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Abstract

In this work, we investigate the internal velocity field in a number of Boussi-
nesq models in non-uniform situations. A coupled BBM-BBM type system
of equations is derived in the assumption of water wave propagating over an
uneven bottom. The focus is on formulating mass, momentum and energy
densities and fluxes associated with the BBM-BBM system over an uneven
bottom. These densities and the associated fluxes arise from establishing
mechanical balance equations of the same asymptotic order as the evolution
equations.

The BBM-BBM type system derived here is solved numerically by
applying a Fourier collocation method coupled with a four stage Runge-Kutta
time integration scheme. We look at the propagation of waves over a slope,
and how the reconstruction of the flow under the surface is connected with
shoaling and wave breaking. The mass conservation equations are used to
quantify the role of reflection in the shoaling of solitary waves. Moreover, the
principle of conservation of energy is used to develop an equation relating the
waveheight and undisturbed depth to the initial undisturbed depth and the
incident waveheight. Boussinesq’s shoaling law is approximately recovered
for waves of very small waveheight. Shoaling and breaking results for the
different Boussinesq systems are plotted.

Internal properties of the flow are also in focus in the case of a back-
ground shear flow. The Boussinesq -type equations for water waves with
constant vorticity are derived in the Boussinesq regime. We reduced the
Boussinesq -type equations to the Korteweg-de Vries (KdV) equation in the
unidirectional case. We found the approximate velocity field associated with
exact solutions of KdV equation including shear flow. The influence of the
shear flow on particle trajectories and breaking of surface waves are studied
using the approximate velocity field.
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Chapter 1

Introduction

The study of surface water waves is one of the classical problems in fluid
mechanics and has practical significance in coastal dynamics. The main
contribution in this thesis is the study of long waves propagating on the
surface of water over an uneven bottom and on the shear flows over a flat
bottom. In some sense, the thesis could be viewed as consisting of two
parts. Firstly, we study the propagation of waves over a slope, and how the
reconstruction of the flow under the surface is connected with shoaling and
wave breaking. Secondly, the modelling of the propagation of the nonlinear
water waves on the shear flows over a flat bottom is explored. In addition,
we study the influence of the shear flow on particle trajectories and breaking
of surface waves.

In this chapter, the fundamentals of Boussinesq-type modelling are
introduced and we give an overview of the wave shoaling and wave breaking.
In chapter 2, the outline for the derivation of the coupled BBM-BBM type
system is given, and the numerical framework that is used in the included
papers is presented. In chapter 3, the mechanical balance equations are
derived. The last chapter gives a brief derivation of the family of Boussinesq
system in the presence of the shear flow.

1.1 Boussinesq theory

Airy wave theory done by George Biddell Airy in 1841 [1] is the earliest
approximate model to describe the propagation of water waves in shallow
regions. The motion of gravity waves on a fluid surface is described by using
a velocity potential flow approach in this theory. Airy wave theory is a
linear theory and it assumes that the wave propagation only transfers energy
in the propagation direction and the effect of dispersion is negligibly small.
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4 Introduction

However, there is no constraint for the effect of nonlinearity. The Airy wave
model performs quite well for the shallow water waves in which the water
depth is small compared to the wavelength. This theory was later extended
by George Stokes in 1847 [58], to add nonlinear wave motion. However,
Stokes’ nonlinear theory anticipates that long waves of significant amplitude
can not propagate without altering shape.

Russell (1844) [54], paid great consideration to a particular type of
wave which is called the solitary wave in his interesting experimental investi-
gations. The solitary waves could travel large distances while maintaining a
constant shape and was therefore hard to accept for Airy and Stokes theory.
The conflict between Airy’s shallow water theory and Russell’s observations
was resolved by Joseph Boussinesq in 1871 [8, 9], and then again separately
by Lord Rayleigh in 1876 [53]. They showed that for appropriate contribu-
tion of the vertical acceleration and the assumption of the finite amplitude,
the solitary wave could be expressed with the known “sech”-profile. More-
over, they derived Russell’s formula for the solitary wave speed however, no
equation was given [20]. They showed that the solitary wave form is given
as a function of distance x and time t

η(x, t) = a sech2(k(x− ct)), (1.1)

where a is the maximum wave height, c =
√
g(h+ a) is the wave speed, h

is the undisturbed depth of water, g is the acceleration of gravity and the
constant k is defined by

k =

√
3a

4h2(h+ a)
.

Despite the sech2 profile, the solitary wave form is strictly correct only if
a/h � 1.

Despite the fact that Boussinesq and Rayleigh both came up with the
surface profile (1.1), they did not derive the equation for which (1.1) is a
solution. This equation was derived by Korteweg and de Vries in 1895 [36].
Korteweg and de Vries derived a non-linear evolution equation

∂η

∂t
=

3

2

√
g

h

∂

∂χ

(
1

2
η2 +

2

3
αη +

1

3
σ
∂2η

∂χ2

)
, (1.2)

where σ = 1
3
h3 − Th

ρg
, governs surface gravity waves of small amplitude, and

long wavelength propagating in a shallow water channel. Here α is a small
arbitrary constant related to the uniform motion of the liquid, g is the grav-
itation constant, η denotes the free-surface displacement of the wave above
equilibrium level ‘h’, T represents the surface tension and ρ is the density.
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The equation (1.2) is called Korteweg-de Vries (KdV) equation, and has per-
manent wave solutions (see [20]). The solitary wave solution of KdV equation
(1.2) is

η(x, t) = a sech 2

[
1

2

(a
σ

)1/2
{
x−

√
gh

(
1 +

1

2

a

h

)
t

}]
. (1.3)

After neglecting surface tension and assuming a/h � 1, the above equation
(1.3) agrees with Russell’s formula for wave speed c, which also shows that
the wave speed has a form

c2 ∼ g(h+ a) +O(
a

h
),

and the constant k is

k ∼ 1

2

(
3a

h3

)1/2

.

Moreover, this also coincides with the work of Boussinesq and Lord Rayleigh.
Hence, Russell’s solitary wave is a solution of the KdV equation. For waves
of small amplitude and large wave length, the KdV equation was formerly
derived for water waves [5].

1.2 Wave shoaling

The ocean waves, when they propagate shorewards, experience a decrease in
the water depth. Closer to the shore the water waves become affected by
the depth of the water, the wave height and especially the wave steepness
changes. This particular phenomenon has been studied significantly, which
is known as wave shoaling. The shoaling transformation and modeling of
solitary wave propagation in shallow water regions is practically essential to
the study of impacts of nonlinear waves on shorelines. There are several types
of Boussinesq systems [5, 7, 14, 24, 31, 33, 40, 41, 42, 44, 45, 48, 52, 61, 67]
available which they have included the effect of smooth and slowly varying
bottom topographies in both Boussinesq and shallow water theory.

The wave shoaling is in principle caused by the wave propagation
velocity. When the effect of water depth decreases, it will decrease the wave
propagation velocity, which will lead to a decrease in the wave length and
then the wave steepness increase. In order to maintain the constant energy
flux a decrease in group speed must be balanced by an increase in waveheight.
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Figure 1.1: Solitary wave propagation over a sloping beach.

There are several theoretical and numerical results [12, 16, 25, 26,
27, 28, 30, 34, 35, 38, 39, 49, 50, 51, 60, 61, 66] attempting to anticipate
the waveheight change of shoaling waves. They can be roughly classified as
treating either solitary waves or as treating periodic waves oscillating around
a mean undisturbed level. There are two classical results in the theory of
long wave shoaling namely Boussinesq’s law which applies to the shoaling of
solitary waves and Green’s law which concerns the shoaling of long periodic
waves in the linear theory. Boussinesq was concerned with solitary water
waves, however, his argument was quite general. In Boussinesq’s case, two
integral quantities, mass and energy, need to be conserved. Green’s law
estimates that the wave amplitude change of a long surface periodic wave as
it runs up on a bottom slope is proportional to h

−1
4 , where h is the local depth.

Miles (1980) [44] noted that the Green’s law is a better approximation for
larger slopes or sufficiently small waveheight of the incident wave, however,
the Boussinesq’s shoaling law should be applicable for sufficiently small values
of the bottom slope.

The assumption of Boussinesq theory of weakly nonlinear long waves is
that the energy content of the wave is unchanged as it propagates. Boussinesq
found a simple rule for the wave amplitude change of a long surface wave as
it runs up on a bottom slope. Assume the initial undisturbed depth of the
fluid is h0, the initial wave amplitude is denoted by H0, the local depth is h
and the associated local wave amplitude is H, then Boussinesq’s law can be
written as H/H0 = h0/h. This Boussinesq shoaling law applies in the context
of the so called Boussinesq scaling, where the wave amplitude is small and
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the wavelength is long when compared to the initial undisturbed depth.
In the case where the effects on linear dispersion and of nonlinear

steepening are approximately balanced, solitary waves could be found and
it seems that Boussinesq’s law applies primarily to the shoaling of solitary
waves.

In papers A and B, numerical solutions of the BBM-BBM type system
have been used in shoaling investigations. Theoretical results from Grimshaw
[28] showed that for small values of initial waveheight, the shoaling rates
exhibit a certain deviation from Boussinesq’s law on the evolution of solitary
waves over a gently sloping bottom. However, as also confirmed in paper A,
the shoaling rates approach Boussinesq’s law in the limit of zero waveheight
[32]. In addition, the results displayed in paper B indicate that shoaling
rates for small amplitude waves are closer to Boussinesq’s law for very gentle
slopes.

1.3 Breaking waves

Wave breaking is also essential in studying coastal area phenomena and for
the study of tsunami propagation in nearshore area. Solitary waves are often
used to model steep surface waves shoaling on coastal area. The shoaling of
solitary waves over sloping bottom is one of the most important mechanisms
responsible for wave breaking. As water waves approach the shoreline the
wave amplitude grows larger and the wave length and phase velocity decrease.
The water wave then collapses onto shore because it becomes too steep for
the bottom of the wave to carry. The breaking of water waves mostly depends
on wave steepness and beach slope.

Over the past two decades several authors [6, 12, 16, 17, 18, 21, 25,
26, 30, 33, 34, 43, 47, 66, 68] have been developing numerical methods able
to deal with wave breaking. In [6], Boussinesq equations have been used to
model the bore and derived the onset of breaking waves in bores.

The wave breaking criterion is basically classified into three different
categories: namely dynamic, kinematic and geometric based on the charac-
teristics of the wave such as particle velocity and phase speed. The kinematic
breaking criterion is used often to predict wave breaking and assigns the onset
for the breaking when the horizontal particle velocity at the crest U proceed
the wave phase speed c. From a mathematical perspective of solitary wave
dynamics, if the balance between dispersion and nonlinearity is broken, the
solitary wave eventually breaks in shallow water. In the paper B, the kine-
matic breaking criterion is used to study the wave breaking for the solitary
wave solution of the propagation of surface water waves over a slope. In the
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Figure 1.2: Sketch of the typical time evolution of a breaking wave, starting
for instance from a solitary wave profile.

paper D, the kinematic breaking criterion is used to study the wave breaking
for the solitary wave and cnoidal wave solutions of the nonlinear water waves
in the presence of the shear flow.



Chapter 2

Boussinesq system over
variable bottom

Boussinesq systems have been used in the study of a long-wave models for
weakly nonlinear surface water waves. The system was first developed by
Boussinesq (1872) and it describes surface gravity waves of long wavelength
and small amplitude, propagating in a horizontal channel of uniform depth.
In [9] the Boussinesq scaling regime was defined and different types of Boussi-
nesq systems have been used in the study of water waves. Boussinesq systems
have been considered in the study of a variety of water wave phenomena in
many areas because of their straightforwardness.

In the case of even bottom, the Boussinesq systems derived in their
general form in [7], may be written in dimensional variables as

ηt + h0u
θ
x + (ηuθ)x +

1

2
(θ2 − 1

3
)λh3

0u
θ
xxx − 1

2
(θ2 − 1

3
)(1− λ)h2

0ηxxt = 0,

uθ
t + gηx + uθuθ

x +
1

2
(1− θ2)μgh2

0ηxxx −
1

2
(1− θ2)(1− μ)h2

0ũ
θ
xxt = 0.

(2.1)

In the system (2.1), t represents time, the independent variable x repre-
sents the position, uθ(x, t) represents the horizontal fluid velocity at a height
0 < θh0 < h0, and η(x, t) describes the surface displacement from the rest
position. Moreover h0 is the undisturbed depth of water and g denotes the
gravitational acceleration.

The coastal surroundings are at the forefront of water wave studies.
Many researchers have been interested in models which describe the changes
that occur in a solitary wave as it travels over a slowly changing topography.
The study of shallow water of uneven bottom in two horizontal dimensions
was initiated by Peregrine [52], who used depth-averaged velocity as a de-

9



10 Boussinesq system over variable bottom

pendent variable and derived the system

ηt +∇ · [(h+ η)ū] = 0,

ūt +∇η + (ū · ∇)ū− h

2
∇(∇ · (hūt)) +

h2

6
∇(∇ · (ūt)) = 0,

(2.2)

where

ū =
1

h+ η

∫ η

−h

u dz, (2.3)

η = η(x, y, t) represents the deviation of the free surface from its rest position
at time t, ∇ = (∂x, ∂y)

T , u = u(x, y, z, t) denotes the horizontal velocity of
the fluid at some height, while ū denotes the depth-averaged velocity and
the bottom is at z = −h(x, y).

The Boussinesq equations derived here are the ones which have been
used in the papers A (even bottom) and B (uneven bottom) of the thesis.
The model system for surface waves propagation over an uneven bottom to
be used here belongs to the family of models derived in Mitsotakis [45]. We
consider a Cartesian coordinate system (x, z), with the x- axis along the
still water level and z- axis pointing vertically upwards. The fluid domain
is bounded by the free surface z = η(x, t) and the sea bed at z = −h(x).
Then the system of Euler equations for velocity potential flow theory in the
presence of a free surface is used. We write down the following system of
Euler equations:

�φ = 0, −h < z < η, (2.4a)

φz + hxφx = 0, z = −h, (2.4b)

φt +
1

2

(
φ2
x + φ2

z

)
+ gη = 0, z = η, (2.4c)

ηt + φxηx − φz = 0, z = η. (2.4d)

Consider a characteristic water depth h0, a typical wavelength l and a typical
wave amplitude a and the variables are non-dimensionalized using following
scaling:

x̃ =
x

l
, z̃ =

z

h0

, t̃ =

√
gh0 t

l
, (2.5a)

h̃ =
h

h0

, η̃ =
η

a
and φ̃ =

h0

al
√
gh0

φ, (2.5b)

where the tilde ˜ denotes non-dimensional variables. There are two impor-
tant parameters which are the ratio of amplitude to depth, represented by
α = a/h0, and the ratio of depth to wavelength, represented by β = h2

0/l
2.
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As explained in detail in [7], the Boussinesq approximation is valid only when
both α and β are small and have the same order of magnitude. The standard
approach consists of developing the potential φ in an asymptotic series and
using (2.4a), write the velocity potential φ̃ in the simplest form

φ̃ = φ̃(0) +
z̃

1!
φ̃(1) + (−β)

[
z̃2

2!

∂2

∂x̃2
φ̃(0) +

z̃3

3!

∂2

∂x̃2
φ̃(1)

]

+(β2)

[
z̃4

4!

∂4

∂x̃4
φ̃(0) +

z̃5

5!

∂4

∂x̃4
φ̃(1)

]
+O(β3), (2.6)

which is a series solution with only two unknown functions φ̃(0) and φ̃(1).
Next the velocity field can be expressed as

ũ(x̃, z̃, t̃) = û+ β

[
z̃

1!
ŵx̃ − z̃2

2!
ûx̃x̃

]

+ β2

[
− z̃3

3!
ŵx̃x̃x̃ +

z̃4

4!
ûx̃x̃x̃x̃

]
+O(β3), (2.7a)

w̃(x̃, z̃, t̃) = β [ŵ − z̃ûx̃] + β2

[−z̃2

2!
ŵx̃x̃ +

z̃3

3!
ûx̃x̃x̃

]
+O(β3), (2.7b)

where û and ŵ are the velocities at z̃ = 0, and given by û = φ̃
(0)
x̃ and ŵ =

(1/β)φ̃(1).
Use the bottom kinematic boundary condition (2.4b) to obtain the

relation between û and ŵ which has the following form after substituting the
above asymptotic expressions:

ŵ = −(h̃û)x̃ + β
∂

∂x̃

(
h̃3

3!
ûx̃x̃ − h̃2

2!
(h̃û)x̃x̃

)
+O(β2). (2.8)

Now insert (2.6), (2.7) and (2.8) into the free surface boundary conditions
(2.4c) and (2.4d) to derive the following Boussinesq system with variable
bottom

ût̃ + η̃x̃ + αûûx̃ = O(αβ, β2), (2.9a)

η̃t̃ +
(
αη̃û+ h̃û

)
x̃
− β

∂

∂x̃

(
h̃3

3!
ûx̃x̃ − h̃2

2!
(h̃û)x̃x̃

)
= O(αβ, β2). (2.9b)

It is accentuated that from the above system, and in terms of û, we can
extend the system in terms of other velocity variables such as the velocity
at an arbitrary z location. Specify a new velocity variable ũθ defined at
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an arbitrary water level z̃θ = −h̃ + θ(αη̃ + h̃), with 0 ≤ θ ≤ 1. Applying
the standard techniques of inversion to derive the following expression as an
asymptotic formula for û in terms of ũθ:

û = ũθ + β

(
h̃(θ − 1)(h̃ũθ)x̃x̃ + (h̃(θ − 1))2

1

2!
(ũθ)x̃x̃

)

+ αβ
(
η̃θ(h̃ũθ)x̃x̃ + h̃(θ − 1)θη̃(ũθ)x̃x̃

)

− β2h̃(θ − 1)

(
h̃3

3!
ũθ
x̃x̃ −

h̃2

2!
(h̃ũθ)x̃x̃

)
x̃x̃

− β2

(
(h̃(θ − 1))3

3!
(h̃ũθ)x̃x̃x̃x̃ +

(h̃(θ − 1))4

4!
(ũθ)x̃x̃x̃x̃

)

+ β2

(
h̃(θ − 1)(h̃ũθ)x̃x̃ + (h̃(θ − 1))2

1

2!
(ũθ)x̃x̃

)2

+O(β3). (2.10)

Then the velocity field can be expressed in terms of ũθ as

ũ = ũθ + β

(
h̃(θ − 1)(h̃ũθ)x̃x̃ + (h̃(θ − 1))2

1

2!
(ũθ)x̃x̃

)

+ αβ
(
η̃θ(h̃ũθ)x̃x̃ + (h̃(θ − 1)θη̃)(ũθ)x̃x̃

)
− β2h̃(θ − 1)

(
h̃3

3!
ũθ
x̃x̃ −

h̃2

2!
(h̃ũθ)x̃x̃

)
x̃x̃

− β2

(
(h̃(θ − 1))3

3!
(h̃ũθ)x̃x̃x̃x̃ +

(h̃(θ − 1))4

4!
(ũθ)x̃x̃x̃x̃

)

+ β2

(
h̃(θ − 1)(h̃ũθ)x̃x̃ + (h̃(θ − 1))2

1

2!
(ũθ)x̃x̃

)2

+ β2 z̃

1!

