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Abstract. This paper is focused on finding rules for wave- H/Hgy = ho/h. This law applies in the context of the so-
height change in a solitary wave as it runs up a slowly in- called Boussinesq scaling, where the waveheight is small and
creasing bottom. A coupled BBM system is used to describehe wavelength is long when compared to the initial undis-
the solitary waves. Expressions for energy density and enturbed depthig. In the case where the effects on nonlin-
ergy flux associated with the BBM system are derived, andear steepening and of linear dispersion are approximately
the principle of energy conservation is used to develop arbalanced, solitary waves can be found, and it appears that
equation relating the waveheight and undisturbed depth tdBoussinesq’s law applies primarily to the shoaling of soli-
the initial undisturbed depth and the incident waveheight. Intary waves. As explained iNliles (1980, Boussinesq’s law
the limit of zero waveheight, Boussinesq's shoaling law is re-has been rediscovered a number of times with varying de-
covered. grees of rigor. Probably the most careful derivation was given
in Grimshaw(197Q 1971), where Boussinesq’s result actu-
ally follows from a more general analysis of the wave action
principle. IndeedGrimshaw(1971) studied the evolution of
1 Introduction solitary waves in water of variable depth and he observed that
for small values of initial waveheight, the shoaling rates are
The study of surface gravity waves is one of the classicalyqt exactly given by Boussinesq’s law, but that they approach
problems in fluid mechanics and is of fundamental impor- Boussinesq's law in the limitly — O.
tance in coastal engineering. One particular case of inter- | the present paper, the Boussinesq law is derived us-
est, both theoretically and in practice, is the development Ofing a different approach, which is based directly on Boussi-
ocean waves as they propagate shorewards and experience@sq's original assumption that energy is conserved as the
decrease in the water depth. A significant amount of workyave shoals. Using this assumption, and a careful analysis
has been focused on this phenomenon, which is known agf the energy density associated to a particular Boussinesq
wave shoaling. The literature on the subject includes experisystem featuring exact solitary-wave solutions, waveheight
mental studies in controlled environments in particular, SUChchanges can be computed in a straightforward manner. The
as wave flumes, and a large number of theoretical studies. system used here is known as the coupled BBM system. The
Among the first to study the problem was Boussinesd,method used to find the associated energy density is an ex-
who treated wave shoaling in the framework of his theory tansion of the recent workli and Kalisch(2012 where ap-
of weakly nonlinear long waves. Based on the assumptioryroximations of energy density and flux in the context of the
that the energy content of the wave is unchanged as it propgoussinesq scaling were found. The computations actually
agates, Boussinesq developed a simple rule for the waveshow that for waves of finite waveheight, the shoaling rate is
height change of a long wave as it runs up on a bottomgomewnhat lower than Boussinesq’s law suggests. However,
slope. Suppose the initial undisturbed depth of the fluid isi the |imit of zero waveheight, Boussinesq’s law is recov-

ho, and the initial waveheight is denoted B. If the lo-  ered. In this sense, the results are in line with the findings of
cal depth is denoted by, and the associated waveheight Grimshaw(1972).

is denoted byH, then Boussinesq’s law can be written as
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214 H. Kalisch and A. Senthilkumar: Boussinesq's shoaling law

It should be noted that we do not incorporate an uneverto the derivation of an approximate shoaling law, and Sect. 4
bottom profile into the equations, but rather consider the trancontains a brief discussion.
sition of the wave on the slope as a gradual adjustment pro-
cess of which only the initial and final states are considered.
Since the effects of the bottom slope are only modeled indi-2
rectly, our analysis of wave shoaling using .the consgrvatllonFor an inviscid, incompressible fluid, the surface water-wave
of energy depends strongly on the adiabatic approximation, roblem is aiven by the Euler equations with no-flow con-
In clear terms, it must be assumed that the wavelehgftthe P 9 y q

. . ditions at the bottom and kinematic and dynamic boundary
wave running up the slope is much smaller than the charac-

teristic lengthi Ax /(g — h) of the depth variation. If this is conditions at the free surface. Let the spatial coordinates

. . bg (x,z) and thex-axis be oriented in the horizontal direc-
the case, then the wave undergoes an adiabatic change, ap L . ; S
. ) Ion. Assume that the motion is uniform in the direction per-
the relation between wavelength and wave amplitude stays endicular to therz—plane (long-crested waves). The grav-
approximately intact. If the bottom gradient is too large, then? P 9 : 9

; . ; itational acceleratiorg acts in the negative-direction. Let
the wave will change character and violate the Boussines .
. . - n(x,t) denote the surface elevation, andg€k, z, r) be the
scaling as it runs up the slope. Moreover, larger slopes will

lead to reflected waves and significant steepening and as mv_elocity potential.
9 pening YM™ Erom the incompressibility of the fluid, the poteniiasat-

metry of the main wave, and none of these figure into theisfies Laplace’s equation in the domditx, z) € R2| — hg <
present analysis.

