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Abstract 

1. Abstract 
 

Blue mussels (Mytilus edulis) from 23 different localities were collected in Byfjorden and the 

coastal areas of Bergen in Western Norway in the late winter, before the spawning season. 

Analyses of copper, zinc, arsenic, silver, cadmium, mercury and lead were carried out with ICP- 

MS. Blue mussels showed elevated concentrations of copper, zinc and lead in the Bergen centre 

area, while arsenic, silver, cadmium and mercury concentrations were within the normal range in 

the area. Compared to data from 1993, there is an overall reduction in copper, zinc, cadmium, 

mercury and lead concentrations in blue mussels in the Bergen centre. The environmental quality 

in the fjords around Bergen centre can be defined as moderately polluted by copper, zinc and 

lead, while other coastal areas of Bergen can be defined as unpolluted. The new outlet sites for 

the sewage water from the Bergen centre did not indicate any elevation in trace metal 

concentrations in blue mussels.  

 

Effects of size, position on the tidal zone and freezing and thawing on the trace metal 

concentrations in blue mussels were studied. Copper showed a negative regression slopes with 

length of blue mussels in polluted and unpolluted sites. Cadmium had positive regression lines 

with length in the polluted site but negative in the unpolluted site. Cadmium and lead 

concentrations were significantly higher in blue mussels growing subtidally compared with the 

mussels growing higher up on the tidal zone. Blue mussels dissected fresh had significantly 

higher arsenic, silver and cadmium concentrations than the mussels that had been frozen and 

thawed before dissection.  
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Introduction 

2. Introduction 

2.1 Background 

Marine pollution is a global environmental problem. Human activity on land, in the water and in the air 

contributes to contamination of sea water, sediments and organisms with harmful substances.  

Contaminants can be natural substances or artificially produced compounds. After discharge into the 

sea, contaminants can stay in the water layer in dissolved form or they can be removed from the water 

column to the bottom sediments in particles. Organisms can take up contaminants from the water or in 

particles and accumulate them in the body (Stewart, 1999). If organisms are not able to remove the 

substances from their body, these can be passed on to next level in food chains by biomagnification. 

Organisms may react differently when exposed to contaminants. Some animal groups may 

accumulate large amounts of contaminants without any harmful effects, while other groups might get 

lethal effects already in lower concentrations (Levinton, 1995; Clark, 1997). Biomonitors are 

organisms, which accumulate contaminants in their tissues and may be analysed to monitor the 

bioavailability of such contaminants in ecosystems (Viarengo & Canesi, 1991; Rainbow & Phillips, 

1993).  

 

Norwegian coast has during its history received discharges from industry, private households and 

transport. As a consequence, several fjord areas are seriously polluted by cadmium, lead, mercury 

and other metals and organic contaminants including polycyclic aromatic hydrocarbons (PAHs) and 

polychlorinated biphenyls (PCBs) (SFT, 2003). The Norwegian State Pollution Control (SFT) has 

developed a classification system for environmental quality of Norwegian fjords. On the basis of 

sediment- and water samples or concentration levels in different organisms, fjord areas can be 

classified to five different classes, from unpolluted (I) to extremely highly polluted (V). On this way 

eventual improvements or negative trends in environmental quality in the fjords can easily be followed 

(Molvær et al., 1997). The environmental status of several fjords have been improved recently after 

successful initiatives from the state-, county- and town policies, but some harbours and sites with 

mining and industrial activity remain problem areas (SFT, 2003). Today Norwegian State Food Control 

(SNT) has given limitations for sale and consumption of seafood in 28 fjord areas (SNT, 2003).  
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Introduction 

2.2. Byfjorden and the coastal areas of Bergen 

Byfjorden is located in shattered fjord landscape in Western Norway (Fig. 2.1).  Byfjorden is connected 

to coastal waters through Raunefjorden in the south and Hjeltefjorden in the west. In north it is splitted 

to Herdlafjorden in north-west and Salhusfjorden in north-east. Byfjorden is 200- 300 m deep and 

water circulation is relatively good between the fjords in the area (Linde, 1970; Helle, 1975). Bergen 

harbour is located in Bergen centre on the east side of Byfjorden around two shallow bays, Vågen and 

Puddefjorden. The harbour sediments are seriously polluted by PCB, PAH and trace metals (Anon., 

2002). SNT has given a recommendation to avoid consumption and sale of seafood in Bergen area 

ranging from Raunefjorden in south to Herdlafjorden and Salhusfjorden in north from the Bergen 

centre (Fig. 2.1) (SNT, 2003).  
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Figure 2.1. Map of Byfjorden and fjord areas around it. Bergen centre is marked with a grey circle. 
The area with limitations of consumption of seafood is bordered in with black lines (SNT, 2003).  
 

Municipal waste water system, including industrial discharges and urban run-off, heating, traffic and 

harbour-related pollution are the main causes of contamination of the water and sediments in 

Byfjorden (Sekse & Kvingedahl, 1992; Anon., 2002). Until recently the municipal wastewater from 

Bergen centre has been leaded untreated into Byfjorden. The bays in the Bergen centre, Vågen and 

Puddefjorden, have received approximately 116 000 person equivalents (Pe) of wastewater annually 

until 1997 (Anon., 1988; Anon., 2002). One person equivalent (Pe) is an estimation of the amount of 
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wastewater what one person produces within a year. The input of trace metals into the municipal 

wastewater system was estimated to 9500 kg/year in Bergen in 1991. Sewage was the main source of 

copper, zinc and cadmium, while industry was the main source for mercury (Table 2.1). Urban run-off 

was clearly the main source of lead into the municipal waste water (Sekse & Kvingedal, 1992). 

 

Table 2.1. Annual output (kg/year) of copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg) and lead 
(Pb) from different sources into municipal waste water in Bergen annually in 1991. Data from Sekse & 
Kvingedal (1992).  
 
Source Cu  

(kg/year) 
Zn 

(kg/year)
Cd 

(kg/year)
Hg 

(kg/year) 
Pb 

(kg/year) 
Industry 207 750 8 38 265 
Sewage 1541 2350 34 6 203 
Urban run-off 529 1800 21 1 1092 
Spillage from municipal waste plant 23 100 7 0 0 
Totally 2300 5000 70 45 1560 
 

However, several improvements have been made since the 1990’s. Among them, two mechanical 

water treatment plants were built in the Bergen centre in 1997 and 1999. Now wastewater is led 

through a filter with 1 mm openings before it is leaded out to 40 m depth in Lyreneset and Fagernes 

(Fig. 2.1) (Anon., 2002). In addition, the use of leaded gasoline in vehicles has been reduced since the 

beginning of 1986. Also mercury output has been regulated, and since 1994 dentists and laboratories 

have filtered mercury out from the rest of the wastewater (Dons & Beck, 1993). On the basis of 

improvements mentioned above, reduction in concentrations of trace metals can be expected in the 

area. 

 

2.3. Blue mussel (Mytilus edulis) 

Blue mussel (Mytilus edulis) (Linné 1758) belongs to the family Mytilidae in phylum Mollusca (Fig. 2.2). 

Systematic is complicated because of the several subspecies, and the relations between these are 

under continues revising (Seed, 1976; 1992; Rainbow & Phillips, 1993). The species is widespread in 

the northern hemisphere and can be found from White Sea to Mediterranean and North Africa in 

Eastern Atlantic, from Canadian arctic to North Caroline in Western Atlantic and from Arctic to 

California and Japan in the Pacific (see Seed, 1976; 1992). Blue mussel is found on littoral and 

sublittoral zone, both in exposed and sheltered localities. The species tolerate wide temperature 
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range, as well as different salinities (Seed, 1976). It is important species both economically and 

ecologically, and the sales of farmed mussels reached 600 tons in Norway in 2000 (Anon., 2001). 

 

Phylum Mollusca 

 Class Bivalvia 

U.  Class Pterioida 

  Orden Mytiloida 

   Family Mytilidae 

    Genus Mytilus 

Figure 2.2. Systematic of Mytilus edulis (L.) 

 

Blue mussel feeds by filtering algae, detritus and organic particles from the water with its gills. Sexual 

maturation takes place at the age of 1-2 years depending on the growth rate and size (Seed, 1976; 

Hovgaard et al., 2001). The reproductive cycle of mussels is controlled by the combination of several 

internal and external factors, among them nutrient reserve of individuals, food availability and 

temperature in the water. There might be large variations in time and form of spawning between two 

geographically close populations (Seed, 1976; Newell et al. 1982). In Norway the main spawning of 

blue mussels is in March-April (Duinker & Mortensen, 1999; Hovgaard  et al., 2001). In addition, local, 

not synchronised spawning can appear in other times of the year (Duinker, 2002. pers. comm.). 

During spawning mussels can loose up to 70 % of their biomass (Duinker & Mortensen, 1999). 

Spreading of the species occurs in the larval phase, when planktonic larvae search for suitable 

substrate. Blue mussels favour to settle on flat shores, which receive constant wave movements, 

although dense populations are also found on steeper faces, dock piles and harbour walls (Seed, 

1976). Adult individuals anchor themselves to substrate with byssus threads. After settlement blue 

mussels are able to move over substratum, but since mussels also favour growing in dense colonies, 

byssus threads of other individuals keep the colony together. This makes that blue mussels can not 

escape from unfavourable conditions or from pollution. 

 

 5



Introduction 

2.4. Trace metals 

In the present study seven trace metals were analysed in blue mussels: copper (Cu), zinc (Zn), 

arsenic (As), silver (Ag), cadmium (Cd), mercury (Hg) and lead (Pb). All these trace metals, in addition 

to chromium (Cr), are included in environmental monitoring program for mussels in EU (2001), as well 

as in Norway (Julshamn & Duinker, 2001). Trace metals can be divided into essential elements and 

non essential elements. Essential elements occur naturally in all organisms. Copper and zinc are 

essential for many enzymatic functions. In high doses also essential elements can be poisonous and 

cause hazardous effects on organisms. The non essential elements do not have any positive effects 

on organisms and they are harmful already in low doses. They can inhibit an essential element to bind 

to enzyme and disturb the normal enzymatic function in the body. This group includes cadmium, 

mercury and lead (Aune, 1998). 

 

Copper is used in antifouling paints on boats and fish farming equipment, electrical equipment and 

water pipes. Municipal wastewater, mining and processing of nickel and copperferrosulphide (CuFeS2) 

are also notable point sources of copper into the water in Norway (Dons & Beck, 1993). In sea water 

copper exist both dissolved in water and bound to particulate matter (Balls, 1985). Copper is essential 

in respiration fro many organisms and other enzymatic functions. It is stored in liver and bone marrow 

in humans. In contrast, some dissolved copper salts are hazardous for many algae, bacteria and fungi, 

as well as fish and plankton. An overdose in humans can cause liver damage, low blood pressure, 

coma or even death (Dons & Beck, 1993; Blomseth & Hartmann-Pedersen, 1995). Blue mussels 

accumulate copper in the body although the species can regulate the uptake (Phillips, 1976a; 

Davenport, 1977; Davenport & Manley, 1978; Julshamn, 1981a).  

