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This dissertation pursues several aims. The first one is to contribute to the under-
standing of implicit details in derivation of nonlinear dispersive water wave models.
The main focus is on the Hamiltonian theory for the surface water wave problem. The
second is to research the nature of solutions to model equations. Numerical investiga-
tion of the relations between different bifurcation curves and travelling-wave solutions
confirms some established theoretical knowledge and puts forward evidences that are
not fully understood analytically. The third aim is to present a method for numerical
solution of water wave equations. This method, being relatively simple in implemen-
tation, allows to circumvent the problem of turning points on bifurcation curves and
also to compute travelling-wave solutions that satisfy certain conditions such as waves
having troughs at zero level.
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Introduction

The water wave theory is a classical part of Fluid Mechanics. It has a long scientific
history with a great number of mathematical results [10, 32]. The first studies in this
field were done by Stokes in 1847 [34]. He developed some approximations to periodic
waves and proposed conjectures about their behavior on deep water. Today these waves
are known as Stokes waves.

The problem of water waves concerns the two-dimensional flow of an inviscid, in-
compressible fluid, bounded above by a free surface and below by a rigid horizontal
bottom. In this situation, the flow is described by Euler equations with appropriate
boundary conditions [13]. By solving these equations, one obtains a complete under-
standing of the flow dynamics. However, for some applications the dynamics of the
free surface is of particular interest. Nonlinear dispersive wave equations, such as the
Korteweg–de Vries equation [22], allow to approximate the description of the free sur-
face evolution without having to provide a complete solution of the fluid flow below the
surface. Different questions related to these equations are actively researched. The ex-
istence of traveling and solitary waves solutions [15], well posedness of these equations
[21, 24, 25] are two examples.

In this work, nonlinear dispersive water wave equations are analyzed from a number
of points: their accuracy in approximating the solutions of Euler equations, derivation
from Hamiltonian formulation of the water wave problem, numerical solution of these
equations, stability of their solutions and investigation of their bifurcation curves.

The Part I of this thesis consists of three chapters. Chapter 1 is devoted to mathemat-
ical formulation of the surface water-wave problem. We revise the Eulerian formulation
of the problem, the Linear water-wave theory and the boundary conditions applied. The
second chapter describes a method for deriving nonlinear dispersive water-wave equa-
tions. The main focus here is on the Hamiltonian formulation of the problem and
different scaling regimes. A numerical method for solving the water-wave equations
is also presented in Chapter 2. Chapter 3 gives a brief summary of the research re-
sults obtained in the course of the doctoral studies. Part II contains the research papers,
published and submitted for publication, which were written for this PhD project.



4



Chapter 1

Theory on the problem of surface water waves

1.1 Euler equations

The mathematical description of the surface water wave problem begins with analyzing
Navier-Stokes equations

D
−→
U

Dt
=

∂
−→
U

∂t
+ (
−→
U · ∇)−→U = −1

ρ
∇P +−→д +ν∇2−→U . (1.1)

where
−→
U is the velocity field, ρ is the density, −→д acceleration due to gravity, P is the

fluid pressure and ν denotes the kinematic viscosity. It should be noted that the fluid
is density ρ is assumed to be constant. The law of mass conservation enables one to
derive the continuity equation

Dρ

Dt
+ ρ∇ ·−→U = 0,

ρ=const.
======⇒ ∇·−→U = 0, (1.2)

the latter is often addressed to as incompressibility condition [13]. Rotation of the fluid
flow is modelled by taking curl of the velocity field

∇×−→U = −→Ω . (1.3)

The parameter
−→
Ω is called vorticity. In this setting, absence of vorticity, i.e.

−→
Ω = 0,

means that there is no rotation, and the flow is called irrotational.
Close observation of the equations governing the fluid flow show that in the case

of incompressible and inviscid (ν = 0) fluid, the vorticity does not change in time. If
one takes the curl of equations (1.1), given listed assumptions and that ∇×∇P = 0, then

it is possible to find that D
−→
Ω
Dt
= 0. Hence, the initial fluid rotation is preserved without

changes in the course of the flow.
The Euler equations appear in case of inviscid fluid flow as a simplified version of

the Navier-Stokes equations (1.1). Conditions on boundaries of the flow domain give
additional equations that constitute the Euler system for surface water wave problem
[23]. The system is derived as follows.

We consider an open rectangular channel with flat bottom. The bottom is placed
along the x-axis at the level z = −h0, with z being the vertical axis. Waves propagate
in the x-direction. The fluid surface is described by the relation z = η(x ,t ). Figure
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Figure 1.1: The domain of the fluid flow: longitudinal cross-section of a rectangular channel,

η is the free surface, L is the wavelength, h0 is the undisturbed depth, д is the gravity.

1.1 describes the geometric setup of the flow domain. It is assumed that there is no
variation in along the y-axis and the that channel infinitely long. Hence, the domain
can be expressed as D(t ) = {(x ,z) ∈ R2 | x ∈ R, −h0 ≤ z ≤ η(x ,t ), }.

If we denote the components of the velocity field as
−→
U = (U ,V ,W ), then the Euler

equations are written as

Ut +UUx +WUz = −
Px

ρ
,

Wt +UWx +WWz =
Pz

ρ
−д,

(1.4)

and the relation (1.2) has the form

Ux +Wz = 0. (1.5)

It is assumed that the fluid vorticity is equal to the constant Ω0, and the relation (1.3)
reads

Wx −Uz = −Ω0. (1.6)

If we assume that the flow is irrotational, i.e. Ω0 = 0, then we can express the relation
(1.3) as ∇× (∇ϕ ) = 0. The function ϕ is called the velocity potential and ∇ϕ = (U ,W )T .
For the velocity potential ϕ, the incompressibility condition (1.5) results in the Laplace
equation

ϕxx +ϕzz = 0 in −h0 < z < η(x ,t ). (1.7)

By integrating the Euler equations (1.4) with the condition Ω0 = 0 in (1.6), one arrives
to the Bernoulli equation

ϕt +
1

2
(ϕ2
x +ϕ

2
z )+

P

ρ
+дz =C (t )+C. (1.8)

The variable C (t ) can be eliminated by defining a new velocity potential

Φ = ϕ −
∫ t

0

C (s )ds .

Now we focus our attention on the bottom and the free surface boundary conditions.
These conditions are natural to such a problem setup. It is required that the fluid cannot
penetrate the bottom. This condition written as

ϕzz = 0 on z = −h0. (1.9)
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It is also required that fluid particles cannot leave the free surface. This is the kinematic
condition (1.10). The pressure at the free surface has to be equal to the atmospheric
pressure if the surface tension is neglected. This is called the dynamic and is derived
from the Bernoulli equation in the form written in (1.11).

ηt +ϕxηx −ϕz = 0 on z = η(x ,t ) (1.10)

ϕt +
1

2

(
ϕ2
x +ϕ

2
z

)
+η = 0 on z = η(x ,t ). (1.11)

The atmospheric pressure is assumed to be zero, since it is very small in comparison
with the fluid pressure.

Above we have assumed that the flow was irrotational. If we consider that the flow
is rotational, i.e. Ω0 � 0, the water wave problem is expressed in terms of the stream-
function ψ . The stream-functions defines the velocity field as (U ,W ) = (ψz,−ψx ). To
this end, the equation (1.6) implies that

Δψ = Ω0. (1.12)

For this case, we also assume that the flow is steady and the velocity field not dependent
on time. This simplifies the Euler equations (1.4) - the time derivatives there can be
removed. The Bernoulli equation for this case is written as

1

2
(ψ 2
x +ψ

2
z )+

P

ρ
+дz = Y(ψ ), (1.13)

where Y(ψ ) is constant along streamlines. In analogy with the equation (1.7), the the
stream-function satisfies the Laplace equation:

ψxx +ψzz = Ω0 in −h0 < z < η(x ). (1.14)

The condition at the bottom reads

ψzz = 0 on z = −h0, (1.15)

and at the free surface:

ψzηx +ψx = 0 on z = η(x ), (1.16)

1

2
(ψ 2
x +ψ

2
z )+дz = Γ on z = η(x ), (1.17)

where Γ = Y(ψ ) |z=η is constant.

1.2 Linear theory

Let us review the parameters that describe the fluid flow in the surface water wave
problem. In Figure 1.1, the surface elevation is represented by η(x ,t ), the wavelength
L defines the distance between two successive troughs. The wave amplitude is denoted
by a, which may be defined as the distance from the zero level z = 0 to the wave crest.
The phase speed c is defined as

c =
L

T
, (1.18)
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where the parameter T denotes the wave period. The free surface η(x ,t ) can be repre-
sented in terms of a cosine function:

η(x ,t ) = a cos(kx −ωt ), (1.19)

with k = 2π/L and ω = 2π/T being the wavenumber and the radian frequency. To this
end, the wavespeed c can also be written as

c =
ω

k
. (1.20)

The linear water wave theory is a special case of the theory described in section 1.1.
We assume that the flow is irrotational and the relation a/L is small. This results in
the fact that the velocity field components become small and the nonlinear terms in the
Euler equations can be neglected [23]. In this setting, the free surface is described by
z = 0 and not by z = η. Thus the linear water wave problem may be written as follows:

ϕxx +ϕzz = 0 in −h0 < z < 0, (1.21)

ϕz = 0 on z = −h0, (1.22)

ϕz = ηt on z = 0, (1.23)

ϕt = −дη on z = 0. (1.24)

The solution to this system is derived by combining (1.19) and the the kinematic bound-
ary conditions (1.22)-(1.23), and written as

η(x ,t ) = a cos(kx −ωt ),

ϕ =
aω

k

cosh(k (z +h0))

sinh(kh0)
sin(kx −ωt ). (1.25)

Using ϕ, we find the velocity field components:

U = ϕx = aω
cosh(k (z +h0))

sinh(kh0)
cos(kx −ωt ),

W = ϕz = aω
sinh(k (z +h0))

sinh(kh0)
sin(kx −ωt ).

In the linear theory, the dispersion relation is the relation ω =ω (k ). It characterizes
the dependency between the wavelength L, wavespeed c and wavenumber k. For the
problem decribed in (1.21)-(1.24), the dispersion relation is written as

ω =

√
дk tanh(kh0), (1.26)

hence, the wavespeed reads:

c =
ω

k
=

√
д

2π
L tanh(kh0). (1.27)

It can be noted that the wavespeed is a function of wavelength. Therefore the lin-
ear surface wave problem is a dispersive model, since waves of different wavelengths
propagate with different speeds.
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To obtain a full picture of the problem, one may derive the pressure P using the
Bernoulli equation and the dispersion relation (1.26):

P = −ρдz + ρдacosh(k (z +h0))

cosh(kh0)
cos(kx −ωt ). (1.28)

The linear theory enables one to find the streamlines and particles paths as well.
In the case when the fluid depth is much smaller than the wavelength the dispersion

relation for the linear theory (1.26) reduces to

ω =

√
дh0k2, (1.29)

and the wavespeed becomes a constant c = c0, where c0 =
√
дh0. This is due to the fact

that in long-wave approximation, i.e. h0/L << 1, tanh(kh0)→ kh0.
This case is addressed to as Shallow-water theory. It is also assumed that the flow

is uniform and the vertical velocity is zero. Thus, for the problem domain illustrated
in Figure 1.1, if we denote uniform horizontal velocity by u (x ,t ), Euler equations (1.4)
become

ut +uux =
Px

ρ
,0 =

−Pz
ρ
−д, (1.30)

where all terms with vertical velocityW are disregarded.
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Chapter 2

Derivation of water wave equations and their

numerical solution

2.1 Hamiltonian theory

From the previous chapter we know that the surface water wave problem is described
by the Euler equations with appropriate boundary conditions at the bottom and at the
free surface. There are also some of model equations that describe only the dynamics
of the free surface. This is of advantage in the cases when the solution of the flow
below the surface is not of interest. In a general form, these models are written as

ηt + [f (η)]x +Lηx = 0, (2.1)

where η(x ,t ) is surface elevation, L is a self-adjoint operator, and f is a real-valued
nonlinear function. Such equations are derived in an inconsistent way in the fluid me-
chanics for wave problems. For example, the derivation of the Whitham equation,
introduced by Whitham in [36], is also somewhat ad-hoc. In nondimensional form the
Whitham equation is written as

ηt +
3

2
ηηx +Kηx = 0, K̂η(k ) =

√
tanh(k )

k
, (2.2)

where the operation ·̂ stands for taking the Fourier transform. This section briefly de-
scribes the Hamiltonian formulation of surface water wave problem and derivation of
model equations from Hamiltonian function under different scaling regimes. For sim-
plicity, we will consider the case where surface tension is disregarded.

By taking the depth h0 as a unit of distance, and the parameter
√
h0/д as a unit of

time, we can write the water wave problem in nondimensional form:

ϕxx +ϕzz = 0 in −1 < z < η(x ,t ),

ϕzz = 0 on z = −1,

ηt +ϕxηx −ϕz = 0

ϕt +
1
2

(
ϕ2
x +ϕ

2
z

)
+η = 0

}
on z = η(x ,t ).

(2.3)

where ϕ (x ,z,t ) is the velocity potential and η(x ,t ) describes the surface elevation. The
assumptions on flow properties are the same as in section 1.1 and the domain for prob-
lem is {(x ,z) ∈ R2 | x ∈ R, −1 < z < η(x ,t )}.
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The total energy of the system (2.3) is the sum of kinetic energy and potential en-
ergy. The potential energy must be zero if there is no wave motion at the surface. To
this end, the Hamiltonian function for the problem can be written as

H =

∫
R

∫ η

0

zdzdx +

∫
R

∫ η

−1

1

2
|∇ϕ |2dzdx . (2.4)

Analysis described in [9, 32, 37] provides us with the following representation of the
Hamiltonian function:

H =
1

2

∫
R

[
η2
+ΦG (η)Φ

]
dx , (2.5)

where Φ(x ,t ) = ϕ (x ,η(x ,t ),t ) and G (η) is a Dirichlet-Neumann operator such that

G (η)Φ =

∞∑
j=0

Gj (η)Φ,

as described in [30]. In this case the termsG0(η) and G1(η) are written as

G0(η) = D tanh(D) and G1(η) = DηD −D tanh(D)ηD tanh(D),

with the operator D = −i∂x . The analysis is to linear terms in η, hence, the termsGj (η),
j ≥ 2 are not be considered further. We introduce the operator K(η) such that

G (η) = DK(η)D,

and the expansion

K(η) =

∞∑
j=0

Kj (η), Kj (η) = D
−1Gj (η)D

−1

is valid around zero. One should notice that K0 =
tanhD
D

, K1 = η− tanhD (η tanhD). In
such terms, the Hamiltonian (2.5) can be expressed as

H =
1

2

∫
R

[
η2
+uK(η)u

]
dx , (2.6)

where u = Φx is the dependent variable. Then the water wave problem can be repre-
sented as the Hamiltonian system

ηt = −∂x
δH

δu
, ut = −∂x

δH

δη
.

This system has a symmetric structure map Jη,u:

Jη,u =

(
0 −∂x
−∂x 0

)
. (2.7)

Further, we consider the wave problem with characteristic nondimensional wave-
length λ and a characteristic nondimensional amplitude α . Different approximations in
the this problem are obtained by considering the amplitude α to be a function of wave
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number μ = 1/λ. Different scaling regimes are defined by the behavior of α = α (μ ) at
small μ. In the long-wave approximation η =O (α ), u =O (α ) and D = −i∂x =O (μ ).

Under different scaling regimes, one can take approximations of the operator K in
Hamiltonian function (2.6). This leads to derivation of systems that approximate (2.3).
For example, the Whitham system is written as follows:

ηt = −∂x
δH

δu
= − tanhD

D
ux − (ηu )x +O (μ3α2), (2.8)

ut = −∂x
δH

δη
= −ηx −uux +O (μ3α2). (2.9)

These systems describe water waves that propagate in both directions - right and left.
It is possible to separate the right-going and left-going parts of the waves and obtain
single equations dedicated to each one of them. We will demonstrate the argument
taking the Whitham system as an example.

Consider linearized version of (2.8)-(2.9):

ηt +
tanhD

D
ux = 0, (2.10)

ut +ηx = 0. (2.11)

Taking solutions of this system in the form

η(x ,t ) =Aeiξx−iωt, u (x ,t ) = Beiξx−iωt

prompts the matrix equation (
−ω tanhξ
ξ −ω

) (
A
B

)
=

(
0

0

)
.

For the latter equation to have a nontrivial solution, the determinant of the matrix must
be equal to zero: ω2 − ξ tanhξ = 0. Defining the wavespeed as c = ω (ξ )/ξ one obtains
the dispersion relation for the Whitham equation:

c2(ξ ) =
tanhξ

ξ
=⇒ c (ξ ) = ±

√
tanhξ

ξ
.

Positive wavespeed c > 0 corresponds to right-going solutions the system (2.10)-(2.11),
left-going solutions have c < 0.

The transformation of variables allows us to separate these solutions:

r =
1

2
(η+Ku ), s =

1

2
(η−Ku ), (2.12)

where K is an invertible function of the operator D that is chosen specifically for dif-
ferent model equations. However, the possibility to find suitable K that r and s is not
guaranteed. The original functions are represented as

η = r +s, u = K−1(r −s ). (2.13)
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In terms of r and s Hamiltonian system (2.1) takes the form

rt = −∂x
(
K

2

δH

δr

)
, (2.14)

st = ∂x

(
K

2

δH

δs

)
. (2.15)

The shallow-water scaling regime can be obtained by taking α =O (1) and μ→ 0. If
we assume that left-going waves can be discarded s = o(1), the equation (2.14) leads to
the shallow- water equation

rt +
3

2
rrx +rx = o(μ ).

