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The group Spiralia includes species with one of the most significant cases of

left–right asymmetries in animals: the coiling of the shell of gastropod mol-

luscs (snails). In this animal group, an early event of embryonic chirality

controlled by cytoskeleton dynamics and the subsequent differential acti-

vation of the genes nodal and Pitx determine the left–right axis of snails,

and thus the direction of coiling of the shell. Despite progressive advances

in our understanding of left–right axis specification in molluscs, little is

known about left–right development in other spiralian taxa. Here, we iden-

tify and characterize the expression of nodal and Pitx orthologues in three

different spiralian animals—the brachiopod Novocrania anomala, the annelid

Owenia fusiformis and the nemertean Lineus ruber—and demonstrate embry-

onic chirality in the biradial-cleaving spiralian embryo of the bryozoan

Membranipora membranacea. We show asymmetric expression of nodal and

Pitx in the brachiopod and annelid, respectively, and symmetric expression

of Pitx in the nemertean. Our findings indicate that early embryonic chirality

is widespread and independent of the cleavage programme in the Spiralia.

Additionally, our study illuminates the evolution of nodal and Pitx signalling

by demonstrating embryonic asymmetric expression in lineages without

obvious adult left–right asymmetries.

This article is part of the themed issue ‘Provocative questions in left–

right asymmetry’.
1. Introduction
Bilaterally symmetrical animals exhibit two orthogonal main body axes, namely

the anteroposterior and the dorsoventral axes, which establish a plane of sym-

metry that runs longitudinally along the midline of the animal, and defines the

left–right axis of the organism [1]. In many species, the left and right body

regions are mirror images of each other, and thus there is an exact correlation

between the organs and structures on each side. In other organisms, however,

body parts develop asymmetrically along the left–right axis [2,3]. We humans

exhibit a common example of this situation, with our heart located on the left

side of the body.

One of the most beautiful examples of left–right asymmetries occurs in the

direction of coiling of the shell of snails (figure 1a). Snails are molluscs and

members of the Spiralia, which is one of the two major clades of the Protosto-

mia [4–7]. The Spiralia comprises a broad diversity of animal forms [8,9],

including meiofaunal taxa (e.g. rotifers and gastrotrichs) and large macro-

benthic organisms (e.g. segmented annelids and ribbon worms; figure 1b).

There are not only colonial forms, such as bryozoans (figure 1c), but also sessile

animals, like brachiopods (figure 1d ), and behaviourally complex animals like

octopuses. Moreover, there is also variation in the life cycles, with taxa showing

direct development, groups with intermediate larval forms and parasites. This

vast developmental, morphological and ecological diversity contrasts with a

seeming simplicity of the left–right axis in most spiralian taxa, which is most
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Figure 1. The Spiralia, embryonic chirality and the distribution of cleavage modes. (a) The marine snail Annulobalcis aurisflamma (credit Alvaro E. Migotto).
(b) Juvenile nemertean of Lineus ruber. (c) Adult zooids in a bryozoan colony of Membranipora membranacea. (d ) Adult specimen of the brachiopod Novocrania
anomala. (e) Spiral-cleaving embryos display embryonic chirality at the eight-cell stage. The asymmetric division of the four blastomeres at the four-cell stage forms
four animal micromeres that can be shifted either dextrally or sinistrally with respect to the vegetal macromeres. In molluscs, there is a direct correspondence
between this chirality and the direction of coiling of the shell and internal organs. ( f ) Distribution of spiral cleavage and left – right asymmetries in Spiralia.
Phylogeny according to [4]. In (e) and ( f ), drawings are not to scale. Abbreviations: ey, eyes; gu, gut; lo, lophophore; sh, shell; zo, zooid.
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often symmetrical (table 1). The most extreme asymmetry is

that of the shell and internal organs of gastropod molluscs,

and to a less extent the digestive system of other molluscs,

annelids, brachiopods and rotifers (table 1).

