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 I 

ABSTRACT 
 

The mid-Jurassic Garn Formation in the Halten Terrace area, Mid-Norway Continental Shelf, 

has been studied on the basis of ~500 m of well-core samples from 9 selected wells, geophysical 

wireline logs from nearly 30 wide-spread wells and two selected seismic cross-sections. The 

aim of this sedimentological study was to improve the existing general understanding of the 

Garn Fm. sedimentary environment and also to assess the role of contemporaneous fault 

tectonics in its deposition. 

The Garn Formation consists of sandstones, but varies laterally in thickness and only 

locally reaches >100 m. On the basis of detailed sedimentological analysis, the following facies 

associations are recognized as the main components of the Garn Fm.: deposits of tidal sand 

ridges (longitudinal tidal bars), deposits of sheltered (heavily bioturbated) and non-sheltered 

(little- or non-bioturbated) inter-ridge swales, deposits of shoal-water subtidal sandflats and 

subordinate deposits of wave-worked littoral shoals. Tidal sand-ridge deposits volumetrically 

predominate in the studied well-core profiles. The study thus supports the palaeogeographic 

notion of the mid-Jurassic Halten Terrace being a tidally-dominated seaway linking the Boreal 

Ocean to the north with the Tethys Ocean to the south.  

The present study also supports the notion that the mid-Jurassic sedimentation in the 

Halten Terrace area was controlled by active extensional fault tectonics, which bathymetrically 

compartmentalized the area into an array of NE-trending incipient grabens and half-grabens. 

The resulting topographic configuration is thought to have greatly enhanced the action of tidal 

currents and controlled spatial sand dispersal. 

The study confirms further the general notion that the Garn Formation is a transgressive 

succession composed of a transgressive parasequence set. The thickness and number of the 

vertically stacked transgressive to normal-regressive parasequences appears to vary laterally 

across the Halten Terrace, depending on the local fault activity. Only 3 to 5 transgressive–

regressive parasequences, ~7–58 m thick, have been recognized in the main axial zone of the 

Halten Terrace seaway, but up to 16 thinner coeval parasequences were recognized at the outer 

(NW) margin of the Halten Terrace. The marginal flank of the synclinal Halten seaway was 

apparently much more sensitive to the interplay of bathymetric changes and pulses of lateral 

sand supply.  

The study as a whole considerably improves our general understanding of the origin of 

the Garn Fm. and also bears important implications for this formation’s geo-model as a 

petroleum reservoir. 
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1 INTRODUCTION 
 

This study in sedimentary geology concerns the Garn Formation (Bajocian–Bathonian) of the 

Middle Jurassic Fangst Group in the Halten Terrace area, Mid-Norway Continental Shelf, with 

a regional focus on the formation’s depositional environments and possible tectonic control on 

its sedimentation. The Halten Terrace, as defined by Dalland et al. (1988), is a rhomboidal-

shaped terrace extending between 64°N and 65°30’N as a major structural element of the Mid-

Norway Continental Shelf. It is bordered by the Trøndelag Platform to the east and by the 

Vøring and Møre basins to the west and southwest. Well cores and geophysical wireline well-

logs from the Ragnfrid, Tyrihans, Fogelberg, Åsgard/Smørbukk South, Yttergryta fields and a 

structure southeast of the Ragnfrid discovery (Fig. 1.1) have been used to conduct this 

sedimentological study. Two regional seismic cross-sections oriented W–E and NW–SE have 

also been interpreted to aid the results derived from the sedimentological facies analysis. 

 

 
Figure 1.1: Location map of the main oil/gas fields and prospects in the Halten Terrace. The blue colour indicates 
fields/prospects where well cores and wireline logs have been used in this study, while green colour indicates other major 
fields/prospects. The yellow colour on the right indicates the Norwegian shoreline. Modified from NPD (2017). 

 

The Halten Terrace is a highly block-faulted structural element, bounded to the east and 

northeast by the Vingleia and Bremstein fault complexes and to the west and southwest by the 

Klakk Fault Complex. Main petroleum reservoirs in the Halten Terrace (Fig. 1.1) are in the 

Early to Middle Jurassic siliciclastic succession deposited in sedimentary environments ranging 
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from fluvial/paralic to shallow marine (Dalland et al., 1988; Swiecicki et al., 1998), within a 

narrow epicontinental Jurassic seaway linking the Boreal Ocean to the north with the Tethyan 

Ocean to the south (Doré, 1991, 1992). 

The Garn Formation is a thick (>100 m) sandstone succession that contains 

hydrocarbons in several fields and is an attractive regional exploration target (Koch and Heum, 

1995). The sandstones have been studied by many authors, including Gjelberg et al. (1987), 

Dalland et al. (1988), Ehrenberg et al. (1992, 1998), Corfield and Sharp (2000), Chuhan et al. 

(2001), Corfield et al. (2001), Elfenbein et al. (2005), Marsh et al. (2010), Quin et al. (2010), 

Bell et al. (2014) and Messina et al. (2014). These deposits have long been recognized to be of 

shallow-marine origin, but the exact nature of their sedimentary environment is rather 

controversial. Over a quarter century (1987–2001), the sandstones were interpreted to represent 

fluvio-deltaic and shoreface environments – an opinion summarized also in the benchmark 

volume edited by Ramberg et al. (2013). However, a major role of tidal currents in the 

deposition of the Garn Fm. has been increasingly postulated in more recent publications 

(Corfield et al., 2001; Elfenbein et al., 2005; Quin et al., 2010; Messina et al., 2014). As pointed 

out and discussed by Messina et al. (2014) with respect to the Kristin Field, a tidal 

palaeoenvironmental interpretation would mean a different understanding of the geometry, 

facies architecture and primary heterogeneity of sandstone bodies – with major further 

implications for reservoir geo-models. 

 Another contentious issue is the impact of syndepositional tectonics on the spatial 

development and thickness distribution of the Garn Formation. Syndepositional fault activity 

has been recognized or postulated in several local, field-scale studies (e.g., Gjelberg et al., 1987; 

Dalland et al., 1988; Corfield and Sharp, 2000; Brekke et al., 2001; Quin et al., 2010; Messina 

et al., 2014). Messina et al. (2014) have suggested that the Halten Terrace at the time of the 

Garn Fm. sedimentation probably consisted of a complex array of NE-trending incipient 

grabens and half-grabens, whose bathymetric and structural configuration would have 

considerably enhanced the action of tidal currents and control of spatial sand dispersal. 

 The aim of the present study is to address these two crucial issues on a broader regional 

scale by contributing to a better understanding of the sedimentary environment of the Garn Fm. 

and by assessing whether the deposition of this sandstone formation was indeed governed by 

contemporaneous fault-block tectonics of the Halten Terrace.
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2 GEOLOGICAL SETTING 
 

2.1 Study area 

The study area for the present thesis is the Halten Terrace (Haltenbanken), located between 

64°N and 65°30’N on the Mid-Norway Continental Shelf (Fig. 2.1). Together with the 

Trøndelag Platform to the east, it forms the eastern margin of the Vøring Basin (Bell et al., 

2014). It is regarded as the most prolific hydrocarbon province in offshore mid-Norway, with 

more than a dozen gas and oil fields in the Early to Middle Jurassic siliciclastic sedimentary 

rocks (Spencer et al., 1993; Koch and Heum, 1995). These reservoir rocks were deposited in 

sedimentary environments ranging from fluvial/paralic to shallow marine (Dalland et al., 1988; 

Swiecicki et al., 1998), within a narrow epicontinental Jurassic seaway separating the Boreal 

and Tethyan oceans (Doré, 1991, 1992). 

 

 
Figure 2.1: Structural elements of Mid-Norway Continental Shelf. Geological profile A–A’ is shown in Fig. 2.2. Modified 
from Blystad et al. (1995). 

 

The Halten Terrace is a highly block-faulted terrace (Bell et al., 2014) bounded to the east and 

northeast by the Vingleia and Bremstein fault complexes, which separate the terrace from the 

largely unfaulted Trøndelag Platform, and to the west and southwest by the Klakk Fault 

Complex separating the terrace from the deep Vøring and Møre basins (Figs. 2.1 and 2.2). The 
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Halten Terrace has a rhombic shape, which is due to a complex pattern of normal faults of 

different ages, with the two dominating trends as N–S and NNE–SSW (Blystad et al., 1995). 

The terrace is about 80 km wide and 130 km long, with an area of around 10,400 km2 (Blystad 

et al., 1995; Marsh et al., 2010). The eastern part of the terrace is dominated by large, gently 

tilted fault blocks, whereas the western part is dominated by smaller and more rotated fault 

blocks (Koch and Heum, 1995). The Dønna Terrace is the continuation of the Halten Terrace 

to the north and is separated from the Trøndelag Platform by the Nordland Ridge (Fig. 2.1). 

 

 
Figure 2.2: Geological profile through Halten Terrace area. Note the highly block-faulted nature of the Halten Terrace. The 
transect line A–A’ is indicated in the map in Fig. 2.1. Modified from Blystad et al. (1995). 

 

The Jurassic deposits, particularly the mid-Jurassic sandy Garn Formation as the focus of this 

study, are present in all parts of the terrace except for the western part of the Sklinna Ridge 

along the Klakk Fault Complex, where the Jurassic is eroded and older strata generally dip 

steeply towards the east (Fig. 2.2; Blystad et al., 1995). The following review sub-chapter gives 

a brief tectonic history of the area that evolved into the present-day Mid-Norway Continental 
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Shelf, with a focus on the tectonic and stratigraphic development that took place prior to the 

Palaeogene continental breakup of Baltica and Laurentia and the opening of North Atlantic. 

 

2.2 Regional tectonic development 

Palaeozoic 

Located in the Norwegian Sea area, the Halten Terrace is part of a long and complex tectonic 

history starting with the closure of the Iapetus Ocean and culmination of the Caledonian 

orogeny in the Late Silurian to Early Devonian and the subsequent initiation of the orogen 

extensional collapse (Swiecicki et al., 1998; Braathen et al., 2002; Skilbrei et al., 2002).  

Complex sinistral fault movements occurred along the axis of the Arctic–North Atlantic 

Caledonides in the Mid-Devonian to Early Carboniferous (Bukovics et al., 1984; Swiecicki et 

al., 1998) because the plate collision was transpressional, rather than head-on in style. This 

movement therefore weakened a broad zone of the crust in the orogen, creating deep fractures 

that were later reactivated when wrenching ceased and was replaced by crustal extension in the 

Norwegian–Greenland Sea rift system in the Late Carboniferous (Bukovics et al., 1984). In the 

period of earliest Carboniferous to Late Permian, the region of the present-day North Atlantic 

was in the northern part of the Pangean supercontinent (Brekke et al., 2001). The extensional 

forces that started to act in the Mid-Devonian to Early Carboniferous would eventually lead to 

the opening of the Norwegian–Greenland Sea segment of the North Atlantic around the 

Palaeocene–Eocene transition (Doré et al., 1999).  

 According to Marsh et al. (2010), five regional episodes of tectonic extension had 

influenced the structural development of the Halten Terrace. These rifting events occurred in 

the Early to Middle Devonian, Carboniferous, Late Permian to Early Triassic, late Middle 

Jurassic to Early Cretaceous and Late Cretaceous to Early Eocene. However, other authors (e.g., 

Brekke et al., 2001) consider only three main rifting episodes for the tectonic evolution of the 

Norwegian Continental Shelf, which occurred from Early Carboniferous to Middle Triassic, 

Middle Jurassic to Early Cretaceous and Late Cretaceous to Early Palaeogene. 

The initiation of rifting in Carboniferous is evidenced by the great thicknesses of 

sediment, including the Early Permian red conglomerates, that accumulated in large half-

grabens in East Greenland (Surlyk, 1990). However, there is no similar compelling evidence 

on the Mid-Norway Continental Shelf, although the presence of clastic Upper Palaeozoic rocks 

was inferred in the early studies of the Trøndelag Platform (Ziegler, 1988).  
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Triassic 

At the beginning of Triassic, Norway was located in the sub-tropical zone between 25°N and 

40°N (Nøttvedt et al., 2008). At this time, Norway and Greenland were separated by a low-

lying basinal area around 300–500 km in length (Ramberg et al., 2013). The Triassic deposits 

in the present-day Norwegian Sea and East Greenland represent mainly continental alluvial 

environments with short-lived marine incursions from the north (Brekke et al., 2001). 

Syndepositional rift and strike-slip tectonics governed the accumulation of Triassic deposits in 

this basin (Ziegler, 1988). The area between Norway and Greenland was affected by thermal 

subsidence and accelerated crustal extension with a SW–NE rift trend (Bukovics et al., 1984; 

Ziegler, 1988; Martinius et al., 2001). The Late Permian to Early Triassic rifting event produced 

large rotational fault blocks in the Norwegian Sea basin, and the rift system eventually 

propagated southwards into the North Sea region where the Viking and Central grabens were 

formed (Ziegler, 1988). The Late Permian to Early Triassic rift episode marks the onset of the 

break-up of the Pangean supercontinent (Brekke et al., 2001). 

