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Abstract

In a recent paper appearing at IPEC 2015, ”Maximum matching width: new
characterization and fast algorithms for dominating set” [12], three similar tree-
like parameters, tree-width, branch-width and maximum matching-width, are
studied using a common framework. Here we extend the work of that paper in
several ways. First we will answer one of the open problems by proving that
the ”last parameter” from the framework defining the three parameters is equal
to tree-width. Second we fill out the details in one of the proofs to ensure its
correctness. Third we define two new parameters, linear branch-width and linear
maximum matching-with. These are the ”path-like” variants of branch-width
and maximum matching-width respectively in the same sense that path-width is
the ”path-like” variant of tree-width. We show that linear branch-width is almost
identical to path-width, for any graph G we have pw(G) ≤ lbw(G) ≤ pw(G) + 1,
and that when a graph has linear maximum matching-width k then its path-
width is somewhere between k and 2k. We also explore the minimal forbidden
minors of graphs with linear branch-width less than 1,2 and 3 and with linear
maximum matching-width less than 1,2 and 3.
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1 Introduction

When solving problems we often distil them down to get to the core of the
problem. This can be done by considering only certain parts of the problem
or represent the problem in a specific way to make it more comprehensive. A
well known such representation method is the graph representation, which saw
its rise after Euler’s ”Seven bridges of Köningsberg”. The paper that is often
attributed to be the start of graph theory, a now important and well studied
field of mathematics. One important aim in graph theory is to explore and show
how structural properties in graphs behave and relate, and there are a plethora
of different graph properties relating to structure, for instance planar, connected,
dense, acyclic or bipartite to name a few. When trying to solve an important
problem through a graph representation pinning down which structural properties
that applies to the graph is often a crucial key, since we then can use all we
know form graph theory to get more insight into the problem at hand
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Name Function name Subtree rep.
Tree-width tw node con./node weight
Branch-width bw edge con./edge weight
Maximum matching-width mmw node con./edge weight
X-width xw edge con./node weight

Figure 1: Table of all the tree-like parameters discussed in this thesis. First
column is the parameter name, second column is the short version, third column
is the short hand definition with respect to subtree representation.

Some structural properties are quantifiable by a parameter. For graphs it can
for instance be the number of vertices, the largest clique or the chromatic number
etc. Tree-width is a well know graph parameter. It tells us how tree-like a graph
is and is a fundamental parameter in the field of fixed parametrized complexity
where for low tree-width values we know efficient algorithms for many different
problems. Also trees has many interesting results tied to it that makes it an
important theoretical tool too. Branch-width is closely related to tree-width and
is always within a constant factor from tree-width for any given graph, as we will
see. Another closely related parameter of tree-width, introduced by Vatshelle,
is maximum matching-width which is within a constant factor of tree-width
for any given graph as well. Jeong, Sæther and Telle shows that tree-width,
branch-width and maximum matching-width can be defined through subtree
representations of similar structure [5]. The subtree representation differ only
on whether subtree pairs corresponding to edges has to overlap at a node or an
edge and whether we are capacity bound at nodes or at edges. Choosing between
node and edge at the two places gives rise to the four parameters listed in figure
1. In light of this studying the different relations between these parameters might
give a deeper understanding of them. In figure 2 we can see how they all relate.
x-width is not included since it is equal to tree-width, as we will see in section 4.

In section 3 we define the three tree-like parameter and show how they relate,
see table 2, and how they fit into the subtree representation framework. We will
use what is called subtree representation.

Another definition of tree-width is through chordal supergraphs with bounded
maximal cliques size equal to the tree-width of the graph plus one. Since the
subtree representation so nicely could define the three tree-like parameters, this

tw bw mmw
tw 1 1 1
bw 3/2 1 1
mmw 3 2 1

Figure 2: A table that shows how the different tree-like parameters relate to each
other. The constant c in a cell (Aw,Bw) means than if a graph G has Aw ≤ k
then it has Bw ≤ ck plus some constant.
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Name Function name
Path-width pw
Linear branch-width lbw
Linear maximum matching-width lmmw

Figure 3: Table of the path-like parameters and their function names.

chordal supergraph structure might also define them with only slight differences
between the three. Section 5 delves into this.

A more restrictive version of tree-width is the path-width. Path-width (pw)
measures how path-like a graph is and can be defined similar to tree-width
but with the decomposition tree restricted to be a path. This linearisation of
tree-width to get path-width can be done with any parameter that utilizes a
decomposition tree, e.g. branch-width and maximum matching-width. We call
these linear versions the linear branch-width and the linear maximum matching-
width respectively. The table in figure 3 lists them alongside their function names.
Section 6 defines these three path-like parameters and prove how they relate for
a given graph, see the table in figure 4.

H is a minor from G if H can be formed from G by deleting edges and
vertices and by contracting edges. Robertson and Seymour’s graph minor project
proves that graphs are well-quasi-ordered under the minor relation [10]. Which
means that any family of graphs F that is minor closed can be defined by a
finite set of graphs M that upper bounds F with respect to the minor relation,
i.e. iff a graph does not have any of the graphs in M as a minor, then it is part
of F . We call M a set of forbidden minors, and it is minimal if no element in
M is a minor of another element in M . Kuratowski’s theorem tells us that the
minimal forbidden minors of planar graphs is the complete graph K5 and the
complete bipartite graph K3,3. This gives us great insight to the structure of
planar graphs, and also a short and nice way to define them without sphere
embedding and edge crossings. The graph classes with tree-width or branch-width
bounded by 1,2,3 and 4 also has few minimal forbidden minors, and for a given
bound. Additionally the minimal forbidden minors of graphs with tw(G) ≤ k
and the minimal forbidden minors of bw(G) ≤ k always has some similarities.
For instance graphs of tree-width less than 3 only has one minimal forbidden
minor, the K4 graph. This is also the only minimal forbidden minor of graphs

pw lbw lmmw
pw 1 1 1
lbw 1 1 1
lmmw 2 2 1

Figure 4: A table that shows how the different path-like parameters relate to
each other. The constant c in a cell (Aw,Bw) means than if a graph G has
Aw ≤ k then it has Bw ≤ ck plus some constant.
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with branch-width less than 3. Section 7 discusses the minimal forbidden minors
of bounded values of the three tree-like parameters and the three path-like
parameters. We show the set of minimal forbidden minors for linear maximum
matching-width for the values 1 and 2.
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2 Definitions

As the title gives away this section is just to define the terminology used in this
thesis.

A graph G = (V,E) is a pair. The first part is a set of vertices V (or nodes)
and the other is a set of edges E ⊆ {{u, v}| u, v ∈ V, u 6= v}. To ease notation
we write uv in place of {u, v} for edges. Whenever we write V (G) and E(G) we
mean the set of vertices and the set of edges in G respectively. All graphs in this
thesis are finite, i.e. V (G) and E(G) are finite sets.

