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Chapter 1

Introduction

Heavy ion research can be divided into different energy domains. The relativistic
domain covers collision energies between 100 AMeV (energy per nucleon) and 10
AGeV. Studies in this energy range probe the properties of the nuclear equation
of state (EOS) and associated collective phenomena, such as compressibility and
flow patterns. There is also a connection to astrophysics, especially neutron stars
and supernova explosions, where similar densities exist.

At energies above 10 AGeV we enter the domain of wltra-relativistic heavy
ion collisions (uRHIC), where the rest energy of the colliding matter is very
small compared to the momentum. The main focus of the uRHIC research is
to study the formation of quark-gluon plasma (QGP). Being a separate phase
of matter where single quarks and gluons exist in a deconfined state, QGP is
believed to have existed in the very dense early universe, only milliseconds after
the big bang.

The principle of the experiments is simple: Nuclei of heavy elements such as
Pb and Au are accelerated to velocities very close the speed of light and then
brought to collide.

In most collisions the two nuclei will not hit each other head on, and in that
case we can define two regions in the collision system: The participant region is
the part of the system where two nuclei hit each other and intermix, while the
spectator region is the matter that don’t take a direct part in the collision. In
the participant region the matter almost immediately becomes extremely hot
and dense, forming a ’fireball’. If the energy density exceeds the critical energy
density for liberation of the quarks from the hadrons the belief is that the matter
in the fireball will transform into the QGP-phase.

The threshold for QGP formation depends on both the energy density and
the chemical potential of the nuclear matter (see Figure 1.1 for an illustration).
Thus, it is also believed that some neutron stars contain QGP because of the
very high baryonic chemical potential existing at their core.

The top experimental facilities for uRHIC research are CERN’s Super Proton
Synchrotron (SPS), which will soon cease its operation, and new and more
powerful Relativistic Heavy Ion Collider (RHIC), which started to operate at
the end of year 2000 at Brookhaven National Laboratory.

An even more powerful accelerator, the Large Hadron Collider (LHC), with
about 30 times higher collision energy than RHIC, is currently under construc-
tion at CERN and is scheduled for completion in the second half of this decade.
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In experiments the QGP-phase will only endure for a very short moment,
around 10 fm/c. The fireball will expand and cool by the force of its internal
pressure and the matter will hadronize (transition back into the hadronic phase).
The continuing expansion eventually leads to the total disintegration of the
fireball into a swarm of particles that will be picked up by the detectors. Most
of them are secondary particles (mesons and baryon/antibaryon-pairs) formed
in the collision.

In February 2000 CERN announced at a special seminar that they had cre-
ated QGP at the SPS. However, many scientists believe that CERN only created
a mixed phase of hadronic matter and QGP. This doubt can exist because there
isn’t any practical, immediate and unambiguous way of telling from experimen-
tal data if the QCD phase transition did indeed take place, as the QGP itself is
long gone by the time of detection.

Some observable clues of QGP existence have been identified though. These
include, but are not limited to, the following;:

e We should observe more strange particles compared to a QGP-less col-
lisions, due to lower production threshold of strange quarks in the QGP
phase.

e Transverse flow patterns should show specific azimuthal anisotropy be-
cause the collective properties of QGP are different from those of hadronic
matter.

e Less J/¥ particles should be observed because of color screening in the

QGP.

e Analysis of two-particle correlations can probe the age and size of the
source (fireball) at the time of particle creation. QGP has more degrees of
freedom for storage and release of energy, and thus the source should last
longer than a comparable hadronic source. Since the size of the system can
be probed we can also work out its energy density and see if it is above
the threshold energy of quark deconfinement.

e Different vector mesons decay into lepton pairs of different energies. Usu-
ally observations should show a clear peak around the mass of a vector
meson, but at high energies, where we believe QGP is created, the peaks
must appear to be smeared out.

e Photon emission is highly dependent on the temperature of the source,
and thus we should be able to detect photons emitted from the very hot
QGP.

A thorough theoretical study is necessary to understand the signatures of
QGP. But modeling heavy ion collisions in theoretical physics is challenging,
because from experiment we only know the beginning and end states, while all
the complex and exotic physics that take place in between is practically impos-
sible to probe directly in experiments. Some assumptions have to be made, and
the various models currently in use are built on different theoretical foundations
that all have their shortcomings, consequently each model has its advantages
and disadvantages, and none of them can claim to offer a complete description
of the reaction.
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1.1 Structure of the Thesis

In this text we concentrate on fluid dynamics, one of the oldest means of sim-
ulating high energy nuclear collisions, that for several reasons remains popular
even today. We will work with a three-dimensional fluid dynamical solution
coupled with a separate phenomenological initial state model. Fluid dynamics
provides a continuum description of the collision, and we will try to make an
interface that allows us to translate the results into particle distributions that
are comparable to experimental results.

e Chapter 2 presents the basic physical quantities involved in relativistic
fluid mechanics along with the most common variables of relativistic heavy
ion physics. In Chapter 3 we then present an efficient three-dimensional
solution method for fluid mechanics along with the EOS of hadronic- and
quark-matter.

e In Chapter 4 we examine the construction of an initial state for the hydro-
dynamical solution, and present a recent initial state-model that incorpo-
rates QGP creation.

e We then move on to discuss the final parts of the reaction, where the
matter undergoes a phase transition from fluid to gas. This is described
in the so-called freeze-out process, which is defined to take place across
a three-dimensional hypersurface in the space-time. Recent advances in
the analytical description of freeze-out across a propagating surface is
presented in Chapter 5.

e The main goal of the work performed by the author of this text was the
determination of a detailed freeze-out surface to be used with the three-
dimensional solution of the hydrodynamics. To reap the benefits of a three-
dimensional solution it is very important to have a realistic description of
the freeze-out process. So we developed a method that, given the results
of a particular hydrodynamical code run, will tailor a surface based on the
properties of the matter in the fluid phase. The method was implemented
in a computer program, and an example surface was produced. This work
is presented in Chapter 6.

I have tried to write this thesis to the level of advanced undergraduate stu-
dents. Basic knowledge of particle and nuclear physics, statistical and thermal
physics and relativity is required, but the theory and terminology that is par-
ticular to the field of heavy ion physics is for the most part introduced as we go
along and, with the possible exception of a few sections, prior experience in the
field is not a requirement for the understanding.
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Figure 1.1: QCD phase diagram. The RHIC (preliminary) and LHC (theoretical)
points are close zero baryonic chemical potential. In contrast to this neutron
stars have near zero temperature and high baryonic chemical potential.



Chapter 2

Basic Definitions and
Terminology

In trying to make this text as self contained and complete as possible we will
first review the foundation that all the subsequent chapters rest on. This review
is based on [1], which should be consulted for a more thorough exposition of the
subject matter. In this chapter, and throughout the rest of this text we will use
the (very practical) convention ¢ = i = 1, which is reflected in the units we use.

2.1 Elementary Relativistic Kinetic Theory

Kinetic theory utilizes both microscopic and macroscopic variables. The micro-
scopic are the mass, energy, momentum and position of the particles, while the
macroscopic are the collective properties of a macroscopic system of matter, such
as flow velocity, density, temperature and other thermodynamical variables. A
macroscopic system is taken to be a composite system containing a statisti-
cally significant number of microscopic constituents, but can still be very small
compared to an everyday object. A heavy nucleus contains a couple of hundred
nucleons, and thus two colliding nuclei form a system of circa five hundred nu-
cleons. In addition to this we can have several thousand particles produced in
the collision, depending on the collision energy. This constitutes an ensemble
large enough to make statistical mechanics applicable, even though it differs a
great deal from the typical everyday applications of statistical mechanics.

Relativistic Momentum and Velocity Throughout this text we assume
that the reader is familiar with the basics of special relativity. The following
only serves to introduce the notation standard that is used in this text.

e The four-momentum of a particle is defined as p* = (p°,p) = (E,p),
where p® = E is the energy of the particle. Taking the length of the four
momentum we get:

pup* =) pupt =m?, p=0,1,2,3. (2.1)
I
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This also demonstrates the convention of dropping the summation sign
when taking scalar products of four-vectors. The p# are called the con-
travariant components, and the p, = (E,—p) are called the covariant
components. They are related as

Dby = g;wpya (2'2)
where g, = diag(1,—1,—1,—1) is the metric tensor.

e The four-velocity u* is a unit vector pointing in the direction of the motion
in space-time. The three-velocity is defined as ¥ = §/p® and by using

v=1/y/(1—72) we get
u = (7,70  and  wy, = (y,—70), (2.3)
for the contra- and covariant components respectively.

e General four-vectors are aggregates of four quantities, one related to the
time coordinate, and one related to each of the three space coordinates. A
four-vector ¢ may be space-like, q,q* < 0, or time-like, g,g* > 0. Time-like
four-vectors reside inside the lightcone and space-like four-vectors reside
outside of the lightcone and there is no Lorenz transformation that can
turn one type of four-vector into the other. Causally related events can
always be joined in space-time by a line that has a time-like tangent four-
vector.

Coordinate System and Rapidity In heavy ion physics it is customary
to use a special coordinate system where the spatial z-axis is aligned with the
direction of the accelerator’s particle beam. Many collisions will be off center,
and we define the impact vector b as the component orthogonal to the z-axis of
the vector connecting the centers of the beam particle and the target particle. b
is a two dimensional vector. Its direction is usually denoted as the z-direction.
The plane spanned by the axes x and z is called the reaction plane of the
collision.

The rapidity, denoted y, is a generalization of of the velocity. While the
velocity is limited by the speed of light, v € (—¢,¢) = (-1, 1), the rapidity has
no such limitation and may take all values; y € (—o00,00). The definition of

rapidity is
_ P\ _1, (P°+p
y = arcth(v)) = arcth (—) ==In ( . 24
(vy) ) =" oy (24)

For small velocities y = vj.

After a collision a particle is moving with a velocity ¢ in some direction. It
is then customary to give its phase space position by the coordinates (y,p1 /m),
where m is the mass of the particle. In the non-relativistic limit (y,p] /m) —
(vj,v1). The momentum vector can be decomposed as p* = (po,p”,p'j_). We
also note that rapidities are additive under Lorenz transformations.

Macroscopic Quantities Common macroscopic quantities include the fol-
lowing: (i) local density n(7,¢) = n(x). This quantity is not an invariant scalar
because three-volume is not invariant under Lorenz transformations. (ii) Parti-
cle current j(7,t) = j(x) across unit area per unit time, (iii) particle four flow
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N# = (n(z),j(z)) and (iv) particle distribution in the six-dimensional phase
space (u-space), which gives the number of particles, N, in a phase space vol-
ume element

flz,p): N = f(z,p) A3z N\3p. (2.5)

In a given reference frame the density and current can be expressed in terms of
the distribution function:

n(z) = / &pf(z,p), (2.6)

i) = / dpif(z,p). (2.7)

We know that ¢ = p% , and thus the particle four flow may be expressed as

3
N# = / %pﬂﬂw,p). (2.8)

The Energy-Momentum Tensor The energy-momentum tensor (see [2]) is
another important quantity that gives us the entire ’picture’ of the energy and
momentum of a given piece of matter. In terms of the microscopic distribution
function it can be written as

v_ [EP
™ = / o PP @D, (2.9)
while with macroscopic variables it is expressed as
T = (e + P)ufu” + Pgh, (2.10)

where e is the energy density and P is the pressure of the piece of matter we are
considering, and w = (e + P) is the enthalpy density. Note that this version of
the energy-momentum tensor does not include fields and potential energy, nor
does it include dissipation (entropy producing processes). If dissipation cannot
be neglected we need to add a dissipative term, so that the energy-momentum
tensor can be decomposed into two parts:

T =0 4 ), (2.11)

where T#¥(0) is the reversible(non-dissipative) energy-momentum tensor Eq.
2.10 and T#*(V) is the irreversible part, which again contains contributions from
viscous stress and heat flow.

Local Rest Frame It is always important to keep in mind what reference
frame we are using. Since the systems we are dealing with are fluids and gases,
different parts of the system can move with different velocities, and the definition
of the reference frame becomes a bit complicated at times.

The Local Rest Frame (LR) is the reference frame where the flow velocity
ut = uf = (1,0,0,0). u* is always time-like, so there always exists a Lorenz
transformation that leads to the LR.

In fluid dynamics there are two definitions of the LR:
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Eckart’s LR In Eckart’s approach we tie the local rest frame to conserved
charges, like baryon charge. We define a unit vector in the direction of the

particle four flow as
p N #

If we decompose the four components of the flow velocity, u* = (v,~¥), we
can see that the three-vector of the flow velocity, ¥, is parallel to the particle
current, ] according to Eckart’s definition. N* is always a time-like four-vector,
and consequently there is no flow in spatial directions in the LR when Eckart’s
definition is used.

Eckarts’s local rest frame is ill-suited for the description of high temperature
matter flow. This is because such matter is dominated by radiation and mesons,
and the baryon density is low and unrepresentative of the physical qualities of
the matter. This is the case in ultra-relativistic heavy ion collisions, and was also
the case in the early universe. Also a coherent flow of particles and antiparticles
would yield vanishing flow according to Eckart’s definition.

Landau’s LR Landau’s approach ties the local rest frame to the energy
flow. In the LR the spatial components of the energy flow should vanish,

TR =TiR=0, =123 (2.13)

Since the energy flow four-vector is T#"u, and should be parallel to u* we get

Ny T u, = 0, (2.14)
where ey
utu

AP =gtV — —— 2.15

g wu (2.15)

is the orthogonal projection of the flow velocity. This definition shows that u* is
the normalized eigenvector of T#"| since TH"u,, is parallel to u*. Consequently

ut = constant x T*u,,. (2.16)

From the normalization of u# the constant is (u,T" u,) /2.

Two More Important Macroscopic Quantities We can now define the

inwariant scalar density
n = Nu, (2.17)

as the density in the local rest frame:
n=Nyg. (2.18)
The invariant scalar energy density e is defined as:
e=u,T"u,, (2.19)

so that in the local rest frame
e="T%. (2.20)
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2.2 Perfect Fluid Mechanics

Fluid mechanics, or hydrodynamics, is a macroscopic theory, so the fluid is
considered to be a continuous medium. A small volume element in such a fluid
is still considered large compared to the elementary molecules of the fluid, so
that it in itself is a continuous distribution of matter.

We also consider the fluid to be in local thermal equilibrium, so that all the
thermodynamical quantities are defined at any given point.

Perfect fluid dynamics concerns itself with non-viscous or ideal fluids. It
starts out with the conservation of particle current (in the application on heavy
ions only baryons are conserved) and of energy and momentum. These conser-
vation laws can be expressed as

Nt , =0 (2.21)
and
T,’ﬁ” =0, (2.22)

where we have introduced the notation , = 9, = 0/0x,. We may also express
these conservation laws in a different form. Let us use u* = (v,v9), w = e+ P,
T = wy?vsvp+ P&y, and T = Tyg = (e+ Pv?)y2. By introducing the apparent
density,

N =ny, (2.23)

and the momentum current density M and the apparent energy density &,
M =T% = wy*s (2.24)
E =T = (e + Pv?)9?, (2.25)

the continuity equation and the energy and momentum conservation can be
expressed as

(8¢ + vgrad) N = —Ndive, (2.26)
(8, + Fgrad)M = —M(div) — gradP, (2.27)

and
(0¢ + Ugrad)€ = —&divd — div(P7), (2.28)

respectively. Note that Eq. 2.27 is the well known Euler equation (see e.g. [3]).

Relativistic perfect fluid dynamics also requires an equation of state (EOS)
of the matter in order to work. The quantities A ,/\;i and & are not directly
related to the EOS, but must be obtained by solving the set of equations Eq.
2.23, Eq. 2.24 and Eq. 2.25.

It can easily be shown that entropy never increases in perfect fluid dynamics.
This is of course a departure from the general truth about real macroscopic
physical processes, but the relativistic generalization of viscous fluid dynamics
is problematic, as it may yield unstable solutions [4].

It is also interesting to note that numerical solution methods introduce so-
called numerical viscosity into perfect fluid mechanics. This phenomenon is a
result of the finite resolution of the solver and is absent in analytical calculations.

Fluid mechanical models are popular in heavy ion physics because they let
us test different EOS and see their effect on the collective properties of the
matter. The solutions are transparent, and usually in good qualitative agreement
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Figure 2.1: Density profile of two nuclei colliding supersonically, seen in the
center-of-mass (CM) frame. The density increase happens in the narrow shock
fronts. Figure reproduced from [1].

with experiments. Still there is an ongoing controversy about the equilibrium
assumption, and non-equilibrium models such as parton cascades and molecular
dynamics (which usually make some physical assumptions themselves) can give
better quantitative accuracy of many measurables.

