
StatFind

A Framework for Preference Based Searching

Olve S. Hansen

October 9, 2003

Table of Contents

1 Introduction 1

2 The Problem Domain 3

2.1 Nesstar - the Case Application . 4

2.1.1 The Problem . 5

2.1.2 Solving the Problem . 7

3 Theory and Method 9

3.1 Information Retrieval . 9

3.1.1 Stopwords . 10

3.1.2 Similarity Models and Global Analysis 11

3.1.3 Inverted Files . 12

3.2 Case Based Reasoning . 13

3.3 Collaborative Filtering and Recommender Systems 15

3.3.1 Algorithms for Collaborative Filtering 15

3.4 Methodological Approach . 19

3.5 Summary . 21

4 From theory to practice 23

4.1 The StatFind Framework . 23

4.1.1 Choice of Learning Method . 24

4.2 The Information Retrieval System . 26

4.3 The Collaborative Filtering System . 28

i

ii TABLE OF CONTENTS

4.3.1 Vote Prediction . 29

4.4 Integrating CF and IR . 31

5 Implementation issues 35

5.1 Constructing StatFind . 35

5.2 The StatFind Feeder . 37

5.3 The StatFind Server . 40

5.3.1 Jakarta/Lucene . 44

5.4 Clients Interfacing StatFind . 47

5.5 Notes on Development Tools . 49

6 Evaluation and findings 51

6.1 StatFind Evaluation . 53

6.1.1 Test Set-up and Data Quality 53

6.1.2 Search Evaluation . 54

6.1.3 Evaluating Search for politics 54

6.1.4 Evaluating Search for politics, Changed Usage Base 57

6.1.5 Evaluating Search for id nsd0064e V14 60

6.1.6 Evaluating Search for id nsd0005e V83 62

6.2 Evaluation Comments . 65

7 Conclusion 67

7.1 Further Work . 68

A Extended printout of search results 75

A.1 Search for “politics” . 75

A.2 Search for id nsd0064e V14 . 78

A.3 Search for id nsd0005e V83 . 79

B Software documenation 81

B.1 statfind.foreign.StatfindFeeder class source code 83

B.2 statfind.common.util.SleepyQueue class source code 88

TABLE OF CONTENTS iii

B.3 statfind.common.CompletedOperation class source code 91

B.4 statfind.common.cf.functions.WeightFunction class source code 93

B.5 statfind.common.cf.functions.VectorSimilarity class source code 94

B.6 statfind.common.cf.functions.Correlation class source code 96

B.7 statfind.common.cf.CollaborativeFilter class source code 100

B.8 statfind.common.cf.User class source code 102

B.9 statfind.common.cf.Item interface source code 105

B.10 UserItemMatrix class source-code . 105

B.11 statfind.common.StatfindClient class source code 111

B.12 statfind.common.ir.StatfindIRClient class source code 116

B.13 Property files used . 120

C User to MD5 keys 123

List of Figures

2.1 Standard search in Nesstar Explorer . 5

2.2 Advanced search in Nesstar Explorer 6

3.1 The CBR Cycle . 14

3.2 A multimethodological approach to IS research 20

4.1 WeightFunction UML inheritance diagram 30

4.2 Collaborative Filtering system UML inheritance diagram 32

4.3 Plot of vote distribution . 33

5.1 StatFind Plugin source-code . 37

5.2 StatFind plugin . 38

5.3 Screenshot of a browse operation . 39

5.4 Client—Server typology . 41

5.5 StatFind server state diagram . 42

5.6 StatFind server UML inheritance diagram 45

5.7 StatFind—Jakarta/Lucene integration, UML inheritance diagram . . . 46

5.8 StatFind VarFinder client overview . 48

5.9 StatFind VarFinder component screenshot 49

6.1 Safeguard in weightfunction for comparing two idenitcal users 63

7.1 Relation between IR and CF . 68

B.1 An example UML Diagram, serving as symbol legend 82

v

List of Tables

4.1 An example of the indexed documents 27

4.2 An excerpt of the user vote table . 28

6.1 Search for politics, document similarity only 55

6.2 Search for politics, using vector similarity 56

6.3 Search for politics, using correlation and union 57

6.4 Search for politics, using correlation and intersection 58

6.5 Search for politics, changed usage base 59

6.6 Overview over variables viewed by more than one users. 59

6.7 Search for nsd0064e V14, document similarity only 60

6.8 Search for nsd0064e V14, using correlation and union 61

6.9 Search for variable nsd0064e V14, using vector sim, inv user freq 62

6.10 Search for variable nsd0005e V83, document similarity only. 62

6.11 Summations of votes made by each user 63

6.12 Search performed using User A . 64

6.13 Search performed using User B . 64

6.14 Search performed using User C . 64

6.15 Search performed using User E . 65

6.16 Search performed using User G . 65

vii

Chapter 1

Introduction

This thesis’ main goal is to explore which techniques are sufficient to enhance searching

for statistical material in Nesstar (Nesstar, 2002b,a).

Nesstar is a system for providing infrastructure and tools for finding and using

statistical studies1, and will be described thoroughly in section 2.1.

Motivation

Nesstar only support standard boolean searches and thematic maps of statistical stud-

ies to browse — lacking a good system assisting searching and browsing of statistical

material. The developers of Nesstar have also expressed the need for solutions in this

area.

Rough Thesis Overview

This thesis will look into the problems of Nesstar, and see how the search system

can achieve a higher degree of sophistication by the use of new developments in IR

techniques. Using Nesstar as a case, it will explore how such systems can be im-

plemented. By developing a proof-of-concept prototype allowing for experimentation

with different settings continually evaluating performance, this thesis hopes to achieve

1A study is a collective term which will be used for describing a collection of statistical data (the

dataset), and a description (metadata) of that data structured in XML.

1

2 Chapter 1. Introduction

some insight for the requirements of such systems.

Chapter 2 describes the problem domain, and gives an introduction to the Nesstar

system and how the application can be enhanced. The problems with the search

system in Nesstar is discussed, and first thoughts of improvements and possibilities

are given. The chapter ends with a preliminary research question.

In order to fix the stated problems and test the research question, theories of

the corresponding fields must be discussed. This discussion is covered in chapter 3,

Theory and Method, focusing mainly the fields of information retrieval, collaborative

filtering and also case-based reasoning. The different theoretical fields are described,

followed by a discussion on how they work and their advantages and disadvantages.

The methodological research position of this thesis is also discussed, followed by a

discussion on which of the covered research fields are most suitable for the thesis.

The chapter ends by revising the research question in light of these discussions.

Chapter 4, From theory to practice, is devoted to describe how the theories from

chapter 3 are put to use. The focus will be more technical, looking at the choices

done during the implementation of the given theories. It will also discuss problems

regarding to the integration of two different implemented theories used.

Much of the development in this thesis does not follow its central theories, but

are nevertheless important for understanding how the system works as a whole, and

what the different parts do. Chapter 5, Implementation issues, covers this work, and

describes the architecture and development process of the system.

The performance of StatFind is covered in chapter 6, consisting of discussions

about data quality, examples of search performance with discussions, and a general

discussion of the findings. The chapter also covers discussions of arisen problems with

the system, and other problems regarding the quality of the data gathered for this

thesis.

Chapter 7 sums up all of the findings from the evaluation, and concludes with a

verdict on the performance of the system as perceived during the evaluation. Further

work is also discussed.

Chapter 2

The Problem Domain

The search for public information is difficult, mainly because of the large amount of

information released by official institutions, and because of the increased availability

of such information. Institutions that produce information for the public sphere are in

a greater degree than before using the Internet as the (sole) channel of communication,

making the users responsible for finding the information of their need.

Norway (and Scandinavia) has long traditions for collecting statistics for numerous

areas.

Statistics Norway is a governmental institution that gathers, store and analyses

this data, and has the following mission statement1:

Through collection, processing and dissemination of statistics and analysis,

Statistics Norway contributes to a more informed public debate, to ensure

that economic and social policy management are based on the best possible

factual basis and to improve the functioning of the market system.

(SSB, 2002)

1The first Norwegian statistics act is of 1907 (SSB, 2001)

3

4 Chapter 2. The Problem Domain

NSD is another similar institution and states that:

Norwegian Social Science Data Services (NSD) is a national resource centre

servicing the research community. NSDs objectives are to:

• facilitate wider and more knowledge-based use of data

• promote the preservation and sharing of data

• ensure free and open access to information

(NSD, 1997)

These two institutions, dealing with the production and archiving of statistic material,

shows some of the traditions in Norway for providing statistics for public and political

use. Enabling the use of this amount of information is both essential and a challenge

since finding the right pieces of information can be like finding the often mentioned

needle in the haystack.

2.1 Nesstar - the Case Application

NSD, in cooperation with UK Data Archive and Danish Data Archive (UKDA, 2002;

NSD, 1997; DDA, 2003), took up this challenge by developing the Nesstar system —

a set of generic tools that made it easier to:

• Locate multiple data sources (servers containing statistical data) across

organisational and national boundaries.

• Browse detailed information about these data, especially the descrip-

tive and contextual information.

• Tabulate and visualise these data quickly and easily for both naive

and experienced users.

• Disseminate these data and documentation, in whole or part, in forms

suitable for immediate use.

(Nesstar, 2000)

2.1. Nesstar - the Case Application 5

The development was sponsored by the Telematics Application Programme —

Information Engineering (CORDIS, 1999) as well as the Council of European Social

Science Data Archives (CESSDA, 2002).

The system saw a total of two rounds of EU funded projects, the first — NESSTAR

(also the name of the system) (Nesstar, 2002a) and the second Faster-Data (Faster,

2000) for a total of four years of development time funded by the EU, leaving the

system in its current state.

Overall the application (The Nesstar Explorer) has met its formal requirements

stated before the project funding committee, but still some useful features are not yet

implemented or unsatisfactory.

2.1.1 The Problem

Figure 2.1: Screenshot of standard search in Nesstar Explorer

6 Chapter 2. The Problem Domain

To demonstrate weaknesses with Nesstar I will do two searches, using the Nesstar

Explorer, for politics and class. The first (fig. 2.1) shows the results using the standard

search, the next (fig. 2.2) shows a similar search done in the advanced mode. Both

searches highlight the variable POLITICAL INTEREST returned by the search (the

content of this variable is also displayed in the documentation window). The difference

between the two searches is the way the search is narrowed down in the advanced

search. These two examples show the only user interface allowing for searches in the

Nesstar Explorer.

Figure 2.2: Screenshot of advanced search in Nesstar Explorer

The answer set is ordered by the underlying database — it is not ranked with

regard to where the words are in the variable (e.g. if it is in the title, it could be given

more weight). Finding more variables syntactically similar to the one we are looking

2.1. Nesstar - the Case Application 7

at (i.e. containing some of the same words), can be done by specifying specific parts

in the study to search for, as the advanced search facility supports selecting in which

part of the variable (variable name, question text and variable label) the words must

exist (see fig. 2.2). This way a user can perform searches for variables similar to a

given variable manually by using the advanced search facility.

Still, some problems appear in this approach as well, as the application does not

measure how similar the elements in the answer set are to the given query2. Whether

the ranking of the answer set is done in accordance to its similarity to the query is

also undefined in the Nesstar system. If the ranking is not done in accordance to

the query, a search resulting in a considerable number of hits will make the process

of finding the right variables quite cumbersome. Specifying the query needed to find

similar variables may become awkward, as each word wanted in the items returned

may have to be specified in the query.

2.1.2 Solving the Problem

The problems outlined in the section above could have been solved by automating

the process of finding similar variables in the fashion described above. By pressing a

button a user could find variables similar to a current highlighted one. This tool does

not need to be very complex, as most of the functionality needed to search for specific

parts of statistical studies are already implemented, it is just a matter of combining

them in a new way.

On the other hand, automating the steps needed to find similar variables gives

us a chance to rethink the process, and achieve a greater level of sophistication than

possible by combining the existing components in a new way. How this can be done

will be discussed in the following chapters, Theory and Method, and From theory to

practice.

This leads toward this thesis’ preliminary research questions;

2A query is the expression of the information sought, given in the input language of the information

system (Baeza-Yates and Ribeiro-Neto, 1999b)

8 Chapter 2. The Problem Domain

In what way can a tool for helping users find similar statistical

variables be implemented, and which methods are sufficient for mea-

suring the similarity between variables.

The next chapter describes theory applicable to solve the problem described above.

Chapter 3

Theory and Method

This chapter will investigate the possible theories that can be used in the pursuit

of a search system as specified in the preliminary research question in then end of

chapter 2. The theories and methods outlined here are the ones found to be useful

for making an improved search system for Nesstar. An understanding of the theories

and how they can be used in the described domain is important as it will assist the

implementation of the system, as well as forming the foundation for the analysis of

the data gathered for evaluating the developed tool.

The main purpose of this thesis is to investigate possible improvements to searching

and ranking mechanisms. In doing so it will draw on theories from Information

Retrieval (IR), as well as Artificial Intelligence (AI) and Case Based Reasoning (CBR).

Collaborative Filtering (CF) is a maturing technique, used in commercial and open-

source software (Riordan and Sorensen, 1998), and in all of the three mentioned

research fields. An overview of these areas follows.

3.1 Information Retrieval

An investigation of the research field of Information Retrieval is appropriate for im-

proving the search abilities for Nesstar. Information Retrieval (IR) has long traditions,

the first research material dating back as far as the 1930’s (Mizzaro, 1997). Mainly

focused on categorisation and ordering of bibliographic material.

9

10 Chapter 3. Theory and Method

Dramatic changes occurred in the field of IR after the advent of the digital com-

puter and especially with the possibilities provided by the Internet, as the findings

within the field could be put to use in many new areas. Baeza-Yates and Ribeiro-Neto

(1999b) defines Information Retrieval (IR) as:

[a] part of computer science which studies the retrieval of information (not

data) from a collection of written documents. The retrieved documents

aim at satisfying a user information need usually expressed in natural

language.

(Baeza-Yates and Ribeiro-Neto, 1999b, page 444)

and entropy as:

[a] measure of information defined on the statistics on the characters of a

text.

(Baeza-Yates and Ribeiro-Neto, 1999b, page 441)

This indicates that the corpus of documents must be interpreted as containing infor-

mation rather than data, and that the information can be quantified by calculating

its entropy. The higher the entropy the more information is contained. These are

central definitions in the research field of Information Theory, on which Information

Retrieval bases much of its work. The term document is often used within IR and it

is defined as;

a unit of retrieval. It might be a paragraph, a section, a chapter, a Web

page, an article, or a whole book.

(Baeza-Yates and Ribeiro-Neto, 1999b, page 440)

3.1.1 Stopwords

Stopwords are words that do not carry any explicit meaning in natural language and

can therefor safely be disregarded in an IR setting. According to calculations done

3.1. Information Retrieval 11

using Zipf’s law the most frequent words in a text are stopwords (Salton and McGill,

1983). Typical stopwords are; about, for, of, onto, with, etc.

Baeza-Yates and Ribeiro-Neto defines Stopwords as:

words which occur frequently in the text of a document, Examples of

stopwords are articles, prepositions and conjunctions.

(Baeza-Yates and Ribeiro-Neto, 1999b, page 452)

Removal of Stopwords

Removing stopwords reduces the size of an index dramatically, without reducing the

texts entropy (Baeza-Yates and Ribeiro-Neto, 1999d).

Removing stopwords also makes searches more precise as a search containing e.g.

prices above or below and travel would, when the stopwords were included, give highest

rank to the document having the highest frequency of those words (Ziviani, 1999).

Instead words like and, or, not is used as special words to build a boolean query.

Salton and McGill (1983) states that stopwords top the frequency count of a

reference collection of documents. Indexing on stopwords may inhibit a search engine

as the amount of data is larger than necessary.

When searching for exact phrases, the stopwords can’t be disregarded. This prob-

lem is solved by utilising different types of indexes are used for phrase matching than

for keyword searches (Navarro, 1999).

3.1.2 Similarity Models and Global Analysis

Global analysis is defined as;

a reference to techniques of identifying document and term relationships

through the analysis of all the documents in a collection.

(Baeza-Yates and Ribeiro-Neto, 1999b, page 442)

12 Chapter 3. Theory and Method

A comparison of different documents used in a global analysis scheme must be grounded

in a model. This model clarifies the boundaries for what a document can contain,

as well as describing the methods used to compare the documents. A comparison

should yield a number, usually between zero and one, as a figure of the similarity of

the documents. Comparing documents this way is called calculating the document

distance, and it is a distance function.

Calculating Document Distance

The distance can be calculated in many ways, each fitting better to some tasks than

others. There is no single “best” model for calculating distance, but some guidelines

exists. E.g. the method should be symmetrical (distance(a, b) = distance(b, a)), and

should satisfy the triangle inequality (distance(a, c) ≤ distance(a, b) + distance(b, c))

(Baeza-Yates and Ribeiro-Neto, 1999d).

To utilise the distance function properly, the distance for all documents against

all other documents must be calculated, and stored in an appropriate way. Storing

this information in e.g. a similarity matrix comparing each document against each

other requires O(n2) time. This makes nearly all of the necessary calculations, thus

making retrieval time short (Faloutsos and Oard, 1995).

Performance

The quadratic performance time for indexing is a major drawback, and cuts down on

the areas where these methods can be used i.e. it is only feasible for collections where

the number of indexed documents are fairly constant.

3.1.3 Inverted Files

An inverted file is composed of a vocabulary (the indexed words) and a list of occur-

rences (where the words are found), and is another approach to indexing files. There

are several types of inverted files, but the most commonly used is composed of a list

of sorted words (vocabulary), each having a set of pointers to the documents where

3.2. Case Based Reasoning 13

the words occur, and how many times they occur.

Several ways of building indexes of inverted files exists, as well as different ways of

searching the built index. The index may be built using different types of compression,

and other techniques, depending on the qualities of the text being indexed (Navarro,

1999). Details of the different techniques will not be covered in this thesis, as they

fall outside the interest of this thesis.

Index Normalisation

Most indexing methods also use some normalisation method — where normalisation

is done before the indexing process. The most common are stop-word removal, and

stemming of the words (Navarro, 1999). Porter’s stemming algorithm is the most

used stemming algorithm (Ziviani, 1999) and is described fully in Baeza-Yates and

Ribeiro-Neto (1999b, page 433).

3.2 Case Based Reasoning

As case-based reasoning may be viewed as operations related to similarity (Althoff

and Aamodt, 1996), it may be interesting to investigate the usefulness of case based

reasoning (CBR) in this domain. CBR is also appropriate for solving the problem de-

scribed in 2.1.1 as CBR is within the domain of IR. The main difference or advantage

is the way a CBR implementation is able to learn from use. A CBR implementation

can learn which statistical variables are used together in the Nesstar system. Viewing

the documentation of a statistical variable (the base case) could then trigger a pre-

sentation of the other statistical variables (the target cases) most often used together

with the one currently being viewed.

The case-based reasoning process consists of these main steps:

• The RETRIEVE process retrieves the collection of cases that is most similar to

the new case.

14 Chapter 3. Theory and Method

Suggested

Solution

Confirmed

Solution

Revise

R
et

ai
n

Retrieve

Reuse

New

Case

Solved

Case

Tested/

Repaired

Case

Learned

Case

General

Knowledge

Previous

Cases

New

Case

Retrieved

Case

Problem

Figure 3.1: The CBR Cycle (Aamodt and Plaza, 1994)

• The retrieved case(s) are combined with the new case through the REUSE pro-

cess ending up with a solved case, which is a proposed solution to the problem.

• The proposed solution is then REVISED after being tested for success. The

case will be repaired after testing if needed.

• The RETAIN process extracts the useful parts of the tested (and possibly re-

paired) case, and puts these parts back in the case-base. This learned case is

represented in the case-base as a modified existing case, or by making a new

learned case.

These four stages represent the most general way in which a CBR system works

(Aamodt and Plaza, 1994).

3.3. Collaborative Filtering and Recommender Systems 15

3.3 Collaborative Filtering and Recommender Sys-

tems

Recommender systems try to recommend items to a user, based on what he/she

earlier has rated in a scale of some range. The rating can be a scale from 0 - 10,

or simply a boolean like/dislike scale, or a metric that the system extracts during

use by the aid of a heuristic method. Collaborative filtering uses the same approach,

but the recommendations are based on the accumulation of ratings by several other

users. This approach is similar to CBR, in that recommendations are based upon the

similarity to other users’ behaviour. However, recommender systems are semantically

weak compared to CBR because few features are associated with each user (Burke,

2000).

Domain Applicability

How a CBR system is used depends, on the type of domain it is used in, but in general

CBR systems are used in open and weak theory domains (Aamodt, 2001; Aamodt and

Plaza, 1994). Recommender systems/Collaborative filtering also fall under this area

(open and weak theory domains), and can be viewed as an approach that address the

same problem.

As the Internet bookseller Amazon does it; instead of finding out what constitutes

a good book and categorise the good books that relates to each other (e.g. according

to subject, genre, language etc.), they let the users do it for them by recommending

books other bought who also bought the book you are currently looking at (Schafer

et al., 1999).

3.3.1 Algorithms for Collaborative Filtering

Breese et al. compares how different algorithms for predictive collaborative filtering

works on different datasets1. The results were presented in Breese et al. (1998), and

1The term “dataset” is not used in the same meaning as earlier, but as a collection of structured

16 Chapter 3. Theory and Method

will serve as basis for the implementation of collaborative filtering support in this

thesis. The following are the equations used in this thesis for calculating similarities

between users and predicting votes for searched items.

The General Approach

Given a user database consisting of several votes vi,j, where i is the user and j is the

item which the vote is given for and If Ii is the set of items on which user i has voted,

the mean vote for a user i is:

v̄i =
1

|Ii|
∑
jεIi

vi,j (3.1)

Next, let a be the active or current user and j the item we want a prediction pa,j for,

can be calculated as follows:

pa,j = v̄a + κ
n∑

i=1

w(a, i)(vi,j − v̄i) (3.2)

where n is the number of users in the database with nonzero weights. κ is a normalising

factor so that the weights sum to unity. The function w(a, i) returns weights saying

something about the distance between two users, their similarity, distance or other

relevant measures, and is covered below, in section Weighting Functions.

The interesting part of the equation (3.2) is (vi,j − v̄i) which adjusts the weight or

user distance. If the compared users’ votes are below the users’ mean vote, the result

will be given a negative adjustment, and vice versa.

