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Abstract 
 

 

A structural analysis of the northeastern Mohns Ridge situated in the Norwegian-Greenland Sea has 

been conducted using bathymetric data acquired during surveys in 2000 and 2001. Fault pattern and 

volcanic features are interpreted from this bathymetry as well as dip, length and displacement. These 

measurements have further been used to produce fault maps, profiles and models. The study area 

comprises the oblique spreading northern Mohns Ridge, the orthogonal spreading Mohns-Knipovich 

Ridge Bend and the southernmost highly oblique spreading Knipovich Ridge. Spreading rates lie 

between the slow- and ultraslow class of spreading ridges and the ridge is characterized by a deep rift 

valley.  

 

Observations and interpretations of relay structures illustrate how faults link together and grow in both 

horizontal and vertical direction. Maximum displacement-length relation of the study area conforms to 

maximum displacement-length data from continental rift settings and other fault populations in spite of 

differences in crustal thickness and rheology.  

 

The study area has been subdivided at segment scale. Area 1 is situated in between two axial volcanic 

ridges (AVRs) and area 2 has an AVR directly adjacent in the rift valley. Area 1 is characterized by 

rather symmetric fault geometry and in profile the faults are equally spaced and show a slight decrease 

in dip as distance off-axis increases. In contrast area 2 is characterized by great variations in 

topographic expression. It is characterized by several outward facing low-angle detachment faults with 

varying degrees of displacement as well as basins situated off-axis in relation to the detachment fault. 

These outwards facing faults have previously been interpreted to represent core complexes based on 

petrologic data although they are not structurally confined. Analysis has better confined these 

structures and their characteristics and proposed evolutionary models are presented. It is further 

suggested that several evolutionary stages of core complex formation is present in area 2. 

 

The relative thermal state of the lithosphere is inferred to be the main reason for the difference in 

topographic characterization. It is suggested that higher heat flow and lithospheric temperatures at the 

AVRs result in local elevation of the brittle-ductile transition altering the rheological properties. This 

interplay between magmatic (volcanic) and amagmatic (tectonic) accretion is believed to result in 

oceanic core complex formation. Lateral termination of core complexes has not earlier been subject for 

debate. The higher heat flow and lithospheric temperatures in the vicinity of the AVR are believed to 

result in the lateral faults not propagating past the locally elevated brittle-ductile transition. This 

principal appears to conform to data from core complexes identified further south along the Mid-

Atlantic Ridge. 
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1. INTRODUCTION 

 

 

1.1. The study area 

 

The study area is situated in the Norwegian-Greenland Sea and comprises the oblique 

spreading northern Mohns Ridge, the locally orthogonal spreading Mohns-Knipovich 

Ridge Bend as well as the highly oblique spreading southern Knipovich Ridge (red 

box in Figure 1.1).  The ridge system is intermediate between the slow and ultraslow 

class of spreading ridges (Dick et al., 2003), and is therefore not intersected by first 

order transform faults. Instead the ridge is characterized by oblique segments defining 

second order segmentation. The complexity of this area result in several interesting 

features. The most striking is a dome-shaped structure off-axis that is elevated 2600 m 

in comparison to the rift valley. This structure has recently been reported to represent 

an oceanic core complex (Pedersen et al., 2007).  

 

1.2. Main objectives  

 

The data presented in this thesis consists of multibeam bathymetric data that was 

collected on behalf of the Norwegian Oil Directorate in collaboration with the 

University of Bergen in 2000-2001 as part of the “Law of Sea” project. The main 

objectives for this study are: 

 

� Fault population and evolution – the role of relay structures 

� Interplay between magmatic (volcanic) and amagmatic (tectonic) processes - 

comparison of two areas characterized by different heat flow and lithospheric 

temperatures 

� Identify and constrain the presence of  oceanic core complexes in the study 

area 

� Constrain and discuss mechanisms controlling lateral termination of core 

complexes  

 



Chapter 1                                                                                                      Introduction 

 2 

 
Figure 1.1: Depth-coded bathymetric map of the Norwegian-Greenland Sea with following continental 

margins. The red box shows the study area consisting of the northern Mohns Ridge, the Mohns-

Knipovich Ridge and the southern Knipovich Ridge. The ridge segment is delimited by the West Jan 

Mayen Fracture Zone and the Molloy Fracture Zone. IBCAO bathymetric grid is used to generate this 

map (Jakobsson et al., 2008). 
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The objectives described above are to aid in better understanding of fault activity and 

mechanisms, spreading mechanisms and the role of AVRs at slow to ultraslow 

spreading ridges. Thus, the primary objective of the thesis is to better understand the 

tectonic complexity of the study area.  

 

1.3. Approach  

 

The approach has been to define two areas exhibiting different topographic 

expressions and proceed with structural geologic analysis. The results are presented in 

Chapter 4 where results concerning the axial valley for the study area are presented. 

Further the structural geologic results from the western flank for the subdivided areas 

are presented. Following is a section where detailed studies of structural features that 

aid to understanding the aims and objectives for this thesis are presented. The results 

presented in Chapter 4 are further discussed in Chapter 5 in light of the objectives. 
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2. GEOLOGICAL BACKGROUND 

 

 

2.1. Mid-ocean ridges 

 

Mid-ocean ridges are constructive plate boundaries where generation of new oceanic 

crust originates. They have been classified into three different classes (slow, 

intermediate and fast) based on their spreading rates (Macdonald, 1982). Each class 

has distinct morphologic characters (Figure 2.1). Fast spreading ridges have spreading 

rates greater than 90 mm/yr and have an axial high instead of a rift valley and show 

smooth topography with fine-scale horst and graben structures. Intermediate 

spreading ridges have spreading rates of 50 – 90 mm/yr with a 50 – 200 m deep 

median rift. Slow spreading ridges have spreading rates of 10 – 50 mm/yr. They 

exhibit a deep rift valley with depth of 1.5 – 3.0 km and the topography is rough and 

faulted (Macdonald, 1982). 

 
Figure 2.1: Bathymetric profiles for fast, intermediate and slow spreading ridges. PB indicates the 

extent of active faulting, F the zone of fissuring and V the zone of volcanism. Vertical exaggeration is 

4 times. EPR – East Pacific Rise, MAR – Mid Atlantic Ridge (Macdonald, 1982). 

 

The global mid-ocean ridge system is approximately 70.000 km long and the ridges 

are ∼5 to 30 km wide. The mid-ocean ridges are structurally segmented by 
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discontinuities of different magnitude (Macdonald et al., 1988; Macdonald et al., 

1991). First order segmentation is tectonically defined by transform faults that 

separate the spreading axis up to 1000 km and have a duration of ∼10 Ma. The offsets 

are large enough that the lithosphere along the plate boundary behaves rigidly. The 

discontinuities divide parts of the global ridge system into 300 – 500 km long 

segments and these segments are associated with axial depth anomalies from 500 – 

3000 m. Second order segmentation has lengths of 50 – 300 km and behaves non-

rigidly in contrast to first order segmentation. The discontinuities are defined by 

smaller offsets of the spreading centre ranging from 2 – 30 km. At fast and 

intermediate spreading centers this is in form of overlapping spreading centers and at 

slow spreading centers in form of oblique shear zones. Second order segments have 

depth anomalies of ∼100 – 1000 m and a duration between 0.5 – 10 Ma. Third and 

fourth order segmentation have a duration of 100 – 100000 Ma and have shallow 

depth anomalies ranging from 0 – 300 m. Third order segments are 30 – 100 km long 

and defined by small, 0.5 – 3 km, offsets in overlapping spreading centers. Fourth 

order segments are 10 – 50 km long and characterized by very small lateral offsets, 

<0.5 km, of the ridge. Third and fourth order discontinuities on slow spreading ridges 

are gaps in the axial neo-volcanic zone between volcanoes within the rift valley 

(Macdonald et al., 1988; Macdonald et al., 1991).   

 

Phipps Morgan et al. (1994) suggests a balance between magmatic heat input and 

hydrothermal heat removal determining the thickness of the axial lithosphere, which 

in turn controls the axial morphology. Fast spreading ridges have continuous magma 

lenses at shallow depths implying a thin upper brittle layer that can easily be faulted 

or dissected by dikes. Slow spreading ridges have discrete and ephemeral magma 

chambers. Their lithosphere is thick and therefore exhibits a greater lithospheric 

strength and deep rift valley reliefs (Searle & Escartin, 2004). 

 

Dick et al. (2003) proposed a new, ultraslow, class of spreading ridges. The 

subdivision of spreading ridges above is inadequate to characterize the ocean ridges’ 

full variability. It is suggested that the classes should be divided into fast-, slow- and 

ultra-slow spreading ridges with two intermediates representing transition from fast- 
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to slow-spreading and slow- to ultra-slow spreading ridges. This is based on 

investigations of the Southwest Indian Ridge and the Arctic Ridges.  

 

The ultraslow spreading class of ocean ridges have spreading rates less than 12 mm/yr 

and their characteristics can also be found where spreading rates approach 20 mm/yr. 

They are characterized by lack of transform faults and intermittent volcanism. The 

crust is thin and often absent, exposing mantle rocks on the seafloor and at fault 

scarps. Accretion of ridge segments happens by magmatic and amagmatic spreading, 

the latter newly recognized as a spreading mechanism (Dick et al., 2003). The only 

ultraslow spreading ridge is the Gakkel Ridge in the Arctic Ocean which is without 

transform faults and spreading 8 - 13 mm/yr. The rest of the Arctic spreading system 

as well as the Southwest Indian Ridge show characteristics of this class with 

spreading rates ranging between 13 – 18 mm/yr (Dick et al., 2003).  

 

The seismically determined oceanic crust is 7+/−1 km thick and decreases sharply at 

spreading rates lower than 20 mm/yr, indicating reduction of melt volume generated. 

The reduction is caused by conductive heat loss from the mantle welling up beneath 

rifts. Conduction is especially important for slow and ultraslow spreading ridges due 

to their large normal faults and thin crust that promotes penetration of water into the 

lithosphere (Bown & White, 1994; White et al., 2001; Robinson et al., 2001).Thus 

changes in ridge geometry, mantle composition, flow and thermal structures greatly 

affect crustal production and tectonics at very slow spreading rates (Dick et al., 2003). 

From earlier work the ultraslow Gakkel Ridge would be predicted to have sparse 

volcanism, diminishing as the spreading rate decreased, and little hydrothermal 

activity (Baker et al., 1996; Bown & White, 1994). Michael et al.’s (2003) work on 

the ultraslow Gakkel Ridge revealed that magmatic variations are irregular and more 

robust than anticipated and that hydrothermal activity is abundant.  

 

Ultraslow spreading ridges consist of magmatic (volcanic) as well as amagmatic 

(tectonic) segments. Magmatic segments are morphologically linear axial highs or 

troughs formed sub-perpendicular to the least principal compressive stress. 

Amagmatic accretionary ridge segments are the key component of ultraslow 

spreading ridges as they replace transform faults while extending the zone of 
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lithospheric accretion. They assume any orientation relative to the spreading direction 

and are distinguished by an axial through typically at depth up to 1 km and may 

extend 50 km or more. The ridges have scattered volcanics and or a thin basalt cover 

and oceanic layer 3 is thin and often absent. They expose abundant mantle peridotite, 

exhibit weak magnetization and a relatively positive Mantle Bouger Anomali (Dick et 

al., 2003). Further Dick et al. (2003) shows that the basic accretion unit appears to be 

mantle horst blocks that are subsequently uplifted to create an axial trough wall often 

creating low-angle (14°-20°) fault surfaces exposing peridotite ridges.  

 
 
2.2. The opening of the Norwegian-Greenland Sea 

 

The Norwegian-Greenland Sea (Figure 2.2) is defined as the deep ocean between 

northwest Europe and Greenland delimited in the north by the Spitsbergen Fracture 

Zone and in the south by the Greenland-Iceland-Faeroe shallow transverse (Eldholm 

et al., 1990). Comprehensive reviews of the Norwegian-Greenland Sea have been 

published (e.g. Eldholm et al., 1990; Talwani & Eldholm, 1977; Vogt, 1986) and it is 

evident that the sea comprises a complex system of active and aborted spreading 

ridges. 

 

The Iceland-Faeroe Ridge, the Reykjanes Ridge to the south and the Kolbeisey Ridge 

to the north are unusually shallow (Talwani & Eldholm, 1977). The Mohns Ridge is 

symmetrical, situated between Greenland and Norway, and has a well developed 

magnetic pattern associated with seafloor spreading (Talwani & Eldholm, 1977). The 

Kolbeisey ridge south of the Mohns Ridge and the Knipovich Ridge to the north are 

situated asymmetrically between Greenland and Europe and this has affected the 

general physiography of the Norwegian-Greenland Sea (Eldholm et al., 1990). The 

deep ocean divides into three regions separated by fracture zones (Figure 2.2). The 

southern region consists of the Iceland Plateau and the Norwegian basin including the 

Aegir Ridge. The region is bounded by the Greenland-Iceland-Faeroe shallow 

transverse to the south and the Jan Mayen Fracture Zone (JMFZ) to the north. The 

central region comprises the Lofoten Basin and the Greenland Basin and is bounded 

by the JMFZ to the south and the Greenland-Senja Fracture Zone to the north. The 

northern region lies between the Greenland-Senja and Spitzbergen fracture zone and 
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consists of the Boreas Basin and a smaller basin between the Hovgaard and Molloy 

fracture zones (Eldholm et al., 1990). 

 
 

 
 
Figure 2.2: Bathymetric map with main geological features of the Norwegian-Greenland Sea 

(Kandilarov et al., 2008).  

 
 
The separation of Norway and Greenland started with the collapse of the Caledonian 

mountain range in Devonian. From the collapse of the Caledonians until the 

beginning of Tertiary the area between Norway and Greenland was characterized by 

continental extension. Although the opening is a newer feature its segmentation and 

evolution are governed by pre-opening events (Hinz et al., 1993).  
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It is assumed that seafloor spreading in the Norwegian-Greenland Sea started in Early 

Eocene time (chron 24B, 53.7Ma) (Lundin & Dore, 2002; Talwani & Eldholm, 1977). 

