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Abstract. This paper is focused on finding rules for wave-
height change in a solitary wave as it runs up a slowly in-
creasing bottom. A coupled BBM system is used to describe
the solitary waves. Expressions for energy density and en-
ergy flux associated with the BBM system are derived, and
the principle of energy conservation is used to develop an
equation relating the waveheight and undisturbed depth to
the initial undisturbed depth and the incident waveheight. In
the limit of zero waveheight, Boussinesq’s shoaling law is re-
covered.

1 Introduction

The study of surface gravity waves is one of the classical
problems in fluid mechanics and is of fundamental impor-
tance in coastal engineering. One particular case of inter-
est, both theoretically and in practice, is the development of
ocean waves as they propagate shorewards and experience a
decrease in the water depth. A significant amount of work
has been focused on this phenomenon, which is known as
wave shoaling. The literature on the subject includes experi-
mental studies in controlled environments in particular, such
as wave flumes, and a large number of theoretical studies.

Among the first to study the problem was Boussinesq,
who treated wave shoaling in the framework of his theory
of weakly nonlinear long waves. Based on the assumption
that the energy content of the wave is unchanged as it prop-
agates, Boussinesq developed a simple rule for the wave-
height change of a long wave as it runs up on a bottom
slope. Suppose the initial undisturbed depth of the fluid is
h0, and the initial waveheight is denoted byH0. If the lo-
cal depth is denoted byh, and the associated waveheight
is denoted byH , then Boussinesq’s law can be written as

H/H0 = h0/h. This law applies in the context of the so-
called Boussinesq scaling, where the waveheight is small and
the wavelength is long when compared to the initial undis-
turbed depthh0. In the case where the effects on nonlin-
ear steepening and of linear dispersion are approximately
balanced, solitary waves can be found, and it appears that
Boussinesq’s law applies primarily to the shoaling of soli-
tary waves. As explained inMiles (1980), Boussinesq’s law
has been rediscovered a number of times with varying de-
grees of rigor. Probably the most careful derivation was given
in Grimshaw(1970, 1971), where Boussinesq’s result actu-
ally follows from a more general analysis of the wave action
principle. Indeed,Grimshaw(1971) studied the evolution of
solitary waves in water of variable depth and he observed that
for small values of initial waveheight, the shoaling rates are
not exactly given by Boussinesq’s law, but that they approach
Boussinesq’s law in the limitH0 → 0.

In the present paper, the Boussinesq law is derived us-
ing a different approach, which is based directly on Boussi-
nesq’s original assumption that energy is conserved as the
wave shoals. Using this assumption, and a careful analysis
of the energy density associated to a particular Boussinesq
system featuring exact solitary-wave solutions, waveheight
changes can be computed in a straightforward manner. The
system used here is known as the coupled BBM system. The
method used to find the associated energy density is an ex-
tension of the recent workAli and Kalisch(2012) where ap-
proximations of energy density and flux in the context of the
Boussinesq scaling were found. The computations actually
show that for waves of finite waveheight, the shoaling rate is
somewhat lower than Boussinesq’s law suggests. However,
in the limit of zero waveheight, Boussinesq’s law is recov-
ered. In this sense, the results are in line with the findings of
Grimshaw(1971).
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214 H. Kalisch and A. Senthilkumar: Boussinesq’s shoaling law

It should be noted that we do not incorporate an uneven
bottom profile into the equations, but rather consider the tran-
sition of the wave on the slope as a gradual adjustment pro-
cess of which only the initial and final states are considered.
Since the effects of the bottom slope are only modeled indi-
rectly, our analysis of wave shoaling using the conservation
of energy depends strongly on the adiabatic approximation.
In clear terms, it must be assumed that the wavelengthl of the
wave running up the slope is much smaller than the charac-
teristic lengthh1x/(h0 − h) of the depth variation. If this is
the case, then the wave undergoes an adiabatic change, and
the relation between wavelength and wave amplitude stays
approximately intact. If the bottom gradient is too large, then
the wave will change character and violate the Boussinesq
scaling as it runs up the slope. Moreover, larger slopes will
lead to reflected waves and significant steepening and asym-
metry of the main wave, and none of these figure into the
present analysis.

