
Multiple Side Linear Equations

A New Tool For Solving Sparse Algebraic

Equations in Finite Field

by
Rigzin Wangdwei

Master Thesis

University of Bergen
Department of Informatics

February 3, 2010

Acknowledgements

The first person I would like to express my deep-felt gratitude to is my
supervisor Professor Igor Semaev. Thanks for your excepting me as your
student, for your encouragement, guidance and support from the initial to
the final level which enabled me to develop an understanding of the subject.

I would like to thank the Network for University Co-operation Tibet-
Noway and its all staff, especially Bente Elholm Bjørknes and Anak Bhandari.
Thanks for your hard work, dedication, financial support and holding many
fruitful seminars.

Another person to whom I owe a lot for his unconditional help from
the very beginning of my life in Bergen is Professor Yngvar Gjessing. Your
support has been critical for me in many occasions.

My thanks also goes to Thorsten Schilling, for your reading and giving
lots of language corrections on this thesis.

I would like to thank in particular all the Tibetan students in Bergen for
all the fun time we spent together, smoking, drinking or talking just about
anything. I must thank the University of Tibet for allowing me leave from
the work during my study in Norway.

Finally, I want to dedicate this work to my lovely wife Chungda. Thanks
for your continuing and loving support without complaints, taking care of
our children while I was away, giving me the chance to focus on this thesis
and finish it in time.

Rigzin Wangdue
February 3, 2010

ii

Contents

Acknowledgements i

1 Introduction 1

2 Mathematical preliminaries 3
2.1 Vector Space Over Finite Field 3
2.2 Linear Equation System . 4
2.3 Matrix Notation . 5
2.4 Solving Linear Equation System 6
2.5 Computational Complexity . 7

3 Gluing and Agreeing 11
3.1 The Gluing Algorithm . 11

3.1.1 Gluing a Pair of Symbols 12
3.1.2 Gluing A List of Symbols 13
3.1.3 The Gluing1 Algorithm 15

3.2 Sorting Symbols . 17
3.3 Agreeing Procedure and Agreeing-Gluing Algorithm 18

3.3.1 The Agreeing Procedure 19
3.3.2 Agreeing-Gluing Algorithm 21

4 Multiple Side Linear Equation 23
4.1 Coset Covering . 24

4.1.1 Coset and Maximal Coset 24
4.2 Minimal Cosets Covering . 29

4.2.1 Greedy Approximation Algorithm 30
4.2.2 An Exact Algorithm 31

4.3 Procedure of Linearization . 32

5 Gluing on MSLEs 37
5.1 Gluing A Pair MSLEs . 37

iv Contents

5.1.1 Consistency . 37
5.1.2 Gluing . 39

5.2 Gluing A List of MSLE . 41
5.3 MSLE-Gluing . 42
5.4 Implied System . 42

5.4.1 Implication . 43
5.4.2 Procedure of Reduction 44

5.5 Edge Removal . 47

6 Experimental Results 49
6.1 Cosets Covering . 50
6.2 Sorting . 50
6.3 Comparison of Gluing1 and MSLE-Gluing 50
6.4 Reducing of Gluing operations 53
6.5 Edge Removing . 53

7 Discussion 57
7.1 Discussion . 57
7.2 Conclusion . 57

A Algorithms Written in Mathematica 59
A.1 Auxiliary Routines . 60
A.2 Instance Generator . 62
A.3 Algorithms in Chapter 3 . 63
A.4 Algorithms in Chapter 4 . 66
A.5 Algorithms in Chapter 5 . 69

B Sample Experiments 73
B.1 Experimental Environment . 75

C Data Corresponding to Figure 6.9 77

References 79

List of Figures

3.1 Search Tree . 18

6.1 Comparison of minimal coset covering for n = 4. 50
6.2 Comparison of minimal coset covering for n = 5. 51
6.3 MSLE-Gluing operations on unsorted and sorted instance. . . 51
6.4 Comparison of the number of Gluing1 and MSLE-Gluing op-

erations at each tree depth. n = 16 52
6.5 Comparison of the number of Gluing1 and MSLE-Gluing op-

erations at each tree depth. n = 32 52
6.6 Comparison of the number of Gluing1 and MSLE-Gluing op-

erations at each tree depth. n = 48 53
6.7 Reduction of gluings on the MSLE-Gluing. 54
6.8 Edge removing procedure on MSLE-Gluing and Gluing1. . . . 54
6.9 Edge removing procedure on MSLE-Gluing. n = 64 55

List of Algorithms

1 Glue(Si,Sj) . 13
2 GlueSet(S) . 14
3 TreeGluing(S) . 16
4 Sorting(S) . 19
5 AgreePair(S1, S2) . 20
6 Agree-Gluing(S) . 21
7 MakePairs(V) . 25
8 MaximalCosets(V) . 27
9 MinimalCosetSetCover1(V,M) 30
10 MinimalCosetCover2(V,M) . 32
11 LinearEquation . 34
12 MSLEGlue(e1, e2) . 39
13 MSLEGluePair(Ep, Eq) . 41
14 MSLEGlueSet(E) . 41
15 MSLE-Gluing(E) . 43
16 MSLE-GluingReduction(E) . 46
17 MSLE-GluingEdgeRemoval(E) 48

Chapter 1

Introduction

The design of a typical modern symmetric key cipher enables potential at-
tackers to represent it as a system of multivariate polynomial (MP) equation
system over a finite field:

f1(X1) = 0, f2(X2) = 0, . . . , fm(Xm) = 0, (1.1)

where fi are polynomials and Xi are subsets of the variable set X.
To solve this equation system is then equivalent to break the cipher.

Therefore, any general algorithm to solve a set of multivariate polynomial
equations can be used for attacking the cipher. Thus, it is very important
to know how efficient algorithms are to find a solution to such a system and
thus break the cryptosystem.

This kind of attack is commonly referred to as an algebraic attack, which
focuses on solving multivariate polynomial equation systems that represent
the ciphers. It has the advantage that only a few number of known plain-text
and cipher-text pairs are needed to set up an equation system which describes
the cipher. Finding solutions efficiently to the system is a hard problem in
the cryptanalysis of modern ciphers. This problem belongs to the class of
NP -complete problems, because any instance of the 3-Satisfiability problem
can be reduced to an equation system in the form of (1.1)1, which was shown
by Cook in 1971, see [Coo71] to be in the class of NP -complete problems.

Conventional solving strategies for multivariate polynomial equation sys-
tems are often based on Gröbner bases techniques. Given a polynomial equa-
tion system in the form (1.1), one computes a basis for the ideal generated
by the set of given polynomials, i.e, one tries to build a simpler, easier to
solve equation system from which one could obtain the solutions to the input
equation system by backward substitutions. Once a basis has been obtained,

1The proof of this reduction is due to Michael Garey and David Johnson[GJ79]

2 Introduction

it is possible to investigate what kind of solutions exist and if possible, to
compute them.

When equations are in F2, then one way to solve the system is to write
the equation system in algebraic normal form (ANF), then converted into
SAT-problem and use SAT-solvers, see [BCJ07].

An alternative approach to solve an equation system (1.1) in which each
fi only depends on small number of variables Xi, is the family of so called
Gluing-Agreeing Algorithms [RS06]. The aim of this group of algorithms is
to find the common solutions for each equations in (1.1) from the solution
set in Fq by guessing a solution and verifying it. In practice the number of
intermediate solutions grows fast.

Another recently proposed approach is the so called Multiple Side Linear
Equations (MSLE) [sem09a]. The method is supposed to have a smaller
number of intermediate solutions. The MSLE approach builds linear equation
systems from the solution set of each fi and then the Gluing algorithm is
applied to solve the whole system.

The main matter of this thesis is implementing all algorithms described in
the thesis, to compare number of intermediate solutions (gluing operations)
occurring while system (1.1) is solved by the Gluing algorithm and the new
Gluing algorithms on MLSE presented in this thesis.

The work on this thesis gives a summary of Gluing-Agreeing algorithms.
A detailed description on constructing MSLE and the application of the
Gluing algorithm on MSLE. Furthermore independent experimental results
obtained by the implementation are presented and several examples are in-
cluded to clarify the understanding of the algorithms.

Chapter 2

Mathematical preliminaries

This chapter will introduce some of the basic mathematical backgrounds
and notations necessary to use throughout this thesis. We will summarize
some theorems, definitions and notations without presenting proofs for the-
orems, that is beyond the scope of this thesis. Interested reader may consult
[C.L06],[Fra03],[Gol96].

2.1 Vector Space Over Finite Field

Throughout this thesis Fq stands for a finite field with q elements, where
q = pn and p is a prime. The addition operation is denoted by (+), we may
simply omit the(·) for multiplication. For instance, x1x2 indicates product
of the two elements x1 and x2.
Let V be a set of all ordered n-tuples of elements of Fq with addition defined
by (u1, u2, . . . un) + (v1, v2, . . . vn) = (u1 + v1, u2 + v2, . . . un + vn) and scalar
multiplication defined by γ(u1, u2, . . . , un) = (γu1, γu2 . . . γun), where u, v ∈
V and γ ∈ Fq. We say that V is a vector space over finite field Fq if it has
the following three properties:

• The zero vector is in V .

• For each u and v in V , the sum u+ v is in V .

• For each u in V and each scalar c in Fq the vector cu is in V .

If vector subset U of V fulfill above three properties, then we say that U is
a subspace of V . We will denote an n-tuple vector space over a finite field
by Fn

q . In this thesis 0̄ denote the column-vector whose entries are all 0.
Similarly 0 denote the zero row-vector.
Consider a vector space V over Fq and v1, v2, . . . , vm ∈ V , then a linear

4 Mathematical preliminaries

combination of these vectors is a vector of the form:

α1v1+, . . . ,+αmvm

where αi ∈ Fq. A set of vectors v1, . . . , vt is called linearly independent if the
vector equation

x1v1 + x2v2+, . . . ,+xtvt = 0

has only the trivial solution, i.e, all xi are 0. In a vector space Fn
q , there

exits a set of linearly independent vectors b1, . . . , br, such that all vectors
in the space can be represented by the linear combination of these vectors.
Such vectors b1, . . . , br are called basis of the space. The space is said to
be generated by the basis. Let r be the number of basis, then the space
generated by these basis is called r-dimensional vector space.
Throughout this thesis, all examples are illustrated in F2. Elements of this
field are called bits. Elements of Fn

2 are called binary vectors or Boolean
vectors. A binary vector of length n may be represented by a decimal number,
for instance, decimal form of binary vector (1011) is 1 × 23 + 0 × 22 + 1 ×
21 + 1× 20 = 11.
The inner product of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn

q

is defined as

〈x, y〉 =
n∑

i=1

xiyi.

2.2 Linear Equation System

A linear equation over Fq in the variables X = {x1, . . . , xn} is an equation
that can be written in the form

a1x1 + a2x2 + . . .+ anxn = b, (2.1)

where b and coefficients a1, . . . , an are in Fq, usually known in advance. A
collection of one or more linear equations of variables in the same set X are
called linear equation system. For example:

x1 + x2 + x4 = 0
x2 + x3 = 1

x1 + x4 = 1
(2.2)

A solution to (2.2) is a list (s1, s2, . . . , sn) of values that is a true statement
when the values of s1, s2, . . . , sn are substituted to x1, . . . , xn, respectively.
For instance,(1,1,0,0) is a solution to (2.2) over F2, because, when these values
are substituted in (2.2) for x1, x2, x3, x4 respectively, the equality will hold.
If such a solution exists then the equation system is called consistent.

Matrix Notation 5

2.3 Matrix Notation

A linear equation system is commonly represented as an equation of the form:

AX = b, (2.3)

where A is an m×n matrix with entries in Fq. Usually A is called coefficient
matrix. That is, coefficients of each variable aligned in columns, for instance
the coefficient matrix for (2.2) can be written in the following form:

A =

 1 1 0 1
0 1 1 0
1 0 0 1

 .

Each element in a row indicates the coefficient of corresponding variable. For
instance, the second row represents 0x1 + 1x2 + 1x3 + 0x4, while X consists
of these four variables. The set of variables in X is represented as a column
vector:

X =

 x1
...
xn

 .

Now we can write (2.2) as: 1 1 0 1
0 1 1 0
1 0 0 1

X =

 0
1
1

 . (2.4)

Note, AX is defined only if the number of column of A equals the number of
entries in X.
If the constant column from the right hand side is added to the right of the
coefficient matrix, then it is called augmented matrix of the system. The
augmented matrix for our example of (2.2) is 1 1 0 1 0

0 1 1 0 1
1 0 0 1 1

we denote an augmented matrix as:

(A|b)

If b = 0̄(the zero vector), then the matrix equation (2.3) is said to be
homogenous equation system. Such a system always has at least one solution,

6 Mathematical preliminaries

namely, X = 0̄, it is called the trivial solution. The collection of all solutions
to the homogenous system is called null space. We denote the basis of null
space AX = 0̄ by Null(A).
Finally, we present following two theorems, these two theorems are the most
important theories in constructing linear equation systems, cf.Chapter4.

Theorem 2.3.1 The null space of an m × n matrix is a subspace of Fn
q .

Equivalently, the set of all solutions to a system AX = 0̄ of m homogeneous
linear equations in n variables is a subspace of Fn

q .

Proof, See [C.L06].

Theorem 2.3.2 (Rank Theorem) If a matrix A has n columns and rank
r (cf.Section2.4), then the number of linearly independent vectors in Null(A)
is n− r.

Proof, See[C.L06].

2.4 Solving Linear Equation System

A common approach to solve a linear equation system is using the Gaussian
elimination algorithm to determine, the row reduced echelon form (RREF)
of the augmented matrix. From this the solution can easily be read out.
The process of Gaussian elimination has two parts. the first part reduces a
matrix to row echelon form using elementary row operations while the second
transform the matrix into reduced row echelon form. The standard Gaussian
elimination algorithm takes an m × n matrix A over a field Fq and applies
successive elementary row operations:

• multiply a row by a element in field Fq (the inverse of the left-most
non-zero);

• subtract a multiple of one from another (to create a new left-most zero);

• exchange two rows (to bring a new non-zero pivot to the top).

The resulting matrix is called row echelon form if it fulfills the following three
properties:

1. All nonzero rows are above any rows of all zeros;

2. Each leading entry of a row is in a column to the right of the leading
entry of the row above it;

3. All entries in a column below a leading entry are zeros.

Computational Complexity 7

If the matrix in echelon form satisfies the following additional condition, then
it is called reduced row echelon form (RREF):

4. The leading entry in each nonzero row is 1;

5. Each leading 1 is the only nonzero entry in its column.

The leading entry of a row is defined as the leftmost nonzero element. From
the RREF of a matrix, it is easy to determine the rank of the matrix. The
number of non-zero rows in RREF is the rank of the matrix. We will denote
the rank of a matrix A by Rank(A).

Example 2.4.1

We use Gaussian elimination algorithm to solve (2.2) in F2. First, write the
system in augmented matrix form and then apply the algorithm: 1 1 0 1 0

0 1 1 0 1
1 0 0 1 1

 (̃1)

 1 0 0 1 1
1 1 0 1 0
0 1 1 0 1

 (̃2)

 1 0 0 1 1
0 1 0 0 1
0 1 1 0 1

(̃3)

 1 0 0 1 1
0 1 0 0 1
0 0 1 0 0

The first step is moving the last row to the top of the matrix. The second
step subtract the second row from the first (bitwise XOR the two rows). The
third step subtract the third row from the second obtained by step two.

From the result we can easily read the solution for the system, which is
x1 + x4 = 1

x2 = 1
x3 = 0

x1 = 1 + x4
x2 = 1
x3 = 0

.

This implies that x4 is a free variable, it’s value could be any element in F2.
so, the solutions to the the equation system (2.2) are (1, 1, 0, 0), (0, 1, 0, 1).

2.5 Computational Complexity

This section will introduce some of the basic notions and ideas of complexity
theory, which we need for estimating the running time and memory consump-
tion of some of our algorithms described in the next chapters. The definitions
follow from [DCP06, Lev07].

8 Mathematical preliminaries

Definition 2.5.1 [Lev07] A function t(n) is said to be in O(g(n)), denoted
t(n) ∈ O(g(n)), if t(n) is bounded above by some constant multiplication of
g(n) for all large n,i.e., if there exists some positive constant c and some
nonnegative integer n0 such that

t(n) ≤ cg(n),∀n ≥ n0

A function t(n) is said to be in o(g(n)), if t(n)
g(n)
→ 0 while n tends to infinity.

The O(g(n)) representation is always simplified by only taking the most
dominant terms of a function. When faced with a complicated function like
8n3 + 7n + 5, the common approach to simplify is just to replace it with
O(g(n)), where g(n) is as simple as possible. In this example n3 dominates
(grows faster then the rests as n goes to infinity) the rest of the terms, so we
use O(n3).
Some commonsense rules that help simplify function by omitting dominated
terms:

1. Multiplicative constants can be omitted;

2. na dominates nb if a > b;

3. Any exponential dominates any polynomial;

4. Any polynomial dominates any logarithm.

An algorithm that has time complexity O(nc) for some constant c > 1 is said
to be polynomial and time complexity O(cn) for some constant c > 1 is said
to be exponential. In practice, any algorithm that has a time complexity
that is polynomial or less is considered efficient.