From the initial break up until early Oligocene (chron 13, 35Ma) seafloor spreading 

occurred along the Reykjanes, the now extinct Aegir and the Mohns spreading axes 

(Figure 2.3a). The spreading in the Norwegian-Greenland Sea was connected to the 

Gakkel Ridge in the Arctic-Eurasian basin by a right-lateral transform consisting of 

the Senja Fracture zone, Hornsund fracture zone and Greenland fracture zone (Lundin 

& Dore, 2002).  

 

In early Oligocene, chron 13 (Figure 2.3b), the spreading in the Labrador Sea and 

Baffin Bay ceased and the Greenland plate merged with the North American Plate 

(Lawver et al., 1990). The plate geometry in the vicinity of the Norwegian-Greenland 

Sea went from a three-plate to a two-plate configuration. Thus, the opening can be 

described as a separation of the North American Plate and the Eurasian Plate 

(Kristoffersen & Talwani, 1977). The spreading direction had thus changed from a 

NNW-SSE to a NW-SE orientation (Lundin & Dore, 2002). This rotation can be seen 

in the difference in trend between the East and West JMFZ. The change in plate 

motion caused rifting along the continental right lateral transform between SW 

Barents Sea and NNE Greenland initiating seafloor spreading along the Knipovich 

Ridge (Lundin & Dore, 2002). At the same time the Mohns Ridge went from 

orthogonal to oblique spreading. Crane (1988) proposes that the Knipovich Ridge 

formed by propagation from the south into the ancient Spitzbergen Shear Zone. 

Oceanic crust formed en echelon with smaller spreading basins propagating 

northward.  

 

Spreading ceased along the Aegir Ridge around chron 6 (Figure 2.3c) and the 

spreading shifted westward (Lundin & Dore, 2002; Talwani & Eldholm, 1977). 

Talwani and Eldholm (1977) suggested a complex westward migration of the ridge to 

its present position, the Kolbeinsey Ridge. Other authors suggest a ridge jump directly 

from the Aegir Ridge to the Kolbeinsey Ridge (Kodaira et al., 1998a). ∼20 Ma ago 

the Kolbeinsey Ridge and the Mohns Ridge were connected through the West JMFZ 

(Vogt, 1980). The Jan Mayen micro continent was evidently a part of eastern 
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Greenland before the spreading axis shifted to underneath the east coast of Greenland 

(Eldholm et al., 1990; Kodaira et al., 1998b).  The plate configuration that followed 

the separation of the Jan Mayen micro continent and the linkage of the Kolbeinsey 

Ridge and the Mohns Ridge is the same configuration as is present today (Lundin & 

Dore, 2002).  

 

 
Figure 2.3: Plate tectonic evolution of the Norwegian-Greenland Sea (Lundin & Dore, 2002). RR – 

Reykjanes Ridge, AR – Aegir Ridge, MR – Mohns Ridge, WSO – West Spitzbergen Orogeny, KR – 

Kolbeinsey Ridge, KnR – Knipovich Ridge, JM – Jan Mayen micro continent. Gray and yellow dots 

respectively represent the paleo and current position of the Iceland Plume for the reconstruction 

(Torsvik et al., 2001). Blue arrows show spreading until Chron 13, and the red arrows show spreading 

directions after Chron 13 until present (Ludin & Dore, 2002). 

a) Initiation of seafloor spreading along RR, AR and MR, the spreading direction has the same 

orientation as the Jan Mayen Fracture Zone. Shear movement along the Barents Sea margin. 

b) Rotation of the spreading direction as a consequence of the Greenland Plate merging with the 

north American plate. Initiation of spreading in the northern Greenland Sea along KnR.  



Chapter 2                                                                                    Geological Background 

 12 

c) The Aegir Spreading Ridge ceases to exist as the spreading jumps westward forming the 

Kolbeinsey Ridge which connects with the Mohns Ridge. The Jan Mayen micro continent 

becomes separated from Greenland 

d) The plate configuration in Chron 6 is maintained to the present. 

 
 

The anomalous amount of magmatism in the North Atlantic area, from ∼70 Ma to 

present, has been attributed to the Icelandic plume (Figure 2.3 shows the plumes 

path). This may have implication for the post breakup volcanism in the Labrador Sea 

rift as well as the separation of the Jan Mayen micro continent, the latter propagating 

northward as it split from Greenland (Mjelde et al, 2008). Breivik et al. (2006) 

proposed that the unusually thin oceanic crust at the ultraslow spreading morphology 

in the Norwegian Basin is caused by an interaction with the Iceland plume. The 

mantle was depleted during the construction of the magmatic Greenland-Iceland-

Faeroe Ridge resulting in slow but persistent asthenospheric flow northeastwards to 

the Norwegian Basin giving a lower than normal magma productivity during seafloor 

spreading. Figure 2.2 and 2.3d show present configuration of the Norwegian-

Greenland Sea.  

 
 
 
2.3. The Mohns Ridge 

 

The Mohns Ridge (Figure 1.1) extends from the Jan Mayen Fracture Zone 

northeastwards until it bends northwards into the Knipovich Ridge at 74°N and is 

approximately 600 km long (Hellevang & Pedersen, 2003). The ridge is oriented ∼60° 

and the spreading direction since magnetic anomaly 7 is 115° (Vogt, 1986) thus this is 

an oblique spreading ridge. The degree of oblique spreading is defined by the angle 

between the normal to the axis and the direction of spreading (Abelson & Agnon, 

1997), giving a spreading that is oblique by 35°. Hellevang and Pedersen (2003) 

calculated the obliquity to change from 30° east of Jan Mayen to 24° in the northeast 

part of the ridge and orthogonal in the Mohns–Knipovich Bend. Analyzing magnetic 

anomalies, Talwani and Eldholm (1977) calculated the spreading rate to be ∼9 mm/yr 

for the last 10 Ma while newer calculation by Mosar et al. (2002) calculated the 

spreading rate to be ∼16 mm/yr for the last 10.3 Ma. Thus the Mohns Ridge is 



Chapter 2                                                                                    Geological Background 

 13 

intermediate between slow and ultraslow spreading according to Dick et al. (2003) 

classification of spreading ridges.  

 

Klingelhofer et al. (2000a & b) interpreted the crust at the Mohns Ridge to be 4.0 ± 

0.5 km thick using seismic refraction data. Oceanic layer 2a and 2b show nearly 

normal thickness and oceanic layer 3 is very thin. Variations in crustal thickness are 

due to changes in seismic layer 3 and it appears to thicken below topographic highs 

and to thin below local basins. Due to the presence of the Iceland hot spot, and also 

perhaps the Jan Mayen hot spot (Neumann & Schilling, 1984), the rift valley is 

relatively shallow compared to the rest of the Mid-Atlantic Ridge. It deepens 

progressively from 2500 – 3000 m near the JMFZ northeastwards to depths of 2800 – 

3500 m. The rift valley is generally 10 – 20 km wide and 1 – 2 km deep with 

exception of a width of 1.5 km on the Jan Mayen Platform and approximately 5 km at 

the Mohns – Knipovich Bend (Geli et al., 1994; Hellevang & Pedersen 2003). The 

Mohns Ridge, as well as the Knipovich Ridge, is not cut by transform faults defining 

first-order segments. Instead they are regions of linked magmatic and amagmatic 

ridge segments (Dick et al., 2003).  

 

There are several articles covering the central part of the Mohns Ridge (2°W - 4°E) 

discussing fault-pattern and segmentation based on detailed swath bathymetry as well 

as seismic, gravity and magnetic data (Dauteuil & Brun, 1993 & 1996; Geli et al. 

1994; Hellevang & Pedersen, 2003). The central Mohns Ridge is characterized by 

large-scale segmentation with en echelon arranged topographic highs separated by 

transfer zones (Dauteuil & Brun, 1993 & 1996). Dauteuil & Brun (1993) proposed 

that the topographic highs in the axial valley are of tectonic origin, being bounded by 

large vertical offset indicate that they are horsts. Geli et al. (1994) suggests that the 

topographic highs are of volcanic origin due to sharp positive magnetic anomalies. 

The latter is consistent with side-scan images from the northern Mohns Ridge and 

Mohns-Knipovich Ridge Bend where the topographic highs occurring every 32 to 67 

km are interpreted as volcanically active areas (Crane et al., 1999). Crane et al. (2001) 

and Okino et al. (2002) show that the Knipovich Ridge is segmented similarly to the 

Mohns Ridge but with larger distances between the topographic highs (85 - 100 km). 

 



Chapter 2                                                                                    Geological Background 

 14 

The Mohns Ridge border faults are asymmetric with larger throws on the 

northwestern flanks resulting in shallower bathymetry. The southeastern flank shows 

an apparently more simple morphology due to thicker sediment piles than the 

northwestern flanks (Talwani & Eldholm, 1977; Dauteuil & Brun, 1996). The faults 

within the axial valley are linear or smoothly curved, forming a mean 30° angle to the 

rift valley. As the faults approach the rift valley walls they are curved and become 

parallel to the valley walls (Dauteuil & Brun, 1993).  

 

Hellevang & Pedersen (2003) subdivided the Mohns Ridge into 15 second-order 

segments with distances of 18 to 64 km. The second-order segment centers are 

identified by shallower bathymetry and stronger magnetic anomalies within the rift 

valley, defining axial volcanic ridges (AVRs). The transition between the segments is 

considered to represent second-order discontinuities and the Jan Mayen Fracture Zone 

and Molloy Fracture Zone are considered to represent first order ridge discontinuities. 

The entire Mohns and Knipovich Ridge can thus be described as a “supersegment” 

(Dick et al., 2003). Subdivision into third and fourth order segments is related to 

depth variations associated with the discontinuities and offsets between the segments. 

They are believed to be controlled mainly by variations in along-axis magmatic 

activity. Increasing mantle bouguer anomalies (MBA) away from the Jan Mayen 

Platform indicates decreasing crustal thickness and lower magmatic activity 

northeastwards resulting in deeper bathymetry and longer distances between AVRs. 

 
 
 
2.4. Oceanic core complexes 

 

Oceanic core complexes are massifs in which lower crust and upper mantle material 

are exposed on the seafloor. They are comparable to continental core complexes and 

are interpreted to be rotated footwall blocks associated with low-angle detachment 

faults (e.g. Tucholke & Lin, 1994; Blackman et al., 1998; Tucholke et al., 1998; 

Ranero & Reston, 1999; Cann et al., 2001; Reston et al., 2002). The core complexes 

where initially discovered at the inside corners of ridge transform intersections along 

slow spreading ridges. More recent research (e.g. Okino et al. 2004; Smith et al., 

2006) reports oceanic core complexes between ridge-transform intersections as well. 
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Pedersen et al. (2007) and Bruvoll et al. (2009) report the presence of core complexes 

west of the Mohns-Knipovich Ridge Bend where gabbro and serpentinite have been 

recovered on low-angle fault surfaces.  

 

It is believed that prolonged slip on a detachment fault occurs where a ridge segment 

experiences a phase of relatively amagmatic (tectonic) extension as it is easier to 

maintain slip on an existing fault than it is to initiate a new fault in the strong rift 

valley lithosphere of a slow spreading ridge. The detachment fault will be terminated 

when a magmatic phase occurs, because magmatism will weaken the axial lithosphere 

so that it becomes easier to initiate a fault closer to the rift valley (Tucholke et al., 

1998). The transition from dislocation creep to diffusion creep in shear zones near the 

brittle-plastic transition in the mantle contributes to fault weakening (Jaroslow et al., 

1996). Escartin et al. (1997) suggests that variations in faulting style can be explained 

by rheological effects of serpentinization. Here strength versus depth profiles 

calculated to suit slow spreading ridge systems indicate that the presence of 

serpentinite can reduce the strength of the lithosphere by up to 30%, favoring more 

widely spaced faults with greater throw in contrast to deformation where serpentinite 

is scarce. Thus the long-lived slip can be explained by amagmatic extension as well as 

fault weakening due to presence of serpentinite and change in deformation 

mechanism. 

 

Morphological characteristics common for oceanic core complexes can be illustrated 

from an inactive core complex near 30°N at the Mid Atlantic Ridge (Figure 2.4). An 

isochron-parallel ridge exhibiting a steep slope facing away from the spreading axis is 

present. Rocks recovered from this particular ridge show that it is composed of basalt 

and interpreted to represent volcanic seafloor created at the axis (Smith et al., 2006). 

A not as illustrious feature in the example presented, but commonly found 

immediately towards the rift axis, is a narrow zone of depressed crust. A basin is 

situated immediately behind the former mentioned ridge (away from the axis), and 

such basins are believed to be formed by outward footwall rotation as the ridge 

evolves (Smith et al., 2006). Towards the axis from the ridge a broad uplifted dome-

shaped massif is present. The surface of this massif is corrugated and dredges have 

recovered serpentinized peridotite (Smith et al., 2006). Such massifs have been 
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interpreted to be fault surfaces of detachment faults in association with core 

complexes (Tucholke et al., 1998; Smith et al., 2006). In Figure  2.4 a normal fault 

scarp cuts the feature on its inner (younger) side and the scope to the northwest of the 

massif indicates mass wasting (Smith et al., 2006).  

 

An additional common feature for an extinct core complex is that the corrugated 

massif often dips at a low angle intersecting the seafloor. This is interpreted as the 

termination of the detachment fault which is in association with the core complex. 

This is due to a new fault that has formed further towards the axis (Tucholke et al., 

1998). Throughout this thesis the fault forming towards the axis, aborting the core 

complex evolution, is referred to as the termination fault. The expression termination 

used by Tucholke et al. (1998) is referred to as the tip of the detachment. The exposed 

detachment surface comprising the core complex is referred to as the core complex 

extent in map view. The detachment fault for an active fault in a core complex setting 

is rooted below the spreading axis when active (Tucholke et al., 1998). 

 

The corrugated fault surfaces, also referred to as mullion structures, are parallel to the 

spreading direction and consist of synforms and antiforms with amplitude up to ∼100 

m (Tucholke et al., 1998; Smith et al., 2006).  The origin of the corrugations is still 

not fully understood. Direct observations have showed that they are not produced by 

faults parallel to the spreading direction (Tucholke et al., 2001). A possibility is that 

they originate by continuous casting where the footwall behaves in a ductile manner 

and is deformed with respect to irregularities in a strong and brittle hanging wall 

(Spencer, 1999). The domed massif can be explained by regional isostatic 

compensation and flexure due to large fault throw (>5 km) which domes the fault 

surface of the footwall (e.g. Buck, 1988). Numerical modeling ascribes the domed 

feature to be due to plastic and elastic deformation (Lavier et al., 1999). The zone of 

depressed crust, between the outward dipping slope and the dome, is interpreted to be 

formed by high angle faults dissecting the detachment surface (Tucholke et al., 1998). 