Solutions of perfect fluid dynamics applicable to heavy ion collisions include
simple analytical solutions in one or two spatial dimensions such as shock waves
and detonation waves and the phenomenological models of Bjorken and Landau,
that will be discussed in Section 4.1. These models make many simplifying
assumptions, but their analytical solubility provides us with valuable insight
with a small computational cost.

There are also several different numerical solution algorithms, like the particle-
in-cell method, our method of choice, that is described in Section 3.1. Such al-
gorithms allows us to perform detailed three-dimensional simulations of heavy
ion collisions.

2.3 Shock Waves

Shocks are discontinuities where the properties of the matter change in a very
fast or even sudden manner. In the volume where this change takes place the
matter forms a shock wave that propagates through matter at a speed faster
than the local speed of sound (Figure 2.1). A good example of a shock wave
is the Mach-cone created at the nose of supersonic aircraft, that consists of air
with higher density and pressure than the surroundings, and can be felt on the
ground as a quick peak in the otherwise atmospheric pressure (’sonic boom’).
In perfect fluid mechanics shocks are infinitely sharp, and we consider them
to happen across a surface (front) in space-time. We describe this surface in
terms of its unit normal four-vector A*, which can be space-like or time-like.
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In the following ’0’ denotes the initial state and ’1’ denotes the final state. We
also use the notation [A] = A; — Ay, where A is a physical quantity. Orthogonally
to the front we should observe conservation of particle number and the energy-
momentum tensor:

[T*"ALl=0 (2.29)

and
[NFAL] =0. (2.30)

These relations are known as the relativistic Rankine-Hugoniot equations [5].

The Equation of the Raleigh Line By taking the parallel projection of the
energy-momentum tensor to the surface normal, [T#¥A,] = 0, we can derive the
equation of the Raleigh line:

o _ [PI(A*A,) .
J x] (2.31)
Where w is the enthalpy density and X = w/n? is the generalized specific
volume. In the relativistic domain the [P, X] plane is used instead of the [P, V]
plane. The equation of the Raleigh line is a straight line in the [P, X] plane,
connecting the initial state with the possible end states. The strength of a shock
is characterized by j.

The Taub Adiabat The equation of the Taub adiabat or shock adiabat is
expressed as

[wX]
(X1 + Xo)

Like a normal adiabat this equation describes a curve in the [P, X] plane. This
curve depends on the final state EOS and on the initial state, and the equation
then gives the locus of the possible final state P and X values. The Taub adiabat
differs from the Poisson (standard) adiabat in its dependence on both the initial
and final states of the matter. If the two states have the same EOS the Taub
adiabat goes through both the initial and final points in the [P, X] plane.

If the EOS of the beginning and the end state differs, the Taub adiabat does
not go through the initial point, and we speak of detonation, deflagration and
condensation waves. The change in EOS may happen due to phase transitions,
chemical changes, etc.

Another notable and useful equation gives the relative speed of matter on
the two sides of the front:

[P] = (2.32)

Vo1 (2.33)

_w-—v _ [(PL=PRy)(er —eo)
- 1—’1)0’1)1/02 o (60+P1)(€1+P0)'



Chapter 3

Numerical Fluid Dynamics

One usually assume that after a short relaxation period from the initial impact,
relativistic heavy ion collisions can be validly described by one-fluid mechanics,
especially if QGP is formed, as interactions are then strong and frequent. In ad-
dition the matter is very dense, meaning trouble for many transport theoretical
models that are often assuming binary collisions only. We can use a numerical
algorithm to simulate the further evolution of the fluid in three dimensions,
allowing us to try out different EOS to see their effect on the collective flow
patterns.

It is necessary to limit the region where we apply the fluid dynamical model,
though. The initial state can not be described within the idealized world of
fluid mechanics, and neither can the dilute final state. The expanding system
will ultimately be so sparse that it is sensible to break up the fluid, which is a
continuous matter distribution, into a particle distribution that can be processed
using a statistical particle production model to produce results comparable to
experimental data. The initial and final states are discussed in Chapter 4 and
Chapter 5 respectively.

The two main approaches to solving the fluid dynamical equations are the
Eulerian and the Lagrangian. They both utilize a grid in space as their compu-
tational frame. In the Eulerian approach the grid is fixed in space and the fluid
can move relative to the grid. The Lagrangian approach fixes the grid to the
fluid itself, and the cells change shape and size as the fluid moves about.

3.1 The Particle-in-Cell(PIC) Method

The particular solution algorithm that we have used for our computations is
the particle-in-cell one-fluid code that was developed by Amsden and Harlow
at Los Alamos National Laboratory as a fast and efficient algorithm with some
necessary drawbacks in accuracy. It’s formulation is given in [6]. It is actually
a combination of the Eulerian and Lagrangian approaches: Its grid is fixed in
space, but the computation also relies on fictitious numerical marker particles,
which should not be confused with real elementary particles. The marker par-
ticles are set up so that they share the conserved charges of the real particles
amongst them, but the number of marker particles is greater than than the
corresponding number of real particles.

14
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The collective quantities N* and T#" of the fluid are defined in the Eulerian
grid and the marker particles are used to account for transfer of energy, mo-
mentum and charge between cells. At each time step the following operations
are performed:

e Compute the energy, momentum and charge densities for each cell. This
is done by solving eqgs. 2.21 and 2.22:

8Nt =0,  8,T" =0

e Distribute the computed quantities evenly between the fictitious marker
particles in the cell. Then assign a velocity to each marker particle by
interpolating among the velocities of the neighboring cells in the grid. If
a marker particle crosses a cell border, its energy, momentum and charge
are subtracted from the old cell and added to the new cell. It should be
noted that the velocities of the marker particles are not related to the
momentum and energy, but rather decided by the interpolation.

The use of marker particles ’quantizes’ the transfer of physical quantities be-
tween cells. This technique becomes a problem at low densities, such as at the
late and final stages of the reaction, when the amount of marker particles con-
tained in a cell may be very small. We can preempt this problem by breaking
up the fluid before density gets too low.

3.2 Equation of State

As mentioned earlier the EOS is an important factor in any relativistic fluid
calculation. For the work described in this text we have used relatively simple
choices of EOS, and a phenomenological description of the phase transition.
Still, the essential qualitative properties of the matter are represented.

3.2.1 Bag Model EOS

The EOS currently used in the our version of the PIC code is the MIT bag model,
one of the simplest equations of state for QGP. It assumes the existence of a
pertubative vacuum. This is different from the physical vacuum of the laboratory
because it limits the freedom of movement within it. The quarks and gluons are
kept in the pertubative vacuum(a ’bag’), and we can never observe free quarks
and gluons as we are outside the confines the 'bag’.

The strength of the QCD coupling decreases at high energies. The bag model
uses the so-called bag constant to parameterize the containment of the quarks
and gluons, and this decreases asymptotically as the energy density increases.
The EOS has the following following formulation:

w2 7NCN N.N wl
e(Topg) = g (NE = 14+ = DT+ =L (T + 0 5) + B,
1
P, (T Nq) = 5 eq(T Nq) B) - B,
N N
(o) = (G2 ) = N5 3+ w272, (3.1)
Hq
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where pg is the quark chemical potential, n is the baryon charge density in
the QCD phase and B is the bag constant.

3.2.2 Hadronic EOS

A simple EOS for the hadronic phase was presented in [8]. It takes contributions
from three different terms, using the baryon density n and the temperature T
as independent variables. The corresponding thermodynamical potential is the
Helmholtz free energy, f = e — T's, where e is the energy density and s is the
entropy density. The EOS takes the form:

fu (n; T) = fBoltzmann (n7 T) + fcompr (n7 K) + fmeson (T): (3-2)
where K is an isothermal compressibility:
P
K=9 (8—) . (3.3)
on n=no,1'=0

Temperatures are high enough to ignore Fermi-Dirac statistics for nucleons, so
we use Boltzmann statistics in the first term:
n (27
n,T)=nm+nTIn|— | — . 3.4
fBoltzmann( ) { [gN (mT)] } ( )
For the compression term there are a lot of different parametrizations, such as
linear, quadratic, Sierk-Nix and Grant-Kapusta. Consult [8] for details on these
parameterizations.
Only pions are included in the meson term, since these are by far the most
commonly produced mesons. For massless pions we have

71'2 4
fmeson(T) = _%T ’ (3-5)

a term that becomes important at higher temperatures when the baryon density
is small.

3.2.3 Mixed Phase

The phase equilibrium between hadronic matter and QGP has to fulfill the
Gibbs criteria, namely that
Ty = Tqap, Py = Pogp and MH = [QGP-

The last of these requirements doesn’t apply in the baryon free case. In [8] the
Maxwell construction(see e.g. [10]) was used to construct a phenomenological
phase transition, that combined with a hadronic EOS makes for a complete
coverage of the phase diagram. During the mixed phase of a slow phase transition
the volume fractions of the pure phases are

n —neu(T)
aq(T) = ,
o) = 5 o) - nen@)
The thermodynamical quantities of the mixed phase are then:
Pu(T)=F,  pm(T) = pc(T),
em(n,T) = anea(neu(T),T) + ageq(neq(T),T),
SM (TL, T) = agSH (mcH(T), T) + aqsq (nCQ(T), T).

aH(T) =1- aQ(T).
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3.2.4 Supercooled QGP EOS

The phenomenological phase transition presented in the previous section does
not take into account the possibility that the matter may become supercooled
and eventually undergo a fast phase transition from that state.

The number of degrees of freedom of the matter decreases as the QGP
hadronizes, and consequently there should be a reduction of the entropy density,
seemingly a violation of the second law of thermodynamics.

Two solutions to this problem have been proposed. One is the suggestion
that a QGP source has a lower ’explosivity’ compared to a hadronic matter
source, leading to a prolonged first order phase transition from the expanding
system. Thus, the increase in the volume of the system will make up for the
reduction of the entropy density.

Such a hadronization would require a time of 50 — 100fm [11, 12]. By analysis
of correlations among identical pions, that yield information about the space-
time distribution of the source (HBT-effect), we can test the hypothesis. If it
is true, there should be an observable peak in the Rgiqe/Rout ratio [13, 14].
Current results from RHIC do not support this slow hadronization scenario.

The other solution, which appears more attractive, is a supercooling sce-
nario; the QGP expands into a supercooled (unstable) state, and hadronization
happens fast as a direct crossover without any intermediate mixed phase. This
hypothesis can be checked in hydrodynamical models using a supercooled QGP
EOS as input.

A simple phenomenological EOS that allows supercooling has been suggested
in [15, 16] for baryon-free QGP with two quark flavours:

P(T) = 3e(T) BT, e(T) = esp, (3.6)

where e and T are connected by the relation:

dP
=T——-P .
e o7 (3.7
This is called the spinoidal EOS because it produces a local minimum in the
pressure profile.



Chapter 4

The Initial State

The early stages of ultra relativistic heavy ion collisions are for the most part
poorly understood. The strong interactions, high density and lack of equilibrium
make it a dynamically complex situation. Fluid mechanical models that consider
all the nuclear matter as one fluid are insufficient to describe the initial stage.
But they are not alone in this respect. As a matter of fact no existing model of
any kind can describe the initial state completely and unambiguously.

If one still want to use fluid dynamics, the two- or three-fluid models [17,
18, 19] should be considered. Here we divide the fluid into different components,
each described by a separate EOS. The target and projectile are represented as
different fluids, becoming intermixed as the collision develops. But such models
have a set of problems of their own. The determination of drag, and friction
terms is difficult. Another is problem is the mixing of the components later
on: When the use of to or three different equations of state no longer makes a
realistic or practical model the fluids should mix together, but determination of
the transfer term can be problematic. Phase transitions also become problematic
as the different spatially overlapping components may be in different phases.

The use of non-equilibrium models, like ultra-relativistic quantum molecular
dynamics (UrQMD) [20] or parton cascades (for example MPC [21]) is also
problematic. Such models often assume a dilute gas where only binary collisions
take place. But the system is heavily Lorenz contracted making its density and
energy density very high. Many of the models were originally developed for much
lower energies than what is available in today’s experiments. The modeling of
particle interactions have to be heavily modified, and this is complicated and
computationally time consuming. Thus many approximations and assumptions
have to be made

Pertubative Quantum Chromo Dynamics(pQCD) would have been the ideal
model for describing these highly energetic systems, but unfortunately it is in-
applicable for ultra-relativistic heavy ion reactions at current experimental en-
ergies.

4.1 Simple Phenomenological Models

A few simple phenomenological solutions of fluid mechanics have been devel-
oped. Originally both of the following models were developed for p+p-collisions,

18
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but they are also applicable to central heavy ion collisions.

4.1.1 Landau’s Model

Landau’s model [22, 23] is applicable at energies in the range Fj,, = 10 — 100
AGeV. At these highly relativistic energies both the projectile and target will
be Lorenz-contracted to such a degree that we can treat them as flat disks,
propagating in the z-direction with an orientation transverse to it.

Because of the high energy and density the mean free paths are small com-
pared to the characteristic length. This means that the relaxation time is short,
and we can assume local thermal equilibrium from the very beginning, thereby
avoiding to deal with a complicated non-equilibrium situation.

The model starts by assuming complete stopping of the ’disks’ at the moment
of impact. When equilibrium is established the system starts to expand in the
z-direction and cool, making it a 1+ 1 (space + time) dimensional model at this
stage. When the system has reached a size in the z-direction comparable to its
transverse diameter, we let the expansion enter the second stage, where we also
consider transverse expansion. This makes the model 2 + 1-dimensional at the
second stage.

We choose to use as an initial condition the disks of matter comprised of
the heavy ions in the center-of-mass frame. The system is Lorenz-contracted
by the factor v..,,., thus it is expected that the initial volume of the system
is Vo = Viest/Ye.m.- When the system undergoes a large expansion the initial
energy distribution becomes irrelevant, and it is sufficient to assume that the
initial energy density is constant over Vj:

€0 = Ecm/%

The solution of Landau’s model is rather involved, so we skip it here. It can be
done quasi-analytically or numerically, as shown in [1].

4.1.2 Bjorken’s Model

Bjorken’s model [24], like Landau’s model, assumes that the colliding nuclei are
highly Lorenz-contracted disks. However it is intended for even higher energies,
€c.m. > 100 AGeV. At such energies the assumption is that the projectile and
target move right through each other and continue outbound without slowing
down (transparency).

During the expansion stage we focus on the mid-rapidity region (the rapid-
ity region between target and projectile rapidities). In this region the rapidity
distribution has the nice feature of being invariant to Lorenz boosting in the
beam-direction.

By using the Lorenz boost invariance and the disk geometry we can derive
several simple results. The density of charged particles, together with the energy
density, pressure, temperature etc. depends only on the proper time, 7. By using
data from p+p collisions we can estimate the charged particle density and initial
energy density. If the matter is thermalized at to = 1fm/c the initial energy
density is

1GeV

~ 1Gev/fm?,
tod3 /

€y ~
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where dj is the average surface per nucleon. Thus the initial condition becomes
e(r9) = ep. We can also derive an equation for the further one dimensional
development that turns out to be

Oe _ _etP (4.1)
or T

We know that in perfect fluids the total entropy never increases, that is S¥, =
0, S# = su* where s is the entropy density in the proper frame. From this
requirement we get the equation

0s s
— =—— 4.2
or T’ (4.2)
which solves into
70
s(1) = s(m0)—-
T
For the ultra-relativistic case we can use the Stefan-Boltzmann EOS, and we
have e = 3P. We can then integrate Eq. 4.1. The solution is

e(r) = e(ro) (i) o

70

The projectile and the target can exchange color charge during their inter-
penetration. This leads to the creation of a chromoelectric (color-charge) field
in the volume between them, often compared to the electric field between con-
denser plates. Due to self interaction this field stays confined in the transverse
direction, and it has the geometry of a string. Like other strings it also has a
tension, and the energy density due to this is about 1 GeV/fm. When these
strings decay they produce quarks and gluons, but the volume occupied by the
strings stays baryon free because of the baryon conservation. The strings stretch
between single constituents, and if several constituents interact at the same time
there will be more strings, or equivalently a stronger field.