 According to Marsh et al. (2010), there is currently little consensus as to the possible 

duration and extent of Permo–Triassic rifting on the Halten Terrace. The rifting is most evident 

in onshore East Greenland, where a major phase of normal faulting ended in the Middle Permian 

and subsequent rotational block faulting occurred in the Early Triassic (Surlyk, 1990; Seidler 

et al., 2004). 

By the Late Triassic, Norway and the whole NW Europe came into the temperate 

climate zone (Ramberg et al., 2013), with the mid-Norway area located at approximately 45°N 

(Torsvik et al., 2002). Except for some minor uplifts and faulting along the Nordland Ridge and 

Frøya High, relative tectonic quiescence prevailed from the earliest Middle Triassic (Nøttvedt 

et al., 2008) until the Late Triassic (Ehrenberg et al., 1992). The bounding fault zones of the 

Halten Terrace might have started developing already at this stage (Gabrielsen and Robinson, 

1984) and syndepositional Triassic faulting has also been documented in the Trøndelag 

Platform (Bukovics et al., 1984). 

Early Jurassic 

A change in rift tectonics associated with incipient ocean-floor spreading in the Tethys to the 

southeast and in the proto-central Atlantic to the southwest occurred at the Triassic–Jurassic 

transition (Doré et al., 1999). Contemporaneous with the change in rift tectonics was a 

continuous sea-level rise through the Jurassic, leading to the development of a permanent 
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seaway between Greenland and Norway, connecting the Boreal Sea in the north with the Tethys 

Ocean in the south (Nøttvedt et al., 2008).  

The post-Triassic structural evolution in the northern part of the Halten Terrace was 

highly influenced by a thick succession of Triassic salts, which resulted in development of a 

complex range of fault and halokinetic structures (Pascoe et al., 1999; Corfield and Sharp, 2000; 

Marsh et al., 2010; Elliott et al., 2012). However, the Triassic salts were thin and little mobile 

in the southern part of the Halten Terrace, where basement-involving faults dominated the 

structural style of tectonic deformation and thereby resulted in the formation of a large, east-

dipping half-graben (Bell et al., 2014). 

Middle Jurassic 

By the Middle Jurassic, Norway had drifted to between 45°N and 60°N, but a change in the 

pole of rotation caused it to rotate slightly southwards, to between 40°N and 55°N (Nøttvedt et 

al., 2008). The rifting phase that commenced in the Middle Jurassic and extended into Early 

Cretaceous affected the interior parts of the Trøndelag Platform, which became subject to minor 

faulting by partial reactivation of older faults in the Vingleia Fault Complex and to a more 

intense rifting activity initiated along the platform edges in the future terrace areas of Halten 

and Dønna (Brekke, 2000). 
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Figure 2.3: Middle Jurassic schematic pre-drift reconstruction of the seaway between Norway and Greenland. Note the narrow 
seaways that existed on both sides of the inferred intra-rift high which likely contributed to supply of sediments to the Mid-
Jurassic basins. Slightly modified from Surlyk (2003). 

 

The Garn Formation is part of the Middle Jurassic Fangst Group that was deposited during the 

late Toarcian to early Bathonian. Evidence presented by Ehrenberg et al. (1998) might indicate 

that a large landmass west of the Halten Terrace was supplying sediment to the basin through 

most of the Jurassic. The source of local clastic supply might have been the leading edges of 

some of the major fault blocks that became uplifted by syndepositional faulting (Bukovics and 

Ziegler, 1985) or thermal doming of the Møre and Vøring areas, creating a western hinterland 

as postulated by Brekke et al. (2001). The basin of the Jameson Land area in East Greenland, 

which co-existed in the Early to Middle Jurassic, also shows evidence of sediment supply from 

the east and north (Surlyk, 1990), which supports the notion of an emergent landmass between 

Norway and Greenland (Fig. 2.3). Although Ehrenberg et al. (1992) have suggested a nearly 

total tectonic quiescence in the Halten Terrace area at that time, there is evidence of active 

rifting in East Greenland from the late Bajocian (Price and Whitham, 1997), and similar activity 
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in the Halten Terrace area has been inferred by Pedersen et al. (1989) for the Toarcian and 

confirmed by Corfield et al. (2001) for the time from early Bajocian onwards. 

Late Jurassic 

The rifting episode continued through the Late Jurassic, when faulting made the Halten and 

Dønna terraces evolve into individual structural elements. However, the terraces stayed close 

to the same elevation as the Trøndelag Platform to the east, relative to the basins to the west, 

throughout the Mid-Jurassic to Early Cretaceous rifting phase (Brekke, 2000). The Halten 

Terrace became subject to both E–W and NW–SE tectonic extension, which resulted in the 

formation of a conjugate system of normal faults trending NE–SW and NW–SE, in addition to 

the dominant faults trending N–S (Koch and Heum, 1995). A result of this faulting in the Late 

Jurassic was an expanded Upper Jurassic succession along the Vingleia, Bremstein and 

Revfallet fault complexes at the eastern margin of the terraces (Figs. 2.1 and 2.2; Brekke, 2000). 

Active rifting from the Late Jurassic to Early Cretaceous has been documented across the rift 

in East Greenland (Surlyk, 1990) and in the Mid-Norway Shelf (Swiecicki et al., 1998; Doré et 

al., 1999). 

Cretaceous to Pliocene 

In the Early Cretaceous, Norway was located approximately between 45°N and 60°N (Torsvik 

et al., 2002). During this time rifting in the Mid-Norway Shelf transferred from the Halten and 

Dønna terraces out into the Møre and Vøring basins to the west (Fig. 2.1; Nøttvedt et al., 2008). 

The rifts in the basins subsided rapidly while their flanks remained generally high (Bukovics 

and Ziegler, 1985). That an onset of sea-floor spreading in the North Atlantic was imminent 

can be seen from the fact that the crystalline crust in these basins was reduced by 20–25 % from 

its original thickness, leaving it only a few kilometres thick (Brekke, 2000; Skogseid et al., 

2000).  

 Several rifting events during Early Cretaceous have been identified in East Greenland 

(Whitham et al., 1999), but are less well documented in the Mid-Norway Shelf. The final 

separation of the Halten and Dønna terraces from the Trøndelag platform occurred in two rifting 

phases of subsidence: one in the Early Cretaceous and another in post-Cenomanian time, which 

is evident from the expansion of the Cretaceous succession across the Vingleia, Bremstein and 

Revfallet fault complexes that stretch along the boundary between the terraces and the platform 

(Brekke, 2000). The Late Cretaceous (post-Cenomanian) rifting was apparently more 

pronounced (Brekke et al., 1999). 
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 The onset of volcanic activity and seafloor spreading due to the opening of the North-

East Atlantic Ocean at the Palaeocene/Eocene transition marked the culmination of a ca. 340 

Ma history of complex extensional tectonics and sedimentary basin formation that started with 

the extensional collapse of the Caledonian orogen in the Late Silurian to Devonian time (Doré 

et al., 1999; Braathen et al., 2002; Skilbrei et al., 2002). 

 

2.3 The Halten Terrace Jurassic stratigraphy 

The Jurassic stratigraphy of the Mid-Norway Continental Shelf comprises the Early Jurassic 

Båt Group, Middle Jurassic Fangst Group and Middle to Late Jurassic Viking Group (Fig. 2.4; 

Dalland et al., 1988). Each group is subdivided into formations, where the Båt Group in 

ascending order consists of the Åre, Tilje, Ror and Tofte formations; the Fangst Group consists 

of the Ile, Not and Garn formations; and the Viking Group consists of the Melke, Rogn and 

Spekk formations.  

 The continuation of the northward drift of Baltica during Late Triassic led to an 

increasingly humid climate that brought about the change from ‘red-beds’ to ‘grey-beds’ 

sedimentary conditions (Swiecicki et al., 1998) and initiated an environmental trend that 

culminated in the deposition of the paralic, coal-bearing sediments of the Early Jurassic Åre 

Formation (Dalland et al., 1988). The Hettangian to early Pliensbachian Åre Fm. (Fig. 2.4) is 

composed of a series of sandstones, mudstones and coals interpreted to have been deposited in 

a fluvial to deltaic environment (Dalland et al., 1988). In terms of its facies, the Åre Fm. is 

divided into two informal units (Svela, 2001). The lower unit is entirely non-marine and 

consists of fluvial to lower delta-plain sediments with thick coal-bearing floodplain deposits. 

The upper unit is considered to have been deposited in coastal plain and delta-plain 

environments, but later in a marginal marine setting (Kjærefjord, 1999). 
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Figure 2.4: Lithostratigraphic chart of the Triassic and Jurassic of the Norwegian Sea. Slightly modified from NPD (2014). 

 

The Åre Formation is overlain by the Tilje Formation of late Pliensbachian to early 

Toarcian age (Fig. 2.4). This formation is highly heterolithic, composed of thinly interbedded 

mudstones, siltstones and fine-grained sandstones interpreted to have been deposited in a deltaic 

to shallow marine setting (Dalland et al., 1988), possibly with tidal influences (Koch and Heum, 

1995). Detailed study of the Tilje Fm. in the Heidrun and Smørbukk fields by Martinius et al. 

(2001) indicates that the formation consists of a lower estuarine unit and an upper tide- and 

wave-dominated deltaic unit. 

 The overlying Ror Formation of Toarcian age (Fig. 2.4) consists of open-marine shelf 

deposits comprising heterolithic sandy mudstones with coarsening-upwards sandier units 

(Dalland et al., 1988) and with local intercalations of the westerly deltaic sandstone wedges of 

the Tofte Formation. The coeval Tofte Fm. of Toarcian age (Fig. 2.4) is interpreted to be a local 

fan delta with a western sediment supply (Koch and Heum, 1995). 

These deposits are overlain by the Ile Formation of Aalenian age (Fig. 2.4). It consists 

of fine- to medium-grained and subordinate coarse-grained sandstones with interbeds of thinly 

laminated siltstones and shales (Dalland et al., 1988). The Ile Fm. represents mainly tidal-

channel and tidal-flat environments, but has also been interpreted as a tide-dominated deltaic 

complex in the Kristin Field (McIlroy, 2004a). The Ile Fm. would then appear to have recorded 
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the beginning of the Mid-Jurassic predominance of tidal sedimentation in the Halten Terrace 

area, which probably acted as a narrow seaway between the Boreal and Tethys provinces.  

 The overlying Not Formation of Aalenian to Bajocian age (Fig. 2.4) consists of 

mudshales that coarsen upwards into sandstones (Dalland et al., 1988). The formation is divided 

into two units: the muddy lower unit represents a semi-regional transgression that led to the 

development of lagoons or sheltered bays, whereas the sandy upper unit represents normal-

regressive progradation of a deltaic or wave/tide-dominated shoreline system from the west 

(Dalland et al., 1988). 

 The Garn Formation lying above (Fig. 2.4) is of Bajocian to Bathonian age and consists 

mainly of medium- to coarse-grained sandstones with subordinate intercalations of coarse- to 

very coarse-grained sandstones (Gjelberg et al., 1987; Dalland et al., 1988; Chuhan et al., 2001). 

This formation is considered to represent a wave-influenced tidal environment (e.g., Quin et 

al., 2010; Messina et al., 2014) and its characteristics and previous studies are reviewed in more 

detail in the next sub-chapter 2.4. 

The overlying Melke Formation of Bajocian to Oxfordian age (Fig. 2.4) consists of 

heterolithic sublittoral deposits and bioturbated neritic mudstones (Dalland et al., 1988). The 

formation is considered to represent distal shoreface and muddy offshore environments 

(Corfield et al., 2001). This formation is a stratigraphic time-equivalent of the Garn Fm. 

eastwards in the Trøndelag Platform area (Brekke et al., 2001), and is time-transgressively 

onlapping the Garn Fm. westwards in the Halten Terrace area (Gjelberg et al., 1987, Corfield 

et al., 2001; Messina et al. 2014). 

The mud-dominated Melke Formation is the lowest unit of the Viking Group (Fig. 2.4) 

and marks the beginning of the tectonic collapse and submergence of the western hinterland in 

the late Middle Jurassic (Brekke et al., 2001). The rifting event that followed in the Late Jurassic 

combined with an eustatic sea-level rise resulted in a major palaeogeographic change that 

established neritic sedimentation on the Trøndelag Platform and developed an anoxic, deep 

neritic to bathyal environment on the Halten Terrace and farther to the west in the axial zone of 

the future continental break-up (Brekke et al., 2001). This phase of sedimentation was recorded 

by the Spekk Formation of Oxfordian to Berriasian age, which is the upper unit of the Viking 

Group (Fig. 2.4; Dalland et al., 1988). The Rogn Formation of Oxfordian to Kimmeridgian age 

(Fig. 2.4) consists of mudstones and siltstones coarsening upwards into sandstones (Dalland et 

al., 1988). These localized sandy bodies are coeval with the muddy Spekk Fm. (Fig. 2.4) and 

are probably related to deltas. 
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2.4 The Garn Formation 

The Garn Formation (Bajocian–Bathonian) is found in most of the central parts of the Halten 

and Dønna terraces and in the Trøndelag Platform. The formation’s thickness ranges from 31 m 

to 104 m in the wells used for the present study, but is known to exceed 104 m in thickness in 

some areas of the Halten Terrace (Dalland et al., 1988). The Garn Fm. was eroded over some 

structural highs, such as the Nordland Ridge that separates the Dønna Terrace and Trøndelag 

Platform and the Sklinna High at the western margin of the Halten Terrace (Dalland et al., 

1988). 