 

Zinc was considered as a notable environmental problem in Norway in the 1990’s (Dons & Beck, 

1993). Its main sources are metallurgic industry, pyrite mines, galvanic industry, incineration plants 

and anti corrosive products, paints, plastic and rubber. Leakage to water in 1992 was estimated to 634 

tons in Norway, mostly from industry and offer anodes (Dons & Beck, 1993). Many zinc compounds 

are soluble in water and it is accumulated in organisms. It is an essential element to all organisms, 

and for humans a daily intake of 9 mg zinc is needed for normal body functions (Anon., 1997). The 

human body can regulate uptake of zinc and overdoses can cause diarrhoea and vomiting. For 
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organisms in water, high doses of zinc can be acute poisonous or give chronic effects (Dons & Beck, 

1993). Blue mussels can regulate zinc uptake, and is not counted as a reliable indicator species for 

zinc contamination (Lobel et al., 1982; Julshamn, 1981a). 

 

Arsenic is used in impregnated wood, brass, lead accumulators and glass. Leakage to water was 

estimated in 1992 to 0.4 tons annually in Norway. The main sources of arsenic in southern Norway are 

estimated to be airborne arsenic from industrial sites and leakage from wood impregnation 

manufactures. Accumulation and effects of arsenic in organisms are depended on the compound. 

While inorganic arsenic compounds are acute poisonous for most organisms, organic compounds 

might be only slightly poisonous. Arsenic can cause chronic effects on embryos, damage DNA 

molecules or cause cancer (Dons & Beck, 1993; Berg et al., 1997). Blue mussels bioaccumulate 

arsenic, although fish has been found to be better indicator for the metal (Julshamn & Grahl- Nielsen, 

1996). FAO/WHO has an upper limit for acceptable tolerable inorganic arsenic weekly intake of 15 

µg/kg body weight in human dietary.  

 

Silver is a trace metal which seldom is discussed when considered hazards to human health. It is used 

in photography in the form of silver bromide (AgBr) (Zumdahl, 1995). High silver concentrations in 

sediments have been reported in the vicinity of municipal sewage site and industrial sites (Sanudo-

Wilhelmy & Flegal, 1992). Effects on human health are not reported in the literature, but Hill (1976) 

found it possible to silver ion to replace copper in chicks. Blue mussels have been analysed for silver 

concentrations previously (Alexander & Young, 1976; Jones et al., 2001), although Bryan & 

Hummerstone (1977) found deposit feeding mollusc to be better indicator for particulate silver.    

 

International concern about effects of cadmium on organisms and environment has led to increasing 

focus on reduction of spillage of this element into environment. The North Sea Commissions 

declaration of reduction of cadmium output into water with 70 % was achieved in Norway in 1992. The 

main sources of cadmium are mining and processing of zinc, galvanising and paint industry and 

products like Ni/Cd batteries and offer anodes. The main sources into water are offer anodes used in 

ships and offshore industry, mining, sewage and long distance transport by air (Dons & Beck, 1993; 

Huse, 1999). Cadmium is found in marine waters mostly in the dissolved form (Balls, 1985). It 
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accumulates in fish and mammals, has long biological half life and it is acute poisonous for organisms 

in water and mammals. In mammals it is stored in kidneys and can cause cancer and damage kidneys 

(Dons & Beck, 1993). Blue mussels accumulate cadmium effectively (Phillips, 1976a; Julshamn, 

1981a; Julshamn & Grahl- Nielsen, 1996). EU has sat an upper limit of 1.0 mg Cd /kg (fresh weight) in 

mussels used for human consumption (EU, 2001).  

 

Mercury is an element which in some organic forms can become extremely poisonous. Sources of 

mercury in Norway are zinc mining, incineration plants, and products like amalgam, batteries and 

thermometers (Dons & Beck, 1993). Mercury is accumulated in kidneys of fish and mammals, organic 

mercury also in brains. Overdoses of mercury can cause damage in kidneys and central nervous 

system (Aune, 1998). Blue mussel takes up mercury and is a suitable indicator species for mercury 

contamination (De Wolf, 1975; Davies & Pirie, 1978). Upper limit of mercury in seafood is sat at 0.5 

mg/kg fresh weight in EU (2001). 

 

Lead is used in building materials and mechanical industry as well as in batteries, cables, pigments 

and gasoline. Use of lead in gasoline and other fossil fuels has reduced dramatically since 1990 - in 

Norway from 225 tons in 1990 to 4.9 tons in 1997 (Huse, 1999). Lead exists in water mostly in 

particulate form (Balls, 1985). It is accumulated in fish and mammals and is acute poisonous. Chronic 

effects can be neurotoxic, immunological or cancerous (Aune, 1998; Dons & Beck, 1993). Blue 

mussels take up lead from the water and food particles in similar rates and reflect environmental 

pollution effectively (Schulz- Baldes, 1974; Phillips, 1976a; Julshamn, 1981a). EU has set the upper 

limit of lead concentration in mussels to 1.5 mg/kg fresh weight, when used for human consumption.   

 

2.5. Environmental monitoring 

Environmental monitoring can include sediment or water sampling, studies of species diversity and 

abundance, or the use of biomonitors (Phillips, 1977a; Rainbow, 1995). The use of organisms instead 

of sediment- and water sampling has many advantages. Firstly, as mentioned previously, 

concentrations found in biomonitors tell more about a bioavailability of the pollutant in the 

environment. Secondly, the sampling of sediments and water might show large seasonal and temporal 

local variation, and time-scale monitoring might be difficult and expensive (Phillips, 1977a; Morrisey et 
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al., 1994). Thirdly, by using biomonitors, which have wide geographical distribution, contamination 

levels can be compared internationally (Mussel Watch, 1980; Rainbow & Phillips, 1993; Rainbow, 

1995).  

 

In definition, a good biomonitor species for environmental contamination tolerate and accumulate 

contaminants without suffering mortality and show responsiveness to changes in concentration levels. 

In addition, species should be abundant in the area, have long life span, sufficient sampling size and 

hardiness to tolerate laboratory incubation. Yet, sampling and identification of the species should be 

relatively easy. To reflect environmental status in a specific area, an indicator species should be 

sessile or have slow or limited range of movements (see Phillips, 1977a). Finally, a species should be 

able to accumulate pollutants similarly in different environmental conditions, and only then, according 

to Phillips (1977a), samples from different areas can be compared.  

 

Bivalves, including blue mussels (Mytilus edulis), have been found to be suitable biomonitor species 

for trace metals (Goldberg, 1975; Phillips, 1976a; 1977a; Brown & Luoma, 1995; Julshamn & Grahl-

Nielsen, 1996; Riget et al., 1996). Blue mussel is capable to accumulate trace metals such as 

cadmium, mercury and lead to a larger extent than for example fish and algae (Julshamn, 1981a; 

Julshamn & Grahl- Nielsen, 1996). It has wide geographical distribution and tolerance range for 

different salinities and temperatures. In addition, it has sufficient size, sessile life form and is robust in 

laboratory conditions. It can also be transplanted to different environments (Seed, 1976; Phillips, 

1977a; Cossa et al., 1980; Okumus & Stirling, 1998; Shindo & Otsuki, 1999). Despite that the species 

fill many of the criteria mentioned above, several biological and geochemical factors can cause large 

variations in contaminant levels in blue mussels. Size, sex, gut content and reproductive season of 

individuals and water temperature, pH, and salinity, among others, are factors which effect 

accumulation in mussels (Watling & Watling, 1976; Boyden, 1977; Davenport, 1977; Phillips, 1976a; 

1977b; Cossa et al., 1979; 1980; Lobel & Wright, 1982; Lobel et al., 1991; Regoli & Orlando, 1994; 

Brown & Luoma, 1995; Shindo & Otsuki, 1999; Stecko & Bendell-Young, 2000). International 

monitoring programs have established some standards for sampling and sample preparation 

procedures to reduce sources of variation, other than the metal content itself, in contamination levels 
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in blue mussels. These include, among others, sampling depth and season and size of the individuals 

(Mussel Watch, 1980; Claisse, 1989). 

 

2.6. Previous studies 

Several environmental studies have been made in Byfjorden and coastal areas of Bergen. The most 

comprehensive is a report series «Byfjordundersøkelse», the co-operation program of Bergen county 

and the University of Bergen, in which environmental status of Byfjorden has been followed frequently 

with sediment and bottom fauna sampling since 1973 (Johannessen, 1974; 1981; 1982; 1983; 1984; 

1985; Johannessen et al., 1991; 1992; 1993; Botnen et al.,1994; 1996; 1999; 2000; Botnen & 

Johannessen, 1999). Contamination levels in organisms have also been studied. Skei et al. (1994) 

and Knutzen et al. (1995) reported high levels of PAH, PCB, zinc, mercury and lead in blue mussels, 

crabs and fish, and Andersen et al. (1996) found elevated concentrations of copper, zinc, mercury and 

lead in blue mussels in Byfjorden (Tab. 2.2). Myhre (1998) found elevated levels of PAH, PCB and 

mercury in eel.  

 

Table 2.2. Trace metal concentrations in blue mussels (mg/kg fresh weight) in Byfjorden. Data from 
Skei et al. (1994), Knutzen et al. (1995) and Andersen et al. (1996). 
 
Cu Zn Cd Hg Pb Reference 
1.58- 2.98 32.7- 54.4 0.04- 0.15 0.02- 0.04 0.88- 1.76 Skei et al. (1994) 
0.71- 1.32 41.6- 47.7 0.15- 0.25 0.021- 0.054 0.76- 1.38 Knutzen et al. (1995) 
0.9- 3.78 32.2- 69.3 0.07- 0.29 0.01- 0.056 0.69- 2.76 Andersen et al. (1996) 
 

2.7. The aim of the study 

The aim of the present study was to examine possible changes in trace metal concentration in blue 

mussels since previous studies in 1993 and 1994 in Byfjorden (Andersen, 1994; Skei et al., 1994; 

Knutzen et al., 1995). This was done by analysing trace metal concentrations in blue mussels sampled 

at 23 different stations in polluted and unpolluted areas. The results were also compared with the 

normal background levels in the area (Julshamn & Duinker, 2001; 2002). It was also evaluated, if blue 

mussels in the coastal areas of Bergen are suitable for human consumption on the basis of the 

recommendations from EU (2001). The possible effects of the trace metal concentrations in blue 

mussels in the vicinity of the new sewage output sites were considered and compared with the data 
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from the period before discharges started (Andersen, 1994). Finally, the environmental status of 

Byfjorden and the coastal areas of Bergen were evaluated on the basis of the guidelines from the 

State Pollution Control (SFT) (Molvær et al., 1997).  