Weighting Functions

Breese et al. (1998) analyse several weighting functions and compare them to find

the domain they are best suited for. The article concludes that using a Bayesian

Network is generally best at predicting the votes for users, but vector similarity and

correlation methods are close runners up in their comparison. According to the same

article, a Bayesian Network need relatively large amounts of data in order to be trained

properly. As this thesis will not have large amounts of data available, correlation and

data of any kind, not only as a statistical dataset.

3.3. Collaborative Filtering and Recommender Systems 17

vector similarity seems to fit best. These kinds of algorithms are called memory-based

algorithms.

Vector Similarity According to Breese et al. (1998) vector similarity for collabo-

rative filtering is an adoption of the formalism used by Salton and McGill (1983) for

comparing documents.

The symbols used in the following equations means the same as in (3.1) and (3.2).

va,j points to the vote given by the active user a for item j. Item j in jε(Ia∩Ii) denotes

the intersection of item votes, i.e. items voted for by both users. The summations

in the denominator denotes the items in which the active and the compared user has

voted for.

w(a, j) =
∑

jε(Ia∩Ii)

va,j√∑
kεIa

v2
a,k

vi,j√∑
kεIi

v2
i,k

(3.3)

Correlation For calculating correlations, the Pearson correlation coefficient is used.

The collection used for the summations is the same as in (3.3) The weight function

for calculating correlations is:

w(a, j) =

∑
jε(Ia∩Ii)

(va,j − v̄a)(vi,j − v̄i)√∑
jε(Ia∩Ii)

(va,j − v̄a)2
∑

j(vi,j − v̄i)2
(3.4)

Extensions to these algorithms are default voting, inverse user frequency, and case

amplification. It works as follows:

Default Voting

Vector similarity calculations provide the same result, whether Ia∪Ii or Ia∩Iiis used.

Using Ia∪Ii for correlation increases the number of items used in the calculations and

has proven positive in domains where few votes for either a or j exist (Breese et al.,

1998).

The reason this technique is called default voting is that when an item for which

only one of the compared user has given a vote, the appropriate vote is inserted for

the other user (usually 0). In an implicit voting scenario as in this thesis, a missing

18 Chapter 3. Theory and Method

vote can be counted as a vote, i.e. the value 0 is assigned as a default vote if an item is

not viewed at all. This value can be changed, specifically when combined with inverse

user frequency (Breese et al., 1998).

Inverse User Frequency

The inverse user frequency is an adoption of the inverse document frequency, normally

used to reduce the weights of commonly occurring words (Baeza-Yates and Ribeiro-

Neto, 1999a). Based on the assumption that heavily used words are less indicative

on topic than less frequent words. Inverse user frequency uses the same assumption;

universally preferred items are not as useful in capturing similarity as less common

items (Breese et al., 1998).

Inverse user frequency works well together with default voting, as a missing vote

counts as a vote. Thus items not viewed by two compared users will be treated as a

similarity trait. This works by giving the vote, in a situation where no vote exist for

a given user, a high value. In this way, inverse user frequency will give a resulting low

vote for those occurrences. If n is the number of users in the database, and nj is the

number of users voted for the item j, the inverse user frequency will be:

fj = log
n

nj

(3.5)

If an item have votes from all registered users, fj is zero.

The inverse user frequency changes the way the correlations and vector similarities

are calculated, by inserting the fj from (3.5) as follows:

U =
∑

j

fj(
∑

j

fjv
2
a,j − (

∑
j

fjva,j)
2)

V =
∑

j

fj(
∑

j

fjv
2
i,j − (

∑
j

fjvi,j)
2)

w(a, i) =

∑
j fj(

∑
j fjva,jvi,j − (

∑
j fjva,j)(

∑
j fjvi,j))√

UV

(3.6)

Vector similarity can be made to accept inverse user frequency by multiplying fj with

3.4. Methodological Approach 19

the transformed vote. This leads to the equation:

w(a, j) =
∑

j

fj
va,j√∑
kεIa

v2
a,k

vi,j√∑
kεIi

v2
i,k

(3.7)

Case Amplification

Case amplification works by transforming the calculated weights by raising the weight

to a given power, so that

w′
a,i =

wp
a,i if wa,i ≥ 0

−(−wp
a,i) if wa,i ≤ 0

(3.8)

A typical value for p in Breese et al.’s experiments was 2.5.

Default voting and inverse user frequency only works for the correlation function,

while case amplification works for both correlation and vector similarity. The different

techniques will be implemented and tested against the user vote database, generated

for the evaluation of my approach. Section 4.3 describes the implementation of these

techniques.

3.4 Methodological Approach

This thesis will use research methods inspired from the multimethodological approach

suggested in Nunamaker et al. (1990), as well as methods from artificial intelligence

(AI) research.

The multimethodological approach for developing information systems (IS) can

be described as a framework for using different methods for evaluating the developed

systems. Figure 3.2 shows how different methods interplay. As Nunamaker et al. puts

it;

“Systems development is the hub of research theta interacts with other

research methodologies to form an integrated and dynamic research pro-

gram.”

20 Chapter 3. Theory and Method

Experimentat
ionObservation

Systems
development

Theory
Building

Figure 3.2: A multimethodological approach to IS research (Nunamaker et al., 1990,

page 93)

(Nunamaker et al., 1990, page 95)

This way IS development is the basis that allows research in the domain of the de-

veloped component to be done. Different research methods interplay in exploring the

domain in which the IS is developed.

This thesis will develop an IS and do experiments with the developed system, and

thus positions itself in the hub and in the experimentation part of figure 3.2. Doing so

it will employ AI as its experimental method, following the steps proposed by Simon

(1995). These three points describe the method:

1. Choose a task that encompass an intelligent quality of substantial practical

importance, or that is composed of properties showing complexity not earlier

simulated by AI-systems.

2. Construct a system that demonstrates this intelligent property.

3. Explore the system’s behaviour in different task environments and with different

initial states.

And proposes that the main method within AI should be composed of building and

studying systems that indicate intelligent behaviour.

3.5. Summary 21

This makes AI an experimental method rather than a theory about the mechanisms

that enable intelligence. It also tells us that those mechanisms can best be studied

through design; running and evaluating experiments with the enhancements of the

system, and continued experimentation as a goal. According to Nunamaker et al.

(1990) and figure 3.2, the experimentation is further used in research, as input to

observational research, and in the development and refining of theories.

3.5 Summary

The theories described in this chapter are the ones most fitting for this domain. Each

theory has elements in common with the others, and in this thesis the main theoretical

directions will belong to IR and AI.

CBR is a sub-area of AI, as it focuses on how a system can learn from usage

(see figure 3.1). Initially CBR looked quite promising for solving the preliminary

research question given in section 2.1.2, but a CBR system is more often implemented

as a more extensive system than the domain and scope of this thesis allows. Also,

the low complexity of the information available in the thesis’ domain suggests that

implementing a CBR system for solving the problem might be an overkill. Other

technical problems using CBR is covered in section 4.1.1. CF will hopefully suffice

in bringing the qualities sought in CBR into the software developed for this thesis,

since the techniques used for CF are also applied in CBR settings, although in a more

sophisticated way.

AI as a method can be applied in a wide range of cases, as it in the widest sense

can be viewed as a framework for using experimentation when developing intelligent

systems. CBR and CF can in this way be viewed as a specialisation of the AI method.

The research field of IR draws on traditions from the field of linguistics — as many of

the theories are about operations regarding text, as well as measuring how relevant

one body of text is to another (Mizzaro, 1997). Although the two main fields of AI

and IR have their roots different traditions, they do not contradict each other in any

way. A combination of ideas from both fields is therefore possible.

22 Chapter 3. Theory and Method

These theories represent the theoretical ground on which this thesis will be based,

specifically regarding the research question below, and the research design as a whole.

Methodically the thesis will be conducted as specified in section 3.4.

The question I want to address is;

Will mixing classic Information Retrieval methods with Collabora-

tive Filtering techniques be effective and efficient in finding related

statistical variables?

Chapter 4

From theory to practice

I have utilised the theories described in the previous chapter to implement a software

component as a contribution to the Nesstar system. I have named the component

StatFind. StatFind is composed of a Java server and a database, as well as an addition

(plugin) to the Nesstar Explorer client.

This chapter will mainly focus on the implementational choices based on the theo-

ries from the previous chapter, while chapter 5’s focus will be the development process.

StatFind is developed in the Java programming language mainly because my ex-

pertise lies in Java development and because the Nesstar System is written in Java.

Making a later utilisation of StatFind, where it is added to the Nesstar system port-

folio, easier. It also makes the API for StatFind less complex as inter-module com-

munication can be done using Java method calls.

4.1 The StatFind Framework

The Nesstar server runs in a JBoss J2EE environment, using MySql as the DBMS1.

MySql was a natural choice for a DBMS for this thesis since it eased the process of

integrating the existing data needed for indexing the Nesstar document base from the

Nesstar MySql database.

1Data Base Management System

23

24 Chapter 4. From theory to practice

Before discussing a choice of learning method, the unit of interest must be clarified.

The statistical documentation Nesstar allows an interaction with is broken down in

many parts. Documents structured in XML that lies at its centre permits fine grained

control over the different parts of the documentation.

Statistical studies in Nesstar are composed of different documentation parts, fol-

lowing the DDI standard (Data Documentation Initiative (ICPSR, 2002)). The DDI

permits identifying different parts of statistical documentation as e.g. abstract, sam-

pling method, variable descriptions etc. These variables are the items containing most

useful information, as they have a close relation to the statistical data they describe.

Other elements from the DDI are on a more meta-level than what is contained in

the data-description part of the DDI. This suggests using the documentation about

the statistical variables contained in a study as the item of interest when collecting

information about users behaviour in the Nesstar system.

4.1.1 Choice of Learning Method

Three theories for making an advanced search system have been proposed, the IR

approach, the CBR approach, and the CF approach. An IR approach does not en-

compass a system for a learning search system, and a CF approach does not encompass

an ordinary search system. Only CBR can be seen as a framework for combining the

features from both IR and CF. At first glance, a CBR system looks most promising

for making a learning search system. By treating statistical variables as cases in a

CBR system, the system could track their use, and suggest other relevant statistical

variables for a user using the Nesstar System. The main drawback in implementing

CBR in this domain is its information need. As CBR is a system that learns from

experience, the system needs to access information surrounding the decisions made

by a user to be able to recreate the situation and be able to solve the problem —

information that needs to be related to the problem at hand (Carrick et al., 1999).

When planning the StatFind framework, I wanted it to be non-obtrusive, so users

would not need to make explicit responses to StatFind in order for the software to

4.1. The StatFind Framework 25

learn. Since the information collected is generated at very short intervals, the user

would have to answer questions quite frequently. The users may be annoyed by

frequent interruptions in the for of pop-up dialogs with questions regarding how well

the information they view fits to what they sought.

Another approach could be to collect this information after searches in the system,

and ask the user about extra input not so often as would be necessary in the current

approach. This would result in less collected data over the time period available —

as the thesis scope does not allow for a longer data collection period.

Implicit voting2 could be used in a CBR setting as well as in CF. The main problem

is both technical as well as theoretical; implicit voting has difficulties in capturing some

types of preferences (like where users must explain their intent). A CBR system is

most often built around a user feedback system (Carrick et al., 1999). The feedback

system enables the user to give a more nuanced feedback with both positive and/or

negative feedback on various cases.

It is possible, but difficult, to make a non-obtrusive implicit voting system for

StatFind/Nesstar which give a more nuanced feedback. The difficulties lies in the

heuristics needed to draw the borders between different grades from like to dislike. If

a search is done and a list of statistical variables are presented, a voting system must

capture which variables from a search are used as well as which are not. This infor-

mation is impossible to capture from the Nesstar Explorer without a major rewrite

of the application. It is possible to know who is looking a statistical variable, but the

context in which it is viewed is undefined (from the applications point of view).

The above facts suggest that the CF approach is best suited for the learning-

method used in StatFind/Nesstar, resulting in the use of an IR system to do the

textual comparison of statistical variables

2Implicit voting is an approach were users actually vote, but a user trait or behaviour is interpreted

as a preference.

26 Chapter 4. From theory to practice

4.2 The Information Retrieval System

Global Analysis, the First Version

The first version of the IR system was built using a global analysis technique. Global

analysis is used to analyse or compare all documents in a collection, and calculates

the similarity figure for each compared document. The similarity figure is a value

that describes how similar two documents are e.g. in the range of [0,1] where 0 is

no similarity between them, and 1 means they are identical. In a collection of n

documents, n2 − n number of comparisons must be done. This amounts to O(n2) for

building the index. This thesis uses a collection containing 921 statistical variables,

which amounts to 847.320 comparisons — exponential index functions are seldom

efficient.

The Document Model

The process of indexing the document bases involves a comparison of each document

in the database. When the words of each document is first extracted and compared

to a stopword list, the words matching a stopword is removed from the list of words

to compare. Next, the two documents’ lists of words are sorted, and compared one

by one. The similarity figure is the number of words common in the two documents

divided against the number of words in the document having most words.

The table 4.1 shows 10 rows of indexed statistical variables from the database,

note that no similarity figures are below .5, as it was the boundary for storing the

document comparison result.

Global Analysis and its Limitations

Indexing in this manner limits searches to be done using an existing statistical variable

as the query, because the index consist of the id of the two variables compared only.

In order to find variables similar to the one a user may currently be viewing, retrieving

the rows where one of the variables have the same id is sufficient. The comparisons

between the documents are already done.

4.2. The Information Retrieval System 27

Case variable Target variable Similarity Figure

nsd0005e V31 nsd0393e V92 0.5

nsd0005e V32 nsd0005e V54 0.666666666666667

nsd0005e V32 nsd0005e V279 0.6

nsd0005e V32 nsd0005e V281 0.666666666666667

nsd0005e V32 nsd0064e V13 0.923076923076923

nsd0005e V32 nsd0064e V32 0.666666666666667

nsd0005e V32 nsd0393e V92 0.5

nsd0005e V32 nsd0393e V128 0.666666666666667

nsd0005e V33 nsd0064e V14 0.833333333333333

nsd0005e V33 nsd0393e V92 0.5

Table 4.1: An example of the indexed documents

In section 2.1.1 the problem with the Nesstar search system was described . The

current approach (global analysis) only adds the find similar statistical variables

method. There are a few limitations to this approach, the indexation scheme makes

it impossible to use anything other than a statistical variable id as a query. E.g. a

freetext search is impossible in this implementation of global analysis. Together with

slow and inefficient indexing the current approach should be revised.

Improving the search functionality of the Nesstar System as suggested in 2.1.2

implies that the free text search functionality should also be improved. Especially

since it is undefined whether the results in table 4.1 are in accordance with the guide-

lines specified in section 3.1.2, regarding triangle inequality and symmetrical results.

The coherence with these guidelines could have been formally tested, but the existing

document similarity model does not suggest that the guidelines hold.

It is certain that the guideline for symmetrical results does not hold. The word

count used to measure the similarity always divides the number of words in the sta-

tistical variable having fewest words with the one with most words. This was done to

ensure a similarity figure below or equal to one.

Addressing the Limitations of Global Analysis

The problems regarding the global analysis method of indexing led to a need for

another IR component. Instead of implementing a complete new search-engine, the

28 Chapter 4. From theory to practice

effort was put into finding a component ready for use, preferably as an open-source

component. Positive experiences with other Apache products lead to tests using

Jakarta/Lucene (Jakarta/Lucene, 2003), an open-source project under the Apache

license. Jakarta/Lucene proved to be fast, reliable and very flexible, some background

research proved that it uses inverted files in what seems to be a very efficient way.

By doing this switch, the cumbersome global analysis method disappears, resulting

in a far more flexible, faster, and reliable search system. This is further described in

section 5.3 and in the discussion of findings in chapter 6.

4.3 The Collaborative Filtering System

As discussed earlier, StatFind will be implemented using the collaborative filtering

routines outlined in section 3.3. An excerpt of the user votes are shown in table 4.2.

In the database, the user and statistical variable id are combined as the primary key.

This makes it possible for several users to vote for the same item. If a vote a user

already has voted for is registered, only the view count field is incremented.

Statistical variable id User View count

nsd0393e V14 User E 1

nsd0393e V19 User E 1

nsd0393e V9 User E 1

nsd0064e V94 User F 3

nsd0064e V95 User F 4

nsd0064e V96 User F 2

nsd0064e V97 User F 3

nsd0064e V98 User F 2

nsd0064e V101 User F 3

nsd0064e V100 User F 3

nsd0064e V99 User F 1

nsd0005e V5 User C 1

nsd0005e V206 User C 1

nsd0005e V207 User C 2

nsd0064e V239 User C 2

nsd0064e V240 User C 1

nsd0005e V209 User C 1

Table 4.2: An excerpt of the user vote table

4.3. The Collaborative Filtering System 29

4.3.1 Vote Prediction

The predicted vote for a given user is calculated using the other users’ votes (gath-

ered from user behaviour), the selected weighting function, and on the current and

other users’ mean vote. Implementation follows the equation (3.2) for the vote pre-

diction, and equation (3.1) for calculating the mean vote. The source code for these

calculations are available in appendix B.10 and B.7.

Interpreting User Behaviour

When the system is given a statistical variable–user identificator pair, e.g. nsd0064e V95

and User C , the system responds with a prediction for the specified combination. This

works by calling the Vote predictVote(User activeUser, Item activeItem) method

in the CollaborativeFilter class with the active user, and the statistical variable

the user want more similar variables from, as parameters to the method (see figure

4.1 for UML). User and variable correspond to a and j in equation (3.2). Next all

users are iterated, and by the selected weight function and its settings, the w(a, i) in

equation (3.2) is calculated. Appendix B has a legend for the UML diagram (figure

B.1).

The CF Method Framework

WeightFunction is an abstract class for providing general functionality and pluggable

methods and leaves the method double weight(final User activeUser, final

User otherUser) to be implemented by derived classes.

The class CollaborativeFilter (B.7) has an instance of WeightFunction (B.4)

as a member (see fig. 4.1). The CollaborativeFilter class is only a wrapper class

for administrating the weight functions, and used by StatfindIRClient to calculate

the vote predictions.

30 Chapter 4. From theory to practice

Figure 4.1: WeightFunction UML inheritance diagram

Implemented CF Functions and Techniques

StatFind implements two derived classes; Correlation (B.6) and VectorSimilarity

(B.5). The two implemented weight functions have some features in common, and

some are specific for the individual weight functions. See figure 4.1 for the UML model

describing this architecture (legend for the UML diagrams is available in appendix B

figure B.1). The WeightFunction class can utilise case amplification (see equation

(3.8)), and inverse user frequency (3.5), which are common for the implemented sub-

classes. Inverse user frequency is common in the way that the method exists for both

Correlation and VectorSimilarity, but is implemented differently for each class.

See equations (3.6) and (3.7), and source code in appendix B.4 (WeightFunction),

4.4. Integrating CF and IR 31

B.5 (VectorSimilarity) and B.6 (Correlation) for details.

One method differs between the two classes; the item selection method, which is

only implemented in the Correlation class. Section 3.3.1, Default Voting explains

how this function works in detail.

4.4 Integrating CF and IR

When the implementation of two separate components for IR and CF are finished, it

is necessary to integrate the two components in order to make them function together.

In the implementation this was done by having the class StatfindIRClient (B.12)

reference an instance of CollaborativeFilter, and run the ranked statistical vari-

ables through that filter to get the predicted votes, and then re-rank the statistical

variables according to the given vote. Figure 4.2 shows how the classes are connected.

The classes already described in 4.1 are omitted, except for CollaborativeFilter

which is included for showing its place in the bigger context.

The weight on each components rank and predicted vote must be equal. One way

of ensuring an evenly distributed weight is by employing the two-variable function

f(x, y) = (x + y)− (x ∗ y) (4.1)

This way low ranks will not punish high predicted votes, and vice versa. Each result

will take the other into account, by adjusting the second value in a degree to the first.

The range for x and y must be in [0,1] for the results to be balanced.

Integration Problems

A quite serious problem emerged when making the collaborative filtering algorithms

work together with the information retrieval system (this should have been given

more notice earlier). The IR component gives its ranks as values from 0 to 1, while

the predicted vote ranges in the degree of the range of actual votes. This resulted in

predicted values almost always being more than one, and thereby giving the predicted

votes precedence over the rank given by the document search. To solve the problem,

32 Chapter 4. From theory to practice

Figure 4.2: Collaborative Filtering system UML inheritance diagram

4.4. Integrating CF and IR 33

the predicted votes needs to be transposed in the range given by the IR component

([0,1]).

Transposing Predicted Votes

The data collected amounts to a total of 817 observations over 406 statistical variables,

done by 7 users. The mean vote was 2.01 votes per statistical variable and the

maximum vote for one is 29 — see figure 4.3. The plot maps statistical variable

number (x-axis) against the number of times viewed by all the users (y-axis). If the

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450

Figure 4.3: Plot of distribution of the collected votes

CF system uses the votes the way they are given, the predictions will potentially be

in the same range as the votes (i.e. 0 – 29), and not compatible with equation (4.1).

For the results (f(x, y))to be balanced, equation (4.1) assumes the same range for x

and y as well as being in the range of [0,1].

Thus some way of transposing the predicted votes into the range [0,1] is needed,

and a linear function will not suffice as the current vote distribution is very uneven.

This can be done by the use of a an exponential function asymptotically reaching for

34 Chapter 4. From theory to practice

1:

f(x) = 1− q−va,i (4.2)

Where q is a calculated value equilibrium, in the form of:

q = c
−1
r (4.3)

Where c is the value we want treat as the equilibrium, and r the number of required

votes needed to reach c. This thesis used the values c = 0.5 and r = 2, which was

selected with the plot in figure 4.3 in mind.

Although the last adaptations are ad hoc heuristics - they bring the system up

to a working and testable condition. The values for c and r may easily be adjusted

in a way that makes more sense, but as we do not know which way to adjust it, the

correct adjustments is not discussed further here.

Chapter 5

Implementation issues

In order to test the research questions (section 3.5) software for this purpose had to be

developed. This software includes a Java server, a plugin for an existing application,

tool for analysing findings, to document indexing and retrieval tools, all these tools

and components have been developed by the author.

Development Method

The components were developed in confirmation with “good” OO practice; the com-

ponents are modular, well documented, and easy to extend. The documentation is

described in appendix B as Javadoc embedded in the source code.