Interpreting graphs just from the vertex and edge sets is in most cases very
hard, so we usually depict graphs as figures with a point for every vertex and
lines between points for the edges. In figure 5 we have depicted graph G with
V (G) = {a, b, c, d, e, f, g} and E(G) = {ab, ac, bc, bd, be, ce, cf, de, ef, fg}.

a

b c

d e
f g

Figure 5: A graph depicted with dots and lines

The empty graph is the graph with empty vertex set and empty edge set, and
the trivial graph is the graph with one vertex and empty edge set. The ends of
an edge are the two vertices composing the edge. Vertices are incident to an edge
if it is one of the ends of the edge and vice versa. Two vertices are neighbours if
they are incident to the same edge. The set of all neighbours of a given vertex
x is called the neighbourhood of x, and the neighbourhood of a set of vertices
are all the vertices outside the set with a neighbour in the set. The degree of a
vertex is the size of its neighbourhood. A vertex is independent if it has degree 0
and a set of vertices is independent if none of the pairs in the set is neighbours.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G),
we say that H is in G. Also G is a supergraph of H. A subgraph is said to cover
a vertex/edge if it contains it. If two subgraphs of a graph contain the same
vertex/edge we say that they overlap, more specifically they overlap at that
vertex/edge.

A path is a graph Pn = (v1, v2, . . . , vn) with V (Pn) = {v1, v2, . . . , vn} and
E(Pn) = {v1v2, v2v3, . . . , vn−1vn}. A cycle is a graph Cn = (v1, v2, . . . , vn) that
is a path Pn with the addition of the edge vnv1. The connected graphs are the
graphs G where for every pair of vertices there exists path in G covering both of
them. Unless otherwise specified all the graphs in this thesis are connected. H is
a component of G if it is a connected subgraph which is maximal with respect to
both vertex and edge sets. A tree T is a (connected) graph without cycles. All
degree one vertices in a tree are called the leaves with L(T ) being the set of all
the leaves in s tree T . Subtrees are the connected subgraphs of a tree. A graph
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is complete if all its vertex pairs are edges of the graph, usually denoted Kn. If
a subgraph is complete we call it a clique. A bipartite graph B is a graph with
V (B) = (A1 ∪A2) where A1 ∩A2 = ∅ and both A1 and A2 are independent sets.
Both the length of a path and a cycle and the size of a clique is the size of the
vertex set involved.

We say that a cycle in a graph G has a chord if there exists an edge in G
where both ends are in the cycle but the edge is not. Further a graph is a chordal
graph if all its cycles of length at least 4 has a chord.

Deleting an edge is to remove it from the edge set. Deleting a vertex is to
remove it from the vertex set together with all edges it is incident to. Contracting
an edge uv is to make, without loss of generality, u neighbour all the neighbours
of v and then delete v.

Given a set of vertices S in a graph G, if there exists a pair of vertices in a
component G but not in S that is not in the same component after deleting S
from G, then S is a vertex separator. The vertex subset U ⊆ V (G) of a graph G
is said to (vertex) induce the graph G[U ] = (U, {uv|u ∈ U, v ∈ U, uv ∈ E(G)}).
The edge subset W ⊆ E(G) of a graph G is said to (edge) induce the graph
G[W ] = ({v|uv ∈W},W ).

We will use the word bag in some specific cases instead of set. This is for
both historical purposes and this also makes reading easier. And unless otherwise
specified the constants on this thesis will be non-negative integers.
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3 Tree-like parameters

In this section we review some earlier results on the tree parameter tw, bw and
mmw. In section 3.4 we discuss the subtree representation, which will be used
later.

Trees are an important algorithmic tool, they are a go to base case for many
problems since they, among other things, separate easily. This is why decomposing
graphs into trees is of interest, which in layman’s terms is a projection of a graph
onto some tree. This can be done in many different ways, but with the different
decompositions we will look at we are interested in a decomposition trees with
nodes that separates the original graph in some way. Tree decomposition is the
first one we will define, which since its use in the graph minor project [1] has
proven to be a very useful when trying to understand underlying structures
of problems. Alongside tree decomposition there is branch decomposition and
maximum matching decomposition. It is well know that tree-width and branch-
width is within a constant factor from each other and maximum matching-width
falls into this grouping as well. Studying the way these parameters interplay
might cast some new light onto structural properties of graphs.

3.1 Tree-width

We start out with tree-width since it is both the historically first one and arguably
the most important. It rose to popularity after its appearance in the Graph
Minor Project [11]. Tree-width has multiple ways of defining it, many giving
good insight to how tree-width behaves. The cops and robber definition is maybe
the most visual. In short imagine a graph as a city grid, with edges as roads and
vertices as intersections. If one (infinitely) fast robber runs along the streets, how
many slow (finitely fast) cops does it take to catch the robber. A cop catches the
robber if they cross paths. The amount of cops needed will be the same as the
tree-width of the graph. Its easy to see the how the cop squad relates to separator
of the graph. In the standard definition it is not as clear, but this definition is
more convenient mathematically. We will do a slight ”cosmetic” alteration to
the traditional definition where we bound the degree of the decomposition tree
by three.

Definition 3.1. Tree decomposition
Given a graph G then a tree decomposition of G is a tree T of maximum degree
3 with nodes X1, X2, . . . , Xn where every node is a bag containing vertices from
G if it satisfies the following:

1. The union of every bag in T is equal to V(G).

2. For all edges uv ∈ E(G), there is a bag Xi ∈ V (T ) containing u and v.

3. For every two bags Xi and Xl in V(T), all vertices that are both in Xi and
Xl must be in all bags Xj on the path from Xi to Xl.
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Constructing a tree decomposition of a graph is not hard. The easiest tree
decomposition for any graph G is the trivial tree decomposition consisting of one
bag that contains every vertex in G. The challenge with tree decomposition is to
find a decomposition that has as small bags as possible. This is what quantifies
the tree-width of a graph.

Definition 3.2. Tree-width
If T is a tree decomposition of a graph G then the width of T is equal to the size
of its largest bag minus 1. The tree-width of G (tw(G)) equals the smallest tree
decomposition of G with respect to width.

An example of a tree decomposition T of a graph G can be seen in figure
6. We can see that all vertices are present in at least one of the bags. Same for
all the vertex pairs composing the edges, thus satisfying the first and second
criterion of tree decomposition. For every vertex v ∈ V (G) the induced subgraph
of T consisting off all the bags containing v is connected, satisfying the third
criterion. We can see that the width of T is 2. The question is whether there
exists a tree decomposition of G where all bags in the decomposition are of size
less than 3. If a decomposition has the same width as the width of the graph it
decomposes, we call it optimal.

Our first theorem is a well know result when it comes to tree decomposition,
and is good for lower bounding the tree-width of graphs as well as more abstract
results.

Theorem 3.1. If T is a tree decomposition of a graph G and Q is a clique in
G then there is a bag in T containing all of V (Q)

Proof. For any bag Xi containing a strict subset A of V (Q) and y ∈ V (Q), y /∈ A
we can find a bag containing A ∪ y. This will prove the lemma. If Xl is a bag
containing y and Xj is the last bag on the path from Xi to Xl containing all of
A, then by property three of tree decomposition there must be a vertex z ∈ V (Q)
that is not part of the remaining path. Since yz ∈ E(G) there must be a bag
containing them both, by property two, and by property three this must be the
case in Xj .

a

b c

d e
f g

X3
a
b c

X2
b c
e

X1
b
d e

X4
c
e
f

X5

f g

Figure 6: The graph on the right is a tree decomposition of the graph on the
left. Inside each node is written the vertices from its bag.
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Since the original graph G from figure 6 has a clique of size 3 it must have
tree-width at least 2 by theorem 3.1 making the tree decomposition from the
same figure an optimal tree decomposition and thus G has tree-width 2.