Let us briefly introduce the model system to be used here.
Assuminga is a typical amplitude andl is a typical wave-
length of the waves to be described, the parameterα = a/h0
represents the waveheight to depth ratio, and the parameter
β = h2

0/l2 represents a water depth to wavelength ratio. The
Boussinesq scaling consists of the assumptions that nonlin-
earity is weak (α � 1), and dispersive effects are also weak
(β � 1), and the two parameters of the same order. In other
words, the Stokes numberS = α/β should beO(1). In Bona
et al. (2002), a general family of Boussinesq system was
found, and one particular case is the coupled BBM system
to be used in the present study. In the non-dimensional vari-
ables to be defined in Section 2, the system takes the form

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ −
1

2

(
θ2

−
1

3

)
βη̃x̃x̃ t̃ = O(αβ,β2), (1)

w̃t̃ + η̃x̃ + αw̃w̃x̃ −
1

2

(
1− θ2

)
βw̃x̃x̃ t̃ = O(αβ,β2). (2)

Hereη̃ represents the non-dimensional excursion of the free
surface, and̃w represents the non-dimensional horizontal ve-
locity at a non-dimensional height 0≤ θ ≤ 1 in the fluid col-
umn. Disregarding terms of orderO(α2,αβ,β2) yields the
evolution system governing the approximate dynamics of the
flow. The point of view adopted in the present paper is that
Eq. (1) represents an approximate mass conservation equa-
tion, and Eq. (2) represents approximate momentum conser-
vation. Since energy conservation is not an independent prin-
ciple in homogeneous fluids, it should be possible to express
energy conservation in terms of the unknownsη̃ and w̃ of
Eqs. (1) and (2). The approximate energy balance equation
can be written in the form

∂

∂t̃
Ẽ(η̃, w̃) +

∂

∂x̃
q̃E(η̃, w̃) =O(α2,αβ,β2), (3)

and the principal task is to find appropriate expressions for
the energy densitỹE(η̃, w̃) and energy flux̃qE(η̃, w̃). These
quantities will be computed in Sect. 2. Section 3 is devoted

to the derivation of an approximate shoaling law, and Sect. 4
contains a brief discussion.

2 Energy balance

For an inviscid, incompressible fluid, the surface water-wave
problem is given by the Euler equations with no-flow con-
ditions at the bottom and kinematic and dynamic boundary
conditions at the free surface. Let the spatial coordinates
be (x,z) and thex-axis be oriented in the horizontal direc-
tion. Assume that the motion is uniform in the direction per-
pendicular to thexz−plane (long-crested waves). The grav-
itational accelerationg acts in the negativez-direction. Let
η(x, t) denote the surface elevation, and letφ(x,z, t) be the
velocity potential.

From the incompressibility of the fluid, the potentialφ sat-
isfies Laplace’s equation in the domain{(x,z) ∈ R2

| −h0 <

z < η(x, t)}. The complete problem is written as follows.

1φ = 0 in − h0 < z < η(x, t), (4)

φz = 0 onz = −h0, (5)

ηt + φxηx − φz = 0,

φt +
1
2(φ2

x + φ2
y) + gη = 0,

}
on z = η(x, t). (6)

As the derivation of the coupled BBM-system is well known
(seeBona et al., 2002andWhitham, 1974), we only sketch
the outline for the interested reader. Denote the limiting long-
wave speed byc0 =

√
gh0, and define non-dimensional vari-

ables by

x̃ =
x

l
, z̃ =

z + h0

h0
, η̃ =

η

a
, t̃ =

c0t

l
, φ̃ =

c0φ

gal
.