If we let α = O (μ2), μ → 0 and s = o(μ2), we obtain the Boussinesq scaling regime,
which allows us to derive the KdV equation

rt +rx +
3

2
rrx −

1

6
rxxx = o(μ

5).

2.2 Numerical method for solving nonlinear dispersive water wave

equations

This sections describes a numerical method, which is designed to compute traveling-
wave solutions for water wave equations of a general form

ηt + [f (η)]x +Lηx = 0,

where L is a self-adjoint operator, and f is a real-valued function. For example, for the
KdV equation L = I + 1

6
∂2
x and f (η) = 3

4
η2. The operator L is considered to be a Fourier

multiplier operator

L̂η(k ) = γ (k )η̂(k ).

In case of the Whitham equation, L is given by convolution with the integral kernel Kh0

in the form

Lη(x ) =

∫ ∞

−∞
Kh0

(y)η(x −y) dy, K̂h0
(k ) = γ (k ) =

√
д tanh(h0k )

k
. (2.16)

The theory of Stokes waves lies basis of the current method.

2.2.1 Cosine collocation method

The traveling-wave solutions to the equation (2.2) are found in the following form:

η(x ,t ) = ϕ (x −ct ).
The equation then becomes integrable

ϕ′+
[
f (ϕ )
]′
+Lϕ′ = 0, (2.17)

−cϕ + f (ϕ )+Lϕ = B, (2.18)
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where B is a constant of integration.
We assume that f ∈ C2(R), f (0) = 0 and f ′(0) = 0. The method is designed for

computing even periodic traveling-wave solutions. In some cases, it can be proved that
solutions of (2.18) are be even, but in general case it is not known [6]. This assump-
tion helps to make the numerical method applicable to many equations without special
configuration. This also enables us to use cosine collocation method and reduce the
number of unknowns by 2 – only one-half of the solutions needs to be computed, the
other half is constructed by symmetry.

We project the equation (2.18) on a subspace of L2(0,2π ), namely on

SN = span
R
{cos(lx ) | 0 ≤ l ≤ N −1}. (2.19)

The collocation points xn = π
2n−1
2N

, n = 1, . . . ,N discretize the domain. If the full wave-
length of solutions is L � 2π , the x-variable is scaled:

x′ =
L

2π
x ,

and new collocation points x′n and wavenumbers κl given by

x′n =
L

2

2n−1

2N
, κl =

2π

L
l .

Our aim is to find a function ϕN ∈ SN satisfying the equations

−cϕN (x′n)+ f (ϕN ) (x′n)+LNϕN (x
′
n) = 0, (2.20)

at collocation points x′n. The function ϕN is the discrete version of ϕ:

ϕN (x
′) =

N−1∑
l=0

ω (κl )ΦN (κl ) cos(κlx
′),

ω (κl ) =
⎧⎪⎨⎪⎩
√

1/N , κl = 0,√
2/N , κl > 0,

ΦN (κl ) = ω (κl )

N∑
n=1

ϕN (x
′
n) cos(κlx

′
n),

where κl = 0, 2π
L
, . . . , 2π

L
(N − 1). The values ΦN (·) are the discrete cosine coefficients.

The term LNϕN is evaluated using the matrix LN (i, j ) given as

LNϕN (x
′
i ) =

N∑
j=1

LN (i, j )ϕN (x
′
j ),

LN (i, j ) =

N−1∑
l=0

ω2(κl )γ (κl ) cos(κlx
′
i ) cos(κlx

′
j ),

where γ (·) is the Fourier multiplier function of the operator L.
The equation (2.20) is evaluated at each point x′n. This may be written F (ϕN ) = 0,

where F is a nonlinear system of N equations and N unknowns. This system is solved
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Figure 2.1: Navigation on the bifurcation curve.

by an iterative method such as Newton’s method. The wavespeed c has to be fixed in F
to compute a particular solution. If a turning point appears on the bifurcation curve for
the equation under study, this approach will not work as there will be two solutions ϕN
for the same wavespeed c. This situation is described in [16].

In the current method, the amplitude a and the wavespeed c of a solution are defined
as functions of a parameter θ : a = a(θ ), c = c (θ ). Such an approach enables one to
follow turning points on the bifurcation curve.

As the Figure Figure 2.1 shows, we use two points on the bifurcation curve, P1 =

(c1,a1) and P2 = (c2,a2), to define a direction vector d = (dc ,da):

d : dc = c2−c1, da = a2 −a1.

Then the point P3 = (c3,a3) is fixed at a small distance s from the point P2 in the direction
d:

P3 : c3 = c2+s ·dc , a3 = a2+s ·da .

We take P3 as an initial guess for computing the next solution P∗ = (c∗,a∗). The point
P∗ lies in the direction of the vector d⊥ = (dc⊥,d

a
⊥) orthogonal to the vector d:

d⊥ : dc⊥ = −da, da⊥ = d
c ,

P∗ : c∗ = c3+θd
c
⊥ a∗ = a3+θd

a
⊥.

The variable θ is computed the system

F


��������

ϕN (x1)
...

ϕN (xN )
B
θ

��������
=


��������

(−c +LN )ϕN (x1)+ f (ϕN (x1))−B
...

(−c +LN )ϕN (xN )+ f (ϕN (xN ))−B
Ω(ϕN ,c,a,B)

ϕN (x1)−ϕN (xN )−a

��������
=


��������

0
...

0

0

0

��������
. (2.21)

We require the computed solution to have waveheight a by setting

ϕN (x1)−ϕN (xN )−a = 0.
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Nb. of grid points log10(‖ηexact−η‖L∞ ) log10(‖ηexact −η‖L2 ) Ratio of L2-errors

32 −1.389 −2.092

64 −3.705 −4.549 286.8

128 −8.809 −9.508 90935.0

256 −15.353 −16.144 4329670.9

512 −15.353 −16.087 0.9

Table 2.1: Estimates of error between the exact and computed solitary wave solutions for the

KdV equation. L/2 = 30, waveheight a = 1.2651

The equation Ω(ϕN ,c,a,B) = 0 allows to enforce different conditions on the computed
solution. For example, the function

Ω(ϕN ,c,a,B) = ϕN (x1)+ · · ·+ϕN (xN ),

requires a computed solution to have the mean of over a period equal to zero;

Ω(ϕN ,c,a,B) = B,

sets the problem in the homogeneous form (B = 0);

Ω(ϕN ,c,a,B) = ϕN (xN ). (2.22)

enables to compute traveling-wave solutions that approximate solitary waves. Solitary
wave solutions are treated as traveling waves having long wavelength and trough at
zero. We test the latter condition for the KdV equation:

ηt +ηx +
3

2
ηηx +

1

6
ηxxx = 0,

which has exact solitary solutions in the form

ηexact(x ,t ) = a sech2
(√

3a
4
(x −ct )

)
, c = 1+a/2.

The computations suggest that the method features exponential convergence to the ex-
act solitary wave solution. The method is implemented in the Python language [18, 31]
and distributed as the SpecTraVVave solver [28].
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Chapter 3

Summary of results

This chapter provides an overview of the results achieved in the course of research
work.

3.1 The Whitham equation as a model for surface water waves

In this paper, the Hamiltonian theory for surface water waves is used to derive asymp-
totically both the Whitham equation and a system of Whitham type, which allows
for wave propagation in two directions. Moreover, the performance of the Whitham
equation as a model for time-dependent surface water waves is compared with well-
established models such as the KdV, BBM and Padé (2,2) equations. Numerical solu-
tions of the Euler equations with boundary conditions on the free-surface are taken for
the point of reference.

3.1.1 Derivation of evolution systems of Whitham type.

Investigation of amplitude–wavelength relation for solitary waves of the Whitham
equation yields the scaling regime

W(κ,ν ) =
a

h0

eκ (l/h0 )
ν ∼ 1, (3.1)

where values for κ and ν are computed numerically. This regime is central for deriving
the Whitham type system and the Whitham equation from the Hamiltonian function H
for surface water wave problem:

H =

∫
R

∫ η

0

zdzdx +

∫
R

∫ η

−1

1

2
|∇ϕ |2dzdx . (3.2)

We follow the method detailed in the chapter 2.1 and re-write as

H =
1

2

∫
R

[
η2
+uK(η)u

]
dx , (3.3)

where u = Φx is the dependent variable, Φ(x ,t ) = ϕ (x ,η(x ,t ),t ), K =

√
tanhD
D

. The water

wave problem is then written as a Hamiltonian system

ηt = −∂x
δH

δu
, ut = −∂x

δH

δη
.
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Derivation of the Whitham type system is based on the scaling regime (3.1) and the

Hamiltonian (3.3). We introduce a parameter μ = h0

l
and assume the amplitude-depth

ratio to be the following a/h0 = e
−κ/μν . Thus we the regime W(κ,ν ) = 1 is embedded.

Further, we expand the operator K(η) in the Hamiltonian function (3.3) and disregard
terms of order O (μ2e−κ/μ

ν

), but not of order O (e−κ/μ
ν

). The truncated Hamiltonian in
dimensional variables may be written as

H =
1

2

∫
R

[
η2
+uKN

0 (η)u +uηu
]
dxdz. (3.4)

The operators K0 and KN
0

are equal up to the order of approximation and therefore the
Whitham system is can be obtained from the Hamiltonian (3.4) as follows:

ηt = −∂x
δH

δu
= −K0ux − (ηu )x, (3.5)

ut = −∂x
δH

δη
= −ηx −uux . (3.6)

It is also possible to derive a higher-order system by discarding terms of order
O (μ4e−κ/μ

ν

), but not of orderO (μ2e−κ/μ
ν

):

ηt = −K0ux − (ηu )x − (ηux )xx ,
ut = −ηx −uux +uxuxx .

3.1.2 Derivation of evolution equations of Whitham type.

To derive the Whitham equation for one-directional wave prepagation we consider the
linearized version of the Whitham system (3.5)-(3.6), which is written as follows:

ηt = −K0ux , (3.7)

ut = −ηx . (3.8)

If one considers η and u to be of the form η(x ,t ) = Ae (iξx−iωt ), u (x ,t ) = Be (iξx−iωt ),
it will lead to the relation ω2 − tanhξ

ξ
ξ 2
= 0, which gives the existence of a nontrivial

solution of the linearized system. By defining c = ω/ξ , one obtains the dispersion

relation c = ±
√

tanhξ
ξ

. Right-going wave solutions are featured with c > 0 and, hence,

the equation (3.8) provides us with the relation η = Ku. Thus we define functions r and
s to separate the right-going and left-going parts of solutions:

r =
1

2
(η+Ku ), s =

1

2
(η−Ku ).

Using similar analysis of Hamiltonian function as the one described above, we arrive
to the Whitham equation:

rt = −Krx −
3

2
rrx,

and it’s higher-order version

rt = −Krx −
3

2
rrx −

13

12
rxrxx −

5

12
rrxxx .
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3.1.3 Numerical results.

Approximation of solutions of the Euler equations with free-surface boundary condi-
tions was analyzed for nondimensional versions of the Whitham equation, the KdV
equation, BBM equation and the Padé (2,2) model. Equations were solved numeri-
cally using a standard pseudo-spectral method (see [16, 17]), a fourth-order evolution
integrator algorithm was used for computation of solutions’ development in time [12].
Comparison was performed for initial conditions with both positive and negative sur-
face elevation, and different amplitude-wavelength settings.

Numerical experiments show that the Whitham equation outperforms other models
except for the case of long waves with positive main part. In this case, the KdV and
BBM equations give better results than the Whitham equation. The Padé (2,2) model
performs better than the KdV and BBM equations, the Whitham equation is more ac-
curate for shorter waves and negative disturbances.

3.2 The Whitham equation with surface tension

This paper generalizes the results of the previous paper to the case where surface ten-
sion is present. The equation under study is

ηt +Wηx +
3

2
ηηx = 0, Wηx =w (−i∂x )ηx =

(
F−1w

)
∗ηx , (3.9)

where the convolution kernel of the operatorw is given in terms of the Fourier transform
by

w (ξ ) =

√
(1+ϰξ 2)

tanh(ξ )
ξ
. (3.10)

The parameter ϰ, which is the inverse of the Bond number, embeds the surface tension
into the model.

The system of equations for the water wave problem in presence of surface tension
is written as follows:

ϕxx +ϕzz = 0 in −1 < z < η(x ,t ), (3.11)

ϕzz = 0 on z = −1, (3.12)

ηt +ϕxηx −ϕz = 0

ϕt +
1
2

(
ϕ2
x +ϕ

2
z

)
+η−ϰηxx

(
1+η2

x

)−3/2
= 0

⎫⎪⎬⎪⎭on z = η(x ,t ). (3.13)

Hamiltonian function for this case is

H =

∫
R

∫ η

0

zdzdx +

∫
R

∫ η

−1

1
2
|∇ϕ |2dzdx +ϰ

∫
R

η2
x

1+
√

1+η2
x

dx .

The function H can be represented in a more convenient way as

H =

∫
R

[
1
2
η2
+

1
2
ΦG (η)Φ+ϰ

η2
x

1+
√

1+η2
x

]
dx , (3.14)
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where Φ(x ,t ) = φ (x ,η(x ,t ),t ) is the trace of the potential at the free surface, and G (η)
is a Dirichlet-Neumann operator, which has a power series form [30]. Using analogous
reasoning as in the previous paper, we transform the Hamiltonian (3.14) to be

H =

∫
R

[
1
2
η2
+

1
2
uK(η)u +ϰ

η2
x

1+
√

1+η2
x

]
dx . (3.15)

However, in this case, one should notice that the dependent variable u =Φx has a differ-

ent structure: u =φx +ηxφz =φτ

√
1+η2

x , where φτ is the tangential velocity component

to the surface.
We split the Hamiltonian (3.15) into gravity and capillary terms as follows

H = Hд +Hc +O (μ2α4), (3.16)

Hд =
1

2

∫
R

[
η2
+u tanhD

D
u +ηu2−u tanhD (η tanhDu )

]
dx , (3.17)

Hc = ϰ

∫
R

η2
xdx

1+
√

1+η2
x

=

ϰ

2

∫
R

η2
xdx +O (μ4α4), (3.18)

where D, μ and α are as in [27]. Following the methods detailed in [7, 8], we represent
the system (3.11)-(3.13) in terms of η and u from the Hamiltonian equations:

ηt = −∂x
δH

δu
, ut = −∂x

δH

δη
. (3.19)

This will eventually lead us to the Whitham system with surface tension

ηt = −
tanhD

D
ux − (ηu )x +O (μ3α2),

ut = −ηx −uux +ϰηxxx +O (μ3α2).

Employing the reasoning developed in [27], we obtain the dispersion relation

c2(ξ ) = (1+ϰξ 2)
tanhξ

ξ
,

and the variables that correspond to the right-going and left-going wave solutions

r =
1

2
(η+Ku ), s =

1

2
(η−Ku ), where K =

√
1

1+ϰD2
· tanhD

D
. (3.20)

Further, we represent the Hamiltonian (3.15) in terms of r and s and analyze the conse-
quent Hamiltonian system

rt + ∂x

(
K

2

δH

δr

)
= 0, st − ∂x

(
K

2

δH

δs

)
= 0, (3.21)

using different approximations and scaling regimes. The first equation of this system
allows us to derive several models such as the shallow-water, KdV, BBM and Whitham
equations. The Padé (2,2) model and the Kawahara equation can also be derived from
(3.21).
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In this paper, several numerical experiments were carried to compare the accuracy
of the Whitham equation with surface tension with the KdV equation (ϰ = 1/2) and
Kawahara equation (ϰ = 1/3). Analysis was done for amplitudes and wavelengths cor-
responding to different Stokes numbers. Positive and negative initial surface elevations
were also analyzed. Numerical solutions for full Euler equations were taken for refer-
ence.

The experiments show that the Whitham equation has better accuracy than the KdV
and Kawahara models. The only case where this does not hold is with a wave of
depression and Stokes number close to one.

3.3 A numerical study of nonlinear dispersive wave models with

SpecTraVVave

The Paper C describes the SpecTraVVave solver for computing approximations to
traveling-wave solutions of nonlinear dispersive wave equations of the form

ut + [f (u )]x +Lux = 0, (3.22)

where u (x ,t ) is surface elevation, L is a self-adjoint operator, and f is a real-valued
function. The numerical algorithm behind the solver is based on continuation method
along the waveheight-velocity bifurcation curve detailed in [16]. We developed a con-
venient navigation technique along the bifurcation curve that allows us to circumvent
issues related to turning points. Another advantage of our method is that it allows to im-
pose different conditions on solutions of the equations such as ”zero mean” and ”trough
at zero” to approximate solitary-wave solutions. The solver is programmed in Python

language [18, 31]. Tests on convergence of solutions computed by the algorithm to
the exact solitary wave solutions of the KdV equation were positive. SpecTraVVave is
then used to experiment with the Whitham, modified Benjamin–Ono and the Benjamin
equations in order to obtain more understanding about their solutions.