The number of strings and entropy per rapidity unit increases with the num-
ber of hadron-hadron collisions, which again increases proportionally with the
surface of the target and projectile orthogonal to the beam direction. We get

the estimate:
(&)= (%)
4y ) aa d3 ) iy

We assume that the entropy and the pion multiplicity are proportional, and from
this we can find that the pion multiplicity is proportional to A2/3. This estimate
is somewhat bigger as not only the leading baryons, but also the subsequent ones
contribute to the collision.

4.2 Transverse Flow, Elliptic Flow, Tilted Disk
and the Third Flow Component

Collective flow patterns are produced by the pressure in the colliding matter.
They have usually been decomposed into two parts: Directed transverse flow
in the reaction plane, denoted v; and often called ’side-splash’, and enhanced
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Figure 4.1: In the upper plot we notice that P,(y) deviates from the straight
line behavior ay around the center-of-mass. The softening is parameterized by
the quantity S = |ay — Px(y)|/|ay|- The lover plot compares fluid dynamical
solutions with hadronic and QGP EOS. For the QGP solution we see a strong
softening, especially at small rapidities. Figure reproduced from [25].

emission of particles out of the reaction plane at center of mass rapidities, the
so-called squeeze-out effect.

Transverse flow patterns are a good probe of changes in the EOS. The QGP
EOS is softer than the hadronic one (it can accommodate a higher density at the
same pressure and temperature). This results in a pressure drop at the phase
transition to QGP, the so-called ’soft point’, that immediately shows up in the
transverse momentum spectra. This can be seen in the frequently used p, vs. y
diagrams like Figure 4.1, where we clearly see that the transverse flow deviates
from from straight line behavior.

When QGP is formed, rapid equilibration takes place, the stopping is stronger
than expected and Landau’s model becomes applicable. The disk will expand
in the direction of the largest pressure gradient, which for central collisions is
forward and backward along the beam axis. The measured rapidity spectrum
will not be a fully Gaussian shape, and this can be interpreted as a bounce back
effect, in accordance with the assumptions of the Landau model, rather than as
transparency. There is, however, no way to distinguish the two effects from each
other when collisions are central.

In non-central collisions with a small impact parameter the initial disk will
be tilted, and the geometry of the expansion will be anisotropic. The direction
of fastest expansion will not be aligned with the beam direction. Though it is
’in-plane’, it will point in directions opposite to the usual directed transverse
flow. This leads to the creation of a third flow component or, as it is also called,
antiflow.

The third flow component, as first pointed out by L.P. Csernai and D.
Rohrich in [25], can be seen in p, vs. y plots as small negative values at low CM
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rapidities. It is a feature seen in almost all known fluid dynamical calculations
that use a QGP EOS. On the other hand it is not seen in calculations with a
hadronic EOS.

Pressure and transparency are independent of each other, so transparency
can not explain the deviation of the flow from the beam axis. The explanation
of the antiflow is that it arises from the large pressure gradient in the Lorenz
contracted tilted disk. At the same time as antiflow is strengthened by the Lorenz
contraction at increasing energies, the primary directed flow vy, is weakened.
Together the two flow components form the elliptic flow, usually denoted vs.

As the system expands, vy decreases, a property that makes it especially use-
ful as a messenger of the physical properties of the matter in the early evolution
of the collision, as it is most sensitive in this region. It requires re-scattering
within the matter to convert the initial spatial anisotropy into momentum
anisotropy, and vy is therefore also a measure of the degree of thermalization
in the system. Furthermore the centrality and energy dependence of v, are be-
lieved to be connected to the QCD phase transition, and the soft point should
be observed in the collective flow patterns.

Experimental studies at the Alternating Gradient Synchrotron (AGS) and
the SPS have shown that the vy is ’in-plane’, and for pions from peripheral
collisions it increases with collision energy. Fluid dynamics predict stronger el-
liptic flow than any other model, and the new experimental data from RHIC
seem to saturate the theoretical expectations [26, 27]. Because the fluid mechan-
ics assume local thermal equilibrium, as opposed to other models that predict
weaker elliptic flow, there is reason to conclude that thermalization occurs early
at today’s highest experimental energies.

4.3 The Need For a Multi-Module Model

As we mentioned in the beginning of this chapter, the initial impact and relax-
ation time of an ultra-relativistic heavy ion collision can not be well described
by a fluid dynamics. Still, fluid dynamics works very well as soon as the mat-
ter has assumed local thermal equilibrium, and we would still like to use it at
that time. Because the different stages requires the use of very different physi-
cal descriptions, the best way to make a complete description of the reaction is
therefore to divide the collision into distinct stages and use the most suitable
model at each stage. The output of the first stage model will then serve as the
input of the next and so on.

The multi-module model [28] uses a sharp three-dimensional hypersurface,
o*(z) in the space-time as the interface between the different modules. As matter
crosses this surface we make sure that physical conservation laws are adhered
to, and that entropy is non-decreasing.

4.4 The Effective String Rope Model

Standard hadronic string models don’t apply to heavy ion collisions. There have
been numerous models attempting to patch up this problem by introducing
new energetic objects like ’string ropes’ [30, 31], ’quark clusters’ [32] and ’fused
strings’ [33] to describe the abundant formation of massive hadrons
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The effective string rope model was developed by V. Magas, L. P. Csernai
and D. D. Strottman for the description of the energy, pressure and flow velocity
distributions of the initial stages of collisions. It does so in the framework of clas-
sical Yang-Mills theory. Built on the model presented in [34], basically a Bjorken
model enhanced with an effective field that takes baryon recoil into account, it
assumes a larger field strength than the original model, while also adhering
exactly to all conservation laws. We don’t describe hadronization within the
framework of the model, but instead use the model to create initial conditions
for a fluid dynamical solution.

Here we will just try to give a simple outline of this model for the sake of
the completeness of the text. For a more detailed formulation the reader should
consult [29, 28].

As usual the [z, z]-plane is the reaction plane and the beam is aligned with
the z-direction. We create a grid in the [z, y]-plane. The nucleus-nucleus collision
is described as the sum of the independent streak-streak collisions, correspond-
ing to the same transverse coordinates, {z;,y;}. Baryon recoil for both target
and projectile arises from the acceleration of partons in an effective field F'*" cre-
ated by the interaction, and considered to be an effective Abelian field, but the
most important qualities of non-Abelian fields, such as self interaction, are still
reflected in the model. The field is described by a phenomenological parameter
with a value that is determined from experiment.

When streaks cross each other they create a string rope that has a string
tension o. We assume that the first touch of two streaks occurs at the time
t = 0, when the string tension is zero. At the time ¢ = to the streaks have
completely interpenetrated each other, and the string tension will have reached
a constant value of of around 10GeV /fm.

Within each streak we form one flux tube between the target and projectile,
with uniform o throughout its length. This is a one-dimensional object, and only
the length is allowed to change during the evolution. The target and projectile
start moving away from each other at the time ¢t = ¢y and the flux tube’s energy
increases linearly with the expansion. This energy is acquired by slowing down
the projectile and target until they stop and start accelerating backward, at
the time t = t44,n, making the system act like an oscillator. This is obviously a
departure from the real behavior of colliding nuclei, and we have to make a few
assumptions to solve the problem.

As the model has no inherent hadronization mechanism, there is no way the
strings can dispose of the energy from the string tension through the natural
channels of decay and breakup.

We assume that after stopping the string’s expansion, and after its decay,
the result is one streak of length Al with homogeneous distribution of energy
density, ef, and baryon charge, py. The final values for the energy density,
baryon density and rapidity should be determined from conservation laws.

We said that the streak is moving like one object with a rapidity yy, but
quite interestingly this rapidity may differ from the rapidity of the center-of-
mass of the system. If all of the elements of the system move with the same
rapidity in one reference frame, then the center-of-mass also moves with that
rapidity. However upon transforming to another reference system the different
parts of the system may not necessarily move with the same rapidity anymore.
This is a problem we see whenever pressure is present.

Thus the assumption of the final streak moving like one object oversimplifies
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the situation. This can be improved by letting the final streak expand with the
rapidity field.

4.4.1 Construction of Initial State for Fluid Mechanics

In [28] a code was used for computing the initial conditions to be used by our
fluid dynamical code from the effective string rope model. The computations
were performed for an Au+Au collision at g = 65AGeV. The results are also
presented in [29]. The end result is given when the expansion of the system stops,
and the matter is a locally equilibrated disk of QGP matter. This is assumed
to occur at a time 7, that should be larger than the time of the final streak
formation.

In Fig. 3 of [29] we are presented the results with an impact parameter of
b =0.5(r1 + r2) where (r1 + r2) = Rg4y- The resulting initial state for the PIC-
code turns out to be a disk tilted at about a 45°. Thus, the the direction of
fastest expansion deviates from the beam axis, but stays in the reaction plane.
This opens up the possibility of observing a third flow component, as discussed
in Section 4.2.

Fig. 4 of [29] presents the same system, but with a smaller impact parameter
of b = 0.25(r; + r2). This yields a larger energy density, while the disk is still
tilted, although less than it was with the larger impact parameter. The peak of
the energy distribution reaches E,,q, ~ 50 — 90GeV /fm? for these more central
collisions. This is more than predicted by the simple Bjorken model, but that
is to be expected as the QGP volume is much smaller than the cylinder of the
Bjorken model.



Chapter 5

Basics of Freeze-Out

In the late stages of the hydrodynamical solution matter becomes dilute and
interactions less frequent. Artifacts of the particular solution algorithm we use
may start to manifest themselves, and it becomes appropriate and necessary
to start treating the matter as a gas rather than as a fluid. The process where
particles stop interacting and reach the detectors can be modeled in kinetic
transport theory and use of drain terms in fluid mechanics or by using the
simpler freeze-out (FO) description.

Here we will only look at freeze-out. The review in this chapter is based on
[36, 37, 38, 39, 40].

The basic idea of FO is that the matter passes through a layer in space-time
where its physical properties undergo a change. During the thermal FO elastic
collisions in the matter come to an end. This can be understood as a phase
transition from fluid to ideal (noninteracting) gas.

The layer where the FO takes place may be defined either as a three dimen-
sional hypersurface in four-space or as a full fledged four-dimensional space-time
domain. The former definition corresponds to a sudden freeze out without any
internal dynamics, while the latter is used to describe a supposedly more realistic
gradual FO.

The hypersurface is the simplest description. This surface, called the FO
surface, is characterized by its normal four-vector do,. In addition to the spec-
ification of the FO surface we need to know the pre FO physical quantities.
The transition between the pre FO- and and post FO-states is shock-like, and
is described by the equations of the Raleigh line and the Taub adiabat from
Section 2.3. Since the thickness of the front is zero there is no need for a kinetic
description of the FO process.

For a more realistic model the FO-layer should have a thickness on the order
of a mean free path, where the matter gradually changes its properties through
particle scattering internal to this layer, making a kinetic description of the FO
itself a necessity. The construction of a model then becomes a more complicated
undertaking.

There is also another kind of freeze-out that is frequently discussed in the
literature; the chemical freeze-out, in which inelastic collisions among particles
cease, in effect freezing the abundances of the different hadronic species. Chemi-
cal FO may occur before or at the same time as the thermal FO; hydrodynamical
models usually assume a simultaneous chemical and thermal FO, even though
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physical reasoning tells us that the chemical FO should generally happen at a
higher temperature than thermal FO, as elastic collisions generally require more
energy than inelastic ones. Both chemical and thermal FO may also possibly
happen at different temperatures for different hadronic species, but we do not
take that into consideration here.

5.1 Conservation Laws Across a Discontinuity

In the following discussion we are making these assumptions: (i) The FO sur-
face is a zero-thickness three-dimensional hypersurface in the four dimensional
space-time, (%) the pre FO matter is in local thermal equilibrium so that all
macroscopic parameters are defined by its EOS, and (%4) the post FO matter
is an ideal gas, but not necessarily an equilibrated one.

Based on our detailed knowledge of the matter pre FO, provided by the
solution of the fluid mechanics, we should now be able to use conservation
laws and an assumed microscopic post FO distribution to determine post FO
parameters. We can then go on and compute measurables like flow patterns,
one- and two-particle spectra.

We know the invariant number of conserved particles crossing an element
do,, on the FO surface is

dN = N*do,,. (5.1)

By performing a surface integral we see that the total number of particles cross-

ing the FO surface is:
N = / N¥do,,.
s

Inserting the kinetic definition Eq. 2.8 of N*,

d3
Nt = /p_(f)pufFO(a;’p)a

into Eq. 5.1, we obtain the Cooper-Frye formula [35]:

dN
B% = [ frotw.pw o, (52)

that gives us the particle distribution in momentum space. Here fro is the post
FO phase space distribution.

Knowing the pre FO baryon current N{', and energy-momentum tensor T}
we can calculate the post FO quantities with the help of conservation laws. The
baryon current and energy-momentum tensor change in a discontinuous manner
over the FO surface, so the conservation laws are expressed as

[N*do,] =0, (5.3)
and
[T*do,] =0, (5.4)

which are identical to the relativistic Rankine-Hugoniot equations Eq. 2.29 and
2.30.

Earlier FO treatments often ignored these conservation laws, but they are
very important in turning the often significant latent heat of the pre FO state
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into observable collective effects in the post FO matter. Due to these laws we
may for example observe that flow velocity is higher in the post FO state than
in the pre FO state.

In addition to the conservation laws above we must also check that the
entropy is non-decreasing in the FO-process,

SWrdy
" [
[S*do,] >0  or SOhdo, >1, (5.5)
where for all distributions the entropy is given by the formula:
(Z d3p Iz 3
St =- P fro(z,p)[In{(2m)° f(z,p)} — 1]. (5.6)

This check acts as a safeguard against unphysical solutions.

5.2 Post-FO Phase Space Distributions

5.2.1 The Juttner Distribution

We prefer to use well known distributions for the post FO state. The Jittner
distribution [41, 42],

1 e
fJuttner(p) — (27Th)3 exp (N 7]3 UH) ’ (5.7)

is the relativistic generalization of the Maxwell-Boltzmann distribution. Here
1 is the chemical potential, which can be determined by normalization of the
distribution function.

In ultra-relativistic collisions it is reasonable to treat the post FO matter as
a relativistic ideal Boltzmann gas by using the Jiittner distribution. However
this approach has a flaw when combined with a zero-thickness FO-layer.

5.2.2 The Cut Juttner Distribution

The FO surface may have either time-like or space-like normal vectors. In the
literature there is some confusion about these terms, but here we will use the
convention that a time-like FO surface is one that has a time-like normal four-
vector. For a FO surface with a time-like normal, do,do* = (do)?, corresponding
to a sudden change in the matter properties in a finite volume, we always have

ptdo, >0,

as both p# and do, are time-like vectors. For describing the FO-process over
the part of the surface with a time-like normal we can use the methods for
detonation and shock fronts, and the equation of the Raleigh line, Eq. 2.31, will
always yield a real current.

If do, is space-like, do,do* = —(do)?, corresponding to a propagating dis-
continuity, we note that p# may point in both the post- and pre FO directions.
Thus p*do, can now be both positive and negative. This implies that with
a thermal post FO distribution there may exist particles that are forbidden to
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Figure 5.1: Flow across the FO surface. Notice that in the space-like domain it
is possible that the flow is directed into the pre FO domain. Reproduced from
[44]

freeze out through the surface element do,, and imaginary currents results from
applying the equation of the Raleigh line. This is illustrated in Fig. 5.1.

In general the FO surface has both time-like and space-like parts. A com-
pletely time-like FO can only be assumed in the case of a very rapid phase
transition from supercooled QGP, so it is necessary to do a closer analysis of
the space-like FO.

When integrating Eq. 5.2 a negative contribution can be interpreted as a
current directed back into the pre FO region. On the pre FO side p#do, may
have both signs because p* is unrestricted as we assume thermal equilibrium. If
the FO-layer is of finite thickness we can interpret the negative contributions as
particles scattering back into the pre FO domain driven by the internal dynamics
of the FO-layer. However, such back scatterings cannot occur in a zero-width
FO surface as there are no particle interactions in the post FO domain.

A solution, first suggested in [43], is to specify a simple modification to the
Jiittner distribution describing the post FO state, namely:

®(p“d0u)

* uttner —plu
frole,p.do®) = 0 (a,p O do,) = 5 oxp (LL ) (55

where ©(ptdo,) is the sign function. This new distribution excludes all the
negative momentum contributions, at the cost of producing a sharp cut in the
otherwise Gaussian shape of the distribution.
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5.2.3 An Improvement Upon the Cut Jiittner Distribu-
tion

K. Tamosiinas and L.P. Csernai have proposed an improvement of the cut
Jiittner distribution in [45]. The basic goal is to eliminate the sharply cut distri-
bution and replace it with with a smoother one that still keeps the advantages
of the cut Jiittner. The motivation for doing this is that sharp cuts are in gen-
eral seldom seen in physics, or in nature for that matter, and they are therefore
considered somewhat unphysical when appearing in a model.