 The Garn Formation (Bajocian–Bathonian) is a time-equivalent to parts of the Brent 

Group in the North Sea (Helland-Hansen et al., 1992) and consists of medium- to coarse-

grained, moderately to well-sorted subarkosic arenites with subordinate intercalations of very 

coarse sandstones (Dalland et al., 1988). Gjelberg et al. (1987) had characterized the Garn Fm. 

(referred to as the Upper Tomma Formation at that time) in terms of four lithofacies: (1) some 

seemingly massive or poorly stratified, medium- to very coarse-grained sandstones; (2) 

stratified medium- to very coarse-grained sandstones with either trough or planar cross-

stratification; (3) heterolithic deposits dominated by poorly sorted medium- to coarse-grained 

sandstones; and (4) bioturbated muddy to silty fine-grained sandstones and sandy to silty 

mudstones. The present regional study concurs with the notion of a predominance of sandstone 

facies, while also showing that any sand-mud heterolithic facies are lacking in the studied well 

cores and hence must be very local, of minor significance. 

 Several different palaeoenvironmental interpretations have been suggested for the Garn 

Formation. Gjelberg et al. (1987) suggested a shoreface environment influenced by tidal and 

high-energy wave processes, whereas Dalland et al. (1988) interpreted the sedimentary 

environment to be progradational delta lobes influenced by fluvial and wave processes. 

Subsequent studies have interpreted the palaeoenvironment mainly as a high-energy, wave-

dominated shoreface system with more mud deposition towards the north and south (Doré, 

1992; Brekke et al., 2001), while a prevalent role of tidal currents has been increasingly 

postulated with the recognition of tidal dunes and tidal sand ridges (Corfield et al., 2001; 

Elfenbein et al., 2005; Quin et al., 2010; Messina et al., 2014). A comprehensive model for the 

primary heterogeneity of the Garn Fm. in the Kristin Field has been developed by Messina et 

al. (2014). 

 The latest interpretations (see references above) envisaged a shoreface system 

prograding eastwards from an intra-rift high (Fig. 2.3) and supplying sand to the Halten Terrace 

narrow graben-hosted seaway dominated by tidal currents. Corfield et al. (2001) postulated a 



Chapter 2  Geological setting 

 14 

three-stage deposition of the Garn Fm.: (1) an early Bajocian forced regression followed by 

lowstand sand deposition; (2) transgression with a back-stepping of littoral environment onto 

adjacent structural highs and with episodes of “pulsed progradation” of littoral sands; and (3) a 

final stage of drowning, when the littoral sands of the Garn Fm. retreated towards the highs in 

the early Bathonian and became covered by neritic mud of the Melke Fm. 

 Corfield et al. (2001) in the Smørbukk Field and Messina et al. (2014) in the Kristin 

Field have recognized a sharp and apparently erosional contact between the mud-dominated 

Not Fm. and the overlying sand-dominated Garn Fm. A similar contact is observed in wells 

6506/12-3 and 6506/12-8 in the Smørbukk South Field (present study) where the Not/Garn 

boundary was cored. However, Corfield et al. (2001) have also reported that some other wells 

in the Smørbukk Field (wells 6406/2-3, 6406/3-2, 6407/4-1 and 6407/6-3) show a more 

gradational transition from the Not Fm. to the Garn Fm., which they attributed to a relatively 

conformable advance of a sandy shoreface over a muddy offshore environment. 

 The upper boundary of the Garn Formation shows a marked regional diachroneity, with 

the littoral sands of the Garn Fm. interfingering with and onlapped by the heterolithic to muddy 

deposits of the Melke Fm. This facies diachroneity was first recognized on a regional scale by 

Gjelberg et al. (1987) and has later been documented to occur on a local scale of 5–10 km by 

Corfield et al. (2001) and Messina et al. (2014).
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3 METHODS AND TERMINOLOGY 
 

3.1 The wells used 

The present study is based on cores and geophysical logs from nine wells scattered across the 

Halten Terrace (Fig. 3.1). Most of the Garn Formation (>81%) was cored and recovered in 

wells 6407/1-3, 6506/12-3, 6506/12-5, 6506/12-8, whereas only around half of it (29–65%) was 

cored in wells 6406/2-6, 6406/5-1 T2, 6407/1-4, 6506/9-2 S and 6507/11-8 (Table 3.1). A total 

of ~500 m of cores have been logged for this study. Their detailed sedimentological logging 

was conducted by the author at the Weatherford Laboratories in Sandnes, Stavanger. 

 

 
Figure 3.1: Map showing the location of wells used in present study (red points with code numbers), the two seismic lines 
(approximate location, in yellow) and the oil/gas fields in the Halten Terrace area (outlined in orange and purple, only some 
labelled). The map was generated in Petrel 2015.7. 
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The wells (Table 3.1) have been selected to represent both a broad area of the Garn Fm. 

distribution in the Halten Terrace (Fig. 3.1) and the observed range of gamma-ray log signatures 

of this formation (Fig. 3.2). The former criterion was to allow a regional-scale facies analysis 

of the Garn Fm., whereas the latter criterion was to investigate if different gamma-ray log 

signatures can possibly be correlated with specific sedimentary facies recognized in well cores. 

Both widely- and closely-spaced wells have been selected (Fig. 3.1) in order to assess the 

distance scale of lateral facies changes within the formation. The selection was necessarily 

limited by the time and budgetary constraints of present study and by the ownership of different 

wells in the Halten Terrace. 

 
Table 3.1: List of cored wells used in the present study (see location in Fig. 3.1). The information given includes the name of 
field/prospect, the well code, the well core numbers, the cored local depth of the Garn Fm., the core thickness, the total local 
thickness of Garn Fm. and the thickness percentage cored in each well. 

Field/Prospect Well Core # 
Cored depth 
interval in 

Garn Fm. (m) 

Core 
thickness 

(m) 

Total thickness 
of Garn Fm. 

(m) 

Percentage 
cored 
(%) 

Ragnfrid 6406/2-6 1 4504–4530.7 26.7 93 29 

Structure south 
of Ragnfrid 

6406/5-1 T2 1 4230–4254.4 24.4 67 36 

Tyrihans/ 
Tyrihans North 

6407/1-3 1–5 3619–3710.4 91.4 104 88 

Tyrihans/ 
Tyrihans North 

6407/1-4 2–3 3679–3739 60 101 59 

Fogelberg 6506/9-2 S 1 4342–4368.7 26.7 60 45 

Åsgard/ 
Smørbukk South 

6506/12-3 1–5 3836–3906 70 86 81 

Åsgard/ 
Smørbukk South 

6506/12-5 7–11 3951–4040 89 92 97 

Åsgard/ 
Smørbukk South 

6506/12-8 2–4 3878–3955 77 81 95 

Yttergryta 6507/11-8 1 2428–2448 20 31 65 

 

 
Figure 3.2: The varieties of gamma-ray log signature recognized in the Garn Fm. (examples from wells 6407/1-4, 6506/12-5, 
6507/11-8, 6506/12-3 and 6506/12-8). The characteristic signatures are blocky, bell-shaped and jagged. The blue and green 
lines indicate the formation’s base and top, respectively. 
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Several tens of wells have been drilled through the Garn Formation in Halten Terrace area over 

the decades of exploration, but most of them with little or no core samples and with only 

standard geophysical well-logs. The present project’s initial hope was that the geophysical well-

log signatures could possibly be translated into particular sedimentary facies on the basis of 

well-core samples, but this expectation appeared to be futile, apparently due to the high and 

greatly varied burial depths of the Garn Fm. (Table 3.1) and the variable prevalent impact of 

sediment diagenesis. 

 

3.2 Well-core logging and facies analysis 

Conventional detailed sedimentological logging was done, at a scale of 1:20, on the basis of B-

cut core samples. The focus was on grain size, sediment colour, sedimentary structures (primary 

and secondary), bounding surfaces, bioturbation and organic detritus. The core logs (shown in 

Appendix) were first drafted by hand on standard A3 logging sheets (millimetre paper) and 

were subsequently digitised for display by using Adobe Illustrator CS6.  

The descriptive sedimentological terminology used in this thesis is according to Harms 

et al. (1975, 1982) and Collinson et al. (2006), with the terms strata/laminae set and co-set as 

originally defined by McKee and Weir (1953). The term sedimentary facies refers to the basic 

types of sedimentary deposits that are distinguished on the basis of their bulk macroscopic 

characteristics, such as grain size/texture, stratification type, colour, etc., and are attributed to 

different modes of sediment deposition (Harms et al., 1975; Walker, 1984a). Assemblages of 

spatially and genetically related facies are referred to as facies associations and interpreted in 

terms of different sedimentary systems, or depositional palaeoenvironments (Collinson, 1969). 

The terms parasequence and parasequence set are as defined by Van Wagoner et al. (1990). 

 

3.3 Seismic data 

No seismic maps and only two seismic sections (see lines CFI_MNR10-7212 and 

CFI_MNR11-90497 in Fig. 3.1) were made available by Total Norge A.S. for the present study. 

The former seismic line is oriented W–E and transects well 6506/12-8, whereas the latter line 

is oriented NW–SE and transects wells 6407/1-3 and 6407/6-4 (Fig. 3.1). The purpose of this 

limited seismic dataset was basically to assess – on a broader regional scale – if the deposition 

of the Garn Fm. was truly influenced by coeval fault-block tectonic activity, as postulated 

earlier by local, field-scale studies (e.g., Gjelberg et al., 1987; Dalland et al., 1988; Brekke et 

al., 2001; Quin et al., 2010; Messina et al., 2014). 
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The seismic data in this study have a normal polarity, based on the strong reflector of 

the seabed (Fig. 3.3). This reference reflector is due to the acoustic impedance contrast between 

the seawater and the seabed deposits. The seismic sections were measured in time scale and are 

not time–depth converted. They were interpreted in this study with the use of Schlumberger’s 

software Petrel 2015.7. 

 

 
Figure 3.3: Example portion of seismic image showing normal polarity of reflectors. The uppermost red-highlighted peak 
represents the seabed surface. The colour scale of reflector amplitude shows the maximum amplitude in yellow and the 
minimum amplitude in light blue. Amplitude peaks are highlighted in red and amplitude troughs in dark blue. 

 

The two selected seismic sections, although optimal for regional display, are passing through 

or in close proximity of only three cored wells used in the present study (Table 3.2). This kind 

of dataset gave thus a very limited possibility for regional-scale facies analysis and 

palaeogeographic interpretation. 

 
Table 3.2: Three wells that are located on or near the two seismic lines used in the present study (see Fig. 3.1). The wells were 
used to tie formation depths to the seismic sections. Wells 6506/12-8 and 6407/1-3 were also logged in the present study (see 
Appendix). The depths of the top and base of the Garn Fm. are verified according to the Norwegian Petroleum Directorate 
(NPD) internet data base. 

Well Depth of Garn Fm. top (m) Depth of Garn Fm. base (m) 

6506/12-8 3875 3956 

6407/1-3 3600 3704 

6407/6-4 2651 2752 
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Seismic interpretation of the Spekk Fm./base-Cretaceous unconformity (BCU) and the 

boundaries of the underlying Melke Fm., Garn Fm. and Not Fm. (Table 3.3) was based on 

synthetic seismograms with well-top depths established by NPD. 

 
Table 3.3: Seismic expression of the key stratigraphic horizons referred to in the present study. Seismic data courtesy of TGS. 

Horizon  Reflector 
phase 

Reflector 
characteristics Seismic expression 

 
Top Spekk 
Fm. (BCU) 

 
Negative 
amplitude 
(trough) 

 
Continuous.  

High to medium 
amplitude. 

 

 
 

Melke Fm. 
top 

 
Positive 

amplitude 
(peak) 

 
Continuous. 

Medium to high 
amplitude 

 

 
 

Garn Fm. 
top 

 
Negative 
amplitude 
(trough) 

 
Discontinuous. 
Low to medium 

amplitude. 

 

 
 

Not Fm. 
top 

 
Positive 

amplitude 
(peak) 

 
Continuous to 
discontinuous. 

High to low 
amplitude. 

 

 

Seismic interpretation of the Garn Formation was limited to the recognition of local 

syndepositional fault activity and broad seafloor tectonic topography. The reader should 

understand that no realistic step-by-step structural and stratigraphic reconstruction of the Garn 



Chapter 3  Methods and terminology 

 20 

Fm. deposition could possibly be derived from the limited dataset available for the present 

study.
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4 SEDIMENTARY FACIES OF THE GARN FORMATION 
 

4.1 Facies SPPS: Sandstone with planar parallel-stratification 

Description: This facies consists of fine- to very coarse-grained sandstone with planar parallel 

stratification (Fig. 4.1). The coarsest-grained strata occasionally contain scattered or 

concentrated granules. The units of this facies are solitary strata sets ranging in thickness from 

~3 cm to ~75 cm. The boundaries are sharp, erosional or occasionally diffuse (at the contact 

with massive sandstone). This facies is commonly hydrocarbon-stained, pale-brown or brown 

in colour. Sparse to medium-grade bioturbation occurs only occasionally in this facies, 

represented by Planolites (Fig. 4.1B). 