 

In addition to the main study, effects of size, position in the tidal zone and freezing and thawing of blue 

mussels were studied separately with the aim of to observe sources for variation in studies of trace 

metal concentrations in blue mussels. The size- effect was studied by comparing five different size 

classes from one polluted and one unpolluted site. In the tidal- effect study trace metal concentrations 

in blue mussels were compared from three tidal depths. The thawing- effect study was performed to 

test eventual differences in trace metal concentrations between one group of blue mussels dissected 

fresh and another that first was frozen and thawed prior to dissection.  
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3. Material and Methods 

3.1. Fieldwork 

Blue mussels (Mytilus edulis) were collected from totally 23 stations. Samples from the stations 1-

21 were collected between the 8th and 19th of March 2001 and the samples from stations 22-23 

were collected on the 26th and 27th of February 2002 in Bergen, Askøy and Fjell (Fig. 3.1). The 

stations were chosen on the basis of contamination levels found previously and the aim was to 

cover both polluted and unpolluted sites (Andersen, 1994; Skei et al. 1994; Knutzen et al, 1995). 

Three reference stations, stations 21- 23, were included into the study. Municipal wastewater 

outlets, aqua cultural sites and traffic were avoided when locations for the reference stations were 

chosen. The stations 4-14 were located in the Bergen centre with heavy traffic, industry and 

harbour activities. Station 14 at Lyreneset and station 2 at Biskopshavn were located in the 

vicinity of output sites to mechanical water treatment plants. Station 16 at Kolavåg was located in 

a bay beside a previous municipal disposal site. Håkonshella (st.17) were located in a small craft 

harbour. The rest of the stations (st. 1, 18, 19, 20, 21, 22 and 23) were located in the areas with 

scattered settlement and with little or no industry.  

 

In 2001 there were seven mechanical and one chemical water treatment plants in use in Bergen. 

Stations 1-14 and 18 were located in the area, where 90 % of the households were connected to 

municipal water treatment system. At stations 7 and 19, 50-75 %, and at station 20, 30-50 % of 

households were connected (anon., 1998). Stations 15, 16 and 23 were located in Askøy, where 

the municipal water treatment system consists of one chemical and seven mechanical water 

treatment plants and about 65 % households are connected into the communal system 

(Berthelsen, 2003, pers. com.). Stations 22 and 23 were located in Fjell, where one biochemical 

water treatment plant exists, which has its output at the inner Fjellspollen. About 50 % of the 

households are connected to the communal system. Blue mussels were collected on rocks, 

wooden dock piles, floating bridges and harbour concrete walls, depending on the sampling site.  
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Figure 3.1. Sampling of blue mussels Mytilus edulis in Byfjorden and coastal areas connected to it. 
Stations 4-12 were located in the Bergen centre, around Puddefjorden and Vågen. The sewage 
outlets are marked with asteriks.  

Stations: 

1. Danmarksneset. Danmarksneset is located 8 km north from Bergen centre. Mussels here  

were collected on the rocks at a private shoreline. 1A was located 50 m south from 1B on the 

coastline, and the mussels had very thick shells with many epiphytes. The mussels at 1B had 

regular shape and thin shells.  

 

2. Biskopshavn. Biskopshavn is located 3 km north from Bergen centre, 100 m upstream of the 

outflow for the new water treatment plant in Fagernes (Fig. 3.1). Annual municipal output here 
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presents 35 000 person equivalents annually (Pe/year). The mussels were collected on the rocks 

and on wooden dock pilings.  

 

3. Helgerneset. Mussels were collected on pilings of a wooden dock in an industrial area, 2 km 

from Bergen centre. The water smelled of sewage and there was garbage floating in the water.  
 

4. Skuteviken. This area has experienced recent dredging and is located next to a busy 

roadway.  Mussels were collected on pilings of a wooden dock. Water smelled again of sewage. 
 

5. Festningskaien. Mussels were collected on a passenger ship wharf in Bergen centre. The site 

has been a percipient to untreated wastewater (10 000 Pe/ year) until 1999 (Anon., 2002). 
 

6. Vågen. The station is located by the local fish marked in Bergen centre. Area is popular small 

boat anchoring site. Mussels were collected from a rope hanging from the concrete harbor wall. 

Mussels were small. 
 

7. Nykirkekaien. The station is located in the Bergen centre beside a ferry dock. Mussels were 

collected on a wooden dock. Some mussels were observed spawning at this time.  
 

8. Nordnes. This cape point station protrudes into a busy shipping line. Mussels were small here, 

and collected from rocks.  
 

9. Nøstebukt. The station is located in a ferry dock. Mussels were collected from a concrete 

harbor wall. The water visibility was minimal and the water smelled of sewage. 

  

10. Møhlenpris. Station located on an industrial area, next to a cargo ship dock yards. This site 

has received untreated municipal wastewater of 38 000 Pe/year until 1997 (Anon., 2002).  

Mussels were collected on a wooden wharf. 
 

11. Nygård. Station is located in an area with heavy traffic. Boat traffic is also frequent. The site 

has received untreated waste water of 5000 Pe/ year until 1997 (anon., 2002). Mussels were 

collected from rocks in strong stream.  

 

12. Puddefjordsbro. The sampling site is located in an industrial area, with heavy traffic. 

Mussels at station 12A were collected in 70 cm depth from a concrete wall. Mussels at 12B were 

collected in 40 cm depth from rocks.  
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13. Olderneset. The station is located 2 km south-west from Bergen centre on an industrial area 

by a submarine bunker. Mussels were collected from a rocky shore.  

 

14. Lyreneset. The station is located on a tidal shore with kelps and rocks. The output site for the 

new water treatment plant (Holen > Pe 100 000/ year) is located 30 m from the shore (Fig. 3.1) 

(anon., 2002).  

 

15. Florvåg, Askøy 
The sampling site is located in a small bay, close to a smaller oil harbor. Mussels were collected 

from a fishing gear lying at 50 cm depth. 

 

16. Kolavåg, Askøy 
The station was located on a previous communal disposal site, now covered with netting, filled 

with soil and the area is used for recreation. Mussels were collected from sandy shore. The 

mussels were large and had greenish color on shelves. Water smelled of hydrogen sulfide. 

 

17. Håkonshella 
Mussels were collected from a floating bridge in a small craft harbor. 

 

18. Kjerreidvik. Mussels were collected from a wooden wharf. 

 

19. Nordåsstraumen. The sampling site is located beside a bridge for heavy car traffic. Mussels 

were collected from a sandy shore in strong current. 

 

20. Fanahammeren. Mussels were collected from a floating bridge in a small harbor. 

 

21. Syltøy, Fjell. The station was located in a bay facing open Sea to the west. Large, fine 

shaped mussels were collected from rocks. 

 

22. Fjellspollen, Fjell. The station was located in a small bay. Mussels were collected from rocks 

and a floating bridge. 

 

23. Fauskanger, Askøy. The station was located in a shallow bay. Mussels were collected from 

a floating bridge. 
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Temperature was measured in the surface layer and it was between +4 and +6 °C during the 

fieldwork. Blue mussels were collected at a depth of 40-90 cm below spring low tide (LLW) using 

a rake or by free diving. In addition to these 23 stations, mussels for size-effect, tidal effect and 

thawing effect studies were collected. For the size-effect study mussels from 50 cm depth were 

collected at Nygård (Nyg I-V) and Fjellspollen (Fjell I-V). For the tidal effect study blue mussels 

were collected at Nygård from three different tidal levels at spring low tide; subtidal at 40 cm 

below LLW (-40 LLW), intertidal at 20 cm below LLW (-20 LLW) and 10 cm above the sea level 

LLW (10 LLW). Blue mussels for the thawing effect study (Fjell fresh and Fjell froz) were collected 

at Fjellspollen from a floating bridge. 

 

3.2. Sample preparation 

The trace metal determination was carried out following a standardised method for analysis of 

copper, zinc, arsenic, silver, cadmium, mercury and lead. The same procedure is used in a 

monitoring program for shellfish in Norway by Directorate of Fisheries in Bergen. The method is 

accredited according to ISO/IEC 17025 for all these metals at the laboratory of minerals and trace 

elements in the National Institute of Nutrition and Seafood Research, Bergen, Norway.  

 

Blue mussels between 35-60 mm in size from each station were separated from each other by 

hand, put into marked plastic bags and stored at -20 °C until analysis. One sample (Fjell fresh) 

was dissected fresh. Blue mussels were taken out for thawing the day before sample preparation. 

Three pooled samples of 25 mussels each were randomly selected and prepared from every 

station. The mussels were marked with numbers from 1 to 25 and opened for dissection. The 

shells were cleaned from epiphytes, byssus threads were removed and valves were rinsed in 

deionised water to remove sand, shell and other particles from the shell body. The shells were 

left to dry on blotting paper for one hour. The length of the independent shells was measured with 

a caliper and the soft tissue weight of each sample was determined (Sartorius BL1500S). The 

soft tissues were removed carefully with a scalpel, put into a plastic box marked with a station 

and sample number, weighed and stored at -20 °C.   
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For the size-effect study, the blue mussels were sorted in five different size classes: I < 3 cm, II= 

3-4 cm, III= 4-5 cm, IV= 5-6 cm and V > 6 cm. For every size class three pooled samples of 25 

mussels each were prepared using the same procedure as for the samples above. Blue mussels 

for the tidal-effect study were sorted into three groups according to the collection depth and 

prepared using the same method as above.  

 

The frozen samples were freeze-dried for 48 hours. The freeze-dried samples were weighted and 

dry matter content was calculated as following: 

 

 dw%= sdw * 100
    sww 
 

where   dw%= dry weight (g/100g) in percent, 
sdw= dry weight of the sample (g) 

and  sww= wet weight of the sample (g). 
 

 

The samples were homogenized to fine powder (Retch ZM100) and stored in plastic containers 

at room temperature until analyses.Two parallels from each of the three pooled samples from 

each station were prepared according to the following procedure. Samples (0.2 g) were weighed 

into tetra fluorine methoxil (TFM) digestion vessels, 2.0 ml nitric acid (65% m/V) and 0.5 ml 

hydrogen peroxide (30% m/V) were subsequently added. The sealed containers were placed in a 

microwave oven (Milestone mls 12000 MEGA) for 17 minutes and the samples were heated 

according to the temperature program given in the Table 3.1. After complete digestion the sample 

solutions were cooled for 20 min to the room temperature. The sample solutions were diluted with 

deionised water to the total volume of 25 ml and transferred into polyethylene flasks, capped and 

stored at room temperature. Blank samples were processed as following: vessels were filled with 

digestion acids and taken through the entire procedure to monitor the average and variation of 

the element blank value.  
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Table 3.1. Digestion program used for microwave oven system  
 

Step Power 
(W) 

Time  
(min) 

1 250 1 
2 0 1 
3 250 5 
4 400 5 
5 650 5 

 

After each digestion run the vessels were rinsed twice with filtered water (RO-water), twice with 

Tennards mixture (2/3 RO-water, 1/6 H2O2 and 1/6 HNO3 ) and eight times with deionised water. 

Finally, the vessels were left to dry on blotting paper for 24 hours. 