The way to smooth out the cut is to take the standard Jiittner distribution
and subtracting from it another Jiittner distribution with negative velocity in
the rest frame of the front (RFF):

1 — prult — phyL
fnew — féuttner_fLJuttner — )3 (exp:u p B eXp’u p w @(p”dau)

(2nh T T

(5.9)
where uff = (v,7v,0,0) and ul = (v, —7yv,0,0) are taken in the RFF.

5.3 Some Important Reference Frames

The FO-front can move in the positive or negative z-direction depending on
the reference frame, or it can be transformed into its own local rest frame, the
rest frame of the front (RFF). For a space-like surface do, = (0,1,0,0)do in the
RFF. In other reference frames do,, = v(v, 1,0,0)do, where v = 1/v/1 — v2. The
velocity parameter v = dog/do, = —t®/t° is frame dependent and can take on
both positive and negative values; to use it we have to select a given reference
frame.

Another important reference frame is the one co-moving with the peak of the
post FO invariant momentum distribution: the rest frame of the gas(RFG). This
should not be confused with the local rest frame of the post FO matter since
the post FO phase space distribution is not spherically symmetric in momentum
space. We define v in the RFG frame as

v = dUO
" dog

RFG

We can also obtain the same value of v by taking the velocity of the peak of the
post FO distribution, ukpg, in the RFF. We then get:

ux
v = RFG ,
RFF

0
URrG

and this means that in the RFF the peak four-velocity has the form ugp, =
7(17 v, 07 0)|RFF-

5.4 Conserved Currents for Cut Juttner Distri-
bution

Consider the case where fro is a cut Jittner distribution (Eq. 5.8). We can
then obtain several important quantities:
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The Baryon Current: The baryon four-current N* can be evaluated by in-
serting the cut Jiittner distribution into the definition Eq. 2.8. We obtain a
time-component N° as well as a space-component N®. Performing the calcula-
tion in the post FO RFG frame we get

o _ 1 2 j - ﬁ -
NO — 1 vA+a®j[(1+ j)Ka(a) — Ka(a,b)] +j 3 €

=0 v+1
= i, T)——

[(1 —v?)A —a%e™?

N

N® =

oo |

0 - 1 —22
= Aw, T) 41},

(5.10)

where j = sign(v), 7 = 8xT%e*/T(2xh) 2 , a = m/T, so that n(u,T) =
na?Ky(a)/2 is the invariant scalar density of the symmetric Jiittner gas, b =
a/V1 =22 v =dog/doy, A= (2+2b+b?)e? and

2" (n)!
2n/!

oo
Kn(z,w) = z_"/ dz(z? — 22"~ 2e77, (5.11)
w
ie., Kn(z,2) = Kp(2).

The baryon current may be Lorenz transformed into the Eckart local rest
frame (ELR) of the post FO matter, which moves with velocity u# = N*/(NYN,)'/? =
ve(1,vE,0,0)|rrg in the RFG or into the RFF, where do, = (0,1,0,0)do, and
the velocity of the RFG is u}; gpg = 7(1,0,0,0)|rpr. Then the Eckart flow ve-
locity of the matter represented by the cut Jiittner distribution viewed from the
RFF is uly = 7v.(1,vc,0,0)|rrr, where v, = (v +vg)/(1 + vug).

The proper density, which is the density in the ELR, is

n(u, T,v) = y/N*N,. (5.12)

The proper density of the cut Jiittner distribution is reduced compared to the
proper density of the full Jiittner distribution.

The Energy-Momentum Tensor: In the post FO RFG the energy-momentum
tensor has the components:

oo = FLL 4 Kot + K
—N[ng(a,b) + gicl(az, b)] } + Bv}’

700 _ #{(1 —?)B— %(b+ 1)e"’},

e _ ﬁTT{jaz_z[(Hj)Kz(a) — Ka(a, b)] +’U3B}7

3~T 2 s 2
v = = B (1o D)5+ S0+t

— Ka(a,b)] — %(b + l)eb}, (5.13)
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where B = (1+b+b%/2+ b%/6)e ’. We can transform this energy-momentum

tensor into the Landau local rest frame (LLR) of the post FO matter. The
LLR moves with velocity u% in the RFG. We can also transform it into the
RFF, where do, = (0,1,0,0)do. Both of the flow velocities u} and u%, (Landau
and Eckart respectively) can be transformed to the frame where we want to
evaluate the conservation laws Eq. 5.3 and Eq. 5.4. The parameters of the post
FO distribution can then be determined so that they satisfy the conservation
law.

When mass is zero the components of the energy-momentum tensor in the
RFG can be simplified:

T = 3T (w+1)/2, T° =3aT(1—v?)/4,

T =T (v® +1)/2, T =T = (T% —T*7)/2.
The Entropy Current In the RFG frame the entropy current becomes
o _ nf(y_k C B 2414
S° = 4{<1 T)vA+6vB+ (1 T)a I+ j)Ks(a)
~ Ko D]+ (3 + )i (0) - Ko (a D]}
m=0 n(p,T) ©
— 5 (v+1) (4 T)’
z ﬁ . B _a2\R 2 I P
S = 8[(1 v)(l T>A+6(1 v°)B a(2+b T)e ]

Note that in the m = 0 limit the vectors S#* and N* are parallel to each other.

5.5 Analytical Solution of the Freeze-Out Prob-
lem

When solving the freeze-out problem we do not assume that the flow and the
normal of the FO surface are parallel. This means that we have to take into
consideration the different possible directions of these two quantities.

We label the pre FO side by ’0’ and the post FO side '1’. In the LR frame
u* = (1,0,0,0), and we can choose the z-direction in this frame to point into the
FO-direction, so that do, = vo(vo,1,0,0)do,. Assuming we know the FO hy-
persurface we also know g, and we know the three parameters N¥'do,,, To" do,,
and Ty"do,,.

We need these values in the post FO RFG. The spatial direction of the
gas flow will not change because we assume that the FO front is isotropic in
its own [y, z] plane. Thus, in the RFG the peak flow parameter is uhpg =
(1,0,0,0)|rrg, and the FO normal is n, = 7(v,1,0,0). Note that v # vo.
The parameter v determines the post FO peak flow parameter in the RFF,
uﬁFG = ’y(l, v, 0, O)dU|RFF (where dJN = (0, 1, 0, 0)d0u|RFF)-
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The conservation laws Eq. 5.3 and Eq. 5.4 give us three non-vanishing equa-
tions in the RFG,

[N“dou] =0, [Toudau] =0, [deau] =0.

These can be used to determine the unknown parameters of the post FO cut
Jiittner distribution; v, T' and p. The first equation is an invariant scalar, but the
other two are components of a four-vector and should be transformed into the
RFG. We need to evaluate both the pre FO and post FO quantities in the same
reference frame, so the pre FO quantities must be transformed into the RFG as
well. We can determine these by using the fluid dynamical form of T#¥, Eq. 2.10,
seen from the RFG. From this frame the pre FO flow velocity is given by the
difference of the pre FO and post FO flow velocities; uf = yor(1,v0r,0,0)|rra,
where vog = (v — v)/(1 — vov).
In the m = 0 limit an analytical solution is possible. The continuity equation
leads to the equation
Q2 w+1)P+v-1=0, (5.15)

where Q' = Q;*(u,T) = n(p,T)/(4noY0vo), which gives us a third order
equation and can be solved analytically for v. The energy equation [T%do,] = 0
leads to the same equation with a different coefficient: Q! = Q5 (i, T) =

3Tn(p, T') /(4eovovo)-
These two equations can only have the same unique solution for v if the
coeflicients ()1 and ()2 are equal, and we get

_leo

B 3 ) )
The solutions of both third order equations yield the same expression:
v =vzra(p) = Q{1+ 1+ Q227" + [1 — 1+ Q2/27'/3} — 1. (5.17)

By dividing [T°*do,] = 0 by [T®*do,] = 0 we obtain another third order
equation for v:

(5.16)

Rov® +3v2 +3(2— Ro)v+3—3Ry =0 (5.18)

Here Ry = eguo/po- The analytical solution of this equation yields three roots,
but only one of them is physically meaningful: v = 2—3/R,. Now we can obtain
p by inserting v into Eq. 5.15.

The possibility of this simple analytical solution is a consequence of the fact
that in the m = 0 limit the cut of the Jiittner distribution is made along central
cones in the RFG, which then distribute the energy and the baryon charge in
exactly the same proportions.

5.5.1 Example of the Solution

A small example solution was worked out in [37]. The pre FO state was in local
equilibrium and described by the the bag-model EOS, Eq. 3.1, so that all pre
FO parameters was known, while the post FO state was a massless cut Jiittner
gas.

Physical solutions exist only for positive initial velocities vg. Since we are
using the cut Jiittner distribution the post FO baryon current is obviously al-
ways positive in the RFF (otherwise there would be no FO), and therefore the
pre FO current and vg should also be positive.
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Figure 5.2: Change of velocities in freeze-out from QGP to cut Jiittner gas. The
final velocity parameters(full lines) are plotted versus the initial flow velocity of
the measured in RFF for case (a) ng = 1.2fm 3 Ty, = 60MeV,Ap = 225MeV,
(b) ng = 0.1fm™>, Ty = 60MeV,Ap = 80MeV and (c) ng = 1.2fm™ >, Ty =
60MeV,Ap = 0MeV. Reproduced from [37].

From Fig. 5.2 we see that the the pre FO and post FO flow velocities dif-
fers. For small initial velocities the post FO velocities a approach zero, but for
moderate velocities like v = 0.3-0.7, the difference between pre FO and post
FO flow velocities may be significant. With vy = 0.2 the post FO flow veloc-
ity increases to vgow = 0.4 while the post FO parameter velocity increases to
v = 0.6. These velocity changes are due to the conservation laws Eq. 2.22 and
Eq. 2.21 converting the latent heat of the QGP into kinetic energy. The latent
heat itself stems from the bag constant.

In connection to the flow velocity increase, the baryon density decreases in
the FO as seen in Fig. 5.3.

As mentioned in Section 5.1 only the solutions that lead to an increase in
entropy can be considered physical. In Fig. 5.4 the ratio of post FO and pre FO
entropy currents are plotted for three different cases.
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Figure 5.3: Final baryon density, n, as a function of initial baryon density in
QGP to massless cut Jiittner gas. The baryon density decreases for the cases
vo = 0.5,Tp = 50MeV, (a) Ap = 80MeV (full line), (b) Ap = 120MeV (dash
dotted line) and (c)Ap = 160MeV (dashed line). Reproduced from [37].
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Figure 5.4: Ratio of post FO and pre FO entropy currents transverse to the
FO front. Freeze-out can only be physically realized if this ratio is larger than
unity. The three cases in the figure are (a) ng = 0.1fm?, vo = 0.5, Ag = 80MeV
(full line), (b) ng = 0.5fm?3, vo = 0.5, Ag = 80MeV (dashed line), and (c)
no = 1.2fm?, vo = 0.5, Ap = 225MeV (dotted line). Reproduced from [37].



Chapter 6

Freeze-Out in Numerical
Fluid Dynamics

In the previous chapter’s analysis we assumed all the time that the FO surface
was known. We now turn to the problem of defining the FO surface itself, along
with the task of implementing FO in a three-dimensional numerical solution.

Previous calculations often didn’t determine the FO surface explicitly. In-
stead one used the assumption that the normal of the FO surface is parallel to
the flow, do# = w#. There is no physical justification for such an assumption,
and it does in fact lead to an unrealistic surface. In numerical calculations this
approach gives a ragged surface, because it is joined by vertical surfaces at cell
borders.

Our goal in this chapter is to dispose of this assumption and determine the
FO surface, explicitly for the PIC hydrodynamical solution.

6.1 Freeze-Out Criterion

6.1.1 Isotherm Freeze-Out

An important consideration of any practical FO-scheme is the criterion that
decides whether or not the matter freezes out. This is the core of the problem
of deciding where to place the FO hypersurface in space-time in relation to the
matter, and there is more than one way around this problem.

From a kinetic point of view the FO should take place when the mean free
path is larger than the characteristic size of the system or when the local ex-
pansion rate out-paces the rescattering rate. However these criteria deal with
information not contained in the hydrodynamical model, so a kinetic description
of the FO would have to be developed.

The output of the PIC code is formatted as a list of the fluid cells in the late
stages of the computation. This list is repeated for several selected timesteps so
that we can also follow the time development of the fluid. For each fluid cell we
are given the density, energy density, pressure, entropy, temperature and flow
velocity in each of the three spatial directions in in the CM frame. By iterating
through the cells in space and time we can select cells for freeze-out.

35
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Probably the simplest criterion, and certainly a very popular one, is to intro-
duce a critical temperature T, so that the FO occurs over an isothermal surface,
o*, where T'(o*) = T,. Since we know the temperature of all the fluid cells we
can easily implement an algorithm that searches through all cells and chooses
those that are as near as possible to this critical temperature as candidates for
freeze-out. When we know which cells that are freezing out we have in effect
determined o, ().

The chosen temperature should, of course, reflect experimental reality, the
critical temperature can be extracted from experiment by combining information
about the spectrum of a single particle species and its Bose-Einstein correlations
(see for example [46]). Values at CERN are in the range T, ~ 100 — 140MeV.

Unfortunately, the assumption of an isothermal FO is not very accurate, and
it is also quite ill fit for our particular hydrodynamical results as the temper-
ature exhibits large variations from cell to cell and in the central region the
temperature never gets low enough to warrant a FO decision based on a tem-
perature criterion. If we are to use this criterion we will have to supplement it
with other assumptions.

6.1.2 The Appearance of Negative Pressure

Studying the output of the hydrodynamical code one notices that late in the evo-
lution negative pressures start showing up in the outermost cells of the system,
forming a ’halo’ surrounding the system, as seen in Fig. 6.1.

This phenomenon is not unphysical, but rather an effect of the bag constant
used in the EOS, Eq. 3.1, that produces negative pressure at low temperatures.
The negative pressure has the effect of pulling the matter together, producing
a ’skin effect’, and it leads to clustering at the edge of the system.

Negative pressure is also indicative of supercooling. So if we want the freeze-
out process to model a first order (slow) phase transition (Section 3.2.4) we
should preferably stop the hydrodynamical evolution before negative pressure
starts to appear.

6.1.3 Simultaneous Chemical and Thermal FO?

It has been observed [47] that at the hadronic composition of the final state
is governed by the requirement that < E > / < N >= 1GeV, that is the
average energy per hadron should be approximately 1GeV in the rest frame of
the produced system, irrespective of its other features.

Interestingly enough this rule fits remarkably well with data of hadronic
abundances from both SPS, AGS and GSI/SIS, even though the beam energy
between these facilities varies from 200AGeV to 1AGeV and nuclei of differ-
ent elements have been used. If we assume simultaneous chemical and thermal
freeze-out, we can implement this rule in an algorithm for computing the FO
surface. This would probably be a better choice than using a simple critical
temperature.

The simultaneous FO scenario may be the simplest, although it may not
always yield entirely accurate results. Some consequences of introducing separate
thermal and chemical freeze-outs are discussed in [48]: In heavy ion collisions we
expect that distinct critical temperatures for chemical and thermal FO should
exist because inelastic collisions generally need higher CM energy than elastic
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Figure 6.1: Graphical representation of the hydrodynamical pressure, taken at
at a single timestep and plotted as a function of the x and z coordinates for a two
dimensional ’slice’ at the center of the system. The surroundings are normalized
to zero pressure in this figure, and we can clearly see the negative pressure as a
dip at the edge of the matter. Also notice that the pressure peaks very high in
the central parts of the system.
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Temperature Distribution Taken at Y=1
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Figure 6.2: A typical pre FO temperature distribution for a two-dimensional
slice in the [z, z]-plane taken at the center of the system. Significant temperature
fluctuations are clearly visible around the edges along with several ’islands’ of
matter not connected to the main system. We also note that the cells in the
central region have temperatures in the range of 300-400 MeV, much higher
than the typical experimentally determined critical temperatures of T, ~ 100 —
140MeV.

collisions. As mentioned earlier, hydrodynamical models usually ignore this fact,
but an early chemical FO can have a significant effect on the collective matter
properties, and these effects become important if the difference between the two
FO-temperatures is large (i.e. 110 and 180 MeV).