5.1 Constructing StatFind

Although the main focus of this thesis is on theoretical research questions, this chapter

will look into the developed software from a technical point of view. The problem

was how to retrieve information about the users’ usage (explained in detail later) in a

seamless non-intrusive way, with minimal changes to the existing software architecture

in Nesstar.

35

36 Chapter 5. Implementation issues

The Ideal Solution

As briefly described in section 4.1, the Nesstar system is built around a JBoss J2EE

environment. The first idea was to add functionality to the Nesstar Server, making it

gather data about user requests. This approach seemed the least intrusive, and only

small changes needed to be made. Problems arose after implementing this solution,

as I was unaware of the caching scheme in the server and client; only the first requests

in a session reached the server, because the subsequent requests where handled by

the client only. Handling the information at the server could have proven best if the

caching problem had been overcome, as the information could have been handled as

close to its source as possible.

Later work suggests that there would have been other problems with this approach

as well. When gathering data, the user context is important to take into account.

When gathering data on the server, the user context is indistinct and difficult to

grasp, as it only sees the objects the user request, not the situation the user is in. The

user context is information about the user situation, e.g. not only what he is doing,

but what led up to the current situation he is in.

The Working Solution

As adding the intended functionality to the Nesstar Server did not work as intended,

other ideas had to be tested. When the information could not be generated as close to

the server as possible, the other extreme looked promising; generating the information

as close to the user as possible. This way, the information that deals with the user

context is easier accessible than when the information is gathered at the server. All

in all, the working solution is probably the best when the scope of this thesis is taken

into account, when the amount of work to get the ideal solution is taken into account.

5.2. The StatFind Feeder 37

5.2 The StatFind Feeder

The only code added to the Nesstar Explorer is shown in figure 5.1. What it does (in

short terms) is to collect the object (an instance of VariableNode
1) the user has viewed,

retrieves the variable identificator, and sends it off to the StatFind server, i.e. first it

is passed over to the StatfindFeeder class, which in turn sends it off to the server. This

class is supplied in a jar file bundled with the Nesstar Client application. This way

the additions to the client code base is very small.

1 if(node instanceof VariableNode){

2 CompletedOperation op = new CompletedOperation();

3 VariableNode varNode = (VariableNode) node;

4 try {

5 //Retrieve the object from the server if not already done:

6 if(varNode.getVariable() == null)

7 varNode.obtainVariable();

8 op.setVarId(varNode.getVariable().getID());

9 StatfindFeeder.getInstance().processObject(op);

10 } catch (Exception e1) {

11 //don’t bother

12 }

13 }

Figure 5.1: The source code needed to attach the plugin.

Plugin Activation

The contents of the supplied jar file does most of the work, so by executing the code

in line 9, figure 5.1, all the steps in figure 5.2 are executed. This code is executed

whenever a user clicks a statistical variable node in the Nesstar Client, see figure 5.3

for screenshot showing the described operation.

In order to send the details of a viewed object to the StatFind Server the com-

ponent first checks if the server is started. This check results in the creation of the

component2, if the server is not previously started. The StatFind plugin reads a prop-

1A variable node is a node in a GUI tree containing a statistical variable.
2The component only starts once, and remains alive until the application is shut down.

38 Chapter 5. Implementation issues

Figure 5.2: An overview of the steps execute by the StatFind client plugin.

erty file to load the connection details (see appendix B.13), and stores the current user

name in the database at the specified address.

Securing User Privacy

The username is stored as a MD5 fingerprint3. A username such as olvehansen will

with the MD5 hash become the unintelligible 19c493e053b98cdf42c80351b4f5a968.

This is to make sure that the system operator cannot misuse the information stored

3The MD5 algorithm takes as input a message of arbitrary length and produces as output a

128-bit “fingerprint” or “message digest” of the input (Rivest, 1992).

5.2. The StatFind Feeder 39

Figure 5.3: A screenshot showing a statistical variable selected using the browse tree.

in the system to trace what a user has looked at. In order to match the usage

information to a specific user, the original username from the computer used to run

the Nesstar Explorer is needed. All these operations happens in the getInstance()

method in line 9, figure 5.1.

For readability purposes, the MD5 fingerprint is replaced with e.g. User A in

examples in the text. See appendix C for MD5 keys.

Ensuring Client Responsiveness

In a client environment it is crucial that users do not experience negative side effects

from using the StatFind plugin as portrayed. The queue, described in figure 5.2, has

a separate thread of execution to avoid slow responses in the client user interface.

This way one thread pushes an object to be sent to the server into the queue, and the

queue itself takes elements from the queue at its own pace. The queue then checks

40 Chapter 5. Implementation issues

whether the object contains the information needed, and sends it to the server if the

server is running (source code available in appendix B.2).

The nature of such a queue makes the system very robust, as the queue-thread

only performs its operations until the queue is emptied. Then it becomes idle again

— waiting for new objects to be enqueued. By caching objects to be processed, it

lets the rest of the application continue unhindered by other obstacles such as a slow

network connection.

5.3 The StatFind Server

The ideal solution would have been to handle the usage information in the Nesstar

network communication protocol, but it proved too much work for this thesis. Instead

of letting the Nesstar server handle the information, a stand-alone server had to be

created for this purpose. The StatFind server is a fairly simple creation, although it

has grown in complexity throughout the work on this thesis. It does not do much,

but it is built to be very robust, as it must handle many asynchronous connections

from many users at the same time. Figure 5.4 gives a superficial picture of how

the servers are organized, the different components they consist of, and the lines of

communication between the different components.

The Different States of StatFind

Starting up: When the server is started, it first performs some tests to find out if

it can start. I.e. checks whether the required port is occupied, and if it is, tell

the other server to shut down4.

Next it starts the Jakarta/Lucene RMI server (more about this later) and reads

property files containing some connection details and settings (see appendix

B.13 for details).

Waiting for client to connect: Waiting for a client to connect involves listening to

4This will of course only work if the listening server is another StatFind server.

5.3. The StatFind Server 41

Figure 5.4: An overview of the client—server typology.

42 Chapter 5. Implementation issues

Figure 5.5: An overview of different states of a StatFind server.

a socket on a TCP/IP network connection. When a client connects to the correct

socket (in this case socket 3306), the server spawns a new thread of execution

and connects this thread to the database that is responsible for storing the usage

information.

The server immediately goes back to waiting for new clients to connect.

Connected, waiting for object: This thread has the responsibility of handling ob-

jects that are sent from the connected client. When the client is connected to

the server, the socket is open and a data stream, capable of streaming Java

objects, is initiated.

Object received: Objects are received through the stream, and deserialised. The

objects are checked for instance type, and discarded if the object is not known.

Object screened: The known objects are checked for usage information about sta-

tistical variables that are known to this server. If the statistical variable is

unknown, the server discards the object and goes back to waiting for new ob-

jects.

Object stored: A known valid object is stored in the usage database. The users

5.3. The StatFind Server 43

usage information is correspondingly updated.

Disconnected from client: The object can also be an EndOfStream object, whose

special meaning is that the client will disconnect. This is a way of shutting down

the connection. Another way to disconnect is simply to close the stream. The

database connections will nevertheless disconnect gracefully.

Shutting down: Before the program ends, the server first sends a disconnect mes-

sage to all active threads, making them disconnect from the clients, and discon-

nect database connections gracefully.

Each of the above states corresponds to the states given in the diagram of figure 5.5.

StatFind Server Anatomy

Figure 5.4 shows which databases are used by which servers, and how the client

connects to the different servers.

Early versions of the StatFind server only listened to a TCP port for connections,

and did mainly what was described in figure 5.5. Later, several additions were made

leading up to the current system portfolio:

• Robust server startup and shutdown routine.

• Statistical variable indexer, now using the Lucene indexing engine (Jakarta/Lucene,

2003).

• Usage cleaner — removal of usage information about statistical variables not

used by the StatFind system.

• Component using RMI (Sun Microsystems Inc, 2003) for searching the indexed

statistical variables, the two last components replace;

– Statistical variable similarity indexer — indexing based on global analysis.

– Search component, interfacing the statistical variable similarity database

(made by variable similarity indexer).

44 Chapter 5. Implementation issues

– Stopword loader — load stopwords into a database, sorted by its category

and language.

The usage cleaner was also eliminated, but as a consequence of general improvements

in the StatFind server. Each received object is automatically screened so that only

usage of statistical variables already contained in the Nesstar Server employed are ac-

tually stored in the StatFind database. Earlier this was not the case, and a component

to clean up this database had to be implemented.

Figure 5.6 describes the StatFindServer class, and how it integrates with the

Jakarta/Lucene server. The Searchable class connects to the indexed repository,

while RemoteSearchable is the RMI server listening for client connections (legend for

the UML diagrams is available in appendix B figure B.1). The classes portrayed here

are only a selection for giving an overview of the Jakarata/Lucene server classes.

5.3.1 Jakarta/Lucene

The original indexing scheme was replaced for reasons given in section 4.2. From a

practical point of view I think it is always feasible to use tested and available software

rather than to “re-invent the wheel”. This way, the developed software is made more

versatile, rather than spending resources on developing specialised software to solve

exactly one problem, which was the case with the global analysis system described in

section 3.1.2.

Using third-party solutions like Jakarta/Lucene (2003) adds other useful features

in addition to solving the problem at hand. These features include an implementation

of Porter’s stemming algorithm, allowing searches with a query of the users choice —

not only statistical variable ids and adding RMI server capabilities.

Capabilities

By adding the Lucene text search engine the server is not only able to search for

statistical variables similar to a given variable. It was very easy to extend the func-

tionality to also encompass a free-text search. This way, the component also solves

5.3. The StatFind Server 45

Figure 5.6: StatFind server UML inheritance diagram

46 Chapter 5. Implementation issues

Figure 5.7: StatFind—Jakarta/Lucene integration, UML inheritance diagram

the ranking problem explained in section 2.1.1.

The Lucene search-engine also supported searching across a RMI connection, elim-

inating the need for making complex SQL expressions in order to perform a search.

Figure 5.7 describes the integration of Lucene into StatFind.

The QueryParser parses text to make queries also supplies stop-words for the

English language, thus eliminating that part of the original StatFind server. It also

uses the Porter Stemming algorithm for reducing words to their grammatical stems.

Searcher and Searchable in fig 5.7 is part of a client for connections to remote

Lucene RMI servers.

5.4. Clients Interfacing StatFind 47

Improvements

When the statistical variables’ question-texts were indexed in the global analysis ap-

proach, the process lasted for approximately 10 minutes. The same process with

Lucene lasts only for approximately 10 seconds. Of course the retrieval time of a

search is longer using Lucene since the similarity figure is not pre-made as in the

global analysis scheme, but overall the improvements are dramatic.

5.4 Clients Interfacing StatFind

Since the StatFind feeder is a central part of the StatFind system — it was described

for itself in section 5.2 rather than in this section which is about the other StatFind

clients.

There are actually several clients bundled in one client application. The client is

called StatFind VarFinder client, and acts as a client for connecting to all the resources

needed to present the statistical variables returned by the search engines. The client

application should be regarded as a proof of concept prototype, as it does not draw

a clear boundary between server and client. Also no additions to the functionality of

the Nesstar Explorer was made. The StatFind Feeder does not apply, as it did not

add any functionality to the Nesstar Explorer.

A large portion of the computation done in the client could ideally be performed

by the server, but the scope of the thesis made the choice of developing the client as

a heavy-weight client easy. Development of a thinner client involves a more complex

communication protocol. StatFind, on the other hand, relies on connecting the client

directly to the databases, instead of going by the way of a middle layer.

Figure 5.8 shows the different services the client connects to. A typical user session

would be to enter a variable identificator or a term to search for in the text field,

selecting the (encrypted) users preference base, and press Start search (see figure

5.9). It is also possible to fine tune the settings and which method to use for the

collaborative filtering process.

48 Chapter 5. Implementation issues

Figure 5.8: An overview of the StatFind VarFinder client

When the button is pressed, the query is made in the client and sent to the Lucene

RMI server. This server searches the index and returns a ranked list of the statistical

variable identificators; the rank being a number between 0 and 1.

For each statistical variable having a rank number over a preset threshold5, the

Collaborative Filter calculates the predicted vote for the current user, on the basis

of the previous votes by other users, and the current variable identificator and user.

The question texts that belong to the selected statistical variables are also retrieved

from the Nesstar database and displayed in the client.

5Throughout this thesis the threshold was set to 0.025, as the value decreases rapidly after the

first few hits. Before switching to Lucene this figure was 0.5.

5.5. Notes on Development Tools 49

Figure 5.9: A screenshot of the StatFind VarFinder component

5.5 Notes on Development Tools

When developing software, alone or in a team with several other developers, some

tools to assist your work are highly necessary. Following is a description of such tools

which was used in thesis development project.

Ant

When compiling Java source code, there are numerous other things that need to be

in place. It be copying of resource files, fetching latest code from CVS, starting and

stopping services, etc. Ant is a tool to help build Java applications, based on XML.

Ant can compile, make Java jar files, sign and many other useful actions (The Apache

Software Foundation, 2003a).

CVS

When working alone or in groups with others, it is crucial to have control over different

revisions of the source code. CVS is a tool which helps integrating changes done by

50 Chapter 5. Implementation issues

many people, and to keep track of all versions of the source code (CollabNet, Inc,

2003).

IntelliJ IDEA

An editor for writing Java source code should support many activities surrounding the

coding activity itself. IntelliJ IDEA support integration of tools like Ant and CVS,

as well as other useful techniques such as refactoring6 (JetBrains, Inc, 2003).

log4j

All developers make the applications output debug and log information to see what

happens when, and in what order. Log4j structures logging to keep the logging rou-

tines tidy and well defined (The Apache Software Foundation, 2003b).

6Refactoring is a technique to restructure code in a disciplined way.

Chapter 6

Evaluation and findings

The purpose of this thesis as described in 2.1.2 is;

In what way can a tool for helping users find similar statistical

variables be implemented, and which methods are sufficient for mea-

suring the similarity between variables.

In order to test this statement chapter 2 narrowed down the problem and chapter

3 discussed the theory necessary for investigating the problem domain. As well as

pointing towards what needed to be developed in order to solve the problem given

in chapter 2. The last two chapters have discussed and described how the theories

are put to use (chapter 4) as well as given a thorough walkthrough of the software

developed for this thesis (chapter 5). The work described in those two chapters form

the foundation for this chapter, that analyses how the implemented system performs.

Retrieval Performance Evaluation

We are here dealing with IR systems that retrieve and rank search results based on

some existing similarity model. Since similarity models are crude approximations to

natural language, it must make presumptions about the text it models. The collection

of documents retrieved/ranked based on this similarity model are prone/likely to make

mistakes — no model can be entirely precise. This is why a central area in IR is

evaluation of the retrieval system.

51

52 Chapter 6. Evaluation and findings

The evaluation process has several methods, but the two most widely used are

recall and precision. Let R be the set of documents relevant to a user information

request, and A the set of documents actually retrieved by an IR system — the answer

set. Ra is then the intersection of these two sets. Recall is the fraction of the number

of relevant documents (the set R) which has been retrieved:

Recall =
|Ra|
|R|

Precision is the fraction of the number of retrieved documents (the set A) which is

relevant:

Precision =
|Ra|
|A|

Ideally, each document in the answer set should be relevant, and the order of the

documents should be ranked in their degree of relevance. The ranking method is

almost equally important as the retrieval/indexing method, because it determines the

order a user normally browse a result set If the first items in this set are irrelevant for

a user, then the next ones should ideally be more irrelevant. Ranking can be given by

the indexing method, as it gives a figure of document similarity, but this figure can

also be adjusted after the result set is computed.

In order to test if a given IR engine performs in an adequate fashion, several sets

of documents must be prepared and divided in to two collections; a test collection and

reference collection. Searches are performed against the test collection and compared

to the reference collection for evaluation (Baeza-Yates and Ribeiro-Neto, 1999c).

Lucene and Retrieval Performance Evaluation

Since Lucene (Jakarta/Lucene, 2003) is made in accordance to established IR princi-

ples (see section 4.2 and section 5.3.1), one can argue that it has a fair possibility to

achieve good scores in both precision and recall. The ultimate score is of course depen-

dant on rigorous testing and adaptations, as well as precise continuous adjustments

with regards to the results of precision and recall testing.

This thesis have no intentions in doing a precision and recall test, as it trusts

the default settings of Lucene. Later work might involve conducting these tests and

6.1. StatFind Evaluation 53

conclude a more final verdict of lucene as an indexing engine, and how well it proves

fitting in the current domain.

The crucial part of the system as it is built for this thesis is how the ranking given

by the IR engine is re-ranked according to a figure calculated by a collaborative filter.

This collaborative filter uses information about users and their behaviour to predict

their interest for the re-ranking of items. Collecting user information by treating

given action(s) as a “positive” operation, thus treating that action(s) as a vote for

the item(s) involved. Translating to the treatment of the user operation performed to

view documentation for a statistical variable as an action of preference — interpreted

as a sign that the user likes or finds the documentation interesting.

6.1 StatFind Evaluation

6.1.1 Test Set-up and Data Quality

As mentioned earlier, the data gathered for use in this thesis, are not gathered in a real

life setting. Nesstar is intended for users searching for statistical studies. Users might

be experienced statisticians, journalists or the plain man searching for information in

public registers.

During the development of of this thesis, the Nesstar System was still in a beta

stage, and at the time of writing, still is. This limited the data gathering to usage

done by developers and testers. Their usage tends to be quite uniform, as they are

most interested in the behavour of the system, and not necessarily its contents (the

statistical information). The first phase of data collection relied on usage of this kind.

Early data analysis showed that the data was inadequate for use in this thesis.

After the first phase of data gathering was rejected, a new setting of users was

needed. Since real life users were unavailable, fellow students from the Department

of Information Science were used. A small group of students was willing to use the

Nesstar Explorer and the statistical surveys prepared for use in the Nesstar Server.

Three statistical studies concering the political climate in Norway was used as search

54 Chapter 6. Evaluation and findings

material. The students were asked to browse and search this data in a way of their

liking. They knew how the StatFind system works, and this might have biased the

gathered data (e.g. some variables having 20-30 observations).

By using students this way the observations became more dispersed than when

relying on the test and development users, and better suited for tesing StatFind,

although not of the quality originally sought.

6.1.2 Search Evaluation

The technique used for analysing the system is as following; several searches are

performed first, using only the IR engine. In this way only the textual similarity is

measured. This is in turn compared to several other results using the different CF

algorithms and settings. Differences will be highlighted and discussed whether it is a

positive effect given by the collaborative filter or if the filter does not work as intended.

6.1.3 Evaluating Search for politics

The first listing is a result from searching for the word politics. The first column

gives the id of the statistical variable in the database, and the other column gives its

similarity to the query. To see how the similarity relates to the textual content of the

variables, look to appendix A.1.

6.1. StatFind Evaluation 55

id: nsd0005e_V33 - sim: 1.0

id: nsd0064e_V14 - sim: 1.0

id: nsd0393e_V98 - sim: 0.612

id: nsd0064e_V13 - sim: 0.53

id: nsd0064e_V217 - sim: 0.53

id: nsd0393e_V41 - sim: 0.53

id: nsd0393e_V99 - sim: 0.53

id: nsd0393e_V100 - sim: 0.53

id: nsd0393e_V101 - sim: 0.53

id: nsd0393e_V102 - sim: 0.53

id: nsd0393e_V103 - sim: 0.53

id: nsd0393e_V104 - sim: 0.53

id: nsd0393e_V105 - sim: 0.53

id: nsd0393e_V106 - sim: 0.53

id: nsd0393e_V107 - sim: 0.53

id: nsd0005e_V32 - sim: 0.442

id: nsd0064e_V220 - sim: 0.442

id: nsd0064e_V221 - sim: 0.442

id: nsd0064e_V238 - sim: 0.442

id: nsd0393e_V37 - sim: 0.442

id: nsd0393e_V38 - sim: 0.442

id: nsd0393e_V39 - sim: 0.442

id: nsd0393e_V40 - sim: 0.442

id: nsd0005e_V44 - sim: 0.354

id: nsd0005e_V50 - sim: 0.354

id: nsd0064e_V77 - sim: 0.354

id: nsd0393e_V30 - sim: 0.354

id: nsd0393e_V31 - sim: 0.354

Table 6.1: Search for politics, document similarity only

Table 6.1 shows a search using document similarity only, while the three next

tables show searches for politics, but with different collaborative filtering methods.

The first table (6.2) uses the vector similarity method, with case amplification of 2.5,

as suggested in Breese et al. (1998). Inverse user frequency (see 3.3.1 for explanation)

is also turned on in these examples (except one), as preliminary testing showed that

it yielded the most distinct results.

User A, used for these evaluations, has viewed 117 different statistical variables,

has a view count of 203, meaning that the 117 different variables have totally been

viewed 203 times.

CF Setting 1

When searching for a single word, the textual comparison is very likely to return a

hit with the similarity of 1, as the whole word appears in the retrieved document,

possibly several times as well. This way the CF engine does not have much influence

on the ranking method in order to put another document on the top of the ranking.

In these cases it only has influence on the middle part of the rank. Results close to one

have less possibility for change by lower values. Observe this finding by comparing

56 Chapter 6. Evaluation and findings

id: nsd0005e_V33 - sim: 1.0 - CF: 1.0

id: nsd0064e_V14 - sim: 1.0 - CF: 1.0

id: nsd0393e_V101 - sim: 0.834 - CF: 3.0

id: nsd0393e_V107 - sim: 0.834 - CF: 3.0

id: nsd0393e_V99 - sim: 0.765 - CF: 2.0

id: nsd0393e_V106 - sim: 0.765 - CF: 2.0

id: nsd0064e_V13 - sim: 0.668 - CF: 1.0

id: nsd0393e_V100 - sim: 0.668 - CF: 1.0

id: nsd0393e_V103 - sim: 0.668 - CF: 1.0

id: nsd0393e_V105 - sim: 0.668 - CF: 1.0

id: nsd0393e_V98 - sim: 0.612 - CF: 0.0

id: nsd0064e_V220 - sim: 0.605 - CF: 1.0

id: nsd0064e_V217 - sim: 0.53 - CF: 0.0

id: nsd0393e_V41 - sim: 0.53 - CF: 0.0

id: nsd0393e_V102 - sim: 0.53 - CF: 0.0

id: nsd0393e_V104 - sim: 0.53 - CF: 0.0

id: nsd0005e_V32 - sim: 0.442 - CF: 0.0

id: nsd0064e_V221 - sim: 0.442 - CF: 0.0

id: nsd0064e_V238 - sim: 0.442 - CF: 0.0

id: nsd0393e_V37 - sim: 0.442 - CF: 0.0

id: nsd0393e_V38 - sim: 0.442 - CF: 0.0

id: nsd0393e_V39 - sim: 0.442 - CF: 0.0

id: nsd0393e_V40 - sim: 0.442 - CF: 0.0

id: nsd0005e_V44 - sim: 0.354 - CF: 0.0

id: nsd0005e_V50 - sim: 0.354 - CF: 0.0

id: nsd0064e_V77 - sim: 0.354 - CF: 0.0

id: nsd0393e_V30 - sim: 0.354 - CF: 0.0

id: nsd0393e_V31 - sim: 0.354 - CF: 0.0

Table 6.2: Search for politics, using vector similarity, inverse user frequency and case

amplification factor of 2.5

the results in 6.2 with the results in 6.1.