Newer research (Smith et al., 2006) alternatively assumes that the depressed zone 

corresponds to upper crust that is not characterized by flexure and isostatic 

compensation. 
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Figure 2.4: Color coded bathymetric map of a well-exposed, extinct core complex south of the Atlantis 

fracture zone on the Mid Atlantic Ridge. Map contour interval is 100 m. Morphological characteristics 

are shown by arrows and discussed in the text (Smith et al., 2006). 
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3. DATA AND METHOD 

 

 

3.1. Data 

 

Bathymetric data covering the northern Mohns Ridge and the Mohns-Knipovich 

Ridge Bend (Figure 3.1) is interpreted and presented in this thesis. The data was 

collected on behalf of the Norwegian Oil Directorate in 2000 – 2001 by Gardline 

Surveys and Fugro Geoteam for the “Law of Sea” mapping. Multi-beam bathymetric 

data (swath bathymetry) was collected using a Simrad EM120 echosounder (12 kHz 

transducer frequency) installed onboard MV Ocean Endeavour. The quality of the 

data was improved by removing the outer 5 beams on both sides of the swathe and 

filtering the remaining data to compensate for weather conditions, sound velocity 

errors, standard deviations, noise and residual differences. Additional interference 

was caused by the sub bottom profiler and was addressed by a synchronization unit 

that was fitted to the pinger suit (Gardline Surveys Limited, 2001).  The final charts 

where gridded and the program Fledermaus was used to view and shade the 

bathymetry. The data was produced with a resolution of 200 m x 200 m. The 

University of Bergen has since re-gridded the bathymetric maps in Fledermaus to a 

resolution of 75 m x 75 m.  

 
Figure 3.1: “Law of Sea" data acquisition. Chart area 12 (red outline) is subject to this thesis (Gardline 

Surveys Limited, 2001). 
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Fledermaus uses a UTM (Universal Transverse Mercator) based coordinate system. 

The system is based on representing a portion of the Earth as a flat surface. The data 

presented is in UTM zone 32 WGS 84. Captures from Fledermaus have shading from 

the northeast. On regional figures and maps UTM coordinates have been converted to 

geographical coordinates with exception of smaller detail studies where an outline is 

presented in a regional figure to illustrate its position. A regional map of the 

Norwegian-Greenland Sea has also been generated in GMT (Generic Mapping Tools) 

(Figure 1.1) to better illustrate the geographic position of the data. 

 

3.2. Method and approach  

 

Several tools are available to map deformation at mid-ocean ridges such as 

bathymetric data, seismic reflection and refraction data, acoustic imagery and 

submersible investigations. What makes bathymetry a powerful tool is the ability to 

visualize and correlate lineaments and structures at a large scale. In this thesis 

bathymetric data, from chart area 12 (Figure 3.1), is used to interpret the ridge system 

by studying the morphologies and doing measurements using the three-dimensional 

visualization program Fledermaus.  

 

Tectonic interpretation of morphology seen on ridges is relatively straightforward as 

there are only two main processes controlling the bathymetry; tectonics and 

volcanism. Volcanism produces two identifiable features: conical structures and 

elongated domes with lower relief related to fissure eruption. Tectonic processes 

generate faults where vertical throw disturbs the bathymetry. This makes strike-slip 

faults barely visible except where they affect pre-existing structures (Dauteuil, 1995).  

It is thus important to remember that interpreted normal faults may have a strike-slip 

component. Due to resolution limitations only larger faults and volcanoes are visible 

and interpreted faults may in fact represent fault zones (Dauteuil & Brun, 1993; 

Hellevang & Pedersen, 2003).  

 

A factor that disturbs interpretation is sedimentation and erosion altering the faulted 

topography. It has been shown by Bruvoll et al. (2009) that the proximity of the 

Mohns-Knipovich Bend to a glacial margin has resulted in accumulation of a 
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sediment cover that locally exceeds several hundred meters. This cover becomes 

progressively thinner away from the margin. Gravity cores from the upper 4 meters 

show iron- and glass-rich laminas and layers representing a history of hydrothermal 

deposits and volcanic activity in the area (Pedersen et al., 2007). Thus volcanism may 

alter the tectonic expression. Degradation of fault block crests due to mass wasting 

processes are recognized, causing accumulation of sediments in hanging wall 

depressions. This may be caused by gravitational instabilities in sediments or oceanic 

rocks overlaying the faults and may be triggered by earthquakes (e.g. Hesthammer & 

Fossen, 1999).  

 

Measurements of fault throw have been extracted from profiles drawn perpendicular 

to faults and derived from the bathymetric data in Fledermaus. The footwall and 

hanging wall have to be interpolated to account for sediment accumulation in the 

depression as well as the footwall being interpolated to account for erosion. Figure 3.2 

shows a schematic profile typical to the area demonstrating apparent throw and heave 

compared to interpreted throw and heave.  

 

 

 

Figure 3.2: Illustration of some of the possible errors associated with measurements of fault throw and 

fault dip from bathymetric data. The uncertainties are due to mass wasting resulting in eroded crests 

and downslope accumulation of talus, as illustrated. As illustrated throw and dip easily becomes 

underestimated in the presence of mass wasting and fault-scarp degeneration. 

 

Figure 3.3 shows an example how a profile drawn over a fault may look and how 

debris is identified in the bathymetric data. Throughout the study area there is a 

varying degree of depression infill and erosion of footwall tops, and this has been 



Chapter 3                                                                                              Data and Method 

 22 

accounted for in each measurement. Errors in measurements occur due to wrongful 

interpolation of footwalls and hanging walls and uncertainties when reading off 

values from the axis of the profiles in Fledermaus.  

 

 
Figure 3.3: Example of what a profile (lower right corner) may look like and how a talus (red outline) 

is identified. Red ticks on the profile correspond to outline in the profile.  

 

Additional factors to consider during interpolation is flexure (increasing relevance 

when fault spacing increases) and rugged (pre faulted) topography. This can be 

illustrated on a seismic line crossing the west flank of the southern Knipovich Ridge 

at 75°N (Figure 3.4). The seismic line shows how Figure 3.2 may be a reasonable 

approach for interpolation in some cases, e.g. faults with close spacing seen to the 

right in the blue box. To the left in the red box two faults with large spacing (ca. 6.5 

km) show that the scheme illustrated in Figure 3.2 is not accurate. The area between 

the two major faults displays rugged topography and/or flexure of the hanging wall 

towards the footwall. In Allerton et al. (1996) investigation of valley-wall faulting and 

its relationship to bathymetry illustrates the fault scarp evolution. In the illustration 

two faults initiate at an immature stage. At a mature stage only one fault is active and 

the other fault becomes buried by sediments and may not be visible in the bathymetry. 

Figure 3.4 also illustrates how fault surfaces become altered by erosion and 
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sedimentation and may become buried after the faults become inactive. This is seen 

east of the blue box in the figure and makes the faults invisible from bathymetric data 

alone. There are several factors that may deviate from the schematic figure presented 

in Figure 3.2. The throw estimates used as a basis for the analyses in this work are 

thus an interpretation where such factors are taken into consideration. 

 

 
Figure 3.4: Seismic profile of the western Knipovich Ridge flank at 75°N. Blue line is interpreted 

seafloor, red line is interpreted basement, and green line is interpreted fault. Vertical axis is in ms and 

the horizontal axis is noted in CMP (common mid point). 

 

The apparent lengths of faults are measured in map view. In cases where actual fault 

length is needed estimates are made by plotting throw and length in a graph and 

interpolating based on an expected displacement distribution, thus estimating actual 

length. Throw versus length was plotted in a log-log diagram for a number of single 

and linked faults to distinguish eventual trends. Figure 3.2 shows how dip can be 

wrongfully measured, this has been a challenge and the approach has been to measure 

along the lineament of interest and find an average estimate from areas where erosion 

and altering of the fault surface has not occurred. In the following “apparent throw” is 

referred to as “throw” unless otherwise noted. Profiles are made to document 

measurements as dip and fault spacing and are an important parameters for further 

interpretation of the tectonic characterization. Measurements of fault orientation have 

been presented as stereographic projections. The measurements are of the mean 
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orientation of the fault unless otherwise noted and the right-hand rule has been used. 

Obliquity of the axial highs has been measured by measuring the angle between the 

trend of the AVR and the trend of the mid ocean ridge orientation. Fault maps have 

been made for the study areas and specific structures of interest to better understand 

population and geometries. The faults are interpreted from ridges in the shaded 

bathymetry, and the dip direction is determined in profile by comparing dips on either 

side along the ridge. Few faults dipping away from the ridge have been observed, 

although there are reasons to believe that they may exist as others have interpreted 

horst blocks and antithetic faults in slow spreading ridge systems (Macdonald, 1982; 

Bruvoll et al., 2009). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4                                                                                                              Results 

 25 

4. RESULTS 
 

 

4.1. Introduction 

 

4.1.1. Subdivision of the study area 

 

The study area (red box Figure 1.1) has been divided into two areas showing different 

topographic expressions of the western flank of the rift system (red boxes in Figure 

4.1). The eastern flank is not as well exposed due to sediment cover derived from the 

glacial continental margin to the east. Area 1 is the northern part of the Mohns Ridge 

(∼3.30°-6.30°E 72.30°-73.20°N) and is situated between segment center 12 and 13. 

Area 2 is the Mohns-Knipovich Bend (∼6.30°-9.30°E 73.10°-74.20°N) and consists of 

segment 14 and 15 as well as the southern part of the Knipovich Ridge.  

 

The results presented in this chapter are from profiles, stereographic projections, fault 

maps and throw-length relationships derived from the bathymetric data as well as the 

shaded bathymetric data itself. Before presenting the results a brief description of 

some of the terminology used in this and preceding chapters is presented.   

 

4.1.2. Terminology 

 

Rift segments are distinguished after Hellevang and Pedersens (2003) subdivision of 

the Mohns Ridge. Here the AVRs define centers of second-order ridge segments, and 

the gradual boundaries between these segments are second-order ridge discontinuities. 

Offsets between segments and tectonic dominated deep basins correspond to higher-

order 3rd and 4th order segments.  

 

Major faults with significant throw bounding and defining the rift valley and its trend 

are referred to as border faults whereas faults within the rift valley are referred to as 

intra-rift faults. The segment width is defined as the distance between the bordering 

normal faults. Relay ramps occur where two faults overlap. If the two faults are 

connected in map view they represent a hard-link structure. If they are not connected 
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in map view they represent a soft-link structure (Walsh & Watterson, 1991). Faults 

with low-angle dip and large amount of displacement are referred to as detachment 

faults.  

 

 
Figure 4.1: Shaded color-coded bathymetric map of the study area. Depth scale is indicated by the 

color bar. Red boxes show the subdivided areas 1 (southwest) and 2 (northeast).  S12 – S15 indicate 

AVRs defined by Hellevang & Pedersen (2003) as second-order segment centers. Purple boxes labeled 

a) and b) are the location of the captures presented in figure 4.2. Yellow numbered boxes are areas 

described in more detail en Section 4.4. 
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4.2. Axial valley 

 

The axial valley is characterized by both oblique and parallel highs situated within the 

basins and spaced 28 – 64 km apart. Segment 12 delimits the study area (Figure 4.1) 

of the ridge to the southwest and is approximately 19 km wide. The center of the 

segment is defined by a large AVR (amongst the largest on the entire Mohns Ridge) 

rising 1200 m above the valley floor. The AVR is oblique to the rift valley trend by an 

angle of 21º with the northern tip curving clockwise towards the valley wall with a 

slightly sigmoidal shape (Figure 4.2a). Just east-northeast of the AVR is an over 3500 

m deep tectonic-dominated basin (Figure 4.2b). Segment 13 is approximately 16 km 

wide and shows a well defined sigmoid AVR (Figure 4.1). It is 19º oblique at the 

center of the segment and rises 900 m above the valley floor. 

 
Figure 4.2: Shaded color-coded bathymetric map, depth scale is indicated by color bar in figure b). For 

position of capture see purple boxes in figure 4.1. The illustration beneath each bathymetric map is an 

interpretation of the intra-rift faults as well as border faults, volcanoes and feature discussed in the text. 

Faults are marked by black lines with tick marks indicating the downthrown side. Circular volcanoes 

are marked with circles. The AVR present in figure a) corresponds to ridge segment center no. 12 as 

defined by Hellevang and Pedersen (2003).  
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Segment 14 and 15 show well-defined AVRs oriented parallel to the rift valley and 

rising 600 and 800 m above the valley floor (Figure 4.1). The segments are 

approximately 22 km and 12 km wide. The AVR for segment 15 is situated in the 

Mohns-Knipovich Bend and the southern tip curves towards segment 14 (Figure 4.1). 

Both segment 13 and 15 are relatively narrow compared with the other segments 

(Figure 4.1), and the AVRs are not thoroughly faulted in contrast to AVR 12 (Figure 

4.2a). This indicates that these ridges are young and thus at an earlier growth stage 

(Parson et al. 1993).  

 

Deep basins are identified throughout the rift valley with the deepest and most 

extensive just north-northwest of AVR 12 (Figure 4.2a), east-southeast of AVR 13 

and the most southern part of the Knipovich Ridge just north of the bend (Figure 

4.2b). They are characterized by faults forming grabens and sparse volcanism. These 

depths are interpreted as amagmatic (tectonic) dominated basins and thus correspond 

to higher-order segments (3rd of 4th order) (Macdonald et al. 1988 & 1991; Hellevang 

& Pedersen, 2003). 

 

The intra-rift faults roughly tend to follow the trend of the AVR. In area 1 they thus 

exhibit oblique and sigmoid trends and in area 2 a parallel trend (see orientation of 

AVRs in Figure 4.1). The intra-rift faults are difficult to interpret. This is believed to 

be because they have not yet developed a fault surface that is easily distinguishable 

due to the bathymetric resolution. In addition volcanism is believed to have altered 

the fault surface and topography. Intra-rift faults are therefore not very well 

represented in the fault maps presented in Section 4.3. An exception to this is the 

southern Knipovich Ridge where intra-rift faults are more apparent (Figure 4.2b). The 

reason they are more apparent is believed to be due to lesser volcanism as few 

volcanoes are identified in the area. In area 1, as well as the southern Knipovich 

Ridge, the intra-rift faults commonly intersect with the border faults (Figure 4.2b, 

Figure 4.3 and 4.8).  