Despite the absence of major left–right morphological

asymmetries in most adult and larval forms, an inferred ances-

tral feature present in many lineages of the Spiralia is the

quartet spiral cleavage, a programme of highly stereotypical

cell divisions that displays embryonic chirality (figure 1e)

[21–23]. With the third round of zygotic divisions, a typical

spiral-cleaving embryo becomes eight cells. These divisions

are asymmetric and occur in the direction of the animal–vege-

tal axis, so that four smaller cells (micromeres) and four larger

cells (macromeres) form in the animal and vegetal pole,

respectively. However, the micromeres do not align comple-

tely parallel to the animal–vegetal axis, but shift either

dextrally (i.e. to the right) or sinistrally (i.e. to the left) with

respect to the macromeres (figure 1e). If this first asymmetric

division were dextral, the next division would be sinistral

and vice versa. The alternation of the left–right orientation

of the mitotic spindles during cleavage is what eventually

causes a spiral arrangement of the micromeres when observed

from the animal pole, hence the name of this mode of cleavage.

The dextral chirality is more common and genetically domin-

ant, often the only conformation of a spiralian embryo and

thought to be ancestral [22,24,25]. However, some spiral-

cleaving species can produce embryos of either chirality [26].

In gastropods, the chirality of the embryo is intimately con-

nected with the left–right asymmetries of the adult, in a way

that dextral embryos develop into dextral coiling molluscs
and sinistral embryos form sinistral coiling specimens [27,28].

The mechanical manipulation of the embryonic chirality at the

eight-cell stage is furthermore sufficient to cause a shift in the

final coiling of the animal [29], suggesting that the left–right

development in molluscs, and likely other spiralians, is strongly

influenced by the earliest cytoskeletal dynamics [27,30].

The advent of molecular studies in gastropod molluscs,

however, revealed an additional unexpected role for the

Nodal signalling pathway in the development of the left–

right axis in spiralian embryos [31]. The TGF-b ligand nodal
was thought to be an innovation of the Deuterostomia

(i.e. sea urchins, hemichordates, and chordates), where key

components of this pathway (nodal, lefty and Pitx paralogues)

are asymmetrically expressed along the left–right axis and

control the proper development of this axis [32–39]. How-

ever, the molluscs Lottia gigantea and Biomphalaria glabrata
also have a nodal and a Pitx orthologue asymmetrically

expressed along the left–right axis [31,40]. Furthermore,

chemical disruption of the Nodal signalling results in mol-

luscs with uncoiled shells, demonstrating that this pathway

also affects the correct development of the left–right axis in

these animals. Therefore, the Nodal signalling pathway was

present in the ancestor to all bilaterally symmetrical animals

and presumably had an ancestral function in the develop-

ment of left–right morphological asymmetries [31,41]. Since

this discovery, orthologues of nodal and Pitx, but not lefty,

have been identified in many other spiralian taxa [42–44],

and asymmetric expression of these genes has been reported

also in the brachiopod Terebratalia transversa [42]. Despite this

recent progress, the expression of nodal and Pitx, and its

http://rstb.royalsocietypublishing.org/


Table 1. Left – right asymmetries in adult and larval forms of Spiralia.

group left – right axis

Gnathostomulida Symmetrical

Micrognathozoa Symmetrical

Rotifera Symmetrical. Asymmetries in the jaws (trophi)

in some species, and unpaired gonad often

displaced to one side in Monogononta [10]

Gastrotricha Symmetrical

Platyhelminthes Symmetrical. Asymmetries in the ciliary band

of some polyclad larvae [11], gonads of

rhabdocoels [12], and neural morphology/

physiology in polyclad larvae and triclads

[13,14]

Mollusca Asymmetry in shell coiling and internal body

organization in Gastropoda [15]. Minor

asymmetries, mostly affecting the digestive

system, in Polyplacophora, Bivalvia and

Scaphopoda [12,16].

Annelida Symmetrical. Asymmetries in buccal apparatus

of some polychaetes [2,17] and digestive

system of Capitella teleta [18]

Nemertea Symmetrical. Asymmetric eye in

paleonemertean larva [19]

Phoronida Symmetrical

Brachiopoda Symmetrical. Anus in the right side in the

Lingulacea & Discinacea [20]

Bryozoa Symmetrical. Asymmetry in the colony

coiling [2]

Entoprocta Symmetrical

Cycliophora Symmetrical

Orthonectida Symmetrical

Dicyemida Symmetrical
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connection with the early embryonic chirality and final left–

right morphology is still unknown in most spiralian taxa.

Even more importantly, virtually nothing is known about

the early embryonic chirality and development of the left–

right axis in those spiralian lineages that have lost spiral

cleavage (figure 1f ).