3.3.1 Termination of the waveheight-velocity bifurcation curve of the Whitham

equation.

The SpecTraVVave solver is used to compute waveheight-velocity bifurcation curve of
the Whitham equation

ut +
3

2
uux +Kux = 0, K̂u (k ) =

√
tanh(k )

k
. (3.23)

We compute traveling-wave solutions of this equation in the following form:

u (x ,t ) = ϕ (x −ct ).

In terms of ϕ the equation obtains an integrable form, which is written as

ϕ′+
3

2
ϕϕ′+Kϕ′ = 0 =⇒ −cϕ + 3

4
ϕ2
+Kϕ = B. (3.24)
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where we set B = 0. The following questions were investigated and given answers to:
a) Where does the bifurcation curve terminate?
b) Where on the bifurcation curve do solutions change their stability?
c) Is there any role that the turning point on the bifurcation curve plays?

We focus the reader’s attention on the following findings:
1. Traveling-wave solution with minimum velocity corresponds to the turning point

of the bifurcation curve;
2. Traveling-wave solution with maximum L2-norm corresponds to the point of

change of stability;
3. Cusped traveling-wave solution corresponds to the point of termination of the

bifurcation curve.
Justification of the second proposition is based on analysis developed by Boussinesq

and used in [2, 4, 5, 29]. We define the functionals V and E:

V (ϕ ) =
1

2

∫
+∞

−∞
ϕ2 dζ , E (ϕ ) =

∫
+∞

−∞

{
1
2
ϕ3−ϕKϕ

}
dζ ,

and rewrite equation (3.24) in terms of variational derivatives of E andV as

E′(ϕ )−cV ′(ϕ ) = 0. (3.25)

Stability of wave solutions are related to convexity of the function d (c ) = E (ϕ )−cV (ϕ ).
Stable solutions have velocities c for which d′′(c ) > 0, unstable solutions are featured
with velocities c such that d′′(c ) < 0. The derivative of d (c ) in view of (3.25) gives

d′(c ) = −V (ϕ ) = −1

2

∫
+∞

−∞
ϕ2 dζ = −1

2
‖ϕ‖2

L2 . (3.26)

It turns out that d′′(c ) changes sign in the neighborhood of the solution ϕL2 with maxi-
mum L2-norm. Solutions, which are placed around ϕL2 on the amplitude-velocity bifur-
cation curve, are tested in a 4th-order evolution integrator and the proposition has been
confirmed.

One can write the integrated equation given in (3.24) as

(
c√
3
−
√

3

2
ϕ
)2
=

1

3
c2−Kϕ . (3.27)

The inequality ϕ < 3
2
c, that may be derived from the latter equation, imposes the condi-

tion that any continuous solution ϕ must be smooth. However, if ϕ = 3
2
c this argument

does not work. Hence, one may conclude that a cusped solution has a maximum value
of 3

2
c.
The cusped-wave solution mentioned in the third proposition satisfies the relation

c

supx ϕ (x )
=

3

2

with a good accuracy. This provides a numerical evidence to the proposition and justi-
fies it in view of the argument given above. This conclusion has been proved analyti-
cally in [14].
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3.3.2 Interaction of solitary wave solutions of modified Benjamin–Ono equation

We use the SpecTraVVave solver to compute accurate approximations to solitary-wave
solutions of the modified Benjamin–Ono

ut +u
2ux +ux −Huxx = 0,

Two computed solutions, one higher than the other, are set into a time integrator and
their interaction is studied.

Numerical experiment shows that during interaction the solitary-wave solutions
combine into one. This may be seen as if the higher wave annihilated the smaller
one. Further growth of the resulting wave leads to a blow-up process such as the one
described in [20] and proved in [26]. Absence of complete interaction of the solitary-
wave solutions prompts us to conclude that the modified Benjamin–Ono equation may
not be integrable.

3.3.3 Effect of competing dispersion in the Benjamin equation

The purpose of the work described in this section is studying the effects of competing
dispersion operators on periodic traveling waves. We employ the SpecTraVVave to
compute bifurcation branches of the Benjamin equation

ut +ux +uux −Huxx −τuxxx = 0, (3.28)

with τ being a parameter that models surface tension [3], [19], [35]. Fixing the param-
eter τ = 0.1, leads us to the dispersion relation

c (k ) = 1− |k |+0.1k2. (3.29)

For c = 0.525 the dispersion relation has two corresponding wavenumbers k3 = 0.5 and
k2 = 19/2. This results in two bifurcation curves originating from one point, but for
solutions with different wavelengths L3 = 4π and L2 = 4π/19. We also compute the
bifurcation branch for c = 1, i.e. k1 = 10 and L1 = π/5 .

The bifurcation branches corresponding to L3 and L2 contain solutions related to
capillary and gravity regimes. The branches originate in one point, but tend to different
directions without further interaction. However, the branches for solutions with wave-
lengths L1 and L3 have two common points. As the amplitude increases, the branch
L3 crosses the branch L1, then it grows further and terminates at a point on the branch
L1. During the process of this interaction the solutions of the branch L3 develop new
fundamental wavelength and change from 4π to π/5.

Similar phenomena for the Whitham equation with surface tension were reported in
[33].

3.4 Explicit solutions for a long-wave model with constant vorticity

This paper presents a method for finding exact solutions to the nonlinear differential
equation(

Q +
ω0

2
u2
)2 (du

dx

)2
= −3
�

ω2
0

12
u4
+дu3− (2R−ω0Q )u2

+2Su −Q2� . (3.30)
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The equation models steady surface water waves in presence of background shear flow.
It is shown that the equation (3.30) admits solutions given in parametric forms of the
Weierstrass P, zeta and sigma functions. Explicit solutions to the equation (3.30) are
compared to numerical results obtained in [1] for the same equation.

My contribution to this paper was finding that the exact solutions of (3.30) are very
close in shape to regular wave profiles from full Euler equations computed by Teles da
Silva and Peregrine in [11]. In case of overhanging waves such an agreement could not
be achieved due to the parametric representation of solutions of (1).

I also studied the pressure distribution and streamlines below the surface. It was
found that pressure profiles differ depending on the direction of wave propagation - up-
stream and downstream. In the first case, the flow under the surface develops critical
layers with recirculating flow and non-monotone pressure profiles. In the second case,
the flow produces irregular pressure profiles due to the loss of long-wave approxima-
tion.
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The validity of the KdV equation as amodel for surfacewaterwaves
can be described as follows. Suppose awave fieldwith a prominent
amplitude a and characteristic wavelength l is to be studied. The
KdV equation is known to produce a good approximation of the
evolution of the waves if the amplitude of the waves is small and
the wavelength is large when compared to the undisturbed depth,
and if in addition, the two non-dimensional quantities a/h0 and
h2
0/l

2 are of similar size. The latter requirement can be written in
terms of the Stokes number as

S = al2

h3
0

∼ 1.

While the KdV equation is a good model for surface waves if S ∼
1, one notorious problem with the KdV equation is that it does
not model accurately the dynamics of shorter waves. Recognizing
this shortcoming of the KdV equation, Whitham proposed to use
the same nonlinearity as the KdV equation, but couple it with a
linear term which mimics the linear dispersion relation of the full
water-wave problem. Thus, at least in theory, the Whitham
equation can be expected to yield a description of the dynamics
of shorter waves which is closer to the solutions of the more
fundamental Euler equations which govern the flow.

The Whitham equation has been studied from a number of
vantage points during recent years. In particular, the existence of
traveling and solitary waves has been established in [2,3]. Well
posedness of a similar equation was investigated in [4–6], and a
model with variable depth has been studied numerically in [7].
Moreover, it has been shown in [8,9] that periodic solutions of
the Whitham equation feature modulational instability for short
enough waves in a similar way as small-amplitude periodic wave
solutions of the water-wave problem. However, even though the
equation is routinely mentioned in texts on nonlinear waves [10,
11], it appears that the performance of the Whitham equation in
the description of surface water waves has not been investigated
so far.

The purpose of the present article is to give an asymptotic
derivation of the Whitham equation as a model for surface water
waves, and to confirmWhitham’s expectation that the equation is
a fair model for the description of time-dependent surface water
waves. For the purpose of the derivation, we introduce an expo-
nential scaling regime in which the Whitham equation can be de-
rived asymptotically from an approximate Hamiltonian principle
for surfacewaterwaves. In order tomotivate the use of this scaling,
note that the KdV equation has the property that wide classes of
initial data decompose into a number of solitary waves and small-
amplitude dispersive residue [12]. For the KdV equations, solitary-
wave solutions are known in closed form, and are given by

η = a

h0

sech2

(√
3a

4h3
0

(x − ct)

)
(4)

for a certain wave celerity c. These waves clearly comply with
the amplitude–wavelength relation a/h0 ∼ h2

0/l
2 which was

mentioned above. It appears that the Whitham equation – as in-
deed do many other nonlinear dispersive equations – also has
the property that broad classes of initial data rapidly decompose
into ordered trains of solitary waves (see Fig. 1). Quantifying the
amplitude–wavelength relation for these solitary waves yields an
asymptotic regime which is expected to be relevant to the validity
of the Whitham equation as a water wave model.

As the curve fit in the right panel of Fig. 1 shows, the relationship
between wavelength and amplitude of the Whitham solitary
waves can be approximately described by the relation a

h0
∼

e−κ(l/h0)
ν
for certain values of κ and ν. Since the Whitham solitary

waves are not known in exact form, the values of κ and ν have to be
found numerically. Then onemay define aWhitham scaling regime

W(κ, ν) = a

h0

eκ(l/h0)
ν ∼ 1, (5)

and itwill be shown in Sections 2 and 3 that this scaling can be used

advantageously in the derivation of the Whitham equation. The

derivation proceeds by examining the Hamiltonian formulation of

thewater-wave problemdue to Zakharov, Craig and Sulem [13,14],

and by restricting to wave motion which is predominantly in the

direction of increasing values of x. The approach is similar to the

method of [15], but relies on the new relation (5).

First, in Section 2, aWhitham system is derivedwhich allows for
two-way propagation of waves. TheWhitham equation is found in
Section 3. Finally, in Section 4, a comparison ofmodeling properties
of the KdV and Whitham equations is given. The comparison also
includes the regularized long-wave equation

ηt + c0 ηx + 3

2

c0

h0

η ηx − 1

6
h2
0 ηxxt = 0, (6)

which was put forward in [16] and studied in depth in [17], and
which is also known as the BBM or PBBM equation. The linearized
dispersion relation of this equation is not an exact match to the
dispersion relation of the full water-wave problem, but it is much
closer than the KdV equation, and it might also be expected that
this equation may be able to model shorter waves more success-
fully than theKdVequation. In order to obtain an evenbettermatch
of the linear dispersion relation, one may make use of Padé ex-
pansions. In the context of simplified evolutions equations, this
approach was pioneered in [18]. For uni-directional models, this
approach was advocated in [19], and in particular, the equation
based on the Padé (2,2) approximation was studied in depth. In di-
mensional variables, this model takes the form

ηt + c0 ηx + 3

2

c0

h0

η ηx − 3

20
c0h

2
0 ηxxx − 19

60
h2
0 ηxxt = 0. (7)

The dispersion relations for the KdV, BBM and Padé (2,2) models

are respectively

c(k) = c0 − 1

6
c0h

2
0k

2 (KdV),

c(k) = c0
1

1 + 1
6
h2
0k

2
(BBM),

c(k) = c0
1 + 3

20
h2
0k

2

1 + 19
60
h2
0k

2
(Padé (2,2)).

These approximate dispersion relations are compared to the full

dispersion relation in Fig. 2. It appears clearly that the Padé (2,2)

approximation remains much closer to the full dispersion rela-

tion than the dispersion relations based on either the linear KdV

or linear BBM equations. As will be seen in Section 4, solutions of

both theWhithamand Padé (2,2) equations give closer approxima-

tions to solutions of the full Euler equations than either the KdV or

BBM equations in most cases investigated. However, theWhitham

equation still keeps a slight edge over the Padé model.

2. Derivation of evolution systems of Whitham type

The surface water-wave problem is generally described by the
Euler equations with slip conditions at the bottom, and kinematic
and dynamic boundary conditions at the free surface. Assuming
weak transverse effects, the unknowns are the surface elevation
η(x, t), the horizontal and vertical fluid velocities u1(x, z, t)
and u2(x, z, t), respectively, and the pressure P(x, z, t). If the
assumption of irrotational flow is made, then a velocity potential
φ(x, z, t) can be used. In order to nondimensionalize the problem,
the undisturbed depth h0 is taken as a unit of distance, and the
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Fig. 1. Left panel: Formation of solitary waves of the Whitham equation from Gaussian initial data. Right panel: Curve fit for the Whitham regime and for the Boussinesq

regime to amplitude/wavelength data fromWhitham solitary waves. The wavelength is defined as l = 1
a

∫ ∞
−∞ η(x)dx.

Fig. 2. Approximate models to the exact dispersion relation of the full water-wave

problem.

parameter
√
h0/g as a unit of time. For the remainder of this article,

all variables appearing in the water-wave problem are considered
as being non-dimensional. The problem is posed on a domain{
(x, z)T ∈ R

2| − 1 < z < η(x, t)
}
which extends to infinity in the

positive and negative x-direction. Due to the incompressibility of
the fluid, the potential then satisfies Laplace’s equation in this
domain. The fact that the fluid cannot penetrate the bottom is
expressed by a homogeneous Neumann boundary condition at the
flat bottom. Thus we have

φxx + φzz = 0 in −1 < z < η(x, t)

φz = 0 on z = −1.

The pressure is eliminated with the help of the Bernoulli equation,
and the free-surface boundary conditions are formulated in terms
of the potential and the surface excursion by

ηt + φxηx − φz = 0,

φt + 1

2

(
φ2
x + φ2

z

) + η = 0,

}
on z = η(x, t).

The total energy of the system is given by the sum of kinetic en-
ergy and potential energy, and normalized such that the potential
energy is zero when no wave motion is present at the surface. Ac-
cordingly the Hamiltonian function for this problem is

H =
∫

R

∫ η

0

z dzdx +
∫

R

∫ η

−1

1

2
|∇φ|2 dzdx. (8)

Defining the trace of the potential at the free surface as Φ(x, t) =
φ(x, η(x, t), t), one may integrate in z in the first integral and use
the divergence theorem on the second integral in order to arrive at
the formulation

H = 1

2

∫
R

[
η2 + ΦG(η)Φ

]
dx. (9)

This is the Hamiltonian formulation of the water wave problem as
found in [13,20,14], andwritten in termsof theDirichlet–Neumann
operator G(η). As shown in [21], the Dirichlet–Neumann operator
can be expanded in a series of the form

G(η)Φ =
∞∑
j=0

Gj(η)Φ. (10)

In order to proceed, we need to understand the first few terms in
this series. As shown in [15,13], the first two terms in this series
can be written with the help of the operator D = −i∂x as

G0(η) = D tanh(D), G1(η) = DηD − D tanh(D)ηD tanh(D).

Note that it can be shown that the terms Gj(η) for j ≥ 2 are of
quadratic or higher-order in η, and will therefore not be needed in
the current analysis.

It will be convenient for the present purpose to formulate the
Hamiltonian in terms of the dependent variable u = Φx. To this
end, we define the operator K(η) by

G(η) = DK(η)D.

As was the case with G(η), the operator K(η) can be expanded in
a Taylor series around zero as

K(η)ξ =
∞∑
j=0

Kj(η)ξ, Kj(η) = D−1Gj(η)D−1. (11)

In particular, note that K0 = tanhD

D
. In non-dimensional variables,

we write the operator with the integral kernel Kh0 as K =
√

tanhD

D
,

so that we have K0 = K 2. The Hamiltonian is then expressed as

H = 1

2

∫
R

[
η2 + uK(η)u

]
dx. (12)

The water-wave problem can then be written as a Hamiltonian
system using the variational derivatives of H and posing the
Hamiltonian equations

ηt = −∂x
δH

δu
, ut = −∂x

δH

δη
. (13)
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This system is not in canonical form as the associated structure
map Jη,u is symmetric:

Jη,u =
(

0 −∂x
−∂x 0

)
.

Wenowproceed to derive a systemof equationswhich is similar to
theWhithamequation (1), but allows bi-directionalwave propaga-
tion. This systemwill be a stepping stone on theway to a derivation
of (1), but may also be of independent interest. Consider a wave-
field having a characteristic wavelength l and a characteristic am-
plitude a. Taking into account the nondimensionalization, the two
scalar parameters λ = l/h0 and α = a/h0 appear. In order to intro-
duce the long-wave and small amplitude approximation into the
non-dimensional problem, we use the scaling x̃ = 1

λ
x, and η = αη̃.

This induces the transformation D̃ = λD = −λi∂x. If the energy
is nondimensionalized in accord with the nondimensionalization
mentioned earlier, then the natural scaling for the Hamiltonian is

H̃ = α2H . In addition, the unknown u is scaled as u = αũ. The
scaled Hamiltonian (12) is then written as

H̃ = 1

2

∫
R

η̃2 dx + 1

2

∫
R

ũ

[
1 − 1

3
λ−2D̃2 + · · ·

]
ũ dx

+ α

2

∫
R

η̃ũ2 dx − α

2

∫
R

ũ

[
λ−1D̃ − 1

3
λ−3D̃3 + · · ·

]

× η̃

[
λ−1D̃ − 1

3
λ−3D̃3 + · · ·

]
ũ dx.