 

The southern part of the Knipovich ridge is characterized by hard-linked intra-rift 

faults in an en echelon pattern (Figure 4.2b & 4.8). Due to the highly oblique 

character of the ridges, faults on the western border overlap with oppositely dipping 
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faults on the eastern border, thus forming horst ridges when faults dip away from each 

other and basins (grabens) when the faults dip towards each other. This can be seen in 

Figure 4.2b where the “local high” is a feature 400 m above the seafloor just below 

74ºN. This feature is interpreted to be a horst block where faults are partly 

overlapping and dipping away from each other. Grabens are identified both to the 

north and to the south of the horst structure where en echelon arranged faults dip 

towards each other (Figure 4.2b). The local high could alternatively correspond to an 

AVR, although the horst block interpretation is more feasible as no volcanism has 

been identified adjacent to the height.  

 

The axial valley rift changes orientation along axis trending 59° in the vicinity of 

segment 12 and 13 to trending 37° at the Mohns-Knipovich Ridge (see Figure 4.5 

which includes ridge trend for area 1 and the Mohns-Knipovich Bend in area 2). The 

southern part of the Knipovich Ridge, in the vicinity of 74°N has a measured trend of 

9°. Thus the along axis rotation is 50° anticlockwise for the 240 km ridge comprising 

the study area (Figure 4.1). 

 

 

4.3. Western rift flanks 

 

4.3.1. Rift flank area 1 

 

The topography seen in the shaded bathymetric map shows that the northwestern rift 

flank in area 1 consists of up to 27 km long lineaments (Figure 4.3). The lineaments 

are interpreted as faults (fault map Figure 4.3). They curve slightly forming overlap 

structures. The fault geometry directly northeast of the AVR 12 (corresponding to S 

12 in Figure 4.1) is anastomosed. The faults commonly show smaller jogs or curves in 

the fault trace, which implies hard-linked relay structures. The geometry west of AVR 

13 (corresponding to S13 in Figure 4.1) shows parallel fault geometry with major 

faults soft-linked with respect to one another.  
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Figure 4.3: (previous page) Shaded color-coded detailed bathymetric map covering area 1 (red box). 

Depth scale is indicated by the color bar. S12 and S13 represent the segment centers. Yellow lines 

represent the position of the profiles presented in Figure 4.6. The illustration beneath the bathymetry is 

an interpretation of faults and volcanoes. Faults are marked by black lines with a tick marks indicating 

the downthrown side. Black lines without ticks represent undifferentiated lineaments. Circular 

volcanoes are marked with circles.  

 

Displacement maximums are plotted against fault length in a logarithmic diagram 

(Figure 4.4) showing a range from 300 to over 1000 m for the faults throw maximum 

and 3500-27000 m for the fault lengths. The data defines a linear trend. Hard-linked 

faults plot closer to γ =0.01 whereas the single faults plot towards γ =0.1. The 

orientation of the faults in area 1 is illustrated in the stereographic projection in Figure 

4.5. The mean trend for the faults on the west shoulder is 051/47, and for the east 

shoulder 230/47, thus, implying symmetry in fault orientation across the axis. The 

axial valley orientation, 059, is plotted in the stereographic projection showing an 8° 

angle between axial valley orientation and fault orientation.  

 
Figure 4.4: Maximum throw plotted against length for both single and hard-linked faults. γ=D/L. Scale 

is logarithmic and in meters.  
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Figure 4.5: Stereographic projections for the two areas. Red lines represent best fit and blue lines 

illustrate the ridge orientation. All faults measured are done on the rift shoulders. The faults are all 

synthetic and therefore dip towards the rift valley.  

 

The profiles 1 through 3 (Figure 4.6) are spaced approximately 20 km apart (profile 

location in Figure 4.3). The faults northwest in vicinity of the axial valley exhibit 

steep dips, ranging 45° in profile 1, just north of the AVR tip, to 55° and 57° in 

profile 2 and 3. As the distance away from the axis increases the fault dips tend to 

decrease slightly to an average of ~44°. Thus a slight decrease in fault dip away from 

the axis is identified. The only low angle fault (23°) identified on the western flank is 

a poor fault surface identified between two steep faults (49° and 53°) in profile 2. The 

low dip reading is thought to be due to erosion and sedimentation as the fault is barley 

visible in the bathymetry. Where measurements have been possible on the 

southeastern flank they range between 38° and 48° and the general morphology gives 

the impression of down faulted terraces (Figure 4.3 and profile 3 and to some extent 1 

in Figure 4.6). Dip measurements of intra-rift faults are spares due to their misleading 

low dip readings (which are not noted on the fault profiles). The low dip reading can 

be explained by either extremely low angle, 10°-20°, faults generating in the rift 

valley, or perhaps more feasible, they represent a cluster of faults altering the dip 

reading and may be further degraded by sedimentation and volcanism. The profiles do 

not show great amounts of disturbances and are, instead, rather systematic with 

respect to faults spacing and throw.  
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Figure 4.6: Profiles 1-3 with no vertical exaggeration. Horizontal and vertical axes are in 

meters. Fault dips are noted and the fault trace is interpolated downwards.  
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4.3.2. Rift flank area 2 

 

The topographic expression present in area 2 (Figure 4.7) differs from area 1. The 

most apparent difference is domed structures (Section 4.4.3 and 4.4.4) and local 

basins. In map view, the faults (Figure 4.8) show linear, wavy and curved geometry. 

Smaller jogs on larger faults often correspond to relay ramps. A distinct morphology 

characteristic is present. This consists of two parallel faults curving slightly towards 

each other on either side, culminating into one or several faults characterized by a 

rugged terrain (Section 4.4.4).  

 
Figure 4.7: Shaded color-coded detailed bathymetric map covering area 2 (red box). Depth scale is 

indicated by the color bar. S14 and S15 represent the segment centers. Yellow lines represent the 

position of the profiles presented in Figure 4.9.  
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Figure 4.8: Fault map covering area 2 (same scale and view as Figure 4.7). Faults are marked by black 

lines with a tickmarks indicating the downthrown side. Black lines without ticks represent 

undifferentiated lineaments. Circular volcanoes are marked with circles. Stippled gray lines indicate 

possible core complex extent and are described and interpreted in more detail in Section 4.4.3 and 

4.4.4. 

 

Maximum displacement versus length is plotted in the same figure as data from area 1 

(Figure 4.4). Maximum displacement ranges between 60 – 1300 m and the fault 

lengths for these faults range between 1500-40000 m. The faults in relation to the 

domed structures are not plotted with this dataset. Hard-linked and single faults show 

a similar linear trend as for area 1. They differ from area 1 in not being as clearly 

segregated with respect to hard-linked faults plotting closer to γ =0.01 and single 

faults closer to γ =0.1. Stereographic projection illustrates the orientation of the faults 
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in area 2, giving a best fit of 032/37 for the west shoulder and 214/50 for the east 

shoulder (Figure 4.5). Thus the data indicates that the faults on either side of the rift 

have approximately similar orientation but opposite dip directions. The axial valley, 

trending 37°N, is thus oriented 4° to the stereographic best fit.  

 

The profiles 4 through 6 (Figure 4.9) are spaced approximately 15 - 20 km apart 

(profile location in Figure 4.7). WNW towards ESE profile 4 is distinguished by two 

low angle faults of 26° and 28° followed by ~ 10000 m rugged/corrugated topography 

showing minor faulting. These low angle faults are rotated showing an outward 

dipping surface. The topography further ESE dips ~13° from 1500 m depth down to a 

basin at 2650 m where it intersects the seafloor. After a 6 – 7 km wide basin a dome-

shaped structure without a well expressed fault trance is present with a 20° dip 

(Section 4.4.4). The dome-shaped surface shows similar characteristics, this being a 

rugged surface, as the rugged/corrugated topography that is present adjacent to the 

first major fault WNW in the profile. Gabbroic rocks have been recovered when 

dredging the ESE side of the dome (Figure 4.9). Further along the profile a local high 

with dips in the range of 38° - 56° is present 3000 m before the AVR. ESE of this 

local high, the AVR 15 is present, making fault readings difficult. The eastern flank 

shows a fault dip measurement of 44°. 

 

Profile 5 (Figure 4.9) is distinguished by a 27° dipping fault to the west followed by 

an elevated outward dipping dome consisting of a 26° dipping fault followed by 

steeper 34° - 41° faults (see Section 4.4.3). The dome dips 15° to the ESE and rock 

dredges have recovered serpentinized mantle peridotite (Pedersen et al., 2009) on this 

dipping surface. Another domed structure is apparent further ESE where dikes have 

been identified by submersibles (Pedersen et al., 2009). No clear fault surfaces for dip 

measurements are apparent. ESE towards the axial valley four faults are identified 

dipping between 38° and 50°. Profile 5 further shows a trend of lower angle faults 

WSW becoming progressively steeper towards the axial valley. The east flank shows 

signs of faulting though the only measurable faults dip 36° and 41° to the ESE. The 

former, representing the border fault and the latter, one of the few exposed fault 

clusters on the east flank. 
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Two faults dipping 29° and 36° are present WNW on profile 6 (Figure 4.9) followed 

by two more faults dipping 34° and 32° and are the WNW boundary of a 12000 m 

wide slightly domed feature (Section 4.4.3). The domed feature is characterized by 

rugged topography and corrugations and apparently ends dipping 20°, intersecting the 

seafloor. It is followed by a fault with over a 1000 m throw. This large fault 

corresponds to the outer border faults described by Hellevang and Pedersen (2003) 

and ESE the inner border fault is present dipping 50° towards the rift valley. No 

reliable dip measurements were identified on the east flank.  

 

The border faults are uneven, although more prominent with larger throw on the 

northwest side aiding an asymmetry across the valley as seen in the profiles. To the 

east of segment 15 the topography is less rugged and only a few exposed fault clusters 

are seen in the bathymetry (Figure 4.7). A striking asymmetric feature of these fault 

clusters is that they appear to consist of several faults stepping northwest with respect 

to one another. On a larger scale the clusters show the same pattern stepping 

northwestwards with respect to each other. This is apparent from the bathymetric map 

presented in Figure 4.7. 

 

The three profiles produced for area 2 show great variations in topographic expression 

opposed to area 1. They exhibit domed structures, low angle faults and a clear fault 

trend with steeper dips close to the axial valley and low angle faults away from the 

axis. The low angle faults often exhibit steep outward dipping slopes to the WNW 

where basins are commonly identified. Narrow zones of depressed crust are apparent 

for the second domed feature in profile 4 as well as for the domed features in profile 5 

and 6. 

 

Several features of interest, as mentioned when describing the profiles, will be 

described and interpreted in more detail in the following sections of this chapter.  
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4.4. Detailed description  

 

4.4.1. Relay structures – soft- and hard- link 

 

Throughout the study area, there are numerous relay structures both hard-linked and 

soft-linked, as seen from the fault maps (Figure 4.3 and 4.8). In this section an 

example of both structures are presented. Figure 4.10a shows a relay ramp ca. 700 m 

wide bounded by two overlapping southwest-northeast striking normal faults dipping 

ca. 20°-30° southeast. In map view they do not appear to connect, thus this is 

classified as a soft-link structure. The southwestern fault has ca. 700 m fault throw 

which dies out to the northeast, whereas the norhteastern fault has ca. 420 m fault 

throw which dies out to the southwest. This is seen in the throw-length diagram in 

Figure 4.10a.  

 
Figure 4.10: Detailed color-coded shaded bathymetric map of a) a soft-link structure and b) a hard-link 

structure. Depth scale is indicated by the color bar in Figure 4.1. The middle two illustrations are of the 

faults and tickmarks indicate the downthrown side. Throw length plot is presented and black lines 

represent the individual faults whereas the red line represents the sum of the black lines. Yellow box 

numbers 1a and 1b in Figure 4.1 represent the location of a) and b). 
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Figure 4.10b shows a relay structure consisting of two southwest-northeast striking 

normal faults dipping ca. 35°- 40° southeast. The southwestern fault apparently 

consists of several hard-link structures evident by the small jogs in the faults trace 

(fault map Figure 4.10b). The southwestern fault has a maximum throw of ca. 530 m 

which dies out extremely rapidly past the breaching point (throw-length diagram 

Figure 4.10b). The portion of the northeastern fault in the map view slightly decreases 

its throw and abruptly terminates at ca. 370 m where it merges with the southwestern 

fault. Thus, this can be interpreted as a hard-link structure where the northeastern 

hanging wall has propagated towards the southwestern foot wall resulting in a hard-

linked fault.  

 

4.4.2. Relay structure on segment scale 

 

Segment 14 is 22 km wide and shows a pronounced right step in the bathymetry 

(Figure 4.11). The main trend can be inferred from the stereographic projection to be 

ca. 55°N. The segment is characterized by a well defined AVR oriented parallel to the 

rift valley walls. The border faults have throws between 1200 m – 1800 m northwest 

and throws between 800 m – 1150 m southeast. The two axial valley walls are 

bounded by overlapping normal faults dipping ca. 35° - 58° for the northwestern 

valley walls and 25° - 39° for the southeastern valley walls. The northwestern wall is 

hard-linked to segment 15 which is seen from the fault map (Figure 4.11). The 

northwestern border fault is large and displays splay geometry southward with faults 

comprised of smaller lengths and throws interfering with the main fault. The 

southeastern wall is connected in fault plane with segment 15 and is thus hard-linked. 

Southwards, the fault becomes bent towards the border fault of segment 13. It is 

unclear from the bathymetry if the fault is fully connected with the border fault in 

segment 13. There are two faults interpreted dipping north-northeast in this relay 

structure. Two more lineaments are indicated in the bathymetry further north-

northeast and may represent faults or, alternatively, debris flows or slide scars due to 

their low dips.  
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The stereographic projection in Figure 4.11 illustrates the fault trends for most faults 

are parallel with respect to the rift axis (being ca. 55°). The fault bends comprising the 

relay structures give strike at an angle sub-perpendicular to the mean trend.  