In this study, we characterize the expression of members

of the Nodal signalling pathway in three spiralian taxa

with different embryogenesis, life histories and adult

morphologies, and analyse the embryonic chirality of a bira-

dial-cleaving spiralian. We show asymmetric expression of

nodal in the brachiopod Novocrania anomala (O. F. Müller,

1776), and of Pitx in the annelid Owenia fusiformis Delle

Chiaje, 1844, as well as symmetrical expression of Pitx in

the nemertean Lineus ruber (Müller, 1774). We further

describe symmetric expression of Pitx in Priapulus caudatus
Lamarck, 1816, a member of the Priapulida, which seems to

be the most evolutionarily conservative taxon in the Ecdyso-

zoa [45,46], the sister group of the Spiralia. Additionally, we

provide evidence for embryonic chirality in the bryozoan
Membranipora membranacea (Linnaeus, 1767), a spiralian that

lost the stereotypical spiral cleavage, and thus does not

show the early, dextral or sinistral asymmetric cell divisions.

Altogether, our findings improve our understanding of the

evolution of the Nodal signalling pathway in metazoans

and provide a more comprehensive view of the establishment

of left–right chirality during spiralian development.
2. Material and methods
(a) Animal collections and embryo fixation
Adult specimens of N. anomala were collected from the coasts

near Espeland Marine Biological Station (Norway) during the

months of September and October. They were spawned as

described elsewhere [47]. Gravid specimens of O. fusiformis
were collected near Station Biologique de Roscoff, and spawned

as previously reported [48]. Adult worms of L. ruber were col-

lected, maintained and spawned as previously described [49].

Gravid adults of P. caudatus were collected from Gullmarsfjorden

(Fiskebäckskil, Sweden) during November, and spawned as

described elsewhere [46]. Finally, kelp blades with ripe colonies

of the bryozoan M. membranacea were collected from floating

docks in Hjellestadosen (Bergen, Norway), kept in water tanks

with constant running seawater and spawned as previously

described [50].

For all the different species, embryos at the desired develop-

mental stage were fixed in 4% paraformaldehyde diluted in

seawater for 1 h at room temperature. For P. caudatus, the egg-

shell was permeabilized with 0.05% thioglycolate and 0.01%

pronase for 30 min at 98C before fixation. Larval and juvenile

stages of N. anomala and L. ruber were relaxed in 7.4% mag-

nesium chloride before adding the paraformaldehyde. After

fixation, samples were washed several times in phosphate

buffer saline supplemented with 0.1% Tween 20. Samples were

dehydrated through a graded methanol series and stored in

pure methanol at 2208C.
(b) Gene expression analyses
Full-length sequences of nodal in N. anomala, and Pitx in

O. fusiformis, L. ruber and P. caudatus were identified from

RNAseq data of mixed embryonic stages. Protein alignments

were constructed with MAFFT v. 7 [51] and poorly aligned

regions were removed with Gblocks v. 0.91b [52]. RAxML v. 8

[53] was used to infer gene orthologies (electronic supplementary

material, figure S1). Resulting trees were formatted with FigTree

and Illustrator CS6 (Adobe). Fixed embryos of N. anomala,

O. fusiformis, L. ruber and P. caudatus were used to perform

colorimetric whole mount in situ hybridization following

previously described protocols [46,49]. After developing the

signal, samples were stored in 70% glycerol and imaged with

an Axiocam HRc connected to an Axioscope Ax10 (Zeiss),

using bright field Nomarski optics. Images were analysed with

Photoshop CS6 (Adobe), and figure plates made with Illustrator

CS6 (Adobe). Contrast and brightness were adjusted always to

the whole image and not to specific parts of it.
(c) Live microscopy of bryozoan development
We transferred cleaving M. membranacea embryos to a glass

slide coated with poly-L-lysine, where they were mounted

under a coverslip sealed with Vaseline. We imaged the

slide under a four-dimensional microscope [54] and acquired

60 optical planes of the embryo every 40 s using differential

interference contrast.

http://rstb.royalsocietypublishing.org/
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3. Results
(a) Expression of nodal in the brachiopod Novocrania

anomala
The brachiopod N. anomala shows radial cleavage, gastrula-

tion by invagination and the formation of a radially

symmetrical gastrula (figure 2a) [20,47]. During anteroposter-

ior elongation in the mid and late gastrula, the vegetal

blastopore moves posteriorly along the ventral midline and

closes (figure 2a). After this, the embryo differentiates into

a bilobed larva, with an anterior apical lobe, and a posterior

mantle lobe with three pairs of chaetae (figure 2a). During

elongation, the mesoderm forms four pairs of pouches dis-

tributed along the anteroposterior axis [20,47]. The first

anterior pouch will form the mesoderm of the apical lobe,

and the other three consecutive pouches will originate each

pair of chaetae bundles.