(
h̃3

3!
ũθ
x̃x̃ −

h̃2

2!
(h̃ũθ)x̃x̃

)
x̃x̃

+ β

[
z̃

1!
(−h̃ũθ)x̃x̃ − z̃2

2!
ũθ
x̃x̃

]
+ β2

[
z̃3

3!
(h̃ũθ)x̃x̃x̃x̃ +

z̃4

4!
ũθ
x̃x̃x̃x̃

]

+ β2

[
− z̃

1!

{
h̃

(
h̃(θ − 1)(h̃ũθ)x̃x̃ + (h̃(θ − 1))2

1

2!
(ũθ)x̃x̃

)}
x̃x̃

]

+ β2

[
− z̃2

2!

(
h̃(θ − 1)(h̃ũθ)x̃x̃ + (h̃(θ − 1))2

1

2!
(ũθ)x̃x̃

)
x̃x̃

]
+O(β3, αβ2),
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w̃ = β
[
−(h̃ũθ)x̃ − z̃ũθ

x̃

]
− β2

{
h̃

(
h̃(θ − 1)(h̃ũθ)x̃x̃ + (h̃(θ − 1))2

1

2!
(ũθ)x̃x̃

)}
x̃

+ β2

(
h̃3

3!
ũθ
x̃x̃ −

h̃2

2!
(h̃ũθ)x̃x̃

)
x̃

+ β2

[
− z̃2

2!
(−h̃ũθ)x̃x̃x̃ +

z̃3

3!
ũθ
x̃x̃x̃

]

− β2z̃

(
h̃(θ − 1)(h̃ũθ)x̃x̃ + (h̃(θ − 1))2

1

2!
(ũθ)x̃x̃

)
x̃

+O(β3, αβ2).

Switching to the variable ũθ yields the following system:

ũθ
t̃ + η̃x̃ + αũθũθ

x̃

+β

[
(θ − 1)h̃(h̃ũθ

t̃ )x̃x̃ +
h̃2

2!
(θ − 1)2ũθ

x̃x̃t̃

]
= O(αβ, β2) (2.11)

η̃t̃ +
(
αη̃ũθ + h̃ũθ

)
x̃

+β
∂

∂x̃

[
(θ − 1

2
)h̃2(h̃ũθ)x̃x̃ + h̃3( (θ−1)2

2
− 1

6
)(ũθ)x̃x̃

]
= O(αβ, β2).(2.12)

From these equations we obtain

η̃t̃ = −
(
h̃ũθ

)
x̃
+O(α, β), ũθ

t̃ = −η̃x̃ +O(α, β). (2.13)

For arbitrary μ, ν ∈ R and using (2.13), the following equations are derived

(h̃ũθ)x̃x̃ = μ(h̃ũθ)x̃x̃ − (1− μ)η̃t̃x̃ +O(α, β), (2.14a)

ũθ
t̃x̃x̃ = (1− ν)ũθ

t̃x̃x̃ − νη̃x̃x̃x̃ +O(α, β). (2.14b)

Using equations (2.9)-(2.14) and appropriate mathematical expansions, the
following system is derived:

ũθ
t̃
+ η̃x̃ + αũθũθ

x̃ + β
{
Bh̃

[
(h̃x̃η̃x̃)x̃ + h̃x̃η̃x̃x̃

]
+ch̃2η̃x̃x̃x̃ − dh̃2ũθ

x̃x̃t̃

}
= O(αβ, β2), (2.15a)

η̃t̃ +
(
αη̃ũθ + h̃ũθ

)
x̃
+ β ∂

∂x̃

{
Ah̃2

[
(h̃x̃ũ

θ)x̃ + h̃x̃ũ
θ
x̃

]
+ah̃2(h̃ũθ)x̃x̃ − bh̃2η̃x̃t̃

}
= O(αβ, β2). (2.15b)

It is noted that the parameters a, b, c and d are those of the class of Boussi-
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nesq system derived in [7], where

A =
1

2

[
1

3
− (θ − 1)2

]
, B = 1− θ,

a =
1

2

(
θ2 − 1

3

)
μ, b =

1

2

(
θ2 − 1

3

)
(1− μ),

c =
1

2

(
1− θ2

)
ν, d =

1

2

(
1− θ2

)
(1− ν). (2.16)

Assuming a constant depth h, the above system reduces to the original cou-
pled BBM system derived in [7]. By choosing μ = 0 and ν = 0, the coupled
BBM-BBM type system is derived from (2.15). Neglecting terms of order
O(αβ, β2) and dropping the superscript θ, the system takes the following
form in dimensional variables

ut + gηx + uux + 2Bghhxηxx +Bghhxxηx − dh2uxxt = 0, (2.17a)

ηt + (ηu+ hu)x +
∂

∂x

{
2Ah2hxux + Ah2hxxu− bh2ηxt

}
= 0. (2.17b)

2.1 Exact solitary wave solution in the BBM-

BBM type system

Boussinesq systems have exact solitary wave solutions under some parameter
conditions. Boussinesq was the first who gave a scientific explanation of the
existence of traveling wave solutions. In this section, we derive the exact
solitary wave solutions following an approach formulated recently in [13].
For the case of constant water depth h = h0, the system takes the following
form in dimensional variables

ut + gηx + uux − 1

2

(
1− θ2

)
h0

2uxxt = 0, (2.18a)

ηt + (ηu+ h0u)x −
1

2

(
θ2 − 1

3

)
h0

2ηxxt = 0. (2.18b)

We consider the solutions depending only on the moving coordinate ξ =
x− x0 − cst as

η(x, t) = η(x− x0 − cst) = η(ξ), (2.19a)

u(x, t) = u(x− x0 − cst) = u(ξ). (2.19b)

It shows that the traveling-waves initially centered at x0 propagate with
steady velocity cs. Using (2.19) and (2.18), we obtain the third order non-
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linear system of ordinary differential equations

−csu
′ + gη′ + uu′ + cs

1

2

(
1− θ2

)
h0

2u
′′′
= 0, (2.20a)

−csη
′ + (ηu+ h0u)

′ + cs
1

2

(
θ2 − 1

3

)
h0

2η
′′′
= 0, (2.20b)

where the derivatives are executed with respect to the ξ coordinate. It is
worth mentioning that the solitary wave solutions are localized in space.
Hence the solution and its derivatives with respect to the ξ coordinate at
long distance from the pulse are remarkably small and vanish asymptotically.
Integrating once with respect to the ξ coordinate and using zero boundary
conditions at infinity, it follows that

−csu+ gη +
1

2
u2 + cs

1

2

(
1− θ2

)
h0

2u
′′
= 0, (2.21a)

−csη + (ηu+ h0u) + cs
1

2

(
θ2 − 1

3

)
h0

2η
′′
= 0. (2.21b)

Now we seeking functions η(ξ) and u(ξ) that are proportional

u(ξ) = A1η(ξ). (2.22)

Use the relation (2.22) and multiply equation (2.21b) by A1, to have

−csA1η + gη +
A1

2
η2 + cs

1

2

(
1− θ2

)
h0

2A1η
′′
= 0, (2.23a)

−A1

2
csη +

A2
1

2
ηh0 +

A1

2
η2 + cs

A1

4

(
θ2 − 1

3

)
h0

2η
′′
= 0. (2.23b)

If the equations ( 2.23a) and ( 2.23b) are identical, then the system (2.18)
has nontrivial solitary-wave solutions

−A1

2
cs +

A2
1

2
h0 = −csA1 + g, (2.24a)

cs
1

2

(
1− θ2

)
h0

2A1 = cs
A1

4

(
θ2 − 1

3

)
h0

2. (2.24b)

The unique solution of the system (2.18) is given by

g =
A2

1

2
h0 +

A1

2
cs, (2.25)

θ2 =
7

9
. (2.26)
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From (2.23a), (2.23b) and (2.24), we immediately find that the function η(ξ)
satisfies

dη

η
√

−A1

3
η + cs−A1h0

2

=
3

h0
√
cs

dξ. (2.27)

It is easy to find that equation (2.27) has exact solitary wave solutions of the
form

η(x, t) = η0 sech2(κ0(x− x0 − cst)), (2.28)

and the constants cs and κ0 are given by

cs =
3h0 + 2η0√
3h0(η0 + 3h0)

√
gh0 and κ0 =

3

2h0

√
η0

2η0 + 3h0

,

where h0 is the undisturbed depth and η0 is the wave amplitude. The hori-
zontal velocity u(x, t) is given by

u(x, t) = W0 sech2(κ0(x− x0 − cst)), (2.29)

where

W0 = A1η0 =

√
3g

3h0 + η0
η0. (2.30)

The BBM-BBM type Boussinesq system (2.17) has been used in the papers
A and B. In those papers, solitary wave solutions, like ( 2.28) and ( 2.29),
have been used to confirm our numerical implementation, and especially to
confirm the rate of convergence of the numerical scheme.

2.2 Numerical scheme

When attempting to solve partial differential equations (PDEs), it is not
always possible to obtain analytical solution. Alternatively, a numerical
method must be used to find an approximate solution. There are several
numerical simulation methods to solve PDEs. The right method to choose
depends on the properties of the model equations and the characters are re-
quired in the approximate solution. The most commonly used methods for
numerically solving PDEs are the the finite element method (FEM), finite
difference method (FDM), and spectral method.

The FEM uses variational formulation to approximate the differential
equation and then seek a solution in a finite dimensional space which nor-
mally consists of locally supported piecewise linear functions. However, the
convergence of this method is not always sufficient.
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The FDM on the other hand, replaces the derivatives appearing in
the differential equations with finite difference approximations in terms of
discrete quantities of dependent and independent variables. This procedure
results in a system of equation of the variable at nodal points for the entire
domain which is easily solved for one-dimensional domains. However, the
accuracy is in general not good.

In contrast, the spectral method approximates the solution as linear
combination of continuous functions that are generally non-zero over the do-
main of the solution. It has excellent error properties in the form of an
exponential convergence rate. Hence the spectral method takes on a global
approach while the finite element method is a local approach. The conver-
gence rate of spectral approximations depends only on the smoothness of
the solution, which gives the ability to achieve high precision with a small
number of materials. When compared to FEM and FDM, spectral methods
have been used widely for the numerical solution of PDEs due to their better
accuracy. The following introduction of spectral methods is based on the
book by Trefethen [63] and paper by Hussaini, Kopriva and Patera [29].

We consider spectral collocation method for the solution of our given
BBM-BBM system which are characterized by the expansion of the solution
in terms of global basis functions. This method form an efficient and highly
accurate class of techniques for the solution. The expansion coefficients are
computed so that the differential equation is satisfied exactly at a set of
collocation points. We approximate the solution u(x) by a sum of (N+1)
basis functions φi(x) that span the space where the approximate solution
exists

u(x) ≈ uN(x) =
N∑
i=0

ûiφi(x), (2.31)

where φj, j = 0, ..N is a finite set of trial functions. This series is then
substituted into the differential equation{

Lu(x) = f(x) if x ∈ V,

Bu(y) = 0 if y ∈ ∂V.
(2.32)

Here L is a spatial differential operator, B is a linear boundary operator and
V is a spatial domain with boundary ∂V . We seek the numerical solution
uN(x) with the coefficients ûi such that the residual R defined by

R(x) = LuN(x)− f(x),

is minimized. To minimize the residual R, we choose a set of test functions
χn = δ(x− xn), n = 0, 1, 2, ...N and demand that

(χn, R) = 0 = LuN(xn)− s(xn), for n = 0, 1, 2, ...N, (2.33)
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where the xn (n=0,1,2....N) are the spacial points, called the collocation
points. That is

N∑
i=0

ûiLφi(xn)− f(xn) = 0, n = 0, 1, ...N.

The unknown N+1 coefficients ûi are determined by using N+1 equations
which gives the approximated solution uN in the nodes xi.

The system (2.17) has been solved numerically using a Fourier collo-
cation method coupled with a 4-stage Runge-Kutta time integration scheme.
For our numerical computations, we assume periodic boundary conditions on
the domain [0, L] and the problem is translated to the interval [0, 2π] using
the suitable scaling u(λx, t) = v(x, t), η(λx, t) = ξ(x, t) and h(λx) = h1(x),
where λ = L

2π
. Then the BBM-BBM system (2.17) becomes

λ3vt + λ2gξx + λ2vvx + 2Bgh1h1xξxx

+Bgh1h1xxξx − λdh1
2vxxt = 0, x ∈ [0, 2π],

λ3ξt + λ2 (ξv + h1v)x +
∂

∂x

{
2Ah1

2h1xvx

+Ah1
2h1xxv − λbh1

2ξxt
}

= 0, x ∈ [0, 2π],

v(x, 0) = u(λx, 0), ξ(x, 0) = η(λx, 0),

v(0, t) = v(2π, t), ξ(0, t) = ξ(2π, t), for t ≥ 0. (2.34)

The set of N evenly spaced grid points xj =
2πj
N
, j = 1, ...N in the

interval [0, 2π] is referred to as collocation nodes.
The spectral-collocation method is used in the physical space by seek-

ing approximate solutions through a global periodic interpolation polynomial
of the form

vN(x) =
N∑
j=1

vN(xj)gj(x), ξN(x) =
N∑
j=1

ξN(xj)gj(x), (2.35)

where gj(x) =
1
N
sin

(
N(x−xj)

2

)
cot

(
1
2
(x− xj)

)
and vN(x), ξN(x) is an inter-

polation of the functions v(x), ξ(x) respectively, i.e., vN(xj) = v(xj), ξN(xj) =
ξ(xj) (see [23], [63]). The corresponding Fourier collocation differentiation
matrices Dx and Dxx are given by

D
(1)
ij =

dgj
dx

(xi) =

{
1
2
(−1)j cot(

xi−xj

2
), i �= j,

0, i = j,
(2.36a)

D
(2)
ij =

d2gj
dx2

(xi) =

{
− (−1)j

2 sin2((xi−xj)/2)
, i �= j,

−π2

3h2 − 1
6
, i = j.

(2.36b)
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Then at the collocation points x = xj, the system becomes[
λ3IN − λb DNdiag(h

2
1)DN

]
ξNt = −λ2DN(diag(h1)vN)

−λ2DN(ξNvN)−DN(2Ah
2
1h1xDN(vN) + Ah1xxh

2
1vN), (2.37a)[

λ3IN − λd diag(h2
1)D

(2)
N

]
vNt = −λ2gDN(ξN)

−λ2(0.5)DN(v
2
N)− 2Bgh1h1xD

(2)
N (ξN) − Bgh1h1xxDN(ξN), (2.37b)

where IN is the unit N × N matrix and DN and D
(2)
N are square matrices

of dimensions N × N following from (2.36a) and (2.36b) respectively and
diag(h1) and diag(h2

1) are the diagonal matrices of h1 and h2
1, respectively.

This is a system of N ordinary differential equations for ξN and also vN .
We use a four-stage explicit Runge-Kutta method (RK-4) to solve

the system because this method is quite accurate, stable and easy to pro-
gram. The truncation error in RK-4 method is O(Δt)5 and the global error

is O(Δt)4. When we halve the time step the error will be O
(

(Δt)4

16

)
. Hence,

halving the time step results in 16 times protection of error in RK-4 method.
In paper B, the coupled BBM-BBM type system (2.17) is solved nu-

merically and the convergence of the the numerical scheme is verified.