 

 
Figure 4.11: Detailed color-coded shaded bathymetric map of segment 14. Depth scale is indicated by 

color bar in Figure 4.1. A fault map, including a stereographic projection, is presented. For the fault 

map black lines represent fault whereas the tickmarks indicate the downthrown side. Yellow box 

number 2 in Figure 4.1 represents the location of the figure.  

 

4.4.3. Core complex  

 

Pedersen et al. (2007) has described the area represented in Figure 4.12 as a core 

complex based on seafloor dredges recovering lower crustal and upper mantle rocks. 

The area is approximately 45 km long and 10 km wide and the center of the dome is 

ca. 25 km away from the spreading axis. A 3000 m deep basin is present to the west-

northwest and a 2650 m deep basin is present to the southeast. The maximum height 

of the complex is at 570 m depth. Viewed in the bathymetry the dome-shaped 

structure is prolonged and can be divides into two domes with the highest to the 

southwest and the lowest to the northeast (Figure 4.12).  There is a dome-shaped 

structure to the east-southeast of the southwestern complex where a submersible 

investigation has identified dikes (Pedersen et al., 2009) (Figure 4.9, profile 5). The 

geological interpretation (Figure 4.12) illustrates how the fault system consists of 

relay structures with both examples of hard-link and soft-link structures present. Seen 

in the geological interpretation for the southwestern dome, is faults stepping towards 

northeast in two major faults, a and b (Figure 4.12), before a larger fault, d, is present 
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connecting the southwestern dome with the northeastern dome. Both the c and d fault 

towards east-southeast in profile 6 (see correlation in Figure 4.13) cross the 

northeastern dome and extends to the southeastern dome. Fault d is continuous 

throughout the entire complex length, with exception of the left step southwest, while 

the c fault terminates in a hard-link structure northwest of the maximum height for the 

southwestern dome. Corrugated surfaces are present on the northeastern dome as well 

as southwest of the southwestern dome. The corrugations to the southwest of the 

southwestern dome are adjacent to fault a and is interpreted to represent a core 

complex that has initiated at an earlier stage. Thus the system of northeast stepping 

faults (a, b and d) and the dome-shaped structure represents a compound core 

complex and is interpreted to have evolved towards the northeast.  

 

 



Chapter 4                                                                                                              Results 

 43 

Figure 4.12 (previous page): Close-up shaded color-coded bathymetric map of the compound core 

complex. Depth scale is indicated by the color bar in Figure 4.1. Yellow box number 3 in Figure 4.1 

indicates the figures location. The illustration beneath is a geological interpretation. The faults are 

marked with black lines and tickmarks indicate the downthrown side. Stippled line indicates the core 

complex extent towards the ridge axis. Red ticks indicate the detachment fault crest from the 

detachment surface interpretation in figure 4.13. Letters a through d are faults discussed in the text. 

Lithology identified by dredges and submersibles are identified by red X.   

 

The profiles crossing the complex (Figure 4.9) show low angle faults WNW. Higher 

angle faults are present within the domed structure before the dome intersects with the 

seabed dipping 13° - 20°. An interpretation of the detachment fault surface is 

presented Figure 4.13 which shows a portion of the profiles presented in Figure 4.9. 

Fault a WNW in profile 4 is interpreted to be the detachment fault. The purple color 

indicates the fault surface of the detachment fault. The next fault, b, in the profile 

correlates with profile 5 as seen in the fault map (Figure 4.12).The downward 13° 

dipping surface is interpreted as the tip of the detachment corresponding to the 

detachment fault extent in map view.  

 

 
 

Figure 4.13: Detachment surface interpreted on portions of the profiles 4-6 presented in Figure 4.9. 

The position of  profiles can be seen in Figure 4.7. No vertical exaggeration. Horizontal and vertical 
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axes are in meters. The detachment fault crest is marked with a red tick in Figure 4.12 and the tip of the 

detachment (T) corresponds to the dotted line in the geological interpretation presented in Figure 4.12. 

Letters a through d are faults discussed in the text.   

 

Fault b WNW in profile 5 is the opposite tip of the NE stepping fault present in 

profile 4 (see fault correlation Figure 4.13). Further ESE the topography domes and 

the fault dipping 26° is interpreted to represent the detachment fault. The detachment 

fault is followed by a zone of depressed crust. The following three steeper dipping 

faults, 34° - 41°, are interpreted to be rafted fault blocks or, alternatively, faults 

generated on an already exhumed fault surface. The fault surface intersecting the 

seafloor at approximately 15° is where serpentinite has been recovered. The 

termination of this dip is interpreted as the tip of the detachment surface 

corresponding to the detachment fault extent in map view. Another ~900 m high 

domed feature is present ESE where dikes have been identified by submersibles. The 

presence of dikes indicates layer 2B/C and therefore represents a higher crustal level 

than gabbroic/serpentinite rock representing layer 3 (Keary & Vine, 1990). Dips on 

either side of the dome are hard to constrain exactly but tend to range 25°-50°. This 

feature is interpreted to represent the hanging wall or alternatively a rafted block 

produced during exhumation of the core complex. In profile 6 (Figure 4.13) crossing 

the northeastern dome fault d is interpreted as the detachment fault followed by a 

narrow zone of depressed crust. This fault correlates to the detachment fault for the 

southwestern dome shown in Figure 4.13. Further ESE the dome is intersected by a 

higher angle fault (~39°) interpreted to represent a fault intersecting the exhumed 

detachment surface. The domed structure intersects the seafloor dipping 20°. 

 

All the morphological characteristics common for core complexes (see Section 2.4) 

are present in the profiles for area 2. In order, towards the rift axis, these 

characteristics are; a deep basin, an outward sloping ridge, a narrow zone of depressed 

crust, a slightly domed massif with or without identifiable corrugations.  
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4.4.4. Features of interest 

 

The area presented in Figure 4.14 shows three distinct morphologies of interest (red 

boxes in fault map Figure 4.14).  The feature represented by red box A in Figure 4.14 

is situated directly to the northeast of the AVR in segment 15 and southwest of a 2450 

m deep basin. The area peaks at a depth of 1810 m and is characterized by multiple 

faults dipping towards the axial valley (fault map Figure 4.14). The faults are closely 

spaced and only one fault, closest to the axis, is exhibiting a large amount of throw. 

Measured dips range in the order 38° - 56° (profile 4 Figure 4.9). It is striking how the 

faults on either side of the feature tend to curve in (non-planar fault surface) and form 

hard-link structures towards the height as seen in the fault map (Figure 4.14). Red box 

B in Figure 4.14 shows a similar fault pattern. Here two border faults on either side of 

a local 2300 m high bend inwards. Sub parallel to the border faults is flank faults 

distinguishing the same characteristics. Thus, there is a mid point of thoroughly 

faulted rock. 

 

The largest feature (C in Figure 4.14) to the northwest, striking 047, consists of two 

faults joining together on both sides of an 11 km long and 5 km wide rugged surface 

(red box number 3, Figure 4.14). Investigations have recovered gabbroic rock from 

the southeast side of the morphology (profile 4 Figure 4.9). In profile, the structure is 

domed rising 700 m above a basin situated to the northwest. There is a linear ridge 

seen in the bathymetry and interpreted as a fault (see Figure 4.14) dipping 20° 

towards the rift axis (profile 4 Figure 4.9). The slope intersects 14° into a basin 

situated towards the rift valley where the rugged topography ceases. The rugged 

topography shows similar characteristics to the surfaces interpreted as fault surfaces 

in the detachments in Section 4.4.3 although no corrugations are apparent in the 

bathymetry. There also appear to be smaller faults within the structure. The surface is 

also similar to the fault scarp morphology seen in Figure 3.3 although gullies are not 

identified. 
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Figure 4.14: Close-up shaded color-coded bathymetric map of features of interest labeled A, B and C. 

Depth scale is indicated by the color bar in Figure 4.1. Yellow box number 4 in Figure 4.1 indicates the 

figures location. The illustration beneath is an interpretation of faults and are marked with black lines 

and tickmarks indicate the downthrown side. Red boxes illustrate the three areas displaying similar 

fault characteristics. Number 15 in the bathymetric map represents the location of AVR 15. 
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To the southwest a border fault curves and splits inwards towards the rugged 

topography (fault map Figure 4.14). Fault throw diminishes from 700 m to 170 m 

(graph Figure 4.15). Parallel to the border fault a sub parallel fault apparently overlaps 

with the fault interpreted within the rugged topography showing throw maximum of 

1070 m diminishing to 650 m towards the rugged surface (fault map Figure 4.14 and 

graph Figure 4.15). The fault interpreted in the rugged topography can be traced 

further NE as seen in the fault map (Figure 4.14). Further northeast past the rugged 

topography the fault shows characteristics of a normal fault (no prolonged slip) 

showing dip readings increasing up to 45°. From the throw length diagram (Figure 

4.15) it is seen that the fault throw slightly increases from 300 m for the remaining 

fault segment. Towards the rift valley sub parallel to this fault a normal fault is 

present. This fault curves strongly towards the rugged topography southwest forming 

a relay structure. The fault forming the relay structure has a throw of 135 m whereas 

the remaining fault has throw of approximately 400 m. It can be tempting to interpret 

a fault between the two southeast faults curving towards the rugged topography and 

argue that this fault has been buried. But if one interpolates the faults to the southeast 

they cease. The fault interpreted within the rugged topography has been plotted in the 

same graph in Figure 4.15 using the scheme illustrated in Figure 3.2 showing fault 

throws between 600 – 800 m. In profile (Figure 4.9) it is apparent that the amount of 

debris the rugged topography would represent does not correspond to the amount of 

eroded material expected. Thus if the rugged topography corresponds to debris it 

cannot be a result of just one normal fault.  

 

The presence of gabbroic rock indicates a great amount of displacement. Klingelhofer 

et al. (2000a &b) interpreted the crust at the central Mohns Ridge to be 4.0 ± 0.5 km 

with variations occurring in the lower crustal layer 3 which is the layer consisting of 

gabbroic rock. The crustal layer 2 shows an average of 2 ± 0.5 km. If one assumes the 

crustal thickness is similar further north to the area of interest in this thesis there is 

two possible mechanisms which may lead to exposure of gabbroic rock on the seabed. 

The first is a gravity collapse where one large fault, not exhuming upper mantle rocks, 

collapses by an intersecting fault leading to exhuming mantel rock. This process is 

illustrated in Figure 4.16. 
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Figure 4.15: Throw – length profile. Black lines represent throw for individual faults whereas red for 

the sum of overlapping individual faults. The central single fault is interpreted after the scheme 

illustrated in Figure 3.2. The stippled lines show which individual fault on either side of the rugged 

topography overlaps with the adjacent fault. Close-up shaded color-coded bathymetric map of Feature 

C. Depth scale is indicated by the color bar in Figure 4.1. The snapshot corresponds to the red box to 

the NW in Figure 4.14.  
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Figure 4.16: Schematic figure of how deeper seated rocks can be exposed by faulting and collapsing. 

In the figure slumping is the cause of exposure though the slumps are related to faulting and 

earthquakes. If the green layer in figure corresponds to crustal layer 3 (gabbro) we would se it locally 

exposed on the seafloor surface. Modified from Hesthammer & Fossen (1999). 

 

The second alternative is that this structure represents a core complex that terminated 

at an earlier stage before evolving to the extent of the core complex compound 

described in Section 4.4.3. In profile the dome-shaped rugged structure displays many 

of the characteristics of core complexes. A fault trace dipping 20° has been noted 

followed by a depressed zone. Adjacent to the depressed zone is a rugged mounded 

topography towards the axial valley, extending for approximately 4000-5000 m. This 

is the amount of faulting needed to exhibit domed fault massifs (Buck, 1988). Other 
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factors supporting this alternative is a basin situated behind the detachment fault crest 

(Tucholke et al., 1998; Smith et al. 2006) as well as that the structure is intersecting 

the seafloor at a low angle of 14°. For this alternative the intersection corresponds to 

the tip of the detachment surface in map view (Figure 4.17). It has already been 

shown that the area is characterized by a core complex (Section 4.4.3) and this 

structure could be formed by the same processes terminating at an earlier stage. 

Figure 4.17 shows an interpretation of the detachment fault surface.   

 

 

 

Figure 4.17: Section from profile 4 crossing Feature C (Figure 4.9) with no vertical exaggeration. 

Horizontal and vertical axis in meters. Fault dips are noted and the fault trace is interpolated 

downwards. Purple color indicates the detachment fault surface whereas the green color indicates 

where gabbro has been dredged.  

 

Results from numerical modeling of core complexes show a striking similarity in 

topographic expression. Figure 4.18 shows a profile over the Feature C with 4 times 

vertical exaggeration compared to the topography results from the numerical model 

by Lavier et al. (1999) (position of profile seen in Figure 4.7). It is important to point 

out that the horizontal scale of the two topographic profiles differs dramatically. Note 

how the morphological characteristics, outward facing slope, fault break-away/fault 

crest and domed surface, are strikingly similar. The core complex (Feature C) is 

present off-axis and is interpreted to be extinct and therefore sediments may alter the 

topography, especially filling in the zone where the dipping surface intersects the 

seafloor. 
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Figure 4.18: Modeled (numerical) topography for a detachment fault (modified from Lavier et al., 

1999). Underneath is a section of profile 4 crossing the Feature C. The position of the profile is 

indicated in Figure 4.7. The topographic exaggeration is 4 times for both topographic profiles in the 

figure.  
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5. DISCUSSION 

 

 

There are several interesting observations presented in the result chapter. This section 

discusses the data described in the result chapter as well as comparing features with 

other known field examples. The main themes that will be discussed are:  

 

� Fault population and formation 

� Reason for different geologic expression in area 1 and 2 

� Fault evolution model for area 1 and 2 

� Evolution of Feature C  

� Lateral termination of core complexes 

� Are several stages of core complex evolution present? 

 

 

5.1. Fault population and formation 

 

The data plotted in Figure 4.4 shows a general trend where large systems of linked 

faults display a throw-length relationship tending towards γ = 0.01 and single faults 

displaying a throw-length relationship tending towards γ= 0.1. The hard-link faults 

tend to plot at higher throw and length values as seen from this figure, although, as 

mentioned the faults for area 2 are to a lesser degree segregated. The reason we get 

this trend is illustrated by Jackson’s et al. (2002) schematic illustration of fault growth 

(Figure 5.1) and how this affects the measurements in a logarithmic plot. 

