-reflection AVA data and CSEM data for determination of saturation and porosity

could have been investigated. Also, it would be interesting to implement a rock physical model that

incorporates second order effects.
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Appendix A

Matlab scripts

The scripts that have been used in this thesis have been coded in Matlab. The majority of them
have been coded by the author with some exemptions: I wish to thank Associate Professor Henk Keers
for the script for plotting the seismogram and the script for calculating Gaussian autocorrelations (not
included). Further, Professor Morten Jakobsen have contributed with a script for calculating the G-
tensor, ’G iso’, and the isotropic average, ’iso av’. Finally, the script to compute discrete derivative
operators, ’get l’, have been coded by Per Christian Hansen.

A.1 Rock physics modelling

function [Vp_eff,Vs_eff,rho_eff]= effective_properties(P_d,v1,S_f1,K_f1,...

rhof1,K_f2,rhof2)

%QUARTZ MATRIX

K0 = 37E9;%Pa

my0 = 16.6E9;%Pa

rho0 = 2670.6;%kg/m^3

ap_c=0.001;%initial aspect ratio of cracks

ap_p=1;%aspect ratio of pores

poisson= (3*K0-2*my0)/(6*K0+2*my0);

P_0 = 18.8E6;%reference differential pressure

eps_0 = 0.9;%crack density at zero differential pressure

epsilon = eps_0*exp(-(P_d/(P_0)));

%FRAME MODULI

c11 = K0+(4/3)*my0;

c44 = my0;

c12 = c11-2*c44;

I= eye(6);

c0 = [c11 c12 c12 0 0 0;

c12 c11 c12 0 0 0;

c12 c12 c11 0 0 0;

0 0 0 2*c44 0 0;

0 0 0 0 2*c44 0;
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0 0 0 0 0 2*c44];%2 factor for matrix inversion

s0 = inv(c0);

G1= G_iso(c0,ap_p,poisson);

k1= iso_av((I+G1*c0)\s0);

G2= G_iso(c0,ap_c,poisson);

k2 = iso_av((I+G2*c0)\s0);

v2 = (4/3)*pi*epsilon*ap_c;%crack volume (very small)

fi = v1 + v2;%total porosity

s_eff= s0+v1*k1+v2*k2;

c_eff= inv(s_eff);

%frame moduli(see. AULD p. 169)

my= c_eff(4,4)/2;

K= c_eff(1,1)-(4/3)*my;

%UNDRAINED MODULI

%Wood (p.176 Rock Physics handbook)

S_f2= 1-S_f1;

K_f = 1/((S_f1/K_f1)+(S_f2/K_f2));

rho_f = rhof1*S_f1+rhof2*S_f2;

%Gassmann

alfa= 1-(K/K0);

K_u= K+((alfa^2)/((fi/K_f)+((alfa-fi)/K0)));

%my undrained is identical to the frame moduli

%EFFECTIVE PROPERTIES

rho_eff= rho0*(1-fi)+rho_f*fi;

Vp_eff=sqrt((K_u+(4/3)*my)/rho_eff);

Vs_eff=sqrt(my/rho_eff);

%

% input - stiffness tensor C

% - aspect ratio a

% - poisson ratio v

%

% return - G tensor

%

function ans = G_iso(C,a,v)

if a==1

S11 = ((5*v-1)/15*(1-v))*(1)+((4-5*v)/(15*(1-v)))*(2);

S33 = ((5*v-1)/15*(1-v))*(1)+((4-5*v)/(15*(1-v)))*(2);

S12 = ((5*v-1)/15*(1-v))*(1);

S13 = ((5*v-1)/15*(1-v))*(1);

S31 = ((5*v-1)/15*(1-v))*(1);

S66 = ((4-5*v)/(15*(1-v)));

S44 = ((4-5*v)/(15*(1-v)));

else

b = (a*a)/(a*a-1);

q = (a/((1-a*a)^(3/2)))*(acos(a)-a*(sqrt(1-a*a)));

S11 = (3/(8*(1-v)))*b+(1/(4*(1-v)))*(1-2*v-(9/(4*(a*a-1))))*q;

S33 = (1/(2*(1-v)))*(1-2*v+(3*a*a-1)/(a*a-1)-(1-2*v+3*b)*q);
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S12 = (1/(4*(1-v)))*((1/2)*b-(1-2*v+(3/(4*(a*a-1))))*q);

S13 = (1/(2*(1-v)))*(-b+(1/2)*(3*b-(1-2*v))*q);

S31 = (1/(2*(1-v)))*(2*v-1-1/(a*a-1)+(1-2*v+(3/(2*(a*a-1))))*q);