Chapter 3

Mechanical balance laws in
Boussinesq theory

In this section mass, momentum and energy conservation properties of the
system (2.15) are explored in terms of the the velocity potential φ. If non-
dimensional mass density M̃(η̃) and mass flux q̃M̃(η̃), momentum density
Ĩ(η̃) and momentum flux q̃Ĩ(η̃) and energy density Ẽ(η̃) and energy flux
q̃Ẽ(η̃) are defined appropriately in terms of η̃ and its derivatives, then the
mechanical balance law relations

∂

∂t̃
M̃(η̃) +

∂

∂x̃
q̃M̃(η̃) = O(αβ, β2), (3.1a)

∂

∂t̃
Ĩ(η̃) +

∂

∂x̃
q̃Ĩ(η̃) = O(αβ, β2), (3.1b)

∂

∂t̃
Ẽ(η̃) +

∂

∂x̃
q̃Ẽ(η̃) = O(αβ, β2), (3.1c)

will hold. The mechanical balance laws of these physical quantities to the
system (2.15) are correct to the same order as the evolution equations. To
convert the non-dimensional variables, the corresponding non-dimensional
densities are given as

M̃ =
M

ρh0

, Ĩ =
M

ρc0h0

, Ẽ =
M

ρc20h0

, (3.2)

and the non-dimensional fluxes are defined as

q̃M̃ =
qM

ρc0h0

, q̃Ĩ =
qI

ρc20h0

, q̃Ẽ =
qE

ρc30h0

, (3.3)

where c0 =
√
gh0 . Although it is fascinating for various applications to be

able to reconstruct the pressure from the primary dependent variables of the

21
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equation of motion, an approximate expression for the pressure is also useful
for computation of the momentum and energy conservations.

z= η(x,t)

z=-h(x)

g

z

x

h
0

x
1

x
2

Figure 3.1: The figure describes a typical control volume used for conserva-
tion proprieties of the Boussinesq theory. The bottom (−h(x)) and lateral
boundary are held fixed while the upper boundary η(x, t) moves with the
fluid free surface.

The following mechanical balance derivations are based on the work
in [2, 3]. Let us consider the fluid is running in a narrow channel of total
depth h(x, t) = −h(x) + η(x, t) and choose a control volume of unit width,
bounded by the lateral sides of the interval [x1, x2], the free surface and the
bottom as shown in Fig. 3.1.

The Bernoulli equation (3.4) for unsteady potential flow is used to
find the pressure field in the theory of ocean surface waves.

p

ρ
+ gz +

∂φ

∂t
+

1

2
|�φ|2 = f(t) (3.4)

Furthermore, f(t) can be obtained by imposing asymptotic conditions and
approximate this Bernoulli equation at free surface. At the free surface p →
patm (atmospheric pressure) and

η → 0, φ → constant as x → ∞. (3.5)
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Therefore f(t) is given by

f(t) =
patm
ρ

. (3.6)

Let us define the dynamic pressure by p′ = p− patm + ρgz (see [2]) and scale
it by p′ = p̃′ρga. Then

p̃′ = −φ̃t̃ −
1

2
α(φ̃x̃)

2 − 1

2

α

β
(φ̃z̃)

2. (3.7)

Inserting the expression for φ̃ into (3.7) and performing some simplifications
yield

p̃′ = −φ̃
(0)

t̃
− z̃

1!
βŵt̃ + β

z̃2

2!
ûx̃t̃ − αûûx̃ +O(αβ, β2). (3.8)

On the other hand, it is easy to obtain the following equation from (2.6),
(2.7), (2.8) and (2.15):

η̃ = −φ̃
(0)

t̃
− αûûx̃ +O(αβ, β2). (3.9)

From equation (3.8) and (3.9) one immediately concludes that

p̃′ = η̃ +
z̃

1!
β(h̃û)x̃t̃ + β

z̃2

2!
ûx̃t̃ +O(αβ, β2). (3.10)

Then the total pressure in terms of dimensional variables is given by

p = ρg(η − z) + patm + ρ
z

1!
(hu)xt + ρ

z2

2!
(u)xt. (3.11)

If the above pressure expression is evaluated at the free surface, then the
pressure is not equal to atmospheric pressure.

3.1 Mass balance

Let us assume that the mass particles pass through a control volume of
unit width, delimited by the interval [x1, x2] at the lateral sides, h(x) at the
bottom and η(x, t) at the free surface. The mass balance says that the mass
cannot disappear, i.e., the rate of change of the total mass per unit time is
equal to the net mass flux into the control volume. The integral form of the
equation of mass conservation is

d

dt

∫ x2

x1

∫ η

−h(x)

ρ dz dx =

[∫ η

−h(x)

ρφx dz

]x1

x2

, (3.12)
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since there is no mass flux through the bottom or through the free surface.
In non-dimensional variables the above relation becomes

d

dt̃

∫ x̃2

x̃1

∫ αη̃

−h̃

dz̃ dx̃ =

[∫ αη̃

−h̃

αφ̃x̃ dz̃

]x̃1

x̃2

. (3.13)

After integration with respect to z̃ and use of asymptotic expansion of φ̃, we
obtain

∫ x̃2

x̃1

(αη̃ + h̃)t̃ dx̃ = α

[
û(h̃+ αη̃) +

h̃2

2!
β(ûh̃)x̃x̃ − h̃3

3!
β(û)x̃x̃

]x̃1

x̃2

+O(αβ, β2).

(3.14)
If we take the limit x̃2 → x̃1, where x̃2 = x2/l and x̃1 = x1/l, then we obtain
the balance equation (2.9b). i.e,

∂

∂t̃
M̃ +

∂

∂x̃
q̃M = O(αβ, β2), (3.15)

where

M̃ = αη̃ + h̃,

q̃M = α
[(

αη̃ũθ + h̃ũθ
)
+ β(θ − 1

2
)h̃2(h̃ũθ)x̃x̃ + βh̃3(1

2
(θ − 1)2 − 1

6
)(ũθ)x̃x̃

]
.

(3.16)

If we use the scalings M = ρh0M̃ and qM = ρho

√
(gh0) q̃M , then the dimen-

sional form of these quantities are

M = ρ(η + h(x)),

qM = ρ
[
u(h+ η) + h2(θ − 1

2
)(hu)xx +

1
2
h3((θ − 1)2 − 1

3
)uxx

]
.

(3.17)

Eq. (3.15) represents the approximate mass balance equation. The net mass
transfer to or from a control volume during a time interval �t is equal to
the net change (increase or decrease) in the total mass in the control volume
during �t.

In paper B, mass conservation is used to quantify the role of reflection
in the shoaling of solitary waves. It has been shown in paper B [56] that
this approximate mass conservation relation is reasonably accurate and the
ratio of mass reflection to mass influx approaches zero as the difference in
flow depths becomes small.
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3.2 Momentum balance

The integral form of the equation of momentum conservation is

d

dt

∫ x2

x1

∫ η

−h(x)

ρφx dz dx =

[∫ η

−h(x)

ρφ2
x dz +

∫ η

−h(x)

p dz

]x1

x2

. (3.18)

In non-dimensional variables the above relation becomes

α
d

dt̃

∫ x̃2

x̃1

∫ αη̃

−h̃

αφ̃x̃ dz̃ dx̃ =

[∫ αη̃

−h̃

α2φ̃2
x̃ dz̃ +

∫ αη̃

−h̃

(αp̃− z̃) dz̃

]x̃1

x̃2

. (3.19)

After integration with respect to z̃ and use of asymptotic expansion of φ̃, we
obtain

α

∫ x̃2

x̃1

{
{ũθ(αη̃ + h̃) + βh̃2(θ − 1)(h̃ũθ)x̃x̃

}
t̃
dx̃

+ α

∫ x̃2

x̃1

{
{β h̃

3

2
(θ − 1)2ũθ

x̃x̃ + β
h̃2

2!
(h̃ũθ)x̃x̃ − β

h̃3

3!
ũθ

x̃x̃

}
t̃

dx̃

= α

[
αh̃ũθ

2
+ h̃η̃ +

1

α

h̃2

2
+ α

η̃2

2
− β

h̃2

2
(h̃ũθ)x̃t̃ + β

h̃3

3!
(ũθ)x̃t̃

]x̃1

x̃2

+O(α3, α2β, β3).

(3.20)

If we use the scalings I = ρc0h0Ĩ and qI = ρc20hoq̃I , then the dimen-
sional form of these quantities are

I = ρ(η + h)uθ + ρ((θ − 1)h2(hθuθ)xx +
h3

2
(θ − 1)2uθ

xx

+
h2

2
(huθ)xx − h3

3!
uθ
xx)),

qI = ρuθ2h+
ρg

2
(h+ η)2 − ρ

h2

2
(huθ

t )x + ρ
h3

6
uθ
xt.

(3.21)

We now find the horizontal component of the force acting on unit
width of the sloping bottom D, which is defined by

D =

∫ h2

h1

ph′(x) dx. (3.22)

Now the momentum balance law derived above are examined in a
concrete situation. In all the numerical results of this section we use the
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exact solitary wave solutions (2.28) and (2.29). Consider a control volume
delimited by the interval [50 m, 150 m] on the x-axis. The momentum per

unit width contained in this interval is defined by
∫ 150

50
I(x, t) dx and the

momentum flux through the boundaries of the control volume is defined by
qI(50, t) and qI(150, t), where I and qI are given in (3.21). The quantities
I and qI during the passage of solitary wave are computed and they are
averaged over time from t = 0 s to t = 200 s. It is observed that the
momentum flux difference is approximately equal to the pressure integral D
which is defined in (3.22).
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Figure 3.2: The left panel shows a solitary wave solution for the system (2.17)
with initial amplitude 0.2 m at time t = 60 s.

Δh Influx Outflux Flux difference Pressure integral D
0.1 0.5040 0.4087 -0.0954 -0.0954
0.2 0.5041 0.3234 -0.1807 -0.1808
0.3 0.5043 0.2562 -0.2561 -0.2561
0.4 0.5044 0.1828 -0.3216 -0.3216

Table 3.1: This table gives the conservation of momentum of a solitary wave
with initial amplitude 0.1 m on a slope 1:35 for different Δh.

Amplitude Influx Outflux Flux difference Pressure integral D
0.05 0.5028 0.4075 -0.0953 - 0.0953
0.1 0.5040 0.4087 -0.0954 -0.0954
0.2 0.5061 0.4106 -0.0955 - 0.0955
0.3 0.5079 0.4123 -0.0956 -0.0956
0.4 0.5096 0.4139 -0.0958 -0.0957

Table 3.2: This table gives the momentum conservation for different wave-
heights on a slope 1:35 and Δh = h0 − h = 0.1 m.



3.3 Energy balance 27

time [s]
0 50 100 150 200M

om
en

tu
m

 in
flu

x 
an

d 
M

om
en

tu
m

 o
ut

flu
x 

[k
g/

m
s]

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Momentum influx
momentum outflux

Figure 3.3: The figure shows plots of time series of the momentum influx
at x = 50 m (blue dashed curve) and momentum outflux at x = 150 m
(green dash-dotted curve), per unit span. The fluxes during the passage of
solitary wave of amplitude 0.1 m and Δh = 0.3 m are computed and they
are averaged over time from t = 0 s to t = 200 s.

3.3 Energy balance

In this section, we examine energy balance of the BBM-BBM type system
(2.17). If we assume that the potential energy of a particle is zero at the
undisturbed free surface and the potential energy is zero when no wave mo-
tion is present, then the total energy inside a control volume of unit width,
delimited by the interval [x1, x2] on the lateral sides, the bottom and the free
surface can be written as

E =
1

2

x2∫
x1

η∫
−h(x)

ρ |�φ|2 dz dx+

x2∫
x1

η∫
−h(x)

ρgz dz dx, (3.23)

where the first term represents the kinetic energy and the second term repre-
sents potential energy. The conservation of total mechanical energy is written
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as

d

dt

1

2

x2∫
x1

η∫
−h(x)

ρ |�φ|2 dz dx+
d

dt

x2∫
x1

η∫
−h(x)

ρgz dz dx

=

⎡
⎢⎣

η∫
−h(x)

{ρ

2
|�φ|2 + ρgz + P

}
φx dz

⎤
⎥⎦
x1

x2

.

(3.24)

Expressing the above relation in non-dimensional variables gives

d

dt̃

1

2

x̃2∫
x̃1

αη̃∫
−h̃

{
α2

(
φ̃2
x̃ +

1

β
φ̃2
z̃

)
+ 2z̃

}
dz̃ dx̃

=

⎡
⎢⎣

αη̃∫
−h̃

{
α3

2
φ̃3
x̃ +

1

β
φ̃2
z̃φ̃x̃ + α2p̃′φ̃x̃

}
dz̃

⎤
⎥⎦
x̃1

x̃2

If we substitute the expressions for φ̃x̃, φ̃z̃ and p̃′ found in (2.7), (2.10), (2.8)
and (3.10) respectively, and integrate with respect to z̃, then we obtain

d

dt̃

x̃2∫
x̃1

{
α2(ũθ

2
h̃+ η̃2)

2
+

α2β

2

(
(θ − 1)2 − 1

3

)
h̃3ũθũθ

x̃x̃

}
dx̃

+
d

dt̃

x̃2∫
x̃1

{
α2β

2
(2(θ − 1) + 1) h̃2ũθ(h̃ũθ)x̃x̃ +

α2β

6
h̃3(ũθ

x̃)
2

}
dx̃

+
d

dt̃

x̃2∫
x̃1

{
α2β

2
h̃((h̃ũθ)x̃)

2 − α2β

2
(h̃)2(h̃ũθ)x̃ũθ

x̃ +
α3ũθ

2

2
η̃ − h̃2

2

}
dx̃

=

[
α3

2
ũθ

3
h̃+ α2η̃ũθh̃+ α3η̃2ũθ + (−1

6
+ (θ−1)2

2
)α2βη̃ũθ

x̃x̃h̃
3

]x1/l

x2/l

+
[
(θ − 1

2
)α2βη̃(h̃ũθ)x̃x̃h̃

2 − ( h̃
2

2
)α2βũθ(h̃ũθ)x̃t̃ + ( h̃

3

6
)α2βũθ(ũθ)x̃t̃

]x1/l

x2/l

+O(α2β2, α3β, α4). (3.25)
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Taking the limit as x2 → x1, and omitting the common factor α2, we obtain
the differential energy balance equation

d

dt̃

[
(ũθ

2
h̃+ η̃2)

2
+

β

2

(
(θ − 1)2 − 1

3

)
h̃3ũθũθ

x̃x̃

]

+
d

dt̃

[
+
β

2
(2θ − 1) h̃2ũθ(h̃ũθ)x̃x̃ − β(h̃)2(h̃ũθ)x̃ũθ

x̃
αũθ

2

2
η̃ +

β

6
h̃3(ũθ

x̃)
2

]

+
d

dt̃

[
β

2
h̃((h̃ũθ)x̃)

2 − β

2
(h̃)2(h̃ũθ)x̃ũθ

x̃ +
αũθ

2

2
η̃ − h̃2

2

]

+
d

dx̃

[α
2
ũθ

3
h̃+ η̃ũh̃+ αη̃2ũθ + ( (θ−1)2

2
− 1

6
)βη̃ũθ

x̃x̃h̃
3 + (θ − 1

2
)βη̃(h̃ũθ)x̃x̃h̃

2
]

+
d

dx̃

[
−( h̃

2

2
)βũθ(h̃ũθ)x̃t̃ + ( h̃

3

6
)βũθ(ũθ)x̃t̃

]
= O(β2, αβ, α2).

The dimensional versions of the equations are given by

E =
ρ

2
u2h+

ρ

2
h3((θ − 1)2 − 1

3
)uuxx +

ρ
2
h2u(2θ − 1)(hu)xx − ρ

2
gh2

+
ρ

2
u2η +

ρ

6
h3 (ux)

2 +
ρ

2
h ((hu)x)

2 − ρ

2
h2ux(hu)x +

ρ

2
gη2 (3.26)

and

qE =
ρ

2
u3h+ ρgηhu+ ρ( (θ−1)2

2
− 1

6
)gh3ηuxx (3.27)

+
ρ

6
h3uuxt − ρ

2
h2u(hu)xt + ρguη2 + ρ(θ − 1

2
)gh2η(hu)xx.

To test the energy conservation, we consider a control volume delimited by
the interval [50 m, 150 m] on the x-axis. The energy per unit width contained

in this interval is defined by
∫ 150

50
E(x, t) dx and the energy flux through the

boundaries of the control volume is defined by qE(50, t) and qE(150, t), where
E and qE are given in (3.26) and (3.27). The quantities E and qE during the
passage of solitary wave are computed and they are averaged over time from
t = 0 s to t = 200 s. Tables 3.3 and 3.4 suggest that energy conservation has
a negligible error.

In the paper A, we use the expression for E and evaluate the integral
E =

∫
E dx for the total energy at two different instances in time; one at

which the wave is located over the initial depth h0 and one at which the wave
is located above a different depth h and obtained an equation relating the
waveheights H0 and H at the two different depths. Now given H0, h0 and h,
it is possible to find the wave height H at the depth h. Since the pressure
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Δh Energy influx Energy outflux Energy flux difference
0.1 2.5606e-4 2.5706e-4 -5.8565e-07
0.2 2.5606e-4 2.5706e-4 -1.0633e-06
0.3 2.5556e-4 2.5706e-4 -1.4085e-06
0.4 2.5506e-4 2.5706e-4 -1.5991e-06

Table 3.3: This table gives the the conservation of energy of a solitary wave
with initial amplitude 0.1 m on a slope 1:35 for different Δh.

Amplitude Energy influx Energy outflux Energy flux difference
0.05 8.8339e-05 8.8481e-05 -7.0548e-10
0.1 2.5606e-04 2.5706e-04 -5.8565e-07
0.2 7.6069e-04 2.5606e-04 -2.6727e-06
0.3 1.4614e-03 1.4684e-03 -7.0018e-06
0.4 2.3461e-03 2.3606e-03 -1.4004e-05

Table 3.4: This table gives conservation of energy for different wave heights
on a slope 1:35 and Δh = h0 − h = 0.1 m.

force acting on the fluid at the sloping bottom is perpendicular to the fluid
velocity, the energy is conserved. From the conservation of energy and the
exponential decay of η and w, we have∫ ∞

−∞
E(η0, w0) dx =

∫ ∞

−∞
E(η, w) dx, (3.28)

where E is the energy density, and η and w are given in (2.28) and (2.29)
with the constants W , cs and κ given in terms of h and H instead of h0 and
H0.