Definition 2.5.2 [DCP06] Class P is a class of decision problems which are
problems can be answered by yes or no in polynomial time by a deterministic
Turing machine.

Definition 2.5.3 [DCP06] The class NP is defined as the set of all decision
problems to which a solution can be found and verified in polynomial time by
a non-deterministic Turing machine.

A non-deterministic algorithm is a two-stage procedure that takes as its input
an instance I of a decision problem and does the following:

Nondeterministic (guessing) stage: An arbitrary string S is generated
that can be thought of as a candidate solution to the given instance I, but
it is also possible that it is not the right solution at all.
Deterministic (verification) stage: The algorithm takes both I and S as its

Computational Complexity 9

input and outputs Yes if S is a solution to the instance, No, otherwise.
Almost all problems in class NP have in common an exponential growth of
choices, as a function of input size, from which a solution can be found.

Example 2.5.1

Let V be a finite set of size n, and let C = {c1, c2, . . . , ck} be a family of
subsets of V , that is ci ⊆ V such that the union of all ci equals V . Given V
and C as input to a algorithm, the algorithm should output the minimum
number of ci, which contain all elements in V . This problem is called minimal
set cover problem. It was one of Richard Karp’s 21 NP -complete problems
shown to be in the class of NP -complete in 1972, see [Kar72]. Roughly
spoken, NP -complete problem is a problem in NP that is as difficult as any
other problems in this class. We will encounter a similar problem in Chapter
4.

The algorithm first proposes a list of candidate solutions (nondeterminis-
tic stage). Secondly, for each element it is determined whether it is a solution
or not. The worst case for this algorithm is checking all subsets of C. there
are 2k subsets, which is exponential.

10 Mathematical preliminaries

Chapter 3

Gluing and Agreeing

This chapter will introduce an approach to solve system (1.1), called Glu-
ing. The algorithm belongs to the family of Gluing/Agreeing algorithms and
works in case of sparse equation system (1.1), where the size of each Xi is
bounded. We will also briefly introduce a related algorithm called Agreeing
algorithm. Its aim is to delete irrelevant partial solutions from the solution
candidates. The Agreeing algorithm was firstly discovered by Arkadij Za-
krevskij and Irina Vasilkova [ZV00], afterwards Igor Semaev and H̊avard Rad-
dum developed it along with Gluing algorithm, see [Rad04, RS06]. Asymp-
totical complexity estimates are in [Sem08, Sem09b]. Hardware implemen-
tation of the Agreeing method is described in [Sem09c].

3.1 The Gluing Algorithm

Let (1.1) be over a finite field Fq with q elements and all variables Xi,1 ≤
i ≤ m are in X = X1 ∪X2 ∪ . . .∪Xm. Each fi depends only on variable Xi.
If for all 1 ≤ i ≤ m : |Xi| ≤ l, for some integer l, then we call the system
l-sparse.

We can see that each fi defines a mapping: fi : Fl
q → Fq. The set of

solutions to a particular fi(Xi) = 0 is a set of vectors V ⊆ Fl
q for which

fi(v) = 0, where v ∈ V . To find all assignments to fi(Xi) = 0, one tries all
ql vectors in Fl

q, that is an exponential number of trials in l. This explains
why we emphasize that the system should be sparse for our approach, as
mentioned in the introduction.

Obviously, the equation fi(Xi) = 0 is determined by the set of variables
Xi and the set of l-tuple vectors in Fq, where fi is zero. This leads to the
following definition.

12 Gluing and Agreeing

Definition 3.1.1 (Symbol) A symbol S = (X, V) corresponding to an equa-
tion f consists of an ordered set of variables X and a list of vectors V =
{v1, . . . , vk|vi ∈ F|X|q } which contains all satisfying assignments to f(X) = 0
in variables X.

With this definition we can represent system (1.1) by

E = {S1, S2, . . . , Sm} = {(X1, V1), (X2, V2), . . . , (Xm, Vm)}. (3.1)

From now on when we write an equation in symbol form, e.g. (Xi, Vi) is
equivalent to the equation fi(Xi) = 0. The solutions to the equation system
(1.1) can be represented by (X, V), where V is a set of vectors in Fn

q to all
variables in the set X which satisfy all equations in (1.1).

3.1.1 Gluing a Pair of Symbols

First, we describe the Gluing procedure and how to get common solutions to
two given symbols. Consider two symbols as the input to our algorithm:

(X1, V1), (X2, V2). (3.2)

One defines two sets of variables Z = X1∪X1 and Y = Xi∩Xj. One can sort
variables X1 and X2 in Y . Note that the entries in Vi under the projection
of variables Y are also permutated after the sorting procedure. The common
vectors in Z are defined by U = {a1, b, a2}, where (a1, b) ∈ V1, (b, a2) ∈ V2
and ai are all entries under the projection of variables (Xi \ Y). We call it a
(Xi \ Y)-vector. b is a vector under projection of variables Y , the common
entries in X1 and X2. We call it Y -vector.

We denote (a1, b, a2) = (a1, b)◦(b, a2), and say that (a1, b, a2) is the gluing
of (a1, b) and (b, a2). The new symbol is then denoted by (Z,U) = (X1, V1) ◦
(X2, V2).

We summarize the pairwise gluing procedure into following pseudo code,
Algorithm 1. The variables in symbol S are denoted by X(S).

Note that when there are no intersection variables in X1 and X2, i.e.,
Y = ∅, the Gluing algorithm only returns trivial solutions. I.e., all Z-vectors
U in variables Z = X1 ∪ X2. The overall complexity of this algorithm is
bounded by

O(|U |+ |V1|+ |V2|),

operations, with rewriting and comparing vectors in F|Z|q and |V1|+ |V2| sort-
ing steps.

The Gluing Algorithm 13

Algorithm 1: Glue(Si,Sj)

Input : Two symbols Si : (Xi, Vi) and Sj : (Xj, Vj)
Output: A new glued symbol, if the two symbols are gluable

Y ← X(Si) ∩X(Sj)
Z ← X(Si) ∪X(Sj)
if Y 6= ∅ then

U ← {(ai, b, aj)|(ai, b) ∈ Vi, (b, aj) ∈ Vj}
else

U ← {(ai, aj)|ai ∈ Vi, aj ∈ Vj}
Return (Z,U)

Example 3.1.1

Consider the symbols S1, S2 in variables X = {x1, x2, x3, x5}

S1 =

x2 x3 x5
a1 1 1 1
a2 1 0 1
a3 0 1 1

, S2 =

x1 x2
b1 0 1
b2 0 0
b3 1 1

.

After gluing the two symbols above we become:

S1 ◦ S2 =

x1 x2 x3 x5
c1 0 0 1 1
c2 0 1 0 1
c3 1 1 0 1
c4 0 1 1 1
c5 1 1 1 1

.

The resulting vectors c1, c2, c3, c4, c5 are then all satisfying assignments to S1

and S2.

3.1.2 Gluing A List of Symbols

To solve system (1.1) one can apply Algorithm 1 successively to the symbols.
Consider as input to the algorithm the set of symbols (3.1). First, we glue
S1 and S2. This gives a new symbol (Z,U) = (X1, V1) ◦ (X2, V2). Now let
(Z,U) be the first argument of the algorithm and the next symbol from the
set be the second argument. After running the algorithm we will get another
new symbol. Apply this procedure for the rest of the symbols in the set

14 Gluing and Agreeing

Algorithm 2: GlueSet(S)

Input : A list of symbols: S1, S2, . . . , Sm

Output: All system solutions U .

m← length(S)
T← S1

k ← 2
while k ≤ m do

T← Glue (T,Sk)
k ← k + 1

Return T = (X,U)

continuously. A suggested implementation of this procedure is depicted in
Algorithm 2.

The running time of this algorithm is

O(
m−1∑
k=1

|Uk||Vk+1|+ |Uk|+ |Vk+1|) = O(
m−1∑
k=1

|Uk|+m), (3.3)

operations with vectors in Fn
q , where n is the number of variables in the

system and m is the number of equations. These two numbers may grow
with respect to the size of the input instance. The size of the ground field
q and sparsity l are fixed. The memory consumption of this algorithm is of
the same magnitude as the running time (3.3). Here (X(k), Uk) = (X1, V1) ◦
. . . ◦ (Xk, Vk) and (3.3) is the cost of m − 1 gluings. The set Uk consists of
all solutions to the first k equations in variables X(k) = X1 ∪ . . . ∪Xk. The
sequence of |Uk| fully characterized the algorithm’s running time. For the
asymptotical analysis of |Uk| see [Sem08, Sem09b].

Example 3.1.2

Let us add another symbol S3 to the symbols in Example 3.1.1:

S1 =

x2 x3 x5
a1 1 1 1
a2 1 0 1
a3 0 1 1

, S2 =

x1 x2
b1 0 1
b2 0 0
b3 1 1

, S3 =

x2 x4 x5
d1 0 1 0
d2 0 1 1
d3 1 0 0

.

The algorithm first glues S1 and S2, which we have already done in our
previous Example 3.1.1. The glued symbol is now T . Now we just need to

The Gluing Algorithm 15

glue T and S3

T ◦ S3 =

x1 x2 x3 x5
c1 0 0 1 1
c2 0 1 0 1
c3 1 1 0 1
c4 0 1 1 1
c5 1 1 1 1

◦

x2 x4 x5
d1 0 1 0
d2 0 1 1
d3 1 0 0

.

=
x1 x2 x3 x4 x5

e1 0 0 1 1 1
.

After the second gluing step we find that (x1, x2, x3, x4, x5) = (0, 0, 1, 1, 1)
is the only solution to this particular example. It is also possible that the
output of the algorithm contains more than one solution.

3.1.3 The Gluing1 Algorithm

In this section we introduce a variant of the Gluing algorithm called Gluing1
algorithm. It has the same time complexity as the algorithm we introduced in
Section 3.1.2, but requires only poly(n) bits memory. The algorithm walks
through a search tree with backtracking1 in order to find a path in which
partial solutions to the equation could be revealed. To apply the algorithm
one defines a search tree rooted at ∅. At each tree level a symbol is defined
and the tree levels are labeled by d, 1 ≤ d ≤ m. For instance at d = 1
symbol S1 is located and all vectors vi ∈ V1(S1) can be referred to as nodes
at this tree level. Nodes at level d = 2 are labeled by some b ∈ V2(S2). A
node at level 1 which is labeled a is connected to a node at level 2, labeled
by b, whenever a ◦ b is possible. Keep the value of a ◦ b and try to find a
node c at the next tree level and attempt to a ◦ b ◦ c. If this is possible keep
this value and go further. If not, the algorithm goes one step back and tries
gluing a with another node at level 2, and so on. If the algorithm finds a
path which goes from the root to the bottom, namely, a ◦ b ◦ c ◦ . . . ◦ d, then
this is a solution to the system. A suggested implementation of the above
procedure is Algorithm 3.

A list of variables M1,M2, . . . ,Mm is defined. Initially, all Mi are empty.
EachMi is designed to contain the partial solution generated by the algorithm
at each tree level and Mm contains the final solution. The current tree level,
where the algorithm is running is denoted by d.

1Roughly, the technique tries to find a final solution to a problem by repeatedly ex-
tending a partial solution. The partial solution shrinks(backtracking) whenever it can not
be further extended. For details see[Val98].

16 Gluing and Agreeing

Algorithm 3: TreeGluing(S)

Input : A list of symbols S1, S2, . . . , Sm

Output: if the equation system has solutions, return the solution.

d← 1
s1 = 1, s2 = 1, . . . , sm = 1 // Initialize all si
M1,M2, . . . ,Mm ←Initialize all Mi as empty variables
while 0 < d ≤ m do

T ←Md ◦ vsd ∈ Sd

if T 6= ∅ //the Glue operation returns a solution then
Md+1 ← T
sd ← sd + 1
d← d+ 1

else
sd ← sd + 1
if sd > length(Vd) then

sd ← 1
d← d− 1

if d = m then
Return Md

else
Return No solution

A set of integer variables s1, s2, . . . , sm are used for keeping track of which
vector is already tried at each tree level. Initially, the value of each si is 1.
Every si is specific for a symbol Si and points to the next not yet tested
vector in the set Vi(Si). The algorithm returns a solution if it finds a path
from the root to d = m and it halts if d < 1. In that case all vectors in S1

tried and no gluing is possible. This indicates that the system dose not have
any solutions.

Note that Algorithm 3 only gives a single solution, while the input system
might have more.

It is not difficult to output all solutions by a slightly modified algorithm.
One can add an “ungluable” symbol at the end of the input instance. This
forces the algorithm find all possible pathes from the root to level d = m.
The algorithm aborts after exhausting all vectors in V1(S1) whenever the
system has one or more solutions. At each iteration the solution can be read
at tree level d = m, namely Mm is a solution.

Example 3.1.3

In this example we use the symbols from Example 3.1.2. Assume they are

Sorting Symbols 17

in the same order. We define the search tree by S1, S2, S3 located at tree
level d = 1, 2, 3 respectively. Initially the value of all variables M1,M2,M3

are empty.
The initial value of s1 is 1, therefore it points to a1 at level 1. The value

of M1 becomes:

M1 = a1 =

(
x2 x3 x5
1 1 1

)
.

Now, we try to glue M1 with vectors b at the next tree level. The initial
value of pointer s2 = 1, so it points to b1 now. The algorithm tries to glue
M1 and b1. This yields

M2 = M1 ◦ b1 =

(
x1 x2 x3 x5
0 1 1 1

)
but this time we can not find a vector in the third symbol which can be
glued to M2. Therefore, the algorithm backtracks and tries to glue M1 and
b2. This is also a contradiction to the values of variable x2. In this case, the
next possible gluing is M2 = M1 ◦b3, but there are no possible vectors at tree
depth 3 which can extend the partial solution. At this point the algorithm
tried all vectors in S2, the pointer s2 resets to 1 and goes back to the first
symbol in the search tree. Recall that s1 is already set to 2. It points to
a2 now. So, M1 = a2 and we see that after trying all vectors at tree level
2 the algorithm can not find a path to reach the bottom. This implies that
no solutions can be found along this branch. The pointer s2 is set to 1 and
chooses a3 from the first symbol. Now, M1 = a3 and the possible gluable
element in the next tree level is b2. This extends the partial solution to

M2 = M1 ◦ b2
(
x1 x2 x3 x5
0 0 1 1

)
.

From tree level 3 we find that d2 is the only possible gluing with M2. The
partial solution can be extended by gluing M2 with d2. This yields

M3 = M2 ◦ d2 =

(
x1 x2 x3 x4 x5
0 0 1 1 1

)
.

That is the final solution of the computation. In the search tree the algorithm
walks through the path a3 ◦ b2 ◦ d2. We depict the walks of the algorithm on
the search tree in Figure 3.1.

3.2 Sorting Symbols

Consider in Example 3.1.2 that if we take another ordering of the symbols,
say the symbols are in the order S3, S2, S1, the number of intermediate solu-

18 Gluing and Agreeing

Figure 3.1: Search Tree

tions are 4 instead of 5 after the first gluing step. If we sort the symbols in
the order S1, S3, S2 much less intermediate solutions are yield, namely 1. The
observation is that when two symbols have a bigger number of intersecting
variables, the more restrictions occur on gluing operations. Therefore the
number of intermediate solutions is lower. Considering this in terms of run-
ning time and memory sorting is recommended before applying the gluing
procedure.

Here we present a simple sorting algorithm in Algorithm 4 which is de-
veloped by T. Schilling in his master’s project, see [Sch08].

We start by scanning the given list to find two symbols T1 and T2 which
have the minimal |Xi ∪ Xj|. Then we remove these two symbols from the
given list and store T1 and T2 in a new list. Then we scan the remaining
list again, starting from the first symbol and compare each Sj. The symbol
which has the maximal number of common variables with X(T1) ∪X(T2) is
then chosen and removed from the original list to append it to the newly
constructed list. Repeatedly find and add to the new list each symbol which
has the maximal number of intersecting variables with X(T1) ∪X(T2) from
the rest. The running time of the algorithm is bounded by O(n2).

3.3 Agreeing Procedure and Agreeing-Gluing

Algorithm

In this section the Agreeing procedure is briefly described. The aim of this
procedure is to eliminate all vectors (solution candidates) which can not be
part of any solution to the whole system.

Agreeing Procedure and Agreeing-Gluing Algorithm 19

Algorithm 4: Sorting(S)

Input : A list of symbols S = {S1, S2, . . . , Sm}
Output: Sorted symbol S

′

n← |X(S)| // Store the number of varables
T1 ← S1

T2 ← S2

for each Si, Sj ∈ S do
if |X(Si) ∪X(Sj)| < |X(T1) ∪X(T2)| then

T1 ← Si

T2 ← Sj //Find pair Si, Sj with smallest |X(Si) ∪X(Sj)|

S ← S \ {T1, T2}
S
′
[1]← T1

S
′
[2]← T2 // Store T1 and T2 in a new list

while |S| > 0 do
c← n
for each Si ∈ S do

if |X(S
′
) ∪X(Si)| < c then

c← |X(S
′
) ∪X(Si)|

e← Si

S ← S\e
Append e to S

′

Return S
′

3.3.1 The Agreeing Procedure

Given two equations in symbols form (3.2), one defines the set of variables
Y = X1 ∩X2. The set of projections of V1 on variables Y is defined by V1,2,
i.e, the set of Y -subvectors of V1. Similarly, the set of projections of V2 on
variables Y is defined by V2,1.