S66 = (1/(4*(1-v)))*((1/2)*b+(1-2*v-(3/(4*(a*a-1))))*q);

S44 = (1/(4*(1-v)))*(1-2*v-((a*a+1)/(a*a-1))-(1/2)*(1-2*v-3*((a*a+1)/(a*a-1)))*q);

end

S=[

S11 S12 S13 0 0 0;

S12 S11 S13 0 0 0;

S31 S31 S33 0 0 0;

0 0 0 2*S44 0 0;

0 0 0 0 2*S44 0;

0 0 0 0 0 2*S66;

];

ans = -S*inv(C);

function ans = iso_av(t);

% February 1, 2001.

% Input is a fourth-rank tensor t

% Output is the orientation avarage of the tensor t.

lambda = (t(1,1)+t(3,3)+5*t(1,2)+8*t(1,3)-2*t(4,4))/15;

mu = (7*t(1,1)+2*t(3,3)-5*t(1,2)-4*t(1,3)+6*t(4,4))/30;

c11 = lambda + 2*mu;

c12 = lambda;

c44 = mu;

ans = [

c11 c12 c12 0 0 0;

c12 c11 c12 0 0 0;

c12 c12 c11 0 0 0;

0 0 0 2*c44 0 0;

0 0 0 0 2*c44 0;

0 0 0 0 0 2*c44;

];

A.2 AVA modelling and one-step inversion

%Nonlinear Bayesian inversion with an uninformative prior for saturation

%and porosity

%MODEL PARAMETERS

dt=0.004;%sampling interval(sec)

NR = 0.05;%noise as percentage of max amplitude

theta = 0:2:40;

NA = length(theta);
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dfi = 0.0025;

fi_p = 0:dfi:0.4;

dSw=0.025;

Sw=0:dSw:1;

Pd = 2E6;

fluids = struct(’water’,{2173.9E6 997.9},’gas’,{35.9E6 221.5},...

’oil’,{409.85E6 671});

[K_f1,rhof1] = fluids.water;

[K_f2,rhof2] = fluids.oil;

[K_f3,rhof3] = fluids.gas;

%Overburden

vp_s = 3150;

vs_s = 1900;

rho_s = 2500;

%ROCK PHYSICS FORWARD MODELLING

N = length(fi_p);

M = length(Sw);

%oil and water

vp = zeros(N,M);

vs = zeros(N,M);

rho = zeros(N,M);

%gas and water

vp2 = zeros(N,M);

vs2 = zeros(N,M);

rho2 = zeros(N,M);

for n = 1:N

for m = 1:M

[vp(n,m),vs(n,m),rho(n,m)] = effective_properties(Pd,...

fi_p(n),Sw(m),K_f1,rhof1,K_f2,rhof2);

[vp2(n,m),vs2(n,m),rho2(n,m)] = effective_properties(Pd,...

fi_p(n),Sw(m),K_f1,rhof1,K_f3,rhof3);

end

end

%(plot variations of elastic parameters with saturation and porosity)

%Variations of reflection coefficients with saturation and porosity

%for fixed angles

N = length(fi_p);

M = length(Sw);

for n = 1:N

for m = 1:M

vp_trial = [vp_s vp(n,m)];

vs_trial = [vs_s vs(n,m)];

rho_trial = [rho_s rho(n,m)];

vp_trial2 = [vp_s vp2(n,m)];

vs_trial2 = [vs_s vs2(n,m)];

rho_trial2 = [rho_s rho2(n,m)];
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%oil and water

[raki_near(n,m),rzoepp_near(n,m)] = getreflection(theta(1),vp_trial...

,vs_trial,rho_trial);

[raki_mid(n,m),rzoepp_mid(n,m)] = getreflection(theta(11),vp_trial...

,vs_trial,rho_trial);

[raki_far(n,m),rzoepp_far(n,m)] = getreflection(theta(21),vp_trial...

,vs_trial,rho_trial);

%gas and water

[raki_near2(n,m),rzoepp_near2(n,m)] = getreflection(theta(1),...

vp_trial2,vs_trial2,rho_trial2);

[raki_mid2(n,m),rzoepp_mid2(n,m)] = getreflection(theta(11)...

,vp_trial2,vs_trial2,rho_trial2);

[raki_far2(n,m),rzoepp_far2(n,m)] = getreflection(theta(21)...