We have computed wave shoaling for initial undisturbed depth h0 = 1
m and initial waveheights H0 equal to 0.05 m, 0.1 m and 0.2 m, and for a
ratio of undisturbed to initial depth of up to 0.5 m. It is shown in paper
A that the computed curves H/H0 get close to the line h−1 for decreasing
initial waveheight.
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Figure 3.4: The figure shows plots of time series of the energy influx at x = 50
m (blue dashed curve) and energy outflux at x = 150 m (green dash-dotted
curve), per unit span. The quantities, energy influx and outflux, during the
passage of solitary wave of amplitude 0.1 m and Δh = 0.3 m are computed
and they are averaged over time from t = 0 s to t = 200 s.
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Chapter 4

Shallow water equations in
uniform shear flows

With the assumption of null vorticity, Boussinesq-type models have been
used for calculation of the transformation of nonlinear and dispersive waves
in coastal areas. The water flows include shear flows in nature, it is no
longer relevant to use the assumption of irrotational flows when gravity waves
propagate on the surface of shear flows. So in this study we consider the
effect of vorticity on the motion of a long-wave models for weakly nonlinear
surface water waves. Recently, several authors [4, 11, 15, 22, 46, 65, 69] have
added the influence of horizontal vorticity on the waves in their works. To
avoid mathematical complexity and to confine the consequence of background
vorticity, a simple case of constant vorticity has been considered. Let the
spatial coordinates be (x, z) and the x−axis be oriented in the horizontal
direction. Assume that the motion is uniform in the direction perpendicular
to the xz−plane (long-crested waves). The gravitational acceleration g is in
the negative z−direction. Let η(x, t) denote the surface elevation. Assuming
a is a typical amplitude and l is a typical wavelength of the waves to be
described, the parameter α = a/h0 represents the waveheight to depth ratio
and the parameter β = h2

0/l
2 represents a water depth to wavelength ratio.

The vorticity of the water flow is defined by ω = wx − uz. Here ω
is constant. A shear flow with constant vorticity is described by a velocity
vector field u = (U,W ) = (u + zΓ, w) = (∂φ

∂x
+ zΓ, ∂φ

∂z
), where φ(x, z, t) is

the velocity potential of the disturbances. For Γ > 0 we have a current in
the opposite wave-propagation direction, while for Γ < 0 it is in a favorable
direction.

In paper D, a corresponding system was derived to second-order ac-

33
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Figure 4.1: This figure shows the background uniform shear flow U = zΓ. In
the figure Γ is negative, the waves which are superposed onto this background
current propagate to the right.

curacy in α and β (see also [65]). In dimensional variables this becomes

η̃t̃ + ṽx̃ + αΓ̃η̃η̃x̃ + α(η̃ṽ)x̃ − β

6

∂3ṽ

∂x̃3
= O(αβ, β2),

ṽt̃ + η̃x̃ + αṽṽx̃ − Γ̃ṽx̃ − β

2

∂3ṽ

∂x̃2∂t̃
+

β

6
Γ̃
∂3ṽ

∂x̃3
= O(αβ, β2),

(4.1)

where ṽ denotes horizontal velocity at the bottom of the channel and the
velocity potential is given by

φ̃ = φ0 − β

2
(1 + z̃)2

∂2φ0

∂x̃2
+

β2

24
(1 + z̃)4

∂4φ0

∂x̃4
+O(β3). (4.2)

Now if we let ũθ be the non-dimensional velocity at a non-dimensional height
z̃θ = −1 + θ(αη̃ + 1), with 0 ≤ θ ≤ 1, the system Eq. (4.1) yields

η̃t̃ + ũθ
x̃ + αΓ̃η̃η̃x̃ + α(η̃ũθ)x̃ +

β

2
(θ2 − 1

3
)
∂3ũθ

∂x̃3
= O(αβ, β2),

ũθ
t̃ + η̃x̃ + αũθũθ

x̃ − Γ̃ũθ
x̃ +

β

2
(θ2 − 1)

∂3ũθ

∂x̃2∂t̃
− β

2
(θ2 − 1

3
)Γ̃

∂3ũθ

∂x̃3
= O(αβ, β2).

(4.3)

Now for any real λ and μ, the above system is a special case of the more
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general system

η̃t̃ + ũθ
x̃ + αΓ̃η̃η̃x̃ + α(η̃ũθ)x̃ +

β

2
(θ2 − 1

3
)λũθ

x̃x̃x̃

− β

2
(θ2 − 1

3
)(1− λ)η̃x̃x̃t̃ = O(αβ, β2),

ũθ
t̃ + η̃x̃ − Γ̃ũθ

x̃ + αũθũθ
x̃ −

β

2
(θ2 − 1

3
)Γ̃

∂3ũθ

∂x̃3
+

β

2
(θ2 − 1)μΓ̃

∂3ũθ

∂x̃3

− β

2
(θ2 − 1)μ

∂3η̃

∂x̃3
+

β

2
(θ2 − 1)(1− μ)

∂3ũθ

∂x̃2∂t̃
= O(αβ, β2).

(4.4)

The functions ṽ and ũθ are related by

ṽ = ũθ +
β

2
θ2
∂2ũθ

∂x̃2
+O(αβ, β2). (4.5)

As shown in paper D, the KdV equation can be derived from (4.3)
by assuming a certain relationship between ṽ and η which determines waves
that mainly travel in the direction of increasing values of x. Differentiating
the equation for φ gives horizontal and vertical velocities at an arbitrary level
in fluid. After neglecting the second-order term, the dimensional form of the
velocities are given by

u =

√
gh0

h0

{
c̃+η +

−1

2(2c̃+ + Γ̃)

η2

h0

+
1 + 3c̃2+

6(2c̃+ + Γ̃)
h2
0ηxx

− c̃+
2
h2
0(1 +

z

h0

)2ηxx

}
,

w = −
√
gh0 c̃+ηx

{
1 +

z

h0

}
,

(4.6)

where c̃+ = −Γ̃
2

+
√

Γ̃2

4
+ 1 , and c̃− = −Γ̃

2
−

√
Γ̃2

4
+ 1 as the conjugate of

c̃+. This approximate velocity field is valid to the same order as the KdV
equation describing the excursion of the free surface with constant vorticity.
The new non-dimensional variables are defined by

x = h0x, z = h0z, η = h0η, t =
h0√
gh0

t, u =
√

gh0 u

and Γ =
Γ
√
gh0

h0

. (4.7)

Then Eq. (4.6) can be rewritten in terms of new variables as

u = c+η +
−1

2(2c+ + Γ)
η2 +

1 + 3c2+
6(2c+ + Γ)

ηxx − c+
1

2
(1 + z)2ηxx,

w = −c+ηx(1 + z).

(4.8)
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The KdV equation in the presence of shear flow can then be rewritten in
terms of new variables as

ηt + c+ηx +
c+(3 + Γ2)

(1 + c2+)
ηηx +

c3+
3(1 + c2+)

ηxxx = 0, (4.9)

where c+ = −Γ
2
+

√
Γ2

4
+ 1 .

The expression for the horizontal velocity of a fluid particle in the presence
of the shear flow is given in non-dimensional variables as

U(x, z, t) = c+η +
−1

2(2c+ + Γ)
η2 +

1 + 3c2+
6(2c+ + Γ)

ηxx

−c+
1

2
(1 + z)2ηxx + zΓ. (4.10)

Since the horizontal component of the particle velocity has been found ap-
proximately, it may be compared to the local phase velocity of the wave. As
we mentioned already this leads to one of the most fundamental breaking
criteria used in the literature, thus, kinematic breaking criterion. It is shown
in paper D that for both the solitary wave and the periodic travelling waves,
there are critical wave heights for which the horizontal component of the
particle velocity matches the phase velocity of the wave.

4.1 Cnoidal wave solutions

In this subsection, the cnoidal wave solution of the KdV equation (4.9) is
derived. A cnoidal wave is an exact periodic traveling-wave solution of the
KdV equation, first derived by Korteweg and de Vries in 1895 [36]. Such
a wave describes a surface wave whose wavelength is large compared to the
water depth.

We seek for a solution of Eq. (4.9) in the form of a single-phase
travelling wave of a permanent shape,

η(x, t) = η(ξ), (4.11)

where ξ = x − ct is the travelling phase and c is the phase velocity. Using
these solutions in the KdV equation (4.9), the following ordinary differential
equation is obtained:

−cηξ + c+ηξ +
c+(3 + Γ2)

(1 + c2+)
ηηξ +

c3+
3(1 + c2+)

ηξξξ = 0. (4.12)
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We then integrate once:

(−c+ c+)η +
c+(3 + Γ2)

(1 + c2+)

η2

2
+

c3+
3(1 + c2+)

ηξξ = D1, (4.13)

where D1 is an integration constant. We multiply by ηξ and integrate again:

(−c+ c+)
η2

2
+

c+(3 + Γ2)

(1 + c2+)

η3

6
+

c3+
3(1 + c2+)

η2ξ
2

= D1η +D2, (4.14)

where D2 is a second integration constant. Introducing a function f(η) leads
to:

c2+
(3 + Γ2)

η2ξ = −η3 + 3(c− c+)η
2 (2c+ + Γ)

(3 + Γ2)

+
6(1 + c2+)

c+(3 + Γ2)
(D1η +D2) = f(η).

(4.15)

First, we consider the case with η(ξ) in Eq. ( 4.15) having three real distinct
roots η1, η2 and η3 which are arranged in the order η3 < η2 < η1. Then f(η)
can be written as:

f(η) = −(η − η1)(η − η2)(η − η3). (4.16)

It follows from equation ( 4.15) that only real values for the slope exist if
f(η) is positive. Since f(η) is positive, η oscillates between the endpoints η1
and η2 and the period of oscillations is

ξ = ±
√

4(1− Γc+)

3 + Γ2

1

η1 − η3

∫ ψ

0

d ψ̂√
1−m sin2ψ

, (4.17)

where

m =
η1 − η2
η1 − η3

, 0 ≤ m ≤ 1. (4.18)

Equation ( 4.15) is integrated in terms of the Jacobian elliptic cosine function
cn to give

η = η2 + (η1 − η2)cn
2(B). (4.19)

The argument B =
√

(3+Γ2)
4(1−c+Γ)

(η1 − η3)
1/2(x − ct), cn is one of the Jacobian

elliptic functions defined by the incomplete elliptic integral of the first kind
[37]. The phase speed of the wave is

c = c+ +
(3 + Γ2)

3(2c+ + Γ)
(η1 + η2 + η3), (4.20)
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and the wavelength is given by

λ = 4

√
(1− c+Γ)

(3 + Γ2)
K(m)

1√
η1 − η3

, (4.21)

where K(m) is the complete elliptic integral of the first kind.

4.2 Solitary wave solutions

To get solitary wave solutions, we introduce boundary conditions as follows

η, η′, η′′ → 0 as ξ → ∞, (4.22)

which lead to D1 = D2 = 0. Hence, Eq. ( 4.15) becomes:

ηξ = η

√
(c− c+)

3(2c+ + Γ)

(1− c+Γ)
− (3 + Γ2)

(1− c+Γ)
η . (4.23)

By separation of variables we may write∫
d η

η
√
(c− c+)

3(2c++Γ)
(1−c+Γ)

− (3+Γ2)
(1−c+Γ)

η
= ±

∫
d ξ. (4.24)

Then the solitary wave solution is given by:

η = H sech2

(√
(3 + Γ2)H

4(1− c+Γ)
(x− ct)

)
, (4.25)

where H is the wave amplitude, and

c = c+ +
(3 + Γ2)H

3(Γ + 2c+)
, (4.26)

is the phase velocity. In order to have a real solution the quantity c must
be a positive number. As it is easily seen from (4.26) for c > 0, the solitary
wave moves to the right.

4.3 Particle trajectories

Take the functions ξ(t) and ζ(t) to describe the x and z-coordinates, respec-
tively, of a particle originally located at the point (x, z) = (ξ0, ζ0). Then
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dynamical system is recast in the form

∂ξ

∂t
= u(ξ(t), ζ(t), t) + ζΓ,

∂ζ

∂t
= w(ξ(t), ζ(t), t),

(ξ(0), ζ(0)) = (ξ0, ζ0),

(4.27)

where now the effect of an underlying shear-flow has been added. Finally,
the particle trajectories are found by numerically integrating the dynamical
system (4.27) using the fourth-order Runge-Kutta method.

4.3.1 Particle trajectories in solitary-wave solutions

For the solitary wave solution of the equation (4.9), the relation (4.8) gives
the horizontal and vertical velocities at an arbitrary point (x, z) in the fluid,
at a time t as

u = η0 sech
2 A

{
c+ − 1

2(2c+ + Γ)
η0 sech

2 A

+
(3 + Γ2)η0
4(1− c+Γ)

(
1 + 3c2+

6(2c+ + Γ)
− c+

2
(1 + z)2

)
(4− 6 sech2 A)

}
,

w = c+(η0)
3/2

√
(3 + Γ2)

1− (c+Γ)
(1 + z) sech2 A tanhA,

(4.28)

where the argument A(x, t) =
√

(3+Γ2)η0
4(1−c+Γ)

(x− ct).

In Figs. 4.2 and 4.3, examples of particle trajectories are shown dur-
ing the propagation of a surface solitary wave of amplitude 0.2. The particle
paths illustrated in Figs. 4.2 and 4.3 are approximate numerical solutions of
the dynamical system (4.27), where the vector fields is given in Eq. (4.28),
obtained with the fourth-order Runge-Kutta method. The fluid particle lo-
cations at the three different times where the wave profile and the particle
locations are color coded in Figs. 4.2 and 4.3; the light-gray curve indicates
the particle positions at the initial time t = 0; the dark-gray curve indicates
the particle positions at the middle time; the black curve indicates the par-
ticle positions at the final time. The fluid particles move to the right and
upwards for the case of favorable vorticity (Γ ≤ 0). For Γ > 0, the fluid
particles close to the bottom move to the left and upwards, since close to
the bottom the particles have lower vertical movement and only have shear
influence.
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Figure 4.2: The waves of amplitude 0.2 are shown at time t = 0 (light-gray),
t = 5 (dark-gray), t = 10 (black). The wave crest is initially located at
x = 0. The path of the fluid particles (ξ(t), ζ(t)) of (4.27) initially located at
(6,-0.97), (6,-0.8), (6,-0.5) and (6,-0.01) are shown different cases (a)Γ = 0 ;
(b) Γ = −0.5 ; (c) Γ = 0.5. The particle locations at three instances where
the wave profile is shown are color coded. The light-gray dot indicates the
particle positions at time t = 0. The dark-gray dot indicates the particle
positions at time t = 5. The black dot indicates the particle positions at
time t = 10.
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Figure 4.3: The waves of amplitude 0.2 are shown at time t = 0 (light-gray),
t = 2 (dark-gray), t = 4 (black). The wave crest is initially located at x = 0.
The path of the fluid particles (ξ(t), ζ(t)) of (4.27) initially located at (6,-
0.01) for different cases of vorticity (a)Γ = 0 ; (b) Γ = −0.3 ; (c) Γ = 0.3 are
shown. The particle locations at three instances where the wave profile is
shown are color coded. The light-gray curve indicates the particle positions
at time t = 0. The dark-gray curve indicates the particle positions at time
t = 2. The black curve indicates the particle positions at time t = 4.
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4.3.2 Particle trajectories in periodic-wave solutions

We now consider the particle paths in the fluid flow due to the propagation
of periodic travelling waves at the surface. The KdV equation (4.9) admits
the following solution in terms of cnoidal functions:

η = η2 + (η1 − η2)cn
2(B), (4.29)

where the solution is defined by the three constants η1, η2 and η3 which are

arranged in the order η3 < η2 < η1. The argument B =
√

(3+Γ2)
4(1−c+Γ)

(η1 −
η3)

1/2(x−ct), cn is one of the Jacobian elliptic functions defined by the incom-
plete elliptic integral of the first kind [37] and the modulus of cn is given by

m = (η1−η2)/(η1−η3). The phase speed of the wave is c = c++
(3+Γ2)

3(Γ+2c+)
(η1+

η2 + η3) and the wavelength is given by λ = 4
√

(1−c+Γ)
(3+Γ2)

K(m) 1√
η1−η3

, where

K(m) is the complete elliptic integral of the first kind. Using the relation
(4.8), the horizontal and vertical velocities may be written in terms of the
Jacobian elliptic functions cn, sn and dn as

u = c+(η2 + (η1 − η2)cn
2(B)) + −1

2(2c+ + Γ)
(η2 + (η1 − η2)cn

2(B))2

+
(3 + Γ2)

2(1− c+Γ)
(η1 − η3)(η1 − η2)

(
1 + 3c2+

6(2c+ + Γ)
− c+

2
(1 + z)2

)
,(

sn2(B)dn2(B)− cn2(B)dn2(B) +msn2(B)cn2(B))
w = c+(1 + z)

√
(3 + Γ2)

(1− c+Γ)
(η1 − η2)(η1 − η3)

1/2cn(B)sn(B)dn(B).

(4.30)

Some examples of particle trajectories during the propagation of a
cnoidal wave are presented in Figs. 4.5 and 4.4. The particle paths with
different vorticity values are shown for different depths in Fig. 4.4. It is noted
that from the lower panel of Fig. 4.4 that for particles closer to the bottom the
wave effect diminishes and therefore, the effect due to the vorticity become
dominant. This result is similar to the results of particle paths beneath
solitary waves.