Displacement/throw for single faults can be expressed by the equation D=cLn (c is 

equivalent to γ). As illustrated in Figure 5.1, single faults follow a linear trend. When 

overlapping the sum of the fault displacement/throw results in deviation from the 

linear trend as it steps to the right indicating larger length in comparison to 

displacement. After the fault segments have linked up displacement readjusts, 

resulting in the displacement-length relationship moving upwards towards the initial 

linear trend. Thus in a logarithmic plot one expects to see a segregation of single and 
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linked faults where the linked faults exhibit a higher length/displacement ratio than 

single faults.  

 
Figure 5.1: Maximum displacement, plotted against fault length for three stages of fault evolution. i) 

single faults, ii) overlapping faults, iii) post linkage displacement redistribution. Modified from 

Jackson et al. (2002). 

 

Figure 5.2 shows the data from the Mohns Ridge plotted together with data from 

different locations consisting of measurements of faults at different scales and 

includes the three end members of faults; strike-slip, normal and thrust. The majority 

of faults in this dataset plot between γ = 0.1 and γ = 0.01. The main exception is the 

normal faults in the porous Navajo Sandstone (Utah), which plot between γ = 0.01 

and γ  = 0.001. It is evident from Figure 5.2 that many hard-link data plot lower 

displacement values than those of single faults, and this is consistent with the model 

shown in the previous figure (Figure 5.1). It also shows that the Dmax-L relation of at 

least this mid-ocean ridge conforms with Dmax-L data from continental rift settings 

and other fault populations in spite of differences in crustal thickness and rheology.  
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Figure 5.2: Displacement versus length plot for faults, compilation by Schultz et al. (2008) with 

Mohns Ridge data added.  NF – normal faults; SSF – strike-slip faults; TF – thrust faults. 

 

The sum of the throw-length profiles for the soft-linked relay structures in Figure 

4.10a show that fault throw decreases as the fault dies out and that summing the 

profiles results in a depression where the faults overlap. Thus the sum of the two 

faults deviate from the C-shapes throw-length profile expected from a single fault 

(Fossen & Hesthammer, 1997). The soft-linked faults correspond to stage ii) in Figure 

5.1. The throw-length diagram in Figure 4.10b exhibits only a slight depression where 

the faults link together thus displaying a higher degree of evolvement towards a 

plateau type profile (Fossen & Hesthammer, 1997). This corresponds to stage iii) in 

Figure 5.1, indicating post-linkage displacement redistribution. The throw-length 

diagrams can give an indication to the fault development since overlap structures are 

ephemeral features within developing fault systems and are thus created and 

destroyed during faulting, being preserved when fault growth stops (Childes et al., 

1995).  

 

The throw diagram for the fault to the west in Figure 4.10b shows dramatically 

different throw patterns on either side of the breaching point. To the northeast the 

throw decreases dramatically whereas the southwest shows a gentle decrease. This is 
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interpreted to be a result of hard-link faults which behave as single irregular faults 

(e.g. Peacock & Parfitt, 2002), thus implying the southwestern side being active 

longer than the northeastern side of the breaching point. The northeastern side of the 

breaching point has been locked as the two faults have linked, which has resulted in 

an asymmetric throw-length profile for that individual fault segment. Further it can be 

seen from the fault interpretation in Figure 4.10b that the western fault consists of 

several hard-linked faults. This can help illustrate how faults grow as it is evident that 

the western fault has initially consisted of several separate faults which have linked 

together with the surrounding faults forming a larger fault. In the next stage the large 

fault links together with another fault, thus the scale is increasing in magnitude as 

extension occurs. Throughout the fault maps presented in Figure 4.3 and 4.8, faults 

are seen to interlink to different degrees. Larger fault systems, e.g. the border faults, 

display numerous jagged changes in strike as seen in the fault maps, e.g. for segment 

14 in Figure 4.11, indicating numerous fault linking during the border fault evolution.    

 

Figure 5.3 shows two different analogies to segment 14. Figure 5.3a shows a color-

coded bathymetric map of the Northern Viking Graben consisting of three segments, I 

to the south, II in the middle and III to the north. The segments show distinct right 

steps in proportion to one another. The faults display curved geometry and appear to 

be linked together by both hard-link and soft-link structures. In between the segments, 

at the segment ends, the seafloor is elevated. This is consistent with stage ii) in Figure 

5.1, thus these relay structures are not as evolved as the relay structures presented in 

Section 4.4.1. The segment width is approximately 40 km and thus considerably 

wider than what is typical for the Mohns Ridge. Figure 5.3b is a color-coded 

bathymetric map of Devils Lane in Canyonlands Utah showing two segment ends 

linked together. The segment widths are approximately 200 m, thus one magnitude 

smaller than a typical width for the Mohns Ridge. Two well developed relay ramps 

are present on either side of the relay structure. The tip point for the north eastern 

fault is exceptionally well exposed as fault displacement increases northwards along 

this fault. There is a “fin” between the two segments also seen in Figure 5.3c. The 

Canyonlands area is faulted along preexisting joints due to lower laying stratigraphic 

salt which became unstable during exhumation by the Colorado River (e.g. Moore 

and Schultz, 1999). The North Viking Graben is believed to be formed during the 

Permian-Triassic phase of extension in the North Sea (Roberts et al. 1995). The rifting 
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ceased and no seafloor spreading occurred, thus this is an aborted rift. The Mohns 

Ridge segments are defined by AVRs defining the segment centers.  

 

Although these three segments are a result of different styles of faulting and scale the 

similarities between the shift of the North Viking Graben, Devils Lane and that of the 

Mohns Ridge (i.e. segment 14) are striking. The elevated bathymetry at the segment 

ends in the Northern Viking Graben has been shown to correspond to the 

redistribution of displacement after a relay structure has formed. The “fin” in Devils 

lane represents a horst block and it is suggested that this is a structural artifact that 

resulted as the graben formed and overlapped. The relay structure between segment 

13 and 14 correspond to transfer zones trending near parallel to the spreading 

direction accommodating the transition between second order segments (Dauteuil & 

Brun 1993 & 1996). Volcanism is interpreted in this transfer zone. The area in the 

vicinity of the transfer zone is thoroughly faulted compared to the border faults. This 

implies weakening of the curst. It may imply that the volcanism is a result of the 

transfer zone which may aid to decompression of upper mantle material as a 

consequence of a weakened (faulted) crust. Magma may therefore ascend to the 

seafloor surface due to larger amounts of fractures and faults. The largest interpreted 

volcanoes are not characterized by calderas and are therefore subject to uncertainty 

regarding their interpretation. Alternatively the local highs may correspond to tectonic 

derived horsts similar to the “fin” in Devils Lane (Figure 5.3). In either interpretation 

the elevation at the segment ends between segment 13 and 14 at the Mohns Ridge 

correspond to the elevated heights in the non-volcanic Northern Viking Graben and 

Devils Lane, in spite that they originate at different settings.  

 

The fault interpretation in Figure 4.3 and the stereographic projection (Figure 4.5) 

show that for the oblique spreading area 1, the border faults are at an angle to the rift 

valley trend. The intra-rift faults show a similar orientation to the AVRs curving 

towards the border faults. The southern Knipovich Ridge is characterized by highly 

oblique spreading that has resulted in an en echelon fault geometry with intra-rift 

faults strongly curving towards the border faults (Figure 4.2). The Mohns-Knipovich 

Ridge Bend is experiencing less oblique spreading (Figure 4.5) and a result of this is 

the intra-rift faults oriented sub-perpendicular to the spreading direction. The fault 

characteristics for these different areas, showing different degrees of oblique  
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Figure 5.3: Relay analogies to the segments in the Mohns Ridge with emphasis on segment 14.  

a) Depth-coded bathymetric map of the Norhern Viking Graben. From Fossen et al., (in review). 

b) Depth-coded bathymetric map of Devils Lane in Canyonlands. The “fin” between the 

segments is the Son of a Bitch Hill also seen in c). From Fossen et al. (in review) 

c) Photograph of the Devils Lane looking southward (photograph by H. Fossen) 
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d) and e) is the same Figure as presented in Figure 4.11 and the positioning is seen in yellow box 

number 2 in Figure 4.1.  

 

spreading, is consistent with the observations done in analog sandbox rift modeling 

for orthogonal and oblique spreading rifts (McClay & White, 1995). Here oblique 

rifting results in en echelon fault geometry with shorter border faults and intra-rift 

faults forming at a higher angle to the mean ridge trend as obliquity increases. 

 

5.2. Reason for different geological expression in area 1 and 2 

 

It is evident from Section 4.3 that the two areas are distinguished by different 

topographic expression of the western flanks. This is apparent in bathymetry as well 

as in profile. The main evolutionary difference between the two areas is that oceanic 

core complexes have evolved at the Mohns-Knipovich Ridge Bend in area 2. Area 1 

is delimited by two AVRs. Sparse volcanism is identified between these AVRs. 

Instead deep basins corresponding to higher-order magma-starved segmentation have 

been identified. From the profiles crossing the area (Figure 4.3) it is evident that the 

fault dips slightly decrease away from the axis. In contrast, area 2 shows severe fault 

rotation away from the axis and is situated in the vicinity of an AVR with abundant 

volcanism identified (Figure 4.8 and 4.9). The most southern profile, profile 4, in area 

2, crosses the center of AVR 15 whereas the two other profiles cross the axial valley 

slightly further north. The area comprising the southern Knipovich Ridge is 

characterized by highly oblique tectonic dominated basins arranged in an en echelon 

geometry.  

 

Crane et al. (2001) proposes a significant component of compression across the 

northern Mohns Ridge and southern Knipovich Ridge due to the curved nature of the 

spreading ridge. Compression often leads to thrusting and uplift. However the 

interpretations presented in this thesis have not identified any compressional 

structures. The western flank of the Mohns-Knipovich Ridge Bend is higher elevated 

than the eastern flank. This is believed to be a result of core complex formation 

(Pedersen et al., 2007). An additional factor that influences the asymmetry is isostatic 

response of the lithosphere due to the eastern flank’s proximity to the glacial margin 

(Bruvoll et al., 2009). 
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The difference in the two areas may be attributed to variations in the thermal state of 

the lithosphere. Practically no volcanism has been identified for the southern 

Knipovich Ridge where no AVRs are interpreted. Although volcanism is not 

identified in the southern Knipovich Ridge from the interpretations presented in 

Chapter 4, rock dredges have illustrated the presence of volcanic rock within strongly 

faulted assumed tectonic dominated areas of the Knipovich Ridge (Hellevang & 

Pedersen, 2005). Sparse volcanism is identified for area 1 which lies between two 

AVRs. In the vicinity of area 2 in the Mohns-Knipovich Ridge abundant volcanism is 

identified. There are three areas showing different degrees of volcanism. It is 

reasonable to believe that the area in the vicinity of the Mohns-Knipovich Ridge Bend 

is experiencing a higher thermal state of the lithosphere, thus showing a larger degree 

of characteristics of magmatic extension and accretion.  

 

Klingelhofer et al. (2000b) interpreted the crustal thicknesses at the central Mohns 

Ridge, 2°W to 4°E, using OBH (ocean bottom hydrophone) data. Here oceanic layer 

2a is interpreted to consist of pillow basalt and has an average thickness of 500 m at 

the axis, decreasing off axis to 200 m, whereas oceanic layer 2b is interpreted to 

consist of dikes and have an average thickness of 1000 m – 1300 m. Crustal layer 3 

consists of gabbro and is interpreted to be 2500 m thick. Recent research by 

Kandilarov et al. (2008 & 2009) presents two OBS (ocean bottom seismometer) 

profiles crossing the central Knipovich Ridge, 76° - 77°N. The data presented gives 

important information of the crustal layer characteristics as the two profiles target an 

AVR and a tectonic dominated basin respectively. They, therefore, illustrate 

variations in crustal thicknesses that may be expected along a slow to ultraslow 

spreading ridge. For the profile crossing a presumed AVR oceanic layer 2 is ~ 3000 m 

thick at the rift axis and decreases rapidly to ~1000 km some 15 km off-axis. Oceanic 

layer 3 is ~2000 m at the axis and thickens rapidly off-axis to a maximum of 7000 m 

50 km off-axis. Under oceanic layer 3, young mantle is interpreted (Kandilarov et al., 

2009). For the tectonic dominated transect (Kandilarov et al., 2008) oceanic layer 2 is 

interpreted to be in the range of 1000 m – 2000 m within 20 km from the rift axis. 

Oceanic layer 3 is ~2000 m at the rift axis and increases to ~5000 m 60 km from the 

rift axis (Figure 5.4).  
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Data from these publications can be used to produce an along-axis cross section of the 

study area in combination with bathymetric data and interpretations of morphological 

features, such as AVRs and higher-order tectonic dominated segments as presented in 

Chapter 4. A proposed along-axis cross section is presented in Figure 5.4. It is seen 

that accretion of oceanic crust is more abundant in the vicinity of the AVRs and is 

expressed by thicker oceanic crust, mainly due to an increase in accretion of oceanic 

layer 2. This corresponds to Lin et al. (1990) and Cannat et al. (1995) along-axis cross 

section over segment centers in that magmatic crust is thicker at segment centers (here 

segment center corresponding to the AVRs 12, 13, 14 & 15) and thinner at the 

intersection between segments. It can be inferred that magmatic accretion increases 

the thermal state of the lithosphere, and Figure 5.4 therefore illustrates the thermal 

differences in the study area. 

 

 
 

Figure 5.4: Rotated color-coded bathymetric map of the study area. Numbers in the bathymetric map 

indicate the AVRs. The vertical scale of the bathymetric map is 3 times. Depth is indicated by color bar 

in Figure 4.1. Vertical scale is sub-seafloor depth. The white line in the bathymetric map indicates the 

topographic height along the transect. The yellow boxes shows where the models for area 1 and 2 are 

situated. 