 

Inductively coupled plasma- mass- spectrophotometer (ICP-MS) (Agilent 7500 C) was used to 

determine the concentration of copper, zinc, arsenic, silver, cadmium, mercury and lead in the 

blue mussel samples. A worksheet with station and sample numbers and dilution factor was 

prepared for the program. Dilution factor for each sample was counted as follows: 

 
Dilution factor =    25 ml            

    Dry weight (g) * 1000 (ml/g) 
 

Standard curves for all elements were calculated using five different concentrations. Sample 

solutions were analysed using an accredited method for blue mussels. Blind sample number four 

was used to set a background for the different elements. The results from the determinations of 

copper, zinc, arsenic, silver, cadmium, mercury and lead are presented as a mean value of three 

pooled samples from each station.  

 

3.3. Quality control 

A series of 10 parallels of blanks were taken through the procedure to measure background 

levels of the elements. Means and standard deviation were calculated. Certified reference 

materials (CRM) were analysed to assess the trueness and precision of the analyses. Seven 

parallels of CRM dogfish muscle (DORM 2) and three parallels of CRM lobster digestive gland  
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(TORT 2) (Institute for Environmental Chemistry, Ottawa, Canada) were analysed together with 

the mussel samples. These served as reference materials for the analyses of copper, zinc, 

arsenic, silver, cadmium, mercury and lead. Relative standard deviation (RSD %) was used in 

evaluation of the precision of the methods used (Table 3.2). The precision found in the present 

study was compared with the values recommended by The Nordic Committee on Food Analyses 

(NMKL, 1996). RSD (%) was calculated as follows: 

 
         (SD)  

RSD (%) =      ( X )   *  100 
 

where   RSD (%)  = relative standard deviation in samples of CRM in percent  
  SD  = standard deviation (mg/kg), 
and   X  = mean (mg/kg).  
 

 
Table 3.2. Recommended Relative Standard Deviation RSD (%) for precision for different analyte 
concentrations (NMKL, 1996). 

 
Analyte 

concentration  
RSD  
(%) 

100 g/kg 2 
10 g/kg 3 
1 g/kg 4 

100 mg/kg 5 
10 mg/kg 7 
1 mg/kg 11 

100 µg/kg 15 
10 µg/kg 21 
1 µg/kg 30 

0.1 µg/kg 43 
 

3.4. Statistics 

Kolmogorov- Smirnov’s test for normality was used to test the normal distribution for length of the 

blue mussels (Zar, 1999). For the weight and the trace metal analyses the mussels were pooled 

in three subsamples, and the data could not be tested for normality. Normal distribution was 

assumed for these data according to the Central Limit Theorem (Zar, 1999) considering each 

pooled sample as an average. Deviations from homogeneity of variance were tested with 

Levene’s test. The length, weight and metal data in the stations 1- 23 showed significant 

 19



Material and Methods 

heteroscedasticity and Kruskal- Wallis test followed by Newman- Keuls test for ranked numbers 

were used to test differences between the groups (Zar, 1999). Interactions between the trace 

metals and correlation of the shell length with the trace metal concentrations were tested with 

regression analyses (Ranta et al., 2002). Bivariate correlation analyses were used to plot 

variables against each other pair wise (Ranta et al., 2002). In the size-effect and the tidal-effect 

studies trace metal data between the groups were homogenous and the differences were tested 

with one- way ANOVA followed by Tukey’s HSD test. In some of the metal data in the size-effect 

study variances were heterogeneous and Newman- Keuls test was used to test the differences 

between the groups, since this test has been found to be more robust to heterogeneous 

variances (Ranta et al., 2002). In the both studies the trace metal concentrations were tested for 

regression with the gradient with regression analyses and the significant correlations were plotted 

with bivariate correlation analyses. Length, weight and trace metal data in the thawing-effect 

study were tested with paired t-test for variances and differences between the groups.  Level of 

significance in all statistical tests was 0.05. Microsoft Excel 7.0 software (Copyright © Microsoft 

Corporation) was used for all data tables and Statistica 5.5 (Statsoft inc., Tulsa, USA) was used 

for all the statistical analyses. 
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4. Results 

4.1. Length and weight of blue mussels 

Mean length and weight of blue mussels (Mytilus edulis) varied between 37 mm- 59 mm for length and 

1.4 g -6.5 g for weight at the 23 stations studied (Fig. 4.1) (App. 1). The largest and heaviest mussels 

were found at Syltøy (st. 21) and Kolavåg (st. 16) with the mean lengths of 59 mm and 53 mm, and 

mean fresh weights of 6.0 g and 6.4 g, respectively. These mussels were significantly larger than blue 

mussels collected from the other stations (p< 0.05, Newman Keuls) (App. 2).  At Syltøy some of the blue 

mussels collected here were larger than the normal size range (35-60 mm), but since the station 

represented a reference station, the mussels were included in the further analysis. Blue mussels 

collected at Nordnes (st. 8), Vågen (st. 6) and Håkonshella (st. 17) with the mean lengths of 39 mm, 40 

mm, and 42 mm, respectively, were significantly smaller than mussels at the other stations (p< 0.05).  

These mussels were also lightest with the mean fresh weights of 1.4 g, 1.5 g and 2.4 g, correspondingly. 

Dry matter content varied between 13.6 g/100g (Vågen, st. 6) and 21.3 g/100g (Syltøy, st. 21) (App. 1).  
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Figure 4.1.a) Mean length (mm) and b) mean fresh weight (g) of blue mussels (Mytilus edulis) at 
stations 1-23 with 95 % confidence intervals. 
 

4.2. Quality Control  

Ten blanks were analysed for background values of copper (Cu), zinc (Zn), arsenic (As), silver (Ag), 

cadmium (Cd), mercury (Hg) and lead (Pb) (App. 3). Zinc and arsenic had highest background values 

with the means 0.94 mg/kg and 0.11 mg/kg, respectively (Tab. 4.1).  
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Table 4.1. Analyses of background levels of Cu, Zn, As, Ag, Cd, Hg and Pb blanks (mg/kg). Mean with 
standard deviation (N = 10). 
  

 
Metal 

Cu 
(mg/kg) 

Zn 
(mg/kg) 

As 
(mg/kg) 

Ag 
(mg/kg) 

Cd 
(mg/kg) 

Hg 
(mg/kg) 

Pb 
(mg/kg) 

Mean 0.03 0.94 0.11 < 0.01 < 0.01 0.01 0.02 
SD 0.06 2.31 0.29 0.01 0.01 0.02 0.04 

 

Seven parallels of Certified Reference Material (CRM) dogfish muscle (DORM 2) and three parallels of 

CRM lobster digestive gland (TORT 2) were analyzed for the concentrations of copper, zinc, arsenic, 

silver, cadmium, mercury and lead (App. 3). Copper was slightly lower in the present analysis than 

certified values (Tab. 4.2). Zinc and cadmium, on the other hand, were higher than the certified value. 

Relative standard deviation (RSD %) gained with the analyses here were within the limits for 

recommended relative standard deviations given by Nordic Committee on Food Analyses (NMKL, 1996).  

 

Table 4.2. Analyses of Cu, Zn, As, Ag, Cd, Hg and Pb (mg/kg dry weight) of dogfish muscle (DORM 2) 
and lobster digestive gland (TORT 2). Mean and standard deviation (SD) of analyzed samples 
compared to certified values. Certified values are given with 95 % confidence intervals. Relative 
standard deviation (RSD %) of the present analysis and recommended RSD (%) (NMKL RSD %) for 
repeatable analysis (NMKL, 1996).  
 
 
Metal 

  
CRM 

Mean 
 (mg/kg) 

 
SD  

Certified value 
(mg/kg) 

RSD 
(%)  

NMKL 
RSD (%) 

Cu DORM 2 # 2.04 0.15 2.34 + 0.16 8 11 
Zn TORT 2 ##  189.2 6.0 180 + 6 3 5 
As DORM 2 # 17.5 1.1 18 + 1.1 6 7 
Ag DORM 2 # 0.04 0.01 0.041 + 0.013 20 21 
Cd DORM 2 # 0.048 0.01 0.043 + 0.008 29 30 
Hg TORT 2 ## 0.28 0.005 0.27 + 0.06 2 15 
Pb TORT 2 ## 0.34 0.01 0.354 + 0.013 2 15 
#   N= 7 
## N= 3   
 

4.3. Trace metal concentrations in blue mussels 

Copper, zinc and lead concentrations were significantly lower in blue mussels collected at the three 

reference stations in Syltøy, Fjellspollen and Fauskanger, compared to the blue mussels collected 

around the Bergen centre (p< 0.001, Newman Keuls) (App.4 & 5). Concentrations found in the centre 

were for copper 1.2- 4.2 mg/kg, zinc 23- 51 mg/kg and lead 1.0- 1.7 mg/kg fresh weight, while 

concentrations outside the centre were within the range of 0.22- 0.98 mg/kg for copper, 15- 36 mg/kg for 

zinc and 0.8- 1.4 mg/kg fresh weight for lead (Fig. 4.2). High copper concentrations were also found in  
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Figure 4.2. Trace metal concentrations (mg/kg fresh weight) in soft tissue of blue mussel (Mytilus 
edulis) at stations. N=3. Mean with 95 % confidence intervals. 
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Håkonshella (st. 17) outside the Bergen centre with the mean value of 2.6 mg/kg fresh weight. Lead was 

also high, 1.44 mg/kg, in blue mussels collected in Kolavåg in Askøy. In dry weight, lead concentrations 

exceeded 3 mg/kg at the stations 4- 18 (App. 4). Cadmium showed a tendency to increase with 

increasing distance from the Bergen centre. Mussels at the stations 1a, 5, 17, 19, 20, 21 and 22 had 

significantly higher cadmium concentrations than blue mussels in the Bergen centre (p< 0.001), but were 

in the whole area below 0.20 mg/kg fresh weight. The highest arsenic concentration were found in blue 

mussels collected at Vågen (st. 6), where the mean value was 20.9 mg/kg in dry weight. Otherwise, the 

arsenic concentrations in blue mussels were within the range of 1.3-2.8 mg/kg fresh weight, silver within 

the range of 0.02- 0.036 mg/kg and mercury 0.04-0.027 mg/kg fresh weight in mussels. As shown in the 

figure 4.2, some of the trace metal concentrations showed a large variations at some stations, like 

arsenic at Nykirkekaien (st. 7) and silver, cadmium and mercury at Kjerreidvik (st. 18).  