,vp_trial2,vs_trial2,rho_trial2);

end

end

%(plot variations of reflection coefficients with saturation and porosity

%for fixed angles here)

%LOOP OVER SELECTED CASES

for sat_index = [5 21 39]

for phi_index = [41 121]

%velocity models

vp_o = [vp_s vp(phi_index,sat_index)];

vs_o = [vs_s vs(phi_index,sat_index)];

rho_o = [rho_s rho(phi_index,sat_index)];

vp_g = [vp_s vp2(phi_index,sat_index)];

vs_g = [vs_s vs2(phi_index,sat_index)];

rho_g = [rho_s rho2(phi_index,sat_index)];

%reflection coefficients

thetao = asind(vp_o(1)/vp_o(2));

I = theta <=thetao;

thetao = theta(I);

NA = length(thetao);

[raki_o,rzoepp_o] = getreflection(thetao,vp_o,vs_o,rho_o);

rpp_o = rzoepp_o(1:NA);

rppaki_o = raki_o(1:NA);

drpp_o = (rpp_o-rppaki_o)./rpp_o*100;

thetag = asind(vp_g(1)/vp_g(2));

I = theta <=thetag;

thetag = theta(I);

NA2 = length(thetag);

[raki_g,rzoepp_g] = getreflection(thetag,vp_g,vs_g,rho_g);

rpp_g = rzoepp_g(1:NA2);

rppaki_g = raki_g(1:NA2);

drpp_g = (rpp_g-rppaki_g)./rpp_g*100;
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%(plot comparisons of reflections coefficients here)

%BAYESIAN INFERENCE

%oil and water pore fluid

%add noise

std_inv = NR*abs(rpp_o);

%data covariance matrix

Cd_o = diag(std_inv.^-2);

%MARGINAL DISTRIBUTIONS: Uninformative prior, but known overburden

[m1aki_o,m2aki_o,m1zoepp_o,m2zoepp_o,postaki_o,postzoepp_o] =...

getmarginals2(rpp_o,Cd_o,fi_p,Sw,thetao,vp_o,vs_o...

,rho_o,vp,vs,rho);

%gas and water pore fluid

%add noise

std_inv = NR*rpp_g;

%data covariance matrix

Cd_g = diag(std_inv.^-2);

%MARGINAL DISTRIBUTIONS: Uninformative prior, but known overburden

[m1aki_g,m2aki_g,m1zoepp_g,m2zoepp_g,postaki_g,postzoepp_g] = ...

getmarginals2(rpp_g,Cd_g,fi_p,Sw,thetag,vp_g...

,vs_g,rho_g,vp2,vs2,rho2);

%(plot posterior and marginal PDFs here)

end

end

function [raki,rzoepp] = getreflection(theta,vp,vs,rho)

NA=length(theta);

vs_ave = 0.5*(vs(1)+vs(2));

vp_ave = 0.5*(vp(1)+vp(2));

rho_ave= 0.5*(rho(1)+rho(2));

vp_diff= vp(2)-vp(1);

vs_diff= vs(2)-vs(1);

rho_diff= rho(2)+rho(1);

ave = vs_ave/vp_ave;

ave_sq = ave^2;

%Make empty arrays

A_11 = zeros(NA,1);

A_12 = zeros(NA,1);

A_13 = zeros(NA,1);

A = cell(1,3);

rpp = zeros(NA,1);

for n=1:NA

%AKI-RICHARDS

A_11(n) = 0.5*(1+(tand(theta(n)))^2);%App - vp

A_12(n) = -4*ave_sq*(sind(theta(n))^2);%App - vs

A_13(n) = 0.5*(1-4*ave_sq*(sind(theta(n))^2));%App - rho

%Solve the Zoeppritz equations for an incident angle



AVA modelling and one-step inversion 107

coeff = zoeppritz(theta(n),rho(1),rho(2),vs(1),vs(2),vp(1),vp(2));

rpp(n) = coeff(1);

end

A{1,1} = A_11;

A{1,2} = A_12;

A{1,3} = A_13;

A = cell2mat(A);

%TRUE DATA

c=[vp_diff/vp_ave; vs_diff/vs_ave; rho_diff/rho_ave];%contrast vector

raki = A*c;

rzoepp = [rpp;];

%The medium parameters for the layers above and below the interface are

%input to the function. It will return the corresponding reflection and

%transmission coefficients. See Auld

function coeff=zoeppritz(theta,rho1,rho2,v_s1,v_s2,v_p1,v_p2)

theta = theta/180*pi;

%REFLECTED AND TRANSMITTED ANGLES FOR INCIDENT P-WAVE

%reflected p-wave

theta_l1 = theta;

%reflected s-wave

theta_s1 = asin((v_s1/v_p1)*sin(theta));

%transmitted p-wave

theta_l2 = asin((v_p2/v_p1)*sin(theta));

%transmitted s-wave

theta_s2 = asin((v_s2/v_p1)*sin(theta));

%ZOEPPRITZ MATRIX

A = zeros(4,4);

%The Zoeppritz matrix for a P incident wave is identical to the matrix for

%an incident SV wave.