Definition 3.3.1 (Agree) Two symbols Si and Sj agree if and only if the
two sets V1,2 and V2,1 are equal. Otherwise the two symbols are said to not
agree.

When the given two symbols not agree, we apply the agreeing procedure.
Remove all vi from V1(S1) and all vj from V2(S2) whose Y -subvectors are not
in V1,2 ∩ V2,1. Note, since V1,2 ∩ V2,1 is a intersection of two sets, there are
no repeated elements occurring in this set. We can see that this procedure
actually is deleting vectors in Vi(Si) that can not be part of any common
solution to the two equations.

20 Gluing and Agreeing

The new symbols after agreeing are defined by (X1, V
′
1) and (X2, V

′
2),

where V
′
1 ⊆ V1 and V

′
2 ⊆ V2. We summarize the Agreeing procedure in

Algorithm 5.

Algorithm 5: AgreePair(S1, S2)

input : A pair of symbols (X1, V1), (X2, V2)
output: Agreed symbol (X1, V

′
1), (X2, V

′
2)

Y ← X1 ∩X2

V1,2 ← V1(Y)
V2,1 ← V2(Y) //Y−subvectors
if V1,2 = V2,1 then

Return (X1, V1), (X2, V2)
else

V
′
1 ←remove all vi ∈ V1 whose Y−subvectors are not in V1,2 ∩ V2,1
V
′
2 ←remove all vj ∈ V2 whose Y−subvectors are not in V1,2 ∩ V2,1

Return (X1, V
′
1), (X2, V

′
2)

The complexity of this Agreeing algorithm is bounded by

O(|V1|+ |V2|)

operations, as rewriting and comparisons, with vectors in Fn
q .

Example 3.3.1

We agree the first and the third symbol from Example 3.1.2. First define the
intersection variables Y , Y = {x2, x5}. From each symbol the Y -subvectors
are defined by V1,2 = {(1 1), (0 1)}, and V2,1 = {(0 0), (0 1), (1 0)}.

Now look for the common elements in V1,2 and V2,1. We can see that the
subset {(0 1)} occurs in both sets. Those vectors whose projection on Y are
not in this subset are irrelevant to the common solutions to the equations.
Therefore, we remove a1, a2 from S1 and d1, d3 from S3. The remaining
vectors in V1(S1) and V2(S2) build up the newly agreed symbols

S
′

1 =
x2 x3 x5

a3 0 1 1
, S

′

3 =
x2 x4 x5

d2 0 1 1
.

When more than two symbols are considered vectors in Vi can be deleted
by agreeing each pair of symbols until all pairs agree. This procedure is
similar to the procedure of gluing a list of symbols. See Algorithm2 described
in Section 3.1.2.

Agreeing Procedure and Agreeing-Gluing Algorithm 21

3.3.2 Agreeing-Gluing Algorithm

To solve equation system (1.1) one applies the Gluing algorithm to the new
symbols generated by the Agreeing algorithm. The combined algorithm is
called Agreeing-Gluing algorithm [Sem09b]. We summarize the algorithm in
the following code.

Algorithm 6: Agree-Gluing(S)

input : A list symbols S1, S2, . . . , Sm

output: All system solutions

(Z,U)← (X1, V1)
k ← 2
while k ≤ m do

s← k
while s ≤ m do

AgreePair((Z,U), (Xs, Vs))
s← s+ 1

(Z,U)← Glue((Z,U), (Xk, Vk))
k ← k + 1

Return (Z,U)

The complexity of this algorithm is

O(m(
m−1∑
k=1

|U ′k|+ 1)),

operations with vectors in Fn
q as showed in [Sem09b], where the symbol

(X(k), U
′
) is (X(k), Uk) = (X1, V1)◦ . . .◦(Xk, Vk) after agreeing with (m−k)

symbols (Xi, Vi) for k < i ≤ m.
More efficient and low memory cost Agreeing-Gluing algorithms are stud-

ied by Igor Semaev and H̊avard Raddum in their papers, interested readers
can refer to [RS06, Sem09b].

22 Gluing and Agreeing

Chapter 4

Multiple Side Linear Equation

The general way of linearizing multivariate polynomial equations is to replace
any monomials (product of several variables) by a new single variable. For in-
stance monomial x1x2x3 is replaced by y123. Therefore, the original equation
in variables X can be rewritten as a linear equation in the new variables Y .
Kipnis and Shanir developed the so called Relinearization Technique[KS99]
based on this idea. They expected that the relinearized system is uniquely
solvable if the number of equations is bigger then the number of new variables.
If the number of the equations is strictly less then the number of variables
then the linear system has many solutions to y which do not correspond to
any real x.

Inspired by [KS99], Courtois, Klimov, Patarin and Shamir proposed a
variant algorithm called eXtended Linearization(XL)[CKPS00]. It was pro-
posed as a technique which can be viewed as a combination of bounded
degree Gröbner bases[BW93] and linearization. The basic idea of this ap-
proach is that the multivariate polynomial is expanded by multiplying each
of the equation with all possible monomials of certain bounded degree and the
number of expanded equations depend on the degree. The higher the degree,
the higher the number of the equations. To linearize the expanded system
one constructs a coefficient matrix of this equation system in which rows rep-
resent equations and columns represent coefficients. In order to solve it one
applies gaussian elimination. One of the main drawback of the XL algorithm
is that the number of equations grows fast, while equations are multiplied by
monomials of a certain degree.

Several modifications to the XL algorithm have been proposed, one among
the promising variants is eXtended Spars Linearization(XSL) [CP02]. This
algorithm keeps the number of equations within some certain bounds. The
authors claim that it might be possible to break AES(Advanced Encryption
Standard)[DR99] using the XSL algorithm, but later Diem showed that some

24 Multiple Side Linear Equation

different estimates of the algorithm complexity[Die04]. His analysis showed
that the authors are rather optimistic in their original estimate.

In this chapter we will introduce a different approach of linearization
in which linear equations are constructed from solution sets of multivariate
polynomials instead of using the equations itself. Each multivariate polyno-
mial equation in system (1.1) can be represented by a set of correspondent
linear equation systems, we call them Multiple Side Linear Equation System
(MSLE), such that the union of their solutions exactly coincides with the set
of solutions of the initial multivariate polynomial equation. The concept of
Multiple Side Linear Equation System and their possible use in the field of
cryptanalysis is a rather new and unconventional subject.

4.1 Coset Covering

The main idea of coset covering is to cover solutions to fi(Xi) = 0 by cosets.
In this section we will introduce algorithms to compute cosets from a

given solution set of multivariate polynomials fi(Xi) = 0. Then we apply set
cover algorithms to determine the minimal number of cosets that cover the
given solution set. Afterwards we will introduce a method to construct linear
equation systems from cosets. Thus the solution set of the linear equation
systems coincide the solution set of equation fi(Xi) = 0.

4.1.1 Coset and Maximal Coset

Computing cosets is one of the main building block of our linearization ap-
proach. We begin this section by a definition adopted from[AP01].

Definition 4.1.1 (Coset) If U is a vector subspace in Fn
q the set a + U =

{a+u|u ∈ U, a ∈ Fn
q } is a coset of the subspace U , where a and u are vectors

of length n.

Recall that in our notation Fn
q stands for a n-dimensional vector space over a

finite field Fq. Binary operations in a vector space are commutative, therefore
we only use the term coset . There should be no confusion when using this
term instead of using right coset or left coset.

Since U is a subspace of Fn
q there exist a set of linearly independent vectors

B = {b1, b2, . . . , br} in Fn
q , such that each element in U can be written as a

linear combination of these vectors. The set of vectors B are called basis of
the subspace U .
With this property of a vector space, we can represent cosets in the form:

a+ 〈b1, b2, . . . , br〉. (4.1)

Coset Covering 25

We say that the coset is generated by the basis b1, b2, . . . , br. The number of
vectors in the basis B is the dimension of the coset.

Let V = {a1, a2, . . . , as} be a set of vectors in Fn
q and C be a coset in V .

We say that C is maximal in V if there is no another coset that contains C.
We now describe a method for constructing maximal cosets in V .

For a multivariate polynomial equation in Fq, the solution set can be
either a subspace or just a set of vectors. Given an arbitrary set of vectors
V = {a1, a2, . . . , as} ⊆ Fqn. One takes any non-zero vector h from Fn

q , a
vector a from the given set V and computes pairs

Ph = {a, a+ h |a ∈ V, a+ h ∈ V }, (4.2)

such that aj = ai + h, i 6= j. In this way, one constructs pairs for each
non-zero h ∈ Fn

q . It is possible for any h that there exists no pair or there
exists one or more pairs. The suggested algorithm for computing pairs for V
is Algorithm 7.

Algorithm 7: MakePairs(V)

input : A set of vectors V ⊆ Fn
q of size s

output: A list of pairs for V

for each non-zero h ∈ Fn
q do

for i = 1, i < s do
for j = i+ 1, j ≤ s do

if ai = aj + h then
Ph ← Append (ai, aj) to Ph

P ← Append Ph to P

Return P

Since the algorithm computes pairs for each non-zero h in a n−dimensional
vector space. There are 2n−1 choices for h. For each h it computes pairs for
each element in V . Therefore, the overall running time for computing pairs
is O(2n|V |).

Theorem 4.1.1 If Ph contains only one pair a, a + h, then Ph is a coset
itself.

Proof. We can represent the coset as a + 〈h〉, where a ∈ V, h ∈ Fn
q . It is

easy to see that h generates a subspace with only two elements, i.e, the zero
vector and itself. Hence the elements a + 0̄ = a and a + h = a + h are a
coset.This proves Theorem 4.1.1.

26 Multiple Side Linear Equation

Remark 4.1.1 One vector in Fn
q is a coset.

Proof: We see that the zero vector in Fn is a subspace of Fn. For any vector
a ∈ Fn, such that a = a+ 0̄. This proves the Remark.
It is also true if Ph contains just two pairs a, a+ h and b, b+ h, then Ph is a
coset. Because, let a+ b = g, then Ph = a+ 〈g, h〉.

When Ph contains more than two pair one takes the row-vector h and
constructs a matrix G by

hG = 0. (4.3)

That is equivalent to asking for solutions of

〈Y, h〉 = 0. (4.4)

Recall that 〈Y, h〉 is the inner product of Y = (y1, . . . , yn) and the nonzero
vector h ∈ Fn

q . Solutions to the equation above can be viewed as Null(h).
By Theorem 2.3.2, since h consists of only one vector, i.e, it is of rank 1, one
obtains n−1 linearly independent solutions to the linear equation. Let these
solutions be the columns of matrix G. For each a ∈ Ph, compute a set V

′
.

V
′
= {a′ = aG|a ∈ Ph}, (4.5)

where a is a row-vector. The equation above can be viewed as a mapping
Fn
q → Fn−1

q . Vectors in V
′

have the length n − 1. Both elements in the
pair a, a + h ∈ Ph will map to the same element in Fn−1

q by the distribution
low of matrix multiplication (a + h)G = aG + hG. Since hG = 0, we get
(a+ h)G = aG.

If V
′

contains a coset a∗ + 〈b∗1, . . . , b∗r〉, then Ph contains the coset a +
〈b1, . . . br, h〉, where a is a solution to Y G = a∗ and bi is a solution to Y G = b∗i .

One can observe that we are doing the same computation, but the size
of the problem is getting smaller and smaller until the size of the problem
reaches a base case (Ph consists of one pair). This is the main property
of the divide-and-conquer strategy[KET06] in which the problem is reduced
into subproblems that are themselves smaller instances of the same type
of problem, then solve them recursively. We summarize our approach of
computing cosets in a divide-and-conquer based algorithm in Algorithm 8.

The input to the algorithm Ph is a set of pairs which correspondent to a
particular h. In the last For loop for each k a coset is computed appended
to the variable coset. The recursion returns solutions while the input of the
function is reduced into only one pair.

Now we discuss the running time of Algorithm 8. It is obvious that
the most time consuming computation is computing pairs, which is upper
bounded by O(2n|V |). The other operations take linear time. Let T (n) be

Coset Covering 27

Algorithm 8: MaximalCosets(V)

input : A set of vectors V ⊆ Fn
q

output: A list of maximal cosets in V

Ph ← MakePair(V)
if Ph contains one pair then

Return a+ < h >

if Ph contains more then one pair then
G← Solve(〈X, h〉 = 0̄)
for ∀a ∈ Ph do

V ′ ← {aG}
MaximalCosets(V ′) // Call recursion
for each maximal cosets in V

′
do

compute maximal cosets in V

Return maximal cosets in V

the running time of routine MaximalCosets, then after recursion we have the
following:

T (n) ≤ 2n(T (n− 1) + n22n)

≈ 2n+(n−1)+,...,+1

≈ 2
n(n−1)

2

≈ 2
n2

2
+n

2

≈ 2
n2

2
(1+(1

n
))

In practice n is a small number like 3,4,5 and 6. The overall running time of
Algorithm 8 is

2
n2

2
(1+o(1)), (4.6)

where o(1) is a constant.

Example 4.1.1

To get a better understanding of all algorithms we mentioned above we give
an example. Vectors are represented in decimal form, cf. Section 2.1. Let a
subset V ⊆ F4

2 be given as following:

{(0001), (0011), (0100), (0101), (1001), (1011), (1101)}. (4.7)

Written in decimal form the vectors are {1, 3, 4, 5, 9, 11, 13}. Now, for each
non-zero h ∈ F4

2 we compute pairs. For h1 = (0001) = 1, the pairs are

28 Multiple Side Linear Equation

Ph1 = {(0100), (0101)} = {(4, 5)}. The same computation is applied for the
rest of h, we obtain

Ph2 : {(1, 3), (9, 11)}
Ph4 : {(1, 5), (9, 13)}
Ph5 : {(1, 4)}
Ph6 : {(3, 5), (11, 13)}
Ph7 : {(3, 4)}
Ph8 : {(1, 9), (3, 11), (5, 13)}
Ph9 : {(4, 13)}
Ph10 : {(1, 11), (3, 9)}
Ph12 : {(1, 13), (5, 9)}
Ph14 : {(3, 13), (5, 11)}
Ph15 : {(4, 11)}

for this particular example. We could not find pairs for h = 3, 11, 13 which
means that h = 3, 11, 13 do not produce pairs.

Next, we compute maximal cosets from each Ph. According to Theorem4.1.1
the algorithm returns maximal cosets for those Ph containing only one pair.
Cosets from pairs Ph1 , Ph5 , Ph7 , Ph9 and Ph15 are

C1 : 4 + 〈1〉
C5 : 1 + 〈5〉
C7 : 3 + 〈7〉
C9 : 4 + 〈9〉
C15 : 4 + 〈15〉

respectively. The algorithm needs to run the recursion step to compute
maximal cosets for the rest of Ph which contain more then one pair. We
choose one among them to illustrate the procedure. Maximal cosets from
the others are computed in the same fashion.

Assume the given pair is Ph8 , fist, we compute matrix G. The solutions
for 〈X, h8〉 = 0 are (0100), (0010), (0001). There may exit other solutions,
but we only need the set of linearly independent vectors.

G =

0 0 0
1 0 0
0 1 0
0 0 1

Take the first element from each pair, i.e, (0001),(0011),(0101). Then multi-
ply each of them by matrix G from the right hand side, we get a new set of
vectors,

V
′
= {1, 3, 5} = {(001), (011), (101)}.

Minimal Cosets Covering 29

We see that the length of vectors in V
′

is indeed less then the length of
vectors in V . Now, we apply the MakePairs subroutine for V

′
. This gives

following pairs.
P
′

h
′
2

: {(1, 3)}
P
′

h
′
4

: {(1, 5)}
P
′

h
′
6

: {(3, 5)}

The maximal cosets can easily be read from the pairs above. They are
1+ 〈2〉, 1+ 〈4〉, 3+ 〈6〉. From these maximal cosets we obtain maximal cosets
in V :

C8,1 : 1 + 〈2, 8〉
C8,2 : 1 + 〈4, 8〉
C8,3 : 3 + 〈6, 8〉

.

We use the same approach to compute cosets from pairs Ph2 , Ph4 , Ph6 , Ph10 , Ph12

and Ph14 :
C2 : 1 + 〈8, 2〉
C4 : 1 + 〈8, 4〉
C6 : 3 + 〈8, 6〉
C10 : 1 + 〈2, 10〉
C12 : 1 + 〈4, 12〉
C14 : 3 + 〈6, 14〉

.

We see that {C2, C10, C8,1} are equal, so two of them should be removed.
Other repeating cosets are {C4, C12, C8,2} and {C6, C14, C8,3}.