The elusive group ”keen readers” might have noticed that we used node in
place of vertex in the tree decomposition definition. This we will do when dealing
with decomposition trees to more clearly distinguish between the original graph
and the decomposition tree. Not having the degree bound on the decomposition
will make our proofs longer and it makes no difference with respect to tree-width.
Because for any bag Xi in a decomposition tree of a tree decomposition with
degree more than 3 we can split it up into two bags, both containing Xi, with
an edge between them and distribute the neighbours between the two. Property
one and two is not tempered with and property three still holds since for every
bag we split the content of the two new bags is precisely the content of the split
bag. The ”minus 1” in the definition of tree-width might seem arbitrary, but
doing so makes trees have tree-with 1, which is nice.

Before moving onto branch-width we will define clique decomposition, a
special type of tree decomposition on chordal graphs. This decomposition will
come in handy when proving relations between the different parameters.

Definition 3.3. Clique decomposition
Given a chordal graph G where Q1, Q2, . . . , Qm are all the maximal cliques in G
then a tree T with node set V (T ) = {X1, X2, . . . , Xm} is a clique decomposition
if

1. For every maximal clique Qi in G, Xi = V (Qi).

2. For all vertices vi in G the subgraph of T induced by the bags containing
vi is connected.

Figure 6 also serves as a clique decomposition since the decomposed graph
is chordal. To see that clique decomposition is a variant of tree decomposition
notice that property three of a tree decomposition is the same as property two of
a clique decomposition and property one and two of a tree decomposition follows
from property one in clique decomposition, so every clique decomposition is a
tree decomposition with the exception that it might not have maximum degree 3,
but as we have discussed this is not an issue with respect to tree-width. A clique
decomposition is even an optimal (non-degree bounded) tree decomposition
because its largest bag contains a maximum clique from the graph, and by 3.1 it
must be optimal.

3.2 Branch-width

Our second parameter is branch-width. Branch-width is sometimes dubbed the
cousin of tree-width. Whereas tree decomposition, in a sense, traverses graphs
using vertices, branch decomposition traverses graphs using edges. The structure
of branch decomposition is different from that of tree decomposition, but we are
still using a decomposition tree.

9



Definition 3.4. Branch decomposition
Given graph G then a branch decomposition of G is a pair (T, δ) where T is a
tree of maximum degree 3 and δ is a bijection δ : E(G) → L(T ), i.e. from the
edges in G to the leaves in T .

As with tree decomposition, branch decompositions are not hard to construct,
but again we generally want the branch decomposition to be ”small” with respect
to some separators. The separators in question here are the middle sets. Given
a branch decomposition (T, δ) of a graph G, then for each ei ∈ E(T ) we get
two components, T1 and T2, when we delete ei from T . Using the two edge
sets corresponding to all the leaves on each of the components we get two edge
induced graphs G1 and G2 respectively. G1 and G2 might have some vertices in
common, the middle set is precisely these vertices, i.e. mid(ei) = V (G1)∩V (G2).

a

b c

d e
f g

bd

de

be

bc

ab ac

ce

cf

ef

fg

b c

c e

b e

Figure 7: The right hand part is a branch decomposition of the graph in the left
hand part. The three bubbles are the middle sets of the edges they point to.

Definition 3.5. Branch-width
Given a graph G and a branch decomposition (T, δ) of G, then the width of
(T, δ) is equal to the size of the largest middle set over all the edges of T . The
branch-width of G is equal to the width of the smallest branch decomposition, with
respect to its width. Since a branch decomposition of them is not well defined,
the branch-width of the empty graph and the trivial graph is 0 and the single edge
graph has branch-width 1.

An example of a branch decomposition (T, δ) is illustrated in figure 7. The
three middle sets shown in the figure are of size 2, and a quick check shows that
the other middle sets are all of size less or equal to 2. If a graph has an edge e
where both ends have degree larger than 1, then its branch-width must be at
least 2, by the middle set of the leaf corresponding with e. Thus graph G from
figure 5 has branch-width 2.
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Tree-width and branch-width for a given graph G is within a constant factor
of each other, specifically: bw(G) ≤ tw(G) + 1 ≤ max(2, (3/2)bw(G))and this
relation is tight [9].

In that respect tree-width and branch-width are very close Additionally if
a family of graphs, for instance all outer planar graphs, is upper bounded by
one of the parameters by a constant factor it will also be upper bounded by the
other parameter by some other constant factor. For all trees with more than one
vertex tree-width is 1 and branch-width is 1 or 2.

3.3 Maximum matching-width

The third tree-like width parameter we will look into is maximum matching-
width, first defined by Vatshelle [12]. He used it mainly as a stepping stone when
comparing tree-width with other parameters, but it has been shown to have vary
similar structural properties in relation with both branch-width and tree-width.

Definition 3.6. Maximum matching decomposition
A maximum matching decomposition of a given graph G is a pair (T, ∂) consisting
of a tree T of maximum degree 3, and a bijection ∂ : V (G) → L(T ), i.e. from
the vertices in G to the leaves in T .

We can see that this decomposition is quite similar to branch decomposition
with the difference that the bijection is between the vertices and leaves instead
of edges and leaves. For the width of a maximum matching decomposition (T, ∂)
we also look at separator sets generated from cuts in the decomposition graph
but this time around it is a bit more involved. For each ei ∈ E(T ) we get
two components, T1 and T2 by deleting ei from T . These components in turn
generates two vertex sets D1 and D2 by taking the vertices corresponding to
the leaves of each component respectively. The graph bip(ei) = Bi is then the
bipartite subgraph of the original graph induced by the set of all edges with one
endpoint in D1 and the other in D2.

Definition 3.7. Maximum matching-width
Given a graph G and a maximum matching decomposition (T, ∂) of G, then the
width of (T, ∂) is equal to the size of the largest maximum matching over all
bipartite subgraphs bip(ei) = Bi for all ei ∈ T . The maximum matching width
of G (mmw(G)) is the width of the smallest maximum matching decomposition
of G with respect to its width. Since a maximum matching decomposition of th
empty graph is not well defined the maximum matching-width of the empty graph
is defined as 0.

Figure 8b above shows a maximum matching decomposition (T, ∂) of the
graph G in figure 8a. The bipartite subgraph bip(ei) = Bi from (T, ∂) is shown
in figure 8c. Bi has a maximum matching of size 2. Checking the maximum
matchings of the other bipartite subgraphs of G induced by (T, ∂) reveals that
(T, ∂) has width 2. Now let us prove that (T, ∂) is optimal. Any maximum
matching decomposition of C4 must have an edge that gives us a bipartite graph

11
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Figure 8

with two vertices from C4 on each side. Let {a, b, c, d} be the four vertices of C4

within a graph G and (T, ∂) any decomposition of G where {νa, νb, νc, νd} are
the leaf nodes in T corresponding with the vertices of C4. Denote the path from
νa to νb as P1 and the path from νc to νd as P2. If P1 and P2 intersect at an
edge, then this edge yields a bipartite graph with two vertices from C4 on each
side. If P1 and P2 do not intersect at an edge they do not intersect at all, since T
has maximum degree 3. This means that there is an edge from νa to νd that will
yield a bipartite graph with νa and νb on one side and νc and νd on the other.
Now we can say that since G contains a 4 cycle mmw(G) ≥ 2, but we know that
(T, ∂) from figure 8b that mmw(G) ≤ 2 and we have that (T, ∂) is optimal.