We identified a single orthologue of nodal in N. anomala
(electronic supplementary material, figure S1a). We did not

find a clear orthologue of Pitx in our transcriptomic data,

although Pitx is present in the related brachiopod species

T. transversa [42]. Gene expression analysis during the

embryonic development showed that nodal was only detected

at the end of anteroposterior axial elongation, on the anterior

right mesodermal pouch of the late gastrula (figure 1b).

This expression was maintained in the differentiated

larva (figure 1b).
(b) Expression of Pitx in the annelid Owenia fusiformis
The annelid O. fusiformis shows stereotypical asymmetric

spiral cleavage, with the D quadrant being only slightly

larger than the other quadrants [48]. After cleavage, the

embryo forms a hollow blastula, and gastrulates by invagina-

tion, forming a radial early gastrula (figure 3a). At this stage,

the internal endoderm bends and forms a U-shape, and the

mesoderm grows into two lateral bands [48]. A subequatorial

ciliary band forms, together with a bundle of chaetae in

the posterior dorsal area, eventually resulting in the for-

mation of the distinctive mitraria larva of oweniids

(figure 3a) [48,55].
We did not identify an orthologue of nodal in our

RNAseq data of O. fusiformis, but we detected an ortholo-

gue of Pitx (electronic supplementary material, figure S1b).

The analysis of the expression of Pitx during the embryonic

development of O. fusiformis showed weak asymmetrical

expression in one cell on the right side of the embryo at

the late gastrula–early mitraria stage (figure 3b). The

internal location of the staining suggests that the Pitx-posi-

tive cell is part of the growing lateral mesodermal bands, as

described for the sister species Owenia collaris [48]. This

expression was restricted to this stage, and not observed

in mature mitraria larvae.
(c) Expression of Pitx in the nemertean Lineus ruber
The nemertean L. ruber shows a characteristic indirect devel-

opment that involves the formation of an adelphophagic,

intracapsular larva [49,56]. Early cleavage is of the spiral

type, and results in the formation of a blastula with a small

blastocoel. After invagination of the endomesoderm, the

radial gastrula develops into the Schmidt’s larva (figure 3c)

[49,56]. This intracapsular larva consists of a temporary epi-

dermis, and a set of epidermal imaginal discs from which

the juvenile will form: a pair of cephalic discs, a pair of

trunk discs, one proboscis disc, one pharyngeal disc and a

blind gut rudiment. The Schmidt’s larva can feed on other

siblings contained within the same egg capsule, growing in

size. After around 18–20 days of development, the larva

metamorphoses into the juvenile, which involves the shed-

ding of the larval epidermis, and the differentiation of the

juvenile tissues and organs (figure 3c).

As with O. fusiformis, we identified an orthologue of Pitx
in the available transcriptomic data (electronic supplemen-

tary material, figure S1b), but not of nodal. The analysis of

its expression revealed that Pitx was first expressed symmet-

rically in a few internal anterior mesenchymal cells of the

Schmidt’s larva (figure 3d ). This position corresponds to

the place of formation of the proboscis rudiment [49]. In

late larval stages, two additional symmetrical domains of

expression appeared, which seem to locate where the ventral

pair of nerve cords forms (figure 3d ). After metamorphosis,
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Pitx was detected in the proboscis and ventral nerve

cords (figure 3d ).

(d) Expression of Pitx in the outgroup taxon Priapulus
caudatus

The priapulid P. caudatus exhibits holoblastic radial cleavage

[57]. Gastrulation occurs by invagination, and is followed by
the division of the embryo in an anterior introvert region and

a posterior trunk region (introvertula stage; figure 3e) [46].

After differentiation of the larval tissues, the introvert retracts

inside the trunk region, and the embryo eventually hatches

by protruding the introvert against the hatching cap of the

eggshell (figure 3e). The first hatching larva is non-feeding,

and subsequent rounds of moulting lead to the formation

of the definitive adult tissues [58–60].
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As in other studied members of Ecdysozoa, P. caudatus
lacks a nodal orthologue [42]. We could identify, however, a

Pitx gene (electronic supplementary material, figure S1b).