CF Setting 2

In this case (table 6.3) correlation performs exactly identical as with vector similarity

from the previous example (table 6.2). Vector similarity needs fewer calculations, so

if the results continue to be identical, vector similarity should be the algorithm of

choice, as it needs less time to execute.

CF Setting 3

With the few data that are collected for these tests, the union item selection method

should yield better results than with intersection (table 6.4), as it has more items to

do the calculations over than for the intersect item selection method (Breese et al.,

1998). Using the intersection item selection method, the predictions given by the

CF engine in table 6.4 end up being very similar too each other. This may be a

concequence of to few user observations, as it cuts the item base utilised dramatically

(see 3.3.1 for details about union and intersection). In itself this is not necessarily

6.1. StatFind Evaluation 57

id: nsd0005e_V33 - sim: 1.0 - CF: 1.0

id: nsd0064e_V14 - sim: 1.0 - CF: 1.0

id: nsd0393e_V101 - sim: 0.834 - CF: 3.0

id: nsd0393e_V107 - sim: 0.834 - CF: 3.0

id: nsd0393e_V99 - sim: 0.765 - CF: 2.0

id: nsd0393e_V106 - sim: 0.765 - CF: 2.0

id: nsd0064e_V13 - sim: 0.668 - CF: 1.0

id: nsd0393e_V100 - sim: 0.668 - CF: 1.0

id: nsd0393e_V103 - sim: 0.668 - CF: 1.0

id: nsd0393e_V105 - sim: 0.668 - CF: 1.0

id: nsd0393e_V98 - sim: 0.612 - CF: 0.0

id: nsd0064e_V220 - sim: 0.605 - CF: 1.0

id: nsd0064e_V217 - sim: 0.53 - CF: 0.0

id: nsd0393e_V41 - sim: 0.53 - CF: 0.0

id: nsd0393e_V102 - sim: 0.53 - CF: 0.0

id: nsd0393e_V104 - sim: 0.53 - CF: 0.0

id: nsd0005e_V32 - sim: 0.442 - CF: 0.0

id: nsd0064e_V221 - sim: 0.442 - CF: 0.0

id: nsd0064e_V238 - sim: 0.442 - CF: 0.0

id: nsd0393e_V37 - sim: 0.442 - CF: 0.0

id: nsd0393e_V38 - sim: 0.442 - CF: 0.0

id: nsd0393e_V39 - sim: 0.442 - CF: 0.0

id: nsd0393e_V40 - sim: 0.442 - CF: 0.0

id: nsd0005e_V44 - sim: 0.354 - CF: 0.0

id: nsd0005e_V50 - sim: 0.354 - CF: 0.0

id: nsd0064e_V77 - sim: 0.354 - CF: 0.0

id: nsd0393e_V30 - sim: 0.354 - CF: 0.0

id: nsd0393e_V31 - sim: 0.354 - CF: 0.0

Table 6.3: Search for politics, using correlation, inverse user frequency and case am-

plification factor of 2.5, items selected by union.

unsatisfactory, but the results calculated by the CF engine does not differ very much

and it is difficult to read any result from them. These scores might be in its place

sometimes, as similar values gives a similar adjustment, and thus have only a small

impact on the result.

6.1.4 Evaluating Search for politics, Changed Usage Base

This part of the evaluation of StatFind demonstrates the changes in the same search

as above, but with changed usage statistics. Before this search was performed, User

A’s viewings of statistical variables with a view count ≥ 2 and ≤ 5 was deleted. The

printout in table 6.5 is from this search, using correlation, union item selection, inverse

user frequency and a case amplification of 2.5.

The changes in table 6.5 from table 6.3 was provoked by deleting some of the

usage base for the user. Experiments with deletion of other users usage information

were performed, and it had minor impact on the calculated predictions of User A.

Because of the poor data quality the likely explanation is that most of the votes used

as basis for calculating the ranks in 6.5 are User A’s own votes. Table 6.1.4 shows

58 Chapter 6. Evaluation and findings

id: nsd0005e_V33 - sim: 1.0 - CF: 2.735

id: nsd0064e_V14 - sim: 1.0 - CF: 2.735

id: nsd0393e_V98 - sim: 0.85 - CF: 2.735

id: nsd0064e_V13 - sim: 0.818 - CF: 2.735

id: nsd0064e_V217 - sim: 0.818 - CF: 2.735

id: nsd0393e_V41 - sim: 0.818 - CF: 2.735

id: nsd0393e_V99 - sim: 0.818 - CF: 2.735

id: nsd0393e_V100 - sim: 0.818 - CF: 2.735

id: nsd0393e_V101 - sim: 0.818 - CF: 2.735

id: nsd0393e_V102 - sim: 0.818 - CF: 2.735

id: nsd0393e_V103 - sim: 0.818 - CF: 2.735

id: nsd0393e_V104 - sim: 0.818 - CF: 2.735

id: nsd0393e_V105 - sim: 0.818 - CF: 2.735

id: nsd0393e_V106 - sim: 0.818 - CF: 2.735

id: nsd0393e_V107 - sim: 0.818 - CF: 2.735

id: nsd0005e_V32 - sim: 0.784 - CF: 2.735

id: nsd0064e_V220 - sim: 0.784 - CF: 2.735

id: nsd0064e_V221 - sim: 0.784 - CF: 2.735

id: nsd0064e_V238 - sim: 0.784 - CF: 2.735

id: nsd0393e_V38 - sim: 0.784 - CF: 2.735

id: nsd0393e_V39 - sim: 0.784 - CF: 2.735

id: nsd0393e_V40 - sim: 0.784 - CF: 2.735

id: nsd0064e_V77 - sim: 0.75 - CF: 2.735

id: nsd0393e_V30 - sim: 0.75 - CF: 2.735

id: nsd0393e_V31 - sim: 0.75 - CF: 2.735

id: nsd0393e_V37 - sim: 0.567 - CF: 0.735

id: nsd0005e_V44 - sim: 0.499 - CF: 0.735

id: nsd0005e_V50 - sim: 0.499 - CF: 0.735

Table 6.4: Search for politics, using correlation, inverse user frequency and case am-

plification factor of 2.5, items selected by intersection.

the statistical variables that users have viewed more than once. This amounts to 66

variables, which is aproximately 1/4 of the total number of variables viewed by the

users. In itself this is not a small fraction of the total, but the low number of actual

user views may impede the vote prediction process.

6.1. StatFind Evaluation 59

id: nsd0005e_V33 - sim: 1.0 - CF: 1.0

id: nsd0064e_V14 - sim: 1.0 - CF: 1.0

id: nsd0064e_V13 - sim: 0.668 - CF: 1.0

id: nsd0393e_V100 - sim: 0.668 - CF: 1.0

id: nsd0393e_V103 - sim: 0.668 - CF: 1.0

id: nsd0393e_V105 - sim: 0.668 - CF: 1.0

id: nsd0393e_V98 - sim: 0.612 - CF: 0.0

id: nsd0064e_V220 - sim: 0.605 - CF: 1.0

id: nsd0064e_V217 - sim: 0.53 - CF: 0.0

id: nsd0393e_V41 - sim: 0.53 - CF: 0.0

id: nsd0393e_V99 - sim: 0.53 - CF: 0.0

id: nsd0393e_V101 - sim: 0.53 - CF: 0.0

id: nsd0393e_V102 - sim: 0.53 - CF: 0.0

id: nsd0393e_V104 - sim: 0.53 - CF: 0.0

id: nsd0393e_V106 - sim: 0.53 - CF: 0.0

id: nsd0393e_V107 - sim: 0.53 - CF: 0.0

id: nsd0005e_V32 - sim: 0.442 - CF: 0.0

id: nsd0064e_V221 - sim: 0.442 - CF: 0.0

id: nsd0064e_V238 - sim: 0.442 - CF: 0.0

id: nsd0393e_V37 - sim: 0.442 - CF: 0.0

id: nsd0393e_V38 - sim: 0.442 - CF: 0.0

id: nsd0393e_V39 - sim: 0.442 - CF: 0.0

id: nsd0393e_V40 - sim: 0.442 - CF: 0.0

id: nsd0005e_V44 - sim: 0.354 - CF: 0.0

id: nsd0005e_V50 - sim: 0.354 - CF: 0.0

id: nsd0064e_V77 - sim: 0.354 - CF: 0.0

id: nsd0393e_V30 - sim: 0.354 - CF: 0.0

id: nsd0393e_V31 - sim: 0.354 - CF: 0.0

Table 6.5: Search for politics, changed usage base

nsd0005e_V207 #users: 4

nsd0064e_V30 #users: 3

nsd0393e_V2 #users: 3

nsd0005e_V206 #users: 3

nsd0005e_V5 #users: 3

nsd0393e_V19 #users: 3

nsd0005e_V278 #users: 3

nsd0005e_V44 #users: 3

nsd0005e_V209 #users: 3

nsd0064e_V96 #users: 3

nsd0005e_V279 #users: 3

nsd0064e_V239 #users: 2

nsd0005e_V208 #users: 2

nsd0005e_V84 #users: 2

nsd0005e_V186 #users: 2

nsd0005e_V39 #users: 2

nsd0064e_V59 #users: 2

nsd0005e_V167 #users: 2

nsd0005e_V213 #users: 2

nsd0005e_V234 #users: 2

nsd0005e_V37 #users: 2

nsd0064e_V97 #users: 2

nsd0393e_V88 #users: 2

nsd0005e_V280 #users: 2

nsd0064e_V69 #users: 2

nsd0005e_V211 #users: 2

nsd0064e_V274 #users: 2

nsd0064e_V55 #users: 2

nsd0393e_V121 #users: 2

nsd0064e_V240 #users: 2

nsd0393e_V37 #users: 2

nsd0005e_V109 #users: 2

nsd0005e_V6 #users: 2

nsd0064e_V13 #users: 2

nsd0064e_V272 #users: 2

nsd0393e_V12 #users: 2

nsd0005e_V33 #users: 2

nsd0064e_V16 #users: 2

nsd0393e_V10 #users: 2

nsd0393e_V17 #users: 2

nsd0393e_V66 #users: 2

nsd0005e_V106 #users: 2

nsd0005e_V50 #users: 2

nsd0393e_V227 #users: 2

nsd0005e_V38 #users: 2

nsd0064e_V15 #users: 2

nsd0064e_V227 #users: 2

nsd0064e_V98 #users: 2

nsd0393e_V9 #users: 2

nsd0005e_V205 #users: 2

nsd0005e_V281 #users: 2

nsd0005e_V49 #users: 2

nsd0005e_V79 #users: 2

nsd0064e_V107 #users: 2

nsd0064e_V18 #users: 2

nsd0064e_V72 #users: 2

nsd0005e_V166 #users: 2

nsd0064e_V14 #users: 2

nsd0064e_V22 #users: 2

nsd0393e_V189 #users: 2

nsd0005e_V219 #users: 2

nsd0064e_V101 #users: 2

nsd0064e_V241 #users: 2

nsd0393e_V217 #users: 2

nsd0064e_V94 #users: 2

nsd0005e_V130 #users: 2

Table 6.6: Overview over variables viewed by more than one users.

60 Chapter 6. Evaluation and findings

6.1.5 Evaluating Search for id nsd0064e V14

In this evaluation a user with few registered observations is used, demonstrating how

the document similarity measure takes over the similarity figure when the calculated

prediciton is low. User E has viewed 50 different statistical variables a total of 69

times. To see how the similarity relates to the textual content of the variables look

to appendix A.2.

id: nsd0005e_V33 - sim: 0.631

id: nsd0393e_V38 - sim: 0.064

id: nsd0393e_V98 - sim: 0.041

id: nsd0064e_V13 - sim: 0.036

id: nsd0064e_V217 - sim: 0.035

id: nsd0393e_V99 - sim: 0.035

id: nsd0393e_V100 - sim: 0.035

id: nsd0393e_V101 - sim: 0.035

id: nsd0393e_V102 - sim: 0.035

id: nsd0393e_V103 - sim: 0.035

id: nsd0393e_V104 - sim: 0.035

id: nsd0393e_V105 - sim: 0.035

id: nsd0393e_V106 - sim: 0.035

id: nsd0393e_V107 - sim: 0.035

id: nsd0064e_V238 - sim: 0.03

id: nsd0005e_V32 - sim: 0.03

id: nsd0064e_V220 - sim: 0.029

id: nsd0064e_V221 - sim: 0.029

id: nsd0393e_V37 - sim: 0.029

id: nsd0393e_V39 - sim: 0.029

id: nsd0064e_V26 - sim: 0.026

id: nsd0064e_V25 - sim: 0.025

Table 6.7: Search for nsd0064e V14, document similarity only

On Using Statistical Variables as Query

When using a statistical variable as a query, each word in the variable documentation

is used when the query is generated. The words are put into the query parser of

Lucene where they are preprocessed — i.e. stemmed and having stopwords removed.

Each word is appended with a boolean or. Notice how rapidly the similarity declines

as a consequence of using many words in the query. This yields a much more nuanced

rating list, as the chance in finding a variable in which the documentation is identical1

to the query is quite small, since many words are used.

1They do not need to be excatly identical, only index-identical as the IR system transforms the

original text by removal of stopwords and stemming of the remaining words.

6.1. StatFind Evaluation 61

Comparing Results

The two methods that looked most promising from the first evaluation part (section

6.1.3) was vector similarity and correlation with union item selection method, giving

identical results in 6.2 and 6.3. Comparing table table 6.8 and 6.9 shows results

slightly contradictory to the results from section 6.1.3. Here, the two methods do

not give the same results. In fact vector similarity in table 6.9 gives the most varied

results. Correlation gives a higher, but the same prediction for all items in table 6.8,

which gives all items a slight boost on the ranking.

id: nsd0005e_V33 - sim: 0.838 - CF: 2.38

id: nsd0393e_V38 - sim: 0.59 - CF: 2.38

id: nsd0393e_V98 - sim: 0.58 - CF: 2.38

id: nsd0064e_V13 - sim: 0.577 - CF: 2.38

id: nsd0064e_V217 - sim: 0.577 - CF: 2.38

id: nsd0393e_V99 - sim: 0.577 - CF: 2.38

id: nsd0393e_V100 - sim: 0.577 - CF: 2.38

id: nsd0393e_V101 - sim: 0.577 - CF: 2.38

id: nsd0393e_V102 - sim: 0.577 - CF: 2.38

id: nsd0393e_V103 - sim: 0.577 - CF: 2.38

id: nsd0393e_V104 - sim: 0.577 - CF: 2.38

id: nsd0393e_V105 - sim: 0.577 - CF: 2.38

id: nsd0393e_V106 - sim: 0.577 - CF: 2.38

id: nsd0393e_V107 - sim: 0.577 - CF: 2.38

id: nsd0064e_V238 - sim: 0.575 - CF: 2.38

id: nsd0005e_V32 - sim: 0.575 - CF: 2.38

id: nsd0064e_V220 - sim: 0.574 - CF: 2.38

id: nsd0064e_V221 - sim: 0.574 - CF: 2.38

id: nsd0393e_V37 - sim: 0.574 - CF: 2.38

id: nsd0393e_V39 - sim: 0.574 - CF: 2.38

id: nsd0064e_V26 - sim: 0.573 - CF: 2.38

id: nsd0064e_V25 - sim: 0.573 - CF: 2.38

Table 6.8: Search for nsd0064e V14, using correlation, inverse user frequency and case

amplification factor of 2.5, items selected by union.

Preliminary Concluding Remarks for Evaluation

The predicted values from the vector similarity in table 6.9 are actually the same

as User E’s values for view count of the same statistical variables. This way, the

correlation actually performs better, as its predictions are more independant from the

users own data than the predictions given for vector similarity. The problem of equal

values for prediction and view count is discussed later.

62 Chapter 6. Evaluation and findings

id: nsd0005e_V33 - sim: 0.631 - CF: 0.0

id: nsd0393e_V37 - sim: 0.515 - CF: 2.0

id: nsd0393e_V38 - sim: 0.338 - CF: 1.0

id: nsd0393e_V98 - sim: 0.322 - CF: 1.0

id: nsd0064e_V13 - sim: 0.036 - CF: 0.0

id: nsd0064e_V217 - sim: 0.035 - CF: 0.0

id: nsd0393e_V99 - sim: 0.035 - CF: 0.0

id: nsd0393e_V100 - sim: 0.035 - CF: 0.0

id: nsd0393e_V101 - sim: 0.035 - CF: 0.0

id: nsd0393e_V102 - sim: 0.035 - CF: 0.0

id: nsd0393e_V103 - sim: 0.035 - CF: 0.0

id: nsd0393e_V104 - sim: 0.035 - CF: 0.0

id: nsd0393e_V105 - sim: 0.035 - CF: 0.0

id: nsd0393e_V106 - sim: 0.035 - CF: 0.0

id: nsd0393e_V107 - sim: 0.035 - CF: 0.0

id: nsd0064e_V238 - sim: 0.03 - CF: 0.0

id: nsd0005e_V32 - sim: 0.03 - CF: 0.0

id: nsd0064e_V220 - sim: 0.029 - CF: 0.0

id: nsd0064e_V221 - sim: 0.029 - CF: 0.0

id: nsd0393e_V39 - sim: 0.029 - CF: 0.0

id: nsd0064e_V26 - sim: 0.026 - CF: 0.0

id: nsd0064e_V25 - sim: 0.025 - CF: 0.0

Table 6.9: Search for variable nsd0064e V14, using vector similarity, inverse user

frequency and case amplification factor of 2.5.

6.1.6 Evaluating Search for id nsd0005e V83

Searches using different users as target users. First, a printout of a search using the

base statistical variable nsd0005e V83:

id: nsd0393e_V186 - sim: 0.043

id: nsd0005e_V207 - sim: 0.036

id: nsd0005e_V236 - sim: 0.033

id: nsd0005e_V205 - sim: 0.032

id: nsd0005e_V206 - sim: 0.032

id: nsd0064e_V239 - sim: 0.032

id: nsd0393e_V165 - sim: 0.029

id: nsd0393e_V206 - sim: 0.026

Table 6.10: Search for variable nsd0005e V83, document similarity only.

To see how the similarity relates to the textual content of the variables, see ap-

pendix A.3. Since correlation with union selection of items gave “best” results, and

since Breese et al. (1998) concluded that this function was the best performing of

the memory based weighting functions, it is used as the CF method from here on.

All remaining printouts are used with the CF setting of correlation with union item

selection method, inverse user frequency turned on, and a case amplification factor of

2.5. It also simplifies the comparison, as only the user varies.

First, table 6.11 gives summations of each user’s votes, and how many statistical

variables they have voted for. This might help when interpreting the results when

using these users. For the following search evaluations, User D and User F are omitted,

6.1. StatFind Evaluation 63

user count(var id) sum(viewCount)

User A 117 203

User B 55 62

User C 10 17

User D 6 8

User E 50 69

User F 8 21

User G 160 437

Sum 406 817

Table 6.11: Summations of votes made by each user

as they have a very low view count.

When comparing the results in the tables 6.12, 6.13, 6.14 and 6.16 with the votes

given for the same variables in the StatFind database, it looks as the users’ own

behaviour has largest control over the predicted values. In most cases, when the CF

system calculates a vote, the vote is the same as the view count of that statistical

variable for the portrayed user. The exception is for User E, where none of the

variables returned by the search is viewed by User E. This behaviour would most

likely be the results of a software bug, where a user is compared with itself, but

safeguards against this kind of behaviour is built in the system, as the sourcecode

in figure 6.1 shows. The explanation for this behaviour might be that all items used

1 //Make sure we don’t compare this user with her/himself:

2 if (!otherUser.equals(activeUser)) {

3 currentWeight =

4 weightFunction.doWeight(activeUser, otherUser) *

5 (matrix.getVote(otherUser, activeItem).getVote() -

6 matrix.meanUserVote(otherUser));

7 absWeights += Math.abs(currentWeight);

8 sumWeights += currentWeight;

9 }

Figure 6.1: Safeguard in weightfunction for comparing two idenitcal users

by either the active or the compared user are used when calculating the predicted

vote, and in a setting where few votes exist this happens as a special case. E.g. the

statistical variable with id nsd0005e V206 has a viewcount of 4 for User A, while User

64 Chapter 6. Evaluation and findings

B and User C have also viewed the variable, but only one time each.