As explained byWhitham(1974), one may use the ansatz

φ̃ =

∞∑
m=0

f̃m(x̃, t̃)z̃mβm (7)

to represent the non-dimensional velocity potential in terms
of the unknown functionsf̃m(x̃, t̃). Now Laplace’s equation
and the bottom boundary condition Eq. (5) may be used to
arrive at the expression

φ̃ = f̃ −
z̃2

2
f̃x̃x̃β +O(β2), (8)

wheref̃ = f̃0. From Eq. (8) and the second boundary condi-
tion at the free surface, we have the relation

η̃ + f̃t̃ −
β

2
f̃x̃x̃ t̃ +

α

2
f̃ 2

x̃ =O(αβ,β2). (9)

Differentiating Eq. (9) with respect tox̃, and inserting the
expansion forφ in the first boundary condition at the free
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surface, Eq. (6) yields a system of equations in terms of the
horizontal velocity at the bottom̃v = f̃x̃ . However, for the
purposes of the present article, a different but equivalent sys-
tem will have to be used. Denoting bỹw the non-dimensional
horizontal velocity at a non-dimensional height 0≤ θ ≤ 1 in
the fluid column, elementary considerations (seeBona et al.,
2002) show thatṽ andw̃ are related by

ṽ = w̃ +
β

2
θ2w̃x̃x̃ +O(β3). (10)

One may use Eq. (10) and the first-order relations̃vt̃ + η̃x̃ =

O(α,β), η̃t̃ + ṽx̃ =O(α,β) to arrive at a general model sys-
tem for small-amplitude long waves. The system is given in
non-dimensional variables by

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ +
1

2

(
θ2

−
1

3

)
λβw̃x̃x̃x̃ (11)

−
1

2

(
θ2

−
1

3

)
(1− λ)βη̃x̃x̃ t̃ =O(αβ,β2),

w̃t̃ + η̃x̃ + αw̃w̃x̃ +
1

2

(
1− θ2

)
µβη̃x̃x̃x̃ (12)

−
1

2

(
1− θ2

)
(1− µ)βw̃x̃x̃ t̃ =O(αβ,β2).

Hereλ andµ are modeling parameters which have no phys-
ical meaning, but can be chosen arbitrarily in the range
0 ≤ λ,µ ≤ 1. Choosing in particularλ = 0 andµ = 0 yields
the coupled BBM system Eqs. (1) and (2).

In order to derive the associated energy balance equation,
we need expressions for the velocity field and pressure. The
velocity field is easily seen to be given by

φ̃x̃ = w̃ +
β

2
(θ2

− z̃2)w̃x̃x̃ +O(β2), (13)

φ̃z̃ = −z̃w̃x̃β +O(β2). (14)

The dynamic pressureP ′, which measures the deviation from
hydrostatic pressure, is given quite generally by

P ′
= P − Patm+ ρgz = −ρφt −

ρ

2
| 5φ|

2.

We use the scalingρgaP̃
′
= P ′. Then as shown byAli and

Kalisch(2012), the dynamic pressure can be found with the
help of Eq. (9) to be

P̃
′
= η̃ +

1

2
β(z̃2

− 1)w̃x̃ t̃ +O(αβ,β2). (15)

Next, we examine energy balance of the BBM system. If
we assume that the potential energy of a particle is zero at
the undisturbed free surface, and the potential energy is zero
when no wave motion is present, then the total energy in-
side a control volume of unit width, delimited by the interval
[x1,x2] on the lateral sides, and by the bottom and the free
surface can be written as

E =
1

2

x2∫
x1

η∫
−h0

ρ |Oφ|
2 dzdx +

x2∫
x1

η∫
0

ρgzdzdx,

where the first term represents the kinetic energy, and the
second term represents potential energy. The conservation of
total mechanical energy (seeStoker, 1957, chap.1.) is written
as

d

dt

1

2

x2∫
x1

η∫
−h0

ρ |Oφ|
2 dzdx +

d

dt

x2∫
x1

η∫
0

ρgzdzdx

=

[ η∫
−h0

{
ρ
2 |Oφ|

2
+ ρgz + P

}
φx dz

]x2

x1

.