Let us briefly introduce the model system to be used here® = n(x,1)}. The complete problem is written as follows.

Assuminga is a typical amplitude andlis a typical wave-  A¢ —0 in —hg <z < n(x, 1), )
length of the waves to be described, the parametera/ kg

represents the waveheight to depth ratio, and the parameter

B= hg/l2 represents a water depth to wavelength ratio. The¢: =0 onz = —ho, (5)
Boussinesq scaling consists of the assumptions that nonlin-

earity is weak ¢ « 1), and dispersive effects are also weak e+ dny — . =0,

(B < 1), and the two parameters of the same order. In othery, | 142 | 42) 1 ¢ = 07} onz =rn(x,1). (6)
words, the Stokes numbér= «/8 should beD(1). In Bona Y

et al. (2002, a general family of Boussinesq system was As the derivation of the coupled BBM-system is well known
found, and one particular case is the coupled BBM system(seeBona et al. 2002andWhitham 1974, we only sketch
to be used in the present study. In the non-dimensional varithe outline for the interested reader. Denote the limiting long-
ables to be defined in Section 2, the system takes the form wave speed byp = +/gho, and define non-dimensional vari-

Energy balance

bles by

L O YR AP 2 a

g == (02 2)Bitey = OB, 8D, (1

i B ran =5 (3P = Op D @
) i 71971 1 2 ~ 2 x=7’ = h , N=—, I=Tr ¢= l
Wi + 7z +aww;—§(1—9 )ﬂwﬁ;: OB, B89. (2) 0 a 84

: . . As explained byVhitham (1974, one may use the ansatz
Hereij represents the non-dimensional excursion of the free P w (1979 y

surface, ando represents the non-dimensional horizontal ve- . o
locity at a non-dimensional height©6 < 1 inthe fluid col- ¢ =) fu(x.DZ"p" (7)
umn. Disregarding terms of ord€?(«?, a8, f2) yields the m=0

evolution system governing the approximate dynamics of theq, represent the non-dimensional velocity potential in terms
flow. The point of view adopted in the present paper is thatys the unknown functiong’, (%, 7). Now Laplace’s equation

Eq. (1) represents an approximate mass conservation equasg the hottom boundary condition E) nay be used to
tion, and Eq. ) represents approximate momentum conser-arive at the expression

vation. Since energy conservation is not an independent prin-

ciple in homogeneous fluids, it should be possible to express. . 32 . 2

energy conservation in terms of the unknownand w of p=f- Efﬁﬁ + 069, ®)
Egs. () and @). The approximate energy balance equation o

can be written in the form where f = fo. From Eq. 8) and the second boundary condi-
5 . 3 tion at the free surface, we have the relation

57 E @) + 223, 1) = 0@, af, %), 3

o+ fi = gf;;ﬁ ST2=0wp. ). ©)
and the principal task is to find appropriate expressions for

the energy density (77, w) and energy fluxjz (ij, ). These  Differentiating Eq. 9) with respect ta, and inserting the
quantities will be computed in Sect. 2. Section 3 is devotedexpansion forp in the first boundary condition at the free
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surface, Eq.) yields a system of equations in terms of the where the first term represents the kinetic energy, and the
horizontal velocity at the bottorfi = f;. However, for the  second term represents potential energy. The conservation of
purposes of the present article, a different but equivalent systotal mechanical energy (s&woker 1957 chap.1.) is written

tem will have to be used. Denoting liythe non-dimensional as

horizontal velocity at a non-dimensional height® < 1 in

the fluid column, elementary considerations (Beaa et al,
2002 show thaty andw are related by dr 2/ / pIVYI e+ — //ngdde

/3 X1 —hg x1 0
5=w+§92wﬁ+0(ﬂ3). (10) n o
_ 2
One may use Eql10) and the first-order relation +7j; =  ~ / {% IVoI™+pgz+ P} Px dZL
O(«, B), 17 + vz = O(e, B) to arrive at a general model sys- —ho '

tem for small-amplitude long waves. The system is given in

non-dimensional variables by Expressing the above relation in non-dimensional variables