Vatshelle shows that for any graph (tw(G)+1) ≤ 3∗mmw(G) and mmw(G) ≤
max(bw(G), 1) and that these relations are tight [12]. Also bw(G) ≤ 2∗mmw(G)
as we will show in the next subsection.

3.4 Subtree representation

Since the three tree-like parameters upper bound the same graph classes, one can
hope they are similar in other aspects as well. In [5] Telle et. al. gives alternative
definitions for the three parameters using subtree representation.

Definition 3.8. Subtree representation
Given a graph G with vertex set v1, v2, . . . , vn then the subtree representation
R = (T, {T1, T2, . . . , Tn}) of G is a pair where T is a tree of maximum degree 3
and {T1, T2, . . . , Tn} a set of n non-trivial subtrees of T .
R is node connected with respect to G if for every edge vivj ∈ E(G) the subtree
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Ti and Tj overlap at a node in T . R is edge connected with respect to G if for
every edge vivj ∈ E(G) the subtree Ti and Tj overlap at an edge in T .
The node weight of a subtree representation is the maximum number of subtree
that overlap at one node, over all nodes in T . The edge weight of a subtree
representation is the maximum number of subtree that overlap at one edge, over
all nodes in T .

When we write only ”subtree representation of G” we will mean ”subtree
representation of G that is node connected with respect to G ”. Notice that a
subtree representation that is edge connected with respect to G is also a node
connected with respect to G. The following three theorems serves as alternative
definitions of the three tree-like parameters defined using subtree representations.

Theorem 3.2.
For 0 ≤ k and a graph G with vertices v1, v2 . . . , vn then tw(G) ≤ k − 1 iff there
exists a subtree representation R = (T, {T1, T2, . . . , Tn}) that is node connected
with respect to G and has node weight less or equal to k.

Theorem 3.3.
For 2 ≤ k and a graph G with vertices v1, v2 . . . , vn then bw(G) ≤ k iff there
exists a subtree representation R = (T, {T1, T2, . . . , Tn}) that is edge connected
with respect to G and has edge weight less or equal to k.

Theorem 3.4.
For 1 ≤ k and a graph G with vertices v1, v2 . . . , vn then mmw(G) ≤ k iff there
exists a subtree representation R = (T, {T1, T2, . . . , Tn}) that is node connected
with respect to G and has edge weight less or equal to k.

As we can see the second part of all these theorems only differ at two words,
here in bold, between node and edge. This help us see the close relation between
these three parameters. They also differ at which values of k they hold true, but
the outlying graphs are just the star graphs with respect branch-width, and the
trivial graph with respect to maximum matching-width. Another point is that
the subtrees can be trivial in the subtree representation of theorem 3.2 and it
will still hold, but we will keep them non-trivial for convenience.

Examples of subtree representations of the graph G in figure 9 can be seen
in figure 10 and 11. Figure 10 has edge weight 2 and node weight 3, same for 11.
Figure 10 is node connected with respect to G and 11 is edge connected with
respect to G, which tells us that tw(G) = bw(G) = mmw(G) ≤ 2

Theorem 3.2 is proven by constructing a tree decomposition T ′ from a subtree
representation R = (T, {T1, T2, . . . , Tn}) in the backwards direction and doing the
reverse in the forward direction. Backward: let R be any subtree representation
with node weight k of a graph G. We construct a tree decomposition T ′ from R
by letting T ′ = T and for every bag Xi ∈ V (T ′) add every vertex xj iff Tj covers
node νi ∈ V (T ). T ′ will satisfy the three properties for tree decomposition and
bags will not exceed size k since R has node weight no more than k. Forward:
essentially the reverse of the backwards direction, but the tree might need
to be slightly modified to ensure non-triviality of subtrees. Let T ′ be a tree
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Figure 10: A subtree representation that is node connected with respect to the
graph in figure 9. We see that the node weight is 3, whilst the edge weight is 2.
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Figure 11: A subtree representation that is edge connected with respect to the
graph in figure 9 with edge weight 2.
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decomposition of a graph G with width k − 1. Extending every node in T ′ into
two nodes with an edge between them and distributing the neighbours between
the two in such a way that the resulting tree does not have a degree 4 vertex will
suffice, se section 4 for more details. This extension will be our T . Then, for all
xi ∈ V (G), let subtree Ti be the vertex induces subgraph using every node in T
that comes from a bag in T ′ containing xi. The extension ensures non-triviality
and together with three tree decomposition properties this ensures that this is a
subtree representation that is node connected with respect to G of node weight
no more than k.

The proof of theorem 3.3 follows the same idea as the proof of 3.2 [7]. Proving
theorem 3.4 is more involved, but again it uses the same idea [5]. From these three
theorems the hierarchy between the tree parameters arises. As we will see in the
next section section a subtree representation that is node connected with respect
to some graph can be transformed so that is is edge connected with respect to
the same graph, without increasing the node weight. Further the edge weight
of a subtree representation can never exceed its node weight. Combining these
two observations together with theorem 3.2 and 3.3 we get that branch-width
is always below tree-width (+1) for branch-width values above 1. Comparing
theorem 3.3 with theorem 3.4 we easily see that maximum matching-width
is always below branch-width. because when a subtree representation is edge
connected with respect to a graph it will also be node connected with respect to
the same graph. So we have the tight [5] relation mmw(G) ≤ bw(G) ≤ tw(G) + 1
for all non-star graphs from the subtree representation, but all star graphs S
with at least two vertices has tw(S) = bw(S) = mmw(S) = 1, and for the trivial
graph they are all 0, and the empty graph tree-width is -1 and branch-width ans
maximum matching-width is 0. Thus the inequality is holds for all graph.

Note that any subtree representation with edge weight k cant have node
weight more then 3k, for this reason we also have that tw(G) + 1 ≤ 3mmw(G),
for all graph except the trivial graph. This is also a tight inequality [5].

To get the final inequality we need to alter a subtree representation R =
(T, {T1, T2, . . . , Tn}) that is node connected with respect to a graph, into a
R′ = (T ′, {T ′1, T ′2, . . . , T ′n}) subtree representation that is edge connected whilst
keeping the edge weight as low as possible. First subdivide every edge, i.e. for
every edge e add a node, delete the e and make the new node neighbour both
ends of e. Now for all nodes that does not stem from a subdivision, if it has
degree one, do noting. If it has degree two extend every subtree to cover both
edges incident to the node. If it has degree three let e1, e2 and e3 be the three
edges, extend all subtrees that cover e1 to cover e2, all that cover e2 to cover
e3 and all that cover e3 to cover e1. Note that the subdivision makes sure that
the weight of one edge is only affected by one node, and it at most it doubles.
Since R is node connected with respect to the original graph R′ will be edge
connected with respect to the original graph by construction. We now have the
final inequality bw(G) ≤ 2mmw(G), for non-star graph but a quick check shows
that it will hold for all graphs. This inequality is also tight by the complete
graphs.

Thus the subtree representation has given us all tight the relations between
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the tree-like parameters without much effort.
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4 The fourth tree-like parameter

4.1 x-width is tree-width

An open question from [5] is what type of parameter we would get if we looked at
the node weight of a subtree representation that is edge connected with respect
to a graph.