 

Interpretation: Based on its stratification type and highly varied grain size, facies SPPS is 

interpreted to have been deposited differently in its different occurrences. Units associated with 

cross-stratified sandstones (Fig. 4.1A; see facies SCS below) were probably deposited by 

unidirectional tractional currents in the lower part of the upper flow regime (Fig. 4.2A; 

Collinson et al., 2006), whereas those accompanied by wave-ripple cross-laminated sandstones 

(Fig. 4.1B) were probably deposited by waves with high orbital velocities (Fig. 4.2B; Komar 

and Miller, 1975). Coarse-grained units with granules (Fig. 4.1C) may represent beach-eroding 

storm events (Clifton and Dingler, 1984). 

 

 
Figure 4.1: Examples of facies SPPS in association with (A) planar cross-stratified facies SCS and (B) wave-ripple cross-
laminated facies SRCL. Example B shows Planolites burrows. Example (C) is a coarse-grained variety of facies SPPS. The 
examples are from well 6406/5-1 T2 (A), 6407/1-3 (B) and 6506/12-3 (C). 



Chapter 4  Sedimentary facies of the Garn Formation 

 22 

4.2 Facies SRCL: Sandstone with ripple cross-lamination 

Description: This facies (Fig. 4.3) consists mainly of fine- to medium-grained sandstones, only 

occasionally very fine- or coarse-grained. Their internal structure is ripple cross-lamination, 

commonly with mud drapes or flasers. The units of facies SRCL range from solitary ripple cross-

laminae sets ~1.5 cm thick to co-sets up to ~650 cm in thickness. Their upper and lower 

boundaries are mainly sharp, but occasionally diffuse and unclear. Sandstone colour is light 

grey, or pale-brown to brown where hydrocarbon-stained. The bioturbation grade varies from 

0 to 4, with burrows such as Palaeophycus, Skolithos, Rhizocorallium, Chondrites and 

Ophiomorpha.  

Ripple forms in transverse sections are mainly asymmetrical. The ripple index, RI 

(Collinson et al., 2006), is mainly in the range of 4–15. Ripple symmetry index, RSI (Collinson 

et al., 2006), varies from less than 2.5 to well above 3. 

 

 
Figure 4.2: Bedforms in relation to hydraulic conditions. (A) Flow regimes according to bedform phase; modified with added 
sketches from Allen (1982). (B) Bedforms produced by waves; slightly modified with labels from Komar and Miller (1975). 

 

Interpretation: Facies SRCL is interpreted to be a product of sand transport in the form of 

migrating 2D and 3D ripples, which may indicate a weak unidirectional current in the lower 

part of the lower flow regime (Fig. 4.2A; Allen, 1982) or the action of waves with low near-

bottom orbital velocities (Fig. 4.2B; Komar and Miller, 1975). The distinction between current 

and wave ripples is difficult in randomly oriented core-sample cuts. The values of RI are non-

diagnostic, whereas the values of RSI indicate a mixture of current and wave ripples (see 
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Collinson et al., 2006). The mud drapes and flasers indicate brief episodes of hydraulic 

slackening, which is characteristic of tidal currents (Reineck and Singh, 1980). 

 

 
Figure 4.3: Examples of facies SRCL. Note the abundant mud drapes and flasers in A, C and D, and the compactional 
microstyllolitization in B and C. The examples are from wells 6407/1-3 (A), 6407/1-4 (B), 6407/1-4 (C) and 6406/5-1 T2 (D). 

 

4.3 Facies SCS: Sandstone with planar or trough cross-stratification 

Description: This facies (Fig. 4.4) consists of fine- to very coarse-grained – but predominantly 

medium-grained – sandstones with large-scale (i.e., dune-scale) cross-stratification. The 

distinction between planar and trough cross-stratification is generally difficult in core samples 

8–12 cm wide, unless the boundary of cross-strata sets can be recognized as either concave-

upwards or planar (e.g., Fig. 4.4B). The thickness of cross-strata sets ranges from slightly more 

than 7 cm to 83 cm, averaging 26 cm. The units of facies SCS range from solitary cross-sets to 

multiple sets stacked upon one another as co-sets up to 2,64 m thick. Many co-sets in unbroken 

cores show evidence of bi-directional transport, but some co-sets are unidirectional and most 

are unspecified due to discontinuous, broken core samples. The shape of cross-strata on a core-

sample scale varies from angular (constant inclination) to tangential (down-dip flattening). The 

former shape is most common and indicates planar cross-stratification. Sandstone colour is light 

grey, but pale-brown or brown where hydrocarbon-stained. The upper and lower boundaries of 

facies SCS units are sharp (e.g., Fig. 4.4C), but are less clear where the sandstone is strongly 

hydrocarbon-stained. Bioturbation is relatively rare. Where present, its grade varies from sparse 

(1) to moderate (3) and the burrows include Cylindrichnus, Skolithos, Asterosoma, 
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Palaeophycus and Macaronichnus. Some cross-sets show deformation evidence of 

synsedimentary slumping. Cross-strata are occasionally mud-draped in the cross-set lower part, 

with the drapes ~0,5 cm to 4 cm thick, sporadically containing organic detritus and pinching 

out in up-dip direction. Backflow ripple features occur also in the lower part of some cross-

strata foresets. 

 

Interpretation: The deposits of facies SCS represent tractional transport and deposition of sand 

in the form of migrating dunes, which indicates unidirectional currents in the upper part of the 

lower flow regime (Fig. 4.2A; Allen, 1982). Planar cross-stratification is attributed to straight-

crested (2D) dunes, whereas trough cross-stratification represents linguoid or lunate (3D) dunes 

(Collinson et al., 2006). Erosional surfaces within the cross-stratified sets are attributed to 

fluctuations of flow velocities and thereby the generation of reactivation surfaces (Nio and 

Yang, 1991). Reactivation surfaces can be produced by reversing tidal currents (de Mowbray 

and Visser, 1984). Bidirectional cross-strata sets, mud drapes, reactivation surfaces and 

backflow ripples are features characteristic of tidal dunes (Reineck and Singh, 1980; Smith, 

1991; Collinson et al., 2006). 

 

 
Figure 4.4: Examples of facies SCS. (A) Set of inclined strata in a vertical well core of an otherwise horizontally-bedded 
succession, interpreted as planar cross-stratification. (B) Two vertically-stacked sets of planar cross-stratification (note their 
flat boundary). (C) Cross-strata set of facies SCS overlain by facies SRCL. (D) Backflow ripple cross-lamination and mud drapes 
in the lower part of cross-strata foreset. The examples are from wells 6407/1-3 (A), 6406/5-1 T2 (B), 6506/12-3 (C) and 6406/5-
1 T2 (D). 
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4.4 Facies SHCS: Sandstone with hummocky cross-stratification 

Description: This facies consists of fine/medium- to medium/coarse-grained sandstones with a 

more or less distinct evidence of strata upward convexity suggesting hummocky cross-

stratification (Fig. 4.5), although an unequivocal recognition of HCS in narrow core samples is 

obviously difficult. The units of this facies are mainly solitary sets of strata from ~10 cm to ~26 

cm thick, rarely superimposed upon one another as a co-set (e.g., Fig. 4.5B). Their boundaries 

are sharp and often visibly erosional. Sandstone colour is mainly pale-brown or brown due to 

hydrocarbon staining. Bioturbation in most units of this facies is lacking, although a 5-grade 

bioturbation occurs at the top of one unit in well 6506/12-3, where the burrows include 

Anconichnus, Planolites and Chondrites. 

 

Interpretation: The isolated beds of facies SHCS are interpreted to show hummocky cross-

stratification and hence to represent the combined-flow conditions of marine storm events 

(Arnott and Southard, 1990; Dumas and Arnott, 2006). The complex interaction of storm waves 

with a storm-generated seaward compensational bottom current leads to the localized accretion 

of parallel-stratified domes known as “hummocks” (Walker, 1984b; Collinson et. al., 2006). 

Hummocks are relatively rare bedforms, because their formation requires an appropriate 

combination of the current speed, orbital wave velocity and sediment fallout rate (Dumas and 

Arnott, 2006).  

 

 
Figure 4.5: Examples of facies SHCS with the gently convex-upwards parallel stratification interpreted as hummocky cross-
stratification. Note the two superimposed strata sets in B. The examples are from well 6407/1-3. 
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4.5 Facies SM1: Massive sandstone 

Description: This facies (Fig. 4.6) consists of fine- to very coarse-grained sandstones with an 

apparent lack of internal stratification or lamination. Although some faint ‘ghosts’ of planar 

parallel stratification or cross-stratification are locally observed, the bulk sandstone units seem 

to be massive. Their lower and upper boundaries are sharp in most cases, but occasionally 

diffuse. Sandstone colour is light grey, but pale-brown or brown where hydrocarbon staining 

occurred. No recognizable bioturbation is observed in this facies. 

 

Interpretation: The origin of facies SM1 in association with facies SCS is attributed to sporadic 

dune-front collapses under the impact of waves or earthquakes (Allen, 1982; Collinson et al., 

2006; Hildebrandt et al., 2007). Such phenomena are well-known, for example, from the 

modern Messina Strait (Colella, 1990), where seafloor cables and pipelines were broken by 

collapses of the supporting 2D dunes (or “sandwaves”). Where associated with the wave-

worked facies SPPS and SRCL, the isolated units of facies SM1 with diffuse lower boundaries are 

attributed to spontaneous seafloor liquefaction under the impact of storm waves (Seed and 

Rahman, 1978). On the other hand, the units of facies SM1 are often heavily stained with 

hydrocarbons, which obscure primary stratification; it is thus possible that some of the units of 

facies SM1 with no visible stratification were not truly massive and have been misclassified as 

such. 

 
Figure 4.6: Examples of facies SM1 from well 6407/1-3. 
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4.6 Facies SM2: Massive bioturbated sandstone 

Description: This facies (Fig. 4.7) consists of very fine- to medium-grained sandstones, 

occasionally verging on siltstone, with an apparent lack of stratification and a high grade (5–6) 

of bioturbation. The units of this facies are ~17 cm to ~1640 cm thick and their lower boundaries 

are highly diffuse and unclear, whereas the upper boundaries are generally sharp. Sandstone 

colour is typically light to dark grey. Local relics of mud flasers are common and plant debris 

is locally found. Animal burrows include Thalassinoides, Diplocraterion, Palaeophycus, 

Helminthoides and Planolites.  

 

Interpretation: The massive, apparently “structureless” nature of this facies is attributed to its 

high grade of bioturbation, which obliterated the sediment primary stratification beyond 

recognition (Collinson et al., 2006). Relics of mud flasers indicate that some of these 

bioturbated units originally represented the mud-flasered variety of facies SRCL. The original 

nature of the other units of facies SM2 is unknown. The grain size suggests possibly facies SPPS 

and/or SCS.  

 

 
Figure 4.7: Examples of facies SM2 with heavily bioturbated sandstone from well 6506/12-3 (A), 6506/12-5 (B) and 6406/5-1 
T2 (C). 
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5 FACIES ASSOCIATIONS 
 

Five facies associations have been recognized in the well cores and attributed to different 

depositional environments. The individual facies associations are described and interpreted in 

the present chapter, with example portions of detailed well-core logs shown for illustration and 

the relevant legend given in Fig. 5.1 (for complete logs and full legend, see Appendix).  

 

 
Figure 5.1: Legend to the core-log portions shown in Figs. 5.2 and 5.6–5.9 as illustration of facies associations. 

The facies associations – with their reference code, interpretive genetic labels and facies 

composition – are listed in Table 5.1 as a brief guide to their spectrum. 

 
Table 5.1: Facies associations distinguished in core material from wells 6406/2-6, 6406/5-1 T2, 6407/1-3, 6407/1-4, 6506/9-

2 S, 6506/12-3, 6506/12-5, 6506/12-8 and 6507/11-8. The relative proportion of component facies is a generalized qualitative 

estimate based on their occurrence frequency and thickness contribution. 

FACIES ASSOCIATIONS COMPONENT FACIES 

Deposits of tidal sand ridges (longitudinal bars) 
Dominant: SCS   
Subordinate: SRCL  
Minor/sporadic: SPPS & SM1 

Deposits of shallow subtidal sandflats 
Dominant: SRCL  
Subordinate: SCS & SPPS  
Minor/sporadic: SHCS & SM2 

Deposits of tidal inter-ridge swales Dominant: SCS, SRCL & SM1  
Minor/sporadic: SPPS & SHCS 

Wave-worked deposits 
Dominant: SPPS  
Subordinate: SRCL 
Minor/sporadic: SCS 

Deposits of protected inter-ridge swales Dominant: SM2  
Subordinate/minor: SCS & SPPS 
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5.1 FA1: Deposits of tidal sand ridges 

Description: This facies association (Fig. 5.2) consists of facies SCS and SRCL and is dominated 

by the former facies, with subordinate thin intercalations of facies SPPS and sporadic thin 

interlayers of facies SM1. This facies assemblage, forming units 2.80–56.36 m thick, is found as 

dominant in all the studied well cores.  

 
Figure 5.2: Example of facies association FA1 from well-core log 6506/12-8. For legend, see Fig. 5.1. For complete well-core 

log, see Appendix. 