Expressing the above relation in non-dimensional variables
gives

d

dt̃

x2/l∫
x1/l

1+αη̃∫
0

{
α2

2

(
φ̃2

x̃ +
1
β
φ̃2

z̃

)}
dz̃dx̃ (16)

+
d

dt̃

x2/l∫
x1/l

1+αη̃∫
1

(z̃ − 1)dz̃dx̃ =

 1+αη̃∫
0

{
α3

2

(
φ̃3

x̃ +
1
β
φ̃2

z̃ φ̃x̃

)

+α(z̃ − 1)φ̃x̃ + α2P̃ ′φ̃x̃ + α(1− z̃)φ̃x̃

}
dz̃

]x2/l

x1/l
.

If we substitute the expressions forφ̃x̃ , φ̃z̃ and P̃ ′ found in
Eqs. (13) and (15) respectively, and integrate with respect to
z̃, then we obtain

d

dt̃

x2/l∫
x1/l

{
α2(w̃2

+η̃2)
2 +

α2β
2

(
θ2

−
1
3

)
w̃w̃x̃x̃

+
α2β

6 (w̃x̃)
2
+

α3w̃2

2 η̃
}

dx̃ =

[
α3

2
w̃3

+ α2η̃w̃ + α3η̃2w̃

+
α2

2
β
(
θ2

−
1

3

)
η̃w̃x̃x̃ −

α2

3
βw̃w̃x̃ t̃

]x2/l

x1/l

+O(α2β2,α3β,α4).

Taking the limit asx2 → x1, and omitting the common factor
α2, we obtain the differential energy balance equation

d

dt̃

[
(w̃2

+ η̃2)

2
+

β

2

(
θ2

−
1

3

)
w̃w̃x̃x̃ +

β

6
(w̃x̃)

2
+

αw̃2

2
η̃

]
+

d

dx̃

[
α

2
w̃3

+ η̃w̃ + αη̃2w̃ +
1

2
β
(
θ2

−
1

3

)
η̃w̃x̃x̃ −

1

3
βw̃w̃x̃ t̃

]
=O(β2,αβ,α2).

From Eq. (16), we get the non-dimensional energy density

Ẽ =
α2(w̃2

+ η̃2)

2
+

α2β

2

(
θ2

−
1

3

)
w̃w̃x̃x̃

+
α2β

6
(w̃x̃)

2
+

α3w̃2

2
η̃,
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216 H. Kalisch and A. Senthilkumar: Boussinesq’s shoaling law

and the non-dimensional energy flux

q̃
Ẽ

=
α3

2
w̃3

+ α2η̃w̃ + α3η̃2w̃

+
α2

2
β
(
θ2

−
1

3

)
η̃w̃x̃x̃ −

α2

3
βw̃w̃x̃ t̃ .

The dimensional versions of these quantities are given by

E =
ρ

2
h0w

2
+

ρ

2
gη2

+
ρ

2
h3

0

(
θ2

−
1

3

)
wwxx (17)

+
ρ

6
h3

0w
2
x +

ρ

2
w2η

and

qE =
ρ

2
h0w

3
+ ρc2

0ηw +
1

h0
ρc2

0wη2

+
ρ

2
c2

0h
2
0

(
θ2

−
1

3

)
ηwxx −

ρ

3
h3

0wwxt .

We would like to point out that it would be interesting to de-
rive similar quantities for the system derived byGreen and
Naghdi(1976), which does not have the same limitations on
the wave amplitude as the BBM system used in the present
analysis. The Green–Naghdi system is also applicable for
variable bottom topography, and has been used in the mod-
eling of tsunamis byZheleznyak and Pelinovsky(1985). In
fact, a pressure formula similar to Eq. (15), but valid for the
Green–Naghdi system has already been found byPelinovsky
and Choi(1993).