1 1 gives
i+ i+ aib); + 5 (07 = 5) 4B (11) s
1 1 - el @ (32152 7 dx
—>(67 = 3) A= 1Bilszi = Owp. 7. o {7 (9 + )| c (16)
2 3
x1/l 0

» - . 1 2 B x2/114an 1+an
w; + Nz +awwz + = 1—07 ) uBnzziz (12) d ~ o - o

: 5(1-¢°) +d—;/ /(z—l)dzdxz / [5(92+ 262:)
—5(1-6%) - Bz = O@p. B, a1 0

~ ~ ~ ~ x2/1
Herex andp are modeling parameters which have no phys- +a(z — 1)¢; + a?P'¢; +a(1— Z)¢x} dZ] ’

ical meaning, but can be chosen arbitrarily in the range
0<2,u < 1. Choosing in particulax = 0 andyc = O yields ¢ \ye supstitute the expressions fE, ¢: and A’ found in

the coupled BBM system Eqgsl)(@and ). Egs. (L3) and (L5) respectively, and integrate with respect to
In order to derive the associated energy balance equatlorz, then we obtain

we need expressions for the velocity field and pressure. The

x1/l

velocity field is easily seen to be given by x2/1
G [L@+ | @8 (g2 1) pii--
$i =0+ g(ez—zz)uvﬂ +0O(B?), (13) df [l { z T2 ( 3) Wi
X1
¢z = —Zwi B+ O(B?). (14) 3

o? o~ 2 Bl qr | Y -3, 2~ 3-2 -
The dynamic pressur®’, which measures the deviation from e )T+ 77} dv = |: 2 ¥ et et
hydrostatic pressure, is given quite generally by

o 1N .. o
P'=P = Pam+ pgz=—pts — 51 v $I2 +5B(0% - 5 )iz ﬂwwﬁ} + 0?8238, 0%).

x1/1

We use the scalingga? = P’. Then as shown byli and
Kalisch (2012, the dynamic pressure can be found with the
help of Eq. 9) to be

Taklng the limit asco — x1, and omitting the common factor
, we obtain the differential energy balance equation

1 y =2 | =2 ~2

P' =i+ 2B = Dby + O(ap. 2. ORI [ R [ %n} +
Next, we examine energy balance of the BBM system. If 1 1

we assume that the potential energy of a particle is zero at - [zw + 7 + af?i + ﬂ(é’ - 3)771112; - éﬁi}lﬁg;}

the undisturbed free surface, and the potential energy is zero

when no wave motion is present, then the total energy in- = O(B%, aB, a?).

side a control volume of unit width, delimited by the interval

[x1, x2] on the lateral sides, and by the bottom and the free

surface can be written as

From Eg. (6), we get the non-dimensional energy density

~:a2(17)2+f)2)+ ,9(92_1)~~

E WW;i

2 2 3
f/plv¢| dzdx+//,ogzdzdx «?8 3J)2
+_( x) +

X1 —hg 2 T
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and the non-dimensional energy flux 02 = % is used in the present work. In dimensional variables,
3 this system takes the form
G5 = =i+ o2 + o %2 12 4
2 Nt +howy + (Mw)x — — =Nxxr =0, (18)
o2 , Ay a2 29
+7ﬂ<9 - é)’?wﬁ - ?ﬂwwiﬁ h% 2
Wy + 81Ny + Wwy _Eéwxxt =0. (19)
The dimensional versions of these quantities are given by The solitary wave solutions of Eqsl®) and (L9) are given
1 b
E = ghow2+§gn2+§hg(92— §>ww” a7 y
) ) no(x. 1) = Ho seck(ko(x — Cot)), (20)
+6h8w§ + szn wo(x, 1) = Wo sech (ko(x — Cot)). (21)
and The constant is the initial waveheight, and the constants

Wo, Co andkg are given by

P 1
qE = Ehow3+pcgnw+ —pcSwr}Z 3
ho Wo= |2 Hy,
P 22(p2_ 1 L3 Ho+3ho
+—c0h0(9 — —)nwxx — Zhgwwy,.
2 3 3 co_ Sot2Hy -
We would like to point out that it would be interesting to de- ~° V3ho(Hop + 3ho) §1o.