The particle trajectories during one complete periodic cnoidal wave
cycle with m = 0.99 (nearly solitary ) and H = η1 − η2 = 0.2 for different
vorticity values Γ = 0,−0.1 and 0.1 are plotted in Fig. 4.5. The fluid particles
are located initially below the trough and the crest and the crest of the wave
is centered at x = 0. The particle paths are not closed in the presence of the
vorticity Γ ≤ 0. For Γ > 0 the particle paths are orbit loops.
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Figure 4.4: The left upper panel shows the periodic wave with amplitude
0.2, wavelength 6.0926, period 7.3850, phase speed 0.825 and Γ = 0 at t = 0
(light-gray) and t = 14.77 (black). The right upper panel shows the periodic
wave with amplitude 0.2, wavelength 7.2412, period 6.9691, phase speed
1.0391 and Γ = −0.4 at t = 0 (light-gray) and t = 13.9381 (black). The lower
panel shows the periodic wave with amplitude 0.2, wavelength 4.2834, period
7.6998, phase speed 0.5563 and Γ = 0.6 at t = 0 (light-gray) and t = 15.3996
(black). The initial particle locations at the three cases are shown in light-
gray curve. All particles are initially at x0 = wavelength/2−0.001 and depth
z0 = −0.1,−0.5 and − 0.9.
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Figure 4.5: The left upper panel shows the periodic wave with amplitude
0.2, wavelength 18.9885, period 18.6397, phase speed 1.0187 and Γ = 0 at
t = 0 (light-gray) and t = 18.6397 (black). The right upper panel shows
the periodic wave with amplitude 0.2, wavelength 19.9285, period 18.6248,
phase speed 1.07 and Γ = −0.1 at t = 0 (light-gray) and t = 18.6248 (black).
The lower panel shows the periodic wave with amplitude 0.2, wavelength
18.0328, period 18.5905, phase speed 0.97 and Γ = 0.1 at t = 0 (light-gray)
and t = 18.5905 (black). The paths of fluid particles are located at x, z
where initial x-coordinate are x = −5, 0 and wavelength/2−0.001 and depth
z = −0.9,−0.4 and −0.078.
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4.4 Breaking criterion

As explained in the introduction, if the horizontal velocity near the crest of
a wave exceeds the speed of the wave, then the wave break occurs. Let us
denote propagation speed by c and horizontal velocity by U . The horizontal
velocity U can be obtained from (4.10) and wave breaking occurs if

c+η +
−1

2(2c+ + Γ)
η2 +

1 + 3c2+
6(2c+ + Γ)

ηxx − c+
1

2
(1 + z)2ηxx + zΓ > c.

Using appropriate wave solutions (η(x, t)) of the KdV equation (4.9), one can
find the critical wave heights where the horizontal component of the particle
velocity matches the phase velocity of the wave in the presence of uniform
shear flow shown in Fig. 4.1.

In paper D, the critical waveheights for the solitary and cnoidal wave
solutions of the KdV equation (4.9) are studied using kinematic breaking
criterion (4.31).

4.5 Further work

In the paper C, the study focused on particles as passive tracers in the water
flow. Another possible study would be the motion of point vortices placed
underneath a free surface. As this study is devoted to one-dimensional cases,
it should be possible to extend it to the two-dimensional case. It would
also be interesting to look at higher-order models such as the fully nonlinear
models.
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Abstract. This paper is focused on finding rules for wave-
height change in a solitary wave as it runs up a slowly in-
creasing bottom. A coupled BBM system is used to describe
the solitary waves. Expressions for energy density and en-
ergy flux associated with the BBM system are derived, and
the principle of energy conservation is used to develop an
equation relating the waveheight and undisturbed depth to
the initial undisturbed depth and the incident waveheight. In
the limit of zero waveheight, Boussinesq’s shoaling law is re-
covered.

1 Introduction

The study of surface gravity waves is one of the classical
problems in fluid mechanics and is of fundamental impor-
tance in coastal engineering. One particular case of inter-
est, both theoretically and in practice, is the development of
ocean waves as they propagate shorewards and experience a
decrease in the water depth. A significant amount of work
has been focused on this phenomenon, which is known as
wave shoaling. The literature on the subject includes experi-
mental studies in controlled environments in particular, such
as wave flumes, and a large number of theoretical studies.
Among the first to study the problem was Boussinesq,

who treated wave shoaling in the framework of his theory
of weakly nonlinear long waves. Based on the assumption
that the energy content of the wave is unchanged as it prop-
agates, Boussinesq developed a simple rule for the wave-
height change of a long wave as it runs up on a bottom
slope. Suppose the initial undisturbed depth of the fluid is
h0, and the initial waveheight is denoted by H0. If the lo-
cal depth is denoted by h, and the associated waveheight
is denoted by H , then Boussinesq’s law can be written as

H/H0 = h0/h. This law applies in the context of the so-
called Boussinesq scaling, where the waveheight is small and
the wavelength is long when compared to the initial undis-
turbed depth h0. In the case where the effects on nonlin-
ear steepening and of linear dispersion are approximately
balanced, solitary waves can be found, and it appears that
Boussinesq’s law applies primarily to the shoaling of soli-
tary waves. As explained in Miles (1980), Boussinesq’s law
has been rediscovered a number of times with varying de-
grees of rigor. Probably the most careful derivation was given
in Grimshaw (1970, 1971), where Boussinesq’s result actu-
ally follows from a more general analysis of the wave action
principle. Indeed, Grimshaw (1971) studied the evolution of
solitary waves in water of variable depth and he observed that
for small values of initial waveheight, the shoaling rates are
not exactly given by Boussinesq’s law, but that they approach
Boussinesq’s law in the limit H0 → 0.
In the present paper, the Boussinesq law is derived us-

ing a different approach, which is based directly on Boussi-
nesq’s original assumption that energy is conserved as the
wave shoals. Using this assumption, and a careful analysis
of the energy density associated to a particular Boussinesq
system featuring exact solitary-wave solutions, waveheight
changes can be computed in a straightforward manner. The
system used here is known as the coupled BBM system. The
method used to find the associated energy density is an ex-
tension of the recent work Ali and Kalisch (2012) where ap-
proximations of energy density and flux in the context of the
Boussinesq scaling were found. The computations actually
show that for waves of finite waveheight, the shoaling rate is
somewhat lower than Boussinesq’s law suggests. However,
in the limit of zero waveheight, Boussinesq’s law is recov-
ered. In this sense, the results are in line with the findings of
Grimshaw (1971).
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It should be noted that we do not incorporate an uneven
bottom profile into the equations, but rather consider the tran-
sition of the wave on the slope as a gradual adjustment pro-
cess of which only the initial and final states are considered.
Since the effects of the bottom slope are only modeled indi-
rectly, our analysis of wave shoaling using the conservation
of energy depends strongly on the adiabatic approximation.
In clear terms, it must be assumed that the wavelength l of the
wave running up the slope is much smaller than the charac-
teristic length h�x/(h0− h) of the depth variation. If this is
the case, then the wave undergoes an adiabatic change, and
the relation between wavelength and wave amplitude stays
approximately intact. If the bottom gradient is too large, then
the wave will change character and violate the Boussinesq
scaling as it runs up the slope. Moreover, larger slopes will
lead to reflected waves and significant steepening and asym-
metry of the main wave, and none of these figure into the
present analysis.
Let us briefly introduce the model system to be used here.

Assuming a is a typical amplitude and l is a typical wave-
length of the waves to be described, the parameter α = a/h0
represents the waveheight to depth ratio, and the parameter
β = h20/l2 represents a water depth to wavelength ratio. The
Boussinesq scaling consists of the assumptions that nonlin-
earity is weak (α � 1), and dispersive effects are also weak
(β � 1), and the two parameters of the same order. In other
words, the Stokes number S = α/β should be O(1). In Bona
et al. (2002), a general family of Boussinesq system was
found, and one particular case is the coupled BBM system
to be used in the present study. In the non-dimensional vari-
ables to be defined in Section 2, the system takes the form

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ − 1
2

(
θ2− 1

3

)
βη̃x̃x̃t̃ = O(αβ,β2), (1)

w̃t̃ + η̃x̃ + αw̃w̃x̃ − 1
2

(
1− θ2

)
βw̃x̃x̃t̃ = O(αβ,β2). (2)

Here η̃ represents the non-dimensional excursion of the free
surface, and w̃ represents the non-dimensional horizontal ve-
locity at a non-dimensional height 0≤ θ ≤ 1 in the fluid col-
umn. Disregarding terms of order O(α2,αβ,β2) yields the
evolution system governing the approximate dynamics of the
flow. The point of view adopted in the present paper is that
Eq. (1) represents an approximate mass conservation equa-
tion, and Eq. (2) represents approximate momentum conser-
vation. Since energy conservation is not an independent prin-
ciple in homogeneous fluids, it should be possible to express
energy conservation in terms of the unknowns η̃ and w̃ of
Eqs. (1) and (2). The approximate energy balance equation
can be written in the form

∂

∂t̃
Ẽ(η̃, w̃) + ∂

∂x̃
q̃E(η̃, w̃) = O(α2,αβ,β2), (3)

and the principal task is to find appropriate expressions for
the energy density Ẽ(η̃, w̃) and energy flux q̃E(η̃, w̃). These
quantities will be computed in Sect. 2. Section 3 is devoted

to the derivation of an approximate shoaling law, and Sect. 4
contains a brief discussion.

2 Energy balance

For an inviscid, incompressible fluid, the surface water-wave
problem is given by the Euler equations with no-flow con-
ditions at the bottom and kinematic and dynamic boundary
conditions at the free surface. Let the spatial coordinates
be (x,z) and the x-axis be oriented in the horizontal direc-
tion. Assume that the motion is uniform in the direction per-
pendicular to the xz−plane (long-crested waves). The grav-
itational acceleration g acts in the negative z-direction. Let
η(x, t) denote the surface elevation, and let φ(x,z, t) be the
velocity potential.
From the incompressibility of the fluid, the potential φ sat-

isfies Laplace’s equation in the domain {(x,z) ∈ R2| −h0 <

z < η(x, t)}. The complete problem is written as follows.
�φ = 0 in − h0 < z < η(x, t), (4)

φz = 0 on z = −h0, (5)

ηt + φxηx − φz = 0,
φt + 1

2 (φ
2
x + φ2y) + gη = 0,

}
on z = η(x, t). (6)

As the derivation of the coupled BBM-system is well known
(see Bona et al., 2002 and Whitham, 1974), we only sketch
the outline for the interested reader. Denote the limiting long-
wave speed by c0 = √

gh0, and define non-dimensional vari-
ables by

x̃ = x

l
, z̃ = z + h0

h0
, η̃ = η

a
, t̃ = c0t

l
, φ̃ = c0φ

gal
.

As explained by Whitham (1974), one may use the ansatz

φ̃ =
∞∑

m=0
f̃m(x̃, t̃)z̃mβm (7)

to represent the non-dimensional velocity potential in terms
of the unknown functions f̃m(x̃, t̃). Now Laplace’s equation
and the bottom boundary condition Eq. (5) may be used to
arrive at the expression

φ̃ = f̃ − z̃2

2
f̃x̃x̃β +O(β2), (8)

where f̃ = f̃0. From Eq. (8) and the second boundary condi-
tion at the free surface, we have the relation

η̃ + f̃t̃ − β

2
f̃x̃x̃t̃ + α

2
f̃ 2x̃ = O(αβ,β2). (9)

Differentiating Eq. (9) with respect to x̃, and inserting the
expansion for φ in the first boundary condition at the free
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surface, Eq. (6) yields a system of equations in terms of the
horizontal velocity at the bottom ṽ = f̃x̃ . However, for the
purposes of the present article, a different but equivalent sys-
tem will have to be used. Denoting by w̃ the non-dimensional
horizontal velocity at a non-dimensional height 0≤ θ ≤ 1 in
the fluid column, elementary considerations (see Bona et al.,
2002) show that ṽ and w̃ are related by

ṽ = w̃ + β

2
θ2w̃x̃x̃ +O(β3). (10)

One may use Eq. (10) and the first-order relations ṽt̃ + η̃x̃ =
O(α,β), η̃t̃ + ṽx̃ = O(α,β) to arrive at a general model sys-
tem for small-amplitude long waves. The system is given in
non-dimensional variables by

η̃t̃ + w̃x̃ + α(η̃w̃)x̃ + 1
2

(
θ2− 1

3

)
λβw̃x̃x̃x̃ (11)

−1
2

(
θ2− 1

3

)
(1− λ)βη̃x̃x̃t̃ = O(αβ,β2),

w̃t̃ + η̃x̃ + αw̃w̃x̃ + 1
2

(
1− θ2

)
μβη̃x̃x̃x̃ (12)

−1
2

(
1− θ2

)
(1− μ)βw̃x̃x̃t̃ = O(αβ,β2).

Here λ and μ are modeling parameters which have no phys-
ical meaning, but can be chosen arbitrarily in the range
0≤ λ,μ ≤ 1. Choosing in particular λ = 0 and μ = 0 yields
the coupled BBM system Eqs. (1) and (2).
In order to derive the associated energy balance equation,

we need expressions for the velocity field and pressure. The
velocity field is easily seen to be given by

φ̃x̃ = w̃ + β

2
(θ2− z̃2)w̃x̃x̃ +O(β2), (13)

φ̃z̃ = −z̃w̃x̃β +O(β2). (14)

The dynamic pressure P ′, which measures the deviation from
hydrostatic pressure, is given quite generally by

P ′ = P − Patm+ ρgz = −ρφt − ρ

2
| 	φ|2.

We use the scaling ρgaP̃
′ = P ′. Then as shown by Ali and

Kalisch (2012), the dynamic pressure can be found with the
help of Eq. (9) to be

P̃
′ = η̃ + 1

2
β(z̃2− 1)w̃x̃t̃ +O(αβ,β2). (15)

Next, we examine energy balance of the BBM system. If
we assume that the potential energy of a particle is zero at
the undisturbed free surface, and the potential energy is zero
when no wave motion is present, then the total energy in-
side a control volume of unit width, delimited by the interval
[x1,x2] on the lateral sides, and by the bottom and the free
surface can be written as

E = 1
2

x2∫
x1

η∫
−h0

ρ |�φ|2 dzdx +
x2∫

x1

η∫
0

ρgzdzdx,

where the first term represents the kinetic energy, and the
second term represents potential energy. The conservation of
total mechanical energy (see Stoker, 1957, chap.1.) is written
as

d
dt
1
2

x2∫
x1

η∫
−h0

ρ |�φ|2 dzdx + d
dt

x2∫
x1

η∫
0

ρgzdzdx

=
[ η∫
−h0

{
ρ
2 |�φ|2+ ρgz + P

}
φx dz

]x2

x1

.

Expressing the above relation in non-dimensional variables
gives

d
dt̃

x2/l∫
x1/l

1+αη̃∫
0

{
α2

2

(
φ̃2x̃ + 1

β
φ̃2z̃

)}
dz̃dx̃ (16)

+ d
dt̃

x2/l∫
x1/l

1+αη̃∫
1

(z̃ − 1)dz̃dx̃ =
⎡
⎢⎣
1+αη̃∫
0

{
α3

2

(
φ̃3x̃ + 1

β
φ̃2z̃ φ̃x̃

)

+α(z̃ − 1)φ̃x̃ + α2P̃ ′φ̃x̃ + α(1− z̃)φ̃x̃

}
dz̃

]x2/l

x1/l
.

If we substitute the expressions for φ̃x̃ , φ̃z̃ and P̃ ′ found in
Eqs. (13) and (15) respectively, and integrate with respect to
z̃, then we obtain

d
dt̃

x2/l∫
x1/l

{
α2(w̃2+η̃2)

2 + α2β
2

(
θ2− 1

3

)
w̃w̃x̃x̃

+α2β
6 (w̃x̃)

2+ α3w̃2

2 η̃
}
dx̃ =

[
α3

2
w̃3+ α2η̃w̃ + α3η̃2w̃

+α2

2
β
(
θ2− 1

3

)
η̃w̃x̃x̃ − α2

3
βw̃w̃x̃t̃

]x2/l

x1/l

+O(α2β2,α3β,α4).

Taking the limit as x2 → x1, and omitting the common factor
α2, we obtain the differential energy balance equation

d
dt̃

[
(w̃2+ η̃2)

2
+ β

2

(
θ2− 1

3

)
w̃w̃x̃x̃ + β

6
(w̃x̃)

2+ αw̃2

2
η̃

]
+

d
dx̃

[
α

2
w̃3+ η̃w̃ + αη̃2w̃ + 1

2
β
(
θ2− 1

3

)
η̃w̃x̃x̃ − 1

3
βw̃w̃x̃t̃

]
= O(β2,αβ,α2).

From Eq. (16), we get the non-dimensional energy density

Ẽ = α2(w̃2+ η̃2)

2
+ α2β

2

(
θ2− 1

3

)
w̃w̃x̃x̃

+α2β

6
(w̃x̃)

2+ α3w̃2

2
η̃,
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and the non-dimensional energy flux

q̃
Ẽ

= α3

2
w̃3+ α2η̃w̃ + α3η̃2w̃

+α2

2
β
(
θ2− 1

3

)
η̃w̃x̃x̃ − α2

3
βw̃w̃x̃t̃ .

The dimensional versions of these quantities are given by

E = ρ

2
h0w

2+ ρ

2
gη2+ ρ

2
h30

(
θ2− 1

3

)
wwxx (17)

+ρ

6
h30w

2
x + ρ

2
w2η

and

qE = ρ

2
h0w

3+ ρc20ηw + 1
h0

ρc20wη2

+ρ

2
c20h

2
0

(
θ2− 1

3

)
ηwxx − ρ

3
h30wwxt .