The following quote is taken form [5]: ”There is also a fourth way of defining a
parameter through these intersections of subtrees representation; where subtrees
Tu and Tv must share an edge if uv ∈ E(G) (similar to branchwidth) and the
width is defined by the maximum number of subtrees sharing a single vertex
(similar to treewidth). This parameter will be an upper bound on all the other
three parameters, but might it be that the structure this parameter highlights
can be used to improve the runtime of Dominating Set beyond O∗(3tw(G)) for
even more cases than those shown using mm-width and branchwidth?”

We will call this parameter x-width and prove that it is equal to tree-width.

Name Subtree rep.
Tree-width node con./node weight
Branch-width edge con./edge weight
Maximum matching-width node con./edge weight
x-width edge con./node weight

Figure 12: Table of all the tree-like parameters discussed in this thesis. First
column is the parameter name, second column is the short hand definition with
respect to subtree representation.

Definition 4.1.
For 0 ≤ k and a graph G with vertices v1, v2, . . . , vn then xw(G) ≤ k−1 iff there
exists a subtree representation R = (T, {T1, T2, . . . , Tn}) that is edge connected
with respect to G and has nodes weight less or equal to k.

For convenience x-width is also defined with a cosmetic ”minus one” since it
will only be compared with tree-width. As stated in the open problem it will
upper bound all the other parameters, which is why we compare it to the largest
one first. It is easily proven that tw(G) ≤ xw(G), but we can do better with just
small tweaks on any subtree representation that is node connected with respect
to the graph G and also show that tw(G) ≥ xw(G).

Claim 4.1. For any graph G tw(G) = xw(G).

Proof. (tw(G) ≤ xw(G)) If xw(G) = k we have a subtree representation R of
node weight k that is edge connected with respect to G. If two subtrees overlap
at an edge, they also overlap at a node making R node connected with respect
to G, i.e. tw(G) ≤ k.

(tw(G) ≥ xw(G)) Given a subtree representation R = (T, {T1, T2 . . . , Tn})
that is node connected with respect to G, we want to tweak it into a subtree
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representation R′ = (T ′, {T ′1, T ′2 . . . , T ′n}) that is edge connected with respect to
G, without increasing node weight.

For every node νi ∈ V (T ) we add a new node ν′i and the edge νiν
′
i, do the

same for all the nodes in each subgraph. with every subgraph for all the nodes it
covers. Iteratively go though each node pair νiν

′
i in any order. If νi has degree 4

delete any one of the edges νix 6= νiν
′
i and add the edge ν′ix. Do the same for

every subgraph that covers νix and before moving onto the next node pair.
We have constructed no cycles and no disconnects so T ′ is still a tree. Same

for the subtrees, they are also still non-trivial. No node in T ′ has degree more
than 3 by construction, and since every pair of vertices forming an edge in G
have corresponding subtrees overlapping at a node in T , there must be an edge
that they overlap at in T ′. The node weight of R′ is the same as the node weight
of R thus the claim is proven.

ν1

ν2

ν3 ν4

ν5

ν6

⇒

ν′1 ν1

ν′2 ν2

ν3 ν′3 ν4 ν′4

ν5 ν′5

ν6 ν′6

Figure 13

This means that x-width tells us nothing more than tree-width does about a
graph, therefore needs no more studying as its own parameter.
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5 Defining the tree-like parameters with chordal
supergraphs

The subtree decomposition proved to be a good framework when comparing
the three tree-like parameters. Maybe looking at another framework can yield
additional information. In this section we will explore how branch-width and
maximum matching-width looks using a framework based on a short and elegant
definition of tree-width. It closely correlates with the subtree representation
through the node intersection graph. Further we will give the full details for the
proof of the maximum matching-width part of this framework, as it has only
been outlined.

Definition 5.1. Node intersection graph
Given a graph G and a subtree representation R = (T, {T1, T2, . . . , Tn}) of G,
then NI(R) = H is the node intersection graph of R if V (H) = V (G) and vivj ∈
E(H) iff V (Ti) ∩ V (Tj) 6= ∅.

Relating to node intersection graphs there are two lemmas we will use. The
first one is a key structural observation tying it together with the chordal
supergraphs, and the second one is essentially the same as theorem 3.1 but for
subtree representations.

Lemma 5.1. The node intersection graph H of a subtree representation R =
(T, {T1, T2, . . . , Tn}) is chordal.

Proof. H is chordal by contradiction. Assume H is not chordal, then H has some
chordless cycle (x1, x2, x3, . . . , xm) of length at least 4. T1 must overlap T2 at
some node νp ∈ V (T ) and T2 must overlap T3 at some node νq ∈ V (T ). Since T1

and T3 cannot overlap at any node there is an edge e on the path from νp to νq
that none of them overlap. If we remove e from T we get two components TL
and TR with T1 and T3 contained in one each respectively. Observe that for any
i > 3, Ti cannot cover e since T2 must cover e by its connectivity, thus if Ti−1 is
contained in TR then so must Ti. By induction this means that Tm is contained
in TR and cannot overlap with T1 and we have a contradiction.

Lemma 5.2. Consider a node intersection graph H of a subtree representation
R = (T, {T1, T2, . . . , Tn}). For any maximal clique Q in H there exists a node
νi ∈ V (T ) such that a vertex xj is in Q iff Tj covers νi.

Proof. Let R = (T, {T1, T2, . . . , Tn}) be a the subtree representation of a graph
and H = NI(R). For every node νi ∈ T we define the bag Xi = {xj | xj ∈
V (G); νi ∈ V (Tj)} i.e. xj is in Xi if and only if Tj covers νi.

Assume there is no Xi that contains all of V (Q). Let D be a maximal subset
of V (Q) that is contained in some Xi and let xj be a vertex of V (Q) that is not
in D. If TD is the induced subgraph of the nodes in T that has bags containing
all of D, then Tj does not intersect TD by maximality of D. Since Tj is connected,
it is contained in only one of the branches connected to TD, and for this branch
there must be at lest one vertex xl in D such that Tl does not intersect this
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branch. xjxl is an edge in H and must have overlapping subtrees and we have a
contradiction. Further, we know that Q can not be a strict subset of any bag,
since it is a maximal clique if H and any bag induces a clique in H. This proves
the lemma.

The other important construct with chordal supergraphs is the relatively
minimal separator. It will come into play with both branch-width and maximum
matching-width. Note that the relatively minimal separator captures a larger set
of separators than just the minimal separators.

Definition 5.2. Relatively minimal separator
A separator S is relatively minimal if there exists a pair of vertices u and v
separated by S such that no strict subset of S separates u and v.

5.1 Tree-width

Let us now state the short tree-width definition before we move onto the other
two parameters.

Theorem 5.1. A graph G has tw(G) ≤ k - 1 iff G has a chordal supergraph H
containing no cliques larger than k.

To prove theorem 5.1 we can use theorem 3.2 together with lemma 5.1 and
5.2 in the forward direction. In the backward direction we use the fact that
all chordal graphs have a clique decomposition from theorem 2 in [3] and as
we discussed for any clique decomposition there is a tree decomposition of the
same graph of maximum degree 3 with bags of size no larger than the bags in
the clique decomposition. Now it only remains to trivially show that if G is a
subgraph of H then any tree decomposition of H is a tree decomposition of G
after removing the vertices that is not part of G.