Z1 = rho1*v_p1;

Z2 = rho2*v_p2;

W1 = rho1*v_s1;

W2 = rho2*v_s2;

a1 = (v_p1/v_s1);

b1 = v_s2*v_p1*W2/(v_p2*v_s1*W1);

c1 = v_p1*W2/(v_s1*W1);

a2 = v_s1/v_p1;

b2 = Z2/Z1;

c2 = W2/Z1;

A(1,1) = sin(theta_l1);

A(1,2) = cos(theta_s1);

A(1,3) = -sin(theta_l2);

A(1,4) = cos(theta_s2);

A(2,1) = cos(theta_l1);

A(2,2) = -sin(theta_s1);

A(2,3) = cos(theta_l2);

A(2,4) = sin(theta_s2);
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A(3,1) = sin(2*theta_l1);

A(3,2) = a1*cos(2*theta_s1);

A(3,3) = b1*sin(2*theta_l2);

A(3,4) = -c1*cos(2*theta_s2);

A(4,1) = cos(2*theta_s1);

A(4,2) = -a2*sin(2*theta_s1);

A(4,3) = -b2*cos(2*theta_s2);

A(4,4) = -c2*sin(2*theta_s2);

%The left hand side of the equations from the boundary conditions differ

%from the SV wave

b_p =[-sin(theta_l1);

cos(theta_l1);

sin(2*theta_l1);

-cos(2*theta_s1)];

%REFLECTION AND TRANSMISSION COEFFICIENTS

%p-ref,s-ref,p-trans,s-trans

coeff= A\b_p;

function [m1aki,m2aki,m1zoepp,m2zoepp,postaki,postzoepp] =getmarginals2(...

rpp,Cd_inv,m1,m2,theta,vp_true,vs_true,rho_true,vp,vs,rho)

%make empty arrays

N = length(m1);%porosities

M = length(m2);%saturations

NA = length(theta);%angles

J1 = zeros(N,M);

J2 = zeros(N,M);

obj1 = zeros(N,M);

obj2 = zeros(N,M);

for n = 1:N

for m = 1:M

%elastic model

vp_trial = [vp_true(1) vp(n,m)];

vs_trial = [vs_true(1) vs(n,m)];

rho_trial = [rho_true(1) rho(n,m)];

%reflection coefficients

[raki_trial,rzoepp_trial] = getreflection(theta,vp_trial,...

vs_trial,rho_trial);

rppaki_trial = raki_trial(1:NA);

rpp_trial = rzoepp_trial(1:NA);

%Objective function for Aki-Richards

J1(n,m) = 1/2*((rppaki_trial-rpp)’*Cd_inv*...

(rppaki_trial-rpp));

obj1(n,m) = exp(-J1(n,m));

%Objective function exact Zoeppritz

J2(n,m) = 1/2*((rpp_trial-rpp)’*Cd_inv*...

(rpp_trial-rpp));

obj2(n,m) = exp(-J2(n,m));

end
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end

%numerical integration according to the trapezoidal rule

%define the integration intervals

b1 = max(m1);

a1 = min(m1);

b2 = max(m2);

a2 = min(m2);

h1 = (b1-a1)/(N-1);%porosity partitions

h2 = (b2-a2)/(M-1);%saturation partitions

%the first objective function

int1 = h1/2*sum(obj1(2:N,:)+obj1(1:(N-1),:),1);%integrate over porosity

int2 = h2/2*sum(int1(1,2:M)+int1(1,1:(M-1)),2);%integrate over saturation

const1 = 1/int2;

postaki = const1*obj1;

%the second objective function

int1 = h1/2*sum(obj2(2:N,:)+obj2(1:(N-1),:),1);%integrate over porosity

int2 = h2/2*sum(int1(1,2:M)+int1(1,1:(M-1)),2);%integrate over saturation

const2 = 1/int2;

postzoepp = const2*obj2;

%marginal distribution of saturation

m2aki = const1.*h1/2*sum(obj1(2:N,:)+obj1(1:(N-1),:),1);

%marginal distribution of porosity

m1aki = const1.*h2/2*sum(obj1(:,2:M)+obj1(:,1:(M-1)),2);