We detected the first expression of Pitx in the gastrula, on a

group of endomesodermal cells of the animal pole

(figure 3f ). With the formation of the introvertula, we

observed two distinct expression domains: a pair of bilater-

ally symmetrical ectodermal cells on the ventral side of the

introvert, which probably correspond to neural tissue; and

a broader expression on the anterior dorsal mesoderm of

the introvert (figure 3f ).
(e) Embryonic chirality in a biradial-cleaving bryozoan
Membranipora membranacea shows a stereotypical biradial

cleavage pattern where the first and second divisions are

meridional, orthogonal to each other and form four equal

blastomeres [61,62]. After an equatorial third division, the

blastomeres cleave parallel to the plane of the first division

forming an eight-by-eight brick-like embryo. Our four-

dimensional recordings show that two opposing blastomeres

at the four-cell stage give rise to the left and right side of the
larval body (figure 4). However, we noticed that in 9 out of 11

embryos, the right blastomere at the four-cell stage is sister to

the blastomere giving rise to posterior structures, while in

two embryos the pattern is mirrored, the left blastomere is

the one sister to the posterior blastomere.
4. Discussion
(a) nodal, Pitx and the genetic control of left – right

development in Spiralia
The TGF-b ligand nodal is asymmetrically expressed along

the left–right axis in echinoderms and hemichordates (on

the right side), molluscs (on the right or left side, depending

on body handedness) and chordates (on the left side), and is

functionally required to properly develop this axis in most of

these organisms [31–37,39]. Recently, a study showed

expression of nodal on the right side of the anterior mesoderm

in the late gastrula embryo of the rhynchonelliform brachio-

pod T. transversa [42], but its function and influence on the

left–right patterning is unknown. In this study, we identified

http://rstb.royalsocietypublishing.org/
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a new nodal orthologue in the craniid brachiopod N. anomala,

but failed to recover a nodal member in the annelid O. fusifor-
mis and L. ruber. However, the presence of nodal in other

members of the Annelida and Nemertea [42] indicate that

these absences are probably not real gene losses, but sub-

sampling transcriptomic issues. The expression of nodal in

the brachiopod N. anomala demonstrated a similar timing

and location to that in T. transversa (figure 2b), albeit these

two species differ significantly in the mode of gastrulation

and mesoderm development [47,63]. Since the last common

ancestor of T. transversa and N. anomala corresponds to the

last common ancestor to all brachiopods [64], our findings

indicate that the most probable ancestral expression of nodal
in brachiopods was in the anterior right, mature mesoderm.

This contrasts with the expression in gastropod molluscs,

where nodal is already expressed at relatively early stages

(32-cells) and in ectodermal derivatives of the shell and

head region [31]. However, there are no data available on

the expression of nodal in other groups of molluscs, and in

particular, in those without strong left–right asymmetries

like the early branching polyplacophorans. Thus, the ances-

tral expression of nodal for this group, and Spiralia

generally, is still unclear (figure 5).

The homeobox transcription factor Pitx is a downstream

regulator of the Nodal signalling pathway, and thus appears

asymmetrically expressed on the side of nodal expression in

members of the Deuterostomia and gastropod molluscs

[31,32,36,38]. In the studied molluscs, Pitx is additionally

expressed in endodermal and cephalic ectodermal domains

[31]. In brachiopods, however, Pitx is expressed symmetric-

ally, although stronger on the right, nodal-positive side of

the anterior mesoderm [42]. In platyhelminth species that

lack a nodal orthologue, Pitx is expressed in different
neuronal populations, and controls the regeneration of the

serotoninergic nervous system and the body midline

[42–44]. Our results provide first evidence of expression of

Pitx in annelids and nemerteans (figure 3b,d ). Interestingly,

Pitx is expressed symmetrically in the nemertean L. ruber,

in the nervous system and proboscis, while it is expressed

asymmetrically in one anterior right mesodermal cell in the

annelid O. fusiformis. No expression during early cleavage

and development was observed in either of these two spira-

lians. Altogether, these findings give a complex picture of the

evolution of Pitx expression in Spiralia (figure 5). When out-

group lineages, such as priapulids (figure 3f ) are considered,

it appears that expression of Pitx associated with the nervous

system at mid–late stages of development is probably ances-

tral. However, further analysis of Pitx in relation to nodal
expression in those lineages with both genes will be essential

to better understand the evolution of this genetic cassette

in spiralians.