If we have a rapid FO from supercooled QGP, we may assume that chemical
and thermal FO happens simultaneously, at a constant time hypersurface. This
is a very attractive possibility as we can then defend the use of the simple,
idealized FO-theory.

6.2 Determination of the Freeze-Out Surface

6.2.1 General Considerations

There are different levels of refinement available to us in the implementation
of FO in the PIC code. Ideally, the FO should occur in a self-consistent way
as an integral part of the hydrodynamical code, iterating over all cells at every
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timestep taking into account loss of matter due to the FO through the use of
drain terms. The FO itself could be defined either in terms of a FO surface or,
in a more sophisticated model, by the use of kinetic theory.

Both of these approaches become complicated in practice, as we would have
to work out the dynamics of the phase transition, and in addition relate it to
the hydrodynamical code in a correct way. It would be necessary to keep track
of the future evolution of cells undergoing FO and thereby removal of matter,
as they could be refilled with matter by the hydrodynamical evolution later on.

In cells with a space-like FO matter could rescatter into the pre FO domain
during the FO itself, and propagate in time to undergo a second FO. In [21]
there is further discussion of the difficulties of implementing a self consistent
freeze out, and on the limitations of the FO approach itself. The most important
problem is that the assumed local equilibrium is not a solution of Boltzmann
transport theory, and the FO through a hypersurface can not be adjusted to
give the same results consistent with a kinetic description.

Given all these theoretical and practical problems, the FO-algorithm could
be very complicated. So, in trying to keep things simple, we give up on the idea
of making the FO self-consistent, at least in the current version of the model.

The PIC code solution fluctuates a good deal on a cell-by-cell basis, so that
two neighboring cells can have very different values of temperature, pressure
and other physical quantities. There are also sometimes gaps or islands in the
matter distribution, as can be seen in Figure 6.2. There are also thin tails of
matter sticking out at places, apparently caused by artifacts in the initial state,
as discussed in [28]. We also observe that cells at at the edges of the system are
relatively cold and frequently shows negative pressure, while at the same time
the more central cells have temperatures of several hundred MeV.

Given this material it is difficult, without making simplifying assumptions,
to come up with a simple physical FO-criterion that yields a reasonably smooth
FO surface.

In the general case the FO surface has both time-like and space-like regions.
As explained in Chapter 5 the theoretical framework used for description of the
FO differs between these two regions. As we have seen above, the numerical
hydrodynamical solution tends to fluctuate, and this would cause a FO surface
constructed from the uncritical use of a simple FO-criterion to fluctuate between
being time-like and space-like, making the calculations complicated.

To simplify the situation we make the requirement that the FO surface
should have a time-like normal everywhere. Then there is no causal connection
between neighboring cells on the surface, but they are still connected through
the initial conditions, so they should freeze out across the same FO surface.

This assumption is really only applicable for a rapid FO in a large system.
Still, the results from the PIC code indicates that the fluctuations appear mostly
at the edges, while the more central region that account for the largest fraction
of the matter appear to have less variations in temperature and pressure from
cell to cell. When neighboring cells have approximately the same physical char-
acteristics we can assume they should undergo FO at approximately the same
time, yielding a time-like FO surface.
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6.2.2 Constructing the Freeze-Out Surface

Based on the constraint that FO is completely time-like we developed an algo-
rithm that, given the output of a PIC-code run, constructs a smoothly changing
boundary for the four-dimensional volume where the FO takes place and then
for every cell extracts the normal do# of the FO surface, defined in the CM
frame of the system.

First, let us keep in mind that the data we have available from the hydro-
dynamical solution comes in the form of cells in a three-dimensional eulerian
grid.

This means that every cell has up to 26 neighboring cells filled with matter.
Matter moves between cells, and we generally have a new distribution at every
timestep. So the task at hand is to define a FO surface for every cell in terms
of this changing system.

The surface is made time-like through selecting cells for freeze-out in such
a way that whenever a cell freezes out at a given timestep all its neighboring
cells should freeze out no later than at the following timestep and no earlier
than at the previous timestep. That means that no more than one timestep will
separate the freeze out of neighboring cells.

The hypersurface is time-like as long as we have ||d&/do®|| < 1, where dG =
(do',do?,do®). The dimensions of a cell are dz = dy = 1.444 fm and dz =
0.1444 fm. The duration of a timestep is d¢ = 0.03804 fm/c. Thus, a difference
of one timestep in the time of FO among neighboring cells is well within the
requirements for a time-like FO surface.

Some cells have few or no neighbors, and such cells, that most frequently
appear at the exterior of the system, are forced to freeze out at the earliest
opportunity. These cells are the result of artifacts of the PIC code and the
initial state, and the matter contained in them generally moves away from the
main body body of the system at a high speed, so there is little harm done in
freezing them out early.

We also require that the hypersurface should be closed surface, surrounding
the whole system. If it has any gaps matter may escape from the system without
undergoing freeze-out, violating the conservation laws. To prevent gaps from
forming we iterate from the border and inward. When a cell is frozen out it
is removed from the system, so that we are guaranteed that a given cell only
freezes out once. This means that the FO surface will be a layer of cells that
always surrounds all parts of the system, shrinking as matter is removed. Thus,
the cells that are selected for freeze out at a given timestep are those that fulfill
the particular FO criterion that we enforce plus additional cells in the outermost
layer required to close the FO hypersurface.

Using this tactic we obtain a series of FO hypersurfaces, one for each timestep,
so that all the cells in the system will undergo FO eventually. Although being
sudden at each cell, this FO is gradual for the system as a whole. Now we have
determined when every cell freezes out and we have the FO surface defined in
terms of cell positions, so we can begin finding the normal of the surface at
every cell.

Now we make a third requirement, namely that the normal of the FO surface
should be smoothly changing from cell to cell. We start out by taking a row of
cells along a direction, for example the z-direction, and determine for every cell
at which timestep itself and two or three of its neighbors on each side appear
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on the FO surface, determining the chords (in the [z,t]-plane) between the
position of the cell and the positions of the neighbors we choose to compare it
to. This computation is done in the real units of length and time as the axes
have different scales. To counteract the fluctuating nature of the FO surface we
take the average value of the chords and redefine the FO surface to be tangent
to this average chord at every cell position. This process is repeated for all the
rows of cells along each of the three spatial directions.

When we now know the tangent of the FO surface for each cell it becomes
a trivial operation to compute the normal. This computation is described in
Appendix A.

6.2.3 Example of the New Surface

The algorithm described in the previous section was implemented in FORTRAN
and the complete code is located in Appendix A. This program is a module
separate from the PIC code, working only on the final output of this. This
implies that even though the FO gradually bleeds matter off the system, the
hydrodynamical evolution will not be influenced by matter lost in the ongoing
FO, as it would be in a more sophisticated model.

As an illustration of our new method we made an example surface. This
was based on PIC code simulation of a 65 + 66AGeV Au+Au collision with an
impact parameter b = 0.1(r4,). The initial state was provided by the effective
string rope model, as discussed in Section 4.4. The hydrodynamical evolution
was stopped at timestep 260, corresponding to a duration of 9.89fm/c, with a
write-out of physical parameters being made for all timesteps between 250 and
260. At this time there were already some negative pressure cells showing up
around the edges. We then ran the freeze-out code, starting at timestep 250. In
Fig. 6.3 we have plotted the temperature distribution of this system at timestep
250, with slices taken in each of the three spatial planes.

As FO criterion we used a critical temperature T, = 140MeV together with
the requirement that any cell that has a negative pressure should undergo freeze-
out. The FO is complete in 7-10 timesteps, corresponding to a real time duration
of 0.27-0.38 fm/c.

To visualize the results we plotted some sections of the resulting FO surface.
Figures 6.4 and 6.5 shows some examples of how this new FO surface looks in
different planes. We notice a slight along the beam direction. This is caused by
the choice of a finite impact parameter. We also see that all changes in the FO
normal are smooth. The surface also has a shape in the three dimensional space.
This is a side effect of it not being a flat surface in the four-dimensional space-
time, but these surface normals are not identical to the true three dimensional
surface normal of the volume.

6.3 Solving the Freeze-Out Problem

Given the FO surface it is possible to solve the FO-problem and evaluate mea-
surables. This work is in progress, and is being performed by A. Nyiri. There
are still unresolved problems though, so we are not yet ready to present results.
The following only serves to outline the necessary steps of the solution.
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Figure 6.3: Here we have visualized the hydrodynamical system in three dimen-
sions. The system is symmetrical around the [z, z]-plane, so only half of it is
drawn here. We see that temperatures at the core peak at around 400, MeV
while the temperatures at the edges are in the range 100 — 200 MeV.
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Figure 6.4: This figure shows how the FO surface looks along a row of cells
along the beam direction, where cells freeze out at different timesteps. Only
cells on the FO surface are drawn, represented by their normal vector. The
time-components have been scaled down to better illustrate how bumps in the
surface are handled, as the normal is dominated by the time component. We see
that directions of the surface normal only varies slightly between neighboring
cells. Also notice the slight asymmetry in the beam direction, most likely caused
by the finite impact parameter

On the pre FO side, again labeled ’0’, the quantities provided by the hy-
drodynamical solution are all defined in in the computational frame, which is
identical to the CM frame of the system. The density, energy density and pres-
sure are invariant scalars, while the three flow components has to be Lorenz
transformed into an appropriate reference frame. The FO surface that was com-
puted in section 6.2.2 is also defined in the the CM frame.

The first step of the solution is to Lorenz transform the FO surface and the
components of the flow velocity into the RFF. For a time-like surface the RFF
is the frame where do* = (1,0,0,0)do. To determine the state of the matter on
the post FO side if the front we must solve a set of equations.

The connection between the initial and final states is given by egs. 2.31 and

2.32, -
o _ Pl _ 2 _
) = m = (no"ovo) and [P] =

[wX]
(X1 + Xo)’

where X = w/n?. The post FO thermal parameters appearing in these equations
are determined by the EOS of the post FO matter. The continuity relation
[/] = 0 can be expressed as

NoYoVo = N17Y1V1- (61)
Finally outgoing entropy current must be non-decreasing across the front:

$0Y0V0 < 817101 (6.2)



CHAPTER 6. FREEZE-OUT IN NUMERICAL FLUID DYNAMICS 44

Normal components in the Z vs. X plane
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Figure 6.5: This figure illustrates the spatial shape of the FO surface, taken in
the [z, z]-plane. The z- and z-axes use different scales, making the z-components
appear to be larger than the x-components, but they are really of the same order
of magnitude.
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Evaluation of Measurables When the thermal parameters of the post FO
state have been determined, we may evaluate measurables. These should be
evaluated in the experimental detection frame, which frequently is identical to
the CM frame. Therefore the post FO parameters have to be transformed back
into this frame.

In [1] the definition of several measurables are presented. Unfortunately the
formulae in that textbook uses the assumption that do* = u#. As mentioned in
the beginning of this chapter this assumption is unjustified. The modification
of the formulae for the case of a more general do* is straightforward, a least in
principle.

Rapidity Distribution The most frequently evaluated single particle mea-
surable is the the rapidity distribution, defined as

dN chell
> 6.3
a ZI:I ay (6.3)
where for each cell we have
dNgen d3p d
dy = 7Veen / p_o @p”dauf(m,p). (6-4)

Here yV is the proper volume of the cell and f(z,p) is the post FO particle
distribution.

Transverse Momentum Distribution The transverse momentum dis-
tribution is another frequently measured quantity. The contribution of each cell
to the baryon transverse momentum distribution is

chell /dsp d
= Ve | == tdo, f(z, 6.5
A Y wf(z,p) (6.5)

The solutions of these integrals that were presented in [1] can not be used for
our more general FO surface, so we have to perform a new solution to these
integrals, but the new solutions wil not differ very much from the old ones.

Two Particle Interferometry Having detemined the FO surface normal,
we can also evaluate the outcome of two particle correlation measurements.
These are are defined in a standard way [49] based on the ’source function’
S(z, k), which is a single particle distribution that contains the space-time po-
sition of each emitted particle. We can assume that each particle is emitted on
the FO hypersurface, so S(z, E) can be approximated as a source on a sharp hy-
persurface However the two particle correlations are sensitive to the space-time
configuration of emission. Thus, this approximation is probably not the best
for this purpose as the space-time evolution of our new FO surface is rather
artificial.

Long Range Multi-Particle Correlations Flow patterns are also col-
lective correlation observables. Their determination are usually based on the
single particle observables, and we can therefore probably use the hypersurface
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approximation of the FO with satisfying results.

In conclusion the determination of the freeze-out hypersurface and its nor-
mal vector is an important contribution to the accurate evaluation of many
measurables in heavy ion physics, and in the multi module model in particular,
as this model now for the first time has a realistic freeze-out description.



Chapter 7

Conclusions

In this text we have looked at fluid mechanical modeling of relativistic heavy ion
collisions with an emphasis on the FO-process, and especially the determination
of the FO surface. The particular fluid mechanical model we used was the PIC
code, introduced in Chapter 3, an efficient three dimensional numerical solution
algorithm for perfect relativistic fluid dynamics.

In Chapter 4 we explained the need for a separate model of the pre equi-
librium state that exists at the very beginning of collisions. The concept of the
multi-module model was introduced, where the pre equilibrium initial stage, the
local equilibrium intermediate stage and the dilute statistical final stage each
get their own model and are interfaced through hypersurfaces.

The effective string rope-model was presented and used to compute initial
conditions for the PIC code. The initial condition turned out to be a tilted disc
of matter for non-central collisions. We also discussed flow patterns, and their
importance as messengers from the early stage of the collision, and argued that
equilibration happens very quickly in today’s ultra-relativistic experiments.

Chapter 5 reviewed the FO-process, where the continuum description of the
matter is translated into a description in terms of microscopic particle distribu-
tions, while in the process all physical conservation laws are adhered to. Special
emphasis was given to recent advances in the analytical treatment of space-like
freeze-out. It was demonstrated that the flow velocity of the matter may change
significantly in the phase transition as a result of latent heat in the QGP be-
ing converted into kinetic energy in the hadronic phase. This underlines the
importance of a correct freeze-out treatment.

We then turned to implementing FO in the numerical fluid code in Chap-
ter 6. The determination of the FO surface, o*, is the main original result
presented in this text, and it is an important part of a joint effort to make a
precise and reliable description of measurables. Previous results often assumed
that the FO surface normal do# was simply parallel to the flow velocity u* at
every cell, making the FO surface ragged as there is no joining of the surface
between neighboring cells. Compared to such surfaces our new surface is clearly
an improvement.

There are several difficulties to the task of determining the FO surface, such
as the choice of a reasonable global FO-criterion and the need to treat both
space-like and time-like FO. The possibility of post FO-matter rescattering into
the pre FO phase and then freezing out at a later time should also be avoided.

47
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Fundamental theoretical obstacles are also also present, such as the need for a
kinetic description of the FO-dynamics.

Because of all these difficulties we placed constraints on how our FO surface
should be allowed to behave. This allowed us to obtain a surface that allows
the whole system to bleed off matter and freeze-out gradually while each cell
undergoes a sudden FO-process that can be treated by integrating the Cooper-
Frye formula cell-by-cell.

For the first time we are able to evaluate measurables from the multi-module
model through a custom tailored FO surface. Earlier results from the multi-
module model (two-module model in [28]) were able to reproduce essential qual-
itative features of QGP, like antiflow, but had to ignore the effects a detailed
FO has on the flow patterns, like thermal smearing and flow changes due to the
phase transition.

While the new surface has a nice and smooth shape without any sharp
edges or discontinuities it is probably not too realistic in other respects. The
assumption of a purely time-like FO is a strong approximation even for large
systems, and the the FO also becomes rather arbitrary as the matter is forced
to freeze out even if it doesn’t fulfill the FO-criteria. The FO is also likely to fail
in reproducing two-particle spectra as these are highly dependent on the space-
time evolution of the source. So in conclusion the current FO surface should only
be viewed as a first step toward realistic FO-treatment, and work should go on
to construct a more sophisticated algorithm. This work could also hopefully be
aided by improvements in the other modules.



Appendix A

Computer Code
(FORTRAN)

This is the computer code that was used to generate the freeze-out-normal. In
addition to computing the FO surface normal for every cell it also contains
functionality for exporting data to plotting programs, and it can also produce
simple visualizations of the matter distribution and of the FO surface.