 

4.4. Size effect study 

There were no significant differences in length or weight of blue mussels between Fjellspollen and 

Nygård (App.6). Copper was significantly higher in the smallest blue mussels (Nyg I & Fjell I) than in 

blue mussels in the other size groups, although size group III at Nygård didn’t indicate any differences 

(p< 0.05, Newman Keuls and Tukeys) (Tab. 4.3). Zinc, on the other hand, was significantly higher in 

large mussels (Nyg III-V) than in small ones (Nyg I-II) at Nygård (p= 0.03, Newman Keuls), while it didn’t 

indicate any difference at Fjellspollen. Arsenic was significantly higher in the smallest mussels (Nyg I) 

(p< 0.01, Newman Keuls) and the largest mussels (Nyg V) (p= 0.04) compared to the other three size 

groups at Nygård. Cadmium was significantly higher in large mussels (Nyg IV-V) at Nygård, (p< 0.01, 

Tukeys), while at Fjellspollen cadmium was significantly higher in small mussels (Fjell I-II) than in the 

other size groups (p< 0.01, Tukeys). Lead was significantly higher in the largest blue mussels (Nyg V) 

compared to the other groups at Nygård (p= 0.02, Tukeys) while at Fjellspollen no significant differences 

between the size groups were observed. 
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Station Dry 
matter 
g/100 g 

Cu 
mg/kg 

 
SD 

Zn 
mg/kg 

 
SD 

As 
mg/kg 

 
SD 

Ag 
mg/kg 

 
SD 

Cd 
mg/kg 

 
SD 

Hg 
mg/kg 

 
SD 

Pb 
mg/kg 

SD

Nyg I 17.1 15.5a 0.0 254a 19 14.2a 0.3 0.058 0.018 0.73a 0.08 0.24 0.01 9.6a 2.3
Nyg II 16.5 12.9c 1.1 257ab 10 12.6bc 0.6 0.059 0.011 0.74ab 0.04 0.23 0.02 10.5 1.3
Nyg III   14.7 13.0ab 0.7 295c 24 12.0bd 0.3 0.058 0.005 0.82abe 0.05 0.23 0.00 11.9 1.6
Nyg IV    14.2 12.1c 1.0 298c 14 11.9bd 1.0 0.061 0.004 0.93ce 0.06 0.25 0.01 13.2 1.1
Nyg V  14.5 11.0c 0.6 290c 10 13.3ac 0.0 0.057 0.017 1.11c 0.06 0.25 0.03 15.2b 0.1
Fjell I 12.8 9.5a 0.5 110 20 8.9a 0.3 0.024a 0.004 1.81a 0.05 0.17a 0.01 2.4 0.2
Fjell II 13.7 8.2 0.8 101 11 9.3abc 1.0 0.016b 0.004 1.60ab 0.14 0.14b 0.01 2.2 0.3
Fjell III  14.5 7.6b 0.4 85 20 9.8abc 0.1 0.013b 0.002 1.31c 0.04 0.14b 0.01 2.0 0.2
Fjell IV 15.0 7.2b 0.3 79 6 10.6cd 0.3 0.013b 0.001 1.29c 0.08 0.15 0.01 2.2 0.3
Fjell V 15.0 6.9b 0.4 91 22 11.3d 0.3 0.010b 0.001 1.26c 0.10 0.16 0.00 2.5 0.2

Table 4.3. Trace metal concentrations (mg/kg dry weight) and dry matter content (g/100 g) in the 
soft tissue of mussels (Mytilus edulis) and standard deviation (SD) at size groups I-V at Nygård 
(Nyg) and Fjellspollen (Fjell). Significantly different groups marked with different letters (a,b,c,d). 
Size groups are defined as I< 3 cm, 3 cm <II< 4 cm, 4 cm <III< 5 cm, 5 cm <IV< 6 cm, V> 6 cm. 

 

There was significant positive regression between shell length of mussels and zinc and lead at Nygård 

(p< 0.01, regression analyses) (Fig. 4.4). Copper showed negative regression slopes with shell length at 

Nygård and Fjellspollen (p< 0.01) (Fig. 4.5). Also silver and cadmium had negative slopes with shell  
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Figure 4.4. Significant bivariate correlation of Cu, Zn and Pb concentrations (mg/kg dry weight) in 
blue mussels (Mytilus edulis) with shell length (mm) in Nygård. r= correlation coefficient. 
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length, but only at Fjellspollen (p< 0.01). At Nygård cadmium had positive regression slope with shell 

length (p< 0.01), as well as arsenic at Fjellspollen (p< 0.01). 

 

Regressions between the trace metal concentrations and shell length were tested for blue mussels 

collected at the stations 1-23. Copper, zinc, arsenic and lead concentrations showed negative 

regression lines with length and were highest in small mussels (p< 0.05, regression analyses) (Tab. 4.4). 

Silver, cadmium and mercury did not indicate any regression with size (App. 12). 

 

Table 4.4. Regression coefficients (r) for shell length and metal concentrations in mussels M. edulis. 
Significant regression marked with *. 
 

Trace 
metal

r p 

Cu -0.29 0.01* 
Zn -0.47 <0.01* 
As -0.24 0.04* 
Ag -0.19 0.11 
Cd 0.14 0.22 
Hg 0.08 0.49 
Pb -0.32 <0.01* 

Figure 4.5. Significant bivariate correlation of Cu, As, Ag and Cd concentrations (mg/kg dry weight) 
in blue mussels (Mytilus edulis) with shell length (mm) in Fjellspollen. r = correlation coefficient. 
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4.5. Tidal-effect study 

Cadmium and lead concentrations were significantly higher in subtidal blue mussels than in mussels 

growing uptidally (p< 0.05, Tukeys) (Fig. 4.6). In contrast, copper, zinc, arsenic, silver and mercury 

concentrations were not significantly different between the three tidal groups (App. 9). There was 

significant negative regression between the sampling depth and concentrations of arsenic, cadmium, 

mercury and lead in mussels (p< 0.05, regression analyses) (Tab. 4.5). Copper showed also the same 

tendency having highest concentrations in mussels growing subtidally, even though the regression was 

not significant (App. 9).  

 

Table 4.5. Regression coefficients (r) for trace metal concentrations (mg/kg dry weight) in mussels and 
sampling depth. Significant regression marked with * 
 

Trace 
metal 

 
r 

 
B 

 
p 

Cu -0.66 -19.7 0.05 
Zn 0.25 0.1 0.52 
As -0.69 -18.0 0.04* 
Ag -0.54 -1218.0 0.14 
Cd -0.81 -166.7 <0.01* 
Hg -0.59 -839.3 < 0.01 
Pb -0.80 -9.6 < 0.001* 
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Figure 4.6. Trace metal concentrations (mg/kg dry weight) in blue mussels (Mytilus edulis) in three 
tidal groups: subtidal (-40), intertidal (-20 cm) and uptidal (10 cm). Zero in the figure illustrates the 
sealevel at the lowest spring tide. Mean with 95 % confidence interval. Significantly different groups 
marked with different letters (a,b) (One-way ANOVA) 
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4.6. Thawing-effect study 

Arsenic, silver and cadmium concentrations were significantly higher in blue mussels which were 

dissected fresh (Fjell fresh) than in mussels in the control group, which first were frozen and thawed 

(Fjell froz) (p< 0.05, paired t-test) (Fig. 4.7). The opposite was found in lead concentrations; blue 

mussels in the control group had significantly higher lead concentrations than mussels in Fjell fresh. 

There were no significant differences in concentrations for copper, zinc and mercury or length in blue 

mussels between Fjell fresh and the control group (App.10 & 11).  
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Figure 4.7. Trace metal concentrations (mg/kg dry weight) in blue mussels (Mytilus edulis) from Fjell 
fresh and Fjell froz. Mussels from Fjell fresh were dissected fresh, Fjell froz mussels were frozen 
before dissection. Mean with 95 % confidence interval. Significant differences marked different letter 
(a,b).  

 

4.7. Metal interactions 

Metal interactions at stations 1-23 were tested with bivariate correlation analyses. Copper and zinc 

concentrations in blue mussels showed significant positive correlation, while cadmium and lead 
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correlated negatively with zinc (p< 0.05) (Fig. 4.8). Significant positive correlation was also found 

between arsenic and silver, arsenic and lead, as silver and mercury and silver and lead (p< 0.01). 
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Figure 4.8. Significant correlations of trace metal concentrations (mg/kg dry weight) in blue mussels 
(Mytilus edulis) (p< 0.05). r = correlation coefficient.  
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5. Discussion 

5.1. Discussion of Material and Methods 

5.1.1. Blue mussels 

In this study blue mussels (Mytilus edulis) were chosen on the basis of length of the shell 

(anterior-posterior axis) ranging from 35 mm to 60 mm. It is recommended, that mussels for 

trace metal analyses are sampled from a small size range since the metal concentrations 

vary with size (Boyden, 1974; Boyden, 1977; Davies & Pirie, 1978; Cossa et al., 1979; 

Popham & D’Auria, 1983; Regoli & Orlando, 1994), which is of special importance in 

comparable studies (Mussel Watch, 1980). Results from the present study are compared with 

a study made by Andersen (1994), who used mussels of size 35- 55 mm in length. In the 

present study the upper limit was increased with 5 mm, since Andersen (1994) had difficulties 

to find blue mussels smaller than 55 mm at some locations. The Mussel Watch programs in 

the Gulf of Maine and on the French coast use also blue mussels in the size range 35-60 mm 

(Claisse, 1989; Jones et al., 2001). In addition, blue mussels used for human consumption 

range often to 60 mm in size, and in the present study blue mussels were used to evaluate, if 

mussels are suitable for human consumption.  

 

In the present study sexes were not distinguished before the analyses, although previous 

studies have reported that among certain bivalve species females and males can accumulate 

metals differently (Alexander & Young, 1976; Gordon et al., 1978; Watling & Watling, 1976). 

Lobel et al. (1989) found that females of M. edulis accumulated more copper, zinc, arsenic 

and silver than males sampled at the same site. Despite of this, most monitoring programs 

with mussels do not distinguish between sexes in sampling and it was assumed that in 

random sampling the one would catch both sexes in equal ratio in normal populations.  
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5.1.2. Fieldwork 

In this study blue mussel sampling was done during late winter in two following years. In 

comparable studies it is important to do the sampling on the same time of the year, since 

metal concentration in mussels varies with reproductive cycle. Blue mussels loose 

considerable weight during spawning (Seed, 1976). Trace metal concentrations in blue 

mussels after spawning seem to be higher than at other periods within a year, especially in 

polluted waters (De Wolf, 1975; Phillips, 1976b; Cossa et al., 1979; Amiard- Triquet et al., 

1986). This is due to reduced body weight after spawning while metal content still remains the 

same in mussels (Philips, 1976b; Boyden, 1977). The exception is arsenic, which seems to 

have highest concentration in mussels before spawning (Julshamn & Duinker, 2001). There 

was large variation in arsenic concentrations in blue mussels between the three samples 

collected in Nykirkekaien. The blue mussels from the station were observed spawning when 

sampled. The spawning might have caused the variations in arsenic concentrations at the 

station. Variations in metal concentrations in blue mussels in Kjerreidvik can not be explained 

with the spawning, since no signs of that were observed. When trace metal concentrations in 

mussels are calculated, the values are related to weight. Variation in weight will then be 

reflected to metal concentrations. Boyden (1977) suggested that instead of metal 

concentration, metal loads should be reported as metal content (mg/ total weight). On this 

way the effect of seasonal variation in weight of mussels could be avoided. On the other 

hand, Cossa et al. (1979) suggested that mussels used for environmental monitoring should 

be collected before they reach sexual maturation, since the weight varies least before the 

maturation. This would be time-consuming, since immature individuals are small and difficult 

to handle in the laboratory. The present study was compared with the study of Andersen 

(1994), who also sampled mature individuals in late winter, before the spawning season, in 

the same geographical area. 