Let us now introduce the small parameter μ = 1
λ
, and assume for

simplicity that α = e−κ/μν
, which corresponds to the case where

W(κ, ν) = 1. Then theHamiltonian can bewritten in the following
form:

H̃ = 1

2

∫
R

η̃2 dx + 1

2

∫
R

ũ

[
1 − 1

3
μ2D̃2 + · · ·

]
ũ dx

+ e−κ/μν

2

∫
R

η̃ũ2 dx − e−κ/μν

2

∫
R

ũ

[
μD̃ − 1

3
μ3D̃3 + · · ·

]

× η̃

[
μD̃ − 1

3
μ3D̃3 + · · ·

]
ũ dx.

Disregarding terms of order O(μ2e−κ/μν
), but not of order

O(e−κ/μν
) yields the expansion

H̃ = 1

2

∫
R

η̃2 dx + 1

2

∫
R

ũ

[
1 − 1

3
μ2D̃2 + · · ·

]
ũ dx

+ e−κ/μν

2

∫
R

η̃ũ2 dx. (14)

Note that by taking μ small enough, an arbitrary number of terms
of algebraic order inμmay be kept in the asymptotic series, so that
the truncated version of the Hamiltonian in dimensional variables
may be written as

H = 1

2

∫
R

[
η2 + uK

N
0 (η)u + uηu

]
dxdz. (15)

However, the difference between K0 and K
N
0 is below the order

of approximation, so that it is possible to formally define the trun-
cated Hamiltonian with K0 instead of K

N
0 .

Hence, theWhitham system is obtained from the Hamiltonian (15)
as follows:

ηt = −∂x
δH

δu
= −K0ux − (ηu)x, (16)

ut = −∂x
δH

δη
= −ηx − uux. (17)

One may also derive a higher-order equation by keeping terms of
order O(μ2e−κ/μν

), but discarding terms of order O(μ4e−κ/μν
). In

this case we find the system

ηt = −K0ux − (ηu)x − (ηux)xx,

ut = −ηx − uux + uxuxx.

3. Derivation of evolution equations of Whitham type

In order to derive the Whitham equation for uni-directional
wave propagation, it is important to understand how solutions of
the Whitham system (16)–(17) can be restricted to either left or
right-going waves. As it will turn out, if η and u are such that η =
Ku, then this pair of functions represents a solution of (16)–(17)
which is propagating to the right. Indeed, let us analyze the relation
between η and u in the linearized Whitham system

ηt = −K0ux, (18)

ut = −ηx. (19)

Considering a solution of the system (18)–(19) in the form

η(x, t) = Ae(iξx−iωt), u(x, t) = Be(iξx−iωt), (20)

gives rise to the matrix equation⎛
⎝−ω

tanh ξ

ξ
ξ

ξ −ω

⎞
⎠ (

A

B

)
=

(
0
0

)
. (21)

If existence of a nontrivial solution of this system is to be guaran-
teed, the determinant of the matrix has to be zero, so that we have
ω2 − tanh ξ

ξ
ξ 2 = 0. Defining the phase speed as c = ω/ξ , we obtain

the dispersion relation

c = ±
√

tanh ξ

ξ
. (22)

The choice of c > 0 corresponds to right-going wave solutions of
the system (18)–(19), and the relation between η and u can be de-
duced from (19). Accordingly, it is expedient to separate solutions
into a right-going part r and a left-going part swhich are defined by

r = 1

2
(η + Ku), s = 1

2
(η − Ku).

According to the transformation theory detailed in [22], if the un-
knowns r and s are used instead of η and u, the structure map
changes to

Jr,s =
(

∂F

∂(η, u)

)
Jη,u

(
∂F

∂(η, u)

)T

=

⎛
⎜⎝−1

2
∂xK 0

0
1

2
∂xK

⎞
⎟⎠ . (23)

We now use the same scaling for both dependent and independent
variables as before. Thus we have r = αr̃ and s = αs̃. The Hamil-
tonian is written in terms of r̃ and s̃ as

H̃ = 1

2

∫
R

(r̃ + s̃)2 dx

+ 1

2

∫
R

K̃−1(r̃ − s̃)

[
1 − 1

3
μ2D̃2 + · · ·

]
K̃−1(r̃ − s̃) dx

+ α

2

∫
R

(r̃ + s̃)
(
K̃−1(r̃ − s̃)

)2

dx

− α

2

∫
R

K̃−1(r̃ − s̃)

[
μD̃ − 1

3
μ3D̃3 + · · ·

]
(r̃ + s̃)

×
[
μD̃ − 1

3
μ3D̃3 + · · ·

]
K̃−1(r̃ − s̃) dx.
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Following the transformation rules, the structure map transforms
to Jr̃,s̃ = 1/α2Jr,s. In addition, the time scaling t = λt̃ is employed.
Since the focus is on right-going solutions, the equation to be con-
sidered is

λr̃t̃ = − 1

2α2
λ∂x̃K̃

[
δ
(
α2H̃

)
δr̃

]
. (24)

So far, this equation is exact. If we now assume that s is of the order
of O(μ2e−κ/μν

), then the equation for r̃ is

r̃t̃ = −1

2
∂x̃

[
1 − 1

6
μ2D̃2 + · · ·

]{
2r̃ + α

2

([
1 + 1

6
μ2D̃2 + · · · ]r̃)2

+ α

[
1 + 1

6
μ2D̃2 + · · ·

] (
r̃
[
1 + 1

6
μ2D̃2 + · · · ]r̃)

− α

2

([
μD̃ − 1

3
μ3D̃3 + · · ·

][
1 + 1

6
μ2D̃2 + · · ·

]
r̃

)2

− α

[
μD̃ − 1

3
μ3D̃3 + · · ·

][
1 + 1

6
μ2D̃2 + · · ·

]

×
(
r̃

[
μD̃ − 1

3
μ3D̃3 + · · ·

][
1 + 1

6
μ2D̃2 + · · ·

]
r̃

)}
+ O(αμ2).

As in the case of the Whitham system, we use α = O(e−κ/μν
), and

disregard terms of order O(μ2e−κ/μν
), but not of order O(e−κ/μν

).
This procedure yields the Whitham equation (1) which is written
in nondimensional variables as

rt = −Krx − 3

2
rrx.

As was the case for the system found in the previous section, it is
also possible here to include terms of orderO(μ2e−κ/μν

), resulting
in the higher-order equation

rt = −Krx − 3

2
rrx − 13

12
rxrxx − 5

12
rrxxx.

4. Numerical results

In this section, the performance of the Whitham equation as
a model for surface water waves is compared to the KdV equa-
tion (3), the BBM equation (6), and the Padé (2,2) equation (7). For
this purpose initial data are imposed, theWhitham, KdV, BBM, and
Padé equations are solved numerically, and the solutions are com-
pared to numerical solutions of the full Euler equations with free-
surface boundary conditions. We continue to work in normalized
variables, such as stated in the beginning of Section 2.

The numerical treatment of the three model equations is by
a standard pseudo-spectral scheme, such as explained in [23,24]
for example. For the time stepping, an efficient fourth-order im-
plicit method developed in [25] is used. The numerical treatment
of the free-surface problem for the Euler equations is based on a
conformal mapping of the fluid domain into a rectangle. In the
time-dependent case, thismethod has roots in thework of Ovsyan-
nikov [26], and was later used in [27–30]. The particular method
used for the numerical experiments reported here is a pseudo-
spectral scheme which is detailed in [31].

Initial conditions for the Euler equations are chosen in such a
way that the solutions are expected to be right moving. This is
achieved by posing an initial surface disturbance η0(x) together
with the trace of the potentialΦ(x) = ∫ x

0
η0(x

′) dx′. In order to nor-
malize the data, we choose η0(x) in such a way that the average of
η0(x) over the computational domain is zero. The experiments are
performed with several different amplitudes α and wavelengths

Table 1

Summary of the Stokes number, nondimensional

amplitude and nondimensional wavelength of the

initial data used in the numerical experiments.

Experiment Stokes number α λ

A 0.2 0.1
√
2

B 0.2 0.2 1

C 1 0.1
√
10

D 1 0.2
√
5

E 5 0.1
√
50

F 5 0.2 5

λ (for the purpose of this section, we define the wavelength λ as
the distance between the two points x1 and x2 at which η0(x1) =
η0(x2) = α/2). Both positive and negative initial disturbances are
considered. While disturbances with positive main part have been
studied widely, an initial wave of depression is somewhat more
exotic, but nevertheless important, as shown for instance in [32].
A summary of the experiments’ settings is given in Table 1. Exper-
iments run with an initial wave of elevation are labeled as positive,
and experiments runwith an initial wave of depression are labeled
as negative. The domain for the computations is −L ≤ x ≤ L, with
L = 50. The function initial data in the positive cases is given by

η0(x) = αsech2(f (λ)x) − C, (25)

where

f (λ) = 2

λ
log

(
1 + √

1/2√
1/2

)
, and C = 1

L

α

f (λ)
tanh

(
L

f (λ)

)

and C and f (λ) are chosen so that
∫ L

−L
η0(x)dx = 0, and the wave-

length λ is the distance between the two points x1 and x2 at which
η0(x1) = η0(x2) = a/2. The velocity potential in this case is given
by

Φ(x) = α

f (λ)
tanh(f (λ)x) − Cx. (26)

In the negative case, the initial data are given by

η0(x) = −αsech2(f (λ)x) + C .

The definitions for f (λ) and C are the same, and the velocity po-
tential is

Φ(x) = − α

f (λ)
tanh(f (λ)x) + Cx.

In Figs. 3 and 4, the time evolution of a wave with an initial nar-
row peak and one with an initial narrow depression at the center

is shown. The amplitude isα = 0.2, and thewavelength isλ =
√
5.

In Fig. 3, the time evolution according to the Euler, Whitham, KdV
and BBM equations are shown, and in Fig. 4, the time evolution ac-
cording to the Euler,Whitham, and Padé (2,2) equations are shown.

It appears in Fig. 3 that the KdV equation produces a significant
number of spurious oscillations, the BBM equation also produces
a fair number of spurious oscillations, and the Whitham equation
produces fewer small oscillations than Euler equations. Moreover,
while the highest peak in the upper panels in Fig. 3 is underpre-
dicted by the KdV and BBM equation, the Whitham equation pro-
duces peaks which are slightly too high. In the case of an initial
depression, the Whitham equation also produces some peaks
which are too high, but on the other hand, the KdV and the BBM
equations introduce phase errors in themain oscillations. As is vis-
ible in Fig. 4, the Padé (2,2) equation reproduces the leading wave
fairly accurately, but overpredicts the trailing oscillations in the
case of a positive disturbance, and underpredicts the trailing oscil-
lations in the case of a negative initial disturbance. Nevertheless,
since the Padé (2,2) does not introduce a phase error, the overall
performance is better than that of the KdV and BBM equations.
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Fig. 3. Wave profiles at three different times: – Euler (black line), -·- KdV, - - BBM,

– Whitham (red line). Experiment D: S = 1, α = 0.2, λ =
√
5. Upper panel:

positive case; lower panel: negative case. Horizontal axis: x/h0, vertical axis: z/h0.

Snapshots are given at nondimensional time t/
√
h0/g .

In order to compare the performance of the four approximate
equations in a more quantitative manner, the discrepancies
between solutions of the model equations and the prediction due
to solving the Euler equations are measured in an integral norm.
In the center right panels of Figs. 5 and 6, the computations
from Figs. 3 and 4 are summarized by plotting the normalized
L2-error between the KdV, BBM, Padé and Whitham, respectively,
and the Euler solutions as a function of non-dimensional time.
Using this quantitative measure of comparison, it appears that
the Whitham equation gives the best overall rendition of the free
surface dynamics predicted by the Euler equations.

In the center left panels of Figs. 5 and 6, a similar computation
with S = 1, but smaller amplitude is analyzed. Also in these cases,
it appears that the Whitham equation gives a good approximation
to the corresponding Euler solutions, and in particular, a much
better approximation than either the KdVor the BBMequation. The
Padé equation also does better than both KdV and BBM equations,
but not better than the Whitham equation.

Figs. 5 and 6 show comparisons in several other cases of both
positive and negative initial amplitude, and Stokes numbers S =
0.2, S = 1 and S = 5. In most cases, the normalized L2-error
between the Whitham and Euler solutions is similar or smaller
than the errors between the Euler solutions and the other
three model equations. However, the Padé equation generally
outperforms both the KdV and the BBMequation by somemeasure.

The only case in this study in which the KdV, BBM and Padé
equations outperform the Whitham equation is in the case of

Fig. 4. Wave profiles at three different times: – Euler (black line), – Padé (blue

line), –Whitham (red line). Experiment D: S = 1, α = 0.2, λ =
√
5. Upper panel:

positive case; lower panel: negative case. Horizontal axis: x/h0, vertical axis: z/h0.

Snapshots are given at nondimensional time t/
√
h0/g .

very long positive initial disturbances. The case when S = 5 is
shown in the lower panels of Fig. 5. However, even in this case, the
Whitham equation yields approximations of the Euler solutions
which are similar or better than in the case of smaller wavelengths.
In addition, in the case of negative initial data, the performance
of the Whitham equation is on par with the KdV, BBM and Padé
equations in the case when S = 5 (lower panels of Fig. 5).

5. Conclusion

In this article, the Whitham equation (1) has been studied as
an approximate model equation for wave motion at the surface
of a perfect fluid. Numerical integration of the equation suggests
that broad classes of initial data decompose into individual solitary
waves. The wavelength–amplitude ratio of these approximate
solitary waves has been studied, and it was found that this ratio
can be described by an exponential relation of the form a

h0
∼

e−κ(l/h0)
ν
. Using this scaling in the Hamiltonian formulation of

the water-wave problem, a system of evolution equations has
been derived which contains the exact dispersion relation of the
water-wave problem in its linear part. Restricting to one-way
propagation, the Whitham equation emerged as a model which
combines the usual quadratic nonlinearity with one branch of
the exact dispersion relation of the water-wave problem. The
performance of the Whitham equation in the approximation of
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Fig. 5. L2 errors in approximation of solutions to full Euler equations by different model equations: cases A and B (S = 0.2), cases C and D (S = 1), cases E and F (S = 5),

positive.
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Fig. 6. L2 errors in approximation of solutions to full Euler equations by different model equations: cases A and B (S = 0.2), cases C and D (S = 1), cases E and F (S = 5),

negative.
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solutions of the Euler equations free-surface boundary conditions
was analyzed, and compared to the performance of the KdV and
BBM equations, and to the Padé (2,2) model. It was found that
the Whitham equation gives a more faithful representation of the
solutions of the Euler equations than either the KdV or the BBM
equations, except in the case of very long waves with positive
main part. In this last case, the KdV and BBM equations have the
upper hand over the Whitham equation. The Padé (2,2) model
also outperforms the KdV and BBM equations, but does not quite
as well as the Whitham equation for shorter waves and negative
disturbances. However, in the case of very longwaveswith positive
main part, the Padé model stays on par with the KdV and BBM
equations.
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Abstract. In nonlinear dispersive evolution equations, the competing effects
of nonlinearity and dispersion make a number of interesting phenomena pos-
sible. In the current work, the focus is on the numerical approximation of
traveling-wave solutions of such equations. We describe our efforts to write
a dedicated Python code which is able to compute traveling-wave solutions of
nonlinear dispersive equations in a very general form.

The SpecTraVVave code uses a continuation method coupled with a spectral
projection to compute approximations of steady symmetric solutions of this
equation. The code is used in a number of situations to gain an understanding
of traveling-wave solutions. The first case is the Whitham equation, where
numerical evidence points to the conclusion that the main bifurcation branch
features three distinct points of interest, namely a turning point, a point of
stability inversion, and a terminal point which corresponds to a cusped wave.

The second case is the so-called modified Benjamin-Ono equation where
the interaction of two solitary waves is investigated. It is found that two
solitary waves may interact in such a way that the smaller wave is annihilated.
The third case concerns the Benjamin equation which features two competing
dispersive operators. In this case, it is found that bifurcation curves of periodic

traveling-wave solutions may cross and connect high up on the branch in the
nonlinear regime.

1. Introduction

This article concerns traveling wave solutions for a class of nonlinear dispersive
equations of the form

ut + [f(u)]x + Lux = 0, (1.1)

where L is a self-adjoint operator, and f is a real-valued function with f(0) = 0 and
f ′(0) = 0, and which satisfies certain growth conditions. Equations of this form
arise routinely in the study of wave problems in fluid mechanics and many other
contexts. A prototype of such an equation is the KdV equation that appears if
L = I + 1

6∂2
x and f(u) = 3

4u2. In the current work, the operator L is considered to
be given as a Fourier multiplier operator, such as for instance in the Benjamin–Ono
equation, which arises in the study of interfacial waves. In this case, the Fourier
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multiplier operator is given by L = I − H∂x, where the Hilbert transform H is
defined as

Hu(x) =
1

π
p. v.