One might hope that within the framework of theorem 5.1 branch-width and
maximum matching-width will graciously fit in.

5.2 Branch-width

Since we know that branch-width behaves different than tree-width the super-
graph bounding the branch-width must be different from the one bounding
tree-width. A natural idea is to look at the edge intersection graph, i.e. the same
as the node intersection graph but with the edges of the subtree representation
of bounded edge weight. It turns out this will not give us a different set of graphs
than if we were to look at the node intersection graphs, by lemma 1 in [8]. But
we still need to capture the edge weight bound of the subtree representation, and
one way is to just expand on theorem 5.1 by letting the bound be on a special
division of the maximal cliques.

Theorem 5.2. [7] A graph G and 2 ≤ k has bw(G) ≤ k iff G has a chordal
supergraph H where all maximal cliques X in H have three vertex subsets A, B
and C s.t.
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1. A ∪B = B ∪ C = C ∪A = V (X).

2. |A|, |B|, |C| ≤ k.

3. All relatively minimal separator sets S of H contained in X must be con-
tained in A, B or C.

Theorem 5.2 is proven using the subtree representation given in theorem
3.3 [7]. The elephant in the room is that this theorem is not as short as 5.1, see
figure , we will talk about this after the maximum matching part. We see that
the lower bound of 2 on the width carries over from theorem 3.3 but it can be
shown that theorem 5.2 is true for all graphs with more than two vertex.

5.3 Maximum matching-width

As with the subtree representation theorems we can get the maximum matching-
width part of the chordal supergraph framework by just changing a small part
of theorem 5.2, more specifically the first property.

Theorem 5.3. [5] A non-trivial graph G has mmw(G) ≤ k iff G has a chordal
supergraph H where all maximal cliques X in H have three vertex subsets A, B
and C s.t.

1. A ∪B ∪ C = V (X).

2. |A|, |B|, |C| ≤ k.

3. All relatively minimal separator sets S of H contained in X must be con-
tained in A, B or C.

The proof of theorem 5.3 is only sketched in [5]. We will here give the full
details of this proof, but first, to ease notation, we will introduce the following
definition and some lemmas.

Definition 5.3. k-tricover
(A, B, C) is a k-tricover of a set X if A∪B ∪C = X and |A|, |B|, |C| ≤ k. We
say that the k-tricover respects a family of sets F if for any set in the family is
contained entirely in A, B or C.

The two following lemmas are well known properties of chordal graphs.

Lemma 5.3. Given a chordal graph H, for any relative minimal separator S in H
there exists two distinct maximal cliques Q1 and Q2 in H s.t. V (Q1)∩V (Q2) = S.

Proof. Let u and v be two vertices that S relatively minimally separates and G1

and G2 be the components with u and with v respectively after deleting S from
G.

First we show that S is chordal by contradiction. Assume there are two
vertices x and y in S that are not neighbours. We know that there is a path from
x to u that does not use any other vertex from S than x, else S would not be
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relativity minimal with respect to u and v. Same from y. Let P1 be the shortest
path from x to y than only uses vertices from G1 between x and y and let P2 be
the shortest path from y to x through G2. Then the cycle cycling through P1,
y, P2 and x, in that order, will be a cycle of length at least 4 without chords,
which is a contradiction to H being chordal. Thus S is chordal.

Second, G1 has at least one vertex that neighbours the whole of S. Assume
it does not. Let a be a neighbour of S in G1 s.t. no other vertex in G1 has more
neighbours with S then a. Since a does not neighbour every vertex in S let y
be one such vertex and let d 6= a be a vertex in G1 neighbouring y, existing
by relative minimality of S. If P is the shortest path from a to d in G1 let c
be the first vertex in P that has y as a neighbour. The neighbourhood of c
can not contain every vertex from the neighbourhood of a because it would be
larger than the neighbourhood of a, so let x ∈ S be a neighbour of a but not
c. If b is the last vertex in P before c that has x as a neighbour then with P ′

as the subpath of P from b to c we have that the cycle starting with P ′ and
going through y then x has length at least 4 and has no chords, contradicting H
being chordal. So there must be a vertex in G1 neighbouring all of S, the same
argument hold for G2.

Finally we have that since S is chordal and there exists at least one vertex
u′ in G1 neighbouring all of S, there must be a maximal clique containing S
and u′ that does not overlap with G2 since, S is a separator. Similarly we have
a maximal clique containing S and at least one vertex v′ from G2 that does not
overlap G1. This proves the lemma.

Lemma 5.4. The intersection of two neighbouring node sets in a clique decom-
position of a chordal graph H is a relatively minimal separator of H.

Proof. Let T be a clique decomposition of a chordal graph H. For every XiXj ∈
E(T ) there is a u ∈ Xi, u /∈ Xj and v /∈ Xi, v ∈ Xj by maximality of the cliques
corresponding with Xi and Xj . If Xi ∩Xj = S 6= ∅ then S separates u and v by
contradiction. Assume there is a path P from u to v that does not in intersect
S. Removing the edge XiXj from T gives ut two trees T1 and T2 containing Xi

and Xj respectively. Any vertex in P is not part of both Xi and Xj , since it
does not intersect S. This means that the second vertex w in P must be entirely
contained in T1 by the second property (connectivity) of clique decomposition
and the fact that there must be at least one maximal clique containing both
u an w. Induction on P shows that all vertices in P must be contained in T1,
contradicting the fact that v is in T2. For any vertex z ∈ S we have the path
(u, z, v). This together with the fact that S separates u and v proves that S is a
relatively minimal separator.

We are now ready to prove the theorem.

Proof. (of theorem 5.3)
(⇒) In the forward direction we know from theorem 3.4 that for k ≥ 1 when

we have a graph G with V (G) = {x1, x2, . . . , xn} and mmw(G) ≤ k there exist
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a subtree representation R = (T, {T1, T2, . . . , Tn}) that is node connected with
respect to G with edge weight at most k. Let H be the node intersection graph
of R. By lemma 5.1 we know that H is chordal. For every node νi ∈ T we define
the bag Xi = {xj | xj ∈ V (G); νi ∈ V (Tj)} i.e. xj is in Xi if and only if Tj
covers νi.

Now we only need to show that for the vertex set of any maximal clique Q
in H we can find a k-tricover respecting all relatively minimal separators within
Q. So given any maximal clique Q we know there exists a node νi ∈ T with bag
Xi = V (Q), by lemma 5.2. Assuming νi has degree 3 denote the three edges
incident to νi eA, eB and eC . Let A, B and C be subsets of V (H) s.t xj is in A,
B or C if Tj covers eA, eB or eC respectively. If νi has degree less than 3 we let
some of the sets be empty accordingly.

A∪B∪C = V (Q) follow from non-triviality of the subtrees. |A|, |B|, |C| ≤ k
follows directly from the edge weight R. From lemma 5.3 we know that every
relatively minimal separator of a chordal graph is an intersection of two maximal
cliques in the graph. Let S be a relatively minimal separator of H in Q and let
νj , νl ∈ V (T ) be two nodes with bags Xj and Xl such that V (Xj)∩ V (Xl) = S.
Without loss of generality either νi is equal to νj or its unequal to both, and
since all the subtrees corresponding to the vertices in S cover both νi and νl,
they also cover the path between them, i.e. one of A, B or C contains all of
them.