3 Solitary wave shoaling

One of the most readily investigated changes in a wave trans-
mitting into shallower water is the variation in waveheight,
and this is the main object of this section. We focus on the
case of a solitary wave which runs up on a gentle slope with
no variation in the transverse direction. Even in this two-
dimensional case, there are a number of important physical
effects which are neglected in the model at hand. In partic-
ular, we do not take account of viscosity and rotational ef-
fects; and as explained in the introduction, we also assume
that wave reflection can be neglected to a first approximation,
such as for instance in the case of a very gentle slope. More-
over, we consider long-crested waves shoaling on a plane
beach, so that wave refraction does not play a role. As the
solitary wave starts to propagate over a sloping bottom, it will
become slightly skewed, and the waveheight will increase.
Eventually, the wave will steepen and break. The different
stages of this shoaling process have been minutely detailed
by Synolakis and Skjelbreia(1993).

As shown byChen (1998), the coupled BBM system
Eqs. (1) and (2) features solitary-wave solutions in a closed
form in the case thatθ2

=
7
9. Since the analysis of the energy

balance in a shoaling wave given here relies on the exact for-
mula for the solitary wave, the coupled BBM system with

θ2
=

7
9 is used in the present work. In dimensional variables,

this system takes the form

ηt + h0wx + (ηw)x −
h2

0

2

4

9
ηxxt = 0, (18)

wt + gηx + wwx −
h2

0

2

2

9
wxxt = 0. (19)

The solitary wave solutions of Eqs. (18) and (19) are given
by

η0(x, t) = H0 sech2(κ0(x − C0t)), (20)

w0(x, t) = W0 sech2(κ0(x − C0t)). (21)

The constantH0 is the initial waveheight, and the constants
W0, C0 andκ0 are given by

W0 =

√
3g

H0 + 3h0
H0,

C0 =
3h0 + 2H0

√
3h0(H0 + 3h0)

√
gh0,

and

κ0 =
3

2h0

√
H0

2H0 + 3h0
.

Now let us consider a channel of depthh0 and suppose the
depth of the water is slowly decreasing to a smaller valueh.
We suppose that the waveheight of the incident wave isH0,
and denote waveheight of the wave at the new depth byH .
In an experimental setting, the waveheight is usually contin-
uously varying, and the waveheight change is recorded over
the extent of the slope (cf. Fig. 1). In order to invoke energy
conservation in a theoretical sense, we assume that the wave
travels up a gentle slope, and reorganizes into a solitary wave
on the new even bottom with undisturbed depthh.

Using the expression forE obtained in the previous sec-
tion, and evaluating the integralE =

∫
Edx for the total en-

ergy at two different instants in time, one at which the wave is
located over the initial depthh0, and one at which the wave is
located above a different depthh then yields an equation re-
lating the waveheightsH0 andH at the two different depths.

Since the solitary wave features exponential decay, energy
conservation may be stated in the form

∞∫
−∞

E(η0,w0)dx =

∞∫
−∞

E(η,w)dx, (22)

whereη andw are given by Eq. (20) with the constantsW ,
C andκ given in terms ifh andH instead ofh0 andH0.
After performing the integration with respect tox, we find
the relation

h0

2

W2
0

κ0
−

2

45
h3

0κ0W
2
0 +

2

5
W2

0H0
1

κ0
+

1

2
gH 2

0
1

κ0
= (23)

h

2

W2

κ
−

2

45
h3κW2

+
2

5
W2H

1

κ
+

1

2
gH 2 1

κ
.
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Figure 1: The geometry of the problem. The waveheight H is measured on the slope.

an equation relating the waveheights H0 and H at the two different points. Since the
solitary wave features exponential decay, energy conservation may be stated in the form

∫

∞

−∞

E(η0, w0) dx =

∫

∞

−∞

E(η, w) dx, (3.5)

where η and w are given by (3.3) with the constants W , C and κ given in terms if h and
H instead of h0 and H0. After performing the integration with respect to x, we find the
relation

h0

2

W 2
0

κ0

− 2

45
h3
0κ0W

2
0 +

2

5
W 2

0H0
1

κ0

+
1

2
gH2

0

1

κ0

=

h

2

W 2

κ
− 2

45
h3κW 2 +

2

5
W 2H

1

κ
+

1

2
gH2 1

κ
. (3.6)