%marginal distribution of saturation

m2zoepp = const2.*h1/2*sum(obj2(2:N,:)+obj2(1:(N-1),:),1);

%marginal distribution of porosity

m1zoepp = const2.*h2/2*sum(obj2(:,2:M)+obj2(:,1:(M-1)),2);

%DEFINE THE SPATIAL VARIABILITY OF THE ROCK PHYSICS PARAMETERS

dt=0.004;%sampling interval(sec)

NR = 0.05;%noise as percentage of max amplitude

theta = 0:2:40;

NA = length(theta);

nn = 51;

x = linspace(0,1040,nn);

y = linspace(0,-1040,nn);

[X Y] = meshgrid(x,y);

fluids = struct(’water’,{2173.9E6 997.9},’gas’,{35.9E6 221.5},...

’oil’,{409.85E6 671});

[K_f1,rhof1] = fluids.water;

[K_f2,rhof2] = fluids.oil;

[K_f3,rhof3] = fluids.gas;

rphi = 0.3;

reps = 0.8533;

nres = nn-1;

phi_res = gaussianphi(rphi,nres);

cracd_res = gaussianeps(reps,nres);

Sw_res = cracd_res;



110 Matlab scripts

dummy = Sw_res >= reps;

dummy2 = Sw_res < reps;

dummy = dummy*0.1;

dummy2 = dummy2*0.5;

Sw_res = dummy + dummy2;

%DISCRITIZE THE MODEL SPACE

dphi = 0.005;

phii = 0:dphi:0.4;

dSw=0.025;

Swi=0:dSw:1;

K = length(phii);

L = length(Swi);

vp2 = zeros(K,L);

vs2 = zeros(K,L);

rho2 = zeros(K,L);

for k = 1:K;

for l = 1:L

[vp2(k,l),vs2(k,l),rho2(k,l)] = effective_properties2(reps,phii(k),...

Swi(l),K_f1,rhof1,K_f2,rhof2);

end

end

%FORWARD MODELLING

[N,M] = size(phi_res);

%velocity model with true crack density

vp = zeros(N,M);

vs = zeros(N,M);

rho = zeros(N,M);

%Overburden

vp_s = 3150;

vs_s = 1900;

rho_s = 2500;

Swa = zeros(N,M);

phia = zeros(N,M);

Swa2 = zeros(N,M);

phia2 = zeros(N,M);

Swz = zeros(N,M);

phiz = zeros(N,M);

Swz2 = zeros(N,M);

phiz2 = zeros(N,M);

parfor n = 1:N

for m = 1:M

%ROCK PHYSICS

[vp(n,m),vs(n,m),rho(n,m)] = effective_properties2(cracd_res(n,m),...

phi_res(n,m),Sw_res(n,m),K_f1,rhof1,K_f2,rhof2);

%AVA

vpm = [vp_s vp(n,m)];

vsm = [vs_s vs(n,m)];

rhom = [rho_s rho(n,m)];

[raki,rzoepp] = getreflection(theta,vpm,vsm,rhom);

%THE INVERSION
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std = NR*abs(rzoepp);

%data covariance matrix

Cd_inv = diag(std.^-2);

% inversions with constant crack density

[phia(n,m),Swa(n,m),phiz(n,m),Swz(n,m)] = getmap(rzoepp,raki,...

Cd_inv,phii,Swi,theta,vp_s,vs_s,rho_s,vp2,vs2,rho2);

% inversions with variable crack density

[phia2(n,m),Swa2(n,m),phiz2(n,m),Swz2(n,m)] = getmap2(rzoepp,...

raki,Cd_inv,phii,Swi, theta,vp_s,vs_s,rho_s,...

cracd_res(n,m),K_f1,rhof1,K_f2,rhof2);

end

end

A.3 Waveform forward modelling

%ACQUISITION PARAMETERS

dt = 0.002;%data sampling interval(sec)

f0 = 30;%Hz

theta = 0:2:40;

PMA = [10E-5 10E-4 10E-3];

%THE MODEL DISCRETIZATION

dfi = 0.0025;

fi = 0:dfi:0.4;

dSw=0.025;

Sw=0:dSw:1;

fluids = struct(’water’,{2173.9E6 997.9},’gas’,{35.9E6 221.5},...