∫
∞

−∞

u(x − y)

y
dy, Ĥu(k) = −i sgn(k)û(k). (1.2)

We also study in detail traveling wave solutions of the Whitham equation, which
appears when L is given by convolution with the integral kernel Kh0

in the form

Lu(x) =

∫
∞

−∞

Kh0
(y)u(x − y) dy, K̂h0

(k) =

√
g tanh(h0k)

k
, (1.3)

and f is the same function as in the KdV equation.
The particular form of equation (1.1) exhibits the competing effects of dispersion

and nonlinearity, which gives rise to a host of interesting phenomena. The most
well known special phenomenon is the existence of solitary waves and of periodic
traveling waves containing higher Fourier modes. Indeed, note that in the purely
dispersive model ut + Lux = 0, the only possible permanent progressive waves are
simple sinusoidal waves, while in the nonlinear model (1.1) higher Fourier modes
must be considered to obtain solutions.

The order of the operator L appearing in (1.1) has a major effect on the types
of solutions that may be found. A higher-order operator, such as in the Korteweg–
de Vries equation, acts as a smoothing operator because of its effect of spreading
different frequency components out due to a strongly varying phase speed [35].
Lower-order operators such as the operator Kh0

in (1.3) appearing in the Whitham
equation may allow solutions to develop singularities, such as derivative blow-up
(see [29, 31]) and formation of cusps (see [25]).

On the other hand, highly nonlinear functions f(u) may lead to L∞-blow-up.
For instance, the generalized KdV equation which is written in normalized form as

ut + upux + ux + uxxx = 0, (1.4)

features global existence of solutions for p = 1, 2, 3, but the solutions blow-up in
the critical case p = 4 (the case p ≥ 5 is open). In the case of the generalized
Benjamin–Ono equation

ut + upux + ux −Huxx = 0,

where H is the Hilbert transform, numerical evidence points to singularity formation
for p > 2 [11], but no proofs are available at this time.

To study different phenomena related to equations of the form (1.1) and their
traveling wave solutions, a Python-based solver package SpecTraVVave was devel-
oped by the authors [41]. The general idea behind the solver is to use a numerical
continuation method [36] implemented with a pseudo-spectral algorithm. Similar
previous projects include AUTO [21] and Wavetrain [49]. AUTO is written in C,
whereas Wavetrain is written in Fortran. Both programs are efficient and very
general, as they are able to cover a wide range of problems involving bifurcation
analyses. However, from a user’s perspective, such a generality coupled with low
level programming languages may lead to some difficulties in utilizing these pro-
grams efficiently.

SpecTraVVave is designed to provide researchers with a simple yet effective tool
for investigating problems on traveling waves. The package is flexible, and its
functionality can be easily expanded. The availability of the IPython notebook [45]
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makes the solver very interactive, so that it should be easier for new users to get
started.

To maximize ease of use, SpecTraVVave was designed to find even solutions
of (1.1). Symmetry of steady solutions can be proved for some of the models in
the form (1.1), but not for all [16]. Some of these equations also admit non-smooth
solutions, for instance as termination points of a bifurcation branch. This happens
for example for the Whitham equation, which features bifurcation curves which
terminate in a solution with a cusp [25]. One of the goals of the present paper is
to investigate the precise nature of the termination of the bifurcation curve.

The content of this article is structured as follows. A mathematical description
of the numerical method of SpecTraVVave is given in Section 2. Section 3 presents
results of different experiments carried out with the package. Concluding remarks
are given in Section 4. A method for finding initial guesses for the solver is described
in Section 5. Section 6 contains a schematic of program and a description of its
workflow.

2. Spectral scheme and construction of nonlinear system.

2.1. Cosine collocation method. To compute traveling wave solutions to (1.1)
the following ansatz is employed:

u(x, t) = φ(x − ct).

Thus, the equation takes the form

φ′ + [f(φ)]
′

+ Lφ′ = 0,

which can be integrated to give

− cφ + f(φ) + Lφ = B. (2.1)

The constant B is a priori undetermined. One may set the B equal to zero as a way
of normalizing the solutions. Another option is to impose an additional condition,
for example that the integral of φ over one wavelength be zero. In this case, B will
be found along with the solution φ.

We consider L as a Fourier multiplier operator with symbol α(k). We also
assume that f is at least twice differentiable, and we have f(0) = 0 and f ′(0) =
0. When computing traveling-wave solutions we focus on even periodic solutions.
While it can be proved in some cases that solutions of (2.1) must be even, this
is not known for a general operator L. Nevertheless, we make this assumption
here in order to make the numerical procedure as uniform as possible. For even
periodic solutions, one may use a cosine collocation instead of a Fourier method. In
particular, using the cosine functions as basis elements automatically removes the
inherent symmetries due to reflective and translational symmetry. Moreover, the
number of unknowns is reduced by a factor of 2, and the problem of the asymmetric
arrangement of nodes in the FFT is circumvented. Of course, all these problems
could also be dealt with a collocation method based on the Fourier basis, but the
cosine basis does all of the above automatically. In addition, the Python cosine
transform is based on an integrated algorithm, which relies on an optimized version
of the discrete cosine transform (DCT).

The following description of computation scheme was presented in detail in [24],
but we will briefly repeat it here for consistency of the manuscript. For the purpose
of clarity, we will refer to full wavelength L of a solution as the (full) wavelength,
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and half of fundamental wavelength will be called half-wavelength. Such a definition
is required because the method computes a half of a solution profile, the other half
is automatically constructed due to symmetry.

Traveling wave solutions to (2.1) are to be computed in the form of a linear
combination of cosine functions of different wave-numbers, i.e., in the space

SN = span R{cos(lx) : 0 ≤ l ≤ N − 1}. (2.2)

This is a subspace of L2(0, 2π), and the collocation points xn = π 2n−1
2N

for n =
1, . . . , N are used to discretize the domain. If the required full wavelength of solu-
tions is to be L �= 2π, one can use a scaling on the x-variable. Defining the new
variable

x′ =
L

2π
x,

yields collocation points x′

n and wavenumbers κl defined by

x′

n =
L

2

2n − 1

2N
, κl =

2π

L
l.

We are seeking a function φN ∈ SN that satisfies the equations

− cφN (x′

n) + f(φN )(x′

n) + LNφN (x′

n) = 0, (2.3)

at the collocation points x′

n. The operator LN is the discrete form of the operator
L, and φN is the discrete cosine representation of φ which is given by

φN (x′) =

N−1∑
l=0

ω(κl)ΦN (κl) cos(κlx
′),

ω(κl) =

{√
1/N, κl = 0,√
2/N, κl > 0,

ΦN (κl) = ω(κl)
N∑

n=1

φN (x′

n) cos(κlx
′

n),

where κl = 0, 2π
L

, . . . , 2π
L

(N − 1) are the scaled wavenumbers, and ΦN (·) are the
discrete cosine coefficients. As equation (2.3) is enforced at the collocation points
x′

n, one may evaluate the term LNφN using the matrix LN (i, j) defined by

LNφN (x′

i) =

N∑
j=1

LN (i, j)φN (x′

j),

LN (i, j) =
N−1∑
l=0

ω2(κl)α(κl) cos(κlx
′

i) cos(κlx
′

j),

where α(·) is the Fourier multiplier function of the operator L.

2.2. Construction of nonlinear system. Equation (2.3) enforced at N colloca-
tion points yields a nonlinear system of N equations in N unknowns, which can be
written in shorthand as

F (φN ) = 0.

This system can be solved by a standard iterative method, such as Newton’s
method. In this system, the value of phase speed c has to be fixed for comput-
ing one particular solution. Such an approach becomes impractical when a turning
point on the bifurcation curve appears.
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In SpecTraVVave a different approach is employed: both the amplitude a and the
phase speed c of a solution are treated as functions of a parameter θ: a = a(θ), c =
c(θ). The parameter θ is to be computed from the system (2.4). This construction
makes it possible to follow turning points on the bifurcation branch with relative
ease. Having computed two solutions, i.e., two points on the bifurcation curve
P1 = (c1, a1) and P2 = (c2, a2), one may find a direction vector d = (dc, da) of the
line that contains these points:

d : dc = c2 − c1, da = a2 − a1.

Then the point P3 = (c3, a3) is fixed at some (small) distance s from the point P2

in the direction d.

P3 : c3 = c2 + s · dc, a3 = a2 + s · da.

The point P3 plays the role of the initial guess for velocity and amplitude when
computing the next solution P∗ = (c∗, a∗). The solution point P∗ is required to lay
on the line with direction vector d⊥ = (dc

⊥
, da

⊥
), which is orthogonal to the vector

d.

d⊥ : dc
⊥

= −da, da
⊥

= dc,

P∗ : c∗ = c3 + θdc
⊥

, a∗ = a3 + θda
⊥

.

A schematic sketch of finding a new solution P∗ is given in Figure 1.
The variable θ is computed by Newton’s method from the extended system

F

⎛⎜⎜⎜⎜⎜⎝
φN (x1)

...
φN (xN )

B
θ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
(−c + LN )φN (x1) + f(φN (x1)) − B

...
(−c + LN )φN (xN ) + f(φN (xN )) − B

Ω(φN , c, a, B)
φN (x1) − φN (xN ) − a

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
...
0
0
0

⎞⎟⎟⎟⎟⎟⎠ . (2.4)

Here a nonhomogeneous problem (B �= 0) is considered. The equation

φN (x1) − φN (xN ) − a = 0,

makes the waveheight of the computed solution to be that of a. The equation

Ω(φN , c, a, B) = 0,

is called the boundary condition. It allows to enforce different specifications on the
computed traveling wave solution. For example, if one sets

Ω(φN , c, a, B) = φN (x1) + · · · + φN (xN ),

then the mean of the computed wave over a period will have to be equal to zero.
One may also experiment with

Ω(φN , c, a, B) = B,

to consider the homogeneous problem (B = 0). It can be also interesting to set

Ω(φN , c, a, B) = φN (xN ). (2.5)

This enables us to compute traveling wave solutions that mimic solitary wave so-
lutions.
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Figure 1. Navigation on the bifurcation curve.

2.3. Convergence. To test the numerical implementation of the discretization,
the method is applied to a case where the solution is known. One such case is the
KdV equation

ut + ux +
3

2
uux +

1

6
uxxx = 0,

which has a known solution, given in the form

uexact(x, t) = a sech2
(√

3a

4
(x − ct)

)
,

with c = 1 + a/2. Using the boundary equation (2.5), SpecTraVVave is capable of
computing approximations to solitary wave solutions of nonlinear wave equations.
Solitary wave solutions are treated as traveling waves with sufficiently long wave-
length that have the wave trough at zero. In case of the KdV equation solitary
wave solutions have exponential decay, and therefore, considering the symmetry
of solitary solutions, the half-wavelength of 30 is considered for the comparison.
Approximation errors are summarized in Table 1.

grid points log10(‖uexact − u‖L∞) log10(‖uexact − u‖L2) Ratio of L2-errors

32 −1.389 −2.092
64 −3.705 −4.549 286.8
128 −8.809 −9.508 90935.0
256 −15.353 −16.144 4329670.9
512 −15.353 −16.087 0.9

Table 1. Estimates of error between the exact and computed soli-
tary wave solutions for the KdV equation. Half-wavelength 30,
waveheight a = 1.2651

3. Experiments with SpecTraVVave.

3.1. Termination of waveheight-velocity bifurcation curve of the Whitham

equation. The waveheight-velocity bifurcation curve of the Whitham equation

ut +
3

2
uux + Kux = 0, K̂u(k) =

√
tanh(k)

k
, (3.1)
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Figure 2. Graph of error estimates given in Table 1.

was studied numerically in [24]. An attempt was made to identify the termination
point of the Whitham bifurcation curve. The investigation was limited by compu-
tational tools and complete results were not obtained. In particular, the authors
could not confirm that traveling wave solutions do not exist past the point where
the authors, based on pioneering work of Whitham [52] suspected a cusped solution.
In this section a number of numerical results on nature of the bifurcation curve for
the Whitham equation are presented. Solutions to (3.1) are computed in the form
of traveling waves u(x, t) = φ(x − ct) and the homogeneous (B = 0) integrated
version the equation is considered:

− cφ +
3

4
φ2 + Kφ = 0. (3.2)

Special attention is given to relation between stability of solutions and their wave-
height and velocity parameters, i.e., their position on the bifurcation curve. The
following questions are under study:

(a) Where does the bifurcation curve terminate?
(b) Where on the bifurcation curve do solutions change their stability?
(c) Is there any role that the turning point on the bifurcation curve plays?

The results presented here focus on 2π-periodic solutions to (3.2), i.e., solutions
of system (2.4). Figure 3 presents Whitham bifurcation curves with numbers of
grid points N = 512, N = 1024 and N = 2048. The current implementation of the
SpecTraVVave package allows fixing the number of grid points N and a so-called
doubling parameter D, i.e., the number by which N is doubled as computations are
made. This allows us to get sets of solutions with N, 2N, . . . , 2DN grid points. If
D = 1 then only two sets of solutions are computed and they are regarded as lower
grid (lower resolution) and higher grid (higher resolution) solutions. While system
(2.4) is processed by Newton solver, lower grid solutions are taken as initial guesses
for higher grid solutions. All curves shown in this manuscript have been produced
after tests with a number of resolutions were run, and the curves shown did not
change significantly under further refinement.

Figure 4(a) presents the Whitham bifurcation curve computed by SpecTraVVave

with N = 1024 and D = 1. There are three solutions which deserve to be singled
out:



8 H. KALISCH, D. MOLDABAYEV, O. VERDIER EJDE-2017/62

���� ���� ���� ��� ���� ���� ���� ����
�

���

���

��	

���

��


���

���

���

���

��� �������� ���

�
��
��
��
��
�
 �
!

" # 
��
" # ����
" # ����

Figure 3. Whitham bifurcation curve in different grid resolutions.

(1) Traveling wave solution with minimum velocity (rhombus);
(2) Traveling wave solution with maximum L2-norm (circle);
(3) Cusped traveling wave solution (square).

Profiles of the above listed solutions are given in Figure 5(a). The solution with
minimum velocity corresponds to the turning point of the bifurcation curve. The
solution with maximum L2-norm is very close to the latter one, although it has
a higher waveheight and a different velocity. The solution marked by a square is
called here the terminal solution. As already mentioned, previous studies, such as
[23, 24] did not provide any conclusive analysis on the part of the bifurcation curve
past the turning point. In particular, it was not clear whether solutions ceased to
exist at or after the turning point, or whether solutions were stable or unstable
after the turning point.

Let us first focus on the stability of solutions. Note that SpecTraVVave has an
evolution integrator routine, which enables one to check the stability of computed
solutions. The current version of the package uses the fourth-order method de-
veloped in [20]. In addition one may use a more refined analysis, resting on the
evaluation of invariant functionals. This analysis is based on the observation that
the traveling waves can be thought of as solutions of a constrained minimization
problem. This analysis is based on ideas developed by Boussinesq, first exploited
in [8], and later used in [12, 14, 42], and many other works.

Let us define two functionals V and E:

V (φ) =
1

2

∫ +∞

−∞

φ2 dζ, E(φ) =

∫ +∞

−∞

{
1

2
φ3 − φ Kφ

}
dζ.

Equation (3.2) can be then written in terms of variational derivatives of E and V
as

E′(φ) − cV ′(φ) = 0. (3.3)

It is known from [12] that under certain conditions, the stability of solitary wave
solutions depends on convexity of the function d(c) = E(φ)−cV (φ). Solutions with
values of c for which d′′(c) > 0 are stable solutions, and solutions with wave speeds
for which d′′(c) < 0 are unstable solutions.

The current numerical investigation can therefore be interpreted as an indication
of the stability properties of traveling wave solutions of the Whitham equation. Note
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Figure 4. Whitham bifurcation curves for 2π-periodic solutions.

that differentiation of d(c) yields

d′(c) = E′(φ) − cV ′(φ)︸ ︷︷ ︸
=0

−V (φ).

Using (3.3) as indicated yields

d′(c) = −V (φ) = −
1

2

∫ +∞

−∞

φ2 dζ = −
1

2
‖φ‖2

L2 .

Therefore, to understand the convexity of d(c), it is sufficient to find points of
maximum L2-norm on the curve in the right panel of Figure 4. It is straightforward
to see that d′′(c) changes sign in the neighbourhood of the maximum point of this
curve, i.e., around the solution with maximum L2-norm. In particular, d′′(c) > 0,
i.e., solutions are stable to the left of the maximum point, and d′′(c) < 0, i.e.,
solutions are unstable to the right of the maximum point.

In addition, the solutions were tested with the evolution integrator to confirm
their stability/instability in time. The solution with maximum L2-norm and those
on the left-hand side were always found to be stable in the time-dependent compu-
tations. Solutions on the right-hand side do not preserve their shape and thus are
unstable. Examples are given in Figure 6. This analysis confirms that the point
corresponding to the minumum wave speed (the turning point), and the point of
stability inversion are two distinct points on the bifurcation curve. Moreover, the
point of stability inversion is a little further up the branch from the turning point.