rive similar quantities for the system derived @yeen and gnd

Naghdi(1976, which does not have the same limitations on
the wave amplitude as the BBM system used in the presenf  _ i Ho
o\ 2Ho+3ho

analysis. The Green—Naghdi system is also applicable for 2h

va}riable bottom_topography, and has be_en used in the moohow let us consider a channel of depth and suppose the
eling of tsunamis by’heleznyak and Pelinovsi4L983. In depth of the water is slowly decreasing to a smaller value

fact, a pressure formula similar to EQ.5j, but valid_ for the We suppose that the waveheight of the incident wawiois

Green—Naghdl system has already been founBedinovsky and denote waveheight of the wave at the new deptliZby

and Choi(1993. In an experimental setting, the waveheight is usually contin-
uously varying, and the waveheight change is recorded over

3 Solitary wave shoaling the extent of the slope (cf. Fig. 1). In order to invoke energy
conservation in a theoretical sense, we assume that the wave

One of the most readily investigated changes in a wave trangiravels up a gentle slope, and reorganizes into a solitary wave

mitting into shallower water is the variation in waveheight, on the new even bottom with undisturbed defth

and this is the main object of this section. We focus on the Using the expression faE obtained in the previous sec-

case of a solitary wave which runs up on a gentle slope withtion, and evaluating the integrél= | Edx for the total en-

no variation in the transverse direction. Even in this two- ergy attwo differentinstants in time, one at which the wave is

dimensional case, there are a number of important physicdcated over the initial deptky, and one at which the wave is

effects which are neglected in the model at hand. In particlocated above a different depththen yields an equation re-

ular, we do not take account of viscosity and rotational ef-lating the waveheight#p andH at the two different depths.

fects; and as explained in the introduction, we also assume

that wave reflection can be neglected to a first approximation, Since the solitary wave features exponential decay, energy

such as for instance in the case of a very gentle slope. Moreconservation may be stated in the form

over, we consider long-crested waves shoaling on a plane o 00

begch, so that wave refraction does not plgy a role. As the E (1o, wo) dx = / E(n, w)dx, (22)

solitary wave starts to propagate over a sloping bottom, it W|II_C>O e

become slightly skewed, and the waveheight will increase. . i

Eventually, the wave will steepen and break. The diﬁerentWheren andw are given _by Eq.20) .W'th the constantsy,

stages of this shoaling process have been minutely detaileg and.« given in te”‘_‘s ith a_ndH _mstead ofho and HO'

by Synolakis and Skjelbreid 993. After pe_rformlng the integration with respect 1o we find

As shown byChen (1998, the coupled BBM system thev:/ezlatlon

Egs. () and Q) features solitary-wave solutionsinaclosed hoWg 2 5 o> 2., 1 1 1

form in the case that? = . Since the analysis of the energy 2 ko 4_5hc’KOW0 + EWO HOK_O + EgHO

balance in a shoaling wave given here relies on the exact fory, w2 2 3 5 2 51 1 ,1

mula for the solitary wave, the coupled BBM system with 5~ — — 4—5h KW+ gW H; + EgH P

~= (293
)
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H. Kalisch and A. Senthilkumar: Boussinesq's shoaling law 217
4 Discussion and conclusions
3
m E\ Shoaling of solitary waves has been analyzed using conser-
X 0 vation of energy in the Boussinesq scaling. It appears that for
waves of very small waveheight, Boussinesq’s shoaling law
h is approximately recovered. To explain the discrepancy ob-

A

served for larger waveheights, we note that the Boussinesq

ho shoaling law follows for small waveheights if only the last

Y term in the expression EdLY) for the energy density is used
‘ to compute the energy of the solitary wave. This can also be
‘ done in the context of other Boussinesq-type systems found

by Bona et al.(2002. In particular, in the case of the KdV

Fig. 1. The geometry of the problem. The waveheightis mea-  equation, the total mechanical energy for a solitary wave is
sured on the slope. given by

8
€= s H¥2p3/2, (24)

which along with conservation of energy during an adiabatic

shoaling process, yields Boussinesq's [HWH = ho/ h. In

W ﬁ;’igi@ej“ e the limit of small amplitude, solitary-wave solutions of all

18} o Hg=01m P the Boussinesg-type systems are equivalent to solitary waves

— s Hooam s 1 of the KdV equation, so that the formula EQ4 is valid

=T P asymptotically forHy — 0 also for solitary waves governed

16} LT . by Egs. (8) and (19). As explained byBona et al.(2002,

Lol e | these Boussinesq-type systems are valid for waves for which

Sh T the Stokes numbes$ = «/8 is of O(1). Shoaling rates for

Lar - i other waves can be quite different. In particular, for small

T amplitude waves, one often finds the so-called Green’s law

2L H/Hg ~ 1/ h'/4, which can be derived from linear wave the-

r2r & 7 ory (seeLamh 1932andSynolakis 1997).