User E, on the other hand have not viewed any of the variables in the result list

in table 6.15, while the system is still able to make some predictions, meaning the CF

system is working to some extent.

id: nsd0005e_V206 - sim: 0.758 - CF: 4.0

id: nsd0005e_V207 - sim: 0.518 - CF: 2.0

id: nsd0005e_V205 - sim: 0.516 - CF: 2.0

id: nsd0064e_V239 - sim: 0.316 - CF: 1.0

id: nsd0393e_V186 - sim: 0.043 - CF: 0.0

id: nsd0005e_V236 - sim: 0.033 - CF: 0.0

id: nsd0393e_V165 - sim: 0.029 - CF: 0.0

id: nsd0393e_V206 - sim: 0.026 - CF: 0.0

Table 6.12: Search performed using User A

id: nsd0005e_V207 - sim: 0.318 - CF: 1.0

id: nsd0005e_V205 - sim: 0.316 - CF: 1.0

id: nsd0005e_V206 - sim: 0.316 - CF: 1.0

id: nsd0393e_V186 - sim: 0.043 - CF: 0.0

id: nsd0005e_V236 - sim: 0.033 - CF: 0.0

id: nsd0064e_V239 - sim: 0.032 - CF: 0.0

id: nsd0393e_V165 - sim: 0.029 - CF: 0.0

id: nsd0393e_V206 - sim: 0.026 - CF: 0.0

Table 6.13: Search performed using User B

id: nsd0005e_V207 - sim: 0.518 - CF: 2.0

id: nsd0064e_V239 - sim: 0.516 - CF: 2.0

id: nsd0005e_V206 - sim: 0.316 - CF: 1.0

id: nsd0393e_V186 - sim: 0.043 - CF: 0.0

id: nsd0005e_V236 - sim: 0.033 - CF: 0.0

id: nsd0005e_V205 - sim: 0.032 - CF: 0.0

id: nsd0393e_V165 - sim: 0.029 - CF: 0.0

id: nsd0393e_V206 - sim: 0.026 - CF: 0.0

Table 6.14: Search performed using User C

6.2. Evaluation Comments 65

id: nsd0393e_V186 - sim: 0.581 - CF: 2.38

id: nsd0005e_V207 - sim: 0.577 - CF: 2.38

id: nsd0005e_V236 - sim: 0.576 - CF: 2.38

id: nsd0005e_V205 - sim: 0.576 - CF: 2.38

id: nsd0005e_V206 - sim: 0.576 - CF: 2.38

id: nsd0064e_V239 - sim: 0.576 - CF: 2.38

id: nsd0393e_V165 - sim: 0.574 - CF: 2.38

id: nsd0393e_V206 - sim: 0.573 - CF: 2.38

Table 6.15: Search performed using User E

id: nsd0005e_V207 - sim: 0.318 - CF: 1.0

id: nsd0005e_V236 - sim: 0.316 - CF: 1.0

id: nsd0393e_V186 - sim: 0.043 - CF: 0.0

id: nsd0005e_V205 - sim: 0.032 - CF: 0.0

id: nsd0005e_V206 - sim: 0.032 - CF: 0.0

id: nsd0064e_V239 - sim: 0.032 - CF: 0.0

id: nsd0393e_V165 - sim: 0.029 - CF: 0.0

id: nsd0393e_V206 - sim: 0.026 - CF: 0.0

Table 6.16: Search performed using User G

Preliminary Concluding Remarks for Evaluation

The CF system seems to work, but suffers from periodically lack of data. Cases where

the CF system answers with only what the users in question have viewed, can be

viewed as situations were the CF system cannot make a valid prediction. On the

other hand, it is only natural that the CF system predicts a view count of 4 for a

statistical variable the user in question has viewed 4 times. The CF system should

calculate the same values for predictions for statistical variables as the view count of

the actual variable, anything else would be an error.

6.2 Evaluation Comments

As mentioned, the data gathered for this thesis is not of real life quality, but sufficient

to demonstrate how the CF system works. Unfortunately the CF system is unable to

make good predictions in some cases.

The way the users’ behaviour is recorded also bring forth some ethical concerns,

as the component reporting the behaviour takes the form of spy-ware. Actually the

component cannot be called spy-ware as the users were all aware of this system trait,

but nevertheless; drawing conclusions from user behaviour is an ethical gray area. In

an internetworked world, the position of privacy is challenged every day, and should

66 Chapter 6. Evaluation and findings

not be treated lightly.

For users to accept this trait, a finished system should have an opt-out possibility,

and the user interface should, in some way, inform that information the users that

their usage of the system is being reported. It is also important for users to know a

little about how the system calculates the vote predictions, in order to be able to use

and accept its predictions.

Chapter 7

Conclusion

This thesis has dealt with the creation and development of a component called StatFind.

Development has been done according to the theories available within the fields of IR

and CF. The implementation of StatFind is well documented, both with regards to

the theories used, and the architecture of the system itself.

The goal was to make a proof-of-concept system for searching documents, allowing

for other metrics than only document similarity from an information retrieval unit —

enabling other similarity traits than only textual similarity. This thesis’ development

for this purpose is StatFind, a prototype incorporating both traditional IR, as well as

a collaborative filtering component, able to make “predictions” based on the recorded

behaviour of users of the system.

In this setting StatFind was used for finding related statistical variables, using the

Nesstar System as a case. Specifically, the thesis set forth to test if combining IR and

CF would be effective in enhancing the search system for Nesstar in a way that makes

finding related statistical variables easier.

Combining IR and CF in this way makes a search system that is not dependant

on both textual and behavioural similarities between the items involved — as illus-

trated in figure 7.1. This way of combining IR and CF makes each part independent

of the results of the other. In cases when new items are added to the database and

no usage similarity can be calculated, the document similarity takes over the similar-

67

68 Chapter 7. Conclusion

Statistical
variable

Usage
Similarity

Document
Similarity

Adjusted
Similarity

Figure 7.1: Relation between IR and CF

ity calculation, and vice versa. In cases where both exist, an adjusted similarity is

calculated.

Ideally, an evaluation of this systems functionality would include running the sys-

tem in a natural setting, i.e. on a server accessed by the targeted users of the Nesstar

System. This way, the collected information about user behaviour would contain

fewest possible cases of erroneous data. The data collected for this thesis did not

stem from real users in a real-life usage situation. Nevertheless; the information col-

lected does portray the way the users acted in the system, and can be used to indicate

the usefulness of the system.

As the research done in this thesis was developing a proof-of-concept prototype,

testing the feasibility of IR and CF combination, the data gathered for analysis does

hold to a certain degree, as it shows the effects. However it does not give us enough

information to measure the effects of the approach in a real-life setting.

7.1 Further Work

As expected in development research of this kind, there are many loose ends since

this thesis might also be viewed as a starting point for later research. Chapter 3.4

discussed the methodological approach and how the figure 3.2 describes how this

thesis’ development work fits in the hub of the circle. In addition, this thesis has

7.1. Further Work 69

experimented with developed system, and reached a conclusion for that work.

The meaning of the multimethodological approach is that different research meth-

ods are put together in the study of systems development. Where each method gives

its results as input to the other methods, as well using the results for improving the de-

veloped system, in a way that resemblance the incremental and iterative development

method used in software engineering.

This thesis started doing the experimentation work needed to evaluate and tested

that the system works, as well as establishing the necessity for improved data quality

for evaluation purposes. More data collection is needed in order to do a thorough

evaluation of the system, by using the StatFind enabled system in a real-life setting.

For the StatFind system to work on real-life data, the system also has to be properly

integrated in the Nesstar Server. Data collected using real-life users are also needed

for the calibration of the equilibrium calculation given in section 4.4 — for transposing

user votes into the range of [0,1]. Setting this value is a question of empirical knowledge

about the usage of Nesstar, as it relies on how users behave.

By using the collected data to enable StatFind and Nesstar to give improved

feedback for searches, user acceptance of the system might be tested by observational

methods and user interviews. Observing how the system is used, new knowledge of

how the system should be developed or changed may be discovered. Combination of

this knowledge and the results of user interviews can in turn be used for the further

development of StatFind directly, or by the way of building new theories about how

e.g. the CF or IR framework should operate, in turn influencing how StatFind is

constructed.

Doing this development and research in an iterative fashion will gradually adding

to StatFind what users find missing or unsatisfactory, as well as changes initiated

from the research results, will eventually lead to a system mature for the ultimate

test. Testing if users of the system finds the added functionality desirable.

Bibliography

Aamodt, A. (2001). Modeling the knowledge contents of cbr systems. In ICCBR,

Lecture Notes in Computer Science, pages 32–37, Heidelberg, Germany. Springer-

Verlag.

Aamodt, A. and Plaza, E. (1994). Case-based reasoning : Foundational issues,

methodological variations, and system approaches. AI Communications, 7(1):39–

51.

Althoff, K.-D. and Aamodt, A. (1996). Relating case-based problem solving and learn-

ing methods to task and domain characteristics: Towards an analytic ramework.

AI Communications, 9(3):109–116.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999a). Modeling. In Modern Information

Retrieval, chapter 2. ACM Press, Addison-Wesley, 1515 Broadway, 17th Floor, New

York, NY 10036-5701, first edition.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999b). Modern Information Retrieval. ACM

Press, Addison-Wesley, 1515 Broadway, 17th Floor, New York, NY 10036-5701, first

edition.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999c). Retrieval evaluation. In Modern In-

formation Retrieval, chapter 3. ACM Press, Addison-Wesley, 1515 Broadway, 17th

Floor, New York, NY 10036-5701, first edition.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999d). Text and multimedia languages and

71

72 BIBLIOGRAPHY

properties. In Modern Information Retrieval, chapter 6. ACM Press, Addison-

Wesley, 1515 Broadway, 17th Floor, New York, NY 10036-5701, first edition.

Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical analysis of predic-

tive algorithms for collaborative filtering. Proceedings of the Fourteenth Annual

Conference on Uncertainty in Artificial Intelligence, pages 43–52.

Burke, R. D. (2000). A case-based reasoning approach to collaborative filtering. In

EWCBR, Lecture Notes in Computer Science, pages 370–379, Heidelberg, Germany.

Springer-Verlag.

Carrick, C., Yang, Q., Abi-Zeid, I., and Lamontagne, L. (1999). Activating CBR

systems through autonomous information gathering. In Case-Based Reasoning Re-

search and Development: Third International Conference on Case-Based Reasoning,

ICCBR-99, Seeon Monastery, Germany, July 1999. Proceedings, volume Volume

1650 / 1999, pages 74–88, Heidelberg, Germany. Springer-Verlag.

CESSDA (2002). Cessda homepage. http://www.cessda.org (25/5-2003).

CollabNet, Inc (2003). Concurrent versioning system — the open standard for version

control. http://www.cvshome.org (25/9-2003).

CORDIS (1999). Cordis - telematics applications:home. http://www.cordis.lu/

telematics/home.html (25/5-2003). An Applied Research Programme of the Eu-

ropean Commission.

DDA (2003). Dansk data arkiv. http://www.dda.dk (25/5-2003).

Faloutsos, C. and Oard, D. W. (1995). A survey of information retrieval and filtering

methods. Technical Report CS-TR-3514, University of Maryland, College Park,

MD 20742.

Faster (2000). Faster homepage. http://www.faster-data.org (25/5-2003). Flexible

Access to Statistics, Tables and Electronic Resources.

http://www.cessda.org
http://www.cvshome.org
http://www.cordis.lu/telematics/home.html
http://www.cordis.lu/telematics/home.html
http://www.dda.dk
http://www.faster-data.org

BIBLIOGRAPHY 73

ICPSR (2002). Data documentation initiative. http://www.icpsr.umich.edu/DDI

(20/2-2003).

Jakarta/Lucene (2003). Jakarta lucene - overview - jakarta lucene. http://jakarta.

apache.org/lucene (10/7-2003).

JetBrains, Inc (2003). Jetbrains intellij idea — the best java ide around. http:

//intellij.com (25/9-2003).

Mizzaro, S. (1997). Relevance: The whole history. Journal of the American Society

of Information Science, 48(9):810–832.

Navarro, G. (1999). Indexing and searching. In Modern Information Retrieval, chap-

ter 8. ACM Press, Addison-Wesley, 1515 Broadway, 17th Floor, New York, NY

10036-5701, first edition.

Nesstar (2000). Networked social science tools and resources - final report. Technical

Report IE8028, Telematics Application Programme - Information Engeneering, Eu-

ropean Commission, DG XIII, C/1, TELEMATICS APPLICATIONS Programme

Information Desk, Rue de la Loi 200 - BU 29 - 04/05, B-1049 Brussels.

Nesstar (2002a). Nesstar homepage. http://www.nesstar.org (25/5-2003). NEt-

worked Social Science Tools And Resources.

Nesstar (2002b). Nesstar limited. http://www.nesstar.com (25/5-2003).

NSD (1997). About nsd. http://www.nsd.uib.no/english/about.html (25/5-

2003).

Nunamaker, J. F., Chen, M., and M.Purdin, T. D. (1990). Systems development

in information systems research. Journal Of Management Information Systems /

Winter, 7(3):89–106.

Riordan, C. O. and Sorensen, H. (1998). Information filtering and retrieval: An

overview.

http://www.icpsr.umich.edu/DDI
http://jakarta.apache.org/lucene
http://jakarta.apache.org/lucene
http://intellij.com
http://intellij.com
http://www.nesstar.org
http://www.nesstar.com
http://www.nsd.uib.no/english/about.html

74 BIBLIOGRAPHY

Rivest, R. L. (1992). The md5 message-digest algorithm. In Request for Comments.

The Internet Engineering Task Force, Massachusetts Institute of Technology, Lab-

oratory for Computer Science, NE43-324, 545 Technology Square, Cambridge, MA,

2139-1986.

Salton, G. and McGill, M. J. (1983). Introduction to Modernt Information Retrieval.

McGraw-Hill Book Company, New York, 1. edition.

Schafer, J. B., Konstan, J. A., and Riedi, J. (1999). Recommender systems in e-

commerce. In ACM Conference on Electronic Commerce, pages 158–166.

Simon, H. A. (1995). Artificial intelligence: an empirical science. Artificial Intelli-

gence, 77(1):95–127. TY - JOUR.

SSB (2001). Statistics norway: Statistics act. http://www.ssb.no/english/about_

ssb/statlaw/statlov_en.html (25/5-2003).

SSB (2002). About statistics norway. http://www.ssb.no/english/about_ssb

(25/5-2003).

Sun Microsystems Inc (2003). Java remote method invocation (rmi). http://java.

sun.com/products/jdk/rmi/ (22/8-2003).

The Apache Software Foundation (2003a). Apache ant. http://ant.apache.org

(25/9-2003).

The Apache Software Foundation (2003b). Jakarata apache, log4j project. http:

//jakarta.apache.org/log4j (25/9-2003).

UKDA (2002). Uk data archive. http://www.data-archive.ac.uk (25/5-2003).

Ziviani, N. (1999). Text operations. In Modern Information Retrieval, chapter 7. ACM

Press, Addison-Wesley, 1515 Broadway, 17th Floor, New York, NY 10036-5701, first

edition.

http://www.ssb.no/english/about_ssb/statlaw/statlov_en.html
http://www.ssb.no/english/about_ssb/statlaw/statlov_en.html
http://www.ssb.no/english/about_ssb
http://java.sun.com/products/jdk/rmi/
http://java.sun.com/products/jdk/rmi/
http://ant.apache.org
http://jakarta.apache.org/log4j
http://jakarta.apache.org/log4j
http://www.data-archive.ac.uk

Appendix A

Extended printout of search results

A.1 Search for “politics”

Showing a prinout of the question texts belonging to each statistical variable returned

by the search “politics”.
ID: nsd0005e V33 SIM: 1. 0

Q. 3. What concern you most: Norwegian foreign policy, local (municipal) politics, or national (domestic) politics?

ID: nsd0064e V14 SIM: 1. 0

Q. 5. What concerns you most: Norwegian foreign policy, national (domestic) politics, or local (municipal) politics?

ID: nsd0393e V98 SIM: 0. 612

Q. 32 When people are asked to express an opinion, do you believe most people in Norway usually say what they

think about politics, or do you believe most people usually hide what the really think about politics? Using the scale

on this card, (where one means that most people in Norway usually say what they really think about politics, and five

means that most people usually hide what they think), where would you place yourself?

ID: nsd0064e V13 SIM: 0. 53

Q. 4. Let us now look at some political issues. Generally speaking, would you say that you were very interested in

politics, fairly interested, only slightly interested or not interested at all?

ID: nsd0064e V217 SIM: 0. 53

Q. 76. We now come to more popular opinions concerning various political issues. Do you react to the following with

complete agreement, qualified agreement, qualified disagreement, or complete disagreement?What happens in politics

is rearly of any importance to me.

ID: nsd0393e V41 SIM: 0. 53

¡preQTxt¿Then to some questions about knowledge of parties and politics. ¡/preQTxt¿¡qstnLit¿Q. 15E How many

representatives are elected at the Storting? ALTERNATIVE ANSWERS SHOULD NOT BE MENTIONED, AND

NO HELP SHOULD BE GIVEN TO R. ¡/qstnLit¿

ID: nsd0393e V99 SIM: 0. 53

Q. 33A In politics people sometimes talk of left and right. Where would you place yourself on a scale from 0 to 10

where 0 means the left and 10 means the right?PERSONAL INTERVIEW: SHOW CARD 15

ID: nsd0393e V100 SIM: 0. 53

75

76 Chapter A. Extended printout of search results

¡preQTxt¿In politics people sometimes talk of left and right. Using the same scale, where would you place our political

parties?¡/preQTxt¿¡qstnLit¿Centre Party¡/qstnLit¿

ID: nsd0393e V101 SIM: 0. 53

¡preQTxt¿In politics people sometimes talk of left and right. Using the same scale, where would you place our political

parties?¡/preQTxt¿¡qstnLit¿Progress Party¡/qstnLit¿

ID: nsd0393e V102 SIM: 0. 53

¡preQTxt¿In politics people sometimes talk of left and right. Using the same scale, where would you place our political

parties?¡/preQTxt¿¡qstnLit¿Liberal Party¡/qstnLit¿

ID: nsd0393e V103 SIM: 0. 53

¡preQTxt¿In politics people sometimes talk of left and right. Using the same scale, where would you place our political

parties?¡/preQTxt¿¡qstnLit¿Labour Party¡/qstnLit¿

ID: nsd0393e V104 SIM: 0. 53

¡preQTxt¿In politics people sometimes talk of left and right. Using the same scale, where would you place our political

parties?¡/preQTxt¿¡qstnLit¿Conservative Party¡/qstnLit¿

ID: nsd0393e V105 SIM: 0. 53

¡preQTxt¿In politics people sometimes talk of left and right. Using the same scale, where would you place our political

parties?¡/preQTxt¿¡qstnLit¿Christian Peoples Party¡/qstnLit¿

ID: nsd0393e V106 SIM: 0. 53

¡preQTxt¿In politics people sometimes talk of left and right. Using the same scale, where would you place our political

parties?¡/preQTxt¿¡qstnLit¿Socialist Left Party¡/qstnLit¿

ID: nsd0393e V107 SIM: 0. 53

¡preQTxt¿In politics people sometimes talk of left and right. Using the same scale, where would you place our political

parties?¡/preQTxt¿¡qstnLit¿Red Electorial Alliance¡/qstnLit¿

ID: nsd0005e V32 SIM: 0. 442

Q. 4. Let us now consider some political issues. Generally speaking, would you say that you were:1 Very interested in

politics?2 Fairly interested?3 Only slightly interested?4 Not interested at all?5 Don’t know

ID: nsd0064e V220 SIM: 0. 442

Q. 76. We now come to more popular opinions concerning various political issues. Do you react to the following

with complete agreement, qualified agreement, qualified disagreement, or complete disagreement?Politics is often so

complicated that ordinary people can’t follow what it’s all about.

ID: nsd0064e V221 SIM: 0. 442

Q. 76. We now come to more popular opinions concerning various political issues. Do you reactto the following with

complete agreement, qualified agreement, qualified disagreement, or complete disagreement?People like me can vote

all right but there’s nothing else we can do to influence politics.

ID: nsd0064e V238 SIM: 0. 442

Q. 89. It is of course the case that some people are always interested in politics, whether or not there is an impending

election; while others are less interested. How regularly would you say you follow what is going on in current affairs:

would you say it was alle the time, some of the time, or only now and then?

ID: nsd0393e V37 SIM: 0. 442

¡preQTxt¿Then to some questions about knowledge of parties and politics. ¡/preQTxt¿¡qstnLit¿Q. 15A Do you

happen to know who is party leader of the Christian People’s party? ALTERNATIVE ANSWERS SHOULD NOT

BE MENTIONED, AND NO HELP SHOULD BE GIVEN TO R. ¡/qstnLit¿

ID: nsd0393e V38 SIM: 0. 442

¡preQTxt¿Then to some questions about knowledge of parties and politics. ¡/preQTxt¿¡qstnLit¿Q. 15B Do you

remember who’s been the Minister of Local Government and Labour the year before the election? ALTERNATIVE

A.1. Search for “politics” 77

ANSWERS SHOULD NOT BE MENTIONED, AND NO HELP SHOULD BE GIVEN TO R.¡/qstnLit¿

ID: nsd0393e V39 SIM: 0. 442

¡preQTxt¿Then to some questions about knowledge of parties and politics. ¡/preQTxt¿¡qstnLit¿Q. 15C Can you

please tell me which of the following parties has not been represented at the Storting during the last election pe-

riod? ALTERNATIVE ANSWERS SHOULD NOT BE MENTIONED, AND NO HELP SHOULD BE GIVEN TO

R.¡/qstnLit¿

ID: nsd0393e V40 SIM: 0. 442

¡preQTxt¿Then to some questions about knowledge of parties and politics. ¡/preQTxt¿¡qstnLit¿Q. 15D To which

party does the President of the Storting during the last four years belong? ALTERNATIVE ANSWERS SHOULD

NOT BE MENTIONED, AND NO HELP SHOULD BE GIVEN TO R. ¡/qstnLit¿

ID: nsd0005e V44 SIM: 0. 354

Q. 12. Now we come to a number of opinions which people can sometimes be heard to express. For each of the

following statements that i read out, can you tell me whether you react with complete agreement, qualified agreement,

qualified disagreement, or complete disagreement?A. People like me can vote alright, but we can’t do anything else to

influence politics.

ID: nsd0005e V50 SIM: 0. 354

Q. 12. Now we come to a number of opinions which people can sometimes be heard to express. For each of the

following statements that i read out, can you tell me whether you react with complete agreement, qualified agreement,

qualified disagreement, or complete disagreement?G. Things that happen in politics rarely have any great importance

for me

ID: nsd0064e V77 SIM: 0. 354

Q. 52. A number of opposing attitudes or conflicts of viewpoint are constantly making themselves evident in politics.

We would like to know how you regard some of these conflicts of viewpoint. FOR PERSONAL INETRVIEWS; READ

CARD 3: Can you tell me which of these conflicts of viewpoint you personally belive to be the most important.FOR

TELEPHONE INTERVIEW: Can you tell me which of the following conflicts of viewpoint you personally belive to

be the most important. READ FROM CARD 3.