After removing the repetition cosets, we get the maximal costes for our
instance V , the list of maximal cosets are:

M = {C1, C2, C4, C5, C6, C7, C9, C15}. (4.8)

4.2 Minimal Cosets Covering

From the previous section we see that all maximal cosets Ci computed from a
given set V are actually subsets of V . The goal of computing a minimal coset
covering is to minimize the number of maximal cosets Ci whose union covers
the given set V . In this section we will introduce two different algorithms
for computing minimal cosets covering. A more formal definition for the
problem may be stated as follows.

Definition 4.2.1 (Minimal cosets cover) . Let V be a set of vectors in
Fn
q and let M = {C1, C2, . . . , Ct} all maximal cosets of V . A collection of

cosets M
′ ⊆ M is a coset cover of V , if V =

⋃
C∈M ′ C. Given V and M as

30 Multiple Side Linear Equation

input instance, the algorithm should output a set M
′

containing a minimal
number of cosets C.

Note,there is no importance to the size of Ci ∈ M
′
. It is unknown whether

minimal cosets cover problem belongs to the class of NP−complete problem.
As we mentioned in Chapter 2 this problem is similar to the problem minimal
set cover problem which belongs to the class of NP -complete. Therefore
there is not much hope in finding a polynomial time algorithm which solves
this particular problem.

4.2.1 Greedy Approximation Algorithm

In general the most natural first attempt to solve such a problem is to design a
greedy algorithm. For a detailed description and analysis of the complexity of
greedy algorithms see [ACGK99]. The underlying idea is simple: We make
locally optimal choices, hoping that this will lead us to a optimal global
solution.

First we choose the largest cosets which covers the largest amount of
elements in V and remove the already covered elements from V . Then we
compute maximal cosets from the remaining elements in V . This step is
repeated until all elements in V are covered. It iteratively makes one greedy
choice after another, reducing each given problem into a smaller one until
the given set V gets empty. The procedure is summarized in Algorithm 9.

Algorithm 9: MinimalCosetSetCover1(V,M)

input : A vecotr set V ⊆ Fn
q , a set of maximal cosets

M = {C1, C2, . . . , Ct}
output: A coset cover of V
C ←M
V
′ ← V

while V
′ 6= ∅ do

c← largest coset in C
V
′ ← V

′ \ c // uncovered elements.
C ←MaximalCosets(V

′
)// cosets from the survived elements.

M
′ ← Append c to M

′

Return M
′

Note, it is possible that V
′

is reduced to one element only. In this case
the coset is the element itself (Remark 4.1.1). The cosets produced by this
algorithm are disjoined, in other words, any two cosets have no elements in

Minimal Cosets Covering 31

common. The disjoint cosets and cosets with common elements. (cf.Section
4.2.2) have a quiet different behavior solving equation systems cf.Chapter 6.

A greedy algorithm never reconsiders its choices. Therefore, such an
algorithm may not always give a optimal solution.

The algorithm first chooses a maximal sized coset Ci. Then computes
maximal cosets for V \ Ci and takes the maximal sized coset from the list,
etc. The running time of the algorithm is then

O(2n(T (n− 1) + n22n)) = 2
n2

2
(1+o(1)).

4.2.2 An Exact Algorithm

As mentioned above designing an efficient algorithm for a NP -problem is
considered to be a difficult job. In this section we present a not so efficient
algorithm for our problem(Def.4.2.1).

Consider a set V and a set of cosets M of V . One takes any Ci ∈ M
and checks if it covers V . If true this is the minimal cover. Otherwise one
takes another Cj and checks if Ci ∪ Cj covers the main set V . In this way
one gradually constructs subsets C1 ∪C2 ∪ . . .∪Ck and checks the covering.
The idea behind is checking the covering by k-subsets of M . Here k−subsets
means all combinations of k elements in M .

The algorithm works as follows. For k from 1 to |M | generate k-subsets
and check the covering for each k. The algorithm aborts at any iteration if
it finds a covering. The size of the minimal covering is then k. Assume there
are t elements in M , then the number of subsets of M is

t∑
k=1

(
t

k

)
,

This is of course the upper bound of the algorithm, i.e., 2t − 1, therefore
exponential.

In our procedure each iteration of the algorithm only needs to process(
t
k

)
≈ tk

k!
subsets. In practice the minimal coset covering is found for small

k, cf.Chapter 6. Therefore the algorithm is feasible for small l, i.e. small
dimensional vector spaces. The suggested algorithm is depicted in Algorithm
10.

Example 4.2.1

We take the main set and the cosets from Example 4.1.1. Assume the given
set V is (4.7), then the associated maximal cosets are (4.8). If k is 1 there
is no 1-subset which can cover V . We also find that there is no 2-subset

32 Multiple Side Linear Equation

Algorithm 10: MinimalCosetCover2(V,M)

input : A set V , set of maximal cosets M = {C1, C2, . . . , Ct}
output: A minimum number of elements in M that covers V
check ← True
k ← 1
while check do

f ← all subsets of M containing k elements
for i = 1, i ≤ length(f) do

if fi ∈ f covers V then
M
′ ← fi

check ← False

k ← k + 1

Return M
′

that covers V . When k = 3 we find that {C2, C4, C5} covers V . There
may exist some other 3-subsets which cover V . The algorithm aborts and
returns the solution immediately whenever it finds a solution. The cosets
{C2, C4, C5} cover {1, 3, 9, 11},{1, 5, 9, 13} and {1, 4} in V respectively. We
see that minimal cosets covering produced by Algorithm 10 are overlapping,
each of them may cover some of the same elements in the main set.

4.3 Procedure of Linearization

In this section we introduce a new linearization approach (MSLE) for multi-
variate polynomial equations. For a given multivariate polynomial equation,
a set of linear equation systems is constructed such that union of their so-
lutions is the the set of solutions to the multivariate polynomial. Since any
set of solutions to a multivariate polynomial equation can be represented by
corresponding minimal cosets covering. In the following we will describe how
to construct linear equation systems from minimal cosets covering.

Consider an equation from system (1.1):

(Xi, Vi),

where |Xi| = l. Assume the cosets in Vi are M = {a1 +B1, a2 +B2, . . . , at +
Bt}, s.t.

Vi = {a1 +B1} ∪ {a2 +B2} ∪ . . . ∪ {at +Bt}.
We know from Section 4.2 that a minimum number of cosets can cover the
main set Vi, i.e.

Vi = {a1 +B1} ∪ {a2 +B2} ∪ . . . ∪ {ak +Bk}, (4.9)

Procedure of Linearization 33

where k ≤ t. For any r−dimensional coset

a+B = a+ 〈b1, b2, . . . , br〉 (4.10)

in (4.9). One solves the following equations,
〈b1, y1〉 = 0
〈b2, y2〉 = 0

...
〈br, yr〉 = 0.

(4.11)

There are l− r linearly independent solutions {s1, s2, . . . , sl−r|si ∈ Fl
q} to

the equation (4.11)(Theorem 2.3.2). These vectors can be viewed as trans-
pose of each vector in Null(B

′
), where B

′
is a matrix consisted by the basis

b1, b2, . . . , br as rows. A matrix C is constructed with these vectors as rows,

C =

s1
s2
...

sl−r

 .

This matrix has l − r rows and l columns. By this matrix one computes a
vector c,

Ca = c,

where a is a column vector.
Finally we are ready to define the linear equation system for the cosets

(4.10). The linear equation system constructed from coset (4.10) is,

CXi = c (4.12)

where Xi is a column vector. We summarize the procedure of constructing
linear equation systems in Algorithm 11.

Theorem 4.3.1 Let U = a + 〈B〉 be a coset, then U are all solutions to
system CX = c if and only if the system is constructed from the coset by
Algorithm 11.

Proof. Assume a is a solution to CXi = c, such that Ca = c, then CY = 0̄
if and only if

CY + Ca = C(Y + a) = c

34 Multiple Side Linear Equation

Algorithm 11: LinearEquation

input : A coset a+ 〈b1, b2, . . . , br〉 which is a subset of solutions to
fi(Xi) = 0

output: A linear equation system whose solutions is the coset

B
′ ←

 b1
...
br

 // matrix B
′

consists of bi as rows

C ← Transpose(Null(B
′
))

c← Ca // a is in column form
Return Linear equation system CXi = c

Solutions to CY = 0̄ are a subspace of Fl
q, i.e. the null space of C. This

subspace is generated by some basis B = {b1, b2, . . . , br}. Therefore, the coset
a+B are all solutions to the equation CX = c.

Let’s prove it in the opposite direction, given a r-dimensional coset a +
〈b1, b2, . . . , br〉. The basis b1, b2, . . . , br are linearly independent vectors in the
space Fl

q. The equation system
〈b1, y1〉 = 0
〈b2, y2〉 = 0

...
〈br, yr〉 = 0

has l − r linearly independent solutions in space Fl
q. The solutions are rows

of the matrix C. Since Ca = c by the property of matrix multiplication:

C(a+ 〈b1, b2, . . . , br〉) = Ca+ C(〈b1, b2, . . . , br〉) = c

We see that C(〈b1, b2, . . . , br〉) = 0, thus the equation CXi = c holds when Xi

is substituted by the coset a+〈b1, b2, . . . , br〉. This proves the Theorem 4.3.1.

One applies Algorithm 11 to all elements in the minimal coset cover of
vectors Vi from (Xi, Vi) which produces a sequence of linear equation systems

C1Xi = c1, C2Xi = c2, . . . , CsXi = cs. (4.13)

The union of solutions to these linear equation systems cover the vectors Vi.
Therefore are the solutions to the equation fi(Xi) = 0.

Finally we give the definition for Multiple Side Linear Equation (MSLE)
systems.

Procedure of Linearization 35

Definition 4.3.1 (MSLE) 1 MSLE is the set of linear equations:

E = {A1X = a1, A2X = a2, . . . , AsX = as}, (4.14)

where |X| = l. Its solutions set is given by

VE =
s⋃

i=1

{x ∈ Fl
q|Aix = ai}. (4.15)

With this definition, we can represent symbols (3.1) as MSLEs.

E = {E1, E2, . . . , Em} =

{{A1X1 = a1, . . . , ArX1 = ar}, . . . , {B1Xm = a1, . . . , BtXm = bt}} (4.16)

Example 4.3.1

We will illustrate the procedure of constructing linear equation system from a
given coset, such that the coset is all solutions to the linear equation system.
Assume a given coset C6 from Example 4.1.1 and a subset of variables X =
{x1, x2, x3, x4}. Vectors in the coset are written in column form.

a+ 〈b1, b2〉 : 3 + 〈8, 6〉 =

0
0
1
1

+

〈 1 0
0 1
0 1
0 0

〉
=

0 1 0 1
0 0 1 1
1 1 0 0
1 1 1 1

. (4.17)

One solves the following equation system:{
y1 = 0

y2 + y3 = 0
.

The solutions to the system are (0001), (0110). These are all linearly inde-
pendent vectors. We obtain the matrix C by these two row-vectors:

C =

(
0 0 0 1
0 1 1 0

)
.

1This term is defined relative to the term Multiple Right Hand Side (MRHS) linear
equation, see [RS07]

36 Multiple Side Linear Equation

By this matrix C and the vector a from the coset one computes a vector
c = Ca. That yields

c =

(
1
1

)
.

The linear equation CX = c from the coset is(
0 0 0 1
0 1 1 0

)
X =

(
1
1

)
.

One finds that the coset (4.17) contains all solutions to the linear equation
system above.

Chapter 5

Gluing on MSLEs

After the linearization techniques from the previous chapter, we are now
able to represent system (1.1) as a sequence of MSLEs in the form (4.3.1).
MSLEs can now be glued, i.e, by checking whether any two linear systems
have common solutions. If they have common solutions one can construct a
new system which has the same set of solutions. This chapter will introduce
the gluing techniques on MSLE systems, thereby, solve the system (1.1). We
will apply all gluing techniques described in Chapter 4 to MSLE.

5.1 Gluing A Pair MSLEs

As we see from Chapter 4 the main idea behind the Gluing Algorithms is
to obtain a new symbol Sij by joining two symbols Si and Sj together, such
that Sij contains all common information of Si and Sj. In this section we
will apply the same idea to two MSLEs. We introduce at first how to get the
common solutions to two linear equation systems.

5.1.1 Consistency

Let
e1 : AX1 = a, e2 : BX2 = b, (5.1)

be two linear equation systems given. One defines a new set of variables
X = X1 ∪X2 and constructs a new linear equation system as follows(

A
′

B
′

)
X =

(
a
b

)
, (5.2)

where the part A
′

is the coefficient matrix of the linear equation system
AX1 = a in variables X. The rows in A

′
represent the equations and the

38 Gluing on MSLEs

columns represent the coefficients of the system AX1 = a in variables X.
Analogous for B

′
.
(
a
b

)
is the concatenation of the two right hand sides of the

above two equation systems. Note that it is important to keep the relation-
ship between A

′
and a, B

′
and b. I.e, the right hand side can not be written(

b
a

)
, if the coefficient matrix is constructed in the order

(
A
′

B′
)
.

Then one transforms system (5.2) into the augmented matrix form(
L R

)
, (5.3)

where L is the coefficient matrix
(
A
′

B′
)

and R represents the right hand side
constant vector

(
a
b

)
. Then (5.3) is reduced into row echelon form (REF)1.(

L
′
R
′)

, (5.4)

Definition 5.1.1 Let (L
′|R′) be the REF of augmented matrix of two linear

equation systems

AX1 = a, BX2 = b.

The two equation systems are said to be consistent if the rank of L
′

equals
to the rank of (L

′|R′). I.e, matrix (L
′ |R′) has no rows in the form

[0 . . . 0 | b],

where b is a non-zero entry in part R
′
.

The systems of two linear equations (5.1) is consistent if they have a common
solution, otherwise it is inconsistent. When the system is inconsistent, it is
possible to derive a contradiction from (5.4). I.e. the statement that 0 = 1
which implies that all coefficients of this equation are zeros. In this case, the
equation is called zero equation. Every non-zero equation in (5.4) contains
a basic variable with a non-zero coefficient. Either the basic variables are
completely determined (with no zero-rows at the bottom of (5.4)) or at least
one of the basic variables may be expressed in terms of one or more free
variables (contains one or more zero rows in (5.4)). In the former case there
is a unique solution to the system; In the latter case there are many solutions
(one for each choice of values for the free variables).
Note that while X1∩X2 = ∅, the two systems are consistent. In this case the
two systems have trivial solutions, namely all solutions to the first system
and all solutions to the second system are combined together.

1This is elementary row operation part of Gaussian elimination algorithm, cf.Chapter
3. This operation does not exchange columns in a matrix

Gluing A Pair MSLEs 39

5.1.2 Gluing

Given two linear equation systems in the form (5.1) one checks for consis-
tency. If they are consistent one constructs a new linear equation system as
follows:

CX = c ← e1 ◦ e2
where C is a matrix consisting of non-zero rows in L

′
and the right hand side

vector c is the corresponding elements in R
′
. We say that system CX = c is

the gluing of AX1 = a and BX2 = b. The suggested algorithm for the gluing
of two linear equation systems is shown in Algorithm 12.

Algorithm 12: MSLEGlue(e1, e2)

input : Two linear equation systmes e1 : AX1 = a , e2 : BX2 = b
output: Glued linear equation system

X ← X1 ∪Xj

D1 ← AugmentedMatrix(e1) in variables X
D2 ← AugmentedMatrix(e2) in variables X

REF

(
D1

D2

)
// Row Echelon Form

if e1 ◦ e2 then
//Check consistency of e1 ◦ e2
Return new linear equation system CX = c

else
Return ∅

One sees that the most time consuming steps of above algorithm are
computing REF. This step is actually applying the elementary row operations
part in Gaussian elimination algorithm. Gaussian elimination for a system
of n equations in n variables requires O(n3) operations [R.W88]. Let n be
the length of variables set X. The complexity of this algorithm is bounded
by O(n3).

Example 5.1.1

Consider two linear equation systems in F2,(
1 0 0 1
0 1 1 0

)
X1 =

(
0
1

)
,

(
0 1 0 1
1 0 0 0

)
X2 =

(
1
0

)
(5.5)

where X1 = (x1, x2, x5, x6), and X2 = (x2, x4, x5, x6) and the union of these
two variables is X = (x1, x2, x4, x5, x6). The augmented matrix in variable

40 Gluing on MSLEs

X for the above two systems is
1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 1 0 0 0 0

 . (5.6)

Now triangulate the matrix without column exchanging. We obtain a matrix
in REF as follows

1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 1 0 1

 . (5.7)

This implies that the above two systems are consistent. With all non-zero
rows in (5.7) and variables X one constructs the new glued system

1 0 0 0 1
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

X =

0
1
1
1

 . (5.8)

Then one can solve system (5.8) which will give all common solutions to the
two equation systems (5.5).
Note that in most cases it is in practice unnecessary to solve the glued equa-
tions while gluing a chain of MSLEs. The algorithm usually gives the coef-
ficient matrix with only 1s in the diagonal entries. The solutions can easily
be read from the output of the algorithm, cf. Appendix B.