11l g i For comparison, we have included some aspects of a shoal-

- ing study which was first presented Bylinovsky and Tal-

5 16 17 18 19 2 ipova (1977, 1979. In these works, the waveheight-wave

energy relation for numerical solutions of the full water-

Fig. 2. Computations for the shoaling of solitary waves from rela- wave problem found byonguet-Higgins(1974); Longuet-

tion Eq. @3). The solid line depicts the shoaling relation according Higgins and Fentoi1974) is used. The results are displayed

to Boussinesq’s law. Shoaling rates for waves of initial waveheightin Fig. 3, and indicate shoaling rates similar to Boussinesq’s

Hg=0.05m, Q1m and 02m are computed. As the waveheight |aw for most cases, since the slopes of the curves are seen to

of the incident splitary waves decreases, the shoaling relation appe ¢lose to 1 for the most part. Only the very first part of the

proaches Boussinesq's result. curve forHg = 0.05 m has a smaller slope, and might suggest
shoaling rates closer to Green'’s law for very small amplitude
waves and small differences in depth. Since Green’s laws can
be derived in the case when there is no particular relationship
between the wavelength and the amplitude, it is not surpris-

From Eq. 23), it is plain thatH may be expressed in terms ing that for solitary waves, which generally respect the rela-

of ho, h and Hp, though in general the values &f will have tion o ~ B, the Boussinesq law is a more generic outcome.

to be approximated numerically. We have computed wave

shoaling for initial undisturbed depthy =1 m and initial Besides the work®elinovsky and Talipovél977, 1979

waveheightsHy equal to 005 m, Q1 m and 02 m, and for  already mentioned, there have also been other analytic stud-

a ratio of undisturbed to initial depth of up to8) The rela-  ies. For instance, ifPelinovsky et al(1993, nonlinear ray

tive wave heightH / Hy computed for these waves is plotted theory is used to derive a rather general shoaling law, includ-

in Fig. 2. Boussinesq’s relation which gives shoaling ratesing wave diffraction and dissipation. The shoaling relation

o h~1, is plotted as a solid line. It is apparent that the com- derived byPelinovsky et al(1993 reduces to Green’s law

puted curves get close to the line! for decreasing initial  in the case that nonlinearity and dispersion are neglected. In

waveheight. the case of a periodic sequence of solitary waves, the relation

191

HH,

131
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218 H. Kalisch and A. Senthilkumar: Boussinesq's shoaling law

wave shoaling can be described well if the evolution is clas-
sified in different phases. There are two pre-breaking phases,
o |-- e the first is relatively well approximated by Green'’s law the
18l | —e— Ho=0.05m ] second which features more rapid shoaling can be approxi-
o Homoam mated by Boussinesq’s law.
S i : | Using a numerical approximation of a Boussinesq model
16} .* 1 similar to the system studied in this papegregring 1967
. found that the shoaling rates can be qualitatively predicted by
o ] Green'’s laws, but that there is no systematic variation of the
14} 5 - . waveheight change with either slope or initial waveheight.
Ll St e | Shuto (1973 suggested that growth rates of both Boussi-
P nesq’s result and Green’s law are correct, and the validity of
12f ol -7 oA either depends on the parameter range of any particular situ-
b a8 SR i ation. In fact, Shuto displays graphs which suggest that both
F e the experiments bgamfield and Stre¢969 andIppen and
T 12 13 14 15 16 17 15 1 2 Kulin (1954 could be interpreted using Boussinesq’s law or
"o Green’s law, in certain areas. In his review article on solitary

Fig. 3. Computations for the shoaling of solitary waves using the waves,Miles (1989 noted th"?‘t_BoussmeSq,s shoaling law

method ofPelinovsky and Talipovél977, 1979, and using numer-  should be appropriate for sufficiently small values of the bot-

ical data found byLonguet-Higgins(1974; Longuet-Higgins and  tom slope, but that Green’s law is a better approximation for

Fenton(1974. The solid line depicts the shoaling relation accord- larger slopes or sufficiently small waveheight of the incident

ing to Boussinesq's law. The lower dashed line depicts the shoalwave.

ing relation according to Green’s law. Shoaling rates for waves

of initial waveheightHp = 0.05m, Q1 m and 02 m are computed.

The dashed curve terminates because the maximum wave energy f&cknowledgementsThis research was supported by the Research
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