The Formula for Determination of the Normal Components The pro-
gram initializes the normal components to do* = (1,0,0,0). The spatial com-
ponents of are then computed as

At

doly; = sin _arctan ( < A >cell ) , (A1)
_' At ]

do?,, = sin _arctan ( < 7~y >cell ) , (A.2)
| At |

do?,, = sin _arctan ( < s >cell ) , (A.3)

where < ﬁ—; >cen is the average of the chords along the x-direction between
the given cell and its neighbors on the FO surface, and correspondingly for the
other spatial directions. The motivation for using arctan to determine the angle
is that, for reasons of simplicity, Az, Ay and Az are not explicitly assigned as
variables in the program.

The time directed component of do* is computed in an iterative manner,
where it is modified in three steps, one for each of the spatial components:

arccos(do?) )

0
daold,cell

0 _ 0
danew,cell - daold,cell - sSin ( (A4)

and correspondingly for do? and do?.
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X
X
X

Mo M M MM

Input:

unit 10, table output from hydro calculation.

contains density, pressure, energy density, temperature, entropy
and velocities for all the fluid cells at specific times late in
the hydro evolution.

Output:

fo_plot: contains various simple ASCII-plots meant to give a graphical

representation of the FO-surface.

fo_data: a new table containg cell data from unit 10, but only for

those cells that are involved in the freeze out. In addition
it contains the normal of the freeze out surface for all the cells.

fo_normal: contains a listing of the four normal components for every cell

xz_temp.dat: temperature data that are to be used by matlab
in plotting and such

xz_press.dat: pressure data that are to be used by matlab in plotting

program fo

integer ncyc, ncyc2, keqost, m, n, 1, kcell,
1ltype, nindex, cycles
, findmaxk, findmink, findmini, findmaxi,
findmaxj, findminj, itimes, jtimes, ktimes, neighbors

the following contain neighbor-info for cells on the outer surface

nextkimin, lastkimin, nextkimax, lastkimax,
nextjimin, lastjimin, nextjimax, lastjimax,
nextjkmin, lastjkmin, nextkjmax, lastjkmax,
nextkjmin, lastkjmin, nextjkmax, lastkjmax,
jminvalue, jmaxvalue, iminvalue, imaxvalue,
kminvalue, kmaxvalue

o

oo0oo0oaoon

X
X
X

MoK MM MM MMM MMM

real rlmbda, B, totn, fdnst, fentrp, fpress, fvx,
fvy, fvz, ftemp, maxtmp, frzout, dx, dy, dz, dt,ednst, slope,
slopel, slope2, y_comp, z_comp, t_comp, X_comp, Xzaspectr,
ztaspectr

logical occup, isfo, removed

Assumed critical temperature of the FO

parameter (frzout=140.0)

Here are the parameters that decides the size of the FO-system.

They should be set to reflect the size of the hydro system, otherwise

the program might crash.

parameter(isize=45)
parameter(jsize=15)
parameter (ksize=85)
parameter(nsize=7)

Cell sizes in [fm] from the the hydro code!

parameter(dx=1.444)
parameter (dy=1.444)
parameter(dz=0.144438)

Size of the timestep, in [fm/c]

parameter (dt=0.03804)

dimension kcell(isize, jsize, ksize), ltype(isize, jsize,ksize,
nsize), cycles(nsize), nextkimin(jsize, ksize, nsize),
lastkimin(jsize, ksize, nsize), nextkimax(
jsize,ksize, nsize), lastkimax(jsize, ksize, nsize),
nextjimin(jsize, ksize, nsize), lastjimin(
jsize,ksize, nsize), nextjimax(jsize, ksize, nsize),
lastjimax(jsize, ksize, nsize), nextjkmin(isize, jsize,
nsize), lastjkmin(isize, jsize, nsize), nextjkmax(
isize,jsize, nsize), lastjkmax(isize, jsize, nsize),
nextkjmin(isize, ksize,
nsize), lastkjmin(isize, ksize, nsize), nextkjmax(
isize,ksize, nsize), lastkjmax(isize, jsize, nsize),
itimes(isize), jtimes(jsize), ktimes(ksize),
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70
60
50
40

X jminvalue(isize), jmaxvalue(isize), kminvalue(isize),
kmaxvalue(isize), iminvalue(jsize), imaxvalue(jsize)

M

dimension fdnst(isize, jsize, ksize, nsize), fentrp(isize,

x jsize, ksize, nsize), ednst(isize, jsize, ksize, nsize),
X fpress(isize, jsize, ksize, nsize), t_comp(isize, jsize,
x ksize, nsize),
x fvx(isize, jsize, ksize, nsize),fvy(isize, jsize, ksize,
x nsize) ,fvz(isize, jsize, ksize, nsize),ftemp(isize,
x jsize, ksize, nsize),
x x_comp(isize, jsize,
X ksize, nsize), y_comp(isize, jsize, ksize, nsize),
X z_comp(isize, jsize, ksize, nsize)

occup - cell is occupied by matter

isfo - cell is frozen out

removed — matter in cell has been removed from the system
after the FO

dimension occup(isize, jsize, ksize, nsize), isfo(isize, jsize,
x ksize, nsize), removed(isize, jsize, ksize, nsize)

Initialization of the logicals

do 40 i=1, isize

do 50 j=1, jsize

do 60 k=1, ksize

do 70 n=1, nsize
occup(i, j, k, n) = .false.
isfo(i, j, k, n) = .false.
removed(i, j, k, n) = .false.

enddo

enddo

enddo

enddo

Aspect ratios between time and space axes

xtaspectr=dt/dx
ytaspectr=dt/dy

135

145

100

ztaspectr=dt/dz

open (unit=10, file=’fort.10’, status=’0ld’)

open (unit=11, file=’fo_plot.txt’, status=’unknown’)
open (unit=12, file=’fo_data.txt’, status=’unknown’)
open (unit=13, file=’xz_temp.dat’, status=’unknown’)
open (unit=14, file=’xz_press.dat’, status=’unknown’)
open (unit=15, file=’fo_normal.txt’, status=’unknown’)
open (unit=16, file=’xyz_temp.dat’, status=’unknown’)
open (unit=17, file=’xyz_press.dat’, status=’unknown’)

Reading from unit 10 using 3 nested do loops
write(*, *) ’Reading from fort.10 ...’

nindex=0

do 300 m=1, nsize

read(10, 135, err=300, end=300) totn, keqost

format (14x, £8.3, 11x, i3)

nindex = nindex+l ! This variable increases by one for each cycle

do 280 1=1,3

read(10, 145, end=280, err=280) ncyc, ncyc2
format (// 8x, i3, i2)

cycles(nindex) = ncyc

do 250 n=1, 10000
read(10, 100, end=300, err=280) i, j, k, ijk, aednst,
dnst, press, entrp, vx, vy, vz, temp
format(4x, 3i3, i6, 9.4, f9.5, 2f9.3, 1x, 3f7.4, 4x, f5.1)

error checking

if(i.gt.isize) then
write(12, *) ’i to big’
go to 999 ! the end

endif

if(j.gt.jsize) then
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write(12, *) ’j too big’
go to 999

endif

if(k.gt.ksize) then
write(12, *) ’k too big’

go to 999
endif
c
c Here we choose the cells that are frozen out and place them in
c the spatial grid at the same positions as in the hydro
c calculation. Later on we will decide which cells are crossed by
c the fo-surface.
c
occup(i, j, k, nindex) = .true.
c
c the following line is the main FO-criterion. It can be changed
c to accomodate any needs, but cells will also be frozen out even
c when they dont fulfill this criterion if they happen to be on the
c outermost layer in the three dimensional system
c
if ((press .le. 0.0) .or. (temp .lt. frzout)) then
isfo(i, j, k, nindex) = .true.
endif
kcell(i, j, k) = ijk
ednst(i, j, k, nindex) = aednst
fdnst(i, j, k, nindex) = dnst
fpress(i, j, k, nindex) = press
fentrp(i, j, k, nindex) = entrp
fvx(i, j, k, nindex) = vx
fvy(i, j, k, nindex) = vy
fvz(i, j, k, nindex) = vz
ftemp(i, j, k, nindex) = temp
1type(i, j, k, nindex) = ncyc2
250 end do ! inner
280 end do ! middle
read(10, 135) totn, keqost
300 end do ! outer
c$$$ call matlabxz(occup, removed, isfo, 1, 1, isize, jsize

c$$s

X , ksize, nsize, ftemp, fdnst)

noo0oo0oo0oo0on0ono0o0on0on

write(*, %) ’Analyzing data ...’

Here we decide when cells should freeze out and be
removed from the system. The main requirement is to avoid gaps
in the surface in both time and space, this means that

1) if a cell freezes out all its neighbors should also
freeze out within the following timestep and

2) there should be no holes in the three-dimensional hypersurface,
otherwise matter could escape from the system without undergoing FO

[s

o0 o0oo0o0

360
350
340

But first we eliminate cells that has three neighbors or less. Such cells
frequently appear in tails sticking out of the main body of the
system, and we freeze them out and remove them at the first timestep.

do 340 i=2, isize-1
do 350 j=2, jsize-1
do 360 k=2, ksize-1

if (neighbors(i, j, k, 1, occup, isize,

X jsize, ksize, nsize) .le. 3) then

isfo(i, j, k, 1) = .true.
removed(i, j, k, 1) = .true.
endif
enddo
enddo
enddo

do 700 n=1, nsize
do 600 j=1, jsize
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400

405

Finding the the minimum and maximum k-indices for the given xz-slice

kmin = ksize

kmax = 0

do 400, i=1, isize
newkmax = findmaxk(i, j, n, occup, isize, jsize, ksize, nsize)
newkmin = findmink(i, j, n, occup, isize, jsize, ksize, nsize)
if (newkmin .1t. kmin) kmin = newkmin
if (newkmax .gt. kmax) kmax = newkmax

enddo

|
o

lastkimax(j, kmin, n) =
lastkimin(j, kmin, n) = ksize

do 450 k=kmin, kmax

Finding minimum and maximum i for the current and the subsequent k-vector

imin = isize

imax = 0

imax = findmaxi(j, k, n, occup, isize, jsize, ksize, nsize)

imin = findmini(j, k, n, occup, isize, jsize, ksize, nsize)

nextkimax(j, k, n)=findmaxi(j, k+1, n, occup, isize,jsize,
ksize, nsize)

nextkimin(j, k, n)=findmini(j, k+1, n, occup, isize,jsize,
ksize, nsize)

Finding minimum and maximum j for the current xy-slice

jmin = jsize

jmax = 0

do 405, i=1, isize

newjmax = findmaxj(i, k, n, occup, isize, jsize, ksize, nsize)

newjmin = findminj(i, k, n, occup, isize, jsize, ksize, nsize)

if(newjmin .1t. jmin) jmin = newjmin

if(newjmax .gt. jmax) jmax = newjmax

nextkjmax(i, k, n)=findmaxi(j, k+1, n, occup, isize,jsize,
ksize, nsize)

nextkjmin(i, k, n)=findmini(j, k+1, n, occup, isize,jsize,
ksize, nsize)

enddo

420

425

lastjimax(j+1, k, n) = imax
lastjimin(j+1, k, n) = imin
nextjimax(j, k, n) = findmaxi(j+1, k, n, occup,
isize,jsize, ksize, nsize)
nextjimin(j, k, n) = findmini(j+1, k, n, occup,
isize,jsize, ksize, nsize)

Forcing FO at the ends

if (lastkimin(j, k, n) .gt. lastkimax(j, k, n)) then
do 420 ii=imin, imax
kk = findmink(ii,j, n, occup, isize, jsize, ksize, nsize)
isfo(ii, j, kk, n) = .true.
removed(ii, j, kk, n) = .true.
kminvalue(ii) = kk
ltype(ii, j, kk, n) = 2
enddo
else if(nextkimin(j, k, n) .gt. nextkimax(j, k, n)) then
do 425 ii=imin, imax
kk = findmaxk(ii,j, n, occup, isize, jsize, ksize, nsize)
isfo(ii, j, kk, n) = .true.
removed(ii, j, kk, n) = .true.
kmaxvalue(ii) = kk
1ltype(ii, j, kk, n) = 2
enddo
endif

do 435 ii=imin, imax
jj = findmaxj(ii, k,n, occup, isize, jsize, ksize, nsize)
isfo(ii, jj, k, n) = .true.
removed(ii, jj, k, n) = .true.
jmaxvalue(ii) = jj
lastkjmax(ii, k+1, n) = jj
1ltype(ii, jj, k, n) =2
enddo

Force FO and removal for outermost cells
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removed(imax, j, k, n) = .true.
removed(imin, j, k, n) = .true.
isfo(imax, j, k, n) = .true.
isfo(imin, j, k, n) = .true.
ltype(i, j, k, n) = 2

Preparing for next iteration

FO

lastkimax(j, k+1, n) = imax
lastkimin(j, k+1, n) = imin
lastjimax(i, j+1, k) = imax
lastjimin(i, j+1, k) = imin

do 440 il=1, isize/2
if ((imax-i1) .1t. (imin+il)) go to 450

and remove interior cells that meet FO-criterion
if (isfo(imax-il, j, k, n)) removed(imax-il, j, k, n) = .true.
if (isfo(imin+il, j, k, n)) removed(imin+il, j, k, n) = .true.

Here we make forced FO and removal to eliminate gaps in the hypersurface

First we check for k vs. i

if (nextkimax(j, k, n) .gt. nextkimin(j, k, n)
.and. lastkimax(j, k, n) .gt. lastkimin(j, k, n)) then

if (imax .gt. nextkimax(j, k, n)
.and. .not. isfo(imax-il, j, k, n)
.and. imax-il-nextkimax(j, k, n) .ge. 1) then

isfo(imax-i1, j, k, n) = .true.
removed(imax-il, j, k, n) = .true.
endif

if(imax .gt. lastkimax(j, k, n)
.and. .not. isfo(imax-il, j, k, n)
.and. imax-il-lastkimax(j, k, n) .ge. 1) then
isfo(imax-il, j, k, n) = .true.
removed(imax-il, j, k, n) = .true.

endif

if (imin .1t. nextkimin(j, k, n)

X .and. .not. isfo(imin+il, j, k, n)

x .and. nextkimin(j, k, n)-imin-il .ge. 1) then
isfo(imin+il, j, k, n) = .true.
removed(imin+il, j, k, n) = .true.

endif
if(imin .1t. lastkimin(j, k, n)

x .and. .not. isfo(imin+il, j, k, n)

x .and. lastkimin(j, k, n)-imin-il .ge. 1) then
isfo(imin+il, j, k, n) = .true.
removed(imin+il, j, k, n) = .true.

endif
endif

if (nextjimax(j, k, n) .gt. nextjimin(j, k, n)
x .and. lastjimax(j,k,n) .gt. lastjimin(j, k,n)) then

Here we check for j vs. i , if we find a gap it will be closed

if (imax .gt. nextjimax(j, k, n)

X .and. .not. isfo(imax-il, j, k, n)

x .and. imax-il-nextjimax(j, k, n) .ge. 1) then
isfo(imax-il, j, k, n) = .true.
removed(imax-il, j, k, n) = .true.

endif
if (imax .gt. lastjimax(j, k, n)

X .and. .not. isfo(imax-il, j, k, n)

x .and. imax-il-lastjimax(j, k, n) .ge. 1) then
isfo(imax-il, j, k, n) = .true.
removed(imax-il, j, k, n) = .true.

endif
if (imin .1t. nextjimin(j, k, n)

x .and. .not. isfo(imin+il, j, k, n)

x .and. nextjimin(j, k, n)-imin-il .ge. 1) then
isfo(imin+il, j, k, n) = .true.
removed(imin+il, j, k, n) = .true.

endif
if (imin .1t. lastjimin(j, k, n)
X .and. .not. isfo(imin+il, j, k, n)
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440
445
450

.and. lastjimin(j, k, n)-imin-il .ge. 1) then

isfo(imin+il, j, k, n) = .true.
removed(imin+il, j, k, n) = .true.
endif
endif
enddo
continue
enddo ! end k

if(imin .le. imax) then
do 550 i=imin, imax

if (j .eq. 1) then
lastjkmin(i, j, n) = ksize
lastjkmax(i, j, n)
endif

n
o

do 515 kk=kmin, kmax
jj = findmaxj(i, kk, n, occup, isize, jsize, ksize, nsize)
isfo(i, jj, kk, n) = .true.
removed(i, jj, kk, n) = .true.

enddo

nextjkmax(i, j, n) = findmaxk(i, j+1, n, occup,
isize,jsize, ksize, nsize)

nextjkmin(i, j, n) = findmink(i, j+1, n, occup,
isize, jsize, ksize, nsize)

lastjkmax(i, j+1, n) = kmax

lastjkmin(i, j+1, n) = kmin

do 540 k1=1, ksize/2
if ((kmax-k1) .le. (kmint+k1)) go to 550

Check for j vs. k

if (nextjkmax(i, j, n) .gt. nextjkmin(i, j, n)
.and. lastjkmax(i, j, n) .gt. lastjkmin(i, j, n)) then

if ((kmax .gt. nextjkmax(i, j, n))
.and. (.not. isfo(kmax-k1, j, k, n))
.and. kmax-kil-nextjkmax(i, j, n) .ge. 1) then
isfo(kmax-il, j, k, n) = .true.