 

The component sandstone facies SRCL represents mainly current ripple cross-lamination, 

commonly mud-draped and occasionally bidirectional, where associated directly with the cross-

stratified sandstone facies SCS, but represents mainly wave ripple cross-lamination where 
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associated directly with the plane parallel-stratified sandstones of facies SPPS. Facies SCS shows 

mainly planar cross-stratification, although trough cross-stratification also occurs, and the 

cross-strata co-sets range from unidirectional to recognizably bidirectional. The sandstones of 

facies SCS, SPPS and SM1 range from very fine- to very coarse-grained, but are mainly medium-

grained. The sandstones of facies SRCL are very fine- to fine-grained, occasionally medium-

grained. Animal burrows include Cylindrichnus, Skolithos, Asterosoma, Palaeophycus, 

Macaronichnus, Rhizocorallium, Chondrites and Ophiomorpha, indicating the Cruziana and/or 

Skolithos ichnofacies (see Frey, 1975; McIlroy, 2004b). 

 

Interpretation: The dominant cross-stratified sandstone facies SCS, with evidence of 

bidirectional cross-strata sets, indicates sand deposition in the form of 2D and 3D dunes driven 

by tidal currents. The notion of tidal environments is supported further by mud-draped ripple 

cross-lamination in the associated facies SRCL, which indicates alternating episodes of sand 

transport and slack-water conditions (Reineck and Singh, 1980; Nio and Yang, 1991). The 

relatively thick (up to 2.64 m) cross-strata co-sets suggest tidal sand ridges, or longitudinal bars, 

formed by the vertical stacking of successive dunes (Fig. 5.3; see Mutti et al., 1985; Kreisa et 

al., 1986; Colella and d'Alessandro, 1988; Yang and Nio, 1989; Dalrymple and Rhodes, 1995; 

Longhitano and Nemec, 2005; Longhitano, 2011). 

 
Figure 5.3: Model for the development of transverse and longitudinal tidal sand bars by a reversing tidal current (slightly 
elaborated from Allen, 1980). Note that the internal architecture of the tidal bar changes from a simple foreset (top) to a 
compound ‘herringbone’ dune stack (bottom) as the time-velocity pattern of the reversing current becomes symmetrical. 
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A similar palaeoenvironmental interpretation of the thick co-sets (up to 10–15 m) of dune cross-

strata in the Garn Fm. in the Kristin Field, Halten Terrace, was suggested by Messina et al. 

(2014); see Fig. 5.4 below. 

 

 
 
Figure 5.4: (A) A dimensional model for tidal sand ridges in the Garn Fm. in Kristin Field suggested by Messina et al. (2014), 
with (B) the Banc d’Arquin sand bar in the English Channel as a modern analogue and (C) an Eocene tidal sandstone ridge in 
the Rab island, Croatia, as an ancient analogue (dominant palaeocurrent direction to the left). From Messina et al. (2014).  
 

Such vertical stacks of sand cross-strata sets are mainly composed of “compound dunes” 

(Dalrymple et al., 2003; Dalrymple and Choi, 2007; Desjardins et al., 2012b), which involve 

numerous truncation and reactivation surfaces (Fig. 5.5) formed by the reversing tidal currents. 

In an open-shelf setting, the compound dunes may form extensive subtidal sand sheets or be 

piled into flow-parallel linear ridges, as observed at present in some areas of the southern North 
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Sea (Van der Molen and De Swart, 2001). Modern case studies indicate that the height of tidal 

sand ridges may reach 40 m and their length and width are in the range of 5–120 km and 0.5–

8 km, respectively (McBride, 2003). Since the direction of dune migration is mainly oblique, 

at 20–35o, with respect to the ridge axis (Dalrymple and Rhodes, 1995; Dalrymple, 2010), the 

sand ridge tends to migrate laterally during its progradation (Fig. 5.4A). A single tidal ridge 

may fill in an entire narrow marine strait (see Longhitano and Nemec, 2005). 

 

 
Figure 5.5: An integrated sedimentological and ichnological model for subtidal compound dunes (from Desjardins et al., 
2012a). 
 

Apart from the mud drapes in facies SRCL, the general lack of muddy facies interbeds indicates 

that the mud in this sedimentary system was almost perennially in suspension, probably due to 

an intense wave action accompanying the reversing tidal currents (see Longhitano and Nemec, 

2005; Davis and Dalrymple, 2012; Olariu et al., 2012a). This interpretation is consistent with 

the general notion that sand ridges form along the high-energy thalweg of tidal currents in the 

deepest zone of a marine strait, where also the wave action would be at its local maximum 

(Reineck, 1963; Klein, 1970; Langhorne, 1973; Reineck and Singh, 1980; Dalrymple, 1992; 

Longhitano and Nemec, 2005; Dalrymple, 2010; Davis and Dalrymple, 2012).  

The transport of sand in the form of current ripples (facies SRCL) occurred probably over 

the dunes, with a low preservation potential of ripples, and in the hydraulic “shadow” of dunes 

at their toes, where also the episodic fallout of mud would occur (Fig. 5.5). Bioturbation is 

generally limited, which suggests a mobile substrate, but facies SRCL tends to be significantly 
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more burrowed than facies SCS, which indicates preferential animal colonization of the dune 

toe zones (Fig. 5.5; see Davis and Dalrymple, 2012; Desjardins et al., 2012a).  

The apparent overall diversity of trace fossils in FA1 may be due to an intricate 

environmental combination of the deposit-feeding organisms active in tidal facies SRCL (such 

as Asterosoma, Macaronichnus, Rhizocorallium and Chondrites, characteristic of the 

archetypal Cruziana ichnofacies; see Desjardins et al., 2012b; Olariu et al., 2012a) and the 

suspension-feeder organisms of the Skolithos ichnofacies in the wave-worked facies SRCL and 

facies SPPS (see Frey, 1975; McIlroy, 2004b). Facies SCS only rarely show burrows, which 

indicates a relatively high mobility of tidal dunes. 

The interbeds of facies SPPS in FA1 most probably represent transient influences of 

storm wave base with high orbital wave velocities (Komar and Miller, 1975), whereas the 

sporadic interlayers of facies SM1 are attributed to occasional dune-front collapses, perhaps 

under the impact of storm waves or earthquake-related liquefaction (Seed and Rahman, 1978; 

Okusa and Uchida, 1980; Nishi and Kraus, 1997). The wave-worked facies SPPS and SRCL would 

also form where the build-up of the subtidal sand ridge had reached the fairweather wave base. 

 

5.2 FA2: Deposits of shallow subtidal sandflats 

Description: This facies association (Fig. 5.6) consists of sandstone facies SRCL and SCS, and is 

dominated by the former facies. Facies SRCL in this association represents almost exclusively 

current ripples, occasionally recognizable as bidirectional, and generally abounds in mud drapes 

or flasers. Subordinate are thin intercalations of facies SPPS and SHCS and rare thin interlayers 

of facies SM2. This facies assemblage is found in nearly all of the studied well cores, forming 

units 2.50–25.20 m thick, and – next to FA1 – is the second dominant facies association. Its 

component facies SCS occurs mainly as isolated cross-strata sets or as relatively thin co-sets, 

occasionally with a bidirectional dip of cross-strata. The sandstones are dominantly medium-

grained, but sporadically very fine-grained (facies SRCL) or very coarse-grained (facies SCS and 

SPPS). Burrows include Palaeophycus, Skolithos, Rhizocorallium, Chondrites and 

Ophiomorpha, indicating the Cruziana or Skolithos ichnofacies. 

 

Interpretation: The volumetrically dominant facies SRCL, with its mud drapes and flasers, is a 

typical product of tidal sandflat environment (Nio and Yang, 1991; Dalrymple, 1992, 2010). 

Facies SRCL implies an action of relatively weak, reversing tidal currents, while the lack of 

evidence of episodic subaerial exposure suggests shallow-water subtidal conditions.  
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Figure 5.6: Example of facies association FA2 from well-core log 6407/1-4. For legend, see Fig. 5.1. For complete well-core 

log, see Appendix. 

 

The associated isolated sets and thin co-sets of cross-strata (facies SCS) may represent spring-

tide phases of increased tidal range and flow power or may be the infill deposits of poorly-

defined, shallow ebb-tide creeks draining the sandflat area (see Reineck and Singh, 1980; 

Dalrymple, 1992, 2010; Davis and Dalrymple, 2012). The lack of significant, continuous 

mudstone interlayers indicates that the energy of the tidal currents and accompanying waves 

was sufficiently high to keep most of the delivered sediment mud fraction in suspension or 

persistent resuspension. 

Interbeds of facies SPPS and SHCS indicate brief influences of storm-wave base with high 

orbital wave velocities and episodic conditions of storm-generated combined flow, although 

some occurrences of this former facies may alternatively represent tidal currents with a flow 

power too high for the formation of ripples, but with a flow depth too shallow for the formation 

of dunes (Dalrymple et al., 1990). Sporadic interbeds of facies SM2 indicate short episodes of 
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intense seafloor bioturbation and suggest either an abrupt local deepening of water, perhaps due 

to fault-related subsidence, or a temporal abandonment of particular area by the laterally 

shifting of tidal currents. 

The evidence, taken together, indicates storm-influenced subtidal sandflats with a 

moderate but episodically high hydraulic energy and a persistent action of tidal currents, as is 

typical of open marine tidal coasts and perhaps some horst-hosted intra-shelf shoals (see 

Dalrymple, 2010). The notion of fluctuating hydraulic energy is supported further by the 

ichnofauna assemblages. Zones of high energy in tidal flats are generally characterized by low-

diversity assemblages of suspension feeders or passive predators, such as Skolithos (Simpson, 

1991; Mángano and Buatois, 2004). In zones of moderate to low energy, the ichnodiversity 

increases and burrows tend to be more dominated by horizontal traces of deposit-feeders and 

grazers, such as Chondrites and Rhizocorallium (Mángano, 2002). The occurrence of both types 

of ichnofauna in FA2 thus indicates some markedly fluctuating local energy conditions. 

 

5.3 FA3: Deposits of tidal inter-ridge swales 

Description: This facies association (Fig. 5.7) consists of the sandstone facies SCS, SRCL and 

SM1, accompanied by minor occurrences of facies SHCS and SPPS. The sandstones are almost 

uniformly fine/medium-grained. This facies assemblage has been found in only two well cores 

(6407/1-3 and 6507/11-8), where it forms packages 15.28 m and 2.08 m thick, respectively. 

Units of facies SCS are mainly co-sets and show evidence of bidirectional, reversing flow. As 

in the two previous facies associations, facies SRCL represents chiefly current ripples (with 

sporadic delicate mud flasers) where associated directly with the cross-stratified facies SCS, but 

represents mainly wave ripples where associated with the sporadic planar parallel-stratified 

facies SPPS. No bioturbation has been recognized in this facies association. 

 

Interpretation: The deposits of FA3, dominated by facies SCS, SRCL and SM1, resemble those of 

FA1, except for the greater proportion of the massive sandstones of facies M1 in FA3 and the 

highly localized occurrences of this facies association (as it seems to have been found just by 

chance in only two wells). Notably, FA3 is also directly associated with FA1, splitting the latter 

(well 6407/1-3) or underlying it (well 6507/11-8), which may indicate their genetic 

morphodynamic link. 
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Figure 5.7: Example of facies association FA3 from well-core logs 6407/1-3. For legend, see Fig. 5.1. For complete well-core 

logs, see Appendix. 

 

FA3 was clearly formed by perennial tidal currents allowing very little or virtually no mud 

fallout, although it shows also minor signatures of storm-wave influence (facies SPPS with wave-

worked SRCL) and combined-flow conditions (facies SHCS). On the basis of its direct association 

with FA1 and limited spatial extent, FA3 is interpreted to be deposits of the narrow swales 



Chapter 5  Facies associations 

 38 

separating the tidal sand ridges of FA1 and buried by a lateral migration of the latter (cf. Fig. 

5.4A). The transient swales tend to funnel the near-bottom current and boost local sand 

transport, while causing ridge-flank collapses (facies SM1) and rendering the local environment 

unsuitable for animal colonization (Swift and Field, 1981; Dyer and Huntley, 1999; Liu et al., 

2007). Little or no mud will be deposited in such swales, especially if the wave-generated 

ambient turbulence persists (Swift, 1975; Montenat et al., 1987; Longhitano and Nemec, 2005), 

although fine-grained sediment may be deposited in some other swales, morphologically 

sheltered in the hydraulic “shadow” of prevalent tidal currents (Hein, 1987; see further FA5 

below). 

 

5.4 FA4: Wave-worked deposits 

Description: This sandy facies association (Fig. 5.8) consists of facies SPPS intercalated with 

thin interbeds of facies SRCL (mainly wave ripples) and SCS (planar cross-stratification). The 

sandstone grain size is mainly medium/coarse, with occasional minor interlayers of finer or 

coarser sand fractions. This facies assemblage has been encountered in only one well-core 

(6507/11-8), where it forms two units 1 m and >2.79 m thick – each overlying FA1. No 

bioturbation has been recognized in this facies association. 