(⇐) All chordal graphs has a clique decomposition from theorem 2 in [3]. Let
T be a clique decomposition of H, where H is the chordal supergraph of a graph
G with V (G) = {x1, x2, . . . , xn} and every maximal clique Q in H has a vertex
set with a k-tricover respecting all relatively minimal separators of H contained
in Q. We will construct a subtree representation that is node connected with
respect to G of edge weight k using T , H and the k-tricovers. An example of
this can be seen in figure 15.

T has arbitrary maximum degree so we must construct a new decomposition
tree for our subtree representation. Start with the emptyR = (T ′, {T1, T2, . . . , Tn})
where T ′ and all Ti are empty graphs. For every maximal clique Q in H, with
X ∈ V (T ) as a corresponding node in T , we add a (centre) node ν to V (T ′) and
if xi ∈ X we let Ti cover ν . Let (A, B, C) be a k-tricover of V (Q) respecting
the relatively minimal separators of H contained in V (Q) and X1, X2, . . . , Xp

be the neighbours of X. We know from lemma 5.4 that for all XXi ∈ E(T )
the set Si = X ∩Xi is a relatively minimal separator. We use this fact and the
k-tricover to partition {1, 2, . . . , p} into WA,WB ,WC such that if Si ⊆ A then
i ∈WA else if Si ⊆ B then i ∈WB else if Si ⊆ C then i ∈WC . Add three paths
PA, PB and PC to T ′, of length |WA|, |WB | and |WC | respectively, all staring
at ν. These we will call the branches connected to the centre node. We also
extend the subtrees Ti to cover PA if xi ∈ A, PB if xi ∈ B and PC if xi ∈ C. For
all Θ ∈ {A,B,C} we add one (separator) node νj to V (T ′) for every j ∈ WΘ,
each uniquely neighbouring a node on the branch PΘ, and if xi ∈ Sj , we let
subtree Ti cover vj along with its edge connecting it with PΘ. Finally for every
two nodes Xa and Xb that are neighbours in the clique decomposition we need
to ”glue” the two part of T ′ they construct. We know their intersection is a
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relatively minimal separator S, and for both of them a separator node has been
added to T ′ because of S. Contract each such pair of nodes, altering the subtrees
accordingly. The result of such a ”gluing” can be seen i figure 15 where the white
trees are ”glued” to the grey tree at the rectangles.

The centre node for each maximal clique has degree at most 3. Same for the
branch nodes, since we never add more then one neighbour to each path node.
The separator nodes has degree two. The edge weight of each edge is at most k
since subtrees only cover an edge in T ′ if it’s in the part of the k-tricover that
corresponds to the branch, and all parts in a k-tricover has bounded size k. For
every edge in H there must exist a maximal clique containing the edge, so there
must be a node in T ′ that is covered by both subtrees corresponding to the edge
ends. The union of a k-tricover of a maximal clique is the whole clique vertex set,
so every node must be in at least one of the k-tricover parts and the subtree of
every node must go along one of the branches, making it nontrivial. If a subtree
covers nodes in a branch, it also covers the centre node connected to the branch
together with the path between. If it covers a separator node then we know that
this separator node is neighbouring two branch nodes in different branches which
the subtree also covers, including the two edges incident to the separator node,
and by the above argument will cover the two centre nodes connected to the
two branches. So all components in a subtree covers a centre node. If a subtree
covers two distinct centre nodes we know its part of both corresponding maximal
cliques, making it part of the relatively minimal separators corresponding to the
separator nodes on the path between the two centre nodes. So the subtree must
cover these nodes too and the whole path between the two centre nodes and
thus the subtrees are connected.

This proves that R is a subtree representation that is node connected with
respect to G of edge weight no more than k and since k ≥ 1 by 3.4 we get
mmw(G) ≤ k.

The branch-width and the maximum matching-part of this framework did
not turn out as elegant as the tree-width part, but between themselves they are
almost identical. In maximum matching-width we require the union of all three
subsets of clique vertex set to equal the whole set, while with branch-width we
require them pairwise to be equal to the whole set. If we continue this trend
and require every single subset to be equal the whole set, we actually arrive at
tree-width, we can just write it up with fewer words since the other properties
follows from the subsets being the entire clique.
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Figure 14: A clique decomposition.
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Figure 15: The resulting graph after taking the clique decomposition tree T
from figure 14 making a subtree representation that is node connected with
respect to original graph. The grey nodes is are the nodes corresponding to the
part constructed from node X in T and the rectangular nodes are the ”glued”
together separator nodes.
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6 Path-like parameters

A closely related parameter to tree-width is path-width. In short it is a lineari-
sation of tree-width i.e. instead of a decomposition tree it has a decomposition
path. Similar linearisation can be done with any decomposition tree to get the
path-like variant of it. For instance on the decomposition tree from branch-width
and maximum matching-width. The path-like variants of these will be called
linear branch-width and linear maximum matching-width. We will compare how
they relate to each other, and in a later section explore there minimal forbidden
minors for given bounds.

6.1 Path-width

We can get to a definition of path-width through definition 3.2 of tree decom-
position by further restricting the decomposition tree to be a path. Then the
path-width will be the width of this decomposition. Here path-width will be
defined without a decomposition graph, since it will be superfluous.

Definition 6.1. Path-width
Given a graph G, a path decomposition is a sequence of bags X1, X2, . . . , Xm

each a subset of V (G), with these three properties:

1. The union of all the bags in the sequence is equal to V (G).

2. For every edge e in G there must be a bag Xi in the sequence containing
both ends of e.

3. For all three indices 1 ≤ i ≤ j ≤ l ≤ m any x that is both in Xi and Xl

must be in Xj.

The width of a path decomposition is equal to its largest bag minus 1, and the
path-width of a graph G (pw(G)) is equal to its smallest path decomposition.

a

b c

d e
f g

(a)

X1

a

b c

X2

b c

d e

X3

c
e
f

X4

f g

(b) Path decomposition of the graph in figure (a).
Here we depict a path decomposition similar to how
we depicted the tree decomposition, although path
decomposition is not defined to have a graph.

Figure 16

Since all path decompositions are linear tree decompositions, path-width will
never be more then tree-width for a given graph. For our graph G in figure 16
the tree-width is 2, whereas the path-width of G is at least 3. This is because the
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vertex set of a clique in a graph must be part of a bag in any tree decomposition
by 3.1, and since the vertex sets of the 4 triangles on G cannot be ordered in any
way without violating property 3 of path-decomposition at least one bag must
contain a triangle and an additional vertex. The width of the path decomposition
in figure 16 is 3 and we know it must be optimal and thus pw(G) = 2

Path-width is quite handy since results relating to tree-width will often work
with path-width as well, and in some cases we can even state stronger versions of
the results. The drawback is that path-width can be vastly larger than tree-width,
for instance on binary trees, where tree-width is always 1 but path-width is
unbounded.

6.2 Linear branch-width

As with path-width we will omit the decomposition tree in the definition of
linear branch-width. The alternative would have been to decompose it onto a
caterpillar graph of maximum degree 3 and in most cases this would give the
same width. The exceptions are, ironically enough, the caterpillar graphs that
are not a star graphs, and then they will only differ by 1, but this is more a
quirk with branch-width than with linear branch-width.