’oil’,{409.85E6 671});

dz=10;

z = 0:dz:1000;

NZ = length(z);

VP = zeros(NZ,1);

VS = zeros(NZ,1);

RHO = zeros(NZ,1);

%THE RESERVOIR PARAMETERS

[K_f1,rhof1] = fluids.water;

[K_f2,rhof2] = fluids.oil;

P_d = 2E6;

fi_p = 121;%index pore porosity

Sw_true = 39;%index water saturation

%ROCK PHYSICS FORWARD MODELLING

N = length(fi);

M = length(Sw);

for n = 1:N

for m = 1:M

[vp(n,m),vs(n,m),rho(n,m)] = effective_properties2(P_d,...

fi(n),Sw(m),K_f1,rhof1,K_f2,rhof2);

end
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end

%THE ELASTIC MODEL IN DEPTH

VP(1:30) = 3050;

VS(1:30) = 1800;

RHO(1:30) = 2470;

VP(31:50) = 3120 + 30/40*[1:20];

VS(31:50) = 1870 + 30/40*[1:20];

RHO(31:50) = 2490 + 10/40*[1:20];

VP(51:91) = vp(fi_p,Sw_true);

VS(51:91) = vs(fi_p,Sw_true);

RHO(51:91) = rho(fi_p,Sw_true);

VP(92:end) = 3120;

VS(92:end) = 1870;

RHO(92:end) = 2490;

%THE ELASTIC MODEL IN TIME

T = zeros(NZ,1);

delta_t= dz./(0.5*(VP(1:NZ-1)+VP(2:NZ)));%travel time through each grid block

T(2:end) = cumsum(delta_t,1);%cumulative traveltime for each grid point

%(PLOT THE ELASTIC MODEL IN TIME)

%interpolate from T to t

NT = ceil(max(max(T))/dt +1);%number of time steps for our sampling interval

t = 0:dt:(NT-1)*dt;%time vector with a constant sampling interval in time

vpi = interp1(T,VP,t’,’nearest’,’extrap’);

vsi = interp1(T,VS,t’,’nearest’,’extrap’);

rhoi = interp1(T,RHO,t’,’nearest’,’extrap’);

%The model parameters

m = [log(vpi)’ log(vsi)’ log(rhoi)’]’;

%COMPUTE THE DIFFERENCE MATRIX

D = block_l(NT,3);

%WEAK CONTRAST REFLECTION COEFFICIENT APPROXIMATION

%Find the incident angles for each reflector

NA=length(theta);

%Calculate the coefficients that depend on the background model

aa=(vsi./vpi).^2;

%Make empty arrays and matrices

A = cell(NA,3);

%Diagonal matrices

A_vp = zeros(NT,NT-1);

A_vs = zeros(NT,NT-1);

A_rho = zeros(NT,NT-1);

for n=1:NA;



Waveform forward modelling 113

%First layer

for nt = 1:NT-1

A_vp(nt,nt) = 0.5*(1+(tand(theta(n)))^2);

A_vs(nt,nt) = -4*aa(nt)*(sind(theta(n))^2);

A_rho(nt,nt) = 0.5*(1-4*aa(nt)*(sind(theta(n))^2));

end

%Store in cell array

A{n,1} = sparse(A_vp);

A{n,2} = sparse(A_vs);

A{n,3} = sparse(A_rho);

end

A = cell2mat(A);

%B. D. WAVELET MATRIX

W = blockwavelet(dt,f0,NT,NT,NA);

W = full(W);

%THE CONVOLUTION

%Multi-trace convolutional model with block matrices

r_true = A*D*m;

G = (W*A*D);

d_aki = G*m;

%PLOT THE SEISMOGRAMS

plotseismograms(d_aki,theta,dt)

function [L,W] = get_l(n,d)

%GET_L Compute discrete derivative operators.

%

% [L,W] = get_l(n,d)

%

% Computes the discrete approximation L to the derivative operator

% of order d on a regular grid with n points, i.e. L is (n-d)-by-n.

%

% L is stored as a sparse matrix.

%

% Also computes W, an orthonormal basis for the null space of L.

% Per Christian Hansen, IMM, 02/05/98.

% Initialization.

if (d<0), error (’Order d must be nonnegative’), end

% Zero’th derivative.

if (d==0), L = speye(n); W = zeros(n,0); return, end

% Compute L.

c = [-1,1,zeros(1,d-1)];

nd = n-d;

for i=2:d, c = [0,c(1:d)] - [c(1:d),0]; end
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L = sparse(nd,n);

for i=1:d+1

L = L + sparse(1:nd,(1:nd)+i-1,c(i)*ones(1,nd),nd,n);

end

% If required, compute the null vectors W via modified Gram-Schmidt.

if (nargout==2)

W = zeros(n,d);

W(:,1) = ones(n,1);

for i=2:d, W(:,i) = W(:,i-1).*(1:n)’; end

for k=1:d

W(:,k) = W(:,k)/norm(W(:,k));