Now we apply the gluing procedure on two MSLEs. Consider two MSLEs Ep

and Eq in variables X1 and X2:

Ep =

ep1 : A1X1 = a1
ep2 : A2X1 = a2

...
eps : AsX1 = as

, Eq =

eq1 : B1X2 = b1
eq2 : B2X2 = b2

...
eqt : BtX2 = bt

. (5.9)

One defines a set of variables X = X1 ∪X2. For each i : 1 ≤ i ≤ s and each
j : 1 ≤ j ≤ t the consistency is checked for epi and eqj . For any consistent
i, j one constructs a new system CijX = cij by gluing epi and eqj . If they
are inconsistent discards the gluing step and try to glue epi and eqj+1

. We
summarize the pairwise gluing procedure in Algorithm 13.

Gluing A List of MSLE 41

Algorithm 13: MSLEGluePair(Ep, Eq)

input : Two MSLEs Ep = {ep1, ep2, . . . , eps} , Eq = {eq1, eq2, . . . , eqt}
output: A Glued MSLE

E
′ ← ∅

for i from 1 to s do
for j form 1 to t do

if epi, eqj are consistent then
E
′ ←Append epi ◦ eqj to E

′

Return E
′

Let |Ei| be the number of linear equation systems in each MSLE, then
the running time of above procedure is:

O(|Eq||Ep|) (5.10)

REF computations on linear equation systems in variables of length |X| over
Fq.

5.2 Gluing A List of MSLE

The procedure of gluing a list of MSLEs is similar to Algorithm 2 which we
described in Chapter 3. In order to solve a sequence of MSLEs one applies
Algorithm 13 to the first pair of MSLEs. In the next step the algorithm pro-
ceeds with the result of the previous step as the first argument and the next
MSLE as the second argument, etc. The procedure is shown in Algorithm
14.

Algorithm 14: MSLEGlueSet(E)

input : A list of MSLE E1, E2, . . . , Em

output: A Glued MSLE

m← length(E)
Z ← E1

k ← 2
while k ≤ m do

Z ← MSLEGluePair(Z,Ek)
k ← k + 1

Return Z

42 Gluing on MSLEs

The running time of this algorithm is roughly:

O(
m−1∑
k=1

|Zk|+ 1) (5.11)

REF computations on linear systems in variable X(k) = X1∪. . .∪Xk over Fq,
where Zk is the set of linear equation systems in the MSLE after gluing the
first k MSLEs. The mathematical expectation of |Zk| has not been proven
by the time this report is finished.

5.3 MSLE-Gluing

Applying the tree search gluing procedure on MSLEs is called MSLE-Gluing.
This procedure is quiet similar to the Algorithm 3 (Gluing1 in [Sem08])
described in Chapter 3. It has the same running time as (5.11), but requires
only poly bits of memory space. We will not describe the procedure here.
For details and an example of the procedure one may consult Section 3.1.3
in Chapter 3. Note, this algorithm only output one MSLE while the system
may has more.

A slightly modified algorithm which can be used on gluing of MSLEs is
presented here, see Algorithm 15. In this algorithm esd stands for a linear
equation system in MSLE at tree depth d. One may analog each ei as the
vector vi ∈ Vi from (Xi, Vi). The algorithm terminates in two cases:

1. It traverses all paths from the root to the bottom. I.e. all possible
solutions to the system are returned.

2. No path through the search tree is found. I.e. d becomes smaller than
1.

Note, Algorithm 15 only gives one MLSE for the final output. One could
modify this algorithm by the method mentioned in Chapter 3 to output all
solutions. It should be emphasized that one might want to apply Algorithm
15 to MSLEs which were constructed from cosets generated by Algorithm
10. As we mentioned before, the cosets generated by Algorithm 10 are inter-
secting each other. For this reason the number of intermediate solutions will
increase dramatically. We will discuss this and try to reduce the number of
intermediate solutions in the next section.

5.4 Implied System

The number of cosets generated by Algorithm 10 always is less than or equal
the number of cosets generated by the Greedy algorithm. Algorithm 10 al-

Implied System 43

Algorithm 15: MSLE-Gluing(E)

input : A list of MSLE: E1, E2, . . . , Em

output: A glued MSLE

d← 1
s1 = 1, . . . , sm = 1 // Initialize all si
M1 . . . ,Mm ← Initialize all Mi as empty
while 0 < d ≤ m do

T ← MSLEGlue(Md, esd ∈ Ed) // Calls MSLEGlue subroutine.
if T 6= ∅ then

Md+1 ← T
sd ← sd + 1
d← d+ 1

else
sd ← sd + 1 //points to the next e at the same tree depth
if sd > length(Ed) then

// tried ∀e ∈ Ed

sd ← 1
d← d− 1

if d = m then
Return Md

else
Return Ungluable

ways gives the exact number of cosets for minimal covering while the Greedy
algorithm returns the approximal number of cosets. One might attempt
to solve system (1.1) by MSLEs which is constructed by cosets output by
Algorithm 10, hoping that less gluing operations occur during the solving.
However, in practice we found that a lot of gluings reoccur. This implies
reiterative intermediate solutions are produced. In this section we will anal-
ysis this phenomena and describe an algorithm which can slightly reduce the
number of gluing steps while solving.

5.4.1 Implication

Assume cosets for the two MSLEs (5.9) are generated by Algoritm 10. Let
us define the solution set of epi ◦ eqj by Ωi,j for 1 ≤ i ≤ s and 1 ≤ j ≤ t.
Then the following two cases are possible:

C1: Ωi,j ⊆ Ωi,j1;

C2: Ωi,j ⊇ Ωi,j1.

44 Gluing on MSLEs

This is because of there may exist some overlapping subsets in the joined
set of solutions to equ and eqv for some u, v : 1 ≤ u, v ≤ t, u 6= v. It might
therefore cause that

epi ◦ eqj ◦ ewk
= epi ◦ eqj1 ◦ ewk

,

where ewk
is a linear equation system in the MSLE next to Eq. They obviously

share some common solutions. Considering the tree search algorithm, the
repeating solutions mean that the algorithm produces repeated nodes which
have the same value. This causes that the search tree contains many repeated
subtrees.

Two MSLEs are given in the form (5.9), then we say that epi ◦eqj implies
epi ◦ eqj1 , if their solution sets Ωi,j and Ωi,j1 are in the case C1. epi ◦ eqj1
implies epi ◦ eqj if their solution sets are in the case C2.

Here A implies B means that all solutions to A are solutions to B. Since
B contains all solutions to A, we can simply omit the gluing operation of A
while solving a system. Likewise, gluing operations on B can be discarded if
B implies A.

5.4.2 Procedure of Reduction

To check the implication relationship for (5.9) one constructs an augmented
matrix in the form (5.3) in variables X = X1 ∪X2: A1 a1

B1 b1
B2 b2

 . (5.12)

The above matrix has |X|+1 columns and the number of rows is the number
of all equations in the three systems. We divide the above matrix into two
parts by the horizonal line. The upper part consists of the augmented matrix
of ep1 and eq1 in variable X, which denoted by P1. The lower part is the aug-
mented matrix eq2 in variables X, denoted by P2. One applies row reduction
(reduced into REF) operations to (5.12) with the following restrictions:

U1 : Columns in (5.12) are not allowed to exchange;

U2 : Rows in P2 are not allowed to exchange with rows in P1.

Note that any two rows inside P1 and P2 can only be interchanged in their
partition.

Theorem 5.4.1 Let three linear equation systems in variables X1 and X2:

e1 : AX1 = a, e2 : B1X2 = b1, e3 : B2X2 = b2 (5.13)

Implied System 45

be given. Let us define (
P1

P2

)
(5.14)

as the augmented matrix of the three systems in (5.13) in variable X =
X1 ∪ X2. P1 is the augmented matrix of e1 and e2, and P2 is augmented
matrix of e3. The REF of (5.14) constructed under the restrictions U1 and
U2 is defined by (

P
′
1

P
′
2

)
(5.15)

such that, e1 ◦ e2 implies e1 ◦ e3 if and only if P
′
2 is a zero-matrix.

Lemma 5.4.1 Let two linear equation systems

C1X = c1 and C2X = c2

be given. Solutions of C1X = c1 are among the solutions to C2X = c2, if and
only if there exits a matrix U , such that UC1 = C2 and Uc1 = c2.

Proof (Lemma 5.4.1), Let b1+〈B1〉 be the solutions to C1X = c1 and b2+〈B2〉
the solutions to C2X = c2. Assume b1 + 〈B1〉 ⊆ b2 + 〈B2〉. One can take
b1 = b2. We have C1B1 = 0̄ and rows of C1 generate null-space of B1. Then
C2B1 = 0̄, that is rows of C2 are in the null-space of B1. Therefore rows of
C2 are combinations rows of C1, there exits a matrix U such that UC1 = C2.
We have C1b1 = c1 and C2b1 = c2. Then c2 = C2b1 = UC1b1 = Uc1. This
proves the Lemma 5.4.1.
Proof (Theorem 5.4.1), Assume e1 ◦ e2 implies e1 ◦ e3, then we have(

A
B1

)
X =

(
a
b1

)
implies

(
A
B2

)
X =

(
a
b2

)
.

By Lemma 5.4.1 there exits a matrix U = (U1|U2), such that(
I | 0
U1|U2

)(
A
B1

)
=

(
A
B2

)
,

(
I | 0
U1|U2

)(
a
b1

)
=

(
a
b2

)
, (5.16)

Where I is the identity matrix and 0 denotes the zero matrix. We obtain
U1A+ U2B1 = B2 and U1a+ U2b1 = b2, where a and bi are column vectors.

While applying the REF computation for (5.14) in Fq, we get

U1A+ U2B1 +B2 = 0, U1a+ U2b1 + b2 = 0̄ (5.17)

This implies that all rows in the lower part of the REF matrix (5.15) are
zero-row.

46 Gluing on MSLEs

Assume P
′
in (5.14) is a zero matrix, then there exits a matrix U = U1|U2,

such that the two equations (5.17) are true. One constructs the two equations
(5.16). This proves Theorem 5.4.1.

One applies the implication steps before gluing two systems, such that it
discards gluing step A as long as A implies B. We insert the implication pro-
cedure in Algorithm 15 which is shown in Algorithm 16. Note, this algorithm
only output one MSLE while the system may has more.

Algorithm 16: MSLE-GluingReduction(E)

input : A list of MSLE: E1, E2, . . . , Em

output: A glued MSLE

d← 1
s1 = 1, . . . , sm = 1 // Initialize all si
M1, . . . ,Mm ← Initialize all Mi as empty
while 0 < d ≤ m do

check ←False
if Md ◦ esd ∈ Ed implies Md ◦ esd+1

∈ Ed then
T ← MSLEGlue(Md, esd+1

∈ Ed)
check ← True

else
T ← MSLEGlue (Md, esd ∈ Ed)

if T 6= ∅ then
Md+1 ← T
if check then

sd ← sd + 2 // points to esd+2

d← d+ 1
else

sd ← sd + 1// points to the next system at the same tree depth
if sd > length(Ed) then

// tried ∀e ∈ Ed

sd ← 1
d← d− 1

if d = m then
Return Md

else
Return Ungluable

Edge Removal 47

5.5 Edge Removal

While utilizing Algorithm 15 to solve system (1.1) one can see that the
solution can only be revealed from a path which goes through the whole
search tree, i.e, from the root to the bottom. However, there are many tree
branches which do not reach the bottom, that means these tree branches do
not give any contribution to the solution set. Nevertheless, the algorithm
walks through all these irrelevant tree branches. In order the algorithm to
avoid going through these tree branches, we apply a so called edge removing
procedure on Algorithm 15.

Consider a given list of MSLEs in the form (4.16). Then one defines a
search tree rooted at ∅. At each tree depth d : 1 ≤ d ≤ m one defines a
MSLE E1 ◦ . . . ◦Ed. One can see that there is a tree edge between two nodes
at tree depth d and d+1 if a linear equation system e1 ◦ . . .◦ed ∈ E1 ◦ . . .◦Ed

and another linear equation system ej ∈ Ej : j ≥ d + 1 exists such that
e1 ◦ . . . ◦ ed ◦ ej is possible. A tree branch e1 ◦ e2 ◦ . . . ◦ em ∈ E1 ◦E2 ◦ . . . ◦Em

gives a solution to the whole system. One checks the connectivity of a tree
branch and lets the algorithm avoid going through the tree branches if and
only if the tree branch does not reach to the bottom.

Let ei ∈ E1. If at any tree depth d ≥ 2, the linear equation system ei
does not consistent with all ej ∈ Ed, the gluing operation will not take place
on this tree branch. Otherwise, for each d ≥ 3 there is at least one ek ∈ Ed

such that ei ◦ ej is consistent with ek, then one extends the tree branch as
ei ◦ ej ◦ ek, where ek ∈ E3. If they are inconsistent, one extends the branch
by gluing ei with another system in E2, etc.

Note, in the case Xd(Ed) ∩ Xd+1(ed+1) = ∅, one does not need to check
the consistency of systems in these two MSLEs. As we mentioned in Section
5.1.1, two systems with no variables in common are always consistent. We
summarize the procedure in Algorithm 17. Note, this algorithm only output
one MSLE while the system may has more.

48 Gluing on MSLEs

Algorithm 17: MSLE-GluingEdgeRemoval(E)

input : A list of MSLE: E1, E2, . . . , Em

output: A glued MSLE

d← 1
s1 = 1, . . . , sm = 1 // Initialize all si
M1, . . . ,Mm ← Initialize all Mi as empty
while 0 < d ≤ m do

k ← d
while 2 ≤ k ≤ m do

for ∀ei ∈ Ek do
if Xd(Md) ∩Xk(Ek) 6= ∅ then

if Md dose not consistent with ei then
d← d− 1
Break While loop

else
k ← k + 1

T ← MSLEGlue(Md, esd ∈ Ed) // Calls MSLEGlue subroutine.
if T 6= ∅ then

Md+1 ← T
sd ← sd + 1
d← d+ 1

else
sd ← sd + 1// points to the next system at the same tree depth
if sd > length(Ed) then

sd ← 1
d← d− 1

if d = m then
Return Md

else
Return Ungluable

Chapter 6

Experimental Results

In this chapter the experimental results are presented. We have implemented
all other algorithms mentioned in this report except Algorithm 2 and Algo-
rithm 14. Since Algorithm 2 and Algorithm 14 give the same results as the
tree search version, but require more memory. We discarded the testing on
these two algorithms.

All equations in (1.1) are independently generated over field F2. Each
fi(Xi) = 0 is represented by a symbol (Xi, Vi). The subset Xi of size l is
taken at random from the set of all possible l−subsets of X, that is with

probability of
(
n
l

)−1
. All vectors in the vector subset Vi are randomly taken

from the vector space Fl
2.

We tested four different parameters in each example of our experiments:

• n the number of variables for the whole system;

• m the number of equations in the system;

• l the sparsity or number of variables in each equation;

• |V | the number of assignments for each equation.

The abscissa indicates the tree depth value. On the ordinate the number
of Gluing1 (or MSLE-Gluing) operations at each tree depth is plotted. The
number of Gluing1 operations is denoted by tGluing1 and the number of MSLE-
Gluing operations is denoted by tMSLE−Gluing. In the following diagrams all
t are logarithmic scaled.

For the reference Mathematica-code refer to Appendix A. For a descrip-
tion of experimental environments refer to Appendix B. A sample raw data
from the experiments is included in Appendix C.

50 Experimental Results

6.1 Cosets Covering

Figure 6.1 and Figure 6.2 show the comparisons of the minimal cosets cov-
ering computed by Algorithm 9(Greedy) and Algorithm 10(Exact). On the
ordinate the number of cosets for each Vi(Xi, Vi) and on the abscissa the
number of symbols in the whole system are plotted.

Figure 6.1: Comparison of minimal coset covering for n = 4, m = 100, l =
4, |V | ≥ 5. The average minimal cosets computed by Greedy algorithm
is 2.7. The average minimal cosets computed by Exact algorithm is 2.87.
Approximation ratio of the Greedy algorithm is 0.94.

6.2 Sorting

In order to reduce the gluing operations we applied the sorting procedure on
the instances. Figure 6.3 shows the comparisons of the number of Gluing1
and MSLE-Gluing operations occurred at each tree depth. The input to the
algorithms are sorted and unsorted instances.

6.3 Comparison of Gluing1 and MSLE-Gluing

The Figure 6.4, Figure 6.5 and Figure 6.6 show the comparisons of the number
of gluing operations needed by the Gluing1 and the MSLE-Gluing to solve
the same system.

Comparison of Gluing1 and MSLE-Gluing 51

Figure 6.2: Comparison of minimal coset covering for n = 5, m = 100, l =
5 |V | ≥ 8. The average minimal cosets computed by Greedy algorithm is
4.34. The average minimal cosets computed by Exact algorithm is 3.74.
Approximation ratio of the Greedy algorithm is 0.87

Figure 6.3: MSLE-Gluing operations on unsorted and sorted instance. n =
32, m = 32, l = 4, |V | ≥ 5. Cosets are computed by Greedy algorithm.