 

Blue mussels for the present study were collected during spring low tide at 50- 70 cm depth to 

avoid that mussels would have had contact with the surface layer of the water. Sampling 

depth can effect metal concentration in mussels due to differences in chemical properties of 

water layers or due to varying food availability in different water layers (Nielsen, 1974;  
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Phillips, 1976b; Seed, 1976). The surface microlayer contains organic particles and metals to 

a larger extent than deeper layers (Xhoffer et al., 1992). Mussels growing in the uptidal zone 

have contact with water surface more frequently than subtidal mussels and this could 

increase uptake of metals by mussels. In comparative studies it is recommended that 

sampling depth is the same in all studies (Mussel Watch, 1980). The present study was 

compared with the study of Andersen (1994), who also sampled below 30- 50 cm depth under 

spring low tide. Effect of sampling depth is further discussed in connection with the tidal- 

effect study later in this chapter. 

 

Salinity affects feeding rate and metal accumulation in mussels, as well as metal solubility in 

water (Phillips, 1976b; 1977b; Davenport, 1977). Phillips (1976b) found that cadmium uptake 

was increased and lead uptake was decreased in Mytilus edulis near to fresh water inputs of 

trace metals. During spring, snow melting and heavy rains increase freshwater runoff from 

land. In the present study salinity was not measured, but on the basis of other studies 

(Botnen et al., 2000), stations locating in shallow bays seem to have lower salinity than 

stations facing more open water. The reference stations Fauskanger and Fjellspollen were 

located in the shallow bays and the fresh water input might influence on trace metal 

concentrations in blue mussels here. Fresh water input is also increased in the vicinity of 

sewage outlets, which in this study would have effect on blue mussels at Biskopshavn and 

Lyreneset.  

 

5.1.3 Sample preparation and trace metal analyses 

In the present study, gut content of the blue mussels was remained for the metal analyses, 

although intestines of mussels can contain sediment particles and phytoplankton, which may 

contain high concentrations of metals (Abdullah & Royle, 1974; Stephenson et al., 1978; 

Lobel et al., 1991). This can cause an overestimation of metal concentration in organisms. 

For example, Stephenson et al. (1978) found following metal loads of intestine / total body of 

mussels in percentages: 6 % for copper, 1 % for zinc, 10 % for silver, 11% for cadmium and 

20 % for lead. Intestinal tract of fish can easily be removed before analyses, while in bivalves,  
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digestive gland often serves as a storage for biological metals and must be included for the 

analyses (Georges & Pirie, 1980; Lobel et al., 1991). Depuration for 2-3 days was found to be 

a sufficient method to remove non-biological metals from the bivalve intestines (Lobel et al., 

1991; Brown & Luoma, 1995). On the other hand, depuration of mussels for longer periods of 

times might cause loss of some metals from the mussels depending on the biological half 

lives of metals (Mussel Watch, 1980). Second, wild blue mussels collected for human 

consumption are not depurated before preparation, and to monitor food safety, gut content 

should be included for the analyses. This is why it was decided to include gut content for the 

analyses in the present study. 

 

There are two methods used to prepare mussels for the metal analyses; 1) mussels are 

dissected fresh and then frozen before analyses and 2) mussels are first frozen and then 

dissected. In the present study mussels were frozen prior to dissection. This can have some 

effect on metal concentration measured in further analyses. Some of the metals can be lost 

from the body in melting water and the results gained in the analyses might be lower than in 

mussels dissected fresh. On the other hand, many monitoring programs are based on 

sampling in a wide geographical area, while the analyses are made in one central laboratory. 

The transport of mussels without freezing them might be difficult, or even impossible. 

Freezing might be the only way to gain material in large scale monitoring programs with 

mussels. Freezing in this study should not give any error, when compared with the previous 

studies in the area, since the present study was compared with studies, where mussels were 

also frozen before dissection (Andersen, 1994). Since no literature was found about possible 

effects of freezing on metal concentrations in mussels, a separate study of the effect of 

thawing was made and the results are discussed later in this chapter.  

 

Mussels were rinsed with deionized water before dissection to remove sediment particles and 

other debris from the shell body. It is possible that some of the particles were still remained in 

the soft tissues and were taken to the analyses. Particles might have contaminated samples 

with sediment bound metals.  
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Freeze drying might cause some metal losses due to volatilisation of metals or it could cause 

contamination by other samples (Mussel Watch, 1980). In this study certified reference 

material processed on the same time with mussel samples did not give any indication of this.  

 

Samples in this study were homogenised with a powerful food processor. The blade and 

other parts were brushed and vacuum cleaned between samples from different stations. 

Washing with water was done only at the end of each day. Samples which were assumed to 

contain less metal were treated first. This might have caused contamination of samples and 

eventually could have increased variation of metal concentrations in the mussels within the 

stations.  

 

Inductively coupled plasma-mass spectrophotometry was used for the metal analyses. This 

method has been found to give better quantitative data than other emission sources due to 

high stability, low background and low detection limits (Skog et al., 1988). Certified Reference 

Material (CRM) was used to evaluate trueness and repeatability of the analyses. An ideal 

CRM would have been of bivalve mollusc with similar metal concentrations as in the present 

study. Since no CRM material of molluscan was available, bovine liver and intestinal gland of 

lobster were used instead.  

 

5.1.4 Statistics 

In this study 75 individuals were analysed in three subsamples for each station. Gordon et al. 

(1980) stated that pooling of many individuals into a single sample would reduce variances 

and give a better population mean prior to the sampling of individuals, as long as the number 

of individuals in each pool is the same. In the present study, despite of pooling, weight and 

metal data showed large variations. To reduce the variation in length and metal data, a 

smaller size range could have been used. For example, Skei et al. (1994) and Knutzen et al. 

(1995) have used blue mussels in the size range 30-50 mm and Julshamn et al. (2001) in the 
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size range 30-40 mm. However, the present study was compared with the study of Andersen 

(1994), in which larger size range (35- 55 mm) was used and it was chosen to prioritise  

 

similarity in the size ranges above the risks of the weakening of statistical methods. In the 

cases where variances were not homogenous, the Newman Keuls test was used, since this 

test seems to be more robust for Type 1 error compared to the Tukeys HSD test (Ranta et al., 

2002). Metal data in mussels tend to be skewed, and many authors prefer to operate with log 

transformed data for statistics (Boyden, 1974; Lobel & Wright, 1982). The use of pooled 

samples in the present study avoids this problem, since these are considered as averages 

that are normally distributed according to the Central limit theorem (Zar, 1999), so log 

transformation was not used. 
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5.2. Discussion of Results 

5.2.1. Trace metal concentrations in blue mussels 

Lead (Pb) 

In the present study, lead concentrations in blue mussels (Mytilus edulis) were high in the 

Bergen centre, ranging from 0.4 mg/kg to 1.7 mg/kg fresh weight. These values exceed the 

normal concentrations, 0.18- 0.57 mg/kg fresh weight, measured in blue mussels in the 

Hordaland county (Julshamn & Duinker, 2002). Compared with previous studies (Andersen, 

1994), lead concentrations have reduced with 20% since 1994 (Fig. 5.1). EU has set upper 

limit of lead concentration in mussels to 1.5 mg/kg fresh weight, when used for human 

consumption (EU, 2001). Blue mussels from the Bergen centre exceed this limit and are not 

suitable for human consumption. 
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Figure 5.1. Mean + SD (mg/kg fresh weight) of lead (Pb) in soft part of pooled blue mussels (Mytilus 
edulis) from various sampling sites in Byfjorden, Bergen, 1994 and the present study, 2001. Data from 
1993 is reported by Andersen (1994). 

 

Lead concentrations in blue mussels remain high at the stations in the vicinity of main city 

roads (Festningskai, Vågen, Puddefjorden and Nygårdsbro). This indicates that the urban 

run-off washed from the roads might still be one of the main sources of lead into the water 

today. Another possible explanation to high concentration of lead in mussels today is that the 
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sediments in the Bergen centre contain large amounts of lead, which can be withdrawn to 

water column, when the harbor sediments are stirred by ship traffic (Anon., 2002).  

The lead values found here are similar to that of concentrations, 0.52 mg/kg-1.5 mg/kg fresh 

weight, found in Hardangerfjorden (Julshamn et al., 2001), and lower than found along the 

East coast of the UK, 3- 28.8 µg/g dry weight (Widdows et al., 1995).  

 

According to some time-scale monitoring programs, lead has been reduced in many problem 

areas. For example, in the Gulf of Maine lead concentration in mussels has been reduced 

from 5.4 mg/kg to 1.8 mg/kg dry weight in the period of 1993- 1998 (Jones et al., 2001). Even 

more dramatic improvement has been recorded by Julshamn et al. (2001) in the 

Hardangerfjord, where lead concentration in blue mussels has been reduced from 120 mg/kg 

in 1983 to 1.5 mg/kg fresh weight in 1998. This can be due to improvements in water 

treatment systems, reductions in industrial discharges or, as in Hardangerfjord, a combination 

of technical improvements like covering the polluted sediments with fibre cloths and 

reductions in industrial discharges (Julshamn et al., 2001). 

 

Mercury (Hg) 

Distinct from lead, mercury concentrations in blue mussels in the studied area were low and 

ranged from quantification limit to 0.03 mg/kg fresh weight in mussels. These results are 

similar to that found in blue mussels in Hordaland county (Julshamn & Duinker, 2002). 

Compared with previous studies, mercury concentration in mussels has been reduced with 

50-70 % since 1994 (Fig. 5.2) (Andersen, 1994). The most dramatic reduction in mercury 

concentrations were found in Møhlenpris and Nøstebukten. The removal of the old sewage 

outlets, as well as reductions in the discharges from dentist offices and laboratories might be 

the main reason for this (Dons & Beck, 1993).  

 

Like lead, sediments in Vågen and Puddefjorden are highly polluted by mercury, containing 

up to 5 mg/kg mercury on the upper layer (Molvær et al., 1997; Anon., 2002). Despite of this, 

blue mussels seem to be unaffected in the area, which may indicate that sediment bound 

mercury is stable and is not bioavailable to blue mussels. Generally, harbor sediments are 
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unstable, and boat traffic might stir sediments periodically bringing mercury back to the water 

column, although there was no evidence for this in the present study. EU (2001) has set an  

upper limit of mercury in mussels at 0.5 mg/kg fresh weight, if used for human consumption. 

Blue mussels in the present study had concentrations one tenth of this, and can be 

considered as safe for human consumption. 
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Figure 5.2. Mean + SD (mg/kg fresh weight) of mercury in soft part of pooled blue mussels (Mytilus 
edulis) from various sampling sites in Byfjorden, Bergen, 1994 and the present study, 2001. Data from 
1993 is reported by Andersen (1994). 