 

 

5.3. Fault evolution model for area 1 and 2 

 

5.3.1. Data and assumptions  

 

The fault evolution model for areas 1 and 2 is based on the results presented in 

Chapter 4 (bathymetric and fault maps, topographic cross sections including fault dip 



Chapter 5                                                                                                         Discussion 

 62 

and rocks recovered and observed by dredges and submersibles). Further necessary 

information of crustal thicknesses is extracted from Klingelhofer et al. (2000b) and 

Kandilarov et al. (2008 & 2009) (see Section 5.2). The cross sections presented in 

Figures 5.4, 5.5 & 5.6 are simplified concerning lithologies. A comparison to Dick’s 

et al. (2008) cross section presented for the Kane core complex at the Mid Atlantic 

Ridge, which is based on a great amount of petrological data, shows a complex 

interaction between the crustal layers and intrusions (dikes). Information as to how 

the detachment fault dips into the subsurface is derived from Lavier et al’s. (1999) 

numerical model of large-offset low-angle normal faults. Here plastic strain shows 

that the active part of the fault dips between 45 - 60°, thus at a much higher angle than 

the exposed detachment fault surface, which intersects the seafloor with a dip of 13 - 

20°. Faults are assumed to initiate at or close to the seafloor. Sparse ephemeral 

volcanic activity is assumed for area 1.  

 

5.3.2. Evolution model for area 1 & 2  

 

In Chapter 4, the profiles crossing area 1 are described as symmetric with respect to 

fault spacing and fault throw. The profiles are in between two AVRs and higher-order 

segmentation in form of tectonic dominated basins has been described. In Figure 5.5 a 

proposed model for fault evolution is presented, illustrated by cross sections and map 

views. The latter, to schematically illustrate the orientation faults initiate at as intra-

rift faults, and how they propagate with time, evolving to border faults. At time 1, a 

fault (red fault in Figure 5.5) forms in the axial valley orthogonal to the spreading 

direction at the least principal stress, thus oblique to the local trend of the rift. Note 

that the border faults are sub-parallel to the local trend of the rift. This is inferred from 

the stereographic projection (Figure 4.5) where the faults are at a slight angle to the 

mean rift trend. The fault further propagates deeper into the crust, at the same time 

curving towards the border fault (T – 2). This happens as a new fault with opposite 

polarity initiates (blue fault in Figure 5.5). These two faults dipping towards each 

other form grabens corresponding to the higher-order tectonic dominated 

segmentation described in Figure 4.2a. In reality the faults correspond to fault zones 

or fault clusters, for simplicity indicated by a single fault. At time 3 the initial fault 

has evolved and is now a border fault with a similar trend as the previous border fault. 
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This coincides with a new fault initiating within the axial valley. Note how the blue 

fault with the opposite  

 

 

 

Figure 5.5: Fault evolution model for area 1. This area is situated between two AVRs, see yellow box 

in Figure 5.4 for positioning. Tectonic dominated accretion with sparse ephemeral magmatism is 

assumed. The boxes to the left of the cross sections represent the axial valley in map view. The local 

trend of the rift is parallel to the long side of the bounding boxes. Lines represent faults with black 

ticks indicating the downthrown side. They illustrate which orientation the faults are inferred to 

originate at and how they propagate with time. Green faults are initial border faults while red and blue 
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faults are initial intra-rift faults. The spreading direction is indicated by black arrows, and is 24° 

oblique (Hellevang & Pedersen, 2003).   

 

polarity is now propagating towards the border fault (T-3 map view, Figure 5.5). It is 

seen from the final stage of the evolutionary model (not illustrated in map view) that 

faults have initiated as intra-rift faults with different polarities and have further 

evolved to become border faults. This coincides as new faults have initiated in the 

axial valley. This evolutionary model illustrates the symmetry of the area with respect 

to fault displacement and spacing. Oceanic layer 2 averages at 1000 m, and fault 

throw results from Chapter 4 range up to 1000 m, thus there may be exposures of 

gabbroic rock in this area, although this is not shown in the model. Note how the 

faults gradually rotate as they move away from the axis.    

 

Figure 5.6 illustrates the evolution of the oceanic core complex at the Mohns-

Knipovich Ridge Bend in area 2. At time 1, a fault oriented parallel to the axial valley 

intersects the AVR (red fault Figure 5.6). This eventually results in termination of the 

border fault to the west-northwest. At time 3, the fault shows characteristics of 

detachment faulting as the fault has been accommodated by severe displacement. Due 

to the elevated thermal state of the lithospere resulting from the proximity to the 

AVR, the fault surface begins to flex. It can be seen that the fault crest is now 

exhibiting a large amount of rotation, showing equal dips both towards the axis and 

off axis. At time 4, gabbroic rocks (oceanic layer 3) are exposed at the seafloor due to 

fault-related exhumation. Here the displacement in map view for the detachment fault 

is approximately 7 km. As seen from the Figure, the axial valley is increasing in width 

as more magmatic accretion occurs. At the final stage, time 5, the detachment fault 

surface is showing an extensive cross section of the upper oceanic lithosphere as 

oceanic layer 2 and 3 are fully exposed as well as the upper mantel characterized by 

talc-schist (serpentinzed mantel peridotite). Higher angle faults initiate intersecting 

the detachment surface. The displacement in map view for the detachment fault is 

approximately 10 km. The core complex formation is terminated when a new fault is 

initiated in the rift valley, here intersecting the AVR. This new fault is now the 

accreting fault and the core complex is extinct. Note how the fault to the east-

southeast gradually becomes slightly rotated as it moves away from the spreading 

center. This is due to both magmatic and fault accretion. The flank east-southeast may 
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in fact consist of several faults that initiate at different stages, although this is not 

greatly confined within the data presented in Chapter 4 and therefore not the primary 

focus of this model.  

 

 

Figure 5.6: Model for evolution of oceanic core complex at the Mohns-Knipovich Ridge in area 2. No 

vertical exaggeration. See yellow box  in Figure 5.4 for positioning. 

 T – 1 Faults initiate intersecting the AVR. 

T – 2 The fault cluster evolves into one active detachment fault allowing larger amount 

displacement. 
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T – 3  Fault surface is characterized by flexure, also notice how the fault crest is rotated. 

T – 4 Displacement in map view for the detachment fault is approximately 7 km. Gabbroic 

rock is exhumed at the seafloor. Also note how volcanic rock is continuously formed 

during in the axial valley. 

T – 5  Extensive cross section of the oceanic lithosphere is exhumed with displacement of 

approximately 10 km. Faults initiate and intersect the exhumed surface. The 

detachment fault is terminated as a new fault forms, intersecting the AVR, thus now 

representing the active fault.  

 

The cross sections proposed in Figure 5.4, 5.5 & 5.6 show that the assumed crustal 

thicknesses differ greatly for the two different models due to their tectonic setting. 

The most important difference is that the model for area 2 is situated adjacent to a 

heat anomaly (an AVR) which suggests altered rheological properties.  

The difference between oblique- and orthogonal spreading faults has resulted in faults 

initiating at an angle to the rift trend in area 1 whereas they initiate orthogonal to the 

rift trend in area 2.  

 

5.3.3. Existing models of oceanic core complex formation 

 

The thermal state of a mid oceanic spreading ridge is an important contributor 

regarding deformation expression. There are several models for oceanic core complex 

formation proposed. The main difference in these is the assumed thermal state of the 

lithosphere dominating the phase of extension and how the detachment fault soles out 

with depth. The research is based on data such as bathymetric and fault maps, gravity 

and magnetic data, submersible investigations and rock samples collected either by 

submersibles, dredges or drilling. Both refraction and reflection seismic have been 

used to determine sediment cover and crustal layer thicknesses.  

 

Models for continental lithospheric extension conclude that for a core complex to 

form in a continental environment heat flow has to be high so that the yield strength 

of the crust is low otherwise a symmetric rift will form (Buck, 1991). Previous 

published models for oceanic core complexes are contradictory to the high heat flow 

in that they assume amagmatic (tectonic) dominated extension (Tucholke et al., 1998 

& 2001). This model has been developed from morphological characteristics, 

geological observations, and sampling of tectonic structures along the Mid Atlantic 



Chapter 5                                                                                                         Discussion 

 67 

Ridge. Here a detachment fault is proposed to cut through the whole thickness of the 

lithosphere, soling out at the brittle-ductile transition (Figure 5.7). In this model the 

detachment fault develops during a period of amagmatic accretion when the 

lithosphere is cold (strong) and the isotherms are depressed. The onset of amagmatic 

accretion results in detachment faulting exhuming the lower crust and upper mantle. 

The fault is terminated when magmatic activity raises the isotherm resulting in 

magmatic accretion of oceanic crust (Figure 5.7). 

 

 

 

Figure 5.7: Schematic development of an oceanic core complex for an inner corner setting. From 

Tucholke et al. (1998) 

a) The beginning of a long (1-2 Ma) amagmatic phase of seafloor accretion. A steep normal fault 

cuts through the brittle lithosphere and soles out in a ductile shear zone beneath the brittle-

plastic transition.  

b) With time the fault reaches greater depths as the isotherms, and hence the brittle-plastic zone, 

becomes depressed. 

c) Continued slip exposes lower crust and upper mantle material in the footwall as the fault 

surface domes exhibiting corrugations (mullions). 

d) A magmatic phase of seafloor spreading terminates the slip of the detachment fault that is in 

association with the core complex. This happens because a new fault initiates in the weakened 

(now hot) rift valley lithosphere.  
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Alternatively, it is proposed, from observations at the South West Indian Rise and the 

Mid-Atlantic Ridge that the detachment fault roots in the vicinity of a melt rich zone 

near the gabbro-dike transition in the shallow lithosphere (Dick et al., 1999; 2000 & 

2008). Escartin et al. (2003) proposed that oceanic detachments root at shallow levels 

in the lithosphere, either at a melt rich zone at the gabbro-dike transition or within the 

altered lithosphere. This is based on observations from 15°45´N at the Mid Atlantic 

Ridge. Thus it has been demonstrated that detachments may also develop in the 

presence of active magmatism at the ridge axis. 

 

Research of multiple core complexes between 13° - 15°N at the Mid Atlantic Ridge, 

including compound core complexes, has resulted in two models for multiple core 

complex formation (Smith et al., 2008). The first is a continuous model where a single 

detachment fault extends along the axis to include all of the core complexes and 

associated basins. The second is a discontinuous model in which local detachment 

faults form the core complexes and magmatic spreading forms the basins.  

 

Numerical modeling suggests that the amount of magma emplaced by dikes can 

explain the fault geometry in settings where detachment core complexes form (slow 

to ultraslow class of spreading ridges) (Buck et al., 2005). Here a reduction in magma 

emplacement, to an account of half the spreading component, will favor large fault 

displacements, thus enabling prolonged displacement that can result in exposure of 

the lower crust and upper mantel.  

 

5.3.4. Model proposed for the oceanic core complex at the Mohns-Knipovich 

Ridge in light of previous models 

 

The model proposed in Figure 5.6 for the oceanic core complex at the Mohns-

Knipovich Ridge Bend exhibits similar topography and exhumation history as the 

model proposed by Tucholke et al. (1998 & 2001) in Figure 5.7. A minor difference is 

that all the interpreted faults dip towards the rift axis in area 2. A fundamental 

difference is that the thermal state of the lithosphere is interpreted to be elevated for 

the model representing area 2. This is contradictory to the model proposed by 

Tucholke et al. (1998 & 2001) where the thermal state of the lithosphere is depressed 
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during detachment faulting. It should be noted that this model is proposed for inside 

corners at segment ends for slow spreading ridges, it is based on low magmatic 

activity that only periodically reaches the segment ends, terminating the detachment 

fault. This is opposed to the core complex inferred to form adjacent to an AVR which 

defines a segment center at a slow to ultraslow spreading ridge. Due to the proximity 

to the AVR it is reasonable to assume a melt rich zone at the gabbro-dike transition 

and the fault may sole out according to Dick et al. (1999; 2000 & 2008) and Escartin 

et al. (2003) in this transition. It must be noted that the data interpreted and presented 

in this thesis does not give direct insight as to how the fault propagates with depth and 

this has therefore not been illustrated for the model proposed 

 

The evolutionary model proposed for core complex formation is characterized by both 

magmatic and fault accretion differing from the model assuming near pure fault 

accretion (Figure 5.7). Instead the model (Figure 5.6) corresponds to the numerical 

model of Buck et al. (2005) where faults with large displacement (detachment faults) 

form when half the plate separation at the ridge is due to dike intrusions. This 

coincides with small faults developing at the opposite side of the rift valley accreting 

smaller amounts of tectonic extension simultaneously as magmatic accretion accounts 

for the remaining component of extension.   

 

The core complex at the Mohns-Knipovich Ridge Bend has been interpreted as a 

compound core complex (Section 4.4.3). It is therefore not necessarily straightforward 

which fault crest represents the detachment fault. It is possible that the detachment 

fault in reality is located further off axis and that the faults interpreted as detachment 

faults are actually rafted fault blocks on a larger detachment fault surface. This 

corresponds to the “continuous” model proposed by Smith et al. (2008). The 

detachment fault may, therefore alternatively, be the initial border fault at T – 1 in 

Figure 5.6, if not a fault further off-axis that may not be identified in the bathymetry.   
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5.4. Evolution of Feature C  

 

The features described in Section 4.4.4 are not well constrained by previous studies 

and the mechanisms resulting in such features, therefore, relatively unknown. Feature 

A and B are characterized by faults on either side of the feature curving forming hard-

link structures towards a common central area which consists of thoroughly faulted 

seafloor. Feature C is characterized by isochron off-axis faults which have linked 

together. Further off axis two faults are curving strongly off-axis intersecting an 11 

km rugged topography. The rugged topography has been interpreted to represent a 

detachment fault surface (Section 4.4.4). 

 

Keep & McClay (1997) described how rift systems and fault geometry are affected by 

multi-phases of rifting using analogue models. They argue that this is evident in the 

fault geometry for the central, 2°W - 4°E, Mohns Ridge. None of their test results 

show any resemblance to the features presented in Section 4.4.4, although this does 

not dismiss that the structures may be a consequence of change in spreading direction. 

 

Figure 5.8 illustrates a model, developed during this study, of how Feature C may 

have evolved without incorporating the core complex interpretation. This is presented 

as there is uncertainty with the earlier, favored, interpretation since gravity collapse 

and/or multiple faults are also reasonable interpretations that could result in such 

morphological features. In the model (Figure 5.8) three initial faults form in the axial 

valley at T - 1. The AVR is only indicated at the present stage (T - 3). At T - 2 the 

faults have moved off axis and become border faults taking up more displacement. 