Max(tunsorted = 164064), Max(tsorted = 15784). Max(tunsorted)
Max(tsorted)

≈ 10

52 Experimental Results

Figure 6.4: Comparison of the number of Gluing1 and MSLE-Gluing opera-
tions at each tree depth. n = 16, m = 178, l = 4, |V | = 15. Equations are
sorted. Cosets are computed by Greedy algorithm. Max(tGluing1 = 15024),

Max(tMSLE−Gluing = 2046).
Max(tGluing1)

Max(tMSLE−Gluing)
≈ 7

Figure 6.5: Comparison of the number of Gluing1 and MSLE-Gluing oper-
ations at each tree depth. n = 32, m = 32, l = 4, |V | ≥ 5. Equations are
sorted. Cosets are computed by Greedy algorithm. Max(tGluing1 = 5600),

Max(tMSLE−Gluing = 627).
Max(tGluing1)

Max(tMSLE−Gluing)
≈ 9

Reducing of Gluing operations 53

6.4 Reducing of Gluing operations

Figure 6.7 shows the comparisons of the number of MSLE-Gluing operations
occurred at each tree level, while MSLE-Gluing applied on MSLEs which are
constructed from cosets computed by Exact algorithm and Greedy algorithm.
The Algorithm 16 was applied on MSLEs constructed from cosets which are
computed by the Exact algorithm.

6.5 Edge Removing

Figure 6.8 shows the gluing operations occurred at each tree level after ap-
plying edge removing procedure on Gluing1 and MSLE-Gluing. Equations
are sorted. Cosets are computed by the Greedy algorithm. Max(tGluing1 =

3258304), Max(tMSLE−Gluing = 63648).
Max(tGluing1)

Max(tMSLE−Gluing)
≈ 51. The number

of gluing operations after edge removing is denoted by t
′
. Figure 6.9 shows

the comparison of the number of MSLE-Gluing operations at each tree level
after applying edge removing procedure on MSLE-Gluing.

Figure 6.6: Comparison of the number of Gluing1 and MSLE-Gluing oper-
ations at each tree depth. n = 48, m = 48, l = 4, |V | ≥ 5. Equations are
sorted. Cosets are computed by Greedy algorithm. Max(tGluing1 = 3258304),

Max(tMSLE−Gluing = 63648).
Max(tGluing1)

Max(tMSLE−Gluing)
≈ 51

54 Experimental Results

Figure 6.7: Reduction of gluing operations on the MSLE-Gluing. n =
32, m = 32, l = 4, |V | ≥ 5. Equations are sorted. Cosets are com-
puted by Exact algorithm and Greedy algorithm for the same instance.
Max(tExact = 35248), Max(tGreedy = 627). Max(tExact)

Max(tGreedy)
≈ 56

Figure 6.8: Edge removing procedure on MSLE-Gluing and Gluing1. n =
48, m = 48, l = 4, |V | ≥ 5. Cosets are computed by Greedy algo-

rithm Max(t
′

Gluing1) = 49464, Max(t
′

MSLE−Gluing) = 1349.
Max(tGluing1)

Max(t
′
Gluing1)

≈ 66.

Max(tMSLE−Gluing)

Max(t
′
MSLE−Gluing)

≈ 47

Edge Removing 55

Figure 6.9: Edge removing procedure on MSLE-Gluing.
n = 64, m = 64, l = 4, |V | ≥ 5. Cosets are computed by Greedy algorithm.
Max(tMSLE−Gluing) = 2100252, Max(t

′

MSLE−Gluing) = 24866. 2100252
24866

≈ 84
.

56 Experimental Results

Chapter 7

Discussion

In this chapter we will first discuss the result in Section 6.5. Afterwards we
will present our conclusion. Finally we will discuss the possible further work.

7.1 Discussion

One can see in Figure 6.7 that the trend of curve generated by Algorithm 16
rises at the tail. Recall that the MSLEs for this algorithm are generated by
Algorithm 10. The cosets computed by this algorithm are intersecting. For
this reason we have introduced implication relations and tried to reduce the
gluing operations. We have implemented reduction procedure only on the
“right hand side”.

Consider the two MSLEs (5.9) in Section 5.1.2. The reduction algorithm
discards the gluing operation epi ◦ eqj if it implies epi ◦ eqj+1

, where i, j : 1 ≤
i ≤ s, 1 ≤ j ≤ t. It is also possible that epu ◦ eqv implies epu+1 ◦ eqv , where
u, v : 1 ≤ u ≤ s, 1 ≤ v ≤ t. Thus the algorithm should discard the
gluing operation step epu ◦ eqv . However, the algorithm does not include this
procedure. This generates repeated intermediate solutions.

7.2 Conclusion

In this thesis we have presented two approaches to solve system (1.1). The
first approach are the Gluing/Agreeing algorithms which have been studied
for several years. In order to compare the solving behaviors with the MSLE
approach we did not combine the Agreeing algorithm with it. The second
approach is the MSLE which is quite new.

The main advantages of MSLE when compare to the Gluing algorithms
on symbols appear to be the fact that, any f(X) = 0 of bounded number of

58 Discussion

variables can be represented by the MSLE in a finite field. The cosets are
represented by linear equation systems. Therefore, the MSLE representation
is much more compact than the coset itself and easy to implement in linear
algebra routines. The number of linear equation systems in a MSLE is much
lower than the number of assignments in the corresponding symbol (X, V) ;
While considering experimental results in Chapter 6, one sees that comparing
to the Gluing1 algorithm the number of gluing operations needed by MSLE-
Gluing to solve the same system is lower.

In order to enhance the algorithm we have introduced edge removing pro-
cedure on Gluing1 algorithm and MSLE-Gluing algorithm. This procedure
gives a significant reduction on the number of gluing operations.

Furthermore, in Section 6.7 we implemented reduction procedure on the
MSLE-Gluing algorithm where the MSLEs are constructed by Algorithm 10
(exact algorithm). However, the results are worse then our expectation. This
mainly due to the problem we mentioned in Section 7.1. Nevertheless the
greedy procedure gives a good approximation for computing minimal coset
covering. Therefore it is not necessary to pay too much effort on improving
this algorithm.

An interesting future research topic might be implement the MSLE-
Gluing algorithm and related procedures in a higher level programming lan-
guage and compare the solving behavior with other solving techniques like
SAT-solvers.

Appendix A

Algorithms Written in
Mathematica

This chapter contains routines to run all algorithms we described in previous
chapters. We implemented the algorithms in the Mathematica7.0 [Wol92].

In the following context we describe the usage of routines which are used
to obtain the experimental results in Chapter6.

• RandomInst[n, m, l, f] returns randomly generated symbols corre-
spondent to the system(1.1). Each input argument is represented as

– n: number of variables in the whole system, i.e, |X|;
– m: number of equations in the system;
– l: the sparsity, that is the number of variables in each equation;
– f : length of each V (S), f ≤ |V | ≤ 2l − 1.

• Glue[in1, in2] returns a glued symbol vi ◦vj, where vi ∈ Vi(Sk), vj ∈
Vs(Ss). If the two symbols are not gluable it returns an empty set {};

• TreeGlue[in] returns two arguments, i.e., all solutions to system (1.1)
and the number of intermediate solutions while the algorithm solves the
system; if the system has no solution it returns NO Solutions.

• MSLEGreedy[in] gives a list of MSLEs for the whole system. The
cosets for the MSLEs are generated by the Greedy algorithm described
in Chapter4. The input to this routine is a list of symbols obtained
from function RandomInst[n,m,l,f].

• MSLEExact[in] gives list of MSLEs for the whole system. The cosets
for the MSLEs are generated by the Exact algorithm described in Chap-
ter4. The input to this routine is a list of symbols obtained from func-
tion RandomInst[n,m,l,f].

60 Algorithms Written in Mathematica

• MSLEGlue[in1, in2] returns a glued MSLE ei ◦ ej, where ei ∈ Ek and
ej ∈ Es. If the two equations are not glueable it returns an empty set
{};

• MSLETreeGlue[in] returns all solutions to system (1.1) which are rep-
resented in MSLE-form. It also returns the intermediate solutions while
the algorithm is solving the system. If no solutions are found it returns
No Solutions.

• MSLETreeGlueER[in, z], this routine cuts all unnecessary branches in
the search tree. It returns all solutions and the number of interme-
diate solutions. If the system has no solution no gluing operation is
performed by Algorithm 17 (This is the same as applying the cutting
branch procedure on Algorithm 3). In order to get all intermediate
solutions we set an argument z for this routine. It is determined by
Algorithm 15, that is the number of unreached tree levels by Algorithm
15.

• TreeGlueER[in, z], the behaviour is similar to routine MSLETreeGlueER[in,
z]. The input for this routine is a set of symbols.

• MSLETreeGlueReduction[in], gives all solutions to system (1.1) which
are represented in MSLE-form. It also gives reduced intermediate
MSLEs. The input to this routine is a list of MSLEs, cosets for which
are computed by the Exact algorithm.

A.1 Auxiliary Routines

__

1 symbolForm[in_] :=

2 Module[{solu, var, a},

3 (*convert random equations in symbolform (X,V)*)

4 solu := Table[Transpose[in[[i]]], {i, Length[in]}];

5 var := solu[[1, 1]];(*variables in f (X)==0*)

6 a := Table[solu[[i, 2]], {i, Length[solu]}];

7 Return[{var, a}]]

8

9

10 pairEQ[in1_, in2_] :=

11 Module[{},

12 (*checks two pairs (a,a+h)and (b,b+h) are equal,

13 rerurn True or False*)

14 If[Sort[in1] == Sort[in2], True, False]]

15

16

17 BaseExpand[in_] :=

18 (*input one coset in the form {v,b1,b2,..bn} give the setform of coset,

Auxiliary Routines 61

19 v+<b1,b2>---> {v+b1,v+b2, v+(b1+b2),..,v}, updated 2009-9-1*)

20 Module[{i, j, B, v = First[in], b = Rest[in]},

21 B = Subsets[b];

22 For[i = 1, i <= Length[B], i++,

23 If[Length[B[[i]]] > 1,B[[i]] = {Apply[BitXor, B[[i]]]}];

24 B[[1]] = Table[0, {Length[Flatten[B[[2]]]]}];

25];

26 For[j = 1, j <= Length[B], j++,

27 B[[j]] = BitXor[Flatten[B[[j]], 1], v]

28];

29 Return[Sort[B]]

30]

31

32

33 GlueQ[in1_, in2_] :=

34 Module[{},

35 If[in1 === empty, True,

36 If[Glue[{in1}, {in2}] =!= {}, True, False]]]

37

38

39 ConsistenceQ[a_, c_] := Module[{L},

40 (*check consistency of two linear equations system*)

41 Off[LinearSolve::"nosol"];

42 L = LinearSolve[a, c, Modulus -> 2];

43 !Head[L] === LinearSolve]

44

45

46 ConsistencyQ[in1_, in2_] := Module[

47 {X, c, g, T, gt, coeMat1, coeMat2, augment1, augment2, C1, newlin},

48 (*Latest update 2009-9-4*)

49 If[in1 == null, Return[T = 1]];

50 If[in1 == {} || in2 == {} || ! ListQ[in2], Return[T = 0]];

51 X = Union[in1[[1]], in2[[1]]];(*variable X*)

52 coeMat1 = Map[Coefficient[#, X] &, Flatten[in1[[2]]]];

53 coeMat2 = Map[Coefficient[#, X] &, Flatten[in2[[2]]]];

54 (*Coefficient matrix for in1 and in2 in variable X*)

55 augment1 = Transpose[Join[Transpose[coeMat1], in1[[3]]]];

56 augment2 = Transpose[Join[Transpose[coeMat2], in2[[3]]]];

57 (*augmented matrix for in1 and in2*)

58 If[ConsistenceQ[Join[coeMat1, coeMat2],

59 Flatten[Join[in1[[3]], in2[[3]]], 1]],

60 Return[T = 1], Return[T = 0]]]

61

62

63 Triangulate[A0_] :=

64 Module[{A = A0, n = Length[A0], p, k, m = Length[A0[[1]]], i, j, q, M, T, t},

65 l = Min[m, n];

66 A = Reverse[Sort[A]];

67 For[i = 1, i <= l, i++,

68 For[j = i + 1, j <= n, j++,

69 If[(A[[i, i]] == 1 && A[[j, i]] == 1),

70 A[[j]] = BitXor[A[[i]], A[[j]]]]

71]

72];

73 A = Reverse[Sort[A]];

74 Return[A]]

75

76

77 Rowreduction[A0_, C0_] :=

78 Module[{A = A0, C1 = C0, l = Length[A0[[1]]], M, i, j, q, t, T, ul, ur, rr, rl,

79 r, k, n = Length[A0], m = Length[C0]},

80 q = Min[l, n + m];

62 Algorithms Written in Mathematica

81 A = Triangulate[A];

82 C1 = Triangulate[C1];

83 M = Join[A, C1];

84 For[i = 1, i < q, i++,

85 For[j = i + 1, j <= n + m, j++,

86 If[(M[[i,i]]==1&&M[[j,i]]==1)||

87 (M[[i,i]]==0&&M[[i,i+1]]==1&&M[[j,i+1]]==1),

88 M[[j]] = BitXor[M[[i]], M[[j]]]

89]

90]

91];

92 sort = Reverse[Sort[Take[M, n]]];

93 Table[M[[i]] = sort[[i]], {i, n}];

94 sort = Reverse[Sort[Take[M, -m]]];

95 Table[M[[n + i]] = sort[[i]], {i, m}];

96 ul = Map[Drop[#, -1] &, M];

97 ur = Map[Last[#] &, M];

98 For[i = 1, i < n + m, i++,

99 If[Union[ul[[i]]] == {0} && ur[[i]] == 1,

100 Return[0]

101]

102];

103 r = 0;

104 k = n + m;

105 While[k > 0,

106 If[Union[M[[k]]] == {0},

107 r++;

108 k--, Break[]]

109];

110 If[(r >= m), Return[1], Return[0]]]

111 (*if C0 imply A0 return 1, otherwise return 0*)

112

113 Implication[A0_, B0_, C0_] :=

114 Module[{k=0, A, B, C1, coeMat1, coeMat2, coeMat3, rhs1, rhs2, rhs3, X},

115 If[A0 == {}||A0 == null||C0 == {}||(! ListQ[B0])||(! ListQ[C0]), Return[0]];

116 X = Union[A0[[1]], B0[[1]], C0[[1]]];

117 rhs1 = A0[[3]];

118 rhs2 = B0[[3]];

119 rhs3 = C0[[3]];

120 coeMat1 = Transpose[Map[Coefficient[#, X] &, Flatten[A0[[2]]]]];

121 coeMat2 = Transpose[Map[Coefficient[#, X] &, Flatten[B0[[2]]]]];

122 coeMat3 = Transpose[Map[Coefficient[#, X] &, Flatten[C0[[2]]]]];

123 A = Transpose[Join[coeMat1, rhs1]];

124 B = Transpose[Join[coeMat2, rhs2]];

125 C1 = Transpose[Join[coeMat3, rhs3]];

126 Return[Rowreduction[Join[A, B], C1]]]

A.2 Instance Generator

__

1 RandomInst[n_, m_, l_, f_] := Module[{},

2 Print["number of varialbles = ", n];

3 Print["number of equations= ", m];

4 Print["sparsity= ", l];

5 Table[RandomSymbol[n, l,f], {m}]]

6

7

Algorithms in Chapter 3 63

8 RandomSymbol[n_, l_, f_] :=

9 Module[{X, T, pos, Var, r, v},

10 (*last updat 2009-10-14*)

11 X = Table[Subscript[x, i], {i, n}];

12 T = Flatten[Outer[List, Sequence @@ Table[{0, 1}, {l}]], l - 1];

13 (*generates n variables randomly*)

14 While[True,

15 pos = Union[Table[Random[Integer, {1, n}], {l}]];

16 (*choose l variables from variable set X*)

17 If[Length[pos] == l, Break[]]

18];

19 Var = Table[X[[pos[[i]]]], {i, Length[pos]}];

20 While[True,

21 r = Union[Table[Random[Integer, {1, 2^l}],

22 {Random[Integer, {1, 2^l}]}]];

23 If[Length[r] >= f, Break[]]

24];

25 (*Generates vectors of length>=f *)

26 v = Flatten[Map[T[[#]] &, {r}], 1];

27 Table[Transpose[{Var, v[[i]]}], {i, Length[v]}]

28]

A.3 Algorithms in Chapter 3

_____________________________________ Algorithm 1 ___

1 Glue[in1_, in2_] :=

2 Module[{i, j, s11, s1, s2, s22, Y, r, T1, T2, X1, X2, p1, p2},

3 (*Last updated 2009-10-5*)

4 If[! ListQ[in2[[1]]], Return[{}]];

5 If[in1 === empty, Return[in2]];

6 If[in1 == {} || in2 == {{}}, Return[{}],

7 s1 = Transpose[Flatten[in1, 1]];(*(X1,V1)*)

8 X1 = Union[s1[[1]]];

9 s2 = Transpose[Flatten[in2, 1]]; (*(X2,V2)*)