540
550

600

660

670

removed (kmax-il, j, k, n) = .true.
endif
if ((kmax .gt. lastjkmax(i, j, n))

.and. (.not. isfo(kmax-k1, j, k, n))

.and. kmax-kl-lastjkmax(i, j, n) .ge. 1) then
isfo(kmax-k1, j, k, n) = .true.
removed(kmax-k1, j, k, n) = .true.

endif

if ((kmin .1t. nextjkmin(i, j, n))
.and. (.not. isfo(kmin+k1, j, k, n))
.and. nextjkmin(i, j, n)-kmin-k1 .ge. 1) then

isfo(kmin+kl, j, k, n) = .true.
removed(kmin+kl, j, k, n) = .true.
endif

if ((kmin .1t. lastjkmin(i, j, n))
.and. (.not. isfo(kmin+k1, j, k, n))
.and. lastjkmin(i, j, n)-kmin-k1 .ge. 1) then
isfo(kmin+kl, j, k, n) = .true.
removed (kmin+k1, j, k, n) = .true.
endif
endif

enddo
enddo
endif
enddo ! end j

Here we remove forever cells that are frozen out

do 690 ii=1, isize
do 680 jj=1, jsize
do 670 kk=1, ksize
nn=n
if (removed(ii, jj, kk, nn)) then
do 660 nn=n+1, nsize
occup(ii, jj, kk, nn) = .false.
isfo(ii, jj, kk, nn) = .false.
enddo
endif
enddo
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680
690

700

enddo
enddo

enddo

! end n

Compute the components of the normal in the z and time-direction

for al

1 cells on the FO-surface

800

do 760
do 750
do 740
do 730

if(

n=1, nsize

i=1, isize

j=1, jsize

k=1, ksize
occup(i,j,k,n)) then

initialize the normal components

end
enddo
enddo
enddo
enddo

First

do 950
do 940

kmin =
kmax

do 800
kti
enddo

Find t

t_comp(i, j, k, n) =
x_comp(i, j, k, n) =
y_comp(i, j, k, n)
z_comp(i, j, k, n) =
if

n
OO+
OO OO

make corrections of t and z components

, isize
, Jsize

i=1
j=1

ksize

0

k=1, ksize
mes(k) = 0 ! initialize the timestep vector

he timestep where FO occurs for each cell in a row along

840

845
850

the z-

axis

do 840 n=1, nsize

newkmin = findmink(i, j, n, occup, isize, jsize,ksize, nsize)
newkmax = findmaxk(i, j, n, occup, isize, jsize,ksize, nsize)
if (newkmax .gt. kmax) kmax = newkmax
if (newkmin .1t. kmin) kmin = newkmin

enddo

do 850 k=1, ksize

do 845 n=nsize, 1, -1
if(isfo(i, j, k, n) .and. occup(i,j,k,n)) ktimes(k) = n
enddo
enddo

write(14, *) (ktimes(kk), kk=1, ksize)

do 900 k=kmin, kmax

if (ktimes(k) .ne. 0) then

We now compute the tangent of the FO-surface for a given cell

Average up to three cells on the left side

if(k .eq. kmin) then
dvl = ztaspectr
else if(ktimes(k-3) .ne. O .and. ktimes(k-2) .ne. O .and.
ktimes(k-1) .ne. O .and. k .gt. kmin+2) then
dvi=dt*((ktimes (k)-ktimes(k-1))/dz+
(ktimes (k) -ktimes (k-2))/(2%dz)
+(ktimes (k) -ktimes(k-3))/(3%dz))/3
else if(ktimes(k-2) .ne. O .and. ktimes(k-1) .ne.O
.and. k .gt. kmin+1) then
dv1=0.5%((ktimes (k) -ktimes(k-1))/dz+
(ktimes (k) -ktimes (k-2))/(2%dz))*dt
else
dvl = (ktimes(k)-ktimes(k-1))/dz
endif
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900

. and on the right side

check

Here we find the components of the normal vector of the FO-surface

if(k .eq. kmax) then
dv2 = -ztaspectr

else if(ktimes(k+3) .ne. O .and. ktimes(k+2) .ne. O .and.

ktimes(k+1l) .ne. 0 .and. k .1t. kmax-2) then
dv2=dt*((ktimes(k+1)-ktimes(k))/dz+
(ktimes (k+2)-ktimes (k) ) /(2%dz)
+(ktimes (k+3) -ktimes (k))/(3%dz))/3
else if(ktimes(k+2) .ne. 0 .and. ktimes(k+1l) .ne. O
.and. k .1t. kmax-1) then
dv2=0.5%dt* ((ktimes(k+1)-ktimes(k))/dz+
(ktimes (k+2)-ktimes(k))/(2*dz))
else
dv2= dt*(ktimes(k+1)-ktimes(k))/dz
endif

for errors

if (abs(dvl) .gt. 1.0) then
dv1=0.0
endif

if (abs(dv2) .gt. 1.0) then
dv2=0.0
endif

z_comp(i, j, k, ktimes(k)) = sin(atan((-dv2-dv1)/2))
t_comp(i, j, k, ktimes(k)) = t_comp(i, j, k, ktimes(k))

X
X

endif
enddo

enddo
enddo

*sin(acos(z_comp(i, j, k, ktimes(k))))
/t_comp(i, j, k, jtimes(j))))

! end k
! end j
! end i

Do the same for t and x components

do 1200 j=1, jsize
do 1190 k=1, ksize

do 1000 i=1, isize
itimes(i) = 0
1000 enddo

imin = isize
imax = 0

c Find timesteps where FO occurs

do 1040 n=1, nsize
newimin = findmini(j, k, n, occup, isize, jsize, ksize, nsize)
newimax = findmaxi(j, k, n, occup, isize, jsize, ksize, nsize)
if (newimax .gt. imax) imax = newimax
if (newimin .lt. imin) imin = newimin
1040 enddo

do 1050 i=1, isize
do 1045 n=nsize, 1, -1
if(isfo(i, j, k, n) .and. occup(i,j,k,n)) itimes(i) = n
1045 enddo
1050 enddo

do 1100 i=imin, imax

if (itimes (i) .ne. 0) then

c
if(i .eq. imin) then
dvl = xtaspectr
elseif (itimes(i-2) .ne. 0 .and. itimes(i-1) .ne. O
bd .and. i .gt. imin+1) then
dv1=0.5*dt*((itimes(i)-itimes(i-1))/dx+
x (itimes(i)-itimes(i-2))/(2%dx))
else
dvl = dt*(itimes(i)-itimes(i-1))/dx
endif
c
c right side
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1100
1190
1200

1215

M

if(i .eq. imax) then
dv2 = -xtaspectr

elseif (itimes(i+2) .ne. 0 .and. itimes(i+l) .ne. O

.and. i .gt. imax-1) then
dv2 = 0.5*dt*((itimes(i+1)

(itimes(i+2)-itimes (i
else
dv2 = dt*(itimes(i+1)-itim
endif

If we have a space like tangent there is something wrong and we just assign zero

value for the tangent of that cell

if (abs(dvl) .gt. 1.0) then
dv1=0.0
endif

if (abs(dv2) .gt. 1.0) then
dv2=0.0
endif

x_comp(i, j, k, itimes(i)) =
t_comp(i, j, k, itimes(i)) =

*sin(acos(x_comp(i, j, k
/t_comp(i, j, k, itimes(
endif
enddo
enddo
enddo

do 1400 i=1, isize
do 1390 k=1, ksize

do 1215 j=1, jsize
jtimes(j) = 0
enddo

jmin = jsize
jmax = 0

—itimes(i))/dx+
))/(2%dx))

es(i))/dx

sin(atan((-dv2-dv1)/2))
t_comp(i, j, k, itimes(i))
, itimes(i))

i))))

c

c Find timesteps where FO occurs

c

do 1240 n=1, nsize
newjmin = findminj(i, k, n, occup, isize, jsize, ksize, nsize)
newjmax = findmaxj(i, k, n, occup, isize, jsize, ksize, nsize)
if (newjmax .gt. jmax) jmax = newjmax
if (newjmin .1t. jmin) jmin = newjmin
1240 enddo

do 1250 j=1, jsize
do 1245 n=nsize, 1, -1
if(isfo(i, j, k, n) .and. occup(i,j,k,n)) jtimes(j)=n
1245 enddo
1250 enddo

do 1300 j=jmin, jmax
if(jtimes(j) .ne. 0) then

if(j .eq. 1 ) then
dvl = 0.0
elseif(j .eq. jmin .and. j .ne. 1) then
dvl = ytaspectr
elseif (jtimes(j-3) .ne. O .and. itimes(j-2).ne.0

X .and. itimes(j-1) .ne. O .and. j .gt. jmin-2) then
dvl =dt*((jtimes(j)-jtimes(j-1))/dy+
x (jtimes(j)-jtimes(j-2))/(2*dy)
x +(jtimes(j)-jtimes(j-3))/(3*dy))/3
elseif(j .gt. jmin+l .and. jtimes(j-2) .ne. O .and.
x jtimes(j-1) .ne. 0) then
dvl = 0.5*dt*((jtimes(j)-jtimes(j-1))/dy+
x (jtimes(j)-jtimes(j-2))/(2*dy))

elseif(j-1 .ge. jmin .and. j .le. jmax) then
dvl = dt*(jtimes(j)-jtimes(j-1))/dy
endif

if(j .eq. jmax) then
dv2 = -ytaspectr
else if(jtimes(j+3) .ne. O .and. jtimes(j+2) .ne. O .and.
x jtimes(j+1) .ne. 0 .and. j .1t. jmax-2) then
dv2 = dt*((jtimes(j+1)-jtimes(j))/dy+
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c

x (jtimes (j+2)-jtimes(j))/(2*dy)
x +(jtimes(j+3)-jtimes(j))/(3*dy))/3
else if(jtimes(j+2) .ne. O .and. jtimes(j+1) .ne. 0
X .and. j .1t. jmax-1) then
dv2 = 0.5%dt*((jtimes(j+1)-jtimes(j))/dy+
x (jtimes (j+2)-jtimes(j))/(2+dy))
else
dv2=dt#*(jtimes (i+1)-jtimes(i))/dy
endif

if (abs(dvl) .gt. 1.0) then
dv1=0.0

endif

if (abs(dv2) .gt. 1.0) then
dv2=0.0

endif

y_comp(i, j, k, jtimes(j)) = sin(atan((-dv2-dv1)/2))
t_comp(i, j, k, jtimes(j)) = t_comp(i, j, k, jtimes(j))

x *sin(acos(y_comp(i, j, k, jtimes(j))
x /t_comp(i, j, k, jtimes(j))))
endif
1300 enddo
1390 enddo
1400 enddo

Final Writeout starts here:

write(11, 2000) frzout

write (12, 2000) frzout

write(11, *) ’Cellsize and timestep:
write(12, *) ’Cellsize and timestep:
write(11, 3000) dx, dy, dz, dt
write(12, 3000) dx, dy, dz, dt

write(12, *) x y z t ijk e n P
X vX vy vz T type cycle time’

write(12, *) [GeV/fm~3]1[1/fm"3]

x [MeV] [fm/c] ’
write(15, *) > n i j k Vn Vx Vy

X Length’

Writing the final fo_data including normal-vector to unit 12

do 1880 n=1, nsize
do 1860 i=1, isize
do 1840 j=1, jsize

do 1820 k=1, ksize
if(isfo(i,j,k,n)) then

Vz

write(12, 4000) i, j, k, n, kcell(i,j,k), ednst(i, j, k, n),

X fdnst(i, j, k, n), fpress(i, j, k, n), fentrp(i, j, k, n),

X fvx(i, j, k, n) , fvy(i, j, k, n), fvz(i, j, k, n),

x ftemp(i,j,k,n), ltype(i, j, k, n), cycles(n), cycles(n)*dt
endif

if(isfo(i,j,k,n)) then
write(15, 5000) n, i, j, k, t_comp(i, j, k, mn),

x x_comp(i, j, k, n), y_comp(i, j, k, n), z_comp(i, j, k, n),
x t_comp(i, j, k, n)**2 + x_comp(i, j, k, n)**2
x +(y_comp(i, j, k, n))**2+(z_comp(i, j, k, n))**2,
X ftemp(i,j,k,n)
endif
1820 enddo
1840 enddo
1860 enddo
1880 enddo

2000 format(1lx, ’FO-temperature is ’, f6.1,’ MeV.’)

3000 format(’ dx = ’, £5.3, dy = ’, £5.3, ’ dz = *,f8.6, °’
x dt = ?,£7.5, //)

4000 format(4i3, ’> ’,i6, £9.4, £9.5, 2£9.3, 1x, 3f7.4, 4x, £5.1,

x 4x, i2, 3x, i3, 3x, 8.4, £8.4, £9.6)
5000 format(4i3, 1x, f9.6, 1x, £9.6, 1x, 9.6, 1x, f9.6, 1x, £9.6,
b4 1x, £5.1)

write(*,*) ’done!’
999 end 'end of main program
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The following functions search for minimum or maximum occupied
positions for a given vector
Minimum occupied k-index, returns ksize if nothing is found
integer function findmink(i, j, n, occup, isize, jsize,
X ksize, nsize)
common // mink
integer k1, i, j, n, isize, jsize, ksize, nsize
logical occup(isize, jsize, ksize, nsize)
findmink=0
do 10 ki1=1, ksize
if(occup(i, j, ki, n)) go to 20
10 enddo
20 continue
findmink = ki1
return
end
Maximum occupied k-index, returns 0 if nothing is found
integer function findmaxk(i, j, n, occup, isize, jsize,
X ksize, nsize)
common // maxk
integer k1, i, j, n, isize, jsize, ksize, nsize
logical occup(isize, jsize, ksize, nsize)
findmaxk=0
do 10 ki=ksize, 1, -1
if (occup (i, j, k1, n)) go to 20
10 enddo
20 continue

findmaxk = ki

10
20

10
20

return
end

Minimum occupied i-index, returns isize if nothing is found

integer function findmini(j, k, n, occup, isize, jsize,
x ksize, nsize)

integer i1, j, k, n, isize, jsize, ksize, nsize

logical occup(isize, jsize, ksize, nsize)

findmini=0
do 10 il=1, isize
if (occup(il, j, k, n)) go to 20
enddo
continue
findmini = il
write(*,*) ’imin’, findmini
return
end

Maximum occupied i-index, returns O if nothing is found

integer function findmaxi(j, k, n, occup, isize, jsize,
X ksize, nsize)

integer i1, j, k, n, isize, jsize, ksize, nsize
logical occup(isize, jsize, ksize, nsize)

findmaxi = 0
do 10 il=isize, 1, -1
if (occup(il, j, k, n)) go to 20
enddo
continue
findmaxi = i1l
return
end

Minimum occupied j-index, returns isize if nothing is found

integer function findminj(i, k, n, occup, isize, jsize,
X ksize, nsize)
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10
20