 

 
Figure 5.8: Example of facies association FA4 from well-core log 6507/11-8. For legend, see Fig. 5.1. For complete well-core 

log, see Appendix. 
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Interpretation: The planar parallel-stratification accompanied by wave ripple cross-lamination 

indicates deposition by waves with high (facies SPPS) to low (facies SRCL) orbital velocities (see 

Komar and Miller, 1975; Clifton and Dingler, 1984). The occurrence of FA4 as a capping of 

FA1 suggests deposition in littoral shoals where the aggrading progradational tidal sand ridges 

(Fig. 5.4) had reached the fairweather wave base as the limit of their accommodation space – 

before the local seafloor was taken down by a new pulse of tectonic subsidence (see Boersma, 

1969; Hubbard et al., 1979; Roep et al., 1979; Swift et al., 1979; Short, 1991; Cacchione et al., 

1994). Cross-strata sets (facies SCS) with reversing palaeocurrent direction are non-reworked 

relics of primary tidal transport. 

 

5.5 FA5: Deposits of protected inter-ridge swales 

Description: This facies association is dominated by the heavily bioturbated facies SM2 with 

thin intercalations of facies SCS and SPPS (Fig. 5.9). FA5 was found in only four well-core logs 

(6406/5-1T2, 6506/12-3, 6506/12-5 and 6506/12-8), where it forms units from 1.20 m to 

>16.48 m thick. The sandstones are medium- to very fine-grained, in some units verging on 

siltstone. Animal trace fossils include Thalassinoides, Diplocraterion, Palaeophycus, 

Helminthoides and Planolites, which seem to represent the Cruziana ichnofacies.  

 

Interpretation: FA5 shows evidence of both tidal transport (facies SCS) and minor influence of 

high-energy waves (facies SPPS), but is generally the finest-grained and heavily bioturbated 

(grade 5–6) sandstone of facies SM2. Its deposition is thought to have occurred in some relatively 

protected swales between bifurcating tidal sand ridges (Fig. 5.10; Hein, 1987), where the 

Cruziana ichnofauna could thrive due to the limited and mainly episodic sediment transport 

pulses. The trace-fossil assemblages in FA5 indicate, indeed, a deep littoral to sublittoral 

sedimentary environment. Although Palaeophycus is known to be common in both high- and 

low-energy littoral environments and Diplocraterion may suggest middle shoreface 

(Stanistreet, 1989), whereas the occurrence of Thalassinoides suggests a lower shoreface to 

offshore bathymetry (Cotter, 1975; Howard and Frey, 1985) and Helminthoides is generally 

associated with sheltered low-energy environments (Bockelie, 1991; Young and Rosenthal, 

1991). 

 FA5 is thus inferred to be genetically a sister of FA3, but deposited in different 

morphodynamic environmental conditions – within inter-ridge swales sheltered from the 

perennial tidal and wave action and only episodically subject to these processes. 
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Figure 5.9: Example of facies association FA5 from well-core log 6506/12-3. For legend, see Fig. 5.1. For complete well-core 

log, see Appendix. 
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Figure 5.10: Bifurcation of tidal sand ridges provides sheltered zones (area marked in green) where both Cruziana 

ichnofauna may thrive and relatively fine-grained sediment can be deposited (see Hein, 1987). The black arrow 

indicates the prevalent direction of reversing tidal currents. 
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6 ANALYSIS OF SEISMIC SECTIONS AND GEOPHYSICAL WELL-LOGS 
 

6.1 Seismic interpretation 

Only two seismic sections, trending W–E and NW–SE across the Halten Terrace (Fig. 3.1), 

have been available for the present study. Since the Halten Terrace in Jurassic time was a shelf 

area subject to tectonic extension, with its marginal outer parts (such as the Sklinna Ridge, Fig. 

2.1) nearing an ultimate collapse, the seismic sections have been interpreted here in terms of 

the criteria generally used in such settings for extensional tectonics and fault-block rotation 

(Figs. 6.1 and 6.2). 

 
Figure 6.1: Development of a sedimentary basin or sub-basin depocentre in a fault-block tectonic setting. (A) Simple case of 
a hanging-wall subsidence and footwall uplift, resulting in (B) wedge-shape bed sets onlapping the pre-rift bedrock. Slightly 
modified from Ter Voorde et al. (1997). 

 

 
Figure 6.2: (A) Wedge-shape bed sets onlapping the pre-rift bedrock with fault drag. (B) A synclinal growth flexure associated 
with the propagation of a buried blind-fault tip. Slightly modified from Marsh et al. (2014). 

 

The application of these general interpretation criteria in the present study is shown as 

a series of three examples in Fig. 6.3. The key features considered were the base and top of the 

Garn Formation, the lateral continuity of the Garn Fm. across a particular fault, its cross-fault 

thickness jump and the context possibility of its syn- or post-depositional removal by erosion. 
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Figure 6.3: Example details of the interpretation of seismic section NW–SE (Fig. 3.1). (A) Evidence of syn-rift deposition 
with sediment erosion at footwall crests and deposition in hanging-wall depocentres. (B) Evidence of pulses of tectonic activity 
by fault reactivation and syn- to post-rift deformation of the Garn Fm. Note the geometries suggesting development of fault-
propagation folds. (C) Evidence of post-Jurassic tectonic activity shown by the upward curving of seismic reflectors. Seismic 
data courtesy of TGS. 
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The interpretive evidence derived here from the seismic sections substantiates the notion 

of a lateral variation in facies associations and varied, fault-controlled seafloor topography 

inferred from the sedimentological study of well cores. From each seismic section (Figs. 6.4B 

and 6.5B), a hypothetical model of the seafloor tectonic topography at the sedimentation time 

of the Garn Formation has been derived (Figs. 6.4A and 6.5A). Although the models are 

schematic, based on OWT in seconds and are not quite realistic in terms of thickness 

distribution, they indicate that the deposition of the Garn Fm. was apparently controlled by the 

varied seafloor topography of incipient grabens and half-grabens. A more realistic 

reconstruction could be done by a depth-conversion of seismic data before using reverse basin-

modelling techniques and comparing basin reconstructions with information on palaeo-water 

depths derived from well and seismic data (e.g., see Bell et al., 2014). However, such a 

reconstruction is not attempted in the present sedimentological study, and the reader is referred 

to Corfield and Sharp (2000), Marsh et al. (2010) and Bell et al. (2014) for a structural synthesis 

of the Halten Terrace. The aim of the simple analysis in the present case was merely to verify 

the notion that the area of Garn Fm. sedimentation in Halten Terrace was bathymetrically 

compartmentalized into an array of NE-trending grabens and half-grabens, which might have 

enhanced the action of tidal currents (as postulated for the Kristin Field by Messina et al., 2014).   

The displacement of an initially horizontal surface that intersects a fault will be greatest 

at the fault itself, and decrease with increasing distance away from the fault. This generates 

footwall uplift and hanging-wall subsidence, the latter of which creates a sedimentary basin 

(e.g., Gupta et al., 1998; Fig. 6.1A). This geometry will however be affected by fault 

propagation and forced folding (e.g., Gawthorpe et al., 1997; Withjack et al., 1990). Greater 

accommodation space in the sedimentary basin is created as the displacement accumulates on 

the boundary fault through time. Although the deepening factor is only seen in cross-section, 

the basin will also widen through time because of the width of the hanging-wall deflection 

increases with increasing fault displacement (Barnett et al., 1987). The length of the basin also 

increases through time due to increase of the fault length as the displacement accumulates (e.g., 

Cowie, 1998). The growth of the basin in depth, width and length through time will produce 

progressive onlap of syn-rift deposits on pre-rift rocks (Figs. 6.1B and 6.2A). This phenomenon 

is recognizable from the wedge-shaped geometry of rock packages in which syn-rift strata show 

thickening towards the boundary fault and onlap pre-rift rocks (Figs. 6.1B and 6.2A). 

These wedges generally thin out onto the footwall crests, where truncation and onlap is 

observed (Figs. 6.1B and 6.2A). In some cases, the footwall crest might also become exposed 

as small islands (Fig. 6.1A) which are likely to be affected by erosion, resulting in a source of 
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local sediment supply for the subsiding basins in the hanging-wall. Downdip from the footwall 

crest, the seismic reflectors diverge towards the boundary fault where they onlap the hanging-

wall dipslope (Fig. 6.1B). This geometry of reflectors defines the characteristic syn-rift wedge 

commonly observed in seismic data (cf. Prosser, 1993). Geometries associated with the 

evolution of fault propagation folds will in contrast exhibit reflectors diverging into hanging-

wall depocentres from a point located above a buried fault tip and may also onlap the steep 

limbs of monoclines (Fig. 6.2B; Corfield and Sharp, 2000, Marsh et al., 2014). Such features 

are recognizable in the NW–SE seismic section (Fig. 6.5B), as highlighted in Figure 6.3B. The 

fault propagation folds are probably related to blind faults that were active beneath a layer of 

Triassic salt (Fig. 6.2B; see Corfield and Sharp, 2000; Marsh et al., 2014). 

Evidence of fault-block rotation during sedimentation includes erosion of the Garn and 

Melke formations in areas of localized uplift (Fig. 6.3A) and greater thickness towards the 

bounding faults (Fig. 6.3A–C), resulting in the wedge-shape geometry of the formations (Fig. 

6.3A–C, cf. Figs. 6.1B and 6.2A). Some faults active during the Garn time seem to have been 

buried during sedimentation of the Melke Formation and later reactivated (Fig. 6.3B–C).  

The complex structural evolution of horst and graben structures with displaced Garn 

Formation, as observed in several places across the Halten Terrace (Figs. 6.3A–C, 6.4B and 

6.5B), reveals post-Jurassic tectonic activity – as postulated by Brekke et al. (2001) for the 

Middle Jurassic to Early Cretaceous regional rifting phase. Most of these structures were 

probably formed during the Late Jurassic when rifting was most prominent in the Halten and 

Dønna terraces, before transferring out into the Møre and Vøring basins to the west during Early 

Cretaceous (Nøttvedt et al., 2008). Post-Jurassic tectonic activity is evident by the “curving” of 

seismic reflectors, which represents post-Jurassic deposits being dragged along the fault planes 

of some horst structures (Fig. 6.3C).



 

 47 

 
Figure 6.4: W–E seismic section across the Halten Terrace (see Fig. 3.1 for approximate location). (A) Model of interpreted seafloor tectonic topography at the sedimentation time of the Garn 
Fm. (B) Interpretation of faults and seismic horizons for the Shetland Gp., Spekk Fm./base-Cretaceous unconformity (BCU), Melke Fm., Garn Fm. and Not Fm. Note the indicated cases of erosion 
due to localized uplift with possible subaerial exposure, the thickening of the Garn Fm. towards boundary faults (wedge-shaped geometry) and areas of post-Jurassic tectonic activity. Seismic data 
vertically exaggerated (1:14) prior to generating the display image in Petrel. Seismic data courtesy of TGS. 
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Figure 6.5: NW–SE seismic section across the Halten Terrace (see Fig. 3.1 for approximate location). (A) Model of interpreted seafloor tectonic topography at the sedimentation time of the Garn 
Fm. Well 6407/1-4 has been projected onto the section line. (B) Interpretation of faults and seismic horizons for the Shetland Gp., Spekk Fm./base-Cretaceous unconformity (BCU), Melke Fm., 
Garn Fm. and Not Fm. Note the indicated cases of erosion due to localized uplift with possible subaerial exposure, the thickening of the Garn Fm. towards boundary faults (wedge-shaped geometry) 
and areas of post-Jurassic tectonic activity. Seismic data vertically exaggerated (1:14) prior to generating the display image in Petrel. Seismic data courtesy of TGS. 
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6.2 Well-log interpretation 

The distinction of sedimentary facies and their genetic assemblages (associations) is crucial in 

both petroleum exploration and reservoir geo-modelling, because facies are the primary control 

of petrophysical characteristics and fluid flow. Facies provide also crucial information on 

depositional processes and sedimentary environments (e.g., Walker, 1984a).  

Sedimentary facies, similarly as ichnofacies and carbonate microfacies, are 

distinguished on the basis of well-core samples. However, for technical and economic reasons, 

wells are only sporadically cored over the entire stratigraphic interval of interest, whereas 

deviated and horizontal wells are problematic to retrieve core samples from. Geophysical 

wireline well-logs are incomparably wider available, and hence it is always worth trying to 

extrapolate the facies information from well cores onto wireline logs and use the latter as 

interpretive proxies. Such efforts have been made on quantitative basis by using statistical 

methods, such as discriminant analysis (e.g., Avseth et al., 2001; Tang et al., 2004) and Naïve-

Bayes classifier (e.g., Li and Anderson-Sprecher, 2006), or methods focusing on the application 

of Artificial Neural Network (ANN) (e.g., Wong et al., 1995; Bhatt and Helle, 2002) and fuzzy 

logic (e.g., Cuddy, 2000; Saggaf and Nebrija, 2003). Common to all these approaches is that 

facies identification relies on the probability that the wireline log values for particular 

sedimentary facies in a cored well are the same for the facies of a non-cored well. 