10 X2 = Union[s2[[1]]]; (*x1,x2,..xn*)

11 Y = Intersection[X1, X2];

12 If[Y == {},Return[Flatten[Table[Union[in1[[i]], in2[[j]]],

13 {i, Length[in1]},{j, Length[in2]}],1]],

14 (*gives the trivial solution*)

15 (*else*)

16 p1 = Flatten[Map[Position[X1, #]&, Y]];

17 p2 = Flatten[Map[Position[X2, #]&, Y]];

18 T1 = Table[in1[[i, p1[[j]]]], {i, Length[in1]}, {j, Length[p1]}];

19 T2 = Table[in2[[i, p2[[j]]]], {i, Length[in2]}, {j, Length[p2]}];

20 r = {};

21 For[i = 1, i <= Length[T1], i++,

22 For[j = 1, j <= Length[T2], j++,

23 If[T1[[i]] == T2[[j]], r = Append[r, Union[in1[[i]], in2[[j]]]]];

24]

25]

26]

27];

28 Return[r]]

29

30

31 _____________________________________ Algorithm 2 ___

32

64 Algorithms Written in Mathematica

33

34 GlueSet[in_] :=

35 Module[{l, Z, counter, i},

36 counter = {};

37 l = Length[in];

38 Z = in[[1]];

39 Do[Z = Glue[Z, in[[i]]];

40 counter = Append[counter, Length[Z]],{i, l}];

41 Return[If[Z =!= {},{Z, counter},{"UnGluable", counter}]]]

42

43

44 _____________________________________ Algorithm 3 __

45

46

47 TreeGlue[in_] :=

48 (*Last updated 2009-8-31*)

49 Module[{d = 1, M, i, counter, T, m, index, A, solution = {}},

50 Off[Part::"partw"];

51 $HistoryLength = 0;

52 A = Append[in, {{}}];

53 m = Length[A];

54 index = Table[1, {Length[A]}];

55 M = Table[empty, {Length[A] + 1}];

56 counter = Table[0, {m + 1}];

57 While[d <= (m) && d > 0,

58 T = Glue[M[[d]], {A[[d]][[index[[d]]]]}];

59 If[T != {},

60 M[[d + 1]] = T;

61 counter[[d]]++;

62 index[[d]]++;

63 d++,

64 (*else*)

65 index[[d]]++;

66 (*if the current vector could not Glue with Md,

67 try the next vector at the same tree level*)

68 If[index[[d]] > Length[A[[d]]],

69 (*if Glue operation could not go further then go one

70 step back and try another vecor from previous symbol*)

71 index[[d]] = 1;

72 d--;

73 If[d == 1 && (index[[1]] > Length[A[[1]]]), Break[]]

74]

75 (*after trying all vectors in the first symbol and no

76 solution found, then break the loop*)

77];

78 If[d==m, solution=Append[solution,M[[d]]]]

79];

80 counter = Drop[counter, -2];

81 Print["Result of TreeGlue: "];

82 Return[If[d == 1,(*then*){solution, counter},

83 (*else*){"No Solution", counter}]]]

84

85

86 ______________________________ Branches Cutting on Algorithm 3 ________________________________

87

88

89 TreeGlueER[in_, z_] :=

90 Module[{d = 1, M, i, counter, T, m, index, A, solution = {}},

91 Off[Part::"partw"];

92 $HistoryLength = 0;

93 A = Append[in,{{}}];

94 m =Length[A];

Algorithms in Chapter 3 65

95 index =Table[1,{Length[A]}];

96 M=Table[empty, {Length[A] + 1}];

97 counter=Table[0, {m + 1}];

98 While[d <= (m) && d > 0,

99 k=d;

100 While[k < (m - z), k++,

101 t = {};

102 A1 = A[[k]];

103 For[i = 1, i <= Length[A1], i++,

104 If[Intersection[symbolForm[M[[d]]][[1]],

105 symbolForm[A1][[1]]] == {}, Break[]];

106 (*check intersecting variables*)

107 t = Append[t, GlueQ[M[[d]], {A1[[i]]}]]

108];

109 If[Union[t]=={0},

110 d =d-1; Break[]];

111];

112 T=Glue[M[[d]], {A[[d]][[index[[d]]]]}];

113 If[T!={},

114 M[[d+1]]=T;

115 counter[[d]]++;

116 index[[d]]++;

117 d++,

118 (*else*)

119 index[[d]]++;

120 If[index[[d]]>Length[A[[d]]],

121 index[[d]] = 1;

122 d--;

123 If[d==1&&(index[[1]]>Length[A[[1]]]), Break[]]]];

124 If[d==m, solution=Append[solution,M[[d]]]]

125];

126 counter = Drop[counter, -2];

127 Print["Result of Glue After edge removing: "];

128 Return[If[d==1,(*then*){solution, counter},

129 (*else*){"No Solution",counter}]]]

130

131

132 __ Sorting ___

133

134

135 Sorting[in_] :=

136 Module[{ T1 = in[[1]], T2 = in[[2]]; R1, R2, RR, s, n, u, e, sorted, Rr, S, i},

137 S = in;

138 n = Length[Union[Flatten[Table[symbolForm[S[[i]]][[1]], {i,Length[S]}]]]];

139 (*number of variables*)

140 Do[If[Length[Union[symbolForm[S[[i]]][[1]], symbolForm[S[[j]]][[1]]]]

141 < Length[Union[symbolForm[T1][[1]], symbolForm[T2][[1]]]],

142 (*then*)

143 T1 = S[[i]];

144 T2 = S[[j]]],

145 {i, Length[S] - 1}, {j, i + 1, Length[S]}];

146 (*searching s[i],s[j] whose length of union variables is smallest, i.e. choosing the

147 smallest |Xi\[Union]Xj|*)

148 u = DeleteCases[S, T1];

149 S = DeleteCases[u, T2];

150 sorted = {};

151 While[Length[S] > 0,

152 s = n;

153 Rr = {T1, T2};

154 RR = Union[symbolForm[T1][[1]], symbolForm[T2][[1]]];

155 For[i = 1, i <= Length[S], i++,

156 If[Length[Union[RR, symbolForm[S[[i]]][[1]]]] <= s,

66 Algorithms Written in Mathematica

157 (*then*)

158 s = Length[Union[RR, symbolForm[S[[i]]][[1]]]];

159 e = S[[i]]]

160];

161 S = DeleteCases[S, e];

162 sorted = Append[sorted, e]

163];

164 Return[Join[Rr, sorted]]]

165

A.4 Algorithms in Chapter 4

_____________________________________ Algorithm 7 ___

1 MakePair[in_] := groupPair[Pair[in]]

2

3 Pair[a_] :=

4 Module[{n, h, pair},

5 (* input is a set of vectors V *)

6 n=Length[a[[1]]];

7 h=Flatten[Outer[List, Sequence @@ Table[{0,1}, {n}]], n-1];

8 pair=Mod[Table[{a[[i]],a[[i]]+h[[j]],h[[j]]}, {j,2,Length[h]},{i,Length[a]}],2];

9 (*pairs (a,a+h,h) in V,*)

10 Return[pair]]

11

12

13 groupPair[pair_] :=

14 DeleteCases[Table[Takepair[pair[[i]]], {i,Length[pair]}],{}];

15 (*this function acts like grouping "pairs" for each h, generated by

16 function Pair[].

17 Example:groupPair[Pair[symbolForm[V]]],gives all pairs of (a,a+h h)

18 in s *)

19

20

21 Takepair[in_] :=

22 Module[{T = in;, M, p},

23 (* takes all possible pairs (a,a+h) for a paticullar h.

24 This function will be called by groupPair[]*)

25 M=Table[If[pairEQ[T[[i]],T[[j]]],T[[i]]],{i,Length[T]-1},{j, i+1,Length[T]}];

26 p=Flatten[DeleteCases[DeleteCases[M,({Null..}|Null),Infinity],{},Infinity],1];

27 Return[p]]

28

29

30 pairEQ[in1_, in2_] :=

31 Module[{},

32 (*checks two pairs (a,a+h)and (b,b+h) are equal,return True or False*)

33 If[Sort[in1]==Sort[in2], True, False]]

34

35

36 _____________________________________ Algorithm 8 ___

37

38

39 MaximalCosets[in_] := Module[{out, s, Ps, v, t, G, Temp},

40 (*Latest update 2009-9-2, gives all cosets for a symbol*)

41 Which[

42 Length[in]==1, Return[{{in[[1]][[1]], in[[1]][[3]]}}],

43 Length[in]==2, Return[{{in[[1]][[1]], BitXor[in[[1]][[1]], in[[2]][[1]]],

Algorithms in Chapter 4 67

44 in[[1]][[3]]}}],

45 Length[in]>2,G=Mod[NullSpace[{in[[1]][[3]],

46 Table[0,{Length[in[[1]][[3]]]}]}],2];

47 s = Table[Mod[G.in[[i]][[1]], 2], {i, Length[in]}];

48 v = in[[1]][[3]];

49 Ps = MakePair[s];

50 Temp=Flatten[Table[MaximalCosets[Ps[[i]]],{i,Length[Ps]}],1];

51 (*call recursion*)

52 t = Table[LinearSolve[G,Temp[[i]][[j]], Modulus -> 2],

53 {i,Length[Temp]}, {j, Length[Temp[[i]]]}];

54 out = Table[Append[t[[i]], v], {i, Length[t]}],

55 True, Print["Bad argument"]

56];

57 Return[out]

58]

59

60

61 _____________________________________ Algorithm 9 ___

62

63

64 MaximalCosetList[in_] :=

65 Module[{s, p, coset, set, cosetList, i, j},

66 (*updated 2009-9-17,gives a list of maximal cosets for a symbol*)

67 (*s=symbolForm[in][[2]];*)

68 p = MakePair[in];

69 coset = Flatten[Table[MaximalCosets[p[[i]]], {i, Length[p]}], 1];

70 set = Table[BaseExpand[coset[[i]]], {i, Length[coset]}];

71 For[i = 1, i <= Length[set] - 1, i++,

72 For[j = i + 1, j <= Length[set], j++,

73 If[set[[i]] == set[[j]], coset[[i]] = null]

74]

75];

76 cosetList = DeleteCases[coset, null];

77 Return[cosetList]]

78

79

80 _____________________________________ Algorithm 10(Greedy)____________________________________

81

82

83 MinCosetCover2[symbol_] :=

84 Module[{out = {}, U = symbolForm[symbol][[2]]},

85 (*find the minimal cover by Greedy approach*)

86 While[U != {},

87 cos = MaximalCosetList[U];

88 L = Max[Table[Length[cos[[i]]], {i, Length[cos]}]];

89 For[i = 1, i <= Length[cos], i++,

90 If[Length[cos[[i]]] == L, cc = cos[[i]]; Break[]]

91];

92 U = Complement[U, BaseExpand[cc]];

93 out = Append[out, cc];

94 If[Length[U] == 1, out = Append[out,

95 {Flatten[U, 1], Table[0, {Length[U[[1]]]}]}];

96 Break[]];

97];

98 Return[out]]

99

100

101 _____________________________________ Algorithm 11(Exact)____________________________________

102

103

104 MinCosetCover[symbol_, MaximalCoset_] :=

105 Module[{check = True, i = 1, cover, comb, B},

68 Algorithms Written in Mathematica

106 (*Updated 2009-9-17. gives the exact number of minimal coset covering for a symbol.

107 the second argument for input is generated by MaximalCosetList[symbol]*)

108 B = Table[BaseExpand[MaximalCoset[[i]]], {i, Length[MaximalCoset]}];

109 While[check,

110 comb = Subsets[Range[Length[MaximalCoset]], {i}];

111 (*indices combination of i-set in MaximalCoset*)

112 For[j = 1, j <= Length[comb], j++,

113 If[Union[Flatten[Table[B[[j]], {j, comb[[j]]}], 1]] == symbol,

114 cover = Table[MaximalCoset[[j]], {j, comb[[j]]}];

115 check = False];

116];

117 i++

118];

119 Return[cover]]

120

121

122 _____________________________________ Algorithm 12 __

123

124 MSLEExact[in_] := Module[{lin},

125 (*Giving exact minimal number of linear equations for each symbol in the whole

126 system. Input for this function are symbols generated by RandomInst[].*)

127 lin = LinEq[in];

128 Table[{lin[[i]][[1]], {lin[[i]][[2]][[j]]}, {lin[[i]][[3]][[j]]}},

129 {i,Length[lin]}, {j, Length[lin[[i]][[2]]]}]]

130

131

132

133 LinEq[in_] :=

134 Module[{r, V, cost, X, r = in,C1, c, T, p, cos, lin, LinearSys},

135 (*Last updated,2009-9-17; input a set of symbols (X1,V1),(X2,V2),..(Xm,Vm), output a set

136 of linear equation system C.X==c. which is represented as {{X},{C.X},{c}} in the output

137 formate. Cosets for this routine are computed by MinCosetCover[] *)

138 V = Table[symbolForm[r[[i]]], {i, Length[r]}];

139 X = Table[V[[i]][[1]], {i,Length[V]}]; (*variables in each polynomial*)

140 cos = Table[MinCosetCover[in[[i]]], {i, Length[in]}];

141 C1 = Table[Mod[NullSpace[Flatten[{Rest[cos[[i]][[j]]],

142 {Table[0,{Length[cos[[i]][[j]][[1]]]}]}},1]],2],

143 {i,Length[cos]},{j,Length[cos[[i]]]}];

144 c = Table[Mod[C1[[i]][[j]].cos[[i]][[j]][[1]], 2], {i, Length[cos]},

145 {j,Length[cos[[i]]]}];

146 T = Table[{X[[i]], C1[[i]]}, {i, Length[C1]}];

147 LinearSys = Table[T[[i]][[2]][[j]].T[[i]][[1]], {i, Length[T]},

148 {j,Length[T[[i]][[2]]]}];(*gives all linear Equations C.X*)

149 lin = Table[{X[[i]], LinearSys[[i]], c[[i]]}, {i,Length[X]}];(*{{X},{C.X},{c}}*)

150 Return[lin]]

151

152

153

154

155

156 MSLEGreedy[in_] := Module[{lin},

157 (*Gives approximal number of minimal linear equation systems for each equation in the

158 whole system. Input for this function is symbol generated by RandomInst[].*)

159 lin = LinEq2[in];

160 Table[{lin[[i]][[1]], {lin[[i]][[2]][[j]]}, {lin[[i]][[3]][[j]]}},

161 {i,Length[lin]}, {j, Length[lin[[i]][[2]]]}]]

162

163

164

165 LinEq2[in_] :=

166 Module[{r, V, cost, r = in, X, C1, c, T, p, cos, lin, LinearSys},

167 (*Last updated,2009-10-21; input a set of symbols generated by RandomIns[].