From (3.6), it is plain that H may be expressed in terms of h0, h and H0, though in
general the values of H will have to be approximated numerically. We have computed
wave shoaling for initial undisturbed depth h0 = 1m and initial waveheights H0 equal to
0.05m, 0.1m and 0.2m, and for a ratio of undisturbed to initial depth of up to 0.5. The
relative wave height H/H0 computed for these waves is plotted in Figure 2. Boussinesq’s
relation which gives shoaling rates ∝ h−1, is plotted as a solid line. It is apparent that
the computed curves get close to the line h−1 for decreasing initial waveheight.

4 Discussion

Shoaling of solitary waves has been analyzed using conservation of energy in the Boussi-
nesq scaling. It appears that for waves of very small waveheight, Boussinesq’s shoaling
law is approximately recovered. To explain the discrepancy observed for larger wave-
heights, we note that the Boussinesq shoaling law follows for small waveheights if only

8

Fig. 1. The geometry of the problem. The waveheightH is mea-
sured on the slope.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

h
0
/h

H
/H

0

 

 

Boussinesq
H

0
=0.05m

H
0
=0.1m

H
0
=0.2m

Figure 2: Computations for the shoaling of solitary waves from relation (3.6). The solid line
depicts the shoaling relation according to Boussinesq’s law. Shoaling rates for waves of initial
waveheight H0 = 0.05m, 0.1m and 0.2m are computed. As the waveheight of the incident
solitary waves decrease, the shoaling relation approaches Boussinesq’s result.

last term in the expression (2.14) for the energy density is used to compute the energy
of the solitary wave. This can also be done in the context of other systems of Boussinesq
type found by Bona et al. [5]. In particular, in the case of the KdV equation, the total
mechanical energy for a solitary wave is given by

E = ρg
8

33/2
H3/2h3/2, (4.1)

which along with conservation of energy during an adiabatic shoaling process yields
Boussinesq’s law H/H0 = h0/h. In the limit of small amplitude, solitary-wave solutions
of all the Boussinesq-type systems are equivalent to solitary waves of the KdV equation,
so that the formula (4.1) is valid asymptotically for H0 → 0 also for solitary waves
governed by (3.1), (3.2). As explained by Bona et al. [5], these Boussinesq-type systems
are valid for waves for which the Stokes number S = α/β is of O(1). Shoaling rates for
other waves can be quite different. In particular, for small amplitude waves, one often
finds the so-called Green’s law H/H0 ∼ 1/h1/4, which can be derived from linear wave
theory (see Lamb [17] and Synolakis [32]).

For comparison, we have included some aspects of a shoaling study which was first
presented by Pelinovsky and Talipova [28, 29]. In these works, the waveheight-wave
energy relation for numerical solutions of the full water-wave problem found by Longuet-
Higgins and Fenton [18, 19] is used. The results are displayed in Figure 3, and indicate

9

Fig. 2. Computations for the shoaling of solitary waves from rela-
tion Eq. (23). The solid line depicts the shoaling relation according
to Boussinesq’s law. Shoaling rates for waves of initial waveheight
H0 = 0.05 m, 0.1 m and 0.2 m are computed. As the waveheight
of the incident solitary waves decreases, the shoaling relation ap-
proaches Boussinesq’s result.

From Eq. (23), it is plain thatH may be expressed in terms
of h0, h andH0, though in general the values ofH will have
to be approximated numerically. We have computed wave
shoaling for initial undisturbed depthh0 = 1 m and initial
waveheightsH0 equal to 0.05 m, 0.1 m and 0.2 m, and for
a ratio of undisturbed to initial depth of up to 0.5. The rela-
tive wave heightH/H0 computed for these waves is plotted
in Fig. 2. Boussinesq’s relation which gives shoaling rates
∝ h−1, is plotted as a solid line. It is apparent that the com-
puted curves get close to the lineh−1 for decreasing initial
waveheight.