We would like to point out that it would be interesting to de-
rive similar quantities for the system derived by Green and
Naghdi (1976), which does not have the same limitations on
the wave amplitude as the BBM system used in the present
analysis. The Green–Naghdi system is also applicable for
variable bottom topography, and has been used in the mod-
eling of tsunamis by Zheleznyak and Pelinovsky (1985). In
fact, a pressure formula similar to Eq. (15), but valid for the
Green–Naghdi system has already been found by Pelinovsky
and Choi (1993).

3 Solitary wave shoaling

One of the most readily investigated changes in a wave trans-
mitting into shallower water is the variation in waveheight,
and this is the main object of this section. We focus on the
case of a solitary wave which runs up on a gentle slope with
no variation in the transverse direction. Even in this two-
dimensional case, there are a number of important physical
effects which are neglected in the model at hand. In partic-
ular, we do not take account of viscosity and rotational ef-
fects; and as explained in the introduction, we also assume
that wave reflection can be neglected to a first approximation,
such as for instance in the case of a very gentle slope. More-
over, we consider long-crested waves shoaling on a plane
beach, so that wave refraction does not play a role. As the
solitary wave starts to propagate over a sloping bottom, it will
become slightly skewed, and the waveheight will increase.
Eventually, the wave will steepen and break. The different
stages of this shoaling process have been minutely detailed
by Synolakis and Skjelbreia (1993).
As shown by Chen (1998), the coupled BBM system

Eqs. (1) and (2) features solitary-wave solutions in a closed
form in the case that θ2 = 7

9 . Since the analysis of the energy
balance in a shoaling wave given here relies on the exact for-
mula for the solitary wave, the coupled BBM system with

θ2 = 7
9 is used in the present work. In dimensional variables,

this system takes the form

ηt + h0wx + (ηw)x − h20
2
4
9
ηxxt = 0, (18)

wt + gηx +wwx − h20
2
2
9
wxxt = 0. (19)

The solitary wave solutions of Eqs. (18) and (19) are given
by

η0(x, t) = H0 sech2(κ0(x − C0t)), (20)
w0(x, t) = W0 sech2(κ0(x − C0t)). (21)

The constant H0 is the initial waveheight, and the constants
W0, C0 and κ0 are given by

W0 =
√

3g
H0+ 3h0H0,

C0 = 3h0+ 2H0√
3h0(H0+ 3h0)

√
gh0,

and

κ0 = 3
2h0

√
H0

2H0+ 3h0 .

Now let us consider a channel of depth h0 and suppose the
depth of the water is slowly decreasing to a smaller value h.
We suppose that the waveheight of the incident wave is H0,
and denote waveheight of the wave at the new depth by H .
In an experimental setting, the waveheight is usually contin-
uously varying, and the waveheight change is recorded over
the extent of the slope (cf. Fig. 1). In order to invoke energy
conservation in a theoretical sense, we assume that the wave
travels up a gentle slope, and reorganizes into a solitary wave
on the new even bottom with undisturbed depth h.
Using the expression for E obtained in the previous sec-

tion, and evaluating the integral E = ∫
Edx for the total en-

ergy at two different instants in time, one at which the wave is
located over the initial depth h0, and one at which the wave is
located above a different depth h then yields an equation re-
lating the waveheights H0 and H at the two different depths.

Since the solitary wave features exponential decay, energy
conservation may be stated in the form

∞∫
−∞

E(η0,w0)dx =
∞∫

−∞
E(η,w)dx, (22)

where η and w are given by Eq. (20) with the constants W ,
C and κ given in terms if h and H instead of h0 and H0.
After performing the integration with respect to x, we find
the relation
h0

2
W 2
0

κ0
− 2
45

h30κ0W
2
0 + 2

5
W 2
0H0

1
κ0

+ 1
2
gH 2

0
1
κ0

= (23)

h

2
W 2

κ
− 2
45

h3κW 2+ 2
5
W 2H

1
κ

+ 1
2
gH 2 1

κ
.
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Fig. 1. The geometry of the problem. The waveheight H is mea-
sured on the slope.
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Fig. 2. Computations for the shoaling of solitary waves from rela-
tion Eq. (23). The solid line depicts the shoaling relation according
to Boussinesq’s law. Shoaling rates for waves of initial waveheight
H0 = 0.05m, 0.1m and 0.2m are computed. As the waveheight
of the incident solitary waves decreases, the shoaling relation ap-
proaches Boussinesq’s result.

From Eq. (23), it is plain that H may be expressed in terms
of h0, h and H0, though in general the values of H will have
to be approximated numerically. We have computed wave
shoaling for initial undisturbed depth h0 = 1 m and initial
waveheights H0 equal to 0.05 m, 0.1 m and 0.2 m, and for
a ratio of undisturbed to initial depth of up to 0.5. The rela-
tive wave height H/H0 computed for these waves is plotted
in Fig. 2. Boussinesq’s relation which gives shoaling rates
∝ h−1, is plotted as a solid line. It is apparent that the com-
puted curves get close to the line h−1 for decreasing initial
waveheight.

4 Discussion and conclusions

Shoaling of solitary waves has been analyzed using conser-
vation of energy in the Boussinesq scaling. It appears that for
waves of very small waveheight, Boussinesq’s shoaling law
is approximately recovered. To explain the discrepancy ob-
served for larger waveheights, we note that the Boussinesq
shoaling law follows for small waveheights if only the last
term in the expression Eq. (17) for the energy density is used
to compute the energy of the solitary wave. This can also be
done in the context of other Boussinesq-type systems found
by Bona et al. (2002). In particular, in the case of the KdV
equation, the total mechanical energy for a solitary wave is
given by

E = ρg
8
33/2

H 3/2h3/2, (24)

which along with conservation of energy during an adiabatic
shoaling process, yields Boussinesq’s law H/H0 = h0/h. In
the limit of small amplitude, solitary-wave solutions of all
the Boussinesq-type systems are equivalent to solitary waves
of the KdV equation, so that the formula Eq. (24) is valid
asymptotically for H0 → 0 also for solitary waves governed
by Eqs. (18) and (19). As explained by Bona et al. (2002),
these Boussinesq-type systems are valid for waves for which
the Stokes number S = α/β is of O(1). Shoaling rates for
other waves can be quite different. In particular, for small
amplitude waves, one often finds the so-called Green’s law
H/H0 ∼ 1/h1/4, which can be derived from linear wave the-
ory (see Lamb, 1932 and Synolakis, 1991).
For comparison, we have included some aspects of a shoal-

ing study which was first presented by Pelinovsky and Tal-
ipova (1977, 1979). In these works, the waveheight–wave
energy relation for numerical solutions of the full water-
wave problem found by Longuet-Higgins (1974); Longuet-
Higgins and Fenton (1974) is used. The results are displayed
in Fig. 3, and indicate shoaling rates similar to Boussinesq’s
law for most cases, since the slopes of the curves are seen to
be close to 1 for the most part. Only the very first part of the
curve forH0 = 0.05m has a smaller slope, and might suggest
shoaling rates closer to Green’s law for very small amplitude
waves and small differences in depth. Since Green’s laws can
be derived in the case when there is no particular relationship
between the wavelength and the amplitude, it is not surpris-
ing that for solitary waves, which generally respect the rela-
tion α ∼ β, the Boussinesq law is a more generic outcome.

Besides the works Pelinovsky and Talipova (1977, 1979)
already mentioned, there have also been other analytic stud-
ies. For instance, in Pelinovsky et al. (1993), nonlinear ray
theory is used to derive a rather general shoaling law, includ-
ing wave diffraction and dissipation. The shoaling relation
derived by Pelinovsky et al. (1993) reduces to Green’s law
in the case that nonlinearity and dispersion are neglected. In
the case of a periodic sequence of solitary waves, the relation
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Fig. 3. Computations for the shoaling of solitary waves using the
method of Pelinovsky and Talipova (1977, 1979), and using numer-
ical data found by Longuet-Higgins (1974); Longuet-Higgins and
Fenton (1974). The solid line depicts the shoaling relation accord-
ing to Boussinesq’s law. The lower dashed line depicts the shoal-
ing relation according to Green’s law. Shoaling rates for waves
of initial waveheight H0 = 0.05m, 0.1m and 0.2m are computed.
The dashed curve terminates because the maximum wave energy is
reached.

reduces to a “nonlinear” Green’s law, such as found by Os-
trovsky and Pelinovsky (1970). See also Ostrovsky and Peli-
novsky (1975) for nonlinear wave refraction.
Comparisons with wave tank experiments indicate that re-

liable results can be obtained for variations of the Stokes
number S over nearly two orders of magnitude (see Bona et
al. (1981)). However, these comparisons also indicate that the
an appropriate damping mechanism should be included into
the description. The effect of different models of bottom fric-
tion on the waveheight changes in surface waves were inves-
tigated by Caputo and Stepanyants (2003). It was found that
of the three dissipation models considered, Chezy-type dis-
sipation had the strongest damping effect in a channel of de-
creasing depth, while Reynolds dissipation had the weakest
effect. These authors also considered the influence of a chan-
nel of changing width. In particular, a generalised Green’s
law is proposed which takes account of both changing depth
and width.
There have also been several experimental and purely

numerical studies directed towards understanding shoaling
rates of long-crested waves in shallow water. Early experi-
mental work of Ippen and Kulin (1954) and Camfield and
Street (1969) suggested that wave shoaling may be approx-
imated by Green’s law (see Madsen and Mei (1969)), but
some of these date feature high scatter, and some also sug-
gest shoaling rates higher than Green’s law. The systematic
study of Synolakis and Skjelbreia (1993) found that solitary

wave shoaling can be described well if the evolution is clas-
sified in different phases. There are two pre-breaking phases,
the first is relatively well approximated by Green’s law the
second which features more rapid shoaling can be approxi-
mated by Boussinesq’s law.
Using a numerical approximation of a Boussinesq model

similar to the system studied in this paper, Peregrine (1967)
found that the shoaling rates can be qualitatively predicted by
Green’s laws, but that there is no systematic variation of the
waveheight change with either slope or initial waveheight.
Shuto (1973) suggested that growth rates of both Boussi-
nesq’s result and Green’s law are correct, and the validity of
either depends on the parameter range of any particular situ-
ation. In fact, Shuto displays graphs which suggest that both
the experiments by Camfield and Street (1969) and Ippen and
Kulin (1954) could be interpreted using Boussinesq’s law or
Green’s law, in certain areas. In his review article on solitary
waves, Miles (1980) noted that Boussinesq’s shoaling law
should be appropriate for sufficiently small values of the bot-
tom slope, but that Green’s law is a better approximation for
larger slopes or sufficiently small waveheight of the incident
wave.
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Abstract. A coupled BBM system of equations is studied in the situation of water waves propagating over a decreasing fluid depth.

A conservation equation for mass and also a wave breaking criterion, both valid in the Boussinesq approximation, are found. A

Fourier collocation method coupled with a 4-stage Runge–Kutta time integration scheme is employed to approximate solutions

of the BBM system. The mass conservation equation is used to quantify the role of reflection in the shoaling of solitary waves

on a sloping bottom. Shoaling results based on an adiabatic approximation are analysed. Wave shoaling and the criterion of the

breaking of solitary waves on a sloping bottom are studied. To validate the numerical model the simulation results are compared

with reference results and a good agreement between them can be observed. Shoaling of solitary waves is calculated for two

different types of mild slope model systems. Comparison with reference solutions shows that both of these models work well in

their respective regimes of applicability.

Key words: coupled BBM system, shoaling rates, mass conservation law.

1. INTRODUCTION

Model equations for free surface water waves propagating in a horizontal channel of uniform depth have

been widely studied for many years. Boussinesq models incorporate the lowest-order effects of nonlinearity

and frequency dispersion as corrections to the linear long wave equation. These models are widely used for

describing the propagation of non-linear shallow water waves near coastal regions. In Boussinesq theory, it

is important to assume that water is incompressible and inviscid and the flow is irrotational. There are two

important parameters: the nonlinearity, the ratio of amplitude to depth, represented by α = a/h0, and the

dispersion, the ratio of depth to wavelength, represented by β = h2
0/l2. As explained in detail in [5], the

Boussinesq approximation is valid only when both α and β are small and have the same order of magnitude.

The more realistic situation of an uneven bottom profile is fundamental to studies of ocean wave

dynamics in coastal regions. Several authors [15,19,21,28,30,40,43] have included the effect of smooth

and slowly varying bottom topographies in both Boussinesq and shallow water theory. Wave shoaling is

the effect by which surface waves propagating shorewards experience a decrease in the water depth. The

study of shoaling waves is of importance in the nearshore areas and in the design of coastal structures. The
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‘classical’ Boussinesq model was applied to shallow water of uneven bottom in two horizontal dimensions

by Peregrine [36], who used depth-averaged velocity as a dependent variable and derived the system

ηt +∇ · [(h+η)ū] = 0

ūt +∇η +(ū ·∇)ū− h
2
∇(∇ · (hūt))+

h2

6
∇(∇ · (ūt)) = 0

}
, (1)

where

ū =
1

h+η

∫ η

−h
udz, (2)

∇ = (∂x,∂y)
T , η = η(x,y, t) represents the deviation of the free surface from its rest position at time t,

u = u(x,y,z, t) denotes the horizontal velocity of the fluid at some height, ū denotes the depth-averaged

velocity, and the bottom is z =−h(x,y).
Several improved Boussinesq-type models have been developed, starting with Madsen et al. [27],

Nwogu [32], and Wei et al. [42], among others. Madsen et al. [27] achieved an improved linearized model by

rearranging higher-order terms in the classical momentum equations, which are formally equivalent to zero

within the accuracy of the model. Nwogu [32] demonstrated the flexibility obtained by using the velocity

at an arbitrary depth as the velocity variable. Wei et al. [42] used Nwogu’s approach to derive a fully

nonlinear extension of Boussinesq equations, which further extended the range of validity of Boussinesq

models without the weak nonlinearity restriction. It is worth mentioning that in [8,31] the Boussinesq

model (1) is extended to the moving bottom topography, where the bottom topography depends on x, y, and t.
In [31], a Benjamin–Bora–Mahony (BBM–BBM) type system (see [3]) is derived and solved numerically

using a finite element method. One aspect in which the BBM system differs from Peregrine’s Boussinesq’

system is that it is amenable to numerical integration. Indeed, it is much easier to define a stable numerical

approximation to a system of BBM type than to other Boussinesq systems, such as the Peregrine system.

On the other hand, the Peregrine system features exact mass conservation while mass conservation in the

BBM–BBM type systems is only approximate. Nevertheless, in the current work, we use a system of BBM

type for numerical convenience.

The main contribution of the present paper is an in-depth study of wave reflection in a shoaling analysis

based on Boussinesq systems such as (1). As part of our analysis, we formulate an approximate mass

balance law associated with the Boussinesq scaling developed for flat bottoms in [1]. We also extend

the wave breaking criterion from [4] to the case of uneven beds. The mass balance equation is used in

quantifying wave reflection due to the bottom slope, and the wave breaking criterion is used to determine

an approximate termination point for the shoaling curves. A significant amount of literature has focused

on the use of nonlinear shallow water equations to analyse long wave shoaling on a mildly sloping beach,

and both experimental and numerical investigations have been carried out. However, reflection has not been

quantified.

Many experimental studies, including the early studies [6,18], were aimed partly at comparison with

classical shoaling laws such as the laws of Green and Boussinesq. However, most experimental work on

wave shoaling has shown that actual shoaling curves vary considerably from the predictions of both Green’s

and Boussinesq’s law. Grilli et al. [17] solved the full Euler equations by direct numerical integration, and

this work compares their shoaling results with the numerical solution obtained in the present work.

Wave breaking is also important in studying nearshore area phenomena and tsunami propagation in

coastal regions, because solitary waves are often used to model steep surface waves shoaling on beaches.

An enormous literature also exists on breaking waves in a number of situations, including shoaling, wave

breaking in open bodies of water, and breaking induced by a wave-maker (see [12,38], for instance). Chou

and Quyang [9,10] and Chou et al. [11] discussed the criterion for the breaking of solitary waves on different

slopes using the boundary element method to simulate the process of wave breaking. Using the fully

nonlinear potential flow wave model, Grilli et al. [17] derived a criterion for wave breaking. In this paper,

a different criterion of breaking solitary waves on a sloping bottom of a BBM–BBM type system is derived

based on previous work in [4]. Characteristics such as the breaking index, the wave height, the water depth,
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and the maximum particle velocity at the breaking point are studied and the breaking indices are compared

with those obtained by Grilli et al. [17] and Chou et al. [11]. The relation between breaking and reflection

is investigated.

The present paper is organized as follows. In Section 2, the outline for the derivation of the coupled

BBM–BBM type system [31] is given, and also the mass balance equations and the wave breaking criterion

are derived. In Section 3, the coupled BBM–BBM type system is solved numerically using a Fourier

collocation method coupled with a 4-stage Runge–Kutta time integration scheme and the convergence of

the numerical scheme is validated. In Section 4, we demonstrate the effectiveness of the numerical method

applied to our model system in simulations of solitary wave shoaling on a sloping bottom. Shoaling and

wave breaking are studied numerically. This paper compares two models: the coupled BBM–BBM type

system derived by Chen [8] and the one in Mitsotakis [31] with respect to the evolution of solitary waves.