Algorithms in Chapter 5 69

168 Output a set of linear equation system C.X==c. which is represented as {{X},{C.X},{c}}

169 in the output formate, This subroutine computes the linear equation system using the

170 minimum cosets computed by greedy algorithm, MinimalCosetCover2[]*)

171 V = Table[symbolForm[r[[i]]], {i, Length[r]}];

172 X = Table[V[[i]][[1]], {i,Length[V]}]; (*variables in each polynomial*)

173 cos = Table[MinCosetCover2[in[[i]]], {i, Length[in]}];

174 C1 = Table[Mod[NullSpace[Flatten[{Rest[cos[[i]][[j]]],

175 {Table[0,{Length[cos[[i]][[j]][[1]]]}]}},1]], 2],

176 {i, Length[cos]}, {j, Length[cos[[i]]]}];

177 c = Table[Mod[C1[[i]][[j]].cos[[i]][[j]][[1]], 2],

178 {i, Length[cos]}, {j,Length[cos[[i]]]}];

179 T = Table[{X[[i]], C1[[i]]}, {i, Length[C1]}];

180 LinearSys =Table[T[[i]][[2]][[j]].T[[i]][[1]], {i, Length[T]},

181 {j,Length[T[[i]][[2]]]}];(*gives all linear Equations C.X*)

182 lin = Table[{X[[i]], LinearSys[[i]], c[[i]]}, {i,Length[X]}];(*{{X},{C.X},{c}}*)

183 Return[lin]]

184

185

186

A.5 Algorithms in Chapter 5

_____________________________________ Algorithm 13 ___

1 MSLEGlue[in1_, in2_] :=

2 Module[{X, c, g, gt, coeMat1, coeMat2, augment1, augment2, C1, newlin},

3 (*Latest update 2009-9-4*)

4 If[in1 == null, Return[in2]];

5 If[in1 == {} || in2 == {} || ! ListQ[in2], Return[{}]];

6 X = Union[in1[[1]], in2[[1]]];(*variable X*)

7 coeMat1 = Map[Coefficient[#, X] &, Flatten[in1[[2]]]];

8 coeMat2 = Map[Coefficient[#, X] &, Flatten[in2[[2]]]];

9 (*Coefficient matrix for in1 and in2 in variable X*)

10 augment1 = Transpose[Join[Transpose[coeMat1], in1[[3]]]];

11 augment2 = Transpose[Join[Transpose[coeMat2], in2[[3]]]];

12 (*augmented matrix for in1 and in2*)

13 If[ConsistenceQ[Join[coeMat1, coeMat2], Flatten[Join[in1[[3]], in2[[3]]], 1]],

14 g = RowReduce[Join[augment1, augment2];

15 g = DeleteCases[g, Modulus -> 2], Table[0, {Length[g[[1]]]}]];

16 gt = Transpose[g];

17 c = Last[gt];

18 C1 = Transpose[Drop[gt, -1]];

19 newlin = C1.X,

20 (*else*)

21 newlin = {}];

22 Return[If[newlin =!= {}, {X, {newlin}, {c}}, {}]]]

23

24

25 _____________________________________ Algorithm 15 ___

26

27

28 MSLEGlueSet[in_] :=

29 Module[{ counter = {}, Z = in[[1]]},

30 (*2009-9-29*)

31 Do[Z = Union[DeleteCases[Flatten[Table[MSLEGlue[Z[[i]], in[[k]][[j]]],

32 {i, Length[Z]}, {j,Length[in[[k]]]}], 1], {}]];

33 counter = Append[counter, Length[Z]],

70 Algorithms Written in Mathematica

34 {k, Length[in]}];

35 Return[If[Z =!= {}, {Z, counter}, {"UnGluable", counter}]]]

36

37

38

39 _____________________________________ Algorithm 16 ___

40

41

42 MSLETreeGlue[in_] :=

43 Module[{m = Length[A], d=1, M, index,

44 i, counter, T, A=Append[in,{{}}], solution={}},

45 (* Lateset update 2009-9-4*)

46 Off[Part::"partw"];

47 $HistoryLength = 0;

48 M = Table[null, {Length[A] + 1}];

49 index = Table[1, {Length[A]}];

50 counter = Table[0, {m + 1}];

51 While[d <= (m) && d > 0,

52 T = MSLEGlue[M[[d]], A[[d]][[index[[d]]]]];

53 If[T != {},

54 M[[d + 1]] = T;

55 counter[[d]]++;

56 index[[d]]++;

57 d++,

58 (*else*)

59 index[[d]]++;(*if the current linear equation could not Glue with Md,

60 try the next equation at the same tree level*)

61 If[index[[d]] > Length[A[[d]]],

62 (*if Glue operation could not go further then go one step

63 back and try another linear equation from previous symbol*)

64 index[[d]] = 1;

65 d--;

66 If[d == 1 && (index[[1]] > Length[A[[1]]]), Break[]]]

67 (*after trying all linear equations in the first symbol

68 and no solution found, then break the loop*)

69];

70 If[d==m,solution=Union[Append[solution,M[[d]]]]]

71];

72 counter = Drop[counter, -2];

73 Print["Result of MSLETreeGlue: "];

74 Return[If[d == 1,(*then*){solution, counter},

75 (*else*){"No Solution", counter}]]]

76

77

78

79 _____________________________________ Algorithm 17 ___

80

81

82 MSLETreeGlueReduction[in_] :=

83 Module[{m = Length[A], d=1, M, index, i, counter, T, checkinclue, im1, im2,

84 A = Append[in, {{}}], solution = {}},

85 (* Lateset update 2009-9-4. Input is generated by function MSLEExact[symbol] *)

86 M = Table[null, {Length[A] + 1}];

87 index = Table[1, {Length[A]}];

88 counter = Table[0, {m + 1}];

89 While[d <= (m) && d > 0,

90 checkinclue = False;

91 im1=Quiet[Implication[M[[d]], A[[d, index[[d]]]], A[[d, index[[d]] + 1]]]];

92 im2=Quiet[Implication[M[[d]], A[[d, index[[d]] + 1]], A[[d, index[[d]]]]]];

93 Which[

94 im1 == 1,T = MSLEGlue[M[[d]], A[[d]][[index[[d]]+1]]]; checkinclue=True,

95 im2 == 1,T = MSLEGlue[M[[d]], A[[d]][[index[[d]]]]]; checkinclue = True,

Algorithms in Chapter 5 71

96 True, T = MSLEGlue[M[[d]], A[[d]][[index[[d]]]]]

97];

98 If[T != {},

99 counter[[d]]++;

100 M[[d + 1]] = T;

101 index[[d]]++;

102 If[checkinclue, index[[d]]=index[[d]]+1];(*in case of implication true*)

103 d++,

104 (*else*)

105 index[[d]]++;

106 If[index[[d]] > Length[A[[d]]],

107 index[[d]] = 1;

108 d--;

109 If[d == 1 && (index[[1]] > Length[A[[1]]]), Break[]]]

110];

111 If[d == m, solution = Union[Append[solution, M[[d]]]]]

112];

113 counter = Drop[counter, -2];

114 Print["Result of LinearGlue3: "];

115 Return[If[d == 1,(*then*){solution, counter},

116 (*else*){"No Solution", counter}]]]

117

118

119

120 _____________________________________ Algorithm 18 ___

121

122

123 MSLETreeGlueER[in_, z_] :=

124 Module[{m = Length[A], d=1, M, index, i, counter,

125 T, A = Append[in,{{}}],solution ={}},

126 Off[Part::"partw", Part::"partd", Part::"pspec"];

127 $HistoryLength = 0;

128 M = Table[null, {Length[A] + 1}];

129 index = Table[1, {Length[A]}];

130 counter = Table[0, {m + 1}];

131 While[d <= (m) && d > 0,

132 k=d;

133 While[k < (m - z), k++,

134 (*z=number of 0s from the end of list given by MSLETreeGlue[]*)

135 t = {};

136 A1 = A[[k]];

137 For[i = 1, i <= Length[A1], i++,

138 If[Intersection[M[[d]][[1]], A1[[i]][[1]]] == {}, Break[]];

139 (*if no intersecting variables, consistency checking is not applied*)

140 t = Append[t, ConsistencyQ[M[[d]], A1[[i]]]]

141];

142 If[Union[t] == {0},

143 d = d - 1; Break[]];

144];

145 T = MSLEGlue[M[[d]], A[[d]][[index[[d]]]]];

146 If[T != {},

147 M[[d + 1]] = T;

148 counter[[d]]++;

149 index[[d]]++;

150 d++,

151 (*else*)

152 index[[d]]++;

153 If[index[[d]] > Length[A[[d]]],

154 index[[d]] = 1;

155 d--;

156 If[d == 1 && (index[[1]] > Length[A[[1]]]), Break[]]]

157];

72 Algorithms Written in Mathematica

158 If[d==m,

159 solution=Union[Append[solution,M[[d]]]]]

160];

161 counter = Drop[counter, -2];

162 Print["Result of MSLETreeGlue After edge removing: "];

163 Return[If[d == 1,(*then*){solution, counter},

164 (*else*){"No Solution", counter}]]]

Appendix B

Sample Experiments

In this appendix we will illustrate some small examples for the experimen-
tal environment. The routine RandomInst[n,m,l,f] generates randomly
symbols for the experiments. For the description of the input arguments cf.
AppendixB.

Then we apply TreeGlue[symbols] to obtain the solutions to the sys-
tem and compute how many gluing operations occurred during the solving
procedure.

For the randomly generated symbols we apply MSLEGreedy[symbols]

to compute MSLEs. Note that this routine calls subroutine MinimalCosetCover2[
] which computes a coset covering by the greedy approach.

For the MSLEs computed by routine MSLEGreedy[symbols] we ap-
ply MSLETreeGlue[MSLE] to obtain the solution to the whole system and
compute how many gluing operations occurred while solving the system.

74 Sample Experiments

1. Generating Random Instances

We want to generate an instance of 8 symbols, where the number of
variables in the whole system is 8, the sparsity 4 and for each symbol
the |Vi| is greater than 5.

2. Solve the System By Gluing1 Algorithm

Now we run TreeGlue[s]. The output of this routine is in the form
{{{{expr1}}},{expr2}}, where expre1 represents the solutions to the
system, expre1 represents the number of gluing operations occurred at
each tree level while solving the system.

Experimental Environment 75

3. Compute MSLE For The System

Let s be the input, and run the routine MSLEGreedy[s]. It’s output
for each CX = c is represented in the form {{{X}, {{CX}}, {{c}}}.

4. Solve The System By MSLE-Gluing Algorithm

The output of the Gluing Algorithm on the list of MSLE is as follows.
The output is represented in the form
{{{{X}, {{CX}}, {{c}}}}, {number of gluing operations at each tree level}}

B.1 Experimental Environment

All experiments are run on a PC with Pentium 4, 2GHz, 2 cores and 2GB
RAM. Algorithms are implemented in Mathematica 7.0.

76 Sample Experiments

Appendix C

Data Corresponding to Figure
6.9

In[2]: l = MSLETreeGlue[<< lr64]

Result of MSLETreeGlue:

Out[2]=

{{}, {4, 7, 13, 22, 28, 96, 240, 376, 888, 1220, 2440, 4038,

8076, 30672, 37872, 44248, 62984, 91552, 88144, 84560, 117872,

137736, 188696, 128792, 294964, 321282, 392412, 550534, 512474,

876200, 1133352,2100252, 1342628, 1056452, 1048188, 1311540,

2047340, 1500114, 825609,669455, 446912, 557243, 295585, 360433,

495121, 253918, 235642, 515525,252805, 223677, 82344, 93148,

83634, 46368, 22294, 23695, 16716, 9115,

5767, 3486, 1427, 416, 70, 26}}

In[3]: le=MSLETreeGlueER[<< lr64]

Result of MSLETreeGlue After edge removing:

Out[3]=

{{}, {4, 7, 13, 22, 28, 60, 156, 242, 468, 513, 1018, 1404, 1646,

5484, 4436, 5015, 3851, 5282, 5273, 5973, 8116, 10060, 12614, 11304,

24866, 14818, 14287, 16164, 12761, 5405, 3536, 4038, 3515, 1143,

574, 334, 492, 310, 310, 334, 466, 742, 762, 698, 1076, 824, 824,

2241, 20, 20, 20, 38, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26}}}

The followings are logarithmic scaled output of above data.

78 Data Corresponding to Figure 6.9

In[4]: N[Map[Log, l]]

Out[4]= {1.38629, 1.94591, 2.56495, 3.09104, 3.3322, 4.56435,

5.48064, 5.92959, 6.78897, 7.10661, 7.79975, 8.3035, 8.99665,

10.3311, 10.542, 10.6976, 11.0506, 11.4247, 11.3867, 11.3452,

11.6774, 11.8331, 12.1479, 11.766, 12.5946, 12.6801, 12.8801,

13.2186, 13.147, 13.6833, 13.9407, 14.5576, 14.1101, 13.8704,

13.8626, 14.0867, 14.5321, 14.2211, 13.6239, 13.4142, 13.0101,

13.2308, 12.5967, 12.7951, 13.1126, 12.4448, 12.3701, 13.1529,

12.4404, 12.318, 11.3187, 11.4419, 11.3342, 10.7444, 10.0121,

10.073, 9.72412, 9.11768, 8.65991, 8.15651, 7.26333, 6.03069,

4.2485, 3.2581}

In[5]:= N[Map[Log, le]]

Out[5]= {1.38629, 1.94591, 2.56495, 3.09104, 3.3322, 4.09434,

5.04986, 5.48894, 6.14847, 6.24028, 6.9256, 7.24708, 7.4061,

8.60959, 8.39751, 8.52019, 8.25609, 8.57206, 8.57035, 8.695,

9.00159, 9.21632, 9.44256, 9.33291, 10.1213, 9.6036, 9.56711,

9.69054, 9.45415, 8.59508, 8.17075, 8.3035, 8.16479, 7.04141,

6.35263, 5.81114, 6.19848, 5.73657, 5.73657, 5.81114, 6.14419,

6.60935, 6.63595, 6.54822, 6.98101, 6.71417, 6.71417, 7.71468,

2.99573, 2.99573, 2.99573, 3.63759, 3.2581, 3.2581, 3.2581,

3.2581, 3.2581, 3.2581, 3.2581, 3.2581, 3.2581, 3.2581, 3.2581,

3.2581}

Bibliography

[ACGK99] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, and
Viggo Kann. Complexity and Approximation: Combinatorial Opti-
mization Problems and Their Approximability Properties. Springer,
1st edition, 1999.

[AP01] Ara Aleksanyan and Mihran Papikian. On coset coverings of solu-
tions of homogeneous cubic equations over finite fields. The Elec-
tronic Journal of Combinatorics, Volume 8, Available from http:

//www.combinatorics.org/Volume_8/PDF/v8i1r22.pdf, 2001.

[BCJ07] Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson. Efficient
methods for conversion and solution of sparse systems of low-degree
multivariate polynomials over GF(2) via SAT-Solvers, available at
http://eprint.iacr.org/2007/024. 2007.

[BW93] Thomas Becker and Volker Weispfenning. Gröbner bases: a Compu-
tational Approach to Commutative Algebra. Springer-Verlag, New
York, 1st edition, 1993.

[CKPS00] Nicolas Courtois, Er Klimov, Jacques Patarin, and Adi Shamir.
Efficient algorithms for solving overdefined systems of multivari-
ate polynomial equations. In In Advances in Cryptology, Euro-
crypt2000, LNCS 1807, pages 392–407. Springer-Verlag, 2000.

[C.L06] David C.Lay. Linear Algebra. Pearson Education, third edition,
2006.

[Coo71] Stephen.A. Cook. The complexity of theorem proving procedures.
Conference Record of Third Annuual ACM Symposium on Theoty
of Computation(1971), (3-5):151–158, 1971.

[CP02] Nicolas T. Courtois and Josef Pieprzyk. Cryptanalysis of block
ciphers with overdefined systems of equations. pages 267–287.
Springer, 2002.

80 Bibliography

[DCP06] Sanjoy Dasgupta and Umesh Vazirani Christos Papadimitriou. Al-
gorithm. Alan R.Apt, 2006.

[Die04] Claus Diem. The xl-algorithm and a conjecture from commutative
algebra. In Proceedings of Asiacrypt 2004, LNCS, volume 3329,
pages 323–337. Springer-Verlag, 2004.

[DR99] Joan Daemen and Vincent Rijmen. AES proposal: Rijjn-
dael. NIST AES webside: http://csrc.nist.gov/archive/aes/

index.html, 1999.

[Fra03] John B. Fraleigh. A First Course In Abstract Agebra. Greg Tobin,
2003.

[GJ79] Michael Garey and David S. Johnson. A guide to the theory of
NP-completeness - A Series of books in the mathematical sciences.
W.H. Freeman, 1979.

[Gol96] Van Loan Charles F. Golub, Gene H. Matrix Computations. Johns
Hopkins, 3rd edition, 1996.

[Kar72] Richard.M Karp. Reducibility among combinatorial problems.
Complexity of Computer Computations, pages 85–103, 1972.

[KET06] Jon Kleinberg and Éva Tardos. Algorithm Design. Pearson Educa-
tion; International edition, 2006.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public
key cryptosystem. Springer, 1999.

[Lev07] Anany Levitin. Introduction to The design and Analysis of Algo-
rithms. Greg Tobin, 2nd edition, 2007.

[Rad04] H̊avard Raddum. Solving non-linear sparse equation system over
GF(2) using graghs. University of Bergen, 2004.

[RS06] H̊avard Raddum and Igor Semaev. New technique for solving spars
equation systems. Cryptology ePrint, 2006. Available from: http:

//www.eprint.iacr.org/.

[RS07] H̊avard Raddum and Igor Semaev. Solving MRHS linear equa-
tions. Cryptology ePrint Archive, Report 2007/285, 2007. http:

//eprint.iacr.org/.

Bibliography 81

[R.W88] R.W.FareBrother. Linear Least Squares Computations (Statistics:
a Series of Textbooks and Monogrphs). Publisher: CRC, 1th edition,
19 February 1988.

[Sch08] Thorsten Ernst Schiling. Comparison of solving techniques for
non-linear sparse equations over finite fields with application in
cryptanalysis,Master’s thesis. avalable from https://bora.uib.

no/bitstream/1956/3208/1/47383227.pdf cite 2009/12/23, June
2008.

[Sem08] Igor Semaev. On solving sparse algebraic equations over finite fields.
Designs, Codes and Cryptography 49(2008),pp.47-60, 2008.

[sem09a] Igor semaev. Multiple Side Linear Equations and Circuit Lattices.
On CECC conference, avalabel from: http://conf.fme.vutbr.

cz/cecc09/lectures/semaev.pdf, 25 june 2009.

[Sem09b] Igor Semaev. Sparse algebraic equations over finite fields. SIAM
Journal on Computing, 39(2009), pp.388-409, 2009.

[Sem09c] Igor Semaev. Sparse boolean equations and circuit lattices. Cryp-
tology ePrint Archive, Report 2009/252, 2009. http://eprint.

iacr.org/.

[Val98] Gabriel Valiente. Algorithms on Trees and Graphs. Springer, 1998.

[Wol92] Stephen Wolfram. Mathematica: A System for Doing Mathemat-
ics by Computer. Addison-Wesley Publishing Company,Inc, second
edition, November,1992.

[ZV00] Arkadij Zakrevskij and Irina Vasilkova. Reducing large systems of
logical equations. 4th int. Workshop on Boolean Problems, Freiberg
University, pages 21–22, 2000.