4 Discussion and conclusions

Shoaling of solitary waves has been analyzed using conser-
vation of energy in the Boussinesq scaling. It appears that for
waves of very small waveheight, Boussinesq’s shoaling law
is approximately recovered. To explain the discrepancy ob-
served for larger waveheights, we note that the Boussinesq
shoaling law follows for small waveheights if only the last
term in the expression Eq. (17) for the energy density is used
to compute the energy of the solitary wave. This can also be
done in the context of other Boussinesq-type systems found
by Bona et al.(2002). In particular, in the case of the KdV
equation, the total mechanical energy for a solitary wave is
given by

E = ρg
8

33/2
H 3/2h3/2, (24)

which along with conservation of energy during an adiabatic
shoaling process, yields Boussinesq’s lawH/H0 = h0/h. In
the limit of small amplitude, solitary-wave solutions of all
the Boussinesq-type systems are equivalent to solitary waves
of the KdV equation, so that the formula Eq. (24) is valid
asymptotically forH0 → 0 also for solitary waves governed
by Eqs. (18) and (19). As explained byBona et al.(2002),
these Boussinesq-type systems are valid for waves for which
the Stokes numberS = α/β is of O(1). Shoaling rates for
other waves can be quite different. In particular, for small
amplitude waves, one often finds the so-called Green’s law
H/H0 ∼ 1/h1/4, which can be derived from linear wave the-
ory (seeLamb, 1932andSynolakis, 1991).

For comparison, we have included some aspects of a shoal-
ing study which was first presented byPelinovsky and Tal-
ipova (1977, 1979). In these works, the waveheight–wave
energy relation for numerical solutions of the full water-
wave problem found byLonguet-Higgins(1974); Longuet-
Higgins and Fenton(1974) is used. The results are displayed
in Fig. 3, and indicate shoaling rates similar to Boussinesq’s
law for most cases, since the slopes of the curves are seen to
be close to 1 for the most part. Only the very first part of the
curve forH0 = 0.05 m has a smaller slope, and might suggest
shoaling rates closer to Green’s law for very small amplitude
waves and small differences in depth. Since Green’s laws can
be derived in the case when there is no particular relationship
between the wavelength and the amplitude, it is not surpris-
ing that for solitary waves, which generally respect the rela-
tion α ∼ β, the Boussinesq law is a more generic outcome.

Besides the worksPelinovsky and Talipova(1977, 1979)
already mentioned, there have also been other analytic stud-
ies. For instance, inPelinovsky et al.(1993), nonlinear ray
theory is used to derive a rather general shoaling law, includ-
ing wave diffraction and dissipation. The shoaling relation
derived byPelinovsky et al.(1993) reduces to Green’s law
in the case that nonlinearity and dispersion are neglected. In
the case of a periodic sequence of solitary waves, the relation
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Figure 3: Computations for the shoaling of solitary waves using the method of Pelinovsky
and Talipova [28, 29], and using numerical data found by Longuet-Higgins and Fenton [18, 19].
The solid line depicts the shoaling relation according to Boussinesq’s law. The lower dashed
line depicts the shoaling relation according to Green’s law. Shoaling rates for waves of initial
waveheight H0 = 0.05m, 0.1m and 0.2m are computed. The dashed curve terminates because
the maximum wave energy is reached.

shoaling rates similar to Boussinesq’s law for most cases since the slopes of the curves
are seen to be close to 1 for the most part. Only the very first part of the curve for
H0 = 0.05m has a smaller slope, and might suggest shoaling rates closer to Green’s law
for very small amplitude waves and small differences in depth. Since Green’s laws can
be derived in the case when there is no particular relationship between the wavelength
and the amplitude, it is not surprising that for solitary waves which generally respect
the relation α ∼ β the Boussinesq law is a more generic outcome.