Next, we turn our attention to the analysis of the terminal point. There are
two main questions. Does the branch terminate, and if so, does the terminal point
on the branch correspond to a cusped traveling wave. First of all, note that the
solution, which is computed by SpecTraVVave, past the terminal solution has two
crests, no matter how small the stepping on the bifurcation branch is taken. (see
Figure 5(b)). Secondly, as will be explained presently, the relation

c

supx φ(x)
=

3

2
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(a) Profiles of the solutions singled out in Figure
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(b) Profile after terminal solution

Figure 5. Profiles of specific traveling wave solutions.

holds for the terminal solution with a good degree of approximation. For the most
accurate runs, we obtain c/ supx∈R φ(x) ≈ 1.51. To explain how this relation comes
about note that the steady integrated form of the Whitham equation can be written
as ( c

√
3
−

√
3

2
φ
)2

=
1

3
c2 − Kφ. (3.4)

It is clear that for any φ < 3c/2, the relation (3.4) can be used in a bootstrap
argument to show that any continuous solution must be in fact smooth. However
for the case φ = 3c/2 this bootstrap argument fails since the left-hand side vanishes.
It can be concluded that a solutions containing a cusp will have a maximum value
of 3c/2.

As an additional check, the discrete cosine coefficients of the solutions were
examined, and fitted to the following models:

E(k) = ν1e
−ν2kn

, P(k) =
μ1

μ2 + μ3km
,

where ν1, ν2, μ1, μ2, μ3, n and m are fitting parameters. A smooth function is
known to have discrete cosine coefficients with exponential decay in k. On the other
hand, if a function is not smooth, the discrete cosine coefficients feature polynomial
decay. To identify the best fit, two parameters were used: L2-norm of the residual
and the Akaike information criterion (AIC) measure.

From the data given in the Table 2, one can deduce that for solutions with
minimum speed and maximum L2-norm exponential fit is better than polynomial.
That is not the case for the terminal solution. Thus, the first two solutions are
smooth and the terminal solution is nonsmooth. In fact, the polynomial fit is better
than exponential for solutions that are between the maximum L2-norm solution and
the terminal solution.

The numerical evidence brought forward supports the conclusion that the Whitham
bifurcation branch terminates at the terminal point indicated in Figure 3. Of
course, as already mentioned, this conclusion has now also been reached using tools
of mathematical analysis [25].
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Figure 6. Evolution of specific solutions in time. Time range for
each solution is three periods.

Min speed solution Max L2-norm solution Terminal solution
Model E(k) P(k) E(k) P(k) E(k) P(k)

Res. L
2-norm 5 × 10−5 4 × 10−3 7 × 10−5 3 × 10−3 6 × 10−3 6 × 10−4

AIC -543 -321 -529 -333 -298 -416

Table 2. Results for measures of fit.

3.2. Interaction of solitary wave solutions of modified Benjamin–Ono

equation. In this section, we utilize the SpecTraVVave package to obtain high-
precision approximations to solitary-wave solutions of the modified Benjamin–Ono

ut + u2ux + ux −Huxx = 0,

which is a special case of the generalized Benjamin–Ono equation, with p = 2. This
case corresponds to the critical scaling, i.e., invariance of the energy norm under
the natural invariant scaling.

The Benjamin–Ono equation was found by Benjamin [7] as a model for long
small-amplitude interfacial waves in deep water. The validity of approximating the
more physically correct configuration of a continuous density distribution by the
two-layer approximation has recently been justified mathematically [17].

Solitary-wave solutions of the modified Benjamin–Ono equation with p = 3,
p = 4 and p = 5 were approximated in [11] with a standard Newton scheme. The
solutions in [11] were not very accurate, but since singularity formation of the evo-
lution equations were under study, the accuracy of the solitary-wave approximation
was not an important issue. The problem with the method of [11] and some other
works was that the fft used there was not purged of possible symmetries (trans-
lational and reflective). In the current code, since a cosine formulation is chosen,
these symmetries are automatically eliminated, and the resulting computations are
able to to render more accurate approximations.

Solitary-wave solutions of these equation could be computed with higher accu-
racy using a type of Petviashvili method in [44], but here we employ the Spec-

TraVVave package using the boundary equation (2.5), and treating solitary waves
as traveling waves with sufficiently long wavelength that have wave trough at zero.
Once these high-accuracy solutions are found, they are aligned in an evolution code
using a high-order time integrator, and the interaction of two waves is studied.
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Two questions are investigated. First, the interaction is investigated for evidence
of integrability. Second, we are looking for possible annihilation of one of the waves,
such as may happen in some other evolution equations [19].

A possible approach to studying the question of complete integrability is analyz-
ing the interaction of two solitary wave solutions of the equation, such as carried
out in [32, 34] for other nonlocal equations. In Figure 7, snapshots of interaction of
two solitary waves at different times are shown. The time difference between two
consecutive snapshots is constant. As it may be observed, during the process of
interaction, the two initial solitary waves combine into a single wave, and an addi-
tional oscillation is produced. This leads us to the conclusion that the interaction
of solitary waves is not elastic and the modified Benjamin–Ono equation may not
be integrable. In addition, it appears that the smaller wave disappears as most of
its mass is acquired by the larger wave. Thus one may argue that the small wave
is annihilated by the larger wave. It can also be observed that the larger wave
starts growing, and it is likely that this growth will lead to finite-time blow-up.
This question was not investigated further since blow-up phenomena have already
been studied closely in [34]. Indeed, very recently, the finite-time blow-up has been
proven mathematically in [39].
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Figure 7. Interaction of two solitary waves of the modified
Benjamin-Ono equation.

3.3. Effect of competing dispersion in the Benjamin equation. The Ben-
jamin equation was found by Benjamin [9] as a model for two-layer flow in the case
when the interface is subject to surface tension. The approximation may not be a
good model for a stratified situation, but more applicable to the case where two
fluids are separated by a sharp interface. The equation is

ut + ux + uux −Huxx − τuxxx = 0, (3.5)

where τ is a parameter similar to the inverse of the Bond number in free surface
flow [9, 33, 50].

In this section, a study relating to the effects of competing dispersion operators
on the shape of periodic traveling waves in the Benjamin equation is presented. An
in-depth study of solitary waves was carried out in [22]. As will come to light, the
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periodic case features some new phenomena, such as secondary bifurcations, con-
necting and crossing branches. For the purpose of this study, we fix the parameter
τ = 0.1, so that the dispersion relation for the linearized equation is

c(k) = 1 − |k| + 0.1k2. (3.6)

Traveling wave solutions with full wavelengths L1 = π/5, L2 = 4π/19 and L3 =
4π are computed for (3.5). The corresponding wavenumbers are k1 = 10, k2 = 19/2,
and k3 = 0.5, respectively. A plot of the dispersion relation (3.6) is given in Figure
8. Bifurcation branches of traveling wave solutions with the selected wavelengths
are given in Figure 9.
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Figure 8. Dispersion relation (3.6)

The branch denoted by L1 originates at the bifurcation point located at c = 1
and zero waveheight. The branches denoted by L2 and L3 originate from the same
bifurcation point, located at c = 0.525 and zero waveheight. These two branches
continue in different directions, due to differences in wavelength. In particular,
the L3 branch contains waves with shorter wavelengths, and falls into the capillary
regime. On the other hand, the L2 branch falls in the gravity regime. As the
waveheight grows, solutions on the L3 branch first cross the L1 branch without
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Figure 9. Bifurcation curves of (3.5) with different wavelengths,
� – points of bifurcation, • – selected solutions (see Figure 10).
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connecting. Additional oscillations develop in the solutions until a new fundamen-
tal wavelength π/5 is reached, and the branch terminates as it connects to the L1

branch. The situation is depicted in Figure 10. The point where the L1 and L3

branches meet is approximately (c∗, a∗) = (0.945, 5.938). The corresponding pro-
files essentially overlap, as shown on Figure 11. This point can also be interpreted
as a secondary bifurcation point of the L1 branch, where solutions with wavelengths
that are multiples of π/5 develop. We should note that similar phenomena con-
cerning crossing and connecting branches were previously observed in [47] for the
Whitham equation with surface tension which was introduced in [30].
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Figure 10. Selected solutions of (3.5). Labels preserved as shown
in Figure 9.
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Figure 11. Solution profiles at the point (c∗, a∗) where the L1

and L3 branches meet (see Figure 9).

4. Conclusions and future work

The numerical algorithm of SpecTraVVave features ample flexibility for research-
ing different aspects of nonlocal dispersive wave equations and their traveling wave
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solutions. The solver package is simpler in use when compared with programs such
as AUTO and Wavetrain, however it does not have the same level of generality.
Moreover, AUTO and Wavetrain are programmed in low-level programming lan-
guages and will therefore run more efficiently. SpecTraVVave is implemented in an
object-oriented fashion [27], which makes the program easily expandable. IPython

provides means for interactive work with the package, and enables users to create
convenient notebook-programs. A parametric approach in defining amplitude and
phase speed makes it possible to follow turning points on bifurcation curves. Spec-
ification of different boundary conditions allows computing solutions with certain
features, such as traveling waves with zero mean, or approximations to solitary
waves.

In this work, the SpecTraVVave package has been put to use for the study of
a number on nonlinear evolution equations: the Whitham equation, the modified
Benjamin–Ono equation and the Benjamin equation. For the chosen set of param-
eters, experiments on the Whitham equation resulted in numerical confirmation of
the conjecture on cusped solutions. It was also possible to identify the point of
stability inversion of traveling wave solutions of the equation and the termination
point of its bifurcation curve.

In case of the modified Benjamin–Ono equation, the study on solitary wave
solutions lead us to conclude that interaction process ended with annihilation of
one of the two waves. The experiment on the Benjamin equation showed one
more example of the effect of competing dispersion. As the amplitude increased,
traveling wave solutions of wavelength 4π developed additional oscillations, and
later connected up with a branch of solutions with wavelength π/5.

Future work on the SpecTraVVave package will be focused on development of its
functionality and broadening the range of problems that can be studied. Possible
extensions may include implementation of algorithms based on the Petviashvili
method [4, 5] and generalization to systems of equations.

5. Appendix: Computing initial guesses from Stokes expansion.

ut + [f(u)]x + Lux = 0, (5.1)

The goal of this section is to explain how the idea of Stokes’s approximation works
in providing the initial data (guess) on wave and phase velocity for solving (5.1)
numerically.

We will consider L being linear and self-adjoint Fourier multiplier operator, and
a function f that has degree of zeros p ≥ 2:

L̂u(k) = α(k) · û(k),

〈Lu, v〉L2(0,L) = 〈u,Lv〉L2(0,L),

p = min
k∈N

f (k−1)(0) = 0 and f (k)(0) �= 0

Consider equation (5.1) and its solution in the form u(x, t) = φ(x − ct), which is a
traveling wave solution. Inserting φ(x − ct) into (5.1) leads to the equation

−cφ′ + f ′(φ)φ′ + Lφ′ = 0,

which can be integrated to give

− cφ + f(φ) + Lφ = B, B = const. (5.2)
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Consider B = 0 in equation (5.2), and expansions of φ and c:

φ = ξ = εξ1 + ε2ξ2 + . . . , (5.3)

c = c0 + εc1 + ε2c2 + . . . . (5.4)

The next step is to insert (5.3) and (5.4) to (5.2) and write out the terms at powers
of ε. The function f(φ) is expanded around zero and, therefore, will appear only
in εp terms. Thus, the term at the first power of ε reads

ε : −c0ξ1 + Lξ1 = 0, (5.5)

Hence, c0 is an eigenvalue of the operator L, regarded as defined on L-periodic
functions. Taking the Fourier transform of (5.5) gives:

− c0ξ̂1(k) + α(k)ξ̂1(k) = 0. (5.6)

Equation (5.6) has two trivial solutions: either ξ1(k) ≡ 0 or α(k) ≡ c0. If we assume
non-trivial ξ1 and α(k) �= const, the following solves the problem

ξ̂1(k) = 2πδ(k − k0), and c0 = α(k0), (5.7)

for some k0 ∈ R. Since ξ1 is the first-order approximation to φ, the corresponding
wave number should be equal to 1. The L-periodicity condition entails that k0 =
2π/L · 1. The spatial variable x has to be scaled to x′ = L/2πx, accordingly. From
the solutions in (5.7) we have

ξ1(x
′) = eik0x′

= cos(k0x
′) + sin(k0x

′). (5.8)

Considering the projection onto the space SN , we are led to choose ξ1(x
′) =

cos(k0x
′). For further analysis, let us define an operator A,

A := −c0E + L,

where E is the identity operator. The operator A inherits the property of being
self-adjoint from L. Moreover, it follows from (5.5) that Aξ1 = 0 and ξ1 ∈ ker(A).
If p > 2 then f ′′(0) = 0 and the terms at ε2 are:

Aξ2 − c1ξ1 = 0. (5.9)

Taking scalar multiplication of the latter with ξ1, one obtains

〈ξ1,Aξ2〉L2(0,L) = c1‖ξ1‖
2
L2(0,L), 〈ξ1,Aξ2〉L2(0,L) = 〈Aξ1,

ξ2〉L2(0,L) = 〈0, ξ2〉L2(0,L) = 0.

As a result, one has c1‖ξ1‖
2
L2(0,L) = 0 and, hence, c1 = 0. Repeating the same

argument, it becomes clear that ck = 0 for any k ≤ p− 1. Besides that, ξ2 is in the
kernel of A, so it may be assumed to be proportional to ξ1. The terms at order εp

are:

Aξp − cp−1ξ1 +
f (p)(0)

p!
ξp
1 = 0. (5.10)

Let us denote for brevity

fp :=
f (p)(0)

p!
.

Pairing (5.10) with ξ1 (and assuming ‖ξ1‖L2(0,L) = 1) gives

cp−1 = fp · 〈ξp
1 , ξ1〉L2(0,L), (5.11)
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which gives us the value of cp−1. It only remains to solve the following problem
numerically in order to obtain ξp:

Aξp = cp−1ξ1 − fpξ
p
1 (5.12)

For the last equation to be solved, the operator A has to be invertible. It is
also required that 〈ξ1, ξp〉L2(0,L) = 0. Therefore the solution is sought in the space
orthogonal to ker(A). Since A is still a Fourier multiplier operator, one can take
the Fourier transform of (5.12) to find

Â(k)ξ̂p(k) = cp−1ξ̂1(k) − fpξ̂
p
1(k),

ξ̂p(k) = Â(k)−1
(
cp−1ξ̂1(k) − fpξ̂

p
1(k)

)
.

Taking the inverse Fourier transform of ξ̂p(k) gives ξp. Since only even solutions
of the problem are considered the cosine part of the Fourier transforms will be
required. It is sufficient to use ξ1 and c0 as the initial guesses for the Newton
method. However, it should be noted that for different values of p the pair of
parameters ξp and cp−1 are computed in different ways.

(a) If p = 2, then ξ2 is computed from (5.12), but cp−1 here becomes zero.
Therefore one has to consider the next level of the expansion εp.

(b) For odd values of p the parameter cp−1 can be computed from (5.11) and
ξp from (5.12).

(c) For even values of p ≥ 4 the parameter ξp can be computed, but cp−1 may
not be non-zero in general. In such cases a different strategy of fixing the
initial guess should be used.

6. Appendix: Presentation of SpecTraVVave and its workflow

6.1. Overview. There are several classes in the SpecTraVVave package. An over-
view of the program is shown in Figure 12. The workflow begins with defining a flux
function f and the Fourier multiplier function α to set up an equation. The trav-
eling wave solution is characterized by the wavelength L and a boundary condition
Ω(c, a, φN , B). These parameters are fixed for a given problem. The defined equa-
tion is then discretized. The Discretization object contains all required elements
such as grid points, wave-numbers and the discrete linear operator.

The initial guess and the equation’s residual are passed from the Discretization
to the Solver object. The Navigation object is responsible for finding good initial
guesses for c and a that are passed to the Solver object. The Solver object applies
Newton’s method to find a solution to system of equations (2.4).

The new solution is sent back to the Discretization and Navigation objects,
where variables get updated. All computed solutions are stored for further analysis.
This finishes one iteration. For the next iteration the updated variables are used
and a new solution is found. The process may be continued as long as the Jacobian
of the problem is non-singular.

6.2. Class Description. We present an overview of the classes used in SpecTraV-

Vave package. Note that, since the package is under continuous modification and
development, we describe here only the basic classes and functions the package.
We refer to the package repository [41] for up-do-date tutorials and installation
instructions.
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Figure 12. Overview of the SpecTraVVave package.

The Equation class is the general class for all model equations. Its only role is
to store a parameter L, the wavelength:

class Equation(object):

def __init__(self , L):

self.length = L

A subclass of the Equation class has to implement two functions, compute_kernel
and flux.

The KdV model equation

ut +
3

2
uux + ux +

1

6
uxxx = 0

with f(u) = 3
4u2 and L̂u(k) = (1 − 1

6k2)û(k) is presented in the program as a
subclass of the Equation class:

class KDV(Equation):

def compute_kernel(self , k):

return 1-1/6*k*k

def flux(self , u):

return 3/4*u*u

One can then create an object of the class KDV with the command:
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kdv = KDV(L=np.pi)

The solver will compute only a half of a solutions profile. The full wavelength of
the solutions of the defined equation will be equal to 2π.