W(:,k+1:d) = W(:,k+1:d) - W(:,k)*(W(:,k)’*W(:,k+1:d));

end

end

function W = blockwavelet(dt,f0,NT,NM,NA)

%Make an array for the non-empty diagonal blocks. Copy the contents of the

%linear convolution matrix onto each of the cells. Then make a block

%diagonal array of them.

wavelet = ricker(dt,f0);

NR = length(wavelet);

conv_mat = zeros((NR+NT)-1,NM);%Linear convolution matrix. Extend the

%shortest time series with zeros

for k = 1:(NM)

j = NR+(k-1);

conv_mat(k:j,k) = wavelet’;

end

W = cell(1,NA);

[W{:}] = deal(sparse(conv_mat));

W = blkdiag(W{:});

function wavelet=ricker(dt,f0)

%f0=center frequency of the source (Hz)

%dt sampling interval

%parameters

T=0.5;

b=(sqrt(6)/pi)/f0;%breadth of ricker wavelet (ms)

t=0:dt:T;

%output

ricker=(1-2*pi^2*f0^2.*(t-b).^2).*exp(-pi^2*f0^2*(t-b).^2);

%Keep nonzero components of source wavelet

m=0;

l=1;

while m==0

if abs(ricker(l))<0.0001 && abs(ricker(l+1))<0.0001

last_index=l-1;

m=1;

end
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l=l+1;

end

%output

wavelet=ricker(1:last_index);

A.4 Two-step inversion algorithms

%TWO-STEP INVERSION

for nl = 1:length(PMA)

%THE PRIOR MODEL

P = polyfit(t’,vpi,3);

mu_vp = polyval(P,t’);

mu_vp = log(mu_vp);

P = polyfit(t’,vsi,3);

mu_vs = polyval(P,t’);

mu_vs = log(mu_vs);

P = polyfit(t’,rhoi,3);

mu_rho = polyval(P,t’);

mu_rho = log(mu_rho);

mu_mp = [mu_vp’ mu_vs’ mu_rho’]’;

%THE DATA UNCERTAINTIES

var_n = (PMA(nl)*max(abs(d_aki)))^2;

d_n = sqrt(var_n)*rand(size(d_aki));

eta = norm(d_n);%norm of the error

d_obs = d_aki+ d_n;

%ZEROTH + SECOND ORDER TIKHONOV INVERSION WITH PRIOR

L = block_l2(NT,3);%Roughening matrix

J = 0.8;%Decay constant in regularization parameter

NIT = 100;

lam0 = zeros(NIT,1);

lam1 = zeros(NIT,1);

data_misfit = zeros(NIT,1);

for iter = 1:NIT

lam0(iter) = J^iter;

lam1(iter) = 2*lam0(iter);

m_bf = inv(G’*G + lam0(iter)^2*eye(size(G’*G)) + lam1(iter)^2*...

L’*L)*(G’*d_obs + lam0(iter)^2*eye(size(G’*G))*mu_mp);

data_misfit(iter) = norm(G*m_bf-d_obs);

if eta >= data_misfit(iter)

break

end

end

%(plot resolution matrix and choice of regularization parameters)

m_bf = exp(m_bf);

m_bf = reshape(m_bf,NT,3);

mu_mp = exp(mu_mp);

mu_mp = reshape(mu_mp,NT,3);
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%(plot inverted elastic model)

%INVERSION FROM ELASTIC EARTH MODEL TO SATURATION AND POROSITY

I = find(vpi == vp(fi_p,Sw_true));

II = round(median(I));%pick a sample in the middle of the reservoir

m_res = m_bf(II,:);

J = zeros(N,M);

for n = 1:N

for m = 1:M

m_trial = [vp(n,m) vs(n,m) rho(n,m)]’;

%Objective function for Aki-Richards

J(n,m) = 0.5*(m_trial-m_res’)’*(m_trial-m_res’);

end

end

%find the minimum of the objective function

[~,ind] = min(J(:));

[k,l] = ind2sub(size(J),ind);

fi_inv = fi(k)

Sw_inv = Sw(l)

end

function L = block_l2(NT,no_m)

%GET_L Compute discrete derivative operators.