Two new faults form within the axial valley which terminates the growth of the faults 

on either side of the fault in the center. These two faults grow and curve towards the 

central fault off axis. Throughout the evolution the central fault experiences massive 

mass wasting and/or gravity collapse thoroughly degrading the fault crest. The faults 

on either side of the central fault show signs of gullies and sediment accumulations at 

the base. It is reasonable to suggest that the faults curving towards the off-axis central 

fault may propagate further towards each other, resulting in the rugged topography 

representing two degraded fault crests, although this is not incorporated in the model. 
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The system becomes extinct when new faults form in the rift valley and evolve to 

become border faults (T - 3) (Figure 5.8).  

 

 
 

Figure 5.8: Model for evolution of Feature C. Color-coded bathymetric map of Feature C to the 

bottom right. Depth scale is indicated by the color bar in Figure 4.1. T - 3 is present time.  

T - 1 Three faults form within the axial valley terminating a oceanic core complex (Section 

4.4.3.) 

T - 2 Faults grow and tend off axis becoming border faults. Two new faults are formed in 

the axial valley. Note that there is no fault growing in the central part resulting in the 

central border fault continuing to grow as seen from the displacement profile. 

T - 3  The faults in relation (isochron) to the rugged topography is extinct as new border 

faults have formed in the axial valley. As seen from the Figure, this model produces 

an anomalous amount of sediments accumulating towards the axis from the central 

fault.  
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Feature C is situated directly off axis of an AVR as well as being in the vicinity of an 

extinct oceanic core complex situated further off-axis (Section 4.4.3). This indicates 

that the structure may be in a similar setting as the oceanic core complex, situated 

further off axis was, when exhumed. An alternative model incorporating core 

complex evolution is illustrated in Figure 5.9. This evolution is consistent with the 

interpretation where the middle fault evolves as a detachment fault that is rotated 

(backtilted) and flexures during exhumation. It also illustrates the involvement of 

elevated thermal conditions and lateral termination of a core complex. 

 

In the initial stage the core complex, described in Section 4.4.3, is terminated as new 

faults develop in the axial valley, possibly intersecting an AVR (T - 1, Figure 5.9). 

The AVR is not indicated in the Figure for T - 1. It may be inferred that the thermal 

state of the lithosphere is depressed, possibly resulting in prohibiting and/or limiting 

diffusion creep and serpentinization (Jaroslow et al., 1996; Escartin et al., 1997). In 

the next stage (T - 2, Figure 5.9) the initial intra-rift faults have evolved to border 

faults and two new faults have formed within the axial valley. At this time it is 

presumed that all these faults are active. In the succeeding stage (T - 3, Figure 5.9) the 

intra-rift faults have grown and started to curve towards the center fault which now 

shows signs of doming and can be characterized as a detachment fault. The faults on 

either side are now extinct and the system consists of border faults stepping off-axis at 

the center where the detachment fault is situated. The faults curving towards the 

central fault from both sides do not propagate far enough to terminate the growth of 

the central fault. At the present stage (T - 4 in Figure 5.9) the system is extinct and 

new border faults are now active. It can be assumed that a similar thermal state that 

terminated the previous core complex has resulted in the extinction. This early stage 

of core complex evolution exposes gabbroic rock suggesting lower crustal rock 

(oceanic layer 3). The model's final stage (T - 4) coincides with time 4 in the model 

presented for the core complex evolution in Figure 5.6, thus representing a core 

complex that has not evolved to the same extent as the larger core complex situated 

further off-axis.  
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Figure 5.9 (previous page): Model of the evolution of Feature C where the central fault is interpreted 

as a dome-shaped detachment fault exposing gabbroic rock at its base towards the axial valley in 

Section 4.4.4. Scale is not presented as the capture view is from the south thus distorting the scale (i.e. 

the scale of features to the bottom of the Figure is strongly exaggerated in comparison to features at the 

top of the Figure). Vertical exaggeration: 3. Color-coded bathymetric map to the bottom right, depth 

scale is indicated by color bar in Figure 4.1. T - 4 is present time. 

T - 1  The oceanic core complex described in Section 4.4.3. is terminated when three faults 

form within the axial valley.  

T-2 The initial three faults evolve to border faults. Two new faults are initiated within the 

axial valley. 

T - 3 The border faults to both sides of the central fault become extinct as the two faults in 

the axial valley continue to grow and start to curve slightly towards the central fault 

further off-axis. At this time the central off axis fault starts to flexure. 

T - 4 The faults in relation (isochron) to the detachment fault have become extinct. The 

central fault furthest off-axis exposing gabbroic rock has thus terminated at an 

immature stage compared to the core complex situated further off-axis described in 

Section 4.4.3.  

 

 

5.5. Brittle-ductile transition elevation - suggested cause of 

detachment faulting and lateral termination of core complexes  

 

The model in Figure 5.9 raises several important questions; i) why does the fault 

flexure only happens locally for an 11 km long detachment fault? And, ii) why do the 

two faults lateral to the detachment fault not terminate the growth of the detachment 

fault by propagating further towards each other? It is reasonable to suggest that the 

detachment fault has formed due to an adjacent AVR which may be necessary to 

create the right thermal conditions for detachment faulting with subsequent flexure of 

the footwall. The positioning of the AVR, which obviously reveals the area with the 

highest volcanic activity in the area, is best seen in Figure 4.14 where it is situated 

directly adjacent to the interpreted detachment fault in Feature C. Evidence from 

gravity data (Lin et al., 1990) and magnetic data (Hellevang & Pedersen, 2003), from 

the Mid-Atlantic Ridge and the Mohns Ridge respectively, show that accretion of 

magma at the ridge is focused at discrete centers along the spreading axis (i.e. an 

AVR). Okino et al. (2002) proposed that the rate of passive upwelling of mantle is 

controlled by the effective rate of plate spreading. The effective rate of plate 
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spreading is lower for oblique spreading ridges and higher for orthogonal spreading 

ridges. This indicates more mantle upwelling at the Mohns-Knipovich Bend. 

Hellevang & Pedersen (2003) argue that this is the reason for elevated bathymetry and 

close spacing of AVRs at the Mohns-Knipovich Bend in comparison to the central 

and southern Mohns Ridge. 

 

It is proposed that the detachment fault in Feature C initiated and evolved to its 

present extent because the lateral faults further towards the axis could not propagate 

past a locally elevated brittle-ductile transition (Figure 5.10). If faults adjacent to the 

detachment fault exist they must, therefore, have small displacements and/or be 

covered by sediments, as they do not appear in the bathymetry. Depressing the brittle-

ductile transition zone may allow faults to propagate to deeper depths, thus it may be 

more energy efficient to continue displacement along a fault further towards the rift 

axis, thus allowing termination of the detachment fault. 

 

 

 

Figure 5.10: Rotated color-coded bathymetry of Feature C. Color scale in Figure 4.1. Beneath is a 

schematic brittle-ductile transition Figure. Lateral fault crests, further towards the axial valley, are 

marked with a red line. The brittle-ductile transition elevation implies a locally higher heat flow, which 

is suggested to be a result of the adjacent AVR 15. The AVR lies directly adjacent of the central 

detachment fault during exhumation. The anomalous heat flow affects the rheology allowing 

detachment faulting, as well as constraining the lateral faults further towards the axial valley.   
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The proposed evolution of the detachment fault in Feature C (Figure 5.9) adjacent to 

the AVR and subsequent brittle-ductile transition explains the mechanisms of how an 

oceanic core complex may evolve as well as illustrating lateral termination. For the 

compound core complex described in Section 4.4.3 it is suggested that a similar 

elevation of the brittle-ductile transition occurred due to higher heat flow and 

lithospheric temperatures in response to an AVR, allowing great amounts of 

displacement to occur along the detachment fault. The principal of lateral termination 

due to an elevated brittle-ductile transition applies to the compound core complex and 

can explain its northeastern step. Here the detachment fault a in Figure 4.12 is active 

as fault b situated northeast propagates southwest (see correlation Figure 4.13). Fault 

b forms a hard-link structure with a smaller fault (hard-link structure Figure 10.b). 

The smaller fault is interpreted to represent a fault that has formed on the detachment 

surface during exhumation. To the northeast fault d (Figure 4.12) initiates and begins 

to evolve. This happens simultaneously as fault a continues to grow. Fault d is active 

as fault a becomes extinct, resulting in further exhumation of both the southwest and 

northeast dome (Section 4.4.3) 

 

The lateral termination of core complexes in this section explains why the faults 

situated lateral and further towards the axis do not propagate to terminate the core 

complex growth. This happens because the rheological properties are altered due to an 

elevation of the thermal state, which is suggested to further prohibit fault propagation 

and therefore also termination. 

 

This principal may be applied to the compound core complex presented in Smith et al. 

(2006 & 2008) (Figure 5.11). Here it can be inferred that fault 1, 3 and 4 initiated as a 

detachment faults. At a later stage, fault 1 and 3 develop to represent a compound 

core complex as fault 2 initiates towards the axis lateral to faults 1, 3 and 4 and 

propagates in the north-south direction. Fault 2 has not propagated past the now 

doming core complexes (1, 3 and 4 in Figure 5.11) and it is suggested that this may be 

due to an elevation of the brittle-ductile transition adjacent to these core complexes. 

Thus, the compound core complex and core complex 3 are active simultaneously as 

core complex 2. 
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Figure 5.11: Compound core complex at the Mid Atlantic Ridge. Contour interval is 50 m. The dashed 

line indicates the spreading axis. R represents topographic ridges inferred to be breakaways for new 

detachment surfaces. Numbers are core complexes. C represents a compound core complex composed 

of complex 1 and 4. Note how complex 3 and especially 2 dip into the axial valley. From Smith et al. 

(2006 & 2008). 

 

In summary, regarding core complex formation, previous publications point out 

tectonic (amagmatic) extension to be the main reason for core complex formation 

(Tucholke et al., 1998 & 2001). This has been a subject of debate in more recent 

literature (e.g., Dick et al., 1999; 2000 & 2008; Escartin et al., 2003). Common is 

lower volcanic activity, as the ridges where core complexes are reported are situated 

in slow to ultraslow spreading ridges. It is now generally agreed that there is interplay 
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between magmatic and tectonic extension that results in oceanic core complex 

formation (Buck et al., 2005). This is in correspondence to this thesis work where 

volcanic activity together with tectonic accretion results in favorable conditions for 

core complex formation for this particular setting.  

 

5.6. Are several oceanic core complex evolutionary stages present? 

 

In earlier sections a mature compound core complex has been identified, described 

and an evolutionary model has been presented. The displacement of the core complex 

is between 10 – 12 km, thus exhibiting an extensive cross section of the lower crust 

and upper mantle lithosphere. This is evident from rock dredges which have 

recovered serpentinized mantle peridotite. Another interpreted detachment fault 

representing a core complex is situated further towards the axis. This detachment fault 

exhibits displacement of approximately 5 km. At the base of the detachment fault 

gabbroic rock has been recovered during dredging indicating exposure of lower crust 

(oceanic layer 3). As implied in earlier sections this latter detachment fault is inferred 

to represent an early stage of core complex evolution. Mechanisms have been 

proposed for the evolution of these core complex features. Both are inferred to 

develop in the vicinity of hot asthenosphere elevating the brittle-ductile transition.  

 

Bruvoll et al. (2009) suggested an incipient detachment fault corresponding to Feature 

A in Figure 4.14. In light of the discussion on the evolution for the two core 

complexes, it seems likely that this feature may represent an initial stage of core 

complex formation. This feature is situated adjacent to AVR 15 which is inferred to 

be at an early growth stage. Feature A is interpreted to represent the fault(s) that 

terminated the growth of Feature C and has initiated within an AVR (Section 4.4.4, 

Figure 4.14). It has further evolved to become a boarder fault. Detachment faulting is 

suggested to initiate during a phase of volcanism, resulting in favourable thermal 

conditions for detachment faulting for the study area. Feature A is suggested to 

correspond to the inferred incipient breakaway ridges further south along the Mid-

Atlantic Ridge (ridge labelled “R” in Figure 5.11). 
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The resemblance is striking between Feature A and B (Figure 4.14) and the 

compound core complex (Section 4.4.3) and it is suggested that these faults, given the 

correct thermal state of the lithosphere, may evolve to become a compound core 

complex.  
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6. CONCLUSIONS 

 

 

The overall objective of this thesis has been to document contrasting tectonic 

processes at the northeastern Mohns Ridge, with focus on fault evolution and core 

complex formation. The main conclusions of this study are: 

 

� The western flank has initially consisted of several separate faults which have 

linked together with the surrounding faults forming larger faults. In the next 

stage the large fault links together with another fault resulting in increased 

length followed by redistribution of displacement. This illustrates how the 

faults grow in horizontal direction by forming relay structures. 

 

� Maximum displacement-length relation, at least for this Mid-Ocean Ridge, 

conforms to displacement-length data from continental rift settings and other 

fault populations in spite of differences in crustal thickness and rheology. 

 

� The local high at the segments ends between segment 13 and 14 are 

interpreted to be the result of volcanic processes, or more feasible tectonic 

extension. The characteristics of this transfer zone are conforming to 

observations in non volcanic settings.  

 

� It is observed that the tectonic dominated area 1 is characterized by 

symmetrical profiles with slight fault rotation off-axis. This is in contrast to 

the asymmetric profiles for area 2 where a great amount of fault rotation 

occurs, forming basins off-axis of the fault crest. The thermal state of the 

lithosphere in area 1 and 2 is suggested to be the main contributing reason for 

the different topographic expressions. Area 1 is inferred to be characterized by 

a higher degree of tectonic accretion whereas area 2 is inferred to be 

characterized by interplay between both volcanic and tectonic accretion which 

has resulted in several core complexes and one suggested incipient stage of 

core complex formation.  
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� Lateral termination of core complexes has not earlier been subject for debate. 

The higher heat flow and lithospheric temperatures in the vicinity of the AVR 

are believed to result in the lateral faults not propagating past the locally 

elevated brittle-ductile transition. This principal appears to conform to data 

from core complexes indentified further south along the Mid-Atlantic Ridge. 
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