ID: nsd0393e V30 SIM: 0. 354

¡preQTxt¿Q. 14 Let us again look at some statements of opinion. We still use the same alternative answers as ear-

lier. For each of the statements that I read, can you tell me whether you react with complete agreement, qualified

agreement, qualified disagreement, or complete disagreement?PERSONAL INTERVIEW: SHOW CARD 2 ¡/pre-

QTxt¿¡qstnLit¿People like me can vote, but we can’t do anything else to influence politics. Complete agreement,

qualified agreement, qualified disagreement or complete disagreement?¡/qstnLit¿

ID: nsd0393e V31 SIM: 0. 354

¡preQTxt¿Q. 14 Let us again look at some statements of opinion. We still use the same alternative answers as ear-

lier. For each of the statements that I read, can you tell me whether you react with complete agreement, qualified

agreement, qualified disagreement, or complete disagreement?PERSONAL INTERVIEW: SHOW CARD 2 ¡/pre-

QTxt¿¡qstnLit¿Politics is often so complicated that ordinary citizens cannot understand what is going on ¡/qstnLit¿

78 Chapter A. Extended printout of search results

A.2 Search for id nsd0064e V14

Showing a prinout of the question texts belonging to each statistical variable returned

by the search for statistical variable with id nsd0064e V14.
ID: nsd0005e V33 SIM: 0. 631 Q. 3. What concern you most: Norwegian foreign policy, local (municipal) politics,

or national (domestic) politics?

ID: nsd0393e V38 SIM: 0. 064 ¡preQTxt¿Then to some questions about knowledge of parties and politics. ¡/pre-

QTxt¿¡qstnLit¿Q. 15B Do you remember who’s been the Minister of Local Government and Labour the year before

the election? ALTERNATIVE ANSWERS SHOULD NOT BE MENTIONED, AND NO HELP SHOULD BE GIVEN

TO R.¡/qstnLit¿

ID: nsd0393e V98 SIM: 0. 041 Q. 32 When people are asked to express an opinion, do you believe most people in

Norway usually say what they think about politics, or do you believe most people usually hide what the really think

about politics? Using the scale on this card, (where one means that most people in Norway usually say what they

really think about politics, and five means that most people usually hide what they think), where would you place

yourself?

ID: nsd0064e V13 SIM: 0. 036 Q. 4. Let us now look at some political issues. Generally speaking, would you say

that you were very interested in politics, fairly interested, only slightly interested or not interested at all?

ID: nsd0064e V217 SIM: 0. 035 Q. 76. We now come to more popular opinions concerning various political issues.

Do you react to the following with complete agreement, qualified agreement, qualified disagreement, or complete

disagreement?What happens in politics is rearly of any importance to me.

ID: nsd0393e V99 SIM: 0. 035 Q. 33A In politics people sometimes talk of left and right. Where would you place

yourself on a scale from 0 to 10 where 0 means the left and 10 means the right?PERSONAL INTERVIEW: SHOW

CARD 15

ID: nsd0393e V100 SIM: 0. 035 ¡preQTxt¿In politics people sometimes talk of left and right. Using the same

scale, where would you place our political parties?¡/preQTxt¿¡qstnLit¿Centre Party¡/qstnLit¿

ID: nsd0393e V101 SIM: 0. 035 ¡preQTxt¿In politics people sometimes talk of left and right. Using the same

scale, where would you place our political parties?¡/preQTxt¿¡qstnLit¿Progress Party¡/qstnLit¿

ID: nsd0393e V102 SIM: 0. 035 ¡preQTxt¿In politics people sometimes talk of left and right. Using the same

scale, where would you place our political parties?¡/preQTxt¿¡qstnLit¿Liberal Party¡/qstnLit¿

ID: nsd0393e V103 SIM: 0. 035 ¡preQTxt¿In politics people sometimes talk of left and right. Using the same

scale, where would you place our political parties?¡/preQTxt¿¡qstnLit¿Labour Party¡/qstnLit¿

ID: nsd0393e V104 SIM: 0. 035 ¡preQTxt¿In politics people sometimes talk of left and right. Using the same

scale, where would you place our political parties?¡/preQTxt¿¡qstnLit¿Conservative Party¡/qstnLit¿

ID: nsd0393e V105 SIM: 0. 035 ¡preQTxt¿In politics people sometimes talk of left and right. Using the same

scale, where would you place our political parties?¡/preQTxt¿¡qstnLit¿Christian Peoples Party¡/qstnLit¿

ID: nsd0393e V106 SIM: 0. 035 ¡preQTxt¿In politics people sometimes talk of left and right. Using the same

scale, where would you place our political parties?¡/preQTxt¿¡qstnLit¿Socialist Left Party¡/qstnLit¿

ID: nsd0393e V107 SIM: 0. 035 ¡preQTxt¿In politics people sometimes talk of left and right. Using the same

scale, where would you place our political parties?¡/preQTxt¿¡qstnLit¿Red Electorial Alliance¡/qstnLit¿

ID: nsd0064e V238 SIM: 0. 03 Q. 89. It is of course the case that some people are always interested in politics,

whether or not there is an impending election; while others are less interested. How regularly would you say you follow

what is going on in current affairs: would you say it was alle the time, some of the time, or only now and then?

ID: nsd0005e V32 SIM: 0. 03 Q. 4. Let us now consider some political issues. Generally speaking, would you

say that you were:1 Very interested in politics?2 Fairly interested?3 Only slightly interested?4 Not interested at all?5

A.3. Search for id nsd0005e V83 79

Don’t know

ID: nsd0064e V220 SIM: 0. 029 Q. 76. We now come to more popular opinions concerning various political issues.

Do you react to the following with complete agreement, qualified agreement, qualified disagreement, or complete

disagreement?Politics is often so complicated that ordinary people can’t follow what it’s all about.

ID: nsd0064e V221 SIM: 0. 029 Q. 76. We now come to more popular opinions concerning various political issues.

Do you reactto the following with complete agreement, qualified agreement, qualified disagreement, or complete

disagreement?People like me can vote all right but there’s nothing else we can do to influence politics.

ID: nsd0393e V37 SIM: 0. 029 ¡preQTxt¿Then to some questions about knowledge of parties and politics. ¡/pre-

QTxt¿¡qstnLit¿Q. 15A Do you happen to know who is party leader of the Christian People’s party? ALTERNATIVE

ANSWERS SHOULD NOT BE MENTIONED, AND NO HELP SHOULD BE GIVEN TO R. ¡/qstnLit¿

ID: nsd0393e V39 SIM: 0. 029 ¡preQTxt¿Then to some questions about knowledge of parties and politics. ¡/pre-

QTxt¿¡qstnLit¿Q. 15C Can you please tell me which of the following parties has not been represented at the Storting

during the last election period? ALTERNATIVE ANSWERS SHOULD NOT BE MENTIONED, AND NO HELP

SHOULD BE GIVEN TO R.¡/qstnLit¿

ID: nsd0064e V26 SIM: 0. 026 Q. 16. In relation to the Soviet Union, do you think that the Norwegian government

during the past three or four years has been too strongly critial, not critical enough, or has been appropiately critical

of Soviet foreign policy?

ID: nsd0064e V25 SIM: 0. 025 Q. 15. The next two questions concern Norwegian government policy towards the

USA and the Soviet Union. Taking the USA first, do you think that the government during the past three or four

years has been too strongly critial, not critical enough, or has been appropiately critical of US foreign policy?

A.3 Search for id nsd0005e V83

Showing a prinout of the question texts belonging to each statistical variable returned

by the search for statistical variable with id nsd0005e V83.
ID: nsd0393e V186 SIM: 0. 043 Q. 75 Are you currently in paid employment? Paid employment also includes

work as a family member without a fixed, regular wage on a farm, in a shop, or in a family business. Include all

working activity of one hour or more pr. week.

ID: nsd0005e V207 SIM: 0. 036 Q. 68. People sometimes talk about the existence of different social classes. Most

people would say they belong to one of two classes; either the working class, or the middle class. Do you ever think of

yourself as belonging to one of these classes?Which class?If you had to choose, would you say that you belong more

to the working class or the middle class?

ID: nsd0005e V236 SIM: 0. 033 Q. 80. Are you currently in paid employment?Paid employed also includes work

as a family member without a fixed, regular wage on a farm, in a shop, or in a family business. Include all working

activity of 1 hour or more per week.

ID: nsd0005e V205 SIM: 0. 032 Q. 66. People sometimes talk about the existence of different social classes. Most

people would say they belong to one of two classes; either the working class, or the middle class. Do you ever think

of yourself as belonging to one of these classes?

ID: nsd0005e V206 SIM: 0. 032 Q. 67. People sometimes talk about the existence of different social classes. Most

people would say they belong to one of two classes; either the working class, or the middle class. Do you ever think

of yourself as belonging to one of these classes?Which class?

80 Chapter A. Extended printout of search results

ID: nsd0064e V239 SIM: 0. 032 Q. 90. There is always a great deal of talk concerning the different social classes.

Most people would say they belong to one of two classes: either the working class, or the middle class. Do you ever

think of yourself as belonging to one of these classes?

ID: nsd0393e V165 SIM: 0. 029 Q. 56 Let’s imagine that we have two people, A and B, who are discussing

an issue of current interest. We have formulated two different viewpoints that A and B might be heard to express.

PERSONAL INTERVIEW: SHOW CARD 18A says:To avoid rising prices and rising interests, we should not use more

of the oil-revenues than we do today.B says:To solve the problems of the public health services and in the care for the

elderly, we can use a lot more of the oil-revenues than we do today.Which of these two viewpoints do you agree most

with?

ID: nsd0393e V206 SIM: 0. 026 SEE ANSWERS TO QUESTION 73. ONLY ASK QUESTION 92 TO 96 IF THE

RESPONDENT IS MARRIED OR COHABITING. OTHERS GO TO QUESTION 97. Q. 92 Is your spouse/partner

currently in paid employment? Paid employment also includes work as a family member without fixed, regular wage

on a farm, in a shop, or in a family business. Include all working activities of 1 hour or more per week.

Appendix B

Software documenation

Here the source code is located/available, as well as legend for understanding symbols

in UML diagrams (B.1).

81

82 Chapter B. Software documenation

Figure B.1: An example UML Diagram, serving as symbol legend

B.1. statfind.foreign.StatfindFeeder class source code 83

Tools and utilities source code:

B.1 statfind.foreign.StatfindFeeder class source code

1 /*

2 * User: olvesh

3 * Date: Nov 15, 2002

4 * Time: 3:07:03 PM

5 */

6 package statfind.foreign;

7

8

9 import org.apache.log4j.Level;

10 import org.apache.log4j.Logger;

11 import statfind.common.*;

12 import statfind.common.util.SleepyQueue;

13

14 import java.io.BufferedOutputStream;

15 import java.io.IOException;

16 import java.io.ObjectOutputStream;

17 import java.net.InetSocketAddress;

18 import java.net.Socket;

19 import java.util.Properties;

20

21 /**

22 * Class for serving the StatFind server with usage information,

23 * using a <code>SleepyQueue</code> to make it more robust.

24 */

25

26 public class StatfindFeeder extends SleepyQueue {

27 private static StatfindFeeder ourInstance;

28 private static Logger log = Logger.getLogger(StatfindFeeder.class);

29 private Properties props;

30 private Socket socket;

31 private ObjectOutputStream outStream;

32 private boolean isConnected = false;

33 private Thread shutdownThread;

34 private static boolean hasSaidSo = false;

35

36

37 /**

38 * This class is a Singleton, making an application connect only once to the server.

39 * @return

40 */

84 Chapter B. Software documenation

41 public synchronized static StatfindFeeder getInstance() {

42 if (ourInstance == null) {

43 log.setLevel(Level.INFO);

44 ourInstance = new StatfindFeeder();

45 ourInstance.start();

46 }

47 return ourInstance;

48 }

49

50 /**

51 * Connects using the supplied properties file,

52 */

53 private StatfindFeeder() {

54 if (props == null) {

55 props = new Properties(CommonProperties.getCommonDefaults());

56 try {

57 props.load(getClass().getResourceAsStream("statfind-foreign.properties"));

58 } catch (IOException e) {

59 log.fatal("Could not initialize class", e);

60 }

61 }

62 threadName = "StatfindFeeder";

63 if (UserSelector.user() == null)

64 new UserSelector(props);

65 shutdownThread = new Thread(new Stopper(), "StreamStopper");

66 Runtime.getRuntime().addShutdownHook(shutdownThread);

67 }

68

69 private void initSocketConnection() throws IOException {

70 String serverHost = props.getProperty("host");

71 int serverPort = Integer.parseInt(props.getProperty("server.port"));

72 log.debug("Connecting to host: " + serverHost + " at port: " + serverPort);

73 socket = new Socket();

74 InetSocketAddress address = new InetSocketAddress(serverHost, serverPort);

75 socket.connect(address, 0);//Wait indefinetly

76 log.info("Connected to host: " + serverHost + " at port: " + serverPort);

77 isConnected = true;

78

79 }

80

81

82 private boolean initStream() throws IOException {

83 if (!isConnected) {

84 initSocketConnection();

85 }

B.1. statfind.foreign.StatfindFeeder class source code 85

86

87 boolean success = false;

88

89 int maxRetry = Integer.parseInt(props.getProperty("retry"));

90 int tries = 0;

91 IOException ioe = null;

92 while (isConnected && !success && tries < maxRetry) {

93 try {

94 outStream = new ObjectOutputStream(

95 new BufferedOutputStream(socket.getOutputStream()));

96 success = true;

97 log.debug("Buffered stream initialized");

98 } catch (IOException e) {

99 ioe = e;

100 //No attempts to reinitialize, will only retry too

101 //many times if the user is not connected to the net.

102 }

103 }

104 if (!success) {

105 throw ioe;

106 }

107 return success;

108 }

109

110 public void close() {

111 if (shutdownThread != null) {

112 Runtime.getRuntime().removeShutdownHook(shutdownThread);

113 shutdownThread = null;

114 }

115

116 try {

117 if (outStream != null) {

118 outStream.flush();

119 outStream.close();

120 }

121 } catch (IOException e) {

122 if (outStream != null) {

123 try {

124 outStream.close();

125 //If the flush command threw the exception, try once more, without flushing.

126 } catch (IOException e1) {

127 log.warn("Problems closing buffered stream; " + e.getMessage());

128 }

129 }

130 } finally {

86 Chapter B. Software documenation

131 outStream = null;

132 }

133 try {

134 socket.close();

135 } catch (IOException e) {

136 log.error("Problems closing socket: " + e.getMessage());

137 } finally {

138 socket = null;

139 isConnected = false;

140 }

141 }

142

143

144 public void run() {

145 log.debug("Starting thread");

146 try {

147 initStream();

148 } catch (Throwable e) {

149 if (!hasSaidSo)

150 log.error("Could not initialize connection: " + e.getMessage());

151 }

152 try {

153 if (socket != null && socket.isConnected()) {

154 hasSaidSo = false;

155 super.run();

156 } else {

157 if (!hasSaidSo)

158 log.error("Socket not connected, stopping thread");

159 hasSaidSo = true;

160 }

161 } catch (StatfindRuntimeException e) {

162 log.error("Thread exiting abnormally: " + e.getMessage());

163 }

164

165 close();

166 synchronized (ourInstance) {

167 ourInstance = null;

168 }

169 log.debug("Thread finished");

170 }

171

172

173 private void screenObject(Object o) throws IOException {

174 if (o instanceof EndOfStream) {

175 writeObject(o);

B.1. statfind.foreign.StatfindFeeder class source code 87

176 } else if (o instanceof CompletedOperation) {

177 String varResTag = props.getProperty("variableResultPreTag");

178

179 CompletedOperation op = (CompletedOperation) o;

180 log.debug("Screening object: " + op);

181 if (op.getUser() != null &&

182 !op.getUser().equalsIgnoreCase("null") &&

183 op.getVarId() != null &&

184 !op.getVarId().equalsIgnoreCase("null") &&

185 -1 != op.getVarId().lastIndexOf(varResTag)) {

186 log.debug("Writing object to stream:\n" + o);

187

188 op.setVarId(op.getVarId().substring(op.getVarId()

189 .lastIndexOf(varResTag) + varResTag.length()));

190 writeObject(op);

191 }

192 }

193 }

194

195

196 protected void doTheStuff(Object o) {

197 try {

198 screenObject(o);

199 } catch (IOException e) {

200 throw new StatfindRuntimeException(e);

201 }

202 }

203

204 private void writeObject(Object o) throws IOException {

205 if (o == null)

206 return;

207

208 outStream.writeObject(o);

209 outStream.flush();

210 if (o instanceof EndOfStream) {

211 threadIsStopping = true;

212 //The feeder is about to be scrapped.

213 }

214 }

215

216

217 public synchronized void processObject(CompletedOperation msg) {

218 msg.setUser(UserSelector.user());

219 theQueue.insertLast(msg);

220 wakeUpCall();

88 Chapter B. Software documenation

221 }

222

223

224 public void finalize() {

225 close();

226 }

227

228 class Stopper implements Runnable {

229

230 public void run() {

231 shutdownThread = null;

232 processObject(new EndOfStream());

233 }

234 }

235 }

B.2 statfind.common.util.SleepyQueue class source

code

1 /*

2 * Created by IntelliJ IDEA.

3 * User: oh

4 * Date: 13.mai.02

5 * Time: 15:54:59

6 */

7 package statfind.common.util;

8

9

10 import java.util.NoSuchElementException;

11 import java.util.logging.Logger;

12

13 public abstract class SleepyQueue implements Runnable {

14

15 protected Queue theQueue;

16 protected static boolean threadIsRunning = false;

17 protected static boolean threadIsStopping = false;

18 private boolean threadSuspended = true;

19 protected boolean errorsOccured = false;

20 private boolean isCancelled = false;

21 protected String threadName;

22 private Logger log;

B.2. statfind.common.util.SleepyQueue class source code 89

23

24 public SleepyQueue() {

25 super();

26 theQueue = new VectorQueue();

27 log = Logger.getLogger(this.getClass().toString());

28 }

29

30 protected synchronized void wakeUpCall() {

31 if (threadSuspended) {

32 threadSuspended = false;

33 log.fine("waking up");

34 notify();

35 }

36 }

37

38

39 /**

40 * This method is called by the thread running this class, to start the execution of this class

41 * in the calling thread.

42 */

43

44 public void run() {

45

46 while (!threadIsStopping) {

47 try {

48 //Check if there is more to do, if not, go into sleep.

49 if (threadSuspended) {

50 synchronized (this) {

51 while (threadSuspended) {

52 log.fine("going to sleep");

53 wait();

54 }

55 initWakeup();

56 }

57 }

58 //Do the parse stuff:

59 doTheStuff(theQueue.removeFirst());

60 if (isCancelled) {

61 log.fine("cancelling remaining items");

62 theQueue.removeAll();

63 isCancelled = false;

64 }

65

66 if (theQueue.isEmpty()) {

67 threadSuspended = true;

90 Chapter B. Software documenation

68 cleanUpBeforeSleep();

69 }

70

71 } catch (NoSuchElementException nsee) {

72 log.warning(nsee.getMessage());

73 log.warning("cause:" + nsee.getCause());

74 //Means that the structure is empty

75 threadSuspended = true;

76 cleanUpBeforeSleep();

77 } catch (InterruptedException ie) {

78 log.warning(ie.getMessage());

79 log.warning("cause:" + ie.getCause());

80

81 }

82 }//End of while looooooop.

83 }

84

85 public void setCancelled(boolean cancelled) {

86 isCancelled = cancelled;

87 }

88

89 protected void initWakeup() {

90 //So that the vm cant exit when a thread is running.

91 // Thread.currentThread().setDaemon(false);

92 }

93

94 protected void cleanUpBeforeSleep() {

95 //So that a thread going to sleep won’t stop the vm from exiting.

96 // Thread.currentThread().setDaemon(true);

97 //Nothing here yet...

98 }

99

100 protected abstract void doTheStuff(Object o);

101

102

103 // public boolean threadIsStopping() {

104 // return threadIsStopping;

105 // }

106

107 public boolean threadIsRunning() {

108 return threadIsRunning;

109 }

110

111 /**

112 * Called to start the execution, this method will initiate a new <code>Thread</code> and

B.3. statfind.common.CompletedOperation class source code 91

113 * assign this class to it, and then start the <code>Thread</code>, which in turn calls

114 * {@link statfind.common.util.SleepyQueue#run() run()}.

115 *

116 */

117 public void start() {

118

119 Thread t = new Thread(this, threadName);

120 t.setPriority(Thread.MIN_PRIORITY);

121 t.setPriority(Thread.MIN_PRIORITY);

122

123 t.setDaemon(true);

124 t.start();

125 }

126

127 // public void stopThread() {

128 // if (threadIsRunning) {

129 // threadIsStopping = true;

130 // }

131 // }

132 }

B.3 statfind.common.CompletedOperation class source

code

1 /*

2 * User: olvesh

3 * Date: Nov 21, 2002

4 * Time: 8:10:40 PM

5 */

6 package statfind.common;

7

8 import java.io.Serializable;

9 import java.net.URL;

10

11

12 public class CompletedOperation implements Serializable {

13

14 private String user;

15 // protected String method;

16 private String varId/*, hostAdr*/;

17

92 Chapter B. Software documenation

18

19 public String getUser() {

20 return user;

21 }

22

23

24 public String getVarId() {

25 return varId;

26 }

27

28

29 public void setUser(String name) {

30 this.user = name;

31 }

32

33 // public void setMethod(String methodName) {

34 // method = methodName;

35 // }

36

37 public void setVarId(String varId) {

38 this.varId = varId;

39 }

40

41 public void setVarId(URL varUrl) {

42 // hostAdr = theResult.getHost();

43 varId = varUrl.getPath();

44 }

45

46 public String toString() {

47 StringBuffer sb = new StringBuffer();

48 sb.append("user: ");

49 sb.append(user);

50 sb.append(" varId: ");

51 sb.append(varId);

52 return sb.toString();

53 }

54 }

Collaborative Filtering source code: The first class are a general function class,

while the two next classes are for the different functions used in the collaborative

filtering approach, vector similarity and correlation. The next class is the Collabora-

tiveFilter, which uses a weight function. The rest of the classes are for handling the

B.4. statfind.common.cf.functions.WeightFunction class source code 93

collection of users and items.

B.4 statfind.common.cf.functions.WeightFunction class

source code

1 /*

2 * Created by IntelliJ IDEA.

3 * User: olvesh

4 * Date: 07.sep.02

5 * Time: 18:45:17

6 */

7 package statfind.common.cf.functions;

8

9 import org.apache.log4j.Logger;

10 import statfind.common.cf.User;

11

12 import java.sql.SQLException;

13

14 public abstract class WeightFunction {

15

16 protected boolean inverseUserFreq, caseAmp;

17 protected double ampFactor = 2.5d;

18 protected static Logger log = Logger.getLogger(WeightFunction.class);

19 public static final double NO_WEIGHT = 0d;

20 public static double DEFAULT_VOTE = 0d;

21

22 public double doWeight(final User activeUser, final User otherUser) throws SQLException {

23 double weight = weight(activeUser, otherUser);

24 return Double.isNaN(weight) ?