This comparison is concerned with initial wave profiles and wave shoaling on slopes that correspond to

unidirectional propagation. In Section 5, the mass balance expressions are tabulated and the reflection of a

small amplitude wave propagating over a slope is examined. Finally, a short conclusion is given in Section 6.

2. DERIVATION OF THE SYSTEM

The main model system to be used here belongs to the family of models derived in Mitsotakis [31]. In order

to obtain the Boussinesq system, the full water wave problem is used. A Cartesian coordinate system (x,z)
is considered, with the x-axis along the still water level and the z-axis pointing vertically upwards. The fluid

domain is bounded by the sea bed at z = −h(x) and the free surface z = η(x, t). Then the system of Euler

equations for potential flow theory in the presence of a free surface is used. The derivation of the Boussinesq

system is only briefly sketched. For a full derivation, the interested reader may consult [8] and [31]. The

variables are non-dimensionalized using the following scaling:

x̃ =
x
l
, z̃ =

z
h0

, t̃ =
√

gh0t
l

, (3a)

h̃ =
h
h0

, η̃ =
η
a
, φ̃ =

h0

al
√

gh0

φ , (3b)

where the tilde ( ˜ ) denotes non-dimensional variables, and h0, l, and a denote characteristic water depth,

wave length, and wave amplitude, respectively.

Consider a standard asymptotic expansion of the velocity potential φ and using the Laplace condition

(�φ = 0, −h < z < η), write the velocity potential φ̃ in the simplest form

φ̃ = φ̃ (0) +
z̃
1!

φ̃ (1) + (−β )
[

z̃2

2!

∂ 2

∂ x̃2
φ̃ (0) +

z̃3

3!

∂ 2

∂ x̃2
φ̃ (1)

]
+(β 2)

[
z̃4

4!

∂ 4

∂ x̃4
φ̃ (0) +

z̃5

5!

∂ 4

∂ x̃4
φ̃ (1)

]
+O(β 3), (4)

which is a series solution with only two unknown functions φ̃ (0) and φ̃ (1). Then the velocity field can be

expressed as

ũ(x̃, z̃, t̃) = φ̃x̃ = û+β
[

z̃
1!

ŵx̃ − z̃2

2!
ûx̃x̃

]
+β 2

[
− z̃3

3!
ŵx̃x̃x̃ +

z̃4

4!
ûx̃x̃x̃x̃

]
+O(β 3), (5a)

w̃(x̃, z̃, t̃) = φ̃z̃ = β [ŵ− z̃ûx̃]+β 2

[
− z̃2

2!
ŵx̃x̃ +

z̃3

3!
ûx̃x̃x̃

]
+O(β 3), (5b)

where û and ŵ are the velocities at z̃ = 0 and given by û = φ̃ (0)
x̃ , ŵ = (1/β )φ̃ (1).
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In order to establish the relation between û and ŵ, use the bottom kinematic boundary condition

(φz+hxφx = 0 at z =−h), which has the following form after substituting the above asymptotic expressions:

ŵ =−(h̃û)x̃ +β
∂
∂ x̃

(
h̃3

3!
ûx̃x̃ − h̃2

2!
(h̃û)x̃x̃

)
+O(β 2). (6)

Now inserting (4), (5), and (6) into free surface boundary conditions, one may derive the following

Boussinesq system with variable bottom

ût̃ + η̃x̃ +α ûûx̃ = O(αβ ,β 2), (7a)

η̃t̃ +
(
αη̃ û+ h̃û

)
x̃ −β

∂
∂ x̃

(
h̃3

3!
ûx̃x̃ − h̃2

2!
(h̃û)x̃x̃

)
= O(αβ ,β 2). (7b)

It is emphasized that from the above system, and in terms of û, one can extend the system in terms of other

velocity variables, such as the velocity at an arbitrary z location. In this work we use a trick due to [32].

Namely, a new velocity variable ũθ defined at an arbitrary water level z̃ =−h̃+θ(αη̃ + h̃), with 0 ≤ θ ≤ 1.

Applying the standard techniques of inversion it is not difficult to derive the following expression as an

asymptotic formula for û in terms of ũθ :

û = ũθ +β
(

h̃(θ −1)(h̃ũθ )x̃x̃ +(h̃)2(θ −1)2 1

2!
(ũθ )x̃x̃

)
+O(αβ ,β 2). (8)

Switching to the variable ũθ , the following expressions are obtained:

η̃t̃ =−
(

h̃ũθ
)

x̃
+O(α,β ), ũθ

t̃ =−η̃x̃ +O(α,β ). (9)

Following the methodology in [5], for arbitrary μ ,ν ∈R and using (9), the following equations are derived

(h̃ũθ )x̃x̃ = μ(h̃ũθ )x̃x̃ − (1−μ)η̃t̃ x̃ +O(α,β ), (10a)

ũθ
t̃ x̃x̃ = (1−ν)ũθ

t̃ x̃x̃ −νη̃x̃x̃x̃ +O(α,β ). (10b)

Using equations (7)–(10) and appropriate expansions, the following system is derived:

ũθ
t̃ + η̃x̃ +α ũθ ũθ

x̃ +β
{

Bh̃
[
(h̃x̃η̃x̃)x̃ + h̃x̃η̃x̃x̃

]
+ ch̃2η̃x̃x̃x̃ −dh̃2ũθ

x̃x̃t̃

}
= O(αβ ,β 2), (11a)

η̃t̃ +
(

αη̃ ũθ + h̃ũθ
)

x̃
+β

∂
∂ x̃

{
Ah̃2

[
(h̃x̃ũθ )x̃ + h̃x̃ũθ

x̃

]
+ah̃2(h̃ũθ )x̃x̃ −bh̃2η̃x̃t̃

}
= O(αβ ,β 2). (11b)

The parameters a, b, c and d are the same as in [5], where

A =
1

2

[
1

3
− (θ −1)2

]
, B = 1−θ ,

a =
1

2

(
θ 2 − 1

3

)
μ, b =

1

2

(
θ 2 − 1

3

)
(1−μ),

c =
1

2

(
1−θ 2

)
ν , d =

1

2

(
1−θ 2

)
(1−ν). (12)

The coupled BBM–BBM type system is derived from (11) by selecting μ = 0 and ν = 0. Disregarding

terms of order O(αβ ,β 2) and dropping the superscript θ , the system takes the following form in

dimensional variables

ut +gηx +uux +2Bghhxηxx +Bghhxxηx −dh2uxxt = 0, (13a)

ηt +(ηu+hu)x +
∂
∂x

{
2Ah2hxux +Ah2hxxu−bh2ηxt

}
= 0. (13b)

Assuming the depth h is constant, the above system reduces to the original coupled BBM system in [5].
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2.1. Mass balance

As mentioned in the introduction, the use of the BBM system necessitates the derivation of an approximate

mass balance law. The following mass balance derivation is based on the work in [1], where mass balance

theory is presented for the Boussinesq models with an even bottom profile. Since we are interested in

varying bottom topography, we provide the following derivation. The integral form of the equation of mass

conservation is
d
dt

∫ x2

x1

∫ η

−h(x)
ρ dzdx =

[∫ η

−h(x)
ρφx dz

]x1

x2

, (14)

because there is no mass flux through the bottom or through the free surface. In non-dimensional variables

the above relation becomes
d
dt̃

∫ x̃2

x̃1

∫ αη̃

−h̃
dz̃dx̃ =

[∫ αη̃

−h̃
αφ̃x̃ dz̃

]x̃1

x̃2

. (15)

After integration with respect to z̃ and use of asymptotic expansion of φ̃ , we obtain

∫ x̃2

x̃1

(αη̃ + h̃)t̃ dx̃ = α
[

û(h̃+αη̃)+
h̃2

2!
β (ûh̃)x̃x̃ − h̃3

3!
β (û)x̃x̃

]x̃1

x̃2

+O(αβ ,β 2). (16)

Note that if we take the limit x̃2 → x̃1, where x̃2 = x2/l and x̃1 = x1/l, then we obtain the balance equation

(17), i.e,
∂
∂ t̃

M̃+
∂
∂ x̃

q̃M = O(αβ ,β 2), (17)

where

M̃ = αη̃ + h̃, q̃M = α
[(

αη̃ ũθ + h̃ũθ
)
+β (θ − 1

2
)h̃2(h̃ũθ )x̃x̃ +β h̃3(1

2
(θ −1)2 − 1

6
)(ũθ )x̃x̃

]
.

The derivation could also be based on the differential form of the mass conservation, such as in [2]. If we

use the scalings M = ρh0M̃ and qM = ρho
√
(gh0)q̃M , then the dimensional forms of these quantities are

M = ρ(η +h(x)), qM = ρ
[
u(h+η)+h2(θ − 1

2
)(hu)xx +

1
2
h3((θ −1)2 − 1

3
)uxx

]
. (18)

Equation (17) is an approximate mass balance equation. The net mass transfer to or from a control volume

during a time interval �t is equal to the net change (increase or decrease) in the total mass in the control

volume during �t. In [1], they proved that the maximum error in the conservation of mass is smaller than

O(αβ ,β 2) in the case of an even bottom profile when a coupled BBM system is used. In Section (5) the

amount of mass reflection will be computed for different cases.

2.2. Wave breaking in the BBM model system

As waves approach the shoreline the wave length and phase velocity decrease and the wave amplitude grows

larger. The wave then crashes onto the shore because it becomes too steep for the bottom of the wave to

carry it. The breaking of waves mostly depends on wave steepness and beach slope. As explained in [4], if

the horizontal velocity near the crest of a wave exceeds the celerity of the wave, then the wave will break.

Let us denote the propagation speed by U and the horizontal velocity by u. The horizontal velocity u can be

obtained from (5a) and (8):

ũ = ũθ +β
(
(h̃(θ −1)− z̃)(h̃ũθ )x̃x̃ +((h̃)2(θ −1)2 − z̃2)

1

2!
(ũθ )x̃x̃

)
+O(αβ ,β 2). (19)
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It is evident that once uθ (x, t) is known, (19) can be used to approximate the horizontal velocity at any depth.

After neglecting the second-order term, the dimensional form of the equation is given by

u = uθ +(h(θ −1)− z)(huθ )xx +(h2(θ −1)2 − z2)
1

2!
(uθ )x̃x̃. (20)

Wave breaking occurs if

uθ +(h(θ −1)−η)(huθ )xx +(h2(θ −1)2 −η2)
1

2!
(uθ )xx >U. (21)

Since the fluid domain depends on the surface profile, the value z = η is used to approximate velocities

near the surface. It is clear that the solutions η(x, t) and uθ (x, t) of system (13) and propagation speed U are

needed to find the breaking criterion.

3. NUMERICAL METHODS

System (13) has been solved numerically using a Fourier collocation method coupled with a 4-stage

Runge–Kutta time integration scheme. For numerical computations, periodic boundary conditions on

the domain [0,L] are used. The problem is translated to the interval [0,2π] using the scaling u(λx, t) =
v(x, t), η(λx, t) = ξ (x, t) and h(λx) = h1(x), where λ = L

2π . Then the BBM–BBM system (13) becomes

λ 3vt +λ 2gξx +λ 2vvx +2Bgh1h1xξxx +Bgh1h1xxξx −λdh1
2vxxt = 0, x ∈ [0,2π],

λ 3ξt +λ 2 (ξ v+h1v)x +
∂
∂x

{
2Ah1

2h1xvx +Ah1
2h1xxv−λbh1

2ξxt
}

= 0, x ∈ [0,2π],

v(x,0) = u(λx,0), ξ (x,0) = η(λx,0),
v(0, t) = v(2π, t), ξ (0, t) = ξ (2π, t), for t ≥ 0. (22)

Consider the set of N evenly spaced grid points x j =
2π j
N , j = 1, ...,N in the interval [0,2π] referred to

as collocation nodes. The spectral-collocation method is implemented in the physical space by seeking

approximate solutions through a global periodic interpolation polynomial of the form

vN(x) =
N

∑
j=1

vN(x j)g j(x), ξN(x) =
N

∑
j=1

ξN(x j)g j(x),

where g j(x) = 1
N sin

(
N(x−x j)

2

)
cot

(
1
2
(x− x j)

)
and vN(x), ξN(x) are interpolations of the function v(x) and

ξ (x), respectively, i.e., vN(x j) = v(x j),ξN(x j) = ξ (x j) (see [14,41]). Moreover, the corresponding Fourier

collocation differentiation matrices Dx and Dxx are given by

D(1)
i j =

dg j

dx
(xi) =

{
1
2
(−1) j cot(

xi−x j
2

) i �= j
0 i = j

, (23a)

D(2)
i j =

d2g j

dx2
(xi) =

{
− (−1) j

2sin2((xi−x j)/2)
i �= j

−π2

3h2 − 1
6

i = j
. (23b)

Then at the collocation points x = x j, the system becomes[
λ 3IN −λb DNdiag(h2

1)DN
]

ξNt = −λ 2DN(diag(h1)vN)−λ 2DN(ξNvN)

−DN(2Ah2
1h1xDN(vN)+Ah1xxh2

1vN), (24a)[
λ 3IN −λd diag(h2

1)D
(2)
N

]
vNt = −λ 2gDN(ξN)−λ 2(0.5)DN(v2

N)

−2Bgh1h1xD(2)
N (ξN)−Bgh1h1xxDN(ξN), (24b)
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where IN is the unit N ×N matrix and DN , D(2)
N are square matrices with the dimensions N ×N following

from (23a) and (23b), respectively, and diag(h1), diag(h2
1) are the diagonal matrices of h1 and h2

1,

respectively. This is a system of N ordinary differential equations for ξN and also vN . The system is solved

by using a fourth-order explicit Runge–Kutta scheme with time step �t.

3.1. Convergence study

It is important to verify the convergence of the numerical scheme. This is done following [37]. A numerical

method is convergent if the numerically computed solution approaches the exact solution as the step size

approaches 0. To test the convergence of these numerical methods, the following discrete L2-norm is used

‖ξ‖2
N,2 =

1

N

N

∑
j=1

∣∣ξ (x j)
∣∣2 ,

and the corresponding relative L2-error is then defined to be

‖ξ −ξN‖N,2

‖ξ‖N,2

,

where ξN(x j) is the approximated numerical solution and ξ (x j) is the exact solution at a time T , for

j = 1,2, . . . ,N.

Supposing the case of an even bottom, the coupled BBM system features solitary-wave solutions in a

closed form if θ 2 = 7
9

(see [7]). Since the analysis of the solitary wave shoaling and breaking given here

depend on the exact formula for the solitary wave, θ 2 = 7
9

is used in the present work. Then the exact

solitary wave solutions of system of equations (13) take the forms

η(x, t) = H0 sech2(κ0(x−C0t)), (25)

u(x, t) = W0 sech2(κ0(x−C0t)), (26)

and the constants W0, C0, and κ0 are given by

W0 =

√
3g

H0 +3h0
H0, C0 =

3h0 +2H0√
3h0(H0 +3h0)

√
gh0 and κ0 =

3

2h0

√
H0

2H0 +3h0
,

where h0 is the undisturbed depth, H0 is wave amplitude.

To check the convergence of these methods, we determine the L2-error each time for n steps and set

the step size as �t = (tmax − tmin)/n for different n values n = 20,40,80, ... (Table 1) and different number

of grid points N = 256,512,1024, ... (Table 2) in the case of an even bottom topography. A representative

result for a wave of amplitude 0.5 m is given in Tables 1 and 2. The numerical scheme was implemented

in MATLAB. In this calculation, the solution was approximated from T = 0 s to T = 5 s and the size of

the domain was L = 100 m. In the computations shown in Table 1, N = 1024 Fourier modes were used.

Table 1 shows fourth-order convergence of the Runge–Kutta method in terms of the time step �t. The

fourth-order convergence of the scheme is apparent up to �t = 0.0039 s, when the error became dominated

by the spatial discretization and the artificial periodicity. Table 2 shows the results of some computations

aimed at validating the spatial convergence of the code. As expected, spectral convergence in terms of the

number of spatial grid points N was achieved in these computations. Computations were also performed

for other solitary waves with heights between 0.1 m and 0.6 m, and similar results were obtained for these

cases.
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Table 1. L2-error and convergence rate for Runge–Kutta method for different fixed step sizes in case of even bottom profile BBM–

BBM type system. Here the convergence rate is the ratio of consecutive L2-errors

Table 2. L2-error and convergence rate due to spatial discretization in case of even bottom profile BBM–BBM type system. Here

the convergence rate is the ratio of consecutive L2-errors

To indicate the significance of the improvement, Tables 3 and 4 show the results of computing

approximate solutions of the inhomogeneous BBM–BBM type system

ut +gηx +uux +2Bghhxηxx +Bghhxxηx −dh2uxxt = f (x, t), (27a)

ηt +(ηu+hu)x +
∂
∂x

{
2Ah2hxux +Ah2hxxu−bh2ηxt

}
= g(x, t), (27b)

where the functions η(x, t) = 0.3cos(x− t) and u(x, t) = 0.3sin(x− t) are used as the exact solutions and the

bottom h(x) = 0.5− (0.1)cos(x) is assumed. Then the relative L2-error for various pairs of combinations

between the time steps Δt = 0.1/2n for n = 1,2,3, ...; and N = m×64 for m = 1,2,3, ... is calculated. The

results are shown in Table 3 and Table 4, where the solutions were approximated from T = 0 s to T = 5 s.

These tables show that the numerical implementation of a BBM–BBM type system with the periodic bottom

function h(x) is correct. Similar results can be obtained for other 2π-periodic functions u, η , and h(x).