Altogether, the expression and functional data on nodal and

Pitx suggest that they are likely involved in the morphological

differentiation of the left–right axis in the Spiralia, with asym-

metric expression of one or two genes in at least molluscs,

annelids and brachiopods (figures 2 and 3) [31,42]. However,

the absence of expression of nodal and Pitx in the earliest

cleavage stages in all studied species, when embryonic

chirality is established, indicate that a separate upstream gen-

etic mechanism defines the left–right axis in spiralian

embryos [29]. In this regard, a recent report showed that a tan-

demly duplicated, diaphanous-related formin gene (Ldia2) is

asymmetrically expressed as early as in two-cell stage embryos

and maps to the genomic region associated with the inheritance

of body handedness in the pond snail Lymnaea stagnalis [30].

Formins are involved in actin, and thus cytoskeletal, dynamics

http://rstb.royalsocietypublishing.org/
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[65]. Interestingly, the chemical disruption of this gene during

the earliest zygotic divisions leads to the loss of chiral twist in

dextral-cleaving embryos [30]. In wild-type sinistral cleaving

embryos of L. stagnalis, Ldia2 shows a truncated version. There-

fore, these observations suggest that Ldia2 controls embryonic

chirality and that chiral dimorphism evolved with the appear-

ance of a non-functional Ldia2 recessive allele in L. stagnalis [30].

Nonetheless, other mollusc species with sinistral forms do not

show the truncated version in their formin genes, which indi-

cates that the genetic basis of embryonic chirality is probably

multifactorial. These recent advances are a first step towards

understanding the molecular grounds that connect cytoskele-

ton dynamics and embryonic chirality in spiralian embryos.

Further investigations will uncover how these early sym-

metry breaking events influence the later left–right axis

differentiation programme controlled by nodal and Pitx.

(b) Embryonic chirality and left – right asymmetries in
Spiralia

The dextral or sinistral shift of the animal micromeres, and

thus the presence of embryonic chirality, is a defining feature

of spiralian cleavage and Spiralia as a whole. However, there

are multiple cases of loss of this developmental programme

(figure 5), either in major groups (e.g. gastrotrichs, rotifers,

brachiopods and bryozoans) or in particular lineages within

otherwise spiral-cleaving groups (e.g. in cephalopod mol-

luscs and neoophoran Platyhelminthes) [21,66,67]. Often,

the loss of spiral cleavage is associated with the evolution

of a radially symmetrical programme of zygotic divisions,

with no obvious cellular and/or morphological asymmetries.

The bryozoan M. membranacea and the brachiopod N. anomala
display, for instance, this type of development [47,62].

Remarkably, our four-dimensional microscopy approach to

study the earliest embryogenesis of M. mebranacea demon-

strates that there is in fact chiral dimorphism in these

biradially cleaving embryos, with the right-handed form

being more common than the left-handed, as is also observed

in molluscs (figure 4). Whether the same molecular pro-

gramme involved in controlling embryonic chirality in

spiral-cleaving embryos is also playing a role in the early spe-

cification of the left–right axis in biradial-cleaving spiralians

is unknown.

Altogether, the asymmetric expression of nodal/Pitx in

different lineages, the presence of chiral dimorphism in
radial cleaving embryos, and the spiral cleavage itself

demonstrate that the presence of left–right asymmetries

during development is widespread in the Spiralia. It remains

paradoxical, however, that these evident embryonic differ-

ences in the cellular fate and molecular profile of the left

and right sides are later on not translated into morphological

asymmetries in most of the adult and larval forms of

the Spiralia.
5. Conclusion
Early cytoskeleton dynamics and the subsequent asymmetric

activation of the Nodal signalling pathway control the direction

of coiling of the shell of gastropod molluscs [29–31], which is

one of the most striking cases of left–right asymmetries in ani-

mals. Importantly, the presence of embryonic chirality during

the first zygotic divisions, which is a defining feature of spira-

lian development [21,22], is also observed in lineages that

have lost the ancestral spiral cleavage, such as the bryozoan

M. membranacea. Similarly, other spiralians without obvious

morphological asymmetries in their adult and larval forms,

such as the brachiopods T. transversa [31] and N. anomala, and

the annelid O. fusiformis, show asymmetric expression of

nodal and/or Pitx at some point of their embryonic develop-

ment. Altogether, these evidences indicate that embryonic

left–right asymmetries are widespread in the Spiralia, albeit

their exact impact on the development of the definitive adult

morphology is still unclear.
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