25 NO_WEIGHT : (caseAmp ? amplify(weight) : weight);

26 }

27

28 protected abstract double weight(final User activeUser, final User otherUser)

29 throws SQLException;

30

31 public boolean getInverseUserFreq() {

32 return inverseUserFreq;

33 }

34

35 public void setInverseUserFreq(boolean b) {

36 inverseUserFreq = b;

37 }

38

94 Chapter B. Software documenation

39 public boolean usesCaseAmp() {

40 return caseAmp;

41 }

42

43 public void useCaseAmp(boolean b) {

44 caseAmp = b;

45 }

46

47 public double getCaseAmpFactor() {

48 return ampFactor;

49 }

50

51 public void setCaseAmpFactor(double d) {

52 ampFactor = d;

53 }

54

55 private double amplify(double weight) {

56 double amped;

57 if (weight >= 0d) {

58 amped = Math.pow(weight, ampFactor);

59 } else {

60 //Do I have to multiply with -1 or is it sufficient to say "- ’the exression’ "

61 amped = -Math.pow(Math.abs(weight), ampFactor);

62 }

63 return amped;

64 }

65

66 public String toString() {

67 String val = caseAmp ? " Case amp, factor: " + ampFactor + ", " : ", ";

68 val += "Inverse User Frequency: " + getInverseUserFreq();

69 return val;

70 }

71 }

B.5 statfind.common.cf.functions.VectorSimilarity

class source code

1 /*

2 * User: olvesh

3 * Date: 07.sep.02

4 * Time: 19:48:56

5 */

B.5. statfind.common.cf.functions.VectorSimilarity class source code 95

6 package statfind.common.cf.functions;

7

8

9 import statfind.common.cf.Item;

10 import statfind.common.cf.ItemCollection;

11 import statfind.common.cf.User;

12 import statfind.common.cf.UserItemMatrix;

13

14 import java.sql.SQLException;

15

16 public class VectorSimilarity extends WeightFunction {

17

18 public VectorSimilarity() {

19 this(true); //Inverse user frequency is turned on by default.

20 }

21

22 public VectorSimilarity(boolean inverseUserFreq) {

23 this(inverseUserFreq, true);

24

25 }

26

27 public VectorSimilarity(boolean inverseUserFreq, boolean caseAmp) {

28 setInverseUserFreq(inverseUserFreq);

29 useCaseAmp(caseAmp);

30 }

31

32

33 public double weight(final User activeUser, final User otherUser) throws SQLException {

34 UserItemMatrix matrix = UserItemMatrix.getInstance();

35

36 ItemCollection userItemIntersect = matrix.userItemIntersect(activeUser, otherUser);

37 ItemCollection activeUserItems = matrix.itemsVotedForByUser(activeUser);

38 ItemCollection otherUserItems = matrix.itemsVotedForByUser(otherUser);

39

40 double sum = 0f, nom_1 = 0f, nom_2 = 0f, denom_1 = 0f, denom_2 = 0f;

41

42 //Do both iterators in same loop to minimize loop lengths.

43 //Very insecure if this will work, since I don’t know which sets to use for

44 //activeUserItems, and otherUserItems

45 //See article Empirical Analysis of Predictive Algortihms for Collaborative Filtering by

46 //Breese et al.

47 while (activeUserItems.hasNext() || otherUserItems.hasNext()) {

48 if (activeUserItems.hasNext()) {

49 Item actItem = (Item) activeUserItems.next();

50 denom_1 += Math.pow(matrix.getVote(activeUser, actItem).getVote(), 2);

96 Chapter B. Software documenation

51 }

52

53 if (otherUserItems.hasNext()) {

54 Item othItem = (Item) otherUserItems.next();

55 denom_2 += Math.pow(matrix.getVote(otherUser, othItem).getVote(), 2);

56 }

57

58 }

59 denom_1 = Math.sqrt(denom_1);

60 denom_2 = Math.sqrt(denom_2);

61

62 while (userItemIntersect.hasNext()) {

63 Item item = (Item) userItemIntersect.next();

64

65 nom_1 = matrix.getVote(activeUser, item).getVote();

66 nom_2 = matrix.getVote(otherUser, item).getVote();

67

68 if (inverseUserFreq) {

69 sum += Math.log(matrix.getUserCount() / matrix.getVoteCountForItem(item)) *

70 (nom_1 / denom_1) * (nom_2 / denom_2);

71 } else {

72 sum += (nom_1 / denom_1) * (nom_2 / denom_2);

73 }

74 }

75

76 userItemIntersect.close();

77 activeUserItems.close();

78 otherUserItems.close();

79

80 return sum;

81 }

82

83 public String toString() {

84 return "Vector similarity;" + super.toString();

85 }

86 }

B.6 statfind.common.cf.functions.Correlation class

source code

1 /*

2 * Created by IntelliJ IDEA.

B.6. statfind.common.cf.functions.Correlation class source code 97

3 * User: olvesh

4 * Date: 07.sep.02

5 * Time: 19:12:21

6 * To change template for new class use

7 * Code Style | Class Templates options (Tools | IDE Options).

8 */

9 package statfind.common.cf.functions;

10

11 import org.apache.log4j.Logger;

12 import statfind.common.cf.*;

13

14 import java.sql.SQLException;

15

16 public class Correlation extends WeightFunction {

17

18 protected static Logger log = Logger.getLogger(Correlation.class);

19

20

21 /**

22 * The item selection method correspond to selection default voting regime. So setting

23 * the value to UNION, assumes that default votes are used, and that all votes that are

24 * returned are valid.

25 */

26 protected int itemSelectionMethod = INTERSECT;

27 //Inverse user frequency is turned on by default.

28 public static final int INTERSECT = 0;

29 public static final int UNION = 1;

30

31

32 public Correlation() {

33 this(true, true, INTERSECT);

34 }

35

36 public Correlation(boolean caseAmp, boolean inverseUserFreq) {

37 this(caseAmp, inverseUserFreq, INTERSECT);

38 }

39

40 public Correlation(int selMethod) {

41 this(true, true, selMethod);

42 }

43

44 public Correlation(boolean caseAmp, boolean invUserFreq, int selMethod) {

45 setInverseUserFreq(invUserFreq);

46 setItemSelectionMethod(selMethod);

47 useCaseAmp(caseAmp);

98 Chapter B. Software documenation

48 }

49

50

51 public int getItemSelectionMethod() {

52 return itemSelectionMethod;

53 }

54

55 public void setItemSelectionMethod(int itemSelectionMethod) throws IllegalArgumentException {

56 this.itemSelectionMethod = itemSelectionMethod;

57

58 if (!(itemSelectionMethod == INTERSECT || itemSelectionMethod == UNION))

59 throw new IllegalArgumentException("Not a valid item selection method: " +

60 itemSelectionMethod);

61 }

62

63 public double weight(final User activeUser, final User otherUser)

64 throws SQLException {

65 return inverseUserFreq

66 ? invUserFreqWeight(activeUser, otherUser)

67 : nonInvUserFreqWeight(activeUser, otherUser);

68 }

69

70

71 protected double invUserFreqWeight(final User activeUser, final User otherUser)

72 throws SQLException {

73 //TODO: Add the Fi value, defined as log(n/nj). See article.

74 UserItemMatrix matrix = UserItemMatrix.getInstance();

75

76 ItemCollection selectedItems = null;

77 if (itemSelectionMethod == INTERSECT)

78 selectedItems = matrix.userItemIntersect(activeUser, otherUser);

79 else if (itemSelectionMethod == UNION)

80 selectedItems = matrix.userItemUnion(activeUser, otherUser);

81

82

83 double /*sum = 0f,*/ nom_1 = 0f, nom_2 = 0f, nom_3 = 0f,

84 denom_1 = 0f, denom_2 = 0f, denom_3 = 0f, denom_4 = 0f,

85 nom_A = 0f, denom_A = 0f, denom_B = 0f;

86

87

88 Vote activeUserVote, otherUserVote;

89

90 while (selectedItems.hasNext()) {

91 Item item = (Item) selectedItems.next();

92

B.6. statfind.common.cf.functions.Correlation class source code 99

93 double invUserFreq = Math.log(matrix.getUserCount() / matrix.getVoteCountForItem(item));

94

95 activeUserVote = matrix.getVote(activeUser, item);

96 otherUserVote = matrix.getVote(otherUser, item);

97 nom_1 += invUserFreq *

98 activeUserVote.getVote() *

99 otherUserVote.getVote();

100 nom_2 += invUserFreq *

101 activeUserVote.getVote();

102 nom_3 += invUserFreq *

103 matrix.getVote(otherUser, item).getVote();

104 denom_1 += invUserFreq * Math.pow(otherUserVote.getVote(), 2);

105 denom_2 += invUserFreq * activeUserVote.getVote();

106

107 denom_3 += invUserFreq * Math.pow(otherUserVote.getVote(), 2);

108 denom_4 += invUserFreq * otherUserVote.getVote();

109 }

110 selectedItems.close();

111 selectedItems.reset();

112

113 denom_2 = Math.pow(denom_2, 2);

114 denom_4 = Math.pow(denom_4, 2);

115

116 nom_1 = nom_1 - (nom_2 * nom_3);

117 denom_1 = denom_1 - denom_2;

118 denom_3 = denom_3 - denom_4;

119

120 while (selectedItems.hasNext()) {

121 double invUserFreq = Math.log(

122 matrix.getUserCount() /

123 matrix.getVoteCountForItem((Item) selectedItems.next()));

124 nom_A += invUserFreq * nom_1;

125 denom_A += invUserFreq * denom_1;

126 denom_B += invUserFreq * denom_3;

127 }

128

129 return nom_A / Math.sqrt(denom_A * denom_B);

130 }

131

132 protected double nonInvUserFreqWeight(final User activeUser, final User otherUser)

133 throws SQLException {

134 UserItemMatrix matrix = UserItemMatrix.getInstance();

135

136 ItemCollection selectedItems = null;

137 if (itemSelectionMethod == INTERSECT)

100 Chapter B. Software documenation

138 selectedItems = matrix.userItemIntersect(activeUser, otherUser);

139 else if (itemSelectionMethod == UNION)

140 selectedItems = matrix.userItemUnion(activeUser, otherUser);

141

142 double activeMean = matrix.meanUserVote(activeUser),

143 otherMean = matrix.meanUserVote(otherUser),

144 nom = 0d, denom_1 = 0d, denom_2 = 0d, valA = 0d, valB = 0d;

145

146 while (selectedItems.hasNext()) {

147 Item item = (Item) selectedItems.next();

148 valA = matrix.getVote(activeUser, item).getVote() - activeMean;

149 valB = matrix.getVote(otherUser, item).getVote() - otherMean;

150

151 nom += valA * valB;

152 denom_1 += valA;

153 denom_2 += valB;

154 }

155 selectedItems.close();

156 double res = nom / Math.sqrt(Math.pow(denom_1, 2) * Math.pow(denom_2, 2));

157 log.debug("Res: " + res);

158 //If no items in intersection or union, the weight is set to null:

159 return res;

160 }

161

162 public String toString() {

163 String itemSelMeth = itemSelectionMethod == INTERSECT ? "INTERSECTION" : "UNION";

164 String wfString = super.toString();

165

166 return "Correlation; item selection method: " + itemSelMeth + "," + wfString;

167 }

168

169 }

B.7 statfind.common.cf.CollaborativeFilter class source

code

1 /*

2 * User: olvesh

3 * Date: 07.sep.02

4 * Time: 18:13:20

5 */

6 package statfind.common.cf;

B.7. statfind.common.cf.CollaborativeFilter class source code 101

7

8 import org.apache.log4j.Logger;

9 import statfind.common.cf.functions.WeightFunction;

10

11 import java.sql.SQLException;

12

13

14 /**

15 * Class with implementations of CollaborativeFiltering techniques.

16 * This is the main class for performing vote predictions. The function used

17 * is pluggable, according to the interface <code>WeightFunction</code>.

18 */

19 public class CollaborativeFilter {

20 protected static Logger log = Logger.getLogger(CollaborativeFilter.class);

21

22 protected UserItemMatrix matrix;

23 protected WeightFunction weightFunction;

24

25 /**

26 * The constructor, makes a CollaborativeFilter

27 */

28 public CollaborativeFilter() throws SQLException {

29 this.matrix = UserItemMatrix.getInstance();

30 }

31

32 /**

33 * Predicts the vote a user would give an item.

34 *

35 * @param activeUser The user we want the prediction for

36 * @param activeItem The item in which this prediction is done for

37 * @return the predicted vote for the given user/item combination

38 * @throws java.sql.SQLException

39 */

40 public Vote predictVote(User activeUser, Item activeItem) throws SQLException {

41 //Calculate mean vote for active user:

42 double meanForActive = matrix.meanUserVote(activeUser);

43

44 //Retrieve from database the users who have performed a vote

45 UserCollection usersWithWeights = matrix.usersWithWeights();

46

47 double sumWeights = 0d, currentWeight, absWeights = 0d;

48 while (usersWithWeights.hasNext()) {

49 User otherUser = (User) usersWithWeights.next();

50

51 //Make sure we don’t compare this user with her/himself:

102 Chapter B. Software documenation

52 if (!otherUser.equals(activeUser)) {

53 currentWeight = weightFunction.doWeight(activeUser, otherUser) *

54 (matrix.getVote(otherUser, activeItem).getVote() -

55 matrix.meanUserVote(otherUser));

56

57 absWeights += Math.abs(currentWeight);

58 sumWeights += currentWeight;

59 }

60 }

61 //Close the underlying database collection

62 usersWithWeights.close();

63 log.debug("Un-normalized / Normalized: " + sumWeights + " / " + (sumWeights / absWeights));

64 //Return new vote based on calculatoin above

65 return new Vote(activeUser, activeItem, meanForActive + (sumWeights / (absWeights)));

66 }

67

68

69 public void setWeightFunction(WeightFunction wf) {

70 weightFunction = wf;

71 }

72 }

B.8 statfind.common.cf.User class source code

1 /*

2 * Created by IntelliJ IDEA.

3 * User: olvesh

4 * Date: 07.sep.02

5 * Time: 18:14:27

6 * To change template for new interface use

7 * Code Style | Class Templates options (Tools | IDE Options).

8 */

9 package statfind.common.cf;

10

11 public class User implements Comparable {

12

13 private MeanVote meanVote;

14 private long lastUpdate;

15 private String id;

16

17

18 public User(String id) {

19 this(id, System.currentTimeMillis());

B.8. statfind.common.cf.User class source code 103

20 }

21

22 public User(String id, long lastUpdate) {

23 this.id = id;

24 this.lastUpdate = lastUpdate;

25 meanVote = new MeanVote();

26 }

27

28 public String getId() {

29 return id;

30 }

31

32

33 public MeanVote getMeanVote() {

34 return meanVote;

35 }

36

37 class MeanVote {

38 private double mean;

39 private long meanTimeStamp;

40

41 private MeanVote() {

42 mean = 0d;

43 meanTimeStamp = 0;

44 }

45

46

47 /**

48 * If the mean value is new, or changed, this method will update the timestamp.

49 * @param d

50 */

51 public void set(double d) {

52 meanTimeStamp = System.currentTimeMillis();

53 set(d, meanTimeStamp);

54 }

55

56 public void set(double d, long stamp) {

57 mean = d;

58 meanTimeStamp = stamp;

59 }

60

61 public double get() {

62 return mean;

63 }

64

104 Chapter B. Software documenation

65 /**

66 * Is valid if users last action happened before this mean vote was calculated.

67 * @return

68 */

69 public boolean valid() {

70 return lastUpdate < meanTimeStamp;

71 }

72

73 public String toString() {

74 return String.valueOf(mean);

75 }

76 }

77

78 public String toString() {

79 StringBuffer sb = new StringBuffer();

80 // sb.append("id: ");

81 sb.append(id);

82 // sb.append(" - meanVote: ");

83 // sb.append(meanVote);

84 return sb.toString();

85 }

86

87 public boolean equals(Object o) {

88 if (this == o) return true;

89 if (!(o instanceof User)) return false;

90

91 final User user = (User) o;

92

93 if (!id.equals(user.id)) return false;

94

95 return true;

96 }

97

98 public int compareTo(Object o) {

99 return id.compareTo(o.toString());

100 }

101

102 public int hashCode() {

103 return id.hashCode();

104 }

105 }

106

B.9. statfind.common.cf.Item interface source code 105

B.9 statfind.common.cf.Item interface source code

1 /*

2 * User: olvesh

3 * Date: 07.sep.02

4 * Time: 18:14:33

5 */

6 package statfind.common.cf;

7

8 public interface Item extends Comparable {

9 String getId();

10 }

B.10 UserItemMatrix class source-code

1 /*

2 * Created by IntelliJ IDEA.

3 * User: olvesh

4 * Date: 07.sep.02

5 * Time: 18:29:17

6 * To change template for new class use

7 * Code Style | Class Templates options (Tools | IDE Options).

8 */

9 package statfind.common.cf;

10

11

12 import statfind.common.StatfindClient;

13

14 import java.sql.Connection;

15 import java.sql.PreparedStatement;

16 import java.sql.ResultSet;

17 import java.sql.SQLException;

18 import java.util.HashMap;

19

20 public class UserItemMatrix {

21

22 private static UserItemMatrix instance;

23 private static byte[] monitor = new byte[0];

24

25 private PreparedStatement allItems, allUsers, itemsByUser,

26 usersWithWeights, userItemIntersect, userItemUnion;

27

28 private PreparedStatement userCount;

29 private PreparedStatement sumVotesForItem;

106 Chapter B. Software documenation

30 private final HashMap voteMap;

31 private int numUsers = Integer.MIN_VALUE;

32 private final HashMap itemsByUserMap;

33 private UserCollection userCollection;

34 private final HashMap itemVoteMap;

35 private ItemCollection itemCollection;

36 private UserCollection userCollectionWithWeights;

37 private final HashMap userItemIntersectMap;

38 private final HashMap userItemUnionMap;

39

40

41 private UserItemMatrix() throws SQLException {

42 initStatements();

43 voteMap = new HashMap();

44 itemsByUserMap = new HashMap();

45 itemVoteMap = new HashMap();

46 userItemIntersectMap = new HashMap();

47 userItemUnionMap = new HashMap();

48 }

49

50 private void initStatements() throws SQLException {

51 Connection c = StatfindClient.instance().getStatfindConnection();

52 String sql;

53

54 sql = "SELECT * FROM user;";

55 allUsers = c.prepareStatement(sql,

56 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

57

58 sql = "SELECT DISTINCT var_id FROM variable;";

59 allItems = c.prepareStatement(sql,

60 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

61

62 sql = "SELECT var_id FROM variable WHERE user = ?;";

63 itemsByUser = c.prepareStatement(sql,

64 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);

65

66 sql = "SELECT DISTINCT user.userName AS userName, MAX(var.timestamp) " +

67 "AS lastVarUpdate, user.meanVote, user.meanVoteTS FROM variable " +

68 "AS var, user WHERE user.userName = var.user GROUP BY user.userName;";

69 usersWithWeights = c.prepareStatement(sql,

70 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

71

72 sql = "SELECT v1.var_id FROM variable as v1, variable as v2 " +

73 "WHERE v1.var_id = v2.var_id AND v1.user = ? AND v2.user = ?;";

74 userItemIntersect = c.prepareStatement(sql,

B.10. UserItemMatrix class source-code 107

75 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);

76

77 sql = "(SELECT var_id FROM variable WHERE user = ?) " +

78 "UNION (SELECT var_id FROM variable WHERE user = ?);";

79 userItemUnion = c.prepareStatement(sql,

80 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);

81

82 sql = "SELECT COUNT(userName) AS userCount FROM user;";

83 userCount = c.prepareStatement(sql,

84 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);

85

86 sql = "SELECT SUM(viewCount) as sumVotes FROM variable WHERE var_id = ?;";

87 sumVotesForItem = c.prepareStatement(sql,

88 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

89 }

90

91

92 public static UserItemMatrix getInstance() throws SQLException {

93 synchronized (monitor) {

94 if (instance == null) {

95 instance = new UserItemMatrix();

96 }

97 return instance;

98 }

99 }

100

101

102 /**

103 * Calculates the mean user vote for a selected user. If the value is already in the db,

104 * and is valid, return that one, otherwise; calculate the mean user vote by traversing

105 * all votes for the specified user, and calculate the mean vote.

106 *

107 * @param aUser the user to get the mean vote from

108 * @return the mean vote.

109 */

110 public double meanUserVote(User aUser) throws SQLException {

111 double meanVote;

112 //If the value is already calculated:

113 if (aUser.getMeanVote().valid()) {

114 return aUser.getMeanVote().get();

115 } else {

116 meanVote = StatfindClient.instance().getSumViewCount(aUser) /

117 Math.abs(StatfindClient.instance().getSumItems(aUser));

118 if (Double.isNaN(meanVote)) {

119 meanVote = 0d;

108 Chapter B. Software documenation

120 }

121 //Set the new meanVote in the used object:

122 aUser.getMeanVote().set(meanVote);

123 }

124 return meanVote;

125 }

126

127

128 public Vote getVote(User u, Item i) throws SQLException {

129 Vote v = null;

130 String key = u.getId() + i.getId();

131 if (voteMap.containsKey(key)) {

132 v = (Vote) voteMap.get(key);

133 } else {

134 v = new Vote(u, i);

135 voteMap.put(key, v);

136 }

137 return v;

138 }

139

140 public int getViewCount(String user, String item) throws SQLException {

141 return StatfindClient.instance().getViewCount(item, user);

142 }

143

144 /**

145 *Filters out the items that the supplied user has voted for.