In order to find solutions with specific features, boundary conditions are in-
troduced as separate classes. For instance, the boundary condition specifying a
constant of integration is implemented as follows:

class Const(object):

""" The boundary condition under which the constant of integration

(B) is always set to zero. """

def __init__(self , level=0):

self.level = level

def enforce(self , wave , variables , parameters):

""" Enforces the Const boundary condition . """

return np.hstack([variables[0] - self.level])

def variables_num(self):

""" The number of additional variables that are required to

construct

the Const boundary condition. """

return 1

A Const boundary condition object is created as follows:

boundary_condition = Const()

The next step is to create an object of Discretization class, which is initialized
with a model equation such as kdv_model and the number of grid points. The main
parts of the class are the following:

class Discretization(object):

def __init__(self , model_equation , grid_size):

self.equation = model_equation

self.size = grid_size

def operator(self , u):

u_ = scipy.fftpack.dct(u, norm=’ortho ’)

Lv = self.fourier_multiplier ()*u_

result = scipy.fftpack.idct(Lv, norm=’ortho ’)

return result

def residual(self , u, wavespeed , const_B):

residual = - wavespeed*u + self.equation.flux(u)

+ self.operator(u) - const_B

return residual

The call Discretization.operator(u) computes Lu as the inverse transform
of a transformed convolution

Lu = F−1[L̂u(k)] = F−1 [α(k) · û(k)] .

The result of the call Discretization.residual(u, wavespeed, const_B) is then
used in the Solver class. An object of the Solver class is initialized with an object
of the Discretization class, and a boundary condition object.
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class Solver(object):

def __init__(self , discrete_problem , boundary_condition):

self.discretization = discrete_problem

self.boundary = boundary_condition

def solve(self , guess_wave , parameter_anchor , direction):

""" Runs a Newton solver on a system of nonlinear equations once.

Takes the residual (vector) to solve. parameter_anchor

is the initial guess for (c,a) values and it is taken from the

Navigation class. """

size = len(guess_wave)

self.discretization.size = size

def residual(vector):

""" Contructs a system of nonlinear equations . First part ,

main_residual , is from given wave equation; second part ,

boundary_residual , comes from the chosen boundary conditions .

"""

. . .

return np.hstack([main_residual , boundary_residual ,

amplitude_residual ])

. . .

return new_wave , new_boundary_variables , new_parameter

Some omitted parts in the above script are substituted by ’. . .’ sign. Each
iteration on a Solver object is run from a Navigation object, which takes the
Solver object for initialization.

class Navigation(object):

""" Runs the Solver and stores the results. """

def __init__(self , solver_object , size=32):

self.solve = solver_object.solve # function to run Newton method

self.size = size # size for navigation

. . .

def run_solver(self , current_wave , pstar , direction):

new_wave , variables , p3 = self.solve(current_wave , pstar ,

direction)

return new_wave , variables , p3

All the above classes can be modified and developed further, new classes may be
defined as well.

6.3. Detailed Workflow. The workflow with the package consists of three basic
steps:

(1) Once the necessary classes have been imported in the current namespace,
generate all necessary objects:

equation = KDV(L=np.pi)

boundary_condition = Const()

discretization = Discretization(equation , grid_size =64)

solver = Solver(discretization , boundary_condition)

navigator = Navigation(solver)

(2) Choose a number of iterations, i.e., the number of solutions to compute,
and run the solver:
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n_iter = 50

navigator.run(n_iter)

(3) All computed solutions are stored in navigation_object

last_computed = -1

wave_profile = navigator[last_computed ][’solution ’]

wave_speed = navigator[last_computed ][’current ’][0]

wave_amplitude = navigator[last_computed ][’current ’][1]

For up-to-date instructions on how to run the code, we refer the reader to the
code repository https://github.com/olivierverdier/SpecTraVVave.
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Abstract

Explicit parametric solutions are found for a nonlinear long-wave model describing steady

surface waves propagating on an inviscid fluid of finite depth in the presence of a linear shear

current. The exact solutions, along with an explicit parametric form of the pressure and

streamfunction give a complete description of the shape of the free surface and the flow

in the bulk of the fluid. The explicit solutions are compared to numerical approximations

previously given in [1], and to numerical approximations of solutions of the full Euler equa-

tions in the same situation [31]. These comparisons show that the long-wave model yields

a fairly accurate approximation of the surface profile as given by the Euler equations up

to moderate waveheights. The fluid pressure and the flow underneath the surface are also

investigated, and it is found that the long-wave model admits critical layer recirculating flow

and non-monotone pressure profiles similar to the flow features of the solutions of the full

Euler equations.

1 Introduction

Background vorticity can have a significant effect on the properties of waves at the surface of a

fluid [19,24,26,30,32,35]. In particular, in the seminal paper of Teles da Silva and Peregrine [31],

it was found that the combination of strong background vorticity and large amplitude leads to

a number of unusual wave shapes, such as narrow and peaked waves and overhanging bulbous

waves. In the present contribution, we continue the study of a simplified model equation which

admits some of the features found in [31]. The equation, which has its origins in early work of

Benjamin [3], has the form

(
Q+

ω0

2
u2

)2
(
du

dx

)2

= −3

(
ω2
0

12
u4 + gu3 − (2R− ω0Q)u2 + 2Su−Q2

)
, (1)

where we denote the volume flux per unit span by Q, the momentum flux per unit span and

unit density corrected for pressure force by S, and the energy density per unit span by R.

The gravitational acceleration is g and the constant vorticity is −ω0. The total flow depth as

measured from the free surface to the rigid bottom is given by the function u(x).

Equation (1) was recently studied in [1]. It was found that solutions of this equation exhibit

similar properties as solutions of the full Euler equations displayed in [31]. In particular, in [1]

an expression for the pressure was developed, and it was shown that the pressure may become

non-monotone in the case of strong background vorticity. Indeed, it was shown in [1] that if

∗
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|ω0| is big enough, the maximum fluid pressure at the bed is not located under the wavecrest.

Such behavior is usually only found in transient problems (cf. [33]). Moreover in some cases,

the pressure near the crest of the wave may be below atmospheric pressure.

The purpose of the present work is two-fold. First, we develop a method by which equation (1)

can be solved exactly. The resulting solutions are compared to the the numerical approximations

found in [1] and to some of the solutions of the full Euler equations from [31]. Secondly, more

features of the solutions of (1) are discussed. Using a similar analysis as in [1], the streamfunction

is constructed, and it is found that solutions of (1) may feature recirculating flow and pressure

inversion. These features may have an impact on the study of sediment resuspension. Indeed,

while it is generally accepted that the main mechanism for sediment resuspension is turbulence

due to flow separation in the presence of strong viscous shear stresses [7,27,29], the strongly non-

monotone pressure profiles exhibited by the solutions of (1) may represent a more fundamental

mechanism for particle suspension than the viscous theory.

The geometric setup of the problem is explained as follows. Consider a background shear flow

U0 = ω0z, where ω can be positive or negative (cf. Figure 1). Superimposed on this background

flow is wave motion at the surface of the fluid. One may argue that the wave motion itself

introduces variations into the shear flow due to the Stokes drift [16, 25]. However for very

long waves, the Stokes drift can be compared to the Stokes drift in the KdV equation [5], and

it becomes negligible in the long-wave limit. Moreover, as observed by a number of authors

[3, 31, 32], a linear shear current can be taken as a first approximation of more realistic shear

flows with more complex structures.

If it is assumed that the free surface describes a steady periodic oscillatory pattern, then the

flow underneath the free surface can be uniquely determined [10, 23], even in the presence of

vorticity. Thus for the purpose of studying periodic traveling waves, one may use a reference

frame moving with the wave. This change of reference frame leads to a stationary problem

in the fundamental domain of one wavelength. The incompressibility guarantees the existence

of the streamfunction ψ and if constant vorticity ω = −ω0 is stipulated, the streamfunction

satisfies the Poisson equation

Δψ = ψxx + ψzz = ω0, in 0 < z < η(x) = ψ|z=η. (2)

As explained in [2, 4], the three parameters Q, S and R are defined as follows. If ψ = 0 on the

streamline along the flat bottom, then Q denotes the total volume flux per unit width given

by

Q =

∫ η

0
ψzdz . (3)

Thus Q is the value of the streamfunction ψ at the free surface. The flow force per unit width

S is defined by

S =

∫ η

0

{
P
ρ + ψ2

z

}
dz, (4)

and the energy per unit mass is given by

R =
1

2
ψ2
z +

1

2
ψ2
x + gη on z = η(x) . (5)

Finally, the pressure can be expressed as

P = ρ
(
R− gz − 1

2
(ψ2

x + ψ2
z) + ω0ψ − ω0Q

)
, (6)
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It is well known that the quantities Q and S do not depend on the value of x [4]. Using the

fact that S is a constant, the derivation of the model equation (1) can be effected by assuming

that the waves are long, scaling z by the undisturbed depth h0, x by a typical wavelength L,
and expanding in the small parameter β = h20/L

2. This yields (1) as an approximate model

equation describing the shape of the free surface. In order to distinguish from the free surface η
in the full Euler description, we call the unknown of equation (1) u which is an approximation

of η. The derivation of (1) was given in [1, 4], where it was shown that (1) is expected to be

valid as an approximate model equation describing waves on the surface of the shear flow if

the wavelength is long compared to the undisturbed depth of the fluid. On the other hand, a

detailed analysis of the derivation explained in [1, 4] shows that there are no assumptions on

the amplitude of the waves. Thus at least formally, the model (1) can be expected to model

waves of intermediate amplitude.

x

z

h0U0

Direction of wave propagation

Figure 1: This figure shows the background shear flow U0 = ω0z. In the figure, ω0 is positive, and the

waves which are superposed onto this background current propagate to the left.

2 Explicit solutions

In order to obtain solutions of (1) given in explicit form, we apply the change of variables

dy

ds
=

du

dx

(
Q+

ω0

2
u2

)
,

y(s) = u(x).

This gives us a new equation for y(s) in the form

(
dy

ds

)2

= −3

(
ω2
0

12
y4 + gy3 − (2R − ω0Q)y2 + 2Sy −Q2

)
, (7)

and the relation
ds

dx
=

1

Q+ y2ω0/2
. (8)

Integrating (8) we have

x(s) =

∫ s (
Q+

ω0

2
y2
)
dξ − x1. (9)

where x1 is a constant of integration, written explicitly for convenience. We want to solve (7)

for y(s) and plug our solution into (9). We notice that in the variables y and
dy
ds the equation

describes an elliptic curve of genus one [14]. Hermite’s Theorem [34, p. 394] states that for a

uniform solution to exist we need
∫
ds to be an abelian integral of the first kind. This condition

3



is indeed satisfied and we proceed with using a birational transformation to put (7) in the

standard Weierstraß form (
dy0
dx0

)2

= 4y30 − g2y0 − g3, (10)

where the transformation is given as

x0 = −24(−2
√
12Q2y2ω0 −

√
12Qgy3 + 4

√
12QRy2 + 4

√
12Q3 − 6

√
12QSy + 8Q2 dy

ds − 4
dy
dsSy)

y3
,

y0 =
4(−Qy2ω0 + 2Ry2 + dy

ds

√
12Q+ 6Q2 − 6Sy)

y2
, (11)

and g2 and g3 are the lattice invariants

g2 = −768QRω0 + 768R2 − 1152Sg,

g3 = 2048Q3ω3
0 − 6144Q2Rω2

0 − 6912Q2g2

+ 6144QR2ω0 − 4608QSgω0 + 2034S2ω2
0 − 4096R3 + 9216RSg.

It is well known that the solution to (10) is y0(x0) = ℘(x0+c0; g2, g3), where ℘ is the Weierstraß

P function and c0 is an arbitrary constant [6, 14]. We invert the birational transformation to

determine the exact solution to (7) as

y(s) =
A+B℘′((s + c0)/4; g2, g3) + C℘((s+ c0)/4; g2, g3)

℘2((s + c0)/4; g2, g3) +D℘((s+ c0)/4; g2, g3) + E
,

with

A = −288Q2g − 96Qω0S + 192RS,

B =
√
12Q,

C = −24S,

D = 8Qω0 − 16R,

E = 64Q2ω2
0 − 64QRω0 + 64R2.

This gives us u(x(s)) in the form

u(x(s)) =
A+B℘′((s+ c0)/4; g2, g3) + C℘((s+ c0)/4; g2, g3)

℘2((s+ c0)/4; g2, g3) +D℘((s+ c0)/4; g2, g3) + E
, (12)

as a function of the parameter s. If we express x(s) as a function of s, then we have a parametric

representation for u(x), the surface elevation. From (9) we have

x(s) = Qs− x1 +
ω0

2

∫ s

y2(ξ)dξ. (13)

Expanding and simplifying y(s)2 gives

y2 =
4B℘3 + C2℘2 + (2AC −B2g2)℘+ (A2 −B2g3)

(℘2 +D℘+ E)2
+

2AB − 2BC℘

(℘2 +D℘+ E)2
℘′, (14)
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making use of the shorthand ℘ = ℘((s + c0)/4; g2, g3) and ℘′ = ℘′((s + c0)/4; g2, g3). Plugging
(14) into (13) and integrating gives

x(s) = Qs− x1 + ω0B

⎡
⎣8(2A − CD) arctan

(
D+2℘√−D2+4E

)
(−D2 + 4E)3/2

+
−4AD + 8CE + (−8A+ 4CD)℘

(D2 − 4E)(℘2 +D℘+ E)

⎤
⎦

+
ω0

2

∫ s 4B℘3 + C2℘2 + (2AC −B2g2)℘+ (A2 −B2g3)

(℘2 +D℘+ E)2
dξ. (15)

To evaluate the integral in (15) we let

m1 = −D

2
−

√
D2 − 4E

2
,

n1 = −D

2
+

√
D2 − 4E

2
,

denote the roots of ℘2 +D℘+ E = 0. The integrand can be split into its components

4B℘3 + C2℘2 + (2AC −B2g2)℘+ (A2 −B2g3)

(℘−m1)
2(℘− n1)

2
=

J(m1, n1)

(℘−m1)
2
+
K(m1, n1)

℘−m1
+
J(n1,m1)

(℘− n1)
2
+
K(n1,m1)

℘− n1
,

with

J(m1, n1) =
A2 −B2g3 + 2ACm1 −B2g2m1 + C2m2

1 + 4B2m3
1

D2 − 4E
,

K(m1, n1) =
−2A2 + 2B2g3 − 2ACm1 +B2g2m1 + 4B2m3

1 − 2ACn1 +B2g2n1 − 2C2m1n1 − 12B2m2
1n1

(4E −D2)
3/2

.

Letting

α = ℘−1(m1),

β = ℘−1(n1),

and

x1 = −c0Q+ x2,

where x2 is another arbitrary constant, we express x(s) as

x(s) = Q(s + c0)− x2 + ω0B

⎡
⎣8(2A − CD) arctan

(
D+2℘√−D2+4E

)
(−D2 + 4E)3/2

+
−4AD + 8CE + (−8A+ 4CD)℘

(D2 − 4E)(℘2 +D℘+ E)

⎤
⎦

+ 2ω0

[
J(m1, n1)I2((s + c0)/4, α) +K(m1, n1)I1((s+ c0)/4, α)

+ J(n1,m1)I2((s + c0)/4, β) +K(n1,m1)I1((s + c0)/4, β)
]
, (16)

where I1 and I2 come from [6] and [21] and are expressed as

I1(u, γ) =
1

℘′(γ)

[
log

(
σ(u− γ)

σ(u+ γ)

)
+ 2uζ(γ)

]
,

I2(u, γ) =
℘′′(γ)
℘′3(γ)

log

(
σ(u+ γ)

σ(u− γ)

)
− 1

℘′2(γ)
(ζ(u+ γ) + ζ(u− γ))−

(
2℘(γ)

℘′2(γ)
+

2℘′′(γ)ζ(γ)
℘′3(γ)

)
u.

5



Here ζ is the Weierstraß zeta function and σ is the Weierstraß sigma function. Thus we have

x(s) given in (16) and u(x(s)) given in (12) both as functions of s. This gives a parametric

representation of our solution as a function of s{
y = u(x(s)), given in (12),

x = x(s), given in (16).
(17)

The approximation to the pressure given in [1] is

P = ρ

{
R− gz − 1

2

(
Q

u2
+

ω0

2

)2

(z2u′2 + u2) +
1

2

(
ω0

6
u3 − ω0

2
z2u− 2

3
ω0z

3 − Q

3
u+ z2

Q

u

)

×
(
2Q

u′2

u3
− u

′′

(
Q

u2
+

ω0

2

))}
. (18)

This leads to a parametric representation of the pressure as a function of s{
y = P (u(x(s)), z), given in (18),

x = x(s), given in (16),
(19)

where z is the distance from the channel bed.

Finally, note that an expression for the streamfunction can be derived using the techniques

of [1]. Since this was not done in [1], the derivation is outlined in the appendix for the sake of

completeness. The expression for the streamfunction is

ψ =
1

2
z2ω0 + z

(
Q

u
− uω0

2
+

Qu′2

3u
− Qu′′

6
− ω0u

2u′′

12

)
− z3

6

(
2Qu′2

u3
− Qu′′

u2
− ω0u

′′

2

)
, (20)

which gives a parametric representation of the streamfunction as a function of s as{
y = ψ(u(x(s)), z), given in (20),

x = x(s), given in (16).
(21)

3 Matching the explicit solutions to previous works

First, we verify the explicit solutions found here and the numerical approximations given in [1]

by comparing them to each other. Following the analysis of [1], we first note that (1) can be

written in the form

u′2 =
G(u)
F(u)

. (22)

Letting Z1, Z2, m and M represent the roots of the numerator G on the right-hand side of (22)

we write

G(u) = −3

(
ω2
0

12
u4 + gu3 − (2R − ω0Q)u2 + 2Su−Q2

)

=
ω2
0

4
(M − u)(u−m)(u− Z1)(u− Z2). (23)

6



By comparing the coefficients of (23) and assuming that Q, m, and M are given, the two

additional roots Z1 and Z2 are found as (note that a small typo in [1] has been corrected

here)

Z1 =
1
2

{
−
(

12
ω2

0

g + (M +m)
)
−

√(
12
ω2

0

g + (M +m)
)2

+
48Q2

ω2

0
mM

}
,

Z2 =
1
2

{
−
(

12
ω2

0

g + (M +m)
)
+

√(
12
ω2

0

g + (M +m)
)2

+
48Q2

ω2

0
mM

}
.