Table 3. Inhomogeneous BBM–BBM type system (27); L2-error and convergence rate due to temporal discretization. Here

the convergence rate is the ratio of consecutive L2-errors
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Table 4. Inhomogeneous BBM–BBM type system (27); L2-error and convergence rate due to spatial discretization. Here the

convergence rate is the ratio of consecutive L2-errors

4. EVOLUTION OF SOLITARY WAVES ON A SLOPING BOTTOM

Shoaling of solitary waves with different wave heights for the initial undisturbed depth h0 = 1 m to a smaller

new depth up to h = 0.1 m is considered. The maximum wave heights were computed at different locations

over the slope S = 1 : 35. Figure 1 shows results for a solitary wave of 0.6 m height. It shows that wave

crests become steeper while shoaling on the slope. We generally see the reflection of a small amplitude wave

when a solitary wave goes through a slope. After carefully measuring wave heights over the different slopes

the relative maximum local wave height H/H0 versus the relative local depth h0/h are plotted in Fig. 2,

where h, h0, H, and H0 represent the local water depth, the constant reference water depth, local solitary

wave height, and initial solitary wave height, respectively. For later reference, we define the shoaling rate to

be the exponent α if the relation H
H0

=
(

h0

h

)α
holds.

The effect of a varying bottom on water waves of this class is of obvious engineering importance and

numerical solutions were obtained by Peregrine [36] and Madsen and Mei [26] using a finite difference

scheme to compute the deformation of a solitary wave climbing a beach. Experimental results for wave

shoaling and breaking of solitary waves were obtained by Ippen and Kulin [18], Kishi and Saeki [23],

Camfield and Street [6], and Synolakis [39]. Note also that Pelinovsky and Talipova [34,35] studied the

shoaling curves obtained by the wave height–wave energy relation for numerical solutions of the full water

wave problem found by Longuet-Higgins [24] and Longuet-Higgins and Fenton [25]. In the case of a

periodic sequence of solitary waves, Ostrovsky and Pelinovsky [33] found that the shoaling relation reduces

to a ‘nonlinear’ Green’s law. The experimental results of Grilli et al. in [16] and numerical studies based on

the potential flow theory for the Euler equations presented by Grilli et al. in [17] concentrate on shoaling

studies. It is noteworthy that the studies of Grilli et al. [16,17] give a nice picture of different shoaling

regimes and predict a variety of scaling relations for the local wave amplitude ahead and beyond the breaking

point.

For comparison, we have considered numerical results of Grilli et al. [17]. Figure 2 shows plots of data

taken from [17]. Figure 2 shows that the shoaling curves of the current work are in good agreement with

the numerical results of Grilli et al. [17]. It can be seen that the shoaling rate increases initially more slowly

than predicted by Green’s law, but then increases as the water depth keeps decreasing. Although there is no

breaking point in our numerical calculation, it can be noticed that the breaking points appeared in the results

obtained by Grilli et al. [17]. For instance, (21) is used to check the breaking criterion as discussed above.

It can be seen from Fig. 2 that for waves on a mild slope (1 : 100) the water depth at breaking, hb/h0, will

be larger than that on a steep slope (1 : 35). Furthermore, under the same wave conditions, the amplitude at

breaking points Hb/h0 is larger for a mild slope than for a steep slope. In particular, the agreement of the

breaking criterion (21) with the results of Grilli et al. [17] is much better on a mild slope.

Figure 3 shows plots of shoaling rates for a wave of initial amplitude 0.1 m with slopes 1 : 100, 1 : 400,

and 1 : 800. It is apparent that for the slope 1 : 100, the shoaling rate is lower than predicted by Green’s law

for small h0/h and higher for large h0/h. However, for the smaller slopes 1 : 400 and 1 : 800, the shoaling
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Fig. 1. Transformation of a solitary wave of initial amplitude 0.6 m on the slope S = 1 : 35. Here Δh is the height of the topography.

Note that the bottom topography is smoothed near the corners.
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Fig. 2. Computations for the shoaling curves with initial amplitudes 0.6 m (upper panel), 0.4 m (middle panel), 0.2 m (lower panel)

on slopes 1 : 35 (left panel) and 1 : 100 (right panel). The relative maximum local wave height H/H0 versus the relative local

depth h0/h are plotted. Here G denotes Green’s law, B denotes Boussinesq’s law, the dotted curves are our numerical results, and

the solid curves are numerical results from Grilli et al. [17]. Rectangular and circular symbols denote the breaking points of Grilli

et al. [17] and the present work, respectively.

rate is closer to the line h−1 for large h0/h. Apparently, the computed curves get close to those predicted by

Boussinesq’s law for smaller slopes.

Now the breaking criterion (21) is applied to the solitary wave solutions. In order to find wave breaking

in these solitary wave solutions, the x-location of the maximum wave height at each time step is found. The

propagation speed U is then estimated using these x-locations at each time step. Finally, if the computed

horizontal velocity u exceeds the mean propagation speed U , we can conclude that around this time step the

wave is starting to break.

The water depth at breaking measured under the wave crest is denoted as hb and the corresponding

solitary wave height at breaking is denoted as Hb. In Table 5 the relative breaking wave height Hb/hb at

the corresponding breaking points is compared with those of Grilli et al. [17] and Chou et al. [11]. For a
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Fig. 3. Computations for the shoaling curves with the initial amplitude H0 = 0.1 m on different slopes. The relative maximum

local wave height H/H0 versus the relative local depth h0/h is plotted.

large wave amplitude the wave height will exceed the breaking criterion very soon after it propagates on the

slope and so wave breaking occurs almost instantly without too much change in height. The ratio of relative

breaking wave height is larger for small amplitude waves than for large amplitude waves. Wave breaking

occurs sooner for larger initial waves.

McCowan [29] theoretically defined the breaker depth index as Hb/hb = 0.78 for a solitary wave

travelling over a horizontal bottom using the assumption that instability is reached when the particle velocity

at the crest equals the wave celerity and that the crest angle is then 120◦. To estimate the initial breaking

wave height on a mild-slope beach, this value (Hb/hb = 0.78) is most commonly used in engineering practice

as a first estimate. Ippen and Kulin [18] showed that the upper limit of the breaking criterion should be 0.78

for a solitary wave over a very mild slope. In this article the slope 1 : 35 is used and it was found that

the relative breaking wave heights Hb/hb are smaller for higher amplitude waves (Table 5). It can be seen

that the relative breaking wave heights Hb/hb at breaking points are well above the McCowan limit 0.78.

Since the relative breaking wave heights Hb/hb at breaking points are smaller than those obtained by Grilli

et al. [17] and Chou et al. [11], we might consider a higher order Boussinesq model for further study.

Table 5. Comparison of the relative breaking wave height Hb/hb and the wave height at breaking points Hb/h0 for waves with

initial amplitudes 0.2 m, 0.25 m, 0.3 m, and 0.4 m on slope 1 : 35 from Chou et al. [11], Grilli et al. [17], and the present work
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4.1. Comparison to mild slope model systems

For comparison, the work of Chen [8] is considered. Chen presented equations for bi-directional waves over

an uneven bottom, which may be written in non-dimensional, unscaled variables and disregarding terms of

order O(αβ ,β 2) as

ut +gηx +uux − 1

2

(
1−θ 2

)
h0

2uxxt = 0, (28a)

ηt +(ηu+hu)x −
1

2

(
θ 2 − 1

3

)
h0

2ηxxt = 0. (28b)

The models of Chen [8] and Mitsotakis [31] represent the same type of coupled BBM–BBM type system,

derived in the context of the Boussinesq scaling. One can derive a number of special cases of the general

Boussinesq system. Since we are interested in coupled BBM–BBM type system, the model of Chen was

chosen for comparisons. The above system (28) is solved using the same numerical technique as above.

The main difference between the two systems (13) and (28) is approximation of bottom motion. In (13), the

bottom motion is non-dimensionalized by h̃ = h
h0

, and in (28), it is non-dimensionalized by h̃ = h−h0

a0
, which

is similar to the approximation of wave amplitude η . Figure 4 shows computations for the shoaling curves

with the initial amplitude 0.4 m. It can be noticed that the shoaling curve corresponding to system (28) lies

below that predicted by Green’s law because of the lower order approximation.

In [8], the bottom function h(x) is assumed to be O(α) and in [31], the bottom function h(x) is assumed

to be O(1). The results are in line with the assumptions used in their respective derivations.

In Fig. 5, the shoaling curves close to a breaking point of a solitary wave with an initial wave height 0.2 m

are snown. A comparison between the present shoaling result using system (13) derived by Mitsotakis [31]

and the numerical results of the Nwogu system [32] presented in [13] and also the numerical results of

system (28) derived by Chen [8] is shown in the left panel of Fig. 5. It can be seen that the Nwogu system,

which is derived in terms of amplitude–velocity, quickly over-shoals.
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Fig. 4. Computations for the relative maximum local wave height H/H0 versus the relative local depth h0/h plotted with initial

amplitude 0.4 m on a slope 1 : 35. The dashed-dotted curve represents numerical results for system (13) derived by Mitsotakis [31],

the solid curve shows the numerical results from Grilli et al. [17], and the dashed curve represents numerical results for system

(28). Indeed, system (28) works for small-amplitude bottom variations as expected, since the bottom function h(x) is assumed to

be of order O(α).
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Fig. 5. Computations for the shoaling curves with the initial amplitude 0.2 m on a slope 1 : 35 close to the breaking point. Right

panel: computational setup. Left panel: close-up of shoaling curves near breaking points. In the left panel, the dashed-dotted

curve represents numerical results for system (13) derived by Mitsotakis [31], the solid curve shows the numerical results from the

Nwogu system [32], the circular symbols denote the data of the laboratory experiments of [16], and the dashed curve represents

numerical results for system (28) derived by Chen [8]. Here x is the horizontal coordinate, z is the vertical coordinate, h0 is the

constant reference water depth, and H/H0 is the relative maximum local wave height.

5. MASS CONSERVATION ON A SLOPING BOTTOM

The effect of depth variations on solitary waves of shallow water wave theory is examined. The BBM–

BBM type system (13) is simulated. In all the numerical results of this section we use N = 1024, θ 2 = 7
9
.

Mass conservation is used to quantify the role of reflection in the shoaling of solitary waves. Note that the

piecewise smooth linear bottom topography is used. To avoid the generation of small spurious oscillations

due to the discontinuity in the derivative of the bottom function, it is smoothed near the singular points.

Consider a control volume delimited by the interval [50 m,150 m] on the x-axis. The mass per unit width

contained in this interval is defined by
∫ 150

50 M(x, t)dx and the mass flux through the boundaries of the control

volume is defined by qM(50, t) and qM(150, t), where M and qM are given in (18). The quantities M and qM
during the passage of a solitary wave are computed. It is observed that the mass outflux is approximately

equal to the addition of mass influx and the reflection of the mass. As can be seen in Fig. 6, the mass

reflection has negative values.

In Table 6, the results for various amplitudes of the solitary wave are displayed for Δh = 0.3 m on a

slope 1 : 35. For the height of the topography Δh = 0.3 m, the mass influx through the initial boundary of the

control volume is defined by ‘Mass outflux =
∫ 15

0 qm(50, t)dt’, the mass outflux through the final boundary

of the control volume is defined by ‘Mass outflux =
∫ 60

15 qm(150, t)dt’, and the mass reflection through the

initial boundary of the control volume is defined by ‘Mass reflection =
∫ 60

15 qm(50, t)dt’. Note that the time

limit may vary for other Δh’s. The error is defined by ‘error = mass outflux–mass reflection–mass influx’.

Table 6 suggests that mass conservation has a negligible error and that the error tends to 0 as α = a/h0

approaches 0.

In Table 7, the results for various Δh of water level are displayed with initial amplitude a = 0.3 m on

a slope 1 : 35. It is clear from Table 6 and Table 7, that the mass conservation holds approximately for the

coupled BBM system and the ratio between mass reflection and mass influx is called ‘mass ratio’, which is

smaller for larger amplitude waves and smaller Δh.

The reflection of a small amplitude wave when a solitary wave goes through a slope is defined as

‘reflection’. To find the ratio between reflection and initial solitary wave, we use the following L2-norm:

‖η‖2
L2(R) =

∫
R
|η(x)|2 dx.
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Fig. 6. The left panel shows a solitary wave solution for system (13) with the initial amplitude 0.3 m at time t = 60 s. The right

panel shows plots of time series of the mass influx at x = 50 m (solid curve), the mass reflection at x = 50 m (dashed curve), and

mass outflux at x = 150 m (dash-dotted curve), per unit span. The results are shown in the numerical domain.

Table 6. Error in mass conservation for different wave heights on a slope 1 : 35 and Δh = 0.3 m (the height of the topography).

The ‘error = mass outflux–mass reflection–mass influx’ quantifies the error in the mass balance law

Table 7. The ratio between mass reflection and mass influx of a solitary wave with initial amplitude a = 0.3 m on a slope 1 : 35 for

different heights of the topography Δh

To calculate the L2-norm of initial solitary waves, the value of η is integrated with respect to x on the

fluid domain [0,L] at initial time t = 0. To determine the L2-norm of a reflected wave, we run the solitary

wave on the slope for long enough time to separate the reflection of the small wave from that of the solitary

wave. The end point of the reflected waves on the x-axis is denoted by xr (see Fig. 7). Then the reflected

wave is integrated on the interval [0,xr]. The corresponding ‘reflection coefficient’ is then defined to be

‖η reflection‖L2([0,xr])

‖η initial at t=0‖L2([0,L])
.
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Fig. 7. Reflection of the transformation of solitary waves of initial amplitude 0.2 m on a slope S = 1 : 35 and the height of the

topography Δh = 0.3 m in the physical domain.

Table 8. Calculation of the amount of ‘reflected’ waves for different slopes and amplitudes. It shows that the ‘reflection coefficient’

approaches zero as the slope becomes more and more gentle. Here Δh is the height of the topography and H0 is the initial wave

amplitude

The ‘reflection coefficient’ approaches zero as the slope becomes more and more gentle (Table 8). Moreover,

the reflection coefficient for the steep slope (1 : 35) is approximately twice the value of that of the mild slope

(1 : 100). For steeper slopes the reflection coefficient is large because the wave height at breaking points is

smaller for a steep slope than for a mild slope.

6. CONCLUSION

In this article, a coupled BBM system of equations is studied in the situation of water waves propagating

over a decreasing fluid depth. A conservation equation for mass and also a wave breaking criterion, both

valid in the Boussinesq approximation, were found. A Fourier collocation method coupled with a 4-stage

Runge–Kutta time integration scheme was employed in this work to approximate the solution of the BBM

system. It is shown that the approximate mass conservation relation is reasonably accurate. Moreover, the

results from the evaluation of the approximate mass conservation law show that the ratio of mass reflection

to mass influx approaches zero as the difference in flow depths (Δh) becomes small.

In our previous paper [20] we showed that for waves of very small amplitude, the shoaling relation

approaches Boussinesq’s law for Boussinesq-type systems that are valid for waves with the Stokes number

S = α/β of order 1, and in this case we measured the transition of the wave only at the initial and final stage
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assuming the wave undergoes an adiabatic adjustment. It is confirmed (Table 8) that the L2-ratio between

reflection and initial solitary wave approaches zero as the slope becomes more and more gentle. This lends

additional credibility to shoaling results based on adiabatic approximation. In addition, the results displayed

in Fig. 3 indicate that shoaling rates for small amplitude waves are closer to those predicted by Boussinesq’s

law for very gentle slopes.

Considering the shoaling of finite amplitude waves, we compared shoaling curves obtained with the

current method to numerical results of Grilli et al. [17] for the Euler equations based on potential flow theory.

The experimental results of Grilli et al. [16], and the corresponding shoaling curve of the current work were

in good agreement with the numerical results of Grilli et al. [16,17]. It was found that the variation in wave

height of a shoaling solitary wave initially increased at a lower rate than predicted by Green’s law, but then

increased similar to Boussinesq’s law. Indeed, the shoaling curves achieved in this paper match the shoaling

curves of Grilli et al. [17] better than the similar approximation established by Khorsand and Kalisch [22].

The comparison of shoaling curves of two model systems, (13) ([31]) and (28) ([8]), with the numerical

results of Grilli et al. [17] showed that each of these models works well in their respective regimes of

applicability. The agreement of the breaking criterion (21) with the results of Grilli et al. [17] is much better

on a mild slope.
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Peegeldumise mõjust üksiklaine teravdumisele ja murdumisele

Amutha Senthilkumar

Seostatud Benjamini-Bona-Mahony (BBM) võrrandisüsteemi on uuritud olukorras, kus pinnalained levi-

vad kahaneva sügavusega vees. On leitud massijäävusvõrrand ja laine murdumise tingimus, mis keh-

tivad Boussinesqi aproksimatsioonil. Lähendlahendi leidmiseks BBM võrrandisüsteemile on kasuta-

tud Fourier’ kollokatsioonimeetodit koos 4-astmelise Runge-Kutta ajas integreerimise numbrilise skee-

miga. Peegeldumise mõju kvantitatiivseks hindamiseks üksiklaine teravdumisele ja murdumisele kal-

dega põhjaprofiililt on kasutatud massijäävusvõrrandit. On analüüsitud teravdumise tulemusi, mis tugine-

vad adiabaatilisele aproksimatsioonile. On uuritud üksiklaine teravdumist ja murdumist kaldega põhjapro-

fiili korral. Numbrilise mudeli valideerimiseks on tulemusi kõrvutatud kirjandusest saadavaga, millega

kokkulangevus on hea. Üksiklaine teravdumist on arvutatud kaht eri tüüpi väikese kaldega mudelsüstee-

midele ja võrdlus kirjandusest saadavate lahenditega näitab, et kumbki mudel on oma rakenduspiirkonnas

adekvaatne.
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