146 */

147 public ItemCollection itemsVotedForByUser(User aUser) throws SQLException {

148 itemsByUser.setString(1, aUser.getId());

149

150 ItemCollection retVal;

151 if (itemsByUserMap.containsKey(aUser)) {

152 retVal = (ItemCollection) itemsByUserMap.get(aUser);

153 retVal.reset();

154 } else {

155 retVal = new ItemCollection(itemsByUser, true);

156 itemsByUserMap.put(aUser, retVal);

157 }

158 return retVal;

159 }

160

161 public UserCollection getUsers() throws SQLException {

162 if (userCollection == null)

163 userCollection = new UserCollection(allUsers, true);

164 else

B.10. UserItemMatrix class source-code 109

165 userCollection.reset();

166 return userCollection;

167 }

168

169 public int getUserCount() throws SQLException {

170 if (numUsers == Integer.MIN_VALUE) {

171 ResultSet rs = userCount.executeQuery();

172 rs.next();

173 numUsers = rs.getInt(1);

174 }

175 return numUsers;

176 }

177

178 public int getVoteCountForItem(final Item item) throws SQLException {

179 int sumVotes = 0;

180 if (itemVoteMap.containsKey(item)) {

181 sumVotes = ((Integer) itemVoteMap.get(item)).intValue();

182 } else {

183 sumVotesForItem.setString(1, item.getId());

184 ResultSet rs = sumVotesForItem.executeQuery();

185 if (rs.next()) {

186 sumVotes = rs.getInt("sumVotes");

187 }

188 itemVoteMap.put(item, new Integer(sumVotes));

189 }

190 return sumVotes;

191 }

192

193 public ItemCollection getItems() throws SQLException {

194 if (itemCollection == null)

195 itemCollection = new ItemCollection(allItems, true);

196 else

197 itemCollection.reset();

198 return itemCollection;

199 }

200

201 public UserCollection usersWithWeights() throws SQLException {

202 if (userCollectionWithWeights == null)

203 userCollectionWithWeights = new UserCollection(usersWithWeights, true);

204 else

205 userCollectionWithWeights.reset();

206 return userCollectionWithWeights;

207 }

208

209 public ItemCollection userItemIntersect(User a, User b) throws SQLException {

110 Chapter B. Software documenation

210 String key = a.getId() + b.getId();

211 ItemCollection retVal;

212

213 if (userItemIntersectMap.containsKey(key)) {

214 retVal = (ItemCollection) userItemIntersectMap.get(key);

215 retVal.reset();

216 } else {

217 userItemIntersect.setString(1, a.getId());

218 userItemIntersect.setString(2, b.getId());

219 retVal = new ItemCollection(userItemIntersect, true);

220 userItemIntersectMap.put(key, retVal);

221 }

222 return retVal;

223 }

224

225 public ItemCollection userItemUnion(User a, User b) throws SQLException {

226 String key = a.getId() + b.getId();

227 ItemCollection retVal;

228 if (userItemUnionMap.containsKey(key)) {

229 retVal = (ItemCollection) userItemUnionMap.get(key);

230 retVal.reset();

231 } else {

232 userItemUnion.setString(1, a.getId());

233 userItemUnion.setString(2, b.getId());

234 retVal = new ItemCollection(userItemUnion, true);

235 userItemUnionMap.put(key, retVal);

236 }

237 return retVal;

238 }

239

240 public void close() throws SQLException {

241 synchronized (monitor) {

242 allItems.close();

243 allUsers.close();

244 itemsByUser.close();

245 usersWithWeights.close();

246 userItemIntersect.close();

247 userItemUnion.close();

248 instance = null;

249 }

250 }

251

252

253 }

B.11. statfind.common.StatfindClient class source code 111

B.11 statfind.common.StatfindClient class source

code

1 package statfind.common;

2

3 /**

4 * User: olvesh

5 * Date: Jan 26, 2003

6 * Time: 5:18:45 PM

7 */

8

9 import org.apache.log4j.Logger;

10 import statfind.common.cf.User;

11 import statfind.common.cf.functions.WeightFunction;

12

13 import java.io.IOException;

14 import java.net.MalformedURLException;

15 import java.rmi.NotBoundException;

16 import java.sql.*;

17 import java.util.Properties;

18 import java.util.Vector;

19

20 public class StatfindClient {

21 protected static Logger log = Logger.getLogger(StatfindClient.class);

22 protected Properties props;

23 private Vector users;

24 protected Connection statfindConnection;

25 protected Connection nesstarConnection;

26 private PreparedStatement questTextStatement;

27 private PreparedStatement viewCountStatement;

28 private PreparedStatement highestViewCountStatement;

29 private PreparedStatement viewSumCountStatement;

30

31 private static StatfindClient instance = null;

32

33 protected StatfindClient() throws SQLException, NotBoundException, IOException,

34 IllegalAccessException, MalformedURLException, ClassNotFoundException,

35 InstantiationException {

36 init();

37

38 }

39

40 public static synchronized StatfindClient instance() {

41 if (instance == null) {

112 Chapter B. Software documenation

42 try {

43 instance = new StatfindClient();

44 } catch (ClassNotFoundException e) {

45 //log.error("", e);

46 throw new StatfindRuntimeException(e);

47 } catch (InstantiationException e) {

48 //log.error("", e);

49 throw new StatfindRuntimeException(e);

50 } catch (SQLException e) {

51 //log.error("", e);

52 throw new StatfindRuntimeException(e);

53 } catch (IllegalAccessException e) {

54 //log.error("", e);

55 throw new StatfindRuntimeException(e);

56 } catch (NotBoundException e) {

57 log.error("", e);

58 } catch (MalformedURLException e) {

59 log.error("", e);

60 } catch (IOException e) {

61 log.error("", e);

62 }

63 }

64 return instance;

65 }

66

67

68 protected void init() throws InstantiationException, IllegalAccessException,

69 ClassNotFoundException, SQLException, IOException, NotBoundException,

70 MalformedURLException {

71 props = new Properties(CommonProperties.getCommonDefaults());

72 users = new UserSelector(props).getDbUsers();

73

74 String driver = props.getProperty("statfind-db.jdbcdriver");

75 String dsn = props.getProperty("statfind-db.url");

76 String usr = props.getProperty("statfind-db.user");

77 String pwd = props.getProperty("statfind-db.pass");

78

79 Class.forName(driver).newInstance();

80 statfindConnection = DriverManager.getConnection(dsn, usr, pwd);

81

82 driver = props.getProperty("nesstar-db.jdbcdriver");

83 dsn = props.getProperty("nesstar-db.url");

84 usr = props.getProperty("nesstar-db.user");

85 pwd = props.getProperty("nesstar-db.pass");

86

B.11. statfind.common.StatfindClient class source code 113

87 Class.forName(driver).newInstance();

88 nesstarConnection = DriverManager.getConnection(dsn, usr, pwd);

89 }

90

91 public Connection getStatfindConnection() {

92 return statfindConnection;

93 }

94

95 public Vector getUsers() {

96 return users;

97 }

98

99 private void initQuestTextStatement() throws SQLException {

100 if (questTextStatement != null)

101 return;

102

103 final String sql = "SELECT questionText FROM variableejb WHERE id = ?;";

104 //TO DO: Which fields needs to be CONCUR_UPDATABLE and which CONCUR_READ_ONLY??

105 questTextStatement = nesstarConnection.prepareStatement(sql,

106 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);

107

108 }

109

110 public String getQuestionText(Variable var) throws SQLException {

111 return getQuestionText(var.getId());

112 }

113

114 public String getQuestionText(String varId) throws SQLException {

115 initQuestTextStatement();

116 String text = null;

117 questTextStatement.clearParameters();

118 questTextStatement.setString(1, varId);

119 if (questTextStatement.execute()) {

120 ResultSet rs = questTextStatement.getResultSet();

121 if (rs.next()) {

122 text = rs.getString("questionText");

123 }

124 rs.close();

125 }

126 return text;

127 }

128

129 public double getSumViewCount(User aUser) throws SQLException {

130 initSumViewCountStatement();

131 int viewCount = 0;

114 Chapter B. Software documenation

132

133 viewSumCountStatement.setString(1, aUser.getId());

134

135 if (viewSumCountStatement.execute()) {

136 ResultSet rs = viewSumCountStatement.getResultSet();

137 if (rs.next()) {

138 viewCount = rs.getInt("totViewCount");

139 }

140 rs.close();

141 }

142 return viewCount;

143 }

144

145 public int getSumItems(User aUser) throws SQLException {

146 initSumViewCountStatement();

147 int sumItems = 0;

148

149 viewSumCountStatement.setString(1, aUser.getId());

150

151 if (viewSumCountStatement.execute()) {

152 ResultSet rs = viewSumCountStatement.getResultSet();

153 if (rs.next()) {

154 sumItems = rs.getInt("sumItems");

155 }

156 rs.close();

157 }

158 return sumItems;

159 }

160

161 private void initSumViewCountStatement() throws SQLException {

162 if (viewSumCountStatement != null)

163 return;

164 //TO DO: Which fields needs to be CONCUR_UPDATABLE and which CONCUR_READ_ONLY??

165 String sql = "SELECT SUM(viewCount) AS totViewCount, COUNT(var_id) AS sumItems " +

166 "FROM variable WHERE user = ?;";

167 viewSumCountStatement = statfindConnection.prepareStatement(sql,

168 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

169

170 }

171

172 private void initViewCountStatement() throws SQLException {

173 if (viewCountStatement != null)

174 return;

175

176 //TO DO: Which fields needs to be CONCUR_UPDATABLE and which CONCUR_READ_ONLY??

B.11. statfind.common.StatfindClient class source code 115

177 String sql = "SELECT viewCount FROM variable WHERE user = ? AND var_id = ?;";

178 viewCountStatement = statfindConnection.prepareStatement(sql,

179 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

180 }

181

182

183 public int getViewCount(String varId, String user) throws SQLException {

184 initViewCountStatement();

185 // log.debug("User: "+user);

186 // log.debug("Var : "+varId);

187 int viewCount = (int) WeightFunction.DEFAULT_VOTE;

188 viewCountStatement.setString(1, user);

189 viewCountStatement.setString(2, varId);

190

191 if (viewCountStatement.execute()) {

192 ResultSet rs = viewCountStatement.getResultSet();

193 if (rs.next()) {

194 viewCount = rs.getInt("viewCount");

195 }

196 rs.close();

197 }

198 return viewCount;

199 }

200

201 private void initHighestViewCount() throws SQLException {

202 if (highestViewCountStatement != null)

203 return;

204 //TO DO: Which fields needs to be CONCUR_UPDATABLE and which CONCUR_READ_ONLY??

205 String sql = "SELECT MAX(viewCount) AS maxViewCount FROM variable WHERE user = ?;";

206 highestViewCountStatement = statfindConnection.prepareStatement(sql,

207 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

208

209 }

210

211 public int getHighestViewCount(String user) throws SQLException {

212 initHighestViewCount();

213

214 int viewCount = 0;

215 highestViewCountStatement.clearParameters();

216 highestViewCountStatement.setString(1, user);

217

218 if (highestViewCountStatement.execute()) {

219 ResultSet rs = highestViewCountStatement.getResultSet();

220 if (rs.next()) {

221 viewCount = rs.getInt("maxViewCount");

116 Chapter B. Software documenation

222 }

223 rs.close();

224 }

225 return viewCount;

226 }

227

228 }

B.12 statfind.common.ir.StatfindIRClient class source

code

1 package statfind.common.ir;

2

3 /**

4 * User: olvesh

5 * Date: Jan 18, 2003

6 * Time: 3:50:49 PM

7 */

8

9 import org.apache.log4j.Logger;

10 import org.apache.lucene.analysis.standard.StandardAnalyzer;

11 import org.apache.lucene.document.Document;

12 import org.apache.lucene.queryParser.ParseException;

13 import org.apache.lucene.queryParser.QueryParser;

14 import org.apache.lucene.search.*;

15 import statfind.common.StatfindClient;

16 import statfind.common.Variable;

17 import statfind.common.cf.CollaborativeFilter;

18 import statfind.common.cf.User;

19 import statfind.common.cf.UserItemMatrix;

20 import statfind.common.cf.Vote;

21 import statfind.common.cf.functions.WeightFunction;

22

23 import java.io.IOException;

24 import java.net.MalformedURLException;

25 import java.rmi.NotBoundException;

26 import java.rmi.registry.LocateRegistry;

27 import java.sql.PreparedStatement;

28 import java.sql.ResultSet;

29 import java.sql.SQLException;

30 import java.util.Collection;

31 import java.util.Iterator;

B.12. statfind.common.ir.StatfindIRClient class source code 117

32 import java.util.SortedSet;

33 import java.util.TreeSet;

34

35

36 public class StatfindIRClient extends StatfindClient {

37 protected static Logger log = Logger.getLogger(StatfindIRClient.class);

38

39 private static StatfindIRClient instance;

40 public static final String VAR_ID = "id";

41 public static final String LABEL = "label";

42 public static final String QUEST_TEXT = "questionText";

43 private QueryParser queryParser;

44 private Searcher luceneIndex;

45 private PreparedStatement getVarIDStatement;

46 private CollaborativeFilter collFilter;

47

48 private StatfindIRClient() throws ClassNotFoundException, IllegalAccessException,

49 InstantiationException, SQLException, IOException, NotBoundException,

50 MalformedURLException {

51 init();

52 queryParser = new QueryParser(QUEST_TEXT, new StandardAnalyzer());

53 queryParser.setOperator(QueryParser.DEFAULT_OPERATOR_OR);

54 collFilter = new CollaborativeFilter();

55 }

56

57

58 protected void init() throws InstantiationException, IllegalAccessException,

59 ClassNotFoundException, SQLException, IOException, NotBoundException,

60 MalformedURLException {

61 super.init();

62

63 Searchable s[] = {(Searchable)

64 LocateRegistry.getRegistry("olvesh.no-ip.org",

65 Integer.parseInt(props.getProperty("rmiPort"))).

66 lookup(props.getProperty("luceneRmiAddress"))};

67 //This forced the server to be on the same machine as the client:

68 // Searchable s = (Searchable)

69 // LocateRegistry.getRegistry(Integer.parseInt(props.getProperty("rmiPort"))).

70 // lookup(props.getProperty("luceneRmiAddress"));

71 // luceneIndex = new IndexSearcher("D:/dev/statfindRoot2/statfind/luceneIndex");

72 luceneIndex = new MultiSearcher(s);

73 }

74

75 public static synchronized StatfindIRClient getInstance()

76 throws ClassNotFoundException, InstantiationException, SQLException,

118 Chapter B. Software documenation

77 IllegalAccessException, IOException, NotBoundException, MalformedURLException {

78 if (instance == null) {

79 instance = new StatfindIRClient();

80 }

81 return instance;

82 }

83

84

85 public Collection getSimilarVars(String search, User user, WeightFunction wf)

86 throws SQLException, ParseException, IOException {

87 Query query = queryParser.parse(search);

88 return getSimilarVars(query, null, user, wf);

89 }

90

91 public Collection getSimilarVars(Variable currentVar, User user, WeightFunction wf)

92 throws SQLException, ParseException, IOException {

93 Query query = queryParser.parse(getQuestionText(currentVar));

94 return getSimilarVars(query, currentVar, user, wf);

95 }

96

97 /**

98 * Fetches an array list of variables similar to the one given as argument, the list is sorted

99 * descending by similarity.

100 * @param currentVar

101 * @return

102 * @throws java.sql.SQLException

103 */

104 public Collection getSimilarVars(Query query, Variable currentVar, User user, WeightFunction wf)

105 throws SQLException, ParseException, IOException {

106 log.info("");

107 if (user != null && wf != null) {

108 collFilter.setWeightFunction(wf);

109 log.info(wf);

110 }

111 SortedSet similarVars = new TreeSet();

112 Variable similarVar;

113

114 boolean sameVarFound = false;

115 // questText = questText +" id: NOT "+varId;

116

117

118 Hits hits = luceneIndex.search(query);

119

120 if (log.isDebugEnabled()) {

121 log.debug("StatfindIRClient.getSimilarVars");

B.12. statfind.common.ir.StatfindIRClient class source code 119

122 // log.debug(getQuestionText(currentVar));

123 log.debug("Query: " + query);

124 log.debug("Num hits: " + hits.length());

125

126 log.debug("Current Var: " + (currentVar != null ? currentVar.getId() : "null"));

127 if (user != null) {

128 log.debug("User : " + user.getId());

129 log.debug("Mean vote : " + UserItemMatrix.getInstance().meanUserVote(user));

130 }

131 }

132

133 for (int i = 0; i < hits.length(); i++) {

134 if (hits.score(i) < Variable.SIGNIFICANT_VALUE) {

135 if (log.isDebugEnabled()) {

136 log.debug("Breaking loading of hits due to value less than SIGNIFICANT");

137 log.debug("Listed: " + i + " remaining: " + (hits.length() - i));

138 }

139 break;//Now the rest of the hits are below the significant value, ignore them

140 }

141 Document doc = hits.doc(i);

142 similarVar = new Variable(doc.getField(VAR_ID).stringValue());

143 similarVar.setSimilarity(hits.score(i));

144

145

146 if (currentVar != null && !sameVarFound &&

147 currentVar.getId().equalsIgnoreCase(similarVar.getId())) {

148 sameVarFound = true;

149 } else {

150 if (user != null && wf != null) {

151 double oldSim = similarVar.getSimilarity();

152 Vote predictedVote = collFilter.predictVote(user, similarVar);

153 similarVar.updateSimilarity(predictedVote);

154 similarVar.setPredictedValue(predictedVote.getVote());

155

156 if (log.isDebugEnabled()) {

157 log.debug("var : " + similarVar.getId());

158 log.debug("vote : " + predictedVote.getVote());

159 log.debug("sim : " + oldSim);

160 log.debug("new sim: " + similarVar.getSimilarity());

161 }

162

163 }

164 similarVars.add(similarVar);

165 }

166 }

120 Chapter B. Software documenation

167

168 //Provide a printout of the variables in descending similarity:

169 Iterator i = similarVars.iterator();

170 while (i.hasNext()) {

171 log.info(i.next());

172 }

173

174 return similarVars;

175 }

176

177 public Variable getVariable(String id) throws SQLException {

178 initGetVarID();

179 getVarIDStatement.setString(1, id);

180 ResultSet rs = getVarIDStatement.executeQuery();

181 rs.next();

182 Variable v = new Variable(rs.getString(1));

183 return v;

184 }

185

186 private void initGetVarID() throws SQLException {

187 if (getVarIDStatement == null) {

188 String sql = "SELECT id FROM variableejb WHERE id = ?;";

189 getVarIDStatement = nesstarConnection.prepareStatement(sql,

190 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY);

191 }

192 }

193

194 }

B.13 Property files used

##

#statfind-common.properties

#Default properties common to all.

server.port = 2380

statfind-db.jdbcdriver = org.gjt.mm.mysql.Driver

statfind-db.url = jdbc:mysql://olvesh.no-ip.org:3306/statfind

#Use the same user/pass as in statfind-foreign.properties, as these can easily be overridden

statfind-db.user = statfindForeign

statfind-db.pass = findstatForeign

nesstar-db.jdbcdriver = org.gjt.mm.mysql.Driver

B.13. Property files used 121

nesstar-db.url = jdbc:mysql://olvesh.no-ip.org:3306/nesstar

nesstar-db.user = statfind

nesstar-db.pass = findstat

luceneRmiAddress = //olvesh.no-ip.org:1098/LuceneIndex

rmiPort = 1098

##

#statfind-foreign.properties

host = olvesh.no-ip.org

retry = 3

variableResultPreTag = /obj/fVariable/

#Use the same user/pass as in statfind-common.properties,

#as these can easily be overridden

statfind-db.user = statfindForeign

statfind-db.pass = findstatForeign

##

#statfind-server.properties

shutdown.port = 2379

retry = 3

statfind-db.user = statfind

statfind-db.pass = findstat

lucene.index = D:/dev/statfindRoot2/statfind/luceneIndex

Appendix C

User to MD5 keys

Following is a list of users, and what MD5 key belong to them. This was replaced

throughout the thesis for readability purposes.

User A 002f48e213c339f5d1d839185dcc8e7f

User B 128c7e758caee08b656e99149f36381d

User C 12b5a0c85b1e58c828d5c38efe7734fa

User D 20f824bc807d2b7ebbf0714e2519111f

User E a1c8626566f2ae8e421dbfad65c46ff6

User F c7218260ef2b966ab0454e07c55cf4e9

User G e110b01d9000b60172fc177e634d2530

123

	1 Introduction
	2 The Problem Domain
	2.1 Nesstar - the Case Application
	2.1.1 The Problem
	2.1.2 Solving the Problem

	3 Theory and Method
	3.1 Information Retrieval
	3.1.1 Stopwords
	3.1.2 Similarity Models and Global Analysis
	3.1.3 Inverted Files

	3.2 Case Based Reasoning
	3.3 Collaborative Filtering and Recommender Systems
	3.3.1 Algorithms for Collaborative Filtering

	3.4 Methodological Approach
	3.5 Summary

	4 From theory to practice
	4.1 The StatFind Framework
	4.1.1 Choice of Learning Method

	4.2 The Information Retrieval System
	4.3 The Collaborative Filtering System
	4.3.1 Vote Prediction

	4.4 Integrating CF and IR

	5 Implementation issues
	5.1 Constructing StatFind
	5.2 The StatFind Feeder
	5.3 The StatFind Server
	5.3.1 Jakarta/Lucene

	5.4 Clients Interfacing StatFind
	5.5 Notes on Development Tools

	6 Evaluation and findings
	6.1 StatFind Evaluation
	6.1.1 Test Set-up and Data Quality
	6.1.2 Search Evaluation
	6.1.3 Evaluating Search for politics
	6.1.4 Evaluating Search for politics, Changed Usage Base
	6.1.5 Evaluating Search for id nsd0064e_V14
	6.1.6 Evaluating Search for id nsd0005e_V83

	6.2 Evaluation Comments

	7 Conclusion
	7.1 Further Work

	A Extended printout of search results
	A.1 Search for ``politics''
	A.2 Search for id nsd0064e_V14
	A.3 Search for id nsd0005e_V83

	B Software documenation
	B.1 statfind.foreign.StatfindFeeder class source code
	B.2 statfind.common.util.SleepyQueue class source code
	B.3 statfind.common.CompletedOperation class source code
	B.4 statfind.common.cf.functions.WeightFunction class source code
	B.5 statfind.common.cf.functions.VectorSimilarity class source code
	B.6 statfind.common.cf.functions.Correlation class source code
	B.7 statfind.common.cf.CollaborativeFilter class source code
	B.8 statfind.common.cf.User class source code
	B.9 statfind.common.cf.Item interface source code
	B.10 UserItemMatrix class source-code
	B.11 statfind.common.StatfindClient class source code
	B.12 statfind.common.ir.StatfindIRClient class source code
	B.13 Property files used

	C User to MD5 keys