Mercury concentrations found here are much lower than those found in Scotland, 0.05- 0.2 

mg/kg fresh weight (Davies & Pirie, 1978), slightly lower than those found in the Gulf Watch 

program in the Gulf of Maine, 0.23 + 0.14 mg/kg dry weight (Jones et al., 2001) and similar to 

those found in Irish waters in 1999, 0.01- 0.05 mg/kg fresh weight (McGovern et al., 2001). 

 

Cadmium (Cd) 

The concentrations of cadmium between 0.08 mg/kg and 0.2 mg/kg fresh weight in the 

present study are within the normal range found in blue mussels in the Hordaland county 

(Julshamn & Duinker, 2002). Cadmium concentrations have been reduced in the Bergen 

centre compared with the data from 1994 (Andersen, 1994) (Fig. 5.3). Reduction in Oldernes, 

et and Nøstebukt was over 50 %. Cadmium concentrations found in blue mussels in the 

whole study area were clearly below the upper limit of 1.0 mg/kg fresh weight for mussels 

used for human consumption set by EU (2001).  
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The cadmium values in the present study showed an interesting tendency to increase with 

increasing distance from the centre. Blue mussels sampled in Fjellspollen and Fauskanger 

had cadmium concentrations of 0.20 mg/kg fresh weight, while blue mussels in the Bergen 

centre had the concentrations ranging from 0.08 mg/kg to 0.14 mg/kg fresh weight. Similar 

trend was found by Andersen (1994) in the same area. The water solubility and the uptake of 

cadmium by blue mussels increase with decreasing salinity, and higher cadmium 

concentrations have been found in blue mussels growing in the brackish water (Phillips, 

1976b; 1977b). Fauskanger and Fjellspollen were both located in shallow bays with limited 

water circulation and the salinity of the water here might have been reduced due to snow 

melting in the sampling period. This might explain partly the higher concentrations at these 

two stations. Another explanation might be that the coastal waters bring atmospheric 

cadmium more frequently to the stations locating outside the Byfjorden, which has more 

limited connection to the coastal water. The fresh water effect or elevated cadmium levels 

were not observed in the vicinity of the new water treatment plants at Lyreneset and 

Biskopshavn.  
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Figure 5.3. Mean + SD (mg/kg fresh weight) of cadmium in soft parts of pooled blue mussels 
(M. edulis) from various sampling sites in Byfjorden, Bergen, 1994 and the present study, 
2001. Data from 1993 is reported by Andersen (1994). 
 

Comparing the results of the present study with other studies, higher cadmium 

concentrations, 1.0 mg/kg fresh weight, were found in Hardangerfjorden by Julshamn et al. 

(2001), and in the Gulf of Maine, >2.8 mg/kg dry weight, by Jones et al. (2001).  
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Arsenic (As) 

Arsenic concentrations in blue mussels varied from 1.3 mg/kg to 2.8 mg/kg fresh weight. 

These values are within the normal range of arsenic in mussels, 1.97 mg/kg- 3.23 mg/kg 

fresh weight, from the Hordaland county (Julshamn & Duinker, 2002). FAO/WHO has set a 

maximum tolerable weekly arsenic intake to 15 µg/kg body weight in human dietary. With a 

mean concentration of 1.8 mg/kg found in the present study, the maximum weekly intake 

would be 500 g mussels for a person of 60 kg. 

 

In this study high concentrations of arsenic were found both in the centre and in areas with 

scattered settlement. This indicates high background levels or diffuse arsenic sources in the 

whole area studied. Possible sources may be burning or leakage of arsenic from impregnated 

wood. Arsenic levels in mussels should be followed in the future. 

 

Julshamn & Duinker (2001) found that arsenic concentrations in blue mussels are at its 

highest in the period before spawning, in March. This would indicate that arsenic could be 

stored in gonads and eggs of mussels, since arsenic concentrations are reduced in June, 

right after spawning (Julshamn & Duinker, 2002). This might be one reason why it was found 

high arsenic concentrations in blue mussels in the present study, and it can be assumed that 

the concentrations will sink in blue mussels in the summer. 

 

Silver (Ag) 

Silver concentrations in blue mussels were low, and varied from the quantification limit (0.01 

mg/kg dry weight) to 0.36 mg/kg fresh weight in the main study. Similar concentrations were 

found in farmed mussels sampled in Hordaland in 2001 (Julshamn & Duinker, 2002). Much 

higher silver concentrations have been reported in the harbor areas in the Gulf of Maine 

(Jones et al., 2001) and in California (Alexander & Young, 1976).  

 

Zinc (Zn) 
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Zinc concentrations found in blue mussels varied between 15 mg/kg and 51 mg/kg fresh 

weight, while the normal values in the Hordaland county lie within the range of 17 - 22 mg/kg  

 

fresh weight (Julshamn & Duinker, 2002). The highest values were found at Vågen and inner 

Puddefjorden and exceeded the normal values with 30-40 %. Generally, zinc concentrations 

were lower at the present study than in 1994, except at Nygårdsbro, where zinc 

concentrations were higher at the present study (Fig. 5.4) (Andersen, 1994). EU has not set 

any upper limit of zinc in mussels so far. 
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Figure 5.4. Mean + SD (mg/kg fresh weight) of zinc in soft parts of pooled blue mussels (Mytilus 
edulis) from various sampling sites in Byfjorden, Bergen, 1994 and present study, 2001. Data from 
1993 is reported by Andersen (1994).  

 

Despite the removal of the municipal wastewater discharges from the area, zinc 

concentrations in the Bergen centre are still high. The sediments in Vågen and inner 

Puddefjorden are markedly polluted by zinc (Anon., 2002). Harbor sediments are frequently 

disturbed by boat traffic, and this might result that zinc is withdrawn into the water from 

contaminated sediments and that metal is bioavailable to the blue mussels. This might be the 

main source now, when sewage water outflow has been moved from the area.  

 

Copper (Cu) 
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Copper concentrations in blue mussels ranged from 0.8 to 4.1 mg/kg fresh weight. Normal 

values of copper in blue mussels in the Hordaland county are 0.5- 2.0 mg/kg fresh weight 

(Julshamn & Duinker, 2002). Stations at inner Puddefjorden and Vågen, as well as at 

Håkonshella had the highest values ranging from 1.6 mg/kg in Vågen to 4.1 mg/kg in 

Møhlenpris. Compared with previous studies there is an overall decrease in copper content of 

blue mussels in the Bergen centre (Andersen, 1994) (Fig. 5.5). There was a slight increase of 

copper in mussels at Møhlenpris. The measured copper values are similar found in Gulf of 

Maine (Jones et al., 2001) and lower than in Oslofjorden (Green & Knutzen, 1992) and 

Hardangerfjorden (Julshamn & Grahl-Nielsen, 1996). When human health is considered, no 

guidelines of copper content are given in Norway. In Spain the limit has been set for 20 mg/kg 

fresh weight (Anon., 1992), and on the basis of this, mussels in the area can be considered 

as safe for human consumption.  
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Figure 5.5. Mean + SD (mg/kg fresh weight) of copper in soft part of pooled blue mussels (Mytilus 
edulis) from various sampling sites in Byfjorden, Bergen, 1994 and present study, 2001. Data from 
1993 is reported by Andersen (1994). 

 

The results from this study indicate that despite of the removal of the municipal wastewater 

discharge from the Bergen centre, copper is still bioavailable for mussels in the area. Copper 

is used in antifouling paints on boats. There is heavy boat traffic in the Bergen centre, and the 

samples in Håkonshella were taken from a small craft harbor. Young et al. (1979) reported 

extremely high concentrations, up to 127 mg/kg dry weight, of copper in blue mussels in the 
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harbor area in Southern California. There is also a large dry- dock in Puddefjorden. On a dry- 

dock, old paint is removed from ships by sandblasting. Spillage from sandblasting operations 

and leakage from removed paint particles has previously been recognised as a direct source 

of copper to water (Degerman & Rosenberg, 1981; Sekse & Kvingedal, 1992). Meiggs (1980) 

found that both mussels and sediments were remarkable contaminated by copper and zinc in 

the vicinity of a dry dock. Use of copper in antifouling paints on boats might be the main 

cause of the elevated levels of copper in blue mussels found in the present study.   

 

5.2.2. Size- effect study 

Copper concentrations were significantly higher in small mussels (< 4 cm) than in large ones  

(> 6 cm) at the both stations. Similar results have been reported previously for copper 

(Boyden, 1974; Boyden, 1977; Cossa et al., 1980; Popham & D’Auria, 1983; Riget et al., 

1996). Cadmium behaved opposite, being significantly higher in large mussels. This 

corresponds with previous findings in unpolluted waters (Riget et al., 1996), while Boyden 

(1977) found no correlation with cadmium and size in mussels, and Cossa et al. (1980) 

reported negative correlation with size.  At Fjellspollen silver was found to be significantly 

higher in small mussels than in large. Zinc and lead, on the other hand, were significantly 

higher in large mussels at the polluted site (Nygård). Riget et al. (1996) reported similar 

results for lead but found zinc to be independent of size. However, both negative and positive 

correlation between zinc, as well as lead, and size are reported (Boyden, 1974; Boyden, 

1977; Cossa et al., 1980; Popham & D’Auria, 1983). De Wolf (1975) found higher 

concentrations of mercury in small individuals than in large ones. In the present study, like in 

Riget et al. (1996), mercury did not indicate any correlation with size, although in the present 

study, some significant differences were found between the size groups II and III compared to 

other groups at Fjellspollen. As a conclusion, in the present study, size seems to have 

different effect on trace metal concentrations in blue mussels in polluted and unpolluted sites, 

when it comes to zinc, lead, arsenic and silver. Popham & D’Auria (1983) noted the same in 

the case of zinc and lead concentrations in a contaminated and an uncontaminated area. 

Differences in metal accumulation in mussels can be due to environmental stress, different 

 44



Discussion 

seasonal growth patterns or metal uptake rates between size groups, or due to the effect of 

other metals in the water (Strong & Luoma, 1981; Widdows et al., 1995; Riget et al., 1996; 

Stewart, 1999). However, it can be concluded, like in Amiard- Triquet et al.(1986), that 

although  

there is variation in metal concentrations between different size groups, a general picture of 

environmental condition in the two different areas could clearly be seen: The trace metal 

concentrations except cadmium, were higher in polluted site, Nygård, than in unpolluted site, 

Fjellspollen, in all size classes. 