An attempt to link facies or their associations recognized in well cores with specific 

signatures of wireline logs has also been made – on a semi-quantitative visual basis – in the 

present study. The individual facies distinguished in well cores were assigned different colours 

(see well-core logs in Appendix) and these colour layers were then laid over the corresponding 

gamma-ray wireline logs (Fig. 6.6). The gamma-ray log is widely used to distinguish 

sandstones from shales (e.g., Serra, 1984) and might then help to distinguish sandstone facies 

from mudstone facies and mudstone-bearing heterolithic facies. The results helped to 

distinguish hypothetical parasequences composed of shallowing-upward facies associations 

(Fig. 6.6), but showed no obvious general link between the wireline log signature and specific 

sedimentary facies or even facies association. As discussed further in the next chapter, the local 

burial depth of the Garn Formation is highly varied – from less than 2.5 km to more than 4.5 

km (Table 3.1) – and the related differential impact of diagenetic processes had apparently 

obscured the primary signature of sedimentary facies. The use of wireline logs from numerous 

non-cored wells in the study area as facies proxies thus appeared to be infeasible.  
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Figure 6.6: Interpretive extrapolation of sedimentary facies and their associations to gamma-ray logs (with standard API units of 0–150). The well logs are flattened to the top of Garn Fm. Facies 
colours are as in the Appendix, with five facies associations (FA1–5) distinguished. Note the shallowing-upwards facies successions bounded by marine-flooding surfaces and interpreted as 
parasequences. The laterally varied thickness and number of parasequences is attributed to syndepositional fault tectonics (differential seafloor subsidence).  
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7 DISCUSSION 
 

7.1 East Greenland as regional analogue 

It is widely accepted that the exposed geology of East Greenland serves as a comparative ‘story 

book’ for the Mid-Norway Continental Shelf. Although the East Greenland area in Jurassic was 

separated from the Norwegian Sea by an array of elongate islands (Fig. 7.1), many of the 

evolutionary trends in the structural and stratigraphic development are similar as a mirror image 

of the two margins of the proto-North Atlantic seaway (Ramberg et al. 2013). 

 

 
Figure 7.1: The proto-North Atlantic area between East Greenland and Mid-Norway comprised many narrow, NE-trending 
basins separated by elongate islands that became local sediment sources for the seaway’s sub-basins in Mid-Jurassic. The 
Halten Terrace was one of these sub-basins. Slightly modified from Ramberg et al. (2013); note that their interpretation of 
depositional environments, based on earlier studies, still does not invoke any tidal deposits. 

 

The Pelion Formation in East Greenland is time-equivalent of the Norwegian Sea Garn 

Formation. In the southern part of East Greenland, a deep-water basin known as the Jameson 

Land Basin formed in the Late Devonian to Early Permian time and continued to evolve 
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throughout the Mesozoic (Surlyk, 2003). The basin shows an overall layer-cake stratigraphy 

without major lateral changes in thickness, which is strongly in contrast to the Wollaston 

Foreland Basin to the north (Fig. 7.2; Surlyk, 2003). The structural development of this basin 

in Jurassic, in terms of its rotational fault-block tectonics (Fig. 7.2) and sedimentary 

environments (Surlyk, 2003) resembles closely – as a mirror image – that of the Halten Terrace 

(see earlier Figs. 2.2, 6.4 and 6.5). 

 

 
Figure 7.2: Cross-section through the Wollaston Foreland Basin, trending from the NW (A) to SE (A’) (after Surlyk, 2003). 
Note the rotated fault blocks and half-grabens, similar as in the Halten Terrace (Figs. 2.2, 6.4 and 6.5). The bright-green deposits 
of the Pelion Fm. are time-equivalent of the Garn Fm. in the present study. 

 

The Middle to Late Jurassic succession in Wollaston Foreland Basin is, like the Mid-

Jurassic Garn Fm. in the Halten Terrace area, confined to fault-bounded sub-basins and shows 

similarities in both sedimentary facies and stratigraphic evolution in terms of a complex 

interplay of fault-controlled subsidence and impact of major eustatic sea-level changes (Surlyk 

et al., 1981). Surlyk and Clemmensen (1983) described the Pelion Fm. (up to 500 m thick) of 

the Wollaston Forland Basin in terms of five facies: (1) bidirectional large- and giant-scale 

cross-stratified sandstones; (2) structureless sandstones; (3) small-scale cross-laminated 

sandstones; (4) heterolithic deposits with occasional coal seams; and (5) wave-worked 

sandstones rich in oyster shells. The deposition was interpreted to have occurred in a tidally-

dominated south-facing marine embayment with bayhead river deltas supplying sand from the 

north (Surlyk and Clemmensen, 1983).  

By comparison, the Halten Terrace is thought to have been split into an array of incipient 

grabens and half-grabens that acted as narrow straits, rather than embayments. The main sand 

supply came from the adjacent islandic landmass to the northwest, and although some small 
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deltas might be involved – the main transport and dispersal of sand was by tidal currents 

accompanied by perennially wave action. Little or no deltaic deposits have thus far been 

documented within the Garn Fm. in the Halten Terrace (see Messina et al., 2014). 

 

7.2 Sedimentary environment of the Garn Formation 

The Middle Jurassic (Bajocian–Bathonian) Garn Formation (Fig. 2.4) in the Halten Terrace 

area has a sharp and apparently erosional contact with the underlying mud-dominated Not 

Formation, interpreted to be a regionally significant erosional surface of an intra-early Bajocian 

regression and possibly structural tilting (Corfield et al. 2001). The Garn Fm. is considered to 

be a transgressive succession that culminated in, and in the upper part also interfingered with, 

the heterolithic or muddy neritic deposits of the overlying Melke Fm. (Corfield et al., 2001; 

Messina et al., 2014). 

 In the present study, the Garn Formation in the Halten Terrace is interpreted in terms of 

a tidally-driven environment dominated by tidal sand-ridge deposits (FA1) intercalated with the 

deposits of sheltered (FA5) or non-sheltered (FA3) inter-ridge swales, commonly shallowing 

upwards into subtidal sandflat deposits (FA2) and occasionally into wave-worked deposits 

(FA4) (Table 5.1). The sedimentation was controlled by the Halten Terrace’s active extensional 

fault-block tectonics (Figs. 6.4 and 6.5), whereby the differential seafloor topography of the 

NE-trending grabens, half-grabens and horst blocks both enhanced the NE–SW tidal currents 

and provided the accommodation space for sand accumulation. 

The early studies of the Garn Formation envisioned a shoreface depositional 

environment with variable wave, fluvial and tidal influences. Gjelberg et al. (1987) initially 

envisioned the sedimentary environment of the Garn Formation as a sandy shoreface 

environment comprising SE-prograding delta lobes influenced by wave and tidal processes. 

This early interpretation was maintained by Dalland et al. (1988) and was brought to an extreme 

vision of fluvial influence by a more recent study – based on a single well core (6506/12-1) in 

the Smørbukk Field – by Fylling (2010), who envisaged the Garn Fm. as a vertical stack of 

amalgamated braid-delta fluvial bars and marine-flooded braid-delta deposits. The main 

argument for fluvial origin was that the succession showed internal evidence of episodic erosion 

and abrupt grain-size changes, a dominance of large-scale (i.e., dune scale) cross-stratification 

and an absence of marine trace fossils. However, the lack of marine trace fossils in the Garn 

Fm. is not true in the light of the present regional study (see evidence in Chapter 4) and also 

both the abundance of large-scale cross-stratification and the episodic erosion and abrupt 

increases in sediment grain size can be easily explained in terms of a wave-influenced tidal 
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environment (Chapter 5; see also Clifton and Dingler, 1984; Kreisa et al., 1986; Colella and 

d'Alessandro, 1988; Arnott, 1993; Longhitano and Nemec, 2005; Desjardins et al., 2012a; 

Messina et al., 2014). Notably, the evidence of sedimentary facies from the well 6506/12-1 

studied by Fylling (2010) – as shown by NPD’s well-core photographs – reveals a close 

resemblance to the facies identified in the present study and explained in terms of a tide-

dominated environment (see Chapter 4). The present study concurs with the notion of a main 

sediment delivery via shoreface and deltaic systems from the NW (Gjelberg et al., 1987; 

Dalland et al., 1988; Messina et al., 2014), while also supporting the notion of Messina et al. 

(2014) that the sedimentary environment of the Garn Fm. in Halten Terrace was topographically 

differentiated by syndepositional fault-block tectonics and strongly influenced by the action 

NE–SW tidal currents. 

Regional palaeogeographic reconstructions suggest that the Early to Middle Jurassic 

sedimentation most likely occurred within a narrow seaway extending from the open Boreal 

Sea in the north, bounded by a sand-supplying landmass to the west and the Trøndelag Platform 

to the east (Fig. 2.3), and reaching out to the open Tethys Ocean in the south (Gjelberg et al., 

1987; Doré, 1992; Brekke et al., 2001; Nøttvedt et al., 2008). The sand-supplying landmass 

probably consisted of an island or islands (Fig. 7.1), which would have had small water 

catchments (Messina et al., 2014) and thereby unlikely to form large river deltas stretching out 

onto the Halten Terrace area, as postulated by Dalland et al. (1988). 

Narrow seaways and straits that link large open-sea water bodies are a unique 

depositional setting where geomorphic constriction and possibly a slight difference in water 

elevation at the two ends of the strait can lead to amplification of tidal and/or oceanographic 

currents (Montenat et al., 1987; Colella and d'Alessandro, 1988; Pratt, 1990; Sztanó and Boer, 

1995). As a result, their sedimentary dynamics, facies organization and response to relative sea-

level changes are unlike any other shallow-marine environments (Anastas et al., 2006). 

The deposition of the Garn Formation occurred in a syn-rift regional setting (Figs. 6.3, 

6.4 and 6.5), where sediment accumulated in a series of incipient shallow grabens (Fig. 7.3) 

and half-grabens (Fig. 7.4) that formed due to extensional faulting or fault-propagated flexuring 

(Blystad et al., 1995; Corfield and Sharp, 2000; Corfield et al., 2001; Marsh et al., 2010). In the 

axial parts of the tectonic grabens and half-grabens within the Halten seaway (Figs. 6.4 and 

6.5), tidal sand-ridges were formed by amplified tidal currents (Corfield et al., 2001; Messina 

et al., 2014), whose southwards flows might have dominated due to enhancement by boreal 

storms (see McBride, 2003). The fault-controlled development of accommodation space was 

spatially differential (Figs. 6.4 and 6.5) and driven by pulses of tectonic extension, which 
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resulted in deposition of upwards-shallowing parasequences punctuated by marine flooding 

surfaces (Fig. 6.6). 

 
Figure 7.3: Hypothetical reconstruction of the sedimentary environment of Garn Fm. in the Kristin Field by Messina et al. 
(2014). Note the incipient Kristin graben, conveying enhanced tidal currents, and the development of tidal sand ridges. The 
reconstructed Kristin graben is at the outer margin of the Halten Terrace, bounded to the NW by the Sklinna High. A similar 
pattern of sedimentation may have characterized at least some of the other incipient grabens within the Halten Terrace area 
(see Figs. 6.4 and 6.5). 

 

 
Figure 7.4: Hypothetical model for the formation of tidal sand ridges in a half-graben. Redrawn and slightly modified from 
Gawthorpe and Leeder (2000). A similar pattern of sedimentation may have characterized some of the other incipient half-
grabens in the Halten Terrace area (see Figs. 6.4 and 6.5). 
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The dominant role of tidal currents for the Garn Formation was not recognized in the 

early studies (see Fig. 7.1), but has been increasingly postulated with the recognition of tidal 

dunes and tidal sand ridges (Corfield et al., 2001; Elfenbein et al., 2005; Quin et al., 2010; 

Messina et al., 2014). The present study concurs with this interpretation by recognizing the 

dominance of tidal sand-ridge deposits (FA1) in all studied wells, and thereby demonstrating a 

regional significance of the sedimentation model postulated by Messina et al. (2014) for the 

Kristin Field. Shelf sand ridges are thought to develop during marine transgression under the 

following four conditions (Snedden and Dalrymple, 1999): (1) a seafloor topography with pre-

existing irregularities; (2) an adequate supply of sand; (3) sand-transporting tidal and/or storm-

driven currents; and (4) sufficient time for the sand to be moulded into a ridge or a field of 

ridges. All these conditions would appear to have been fulfilled in the area of the Mid-Jurassic 

Halten Terrace. 

Tidal longitudinal bars (sand ridges) and transverse bars (sand waves) (Fig. 5.3) abound 

on modern transgressive shelves (e.g., Houbolt, 1968; Swift and Field, 1981; Thomas and 

Anderson, 1994; Berné et al., 1998, 2002; Reynaud et al., 1999; Snedden and Dalrymple, 1999; 

Trentesaux et al., 1999; Snedden et al., 2011), but their common occurrence in ancient 

transgressive shelf settings has only recently begun to be recognized (Corfield et al., 2001; 

Longhitano and Nemec, 2005; Michaud, 2011; Olariu et al., 2012b; Schwarz, 2012; Messina et 

al., 2014; Leva López et al., 2016). This evidence runs counter to the earlier notions that tidal 

sand bars in a transgressive shelf setting cannot form because of the declining sand supply and 

that, even if formed, they have a poor preservation potential (Berné et al., 2002; Coe and 

Church, 2003). Another reason hindering recognition of tidal sand bars in ancient shelf settings 

was the lack of a facies model for their development. Leva López et al. (2016) proposed an 

architectural facies model for tidal bars formed in open-marine shelf settings and encased in 

mud. However, this model differs from the models proposed for shelf-hosted, tide-dominated 

and persistently wave-influenced narrow seaways, where mud tends to be kept in perennial 

suspension by waves, chiefly sand is deposited and where tidal sand bars are the seaway’s main 

morphodynamic element (Colella and d'Alessandro, 1988; Longhitano and Nemec, 2005; 

Longhitano et al., 2012; Messina et al., 2014). It is these models that are particularly relevant 

to the sedimentary infill of the incipient grabens and half-grabens of the rifting pre-collapse 

Halten Terrace seaway (Figs. 6.4 and 6.5). 