L = cell(1,no_m);

[diffmat,W] = get_l(NT,2);

[L{:}]=deal((diffmat));

L=blkdiag(L{:});

L = full(L);

%THE BAYESIAN INVERSION TWO-STEP

for nl = 1:3%loop over noise level

% PRIOR INFORMATION

P = polyfit(t’,vpi,3);

mu_vp = polyval(P,t’);

mu_vp = log(mu_vp);

P = polyfit(t’,vsi,3);

mu_vs = polyval(P,t’);

mu_vs = log(mu_vs);

P = polyfit(t’,rhoi,3);

mu_rho = polyval(P,t’);

mu_rho = log(mu_rho);

mu_mp = [mu_vp’ mu_vs’ mu_rho’]’;

var_mp = 0.05^2;

C_mp = eye(length(mu_mp))*var_mp;

%Observed data zero mean Gaussian noise

var_n = (PMA(nl)*max(abs(d_aki)))^2;

C_dobs = eye(length(d_aki))*(var_n);

%THE FIRST INVERSION STEP

%MAP solution



Two-step inversion algorithms 117

C_mpinv = inv(C_mp);

C_dinv = eye(length(d_aki))*(var_n).^-1;

C_map = inv(G’*C_dinv*G + C_mpinv);

m_map = (G’*C_dinv*G + C_mpinv)\(G’*C_dinv*d_aki + C_mpinv*mu_mp);

%Confidence intervals

%posterior

var_map = diag(C_map);

sigma_map = sqrt(var_map);

dummy = abs(exp(m_map-1.96*sigma_map)-exp(m_map));

confint = [exp(m_map-1.96*sigma_map) exp(m_map) exp(m_map+1.96*sigma_map)];

confint_vp = confint(1:NT,:);

confint_vs = confint((NT+1):2*NT,:);

confint_rho = confint((2*NT+1):3*NT,:);

%prior

sigma_mp = sqrt(var_mp);

dummy2 = abs(exp(mu_mp-1.96*sigma_mp)-exp(mu_mp));

cimp = [exp(mu_mp-1.96*sigma_mp) exp(mu_mp) exp(mu_mp+1.96*sigma_mp)];

cimp_vp = cimp(1:NT,:);

cimp_vs = cimp((NT+1):2*NT,:);

cimp_rho = cimp((2*NT+1):3*NT,:);

%reduction in confidence intervals

red_vp = (mean(dummy2(1:NT))-mean(dummy(1:NT)))...

/mean(dummy2(1:NT))*100

red_vs = (mean(dummy2((NT+1):2*NT))-mean(dummy((NT+1):2*NT)))/...

mean(dummy2((NT+1):2*NT))*100

red_rho = (mean(dummy2((2*NT+1):3*NT))-mean(dummy((2*NT+1):3*NT)))/...

mean(dummy2((2*NT+1):3*NT))*100

%THE SECOND INVERSION STEP

I = find(vpi == vp(fi_p,Sw_true));

II = round(median(I));%pick a sample in the middle of the reservoir

var_res = (dummy/1.96).^2;

var_res = reshape(var_res,NT,3);

var_res = var_res(II,:);

m_res = reshape(exp(m_map),NT,3);

m_res = m_res(II,:);

[posterior,Sw_marg,fi_marg] = getmarginals(vp,vs,rho,fi,Sw,m_res,...

var_res);

%(plot the MAP solution here)

%(Plot posterior and marginal PDFs here)

end

function [posterior,Sw_marg,fi_marg] = getmarginals(vp,vs,rho,fi,Sw,...

m_res,sigma_res)

%make empty arrays

N = length(fi);%porosities

M = length(Sw);%saturations



118 Matlab scripts

J = zeros(N,M);

obj1 = zeros(N,M);

Cd_inv = diag(sigma_res.^-1);

for n = 1:N

for m = 1:M

m_trial = [vp(n,m) vs(n,m) rho(n,m)]’;

%Objective function for Aki-Richards

J(n,m) = 0.5*(m_trial-m_res’)’*Cd_inv*(m_trial-m_res’);

obj1(n,m) = exp(-J(n,m));

end

end

%numerical integration according to the trapezoidal rule

%define the integration intervals

b1 = max(fi);

a1 = min(fi);

b2 = max(Sw);

a2 = min(Sw);

h1 = (b1-a1)/(N-1);%porosity partitions

h2 = (b2-a2)/(M-1);%saturation partitions

%the first objective function

int1 = h1/2*sum(obj1(2:N,:)+obj1(1:(N-1),:),1);%integrate over porosity

int2 = h2/2*sum(int1(1,2:M)+int1(1,1:(M-1)),2);%integrate over saturation

const1 = 1/int2;

posterior = const1*obj1;

%marginal distribution of saturation

Sw_marg = const1.*int1;

%marginal distribution of porosity

fi_marg = const1.*h2/2*sum(obj1(:,2:M)+obj1(:,1:(M-1)),2);