Besides the works of Pelinovsky and Talipova [28, 29] already mentioned, there have
also been other analytic studies. For instance, in Pelinovsky et al. [27], nonlinear ray
theory is used to derive a rather general shoaling law also including wave diffraction and
dissipation. The shoaling relation derived be Pelinovsky et al. [27] reduces to Green’s
law in the case that nonlinearity and dispersion are neglected. In the case of a periodic
sequence of solitary waves, the relation reduces to a ’nonlinear’ Green’s law, such as
found by Ostrovsky and Pelinovsky [22]. See also Ostrovsky and Pelinovsky [23] for
nonlinear wave refraction.

Comparisons with wavetank experiments indicate that reliable results can be ob-
tained for variations of the Stokes number S over nearly two orders of magnitude (see
Bona et al. [6]). However, these comparisons also indicate that the an appropriate
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Fig. 3. Computations for the shoaling of solitary waves using the
method ofPelinovsky and Talipova(1977, 1979), and using numer-
ical data found byLonguet-Higgins(1974); Longuet-Higgins and
Fenton(1974). The solid line depicts the shoaling relation accord-
ing to Boussinesq’s law. The lower dashed line depicts the shoal-
ing relation according to Green’s law. Shoaling rates for waves
of initial waveheightH0 = 0.05 m, 0.1 m and 0.2 m are computed.
The dashed curve terminates because the maximum wave energy is
reached.

reduces to a “nonlinear” Green’s law, such as found byOs-
trovsky and Pelinovsky(1970). See alsoOstrovsky and Peli-
novsky(1975) for nonlinear wave refraction.

Comparisons with wave tank experiments indicate that re-
liable results can be obtained for variations of the Stokes
numberS over nearly two orders of magnitude (seeBona et
al. (1981)). However, these comparisons also indicate that the
an appropriate damping mechanism should be included into
the description. The effect of different models of bottom fric-
tion on the waveheight changes in surface waves were inves-
tigated byCaputo and Stepanyants(2003). It was found that
of the three dissipation models considered, Chezy-type dis-
sipation had the strongest damping effect in a channel of de-
creasing depth, while Reynolds dissipation had the weakest
effect. These authors also considered the influence of a chan-
nel of changing width. In particular, a generalised Green’s
law is proposed which takes account of both changing depth
and width.

There have also been several experimental and purely
numerical studies directed towards understanding shoaling
rates of long-crested waves in shallow water. Early experi-
mental work ofIppen and Kulin(1954) and Camfield and
Street(1969) suggested that wave shoaling may be approx-
imated by Green’s law (seeMadsen and Mei(1969)), but
some of these date feature high scatter, and some also sug-
gest shoaling rates higher than Green’s law. The systematic
study ofSynolakis and Skjelbreia(1993) found that solitary

wave shoaling can be described well if the evolution is clas-
sified in different phases. There are two pre-breaking phases,
the first is relatively well approximated by Green’s law the
second which features more rapid shoaling can be approxi-
mated by Boussinesq’s law.

Using a numerical approximation of a Boussinesq model
similar to the system studied in this paper,Peregrine(1967)
found that the shoaling rates can be qualitatively predicted by
Green’s laws, but that there is no systematic variation of the
waveheight change with either slope or initial waveheight.
Shuto (1973) suggested that growth rates of both Boussi-
nesq’s result and Green’s law are correct, and the validity of
either depends on the parameter range of any particular situ-
ation. In fact, Shuto displays graphs which suggest that both
the experiments byCamfield and Street(1969) andIppen and
Kulin (1954) could be interpreted using Boussinesq’s law or
Green’s law, in certain areas. In his review article on solitary
waves,Miles (1980) noted that Boussinesq’s shoaling law
should be appropriate for sufficiently small values of the bot-
tom slope, but that Green’s law is a better approximation for
larger slopes or sufficiently small waveheight of the incident
wave.
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