In such strait-like settings, the main transport of sand was by the confinement-boosted 

tidal currents, while the upper accommodation limit for tidal sand-bar growth was defined by 

the water depth and fairweather wave base. Messina et al. (2014) suggested a fairweather wave 
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base at a water depth of 5 m as a reasonable estimate for such marine settings. Therefore, the 

build-up of sand-bar deposits (FA1) would generally culminate in the shoal-water deposits of 

subtidal sandflat (FA2) or wave-worked shoal-water deposits (FA4) (Fig. 6.6). The sand 

deposition on the inter-graben horsts and half-graben elevated margins was limited to these 

shoal-water deposits of FA2 and FA4 (Table 5.1). Sand was probably swept from the horsts 

and footwall crests into the hangingwall depozones during phases of decreased accommodation 

(see Yielding, 1990; Ter Voorde et al., 1997). The diverging and converging topographic 

configuration of the tidal ridges (Figs. 7.3 and 7.4) resulted in both sheltered and non-sheltered 

inter-ridge swales, where the deposits of FA5 and FA3 (Table 5.1) were accumulated, 

respectively.  

The present study thus concurs with the study by Messina et al. (2014) from the Kristin 

Field, where the following three facies associations in the Garn Formation were recognized: 

tidal sand-ridge deposits, inter-ridge swale-fill deposits and wave-worked littoral deposits. 

Although wave-worked deposits in the present case have been recognized in only one well 

(6507/11-8, Fig. 6.6), it should be kept in mind that the hypothetical Kristin graben was at the 

land-bound outer margin of the Halten Terrace seaway (Fig. 7.3), where sand supply was 

highest, bathymetry was shallower and where accommodation could have been more frequently 

exhausted. The wells used for the present study are from the seaway’s axial part and from the 

thickest zones of the Garn Fm., which means local grabens and half-grabens. The inter-graben 

horst blocks and half-graben margin zones, where the deposits of FA4 (Table 5.1) would 

expectedly dominate, are hardly represented by well cores in the present study. The tidal 

currents in the seaway’s axial part were likely strongest, whereby the shallowing of water there 

promoted formation of subtidal sandflats, rather than allowing wave action to prevail on the 

seafloor, before another pulse of tectonic subsidence increased the accommodation again and 

permitted a new generation of sand ridges to develop. 

 The deposition of the Garn Formation in the Halten Terrace seaway was incremental, 

controlled by pulses of tectonic subsidence, and was mainly aggradational (Elfenbein et al., 

2005), although involving both progradation and lateral migration of successive tidal sand 

ridges (Messina et al., 2014). The latter authors have hypothetically suggested that the prevalent 

tidal-current direction was towards the south (SW), on the account of a stormy Boreal Sea wave 

climate to the north. 

 Corfield et al. (2001) recognized several episodes of minor transgressions and normal 

regressions within the Garn Fm. in the Smørbukk and Smørbukk South fields, yet without 

specifying their exact number. Messina et al. (2014) in the Kristin Field at the outer (NW) 
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margin of the Halten Terrace recognized sixteen transgressive–regressive parasequences. 

However, this outer marginal zone of the seaway was probably the most sensitive to the 

interplay of bathymetric changes and pulses of sediment supply. The present study from the 

seaway’s main axial zone has recognized on a local well-core basis between 3 and 5 

transgressive–regressive parasequences which are ~7–58 m thick (Fig. 6.6). This comparative 

evidence suggests that the Halten Terrace in Mid-Jurassic time acted as a synclinal seaway 

compartmentalized by fault-block tectonics into grabens and half-grabens, with spatially varied 

bathymetric responses and parasequence thicknesses, and with the seaway’s outer marginal 

zone being much more sensitive to relative sea-level changes than its axial zone. The seaway’s 

sequence stratigraphy, driven by local tectonics, thus cannot be used as a simple record of 

lower-order eustatic sea-level changes, even though such may in reality have been involved 

(see Eriksson and Simpson, 1990). 

The variable thickness, apparent diachroneity and highly differential burial depth of the 

Garn Formation has been recognized on both a regional scale (Gjelberg et al. (1987) and a local 

scale of 5–10 km (Corfield et al., 2001; Messina et al., 2014). Interpretation of seismic data by 

Corfield et al. (2001) indicated an occurrence of “older” Garn sandstones of early to earliest-

late Bajocian age in the northern part of a synclinal depocentre between the Smørbukk and 

Smørbukk South fields, and “younger” Garn sandstones (late Bajocian to early Bathonian in 

age) on the structural highs of the Smørbukk South Field and in the crestal areas of the 

Smørbukk Field (Fig. 7.5). A similar relationship – with the wave-worked sandstones of 

uppermost Garn Fm. retreating onto the basin-margin high while interfingering basinwards with 

the expanding muddy heterolithic deposits of the lower Melke Fm. – was recognized by 

Messina et al. (2014) along the eastern margin of the hypothetical graben in the Kristin Field 

(Fig. 7.3). A similar high diachroneity characterizes the upper boundary of the time-equivalent 

Pelion Fm. in East Greenland, where the shallow-marine littoral sandstones pass southwards 

into silty, micaceous neritic mudstones of the Fossilbjerget Fm. (Surlyk, 2003). 
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Figure 7.5: A simplified model proposed by Corfield et al. (2001) for the tectono-stratigraphic development of the Garn Fm. 
sandstones and Melke Fm. mudstones in relation to the growth of the Smørbukk and Smørbukk South structures. Note that the 
“older” Garn sandstones are restricted to a synclinal depocentre, whereas the “younger” Garn sandstones are onlapping 
structural highs/crestal areas and are coeval with the Melke mudstones deposited along the syncline axis. 

 

Corfield et al. (2001) thus concluded, on the basis of seismic, wireline well-log and 

biostratigraphic data, that there is a clear time-correspondence between the up-dip Garn sands 

on structural highs and the down-dip Melke mudstones in the basin lows (Fig. 7.5). This may 

have occurred because the sea-level rise forced the shoreline to back-step onto structural highs, 

where the “older” Garn sands were absent or removed and replaced by “younger” Garn sands 

concurrently with the deposition and expansion of muddy Melke facies in the synclinal axial 

zones of the basin grabens and half-grabens (Corfield et al., 2001; Messina et al., 2014).  

 The limited dataset available in the present study does not allow confirming these 

interpretations from the Smørbukk, Smørbukk South and Kristin fields, but the evidence from 

the NW–SE seismic section (see Figs. 6.3B and 6.5B) seems to be consistent with the notion of 

a topographically controlled, marked short-distance diachroneity of the Garn/Not 

lithostratigraphic boundary. Anyway, the interpretive stratigraphic model of a diachronous 

expansion of the Garn Fm. sands onto the flanks of the basin grabens and half-grabens – with 

a concurrent replacement of sand by the Melke Fm. neritic mud along the local depoaxes – is 

an important addition to the general pattern of Mid-Jurassic sedimention in the Halten Terrace 

area and also bears important implications both for the spatial sand predictions in subsurface 

exploration and for the development of actual reservoir geo-models. 

 

7.3 Problems with an extrapolation of well-core facies to wireline logs 

Extrapolation of well-core sedimentary facies to non-cored wireline logs has long been a 

universally attractive and widely attempted search for a ‘holy-grail’, as it might allow turning 

the wireline logs directly into facies logs. Various quantitative (statistical or stochastic) and 

semi-quantitative attempts have been made in the literature to establish a possible 

correspondence of wireline logs with well-core facies (see earlier review in Chapter 6.2), but 
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few successes have thus far been reported. A semi-quantitative ‘wild-shot’ attempt has also 

been duly made in the present study by trying to correlate well-core sedimentary facies with 

specific and potentially diagnostic gamma-ray wireline signatures (Fig. 6.6). The geophysical 

gamma-ray well log is known to be the most sensitive wireline log when it comes to the 

recognition of lithofacies, such as ‘clean’ sandstones, mud-rich sandstones (wackes), 

heterolithic interlayered mudstone-sandstone deposits and pure mudstones (e.g., Serra, 1984). 

This attempt has proven to be unsuccessful, showing no obvious general link between 

the wireline log signature and specific sedimentary facies or even facies association (see Fig. 

6.6). The individual well-cores are from very different burial depths (from less than 2.5 km to 

more than 4.5 km; see Table 3.1), and the effect of their depth-related differential diagenesis 

(cementation) has apparently overwhelmed the signal of the primary heterogeneity of their 

sedimentary facies. The Garn Fm. sandstones in some well cores are moderately cemented, 

while being heavily cemented with silica and showing micro-styllotization in deeper cores.  The 

Garn Fm. in its different parts was invaded by hydrocarbons at its different burial stages, which 

suppressed cementation at different stages of advance. In its other parts, the formation was not 

invaded by hydrocarbons at all and the diagenesis there proceeded even to a micro-styllotization 

stage (see Figs. 4.3B–C). Quin et al. (2010) reported on the formation of micro-styllolites in 

thin muddy drapes and micaceous sandstone laminae in the Kristin Field. Corfield et al. (2001) 

in the Smørbukk South Field reported on the development of early diagenetic cements from 

well cores in both up-dip (structurally high) and down-dip (original depozone) parts of the Garn 

Fm., which indicates a profound restructuring of the Mid-Norway Shelf by its eventual 

Palaeocene collapse and the opening of the North Atlantic oceanic branch. In short, the 

differential diagenetic history and highly differential burial depth appear to have obscured the 

primary signature of facies heterogeneity in the Garn Fm. on a regional scale in terms of the 

resulting wireline signature.
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8 CONCLUSIONS 
 

The sedimentary succession of the mid-Jurassic Garn Formation in Halten Terrace area, Mid-

Norway Continental Shelf, has been studied on the basis of selected well cores, wireline logs 

and seismic sections with an aim to improve the general understanding of its sedimentary 

environment and to assess the role of contemporaneous fault tectonics in its deposition. This 

sedimentological study leads to the following main conclusions: 

• The evidence from widely spread wells, including core samples from 9 wells and wireline 

logs from nearly 30 wells, indicates that the Garn Fm. is virtually dominated by sandstones 

on regional scale. The thickness of Garn Fm. commonly exceeds 100 m, but is highly varied 

on a local scale, within the lateral distances of 5–10 km. 

• The sandstone succession is interpreted to represent tidal sand ridges (longitudinal bars) 

accompanied by deposits of sheltered or non-sheltered inter-ridge swales and commonly 

shallowing upwards into subtidal sandflat deposits. Sandflat deposits are common as 

sedimentation episodes, but are rarely prominent, whereas subordinate wave-worked littoral 

deposits are only locally prominent. This palaeoenvironmental interpretation supports the 

notion that the mid-Jurassic Halten Terrace seaway was virtually dominated by tidal 

currents, but was also differentiated bathymetrically by syndepositional fault-block 

tectonics. 

• The evidence from seismic sections indicates that the sedimentation of the Garn Fm. was 

widely controlled by contemporaneous extensional-fault activity, with the main sand 

deposition confined to incipient (shelf pre-collapse) grabens and half-grabens.   

• Facies analysis confirms the notion that the Garn Fm. is a transgressive succession 

composed of transgressive to normal-regressive parasequences and is therefore interpreted 

as a transgressive parasequences set. However, the sedimentation was tectonically-

controlled and the number of parasequences depended on the local fault activity. The 

present study from the axial part of the Halten Terrace seaway indicates 3–5 such 

parasequences on a local basis, but the number of parasequences apparently increases 

towards the seaway’s more sensitive western (NW) margin – where up to 16 parasequences 

were recognized by Messina et al. (2014). 

• The translation of wireline well-log signatures into well-core sedimentary facies appears to 

be an impossible task in the present case, where the Garn Fm. – due to the post-Cretaceous 

collapse of the Mid-Norway Shelf margin – reached a burial depth ranging from <2.5 km 



Chapter 8  Conclusions 

 62 

to >4.5 km. The differential diagenetic effect of the spatially differential sediment burial 

has virtually obscured the primary properties of sedimentary facies. 

 

As a recommendation for future research, the present study suggests the following main lines 

of further detailed investigation:  

• A full-scale 3-D seismic-image analysis of the Garn Fm., which could verify the notion  

of syndepositional fault activity, with incipient grabens and half-grabens, in the mid-

Jurassic Halten Terrace area.  

• A detailed analysis of core and wireline well-logs to check if the deposits at similar burial 

depth may still bear some wireline-log signatures recognizably correlative with core-log 

facies.  

• A challenging source-to-sink budgeting study of the system of sand supply and dispersal in 

tidally-dominated seaways supplied with sand delivered laterally and distributed 

longitudinally along the seaway axis by reversing tidal currents.
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