 

5.2.3.Tidal- effect study 

In the present study cadmium and lead were significantly higher in the subtidal blue mussels 

growing in 40 cm below the spring low tide than in mussels on the upper shore, 10 cm above 

the spring low tide mark. In contrast, Philips (1976b) recorded highest values of zinc, 

cadmium and lead in the intertidal mussels, and De Wolf (1975) found highest mercury 

concentrations as well in intertidal mussels. Phillips (1977b) reported that zinc and cadmium 

concentrations in blue mussels collected at low salinity waters were higher than in mussels 

from high salinity waters. In the present study the sampling site, Nygård, was located in a 

narrow sound, where the water current is quite strong. It is possible likely, that the strong 

water movement at the site prevents the formation of vertical layers in the water and the 

mussels in all tidal zones have the similar salinity environment. Blue mussel take up cadmium 

in dissolved form, while lead is taken up from food particles and from the water in similar rates 

(Shulz- Baldes, 1974). Mussels growing uptidally will have less direct contact with water and 

less time to feed, than the mussels living continuously beneath the water surface. Previous 

studies have reported that intertidal mussels have slower growth rates than mussels growing 

subtidally (Seed, 1976; Griffiths, 1981). This can be due to reduced access to food during low 

tide or increased light exposure, which may inhibit growth (Seed, 1976). This might be one of 

the reasons, why cadmium and lead were significantly higher in subtidal mussels. In the 

present study uptidal mussels were significantly lighter than mussels at the intertidal zone. In 

the size- effect study discussed previously, lead was significantly higher in the large mussels 
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than in the small ones. The results here in the tidal effect study might reflect the size effect in 

lead concentration rather than the tidal effect studied.  

 

5.2.4. Thawing effect study 

In the thawing- effect study arsenic, silver and cadmium were significantly higher in the blue 

mussels dissected fresh than in the mussels that first were frozen. The differences were of 

the magnitude of 20-50 %. Lead, on the other hand, was significantly higher in blue mussels, 

which first were frozen. The circulation system in blue mussels is partly open. This means 

that blood, or hemolymph, circulates in blood veins between different organs but freely within 

organs. Hemolymph transports dissolved nutritive products, oxygen and trace metals from 

gills to the other parts of the body (Field, 1921; Hovgaard et al., 2001), although the transport 

system for trace metals is not fully understood (Simkiss & Mason, 1983).  When mussels 

freeze ice crystals may damage cells and organs. When thawed, hemolymph and cell fluids 

may leak out from the organs and veins, and some of the trace metals can be lost from the 

body this way. This may be an explanation for higher concentrations of trace metals found in 

the blue mussels dissected fresh in the present study, although it does not explain why lead 

was higher in mussels which first were frozen.  Mussel Watch (1980) recommended that 

mussels used for environmental monitoring should be dissected fresh to avoid leakage of 

hemolymph. In the other hand, Field (1921) stated that hemolymph can be leaked out from 

drained fresh mussels by a simple press. This can also happen when mussels are prepared 

without freezing for biomonitoring. Further investigations should be made upon the thawing- 

effect on trace metal concentrations in blue mussels. If significant differences are found, clear 

procedure should be stated further for the International Mussel Watch programs to avoid 

confusion between the two existing methods. 

5.2.5. Metal interactions 

In the present study several trace metal interactions were recorded. There was significant 

positive correlation between copper and zinc, while zinc and cadmium and zinc and lead 

correlated negatively with each other. Copper-zinc correlation has been recorded previously 
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by Phillips (1976b) and Riget et al. (1996), while Phillips (1976a) found no effect of other 

metals on uptake of cadmium or lead. It has been well reported that deficiency of an essential 

element like zinc can increase the binding of a toxic metal to enzyme binding sites for the 

essential elements (see Mussel Watch, 1980; Stewart, 1999). Cadmium is an effective 

competitor for zinc, and this is confirmed also in the present study with negative regression 

slopes between zinc and lead. In the other hand, in the study of the 23 stations along the 

Bergen coast, the highest cadmium concentrations were found in blue mussels collected at 

the reference stations, while in zinc polluted waters in the centre cadmium concentrations 

were low. This could indicate that cadmium was not taken up by blue mussels in the presence 

of high zinc or copper content or that cadmium was within normal range and did not interfere 

with zinc.  

 

5.2.6. The blue mussel as a biomonitor 

After a definition, a good biomonitor is an organism which can respond to different 

contamination levels in the environment (Phillips, 1977b). In the present study trace metal 

concentrations in blue mussels reflected contamination level in the environment in the case of 

lead, copper and zinc. The highest contamination levels of these metals were found in the 

Bergen centre and the lowest in the reference stations and stations furthest away from the 

centre. In previous studies blue mussel have been found to be a good biomonitor of lead, 

mercury and cadmium (Davies & Pirie, 1978; Shulz- Baldes, 1974; Julshamn & Grahl-

Nielsen, 1996), while algae (Ascophyllum nodosum) and oyster (Ostrea edulis) were found to 

be better indicator species for copper pollution (Julshamn, 1981a; Julshamn, 1981b). Blue 

mussel can regulate uptake of copper in the body depending on salinity, season, temperature 

and presence of other metals like zinc, cadmium and lead (Phillips, 1976a; 1976b; 1977b; 

Davenport, 1977; Davenport & Manley, 1978; Amiard- Triquet et al., 1986). Szefer & Szefer 

(1991), in the other hand, reported that copper and zinc were accumulated more efficiently by 

blue mussels than lead. Cadmium concentrations as well, may be influenced by the presence 

of other metals and the salinity in the water (Phillips, 1976a; Elliott et al., 1986). Blue mussels 

have also been found to be able to equilibrate to different zinc concentrations when 
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transplanted, and that the species can regulate zinc uptake effectively, even in highly polluted 

waters (Boyden, 1977; Julshamn, 1981a; Lobel et al., 1982). In addition, Julshamn & Grahl-

Nielsen (1996) reported that fish was better indicator in arsenic contamination than blue 

mussels. Despite of the findings in previous studies, blue mussel in the present study was a 

good indicator for lead, copper and zinc, while in the case of arsenic, silver, cadmium and 

mercury the concentrations in blue mussels did not indicate any pollution gradient either in 

relation to the Bergen centre or to the sewage water outlets. To gain more precise evaluation 

of the contamination levels in the area, suspension feeders could be used to monitor the trace 

metal availability from the sediments (Rainbow & Phillips, 1993). 

 

5.2.7. Evaluation of the effect of the new sewage outlets. 

Mussels sampled in Lyreneset and Biskopshavn beside the outlets of the new water 

treatment plants did not indicate any elevation in trace metal concentrations when compared 

to other stations of with previous data sampled before the output started (Andersen, 1994). 

This indicates that mechanical water treatment is a sufficient method to remove trace metals 

from the wastewater. Another explanation might be that the discharge of wastewater into the 

deep water might lead trace metals further away from the actual output site, and elevated 

concentration of trace metals might be found further away along the water stream. Sanudo-

Wilhelmy & Flegal (1992) reported high silver concentrations in sediments in the vicinity of 

municipal sewage site. Similar findings were not detected here. Recent studies have reported 

increased organic material in the vicinity of the new sewage outlet in Lyreneset and effects on 

the bottom fauna (Botnen et al., 2000). Metals, like lead and copper, show affinity to organic 

particles (Bryan & Hummerstone, 1977; Xhoffer et al., 1992). The bottom sediments in the 

vicinity of the sewage discharge might accumulate these trace metals with time. Further 

studies of the chemical composition of sewage water should be made in order to measure the 

magnitude of trace metal concentrations in the outgoing sewage water. In addition, if trace 

metal concentrations seem to increase in sediments under the sewage outlets, improvements 

of the water treatment should be evaluated.  
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5.2.8. Environmental quality of the coastal waters of Bergen 

Environmental quality of Byfjorden is generally good when compared to the criteria from the 

State Pollution Control (Molvær et al., 1997). Table 5.1 shows the concentration levels of  

 

trace metals in blue mussels at five different quality classes from class I, unpolluted, to class 

V, highly polluted. On the basis of the present study, the area from Helgerneset to 

Nordåsstraum (stations 4-18) is moderately polluted by lead and belongs to the class II, while 

the rest of the stations are unpolluted and belong to the class I (Tab. 5.1). The whole study 

area is unpolluted by silver, cadmium, and mercury, while Vågen and Puddefjorden are 

moderately polluted by zinc and copper. Copper is also high in Håkonshella, which belongs to 

class II, moderately polluted. Arsenic concentration in blue mussels were very close to the 

boundary value of 10 mg/kg dry weight between the classes I and II, ranging from 9.2 to 12.9 

mg/kg dry weight, except at Vågen, where 20.9 mg/kg dry weight was measured. The area 

can be defined then as slightly or moderately polluted by arsenic. 

 

Table 5.1. Classification of environmental quality in Norwegian fjords on the basis of trace 
metal concentrations (mg/kg dry weight) in blue mussels after Molvær et al. (1997). 
Environmental quality classes are termed as: I =unpolluted or slightly polluted, II = moderately 
polluted, III = remarkably polluted, IV = highly polluted and V = very highly polluted. 
 

Environmental 
quality class 

Cu 
mg/kg 

Zn 
mg/kg 

As 
mg/kg 

Ag 
mg/kg 

Cd 
mg/kg 

Hg 
mg/kg 

Pb 
mg/kg 

I  < 10 < 200 < 10 < 0.3 < 2 < 0.2 < 3 
II 10 - 30 200 - 400 10 - 30 3 - 10 2 - 5 0.2 - 0.5 3 - 15 
III 30 - 100 400 - 1000 30 - 100 10 - 20 5 - 20 0.5 - 1.5 15 - 40 
IV 100 - 200 1000 - 2500 100 - 200 20 - 40 20 - 40  1.5 - 4 40 - 100 
V > 200 > 2500 > 200 > 40 > 40 > 4 > 100 

 

 

5.2.9. Concluding remarks 

The conclusions of the present study may be summarised as following: 

I Blue mussels in the Bergen centre are moderately polluted by lead, zinc and  

cadmium. 
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II Reductions in copper, zinc, lead, cadmium, mercury and lead concentrations in blue 

mussels were observed in the Bergen centre compared to the data from 1993. The 

magnitude of the reduction varied between 10-50 %   

III There was no increase in trace metal concentrations in blue mussels collected in the 

vicinity of the new sewage outlet in Lyreneset compared to the data from the area 

before the discharges were started.  

IV The environmental quality of the coastal waters of Bergen and Byfjorden varies from 

the class I, non polluted, to the class II, moderately polluted. 

V  On the basis of recommendations from EU, blue mussels from the Bergen centre can 

not be used for human consumption because of the elevated concentrations of lead.   

VI Size has different effects on the trace metal concentrations in blue mussels in 

polluted and unpolluted sites. Copper, silver and cadmium were significantly higher in 

small mussels than large ones in the unpolluted site, while zinc, cadmium and lead 

were significantly higher in large mussels in the polluted site.  

VII  Cadmium and lead were significantly higher in blue mussels growing subtidally 

compared to blue mussels on intertidal and uptidal zones. 

VIII Freezing and thawing of blue mussels before the analyses of trace metals have 

significant effects on metal concentrations. Arsenic, silver and cadmium were 

significantly higher in blue mussels dissected fresh compared to blue mussels that 

first were frozen and thawed.  
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