10
20

integer j1, i, k, n, isize, jsize, ksize, nsize if (occup(i+l, j, k, n)) neighbors = neighbors+1
logical occup(isize, jsize, ksize, nsize) if (occup(i+l, j+1, k, n)) neighbors = neighbors+1l
if (occup(i-1, j-1, k, n)) neighbors = neighbors+1i
findminj=0 if (occup(i-1, j, k, n)) neighbors = neighbors+1
do 10 ji=1, jsize if (occup(i-1, j+1, k, n)) neighbors = neighbors+1
if(occup(i, j1, k, n)) go to 20 if (occup(i, j, k+1, n)) neighbors = neighbors+1
enddo if (occup(i, j-1, k+1, n)) neighbors = neighbors+1
continue if (occup(i, j+1, k+1, n)) neighbors = neighbors+1
findminj = ji if (occup(i+l, j-1, k+1, n)) neighbors = neighbors+1
return if (occup(i+1l, j, k+1, n)) neighbors = neighbors+1
end if (occup(i+1l, j+1, k+1, n)) neighbors = neighbors+1

if (occup(i-1, j-1, k+1, n)) neighbors = neighbors+1

if (occup(i-1, j, k+1, n)) neighbors
Maximum occupied j-index, returns 0 if nothing is found
if (occup(i, j, k-1, n)) neighbors =
if (occup(i, j-1, k-1, n)) neighbors
if (occup(i, j+1, k-1, n)) neighbors

integer function findmaxj(i, k, n, occup, isize, jsize,
X ksize, nsize)
integer j1, i, k, n, isize, jsize, ksize, nsize

logical occup(isize, jsize, ksize, nsize) if (occup(i+l, j, k-1, n)) neighbors

= neighbors+1

if (occup(i-1, j+1, k+1, n)) neighbors = neighbors+1i

neighbors+1
= neighbors+1
= neighbors+1

if (occup(i+l, j-1, k-1, n)) neighbors = neighbors+1

= neighbors+1

if (occup(i+1l, j+1, k-1, n)) neighbors = neighbors+1i

findmaxj = 0
do 10 ji=jsize, 1, -1
if (occup(i, ji, k, n)) go to 20

if (occup(i-1, j, k-1, n)) neighbors

if (occup(i-1, j-1, k-1, n)) neighbors = neighbors+1

= neighbors+1

if (occup(i-1, j+1, k-1, n)) neighbors = neighbors+1

enddo return
continue end
findmaxj = j1
return c subroutine matlabxz
end c
c Makes tables of temperature and pressure on a two dimensional slice
c
Determines the number of neighbors for a given cell, maximum c
is 26 subroutine matlabxz(occup, removed, isfo, j, n, isize, jsize
X , ksize, nsize, ftemp, fdnst)

integer function neighbors(i, j, k, n, occup, isize, jsize,

x ksize, nsize)
integer isize, jsize, ksize, nsize b4
logical occup(isize, jsize, ksize, nsize) real ftemp, fdnst

logical isfo, occup, removed

neighbors = 0

if(occup(i, j-1, k, n)) neighbors = neighbors+1 X
if(occup(i, j+1, k, n)) neighbors = neighbors+i x
if(occup(i+l, j-1, k, n)) neighbors = neighbors+i x ksize, nsize)

integer j, n, isize, jsize, ksize, nsize ,
findmink, findmaxk, findmini, findmaxi

dimension isfo(isize, jsize, ksize, nsize), occup(isize, jsize,
ksize, nsize), removed(isize, jsize, ksize, nsize),
ftemp(isize, jsize, ksize, nsize), fdnst(isize, jsize,
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do 960 i=mini-5, maxi+5

mink = ksize do 920 k=mink-5, maxk+5
maxk = 0 c
do 50 i=1, isize c writing pressure to unit 14
newmin = findmink(i ,j, n, occup, isize, jsize, ksize, nsize)
newmax = findmaxk(i, j, n, occup, isize, jsize, ksize, nsize) if(i .gt. 0 .and. i .lt. isize .and.
if (newmin .lt. mink) mink = newmin bd k .gt. O .and. k .1lt. ksize) then
if (newmax .gt. maxk) maxk = newmax
50 enddo if(occup(i, j, k, n)) then
write(14, 6000) i, k, fdnst(i, j, k, n)
mini = isize else
maxi = 0 write(14, 6000) i, k, 0.0
do 90 k=1, ksize endif
newmini = findmini(j, k, n, occup, isize, jsize, ksize, nsize)
newmaxi = findmaxi(j, k, n, occup, isize, jsize, ksize, nsize) endif
if (newmini .1t. mini) mini = newmini
if (newmaxi .gt. maxi) maxi = newmaxi 920 enddo
90 enddo 960 enddo

do 860 i=mini, maxi
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do 820 k=mink, maxk 5000 format(2i3, 1x, £7.1)
c 6000 format(2i3, 1x, £9.3)
c writing temperatures to unit 13
c
if(i .gt. O .and. i .1lt. isize .and. end
x k .gt. 0 .and. k .1t. ksize) then
c$$$ if (removed(i, j, k, n)) then
c$$$ write(13, 5000) i, k, frzout c subroutine matlab3D
if(occup(i, j, k, n)) then c
write(13, 5000) i, k, ftemp(i, j, k, n) c Makes a tables of temperature and pressure in a three dimensional region
else c
write(13, 5000) i, k, 0.0 c
endif subroutine matlab3D(occup, removed, isfo, n, isize, jsize
b4 , ksize, nsize, ftemp, fpress)
endif
integer n, isize, jsize, ksize, nsize,
820 enddo X findmink, findmaxk, findmini, findmaxi, findminj, findmaxj
860 enddo real ftemp, fpress

logical isfo, occup, removed
dimension isfo(isize, jsize, ksize, nsize), occup(isize, jsize,
X ksize, nsize), removed(isize, jsize, ksize, nsize),
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50
60

80

110
120

mink
maxk
do 60
do 50
ne
ne
if
if
enddo
enddo

mini
maxi
do 90
do 80
ne
ne
if
if
enddo
enddo

minj
maxj
do 12
do 11
ne
ne
if
if
enddo
enddo

do 86
do 84
do 82

if(

ftemp(isize, jsize, ksize, nsize), fpress(isize, jsize,
ksize, nsize)

= ksize
=0
i=1, isize
j=1, jsize
wmin = findmink(i ,j, n, occup, isize, jsize, ksize, nsize)
wmax = findmaxk(i, j, n, occup, isize, jsize, ksize, nsize)
(newmin .lt. mink) mink = newmin
(newmax .gt. maxk) maxk = newmax

= isize
=0
k=1, ksize
j=1, jsize
wmini = findmini(j, k, n, occup, isize, jsize, ksize, nsize)
wmaxi = findmaxi(j, k, n, occup, isize, jsize, ksize, nsize)
(newmini .1t. mini) mini = newmini
(newmaxi .gt. maxi) maxi = newmaxi

= jsize

=0

0 k=1, ksize

0 i=1, isize

wminj = findminj(i, k, n, occup, isize, jsize, ksize, nsize)
wmaxj = findmaxj(i, k, n, occup, isize, jsize, ksize, nsize)
(newminj .1t. minj) minj = newminj

(newmaxj .gt. maxj) maxj = newmaxj

0 i=mini, maxi
0 j=1, maxj
0 k=mink, maxk

removed(i, j, k, n)) then
write(16, 5000) i, j, k, 0.0

oo oo

820
840
860

920
940
960

5000
6000

else if(occup(i, j, k, n)) then
write(16, 5000) i, j, k, ftemp(i, j, k, n)
else
write(16, 5000) i, j, k, 0.0
endif
enddo
enddo
enddo

do 960 i=mini, maxi
do 940 j=1, maxj
do 920 k=mink, maxk

writing pressure to unit 17

if(i .gt. O .and. i .1t. isize .and. j .1lt. jsize
.and. k .gt. 0 .and. k .1t. ksize) then

if(occup(i, j, k, n)) then

write(17, 6000) i, j, k, fpress(i, j, k, n)
else

write(17, 6000) i, j, k, 0.0
endif

endif
enddo
enddo
enddo
format (3i3, £7.1)
format (3i3, £9.3)

end

The following subroutines produce simple ASCII plots for

the pupose of visual evaluation

(NVYIYOA) HA0D YALNdINOD "V XIANAdIY
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Subroutine Plotxz

Makes a simple visual representation of a slice of the system
INPUT:
isfo, isize, jsize, ksize, nsize are the same as elsewhere

in the program

j, n: decides at which y-value and timestep to take the plot

50

X

X
X

MM MM

subroutine plotxz(occup, removed, isfo, j, n, isize, jsize
, ksize, nsize,cycles, ltype, x_comp, z_comp)

integer j, n, isize, jsize, ksize,
nsize, lcells, cycles, ltype
,findmink, findmaxk, findmini, findmaxi
real x_comp, z_comp
logical isfo, occup, removed
character line(1:85)

dimension isfo(isize, jsize, ksize, nsize), occup(isize, jsize,
ksize, nsize), removed(isize, jsize, ksize, nsize),
ltype(isize, jsize, ksize, nsize),
x_comp(isize, jsize, ksize, nsize),
z_comp(isize, jsize, ksize, nsize)

dimension cycles(nsize)

Search for the FO-cells with the smallest and biggest
k-values to minimize the sixe of the plot

mink = ksize

maxk = 0

do 50, i=1, isize
newmin = findmink(i ,j, n, occup, isize, jsize, ksize, nsize)
newmax = findmaxk(i, j, n, occup, isize, jsize, ksize, nsize)
if (newmin .1lt. mink) mink = newmin
if (newmax .gt. maxk) maxk = newmax

enddo

90

mini = isize
maxi = 0
do 90, k=1, ksize

newmini = findmini(j, k, n, occup, isize, jsize, ksize, nsize)
newmaxi = findmaxi(j, k, n, occup, isize, jsize, ksize, nsize)
if (newmini .1t. mini) mini = newmini
if (newmaxi .gt. maxi) maxi = newmaxi

enddo

write(11, *) ’ Shows occupation of cells in the xz-plane for a cho
xsen y and timestep’
write(11, 100) j, cycles(n)
100 format( 1x, ’> Y = 7, i2, ?
write(11, *)
write(11l, *)
xrozen out’

write(11, *(//)?)

Cycle = ?, i3)
X = cell on the FO-hypersurface’
*

3
’ = cell that is occupied with matter, but is not f

Writing the ASCII plot

write(11, 200) (k, k=mink, maxk)
do 130 i=maxi, mini, -1
do 120 k=1, 85

if(occup(i, j, k, n) .and.
(.not. removed(i, j, k, n))) then
line(k) = %’
else if(z_comp(i, j, k, n) .1t. 0.0 .and. x_comp(i, j, k, n)
.gt. 0.0 .and. occup(i, j, k, n)) then
line(k) = ’\134°
elseif(z_comp(i, j, k, n) .gt. 0.0 .and. x_comp(i, j, k, n)
.gt. 0.0 .and. occup(i, j, k, n)) then
line(k) = ?/?
elseif (z_comp(i, j, k, n) .eq. 0.0 .and.
occup(i, j, k, n)) then
line(k) = ?|?
elseif (x_comp(i, j, k, n) .eq. 0.0 .and.
occup(i, j, k, n)) then
line(k) = -2
elseif (z_comp(i, j, k, n) .1t. 0.0 .and. x_comp(i, j, k, n)
.1t. 0.0 .and. occup(i, j, k, n)) then
line(k) = */?

(NVYIYOA) HA0D YALNdINOD "V XIANAdIY
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elseif(z_comp(i, j, k, n) .gt. 0.0 .and. x_comp(i, j, k, n)

X .1t. 0.0 .and. occup(i, j, k, n)) then
line(k) = ’\134°
else
line(k) = 2 ?
endif
120 enddo
write(11, 300) i, (line(kk), kk=mink, maxk)
130 enddo
300 format(ix, i3, 2x, 80(4, °> ?))
write(11, 200) (k, k=mink, maxk)
200 format(4x, 70i3)
write(11, *) 2 ?
end
Subroutine plotzt
Makes a visual represention of the FO-surface in z vs. time plots
INPUT:
isfo, isize, jsize, ksize, nsize and cycles are the same as elsewhere
in the program

subroutine plotzt(occup, isfo, removed, isize, jsize, ksize,
X nsize, j, cycles, z_comp, t_comp)

integer i, j, k, n, mink, maxk, isize, jsize, ksize, nsize, cycles
X , findmink, findmaxk

real x_comp, t_comp

logical isfo, occup, removed

character line(1:80)

dimension isfo(isize, jsize, ksize, nsize), occup(isize, jsize,

x ksize, nsize), removed(isize, jsize, ksize, nsize),
X z_comp(isize, jsize, ksize, nsize), t_comp(isize, jsize,
X ksize, nsize)

dimension cycles(nsize)

do 140 i=22, 22

write(11, %) 7 ?

write(11, *) ’> Plot of k vs. time for some chosen values of x and
xy.’

write(11, 100) i, j

100 format(2x, ’X=’, i3, ’ Y =’, i3)

70

write(11, %)
write(11, %)
xrozen out’

write(11, %) > 2

,
X = cell on the FO-hypersurface’
*

2
> ¥ = cell that is occupied with matter, but is not f

Finding the minimum and maximum occupied k-indices

mink = ksize

maxk = 0

do 70 n=1, nsize
newmin = findmink(i, j, n, occup, isize, jsize, ksize, nsize)
newmax = findmaxk(i, j, n, occup, isize, jsize, ksize, nsize)
if (newmin .1lt. mink) mink = newmin
if (newmax .gt. maxk) maxk = newmax

enddo

write(11, 200) (k, k=mink, maxk)
do 130 n=nsize, 1, -1
do 120 k=1, 80
if(occup(i, j, k, n) .and.
x (.not. removed(i, j, k, n))) then
line(k) = ’x’
else if(z_comp(i, j, k, n) .1t. 0.0 .and. t_comp(i, j, k, n)
X .gt. 0.0 .and. occup(i, j, k, n)) then
line(k) = °\134°
elseif (z_comp(i, j, k, n) .gt. 0.0 .and. t_comp(i, j, k, n)
b4 .gt. 0.0 .and. occup(i, j, k, n)) then
line(k) = ?/?
elseif (z_comp(i, j, k, n) .eq. 0.0 .and.
x occup(i, j, k, n)) then
line(k) = |’
elseif (t_comp(i, j, k, n) .eq. 0.0 .and.
X occup(i, j, k, n)) then
line(k) = ’-?
elseif(z_comp(i, j, k, n) .1t. 0.0 .and. t_comp(i, j, k, n)
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X .1t. 0.0 .and.
line(k) = ?/?
elseif(z_comp(i, j, k, n) .gt. 0.0 .and. t_comp(i, j, k, n)

occup(i, j, k, n)) then

x .1t. 0.0 .and. occup(i, j, k, n)) then
line(k) = ’\134’
else
line(k) = 2 ?
endif
120 enddo
write(11, 300) cycles(n), (line(k), k=mink, maxk)
130 enddo
300 format(ix, i3, 2x, 80(A, °> ?))
Writing the the k-cell numbers
write (11, 200) (k, k=mink, maxk)
200 format(4x, 70i3)
write(11, *) 2 ?
140 enddo
end
Subroutine plotxt
Makes a visual represention of the FO-surface in x vs. time plots
INPUT:
isfo, isize, jsize, ksize, nsize and cycles are the same as elsewhere
in the program

subroutine plotxt(occup, isfo, removed, isize, jsize, ksize,
x nsize, j, cycles)

integer mini, maxi, j, isize, jsize, ksize, nsize, cycles
X , findmini, findmaxi

logical isfo, occup, removed

character line(1:80)

dimension isfo(isize, jsize, ksize, nsize), occup(isize, jsize,

o0 oo

(s3]

100 format (2x,
write(11, %)
write(11, %)

70

X

ksize, nsize), removed(isize, jsize, ksize, nsize)

dimension cycles(nsize)

Search for the FO-cells with the smallest and biggest
k-values to minimize the width of the plot

Writing the ASCII plot, for different values of i

do 140 k=20,30
write(1l, %) ?

write(11, *)
xy.

)

> Plot of x vs. time for some chosen values of k and

write(11, 100) k, j

’Z=’, i3, > Y=?, i3)
> X = cell on the FO-hypersurface’
> ¥ = cell that is occupied with matter, but is not f

xrozen out’
write(11, %) > 2

Finding the minimum and maximum occupied i-indices

mini = isize
maxi = 0
do 70, n=1, nsize

newmini = findmini(j, k, n, occup, isize, jsize, ksize, nsize)
newmaxi = findmaxi(j, k, n, occup, isize, jsize, ksize, nsize)
if (newmini .1t. mini) mini = newmini
if (newmaxi .gt. maxi) maxi = newmaxi

enddo

write(11, 200) (i, i=mini, maxi)
do 130 n=nsize, 1, -1
do 120 i=1, isize

if(isfo(i, j, k, n) .and. occup(i, j, k, n)) then
line(i) = ’X?
elseif (occup(i, j, k, n) .and.
(.not. removed(i, j, k, n))) then
line(i) = %’
elseif (removed(i, j, k, n)) then
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120

130
300

line(i)
else
line(i)
endif
enddo
write(11, 300) cycles(n), (line(ii), ii=mini, maxi)
enddo
format (1x, i3, 2x, B50(A, °> ?))

200

140

Writing the the i-cell numbers

write(11, 200) (i, i=mini, maxi)
format (4x, 50i3)
write(11, %) > °

enddo
end
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