The total head R and the flow force S are obtained as

R =
ω0Q

2
− ω2

0

24
(Z1Z2 +mM + (M +m)(Z1 + Z2)) ,

S = −ω2
0

24
((M +m)Z1Z2 +mM(Z1 + Z2)) .

Following the work in [1] there are two cases depending on the sign of ω0. If ω0 > 0, then u′2

has no singularities and there is a smooth periodic solution if Z2 < m < M . If ω0 < 0, then
u′2 has two singularities and the parameter space is more restricted. To find the conditions for

smooth solutions to exist, we let F(u) be expressed as

F(u) =
(
Q+

ω0

2
u2

)2
=

ω2
0

4
(u−A+)

2(u−A−)2, (25)

which reveals that the derivative is singular when u takes the values A+ =

√
2Q
−ω0

and A− =

−
√

2Q
−ω0

. In the case ω0 < 0, smooth solutions exist when M < A+. To better understand this

condition, we introduce the non-dimensional Froude number

F =
ω0M

2

2Q
.

Substituting F for ω0 we find four cases:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 < F : smooth solutions exist is Z2 < m < M,

−1 < F < 0 : smooth solutions exist,

F = −1 : limiting case of smooth solutions ceasing to exist,

F < −1.1 : smooth solutions do not exist but overhanging waves are possible.

(26)

Only solutions of the first two cases above are seen in [1]. Below we show one representative

example of each of the cases. As in [1], we use the parameters

g = 9.81; ρ = 1; m = 1.1; Q = 1.2
√
g; h0 =

3
√

g−1Q2; ω0 =
2QF

M2
. (27)

For the following figures, we use the following parameters:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 < F : M = 1.3 and F = 1.15,

−1 < F < 0 : M = 1.7 and F = −0.3,

F = −1 : M = 1.7 and F = −1,

F < −1.1 : M = 1.7 and F = −1.1.

7



(a) (b)

Figure 2: (a) u(x) as a function of x. (b) P (u(x), 0) as a function of x.
0 < F, M = 1.3, F = 1.15, and −1/2 ≤ s ≤ 1/2. Smooth solutions exist.

(a) (b)

Figure 3: (a) u(x) as a function of x. (b) P (u(x), 0) as a function of x.
−1 < F < 0, M = 1.7, F = −0.3, and −1/2 ≤ s ≤ 1/2. Smooth solutions exist.

(a) (b)

Figure 4: (a) u(x) as a function of x. (b) P (u(x), 0) as a function of x.
F = −1, M = 1.7, F = −1, and −1/2 ≤ s ≤ 1/2. Cusp solution.

(a) (b)

Figure 5: (a) u(x) as a function of x. (b) P (u(x), 0) as a function of x.
F < −1, M = 1.7, F = −1.1, and −1/2 ≤ s ≤ 1/2. Overhanging solutions.
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Additionally, in order to obtain periodic solutions with m < u(x) < M and with zero imaginary

part, we need to set

c0 = 4ω2(g2, g3), (28)

where ω2 is a Weierstraß half period corresponding to the lattice invariants g2 and g3 with

non-zero imaginary part.

We produce plots of the explicit solutions for the various cases of (26) with the parameters given

in (27), (28) and (32). Two plots for each case will be shown:

1. u(x) as a function of x,

2. P (u(x), 0) as a function of x.

Note that since our solutions are symmetric under spacial translations (varying x2) we can

shift the waves so they coincide with those in [1]. Figures 2 and 3 show two curves found

in [1], and no visual difference can be detected between the explicit solutions and the numerical

approximations of [1]. We notice that x(s) is a monotone function of s as F > −1 decreases up

until the critical value of F = −1. Beyond the critical point where F = −1, x(s) is no longer

monotone and as a result the solutions are no longer smooth. Figure 4 shows the limiting case of

a cusped solution. Note that the evaluation of the pressure at the bottom under the wavecrest

appears to yield extremely low and apparently non-physical values. Figure 5 shows a looped

(or self-intersecting) solution which is allowed in equations (10) and (11), but not possible in

(1). Since it was assumed in the derivation that the free surface is a single-valued function of

x, the solution shown in Figure 5 is beyond the physical validity of the equation.

Next we investigate whether the solutions of (1) are close to the solutions of the full Euler

equations with a background shear flow found in [31]. Figure 6 and 7 show a sequence of large

waveheight solutions with waveheight H = 1.2, and for the set of parameters g = 9.81, ρ =

1.0, h0 = 1.0. Note also that by rearranging the variables, we can make the self-intersecting

solution look like an overhanging solution. Even though the curves shown in Figure 7 look

similar to the free surface profiles shown in Figure 6 of [31], strictly speaking, the curves in

Figure 7 do not represent solutions of (1).

We can also set our solutions to be 2π periodic. For this we need to examine the periods of

x(s) and u(s). Let ω1 be the Weierstraß half period corresponding to the lattice invariants g2
and g3 with non-zero real part. We note that

u(s+ Tu) = u(s),

where

Tu = 8ω1,

denotes the period of u(x), since both ℘((s+ c0)/4; g2, g3) and ℘′((s+ c0)/4; g2, g3) are periodic
of period 8ω1. Next we notice that

x(s+ Tu) = x(s) + Tx,

where

Tx = QTu + 2ω0 [J(m1, n1)J2(α) +K(m1, n1)J1(α) + J(n1,m1)J2(β) +K(n1,m1)J1(β)] ,

with

J1(γ) =
1

℘′(γ)
(−4ζ(ω1)γ + 4ω1ζ(γ)) ,

9



(a) (b)

Figure 6: u(x) as a function of x: (a) smooth solution F = −0.5, (b) peaked solution F = −1.0.

(a) (b)

Figure 7: u(x) as a function of x: (a) overhanging solution F = −2.0, (b) overhanging solution F = −3.0.

and

J2(γ) =
℘′′(γ)
℘′3(γ)

4ζ(ω1)γ − 4ζ(ω1)

℘′2(γ)
− 2ω1

(
2℘(γ)

℘′2(γ)
+

2℘′′(γ)ζ(γ)
℘′3(γ)

)
.

This was determined by noting that

I1(u+ 2ω1, γ) = I1(u, γ) + J1(γ),

I2(u+ 2ω1, γ) = I2(u, γ) + J2(γ),

which we see from [28]:

ζ(u+ 2ω1) = ζ(z) + 2ζ(ω1),

σ(u+ 2ω1) = −e2ζ(ω1)(u+ω1)σ(z).

Here Tx gives an analytical expression for the wavelength of the solution. If we wanted to force

our solutions to be 2π periodic, we could simply rescale x by 2π/Tx and u by 2π/Tx as this is

the scaling symmetry of (1).

In order to better compare our results with those in [1], we would like to have the peak of the

wave at x = 0. To achieve this we determine the value of s for which u(s) is at a peak and call

this value Ts. Taking (11) we have

℘((Ts + c0)/4, g2, g3) =
4(−QM2ω0 + 2RM2 + 6Q2 − 6SM)

M2
,

where we plugged in y = M and dy/ds = 0 to be at the peak of the wave. This gives

Ts = 4℘−1

(
4(−QM2ω0 + 2RM2 + 6Q2 − 6SM)

M2
, g2, g3

)
− c0.

10
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Figure 8: Comparing approximate solutions of the full Euler equations (dashed curve) to exact solutions

of (1) (solid curve). The waves have waveheight H = 1 and wavelength 2π. The problem is normalized

with g = 1 and h0 = 1, and the background vorticity is ω0 = −3.

Thus for solutions with the peak at x = 0, we rewrite (17), (19), and (21) as{
y = u(Tu(s− Ts)), given in (12),

x = x(Tu(s− Ts)), given in (16),
(29)

{
y = P (u(Tu(s− Ts)), z), given in (18),

x = x(Tu(s− Ts)), given in (16).
(30)

{
y = ψ(u(Tu(s− Ts)), z), given in (20),

x = x(Tu(s− Ts)), given in (16).
(31)

Additionally, we set

x2 = Tu

(
Q(s̃+ c0) + ω0B

[
8(2A− CD) arctan

(
D+2℘((s̃+c0)/4)√

−D2+4E

)
(−D2 + 4E)3/2

+
−4AD + 8CE + (−8A+ 4CD)℘((s̃ + c0)/4)

(D2 − 4E)(℘((s̃ + c0)/4)2 +D℘((s̃+ c0)/4) + E)

]

+ 2ω0

[
J(m1, n1)I2((s̃ + c0)/4, α) +K(m1, n1)I1((s̃+ c0)/4, α)

+ J(n1,m1)I2((s̃ + c0)/4, β) +K(n1,m1)I1((s̃ + c0)/4, β)
])

, (32)

where s̃ = Tu(0− Ts). This x2 is chosen so that when s = 0, x = 0. Additionally, note that we

scale s by Tu. The scaling of s is so that as s ranges from −1/2 to 1/2, we plot exactly one

period of wavelength Tx.

We compare some wave profiles presented in Fig. 6 of by Teles da Silva and Peregrine [31] with

solutions of same parameters computed by the current explicit method. Note that in [31], the

parameters g and h0 were normalized, so that we need to choose g = 1 and h0 = 1.

We first present a comparison of a traveling wave of waveheight H = 1 and vorticity ω0 = −3.

In order to get a good match with the plot from Fig. 6 of [31], we selected m = 1.44,M =

11
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Figure 9: Comparing approximate solutions of the full Euler equations (dashed curve) to exact solutions

of (1) (solid curve). The problem is normalized with g = 1, h0 = 1 and wavelength 2π. The background

vorticity is ω0 = −3. (a) waveheight H = 4. (b) waveheight H = 5.

2.44, Q = 0.09 Figure 8 shows an explicit solution of (1) compared to a solution of the full Euler

equations shown in Fig. 6 in [31]. Even though the waveheight-depth ratio of 1/2 is not very

small, the profiles match fairly closely.

Comparing higher-amplitude waves is more difficult since the solutions shown in [31] with wave-

height larger than 1 are overhanging. Setting all parameters correctly yields the comparison

shown in Figure 9. As can be seen, the wavelength matches, and the solutions of (7),(8) are also

overhanging, but look very different nevertheless. One may conclude from this last comparison,

that if solutions of (7),(8) are not single-valued, and therefore are beyond the validity of (1),

they will not in general represent the physical reality of the surface-water wave problem.

4 Pressure contours and streamlines

In this section, we explore the flow underneath the surface as predicted by (1), with the help of

the expression (18) for the pressure and (20) for the streamfunction.

First, pressure contours and streamlines are reviewed for positive Froude numbers F . This case

corresponds to the case labelled ’upstream’ in [31]. As mentioned in that work, it is in this

case that a critical layer is possible. Examining figures 10-15, it appears that as the strength of

the vorticity increases, first, the pressure becomes non-monotone (Figure 11). In other words,

the pressure strongly departs from hydrostatic pressure, the bottom pressure is maximal under

the sides of the wave (not the crest), and this goes hand in hand with the development of

closed streamlines (Figure 12). For large enough Froude numbers, a critical layer (i.e., a closed

circulation) develops in the interior of the fluid domain (Figure 13). In the extreme case of

F = 3, pressure inversion occurs as regions of high pressure are above regions of low pressure

in the fluid column (Figure 15).

For negative Froude numbers, the flow corresponds to the downstream case [31]. In this case

non-monotone pressures also develop, but no critical layer occurs in the fluid domain. Figures

19 and 20 show strongly non-monotone pressures. Apparently, as the shape of the free surface

approaches a cusped profile, non-physical features appear in the description of the flow.
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Figure 10: Traveling wave with m = 1.1, M = 1.3, and F = 0.2. Left: pressure contours. Right:

streamlines.
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Figure 11: Traveling wave with m = 1.1, M = 1.3, and F = 0.9. Left: pressure contours. Right:

streamlines.
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Figure 12: Traveling wave with m = 1.1, M = 1.3, and F = 1.2. Left: pressure contours. Right:

streamlines.
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Figure 13: Traveling wave with m = 1.1, M = 1.3, and F = 1.5. Left: pressure contours. Right:

streamlines. Pressure highly non-monotone, critical layer appears.
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Figure 14: Traveling wave with m = 1.1, M = 1.3, and F = 2.0. Left: pressure contours. Right:

streamlines.
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Figure 15: Traveling wave with m = 1.1, M = 1.3, and F = 3.0. Left: pressure contours. Right:

streamlines. Pressure inversion: high pressure above low pressure.
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Figure 16: Traveling wave with m = 1.1, M = 1.3, and F = −0.001. Left: pressure contours. Right:

streamlines.
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Figure 17: Traveling wave with m = 1.1, M = 1.3, and F = −0.5. Left: pressure contours. Right:

streamlines.
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Figure 18: Traveling wave with m = 1.1, M = 1.3, and F = −0.7. Left: pressure contours. Right:

streamlines.
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Figure 19: Traveling wave with m = 1.1, M = 1.3, and F = −0.9. Left: pressure contours. Right:

streamlines.

5 Conclusion

The nonlinear differential equation (1) is known to be a model for steady surface water waves

on a background shear flow. The equation has been found to admit solutions given explicitly

in terms of a parametric representation featuring the Weierstraß P, zeta and sigma functions.

This representation is a convenient tool for obtaining a variety of wave profiles without having

to resort to numerical approximation. In connection with the reconstruction of the pressure

underneath the surface explained in [1], and the reconstruction of the streamfunction detailed

in the appendix, a complete description of the flow can be obtained.

The exact solutions of (1) have been compared to wave profiles obtained from full Euler compu-

tations in [31], and fair agreement was found for regular waves. On the other hand, overhanging

waves were found not to agree with the full Euler solutions. This is not surprising since the

parametric representation enables the description of multi-valued profiles which transcends the

collection of solutions of (1).

With a view towards the flow in the fluid column below the wave, a number of wave shapes

with increasing strength of vorticity were exhibited. It was found in the case of steady waves

propagating upstream that the flow underneath the waves may feature critical layers and non-

monotone pressure profiles. In the case of waves propagating downstream, the development of

cusped surface profiles goes hand in hand with unrealistic pressure profiles apparently conflicting

with the long-wave approximation which is the basis for the model (1). Building on the results

of this paper, future work may focus on detailed comparisons of the fluid flow as described by

the methods of the current work to numerical approximations of the flow governed by the Euler

equations with background vorticity. Such a study will cast more light on the limitations of the

current model, especially as regarding the ability to describe properties of the flow in the bulk

of the fluid.
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A Reconstruction of the streamfunction

We want to reconstruct the streamfunction ψ(x, z) using the solutions u of the differential

equation (1). This is done by using the ansatz

ψ =
1

2
z2ω0 + zf − 1

3!
z3f

′′

, (33)

for the streamfunction and the identity

Q =
1

2
u2ω0 + ζf − u3

1

6
f ′′,

both of which are valid to second order in the long-wave parameter β = h20/λ
2, where h0 is the

undisturbed depth of the fluid, and λ is the wavelength. To obtain an expression for f in terms

of ζ, one has to invert the operator 1− 1
6ζ

2∂xx, leading to[
1− 1

6
ζ2∂xx

]−1 (Q

ζ
− 1

2
ζω0

)
= f.

In order to bring out the difference in scales between the undisturbed depth h0 and the wave-

length L, we use the scaling

x̃ =
x

L
, z̃ =

z

h0
, ζ̃ =

ζ

h0
, ψ̃ =

1

c0h0
ψ, ω̃0 =

h0
c0

ω0,

In addition, Q is scaled as

Q̃ =
Q

h0c0
.

In non-dimensional variables, the expression for ψ is

ψ̃ =
1

2
z̃2ω̃0 + z̃f̃ − β

3!
z̃3f̃

′′

+O(β2).

The function f̃ is written as

f̃ =

[
1 +

β

6
ũ2∂2

x̃ +O(β2)

](
Q̃

ũ
− 1

2
ũω0

)
+O(β2).

=
Q̃

ũ
− 1

2
ũω̃0 +

β

3
Q
(ũ′)2

ũ
− β

6
Qũ′′ − β

12
ω0ũ

2ũ′′ +O(β2).

The second derivative is

f̃ ′′ = 2
Q̃

ũ3
(ũ′)2 − Q̃

ũ2
ũ′′ − 1

2
ω0ũ

′′ +O(β).

Putting these together, we find the streamfunction in terms of ũ:

ψ̃ =
1

2
z̃2ω̃0 + z̃

[
Q̃

ũ
− 1

2
ũω̃0 +

β

3
Q
(ũ′)2

ũ
− β

6
Qũ′′ − β

12
ω0ũ

2ũ′′
]

− β

3!
z̃3

[
2
Q

ũ3
(ũ′)2 − Q

ũ2
ũ′′ − ω0

2
ũ′′

]
+O(β2).
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