Definition 6.2. Linear Branch-width
Given a graph G with m edges, a linear branch decomposition is an ordering
σ = (e1, e2, . . . , em) of the edges in G. For 1 ≤ i < m let cut(σ, i) be the (cut)
set of vertices that are incident to at least one edge before ei+1 and at least one
after ei in σ, cut(σ,m) = ∅. The width of a linear branch decomposition σ is the
same as the size of its largest cut set, and the linear branch-width of a graph G
(lbw(G)) is the same as the width of its smallest linear branch decomposition
with respect to its width.

We can see an example of a linear branch decomposition. σ in figure 17c of
the graph M2 in figure 17a. The width of σ is 3 and we will see that this is the
best we can do with the graph M2 in section 6.4. A path decomposition of M2

is provided in 17b to compare. We can see that they are very similar, in fact
path-width and linear branch-width of a graph are never more than one apart
as we will prove.

6.3 Linear maximum matching-width

Following the same structure as with linear branch-width the path-like variant
of maximum matching-width will also utilize orderings, but for linear maximum
matching-width it makes no difference with respect to the width whether we use
an ordering or a caterpillar graph of maximal degree three.

Definition 6.3. Linear Maximum Matching-width
Given a graph G with n vertices, a linear maximum matching decomposition is
an ordering ω = (v1, v2, . . . , vn) of the vertices in G. For 1 ≤ i ≤ n let Bω,i be a
bipartite graph with one side consisting of vi and all the vertices before vi in ω
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(a) The M2 graph with labelled edges.
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(b) The path decomposition of the graph
in fig. 17a.
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(c) The linear branch decomposition of the graph in fig. 17a, with the cut sets depicted
over each element in the ordering.

Figure 17

and the other side the rest of the vertices. So the edges of Bω,i are all the edges
from G with one end on each side of Bω,i. The width of ω is equal to the largest
maximum matching over all bipartite graphs Bω,i for 1 ≤ i ≤ n, and the linear
maximum matching-width of a graph G (lmmw(G)) is equal to its smallest linear
maximum matching decomposition with respect to its width.

Figure 18 shows a linear maximum matching decomposition ω with the
bipartite subgraphs of our trusted graph G in the same figure. Its width is 2 and
since G has maximum matching width 2 the linear maximum matching-width of
G cannot be lower. G actually contains all the tree graphs that minimally upper
bounds graphs with linear maximum matching-width less than 2, this will be
explored further in section 7.4.

6.4 Comparing the different path-like parameters

The constant factor relation between the three tree-like parameters is a key point
of interest since it highlights their relation to each other. So it is natural to ask
what the quantitative relation between the different path-like parameters are.
We will start with the relation between linear branch-width and path-width as
they are the closest. As we have stated earlier for many graphs path-width is
very close to linear branch-width, in fact:

Theorem 6.1. If graph G has at least two edges, pw(G) ≤ lbw(G) ≤ pw(G)+1.

Proof. (pw(G) ≤ lbw(G))
If G has lbw(G) = k, let σ = {e1, e2, . . . , em} be a linear branch decomposition

of G with width k. We will construct a path decomposition X1, X2, . . . , Xm of
G. Bag Xi consists of the two incident vertices of ei and every vertex in cut(σ, i).
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(b) The bipartite graphs generated from the vertex ordering ω = (a, b, c, d, e, f, g) of G
in (a). Independent vertices and the last bipartite graph are omitted.

Figure 18

Note that for each i ∈ {1, 2, . . . ,m}, cut(σ, i) must contain at least one of the
ends in ei. If not there would be an edge ei with no incident edges and our graph
would be disconnected or just a single edge. So the size of the bags does not
exceed k + 1.

Now to show that this is indeed a path decomposition. By construction
property 1 and 2 of path decomposition is satisfied. If a vertex x ∈ V (G) is in Xi

and in Xl then x must be incident to at least one edge ep, p ≤ i and one edge
eq, q ≥ l then it must also be in any Xj whenever i < j < l, since p < j < q,
so property 3 is also satisfied. Thus we have a path decomposition with bags of
size at most k + 1, i.e. pw(G) ≤ k = lbw(G).

(lbw(G) ≤ pw(G) + 1)
Given a path decomposition of G of width k we will construct a linear branch

decomposition σ of width at most k + 1. Let X1, X2, . . . , Xt be the consecutive
bags of any path decomposition of G of width k that is altered so that no bags is
a another bag. As we have discussed, this will still be a valid path decomposition
of the same graph and now each bag has at lest one vertex that is not in the next
bag, and at lest one that is not in the previous bag. Start out with an empty σ
then iteratively we go trough the bags. If bag Xi has a pair of vertices that from
an edge in G and has not yet been added to σ, add it at the end. Move on to
the next bag when Xi has no more such pairs. In particular, in each bag if the
bag has a vertex v that is not in any of the previous bags and different vertex u
that is not in any of the later bags, start by checking all the vertex pairs that u
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is part of. Since every edge of G appears in at least one bag, σ will be a linear
branch decomposition.

Given ea ∈ E(G) let Xj be the bag that added ea to σ. Then every x ∈
cut(σ, a) must be in Xj . This is because x is part of cut(σ, a) only when there
exists a p and a q with p ≤ a ≤ q such that x is incident to both ep and eq. Let
Xi and Xl be the bags that added ep and ep respectively. Since x is in both Xi

and Xl and we know that i ≤ j ≤ l then by property 3 of path decomposition
Xj must contain x. If Xj has size less than k+ 1 we are good. Further if Xj has
a vertex v that is not in any of the previous bags and different vertex u that
is not in any of the later bags, cut(σ, a) will only have one of the two vertices
u and v, since all edges using u comes before all the edge using v in σ, thus
the cut has size no more than k, one less than the largest bags. The only path
decompositions we can not construct a linear branch decomposition where the
size of every cut set is upper bounded by k are the ones with tree consecutive
bags all of size k+1 and the intersection of them is a set of size k. In other words,
all three are of size k + 1 and all three have just have one vertex that the other
two does not have. Then the unique vertex in the middle bag will be both the
vertex that has its first appearance and the vertex that has its last appearance.
If every path decomposition of width k has three such consecutive bags the cut
sets of constructed linear branch decomposition will be upper bounded by k + 1.
If not we can use the path decomposition without these three consecutive bags
and bound the cut sets by k, since each bag has two distinct vertices one making
its last appearance and one making its first. In the end this limits the size of the
σ cuts to be no more than k + 1, i.e. lbw(G) ≤ k + 1 = pw(G) + 1.

This result is tight. Let us prove this by exhibiting Kn and Mn. For the
complete graphs Kn path-width will be at least n − 1 since tw(Kn) ≥ n − 1
by theorem 3.1, and the trivial path decomposition has width n − 1. The
linear branch-width of Kn will also be n − 1 with the optimal linear branch
decomposition starting with all the incident edge of one vertex in Kn. It is
optimal since path-width lower bounds linear branch-width by theorem 6.1. For
the other bound let Mn be the graph with an n clique Q and three mutually
independent vertices x1, x2 and x3 all with neighbourhood V (Q). The path
decomposition is just three bags, all containing V (Q) and one of x1, x2 and x3

distributively. Since this is also an optimal tree decomposition by theorem 3.1 we
have pw(Mn) = n. For 2 ≤ n a linear branch decomposition of Mn of width n+ 1
is constructed by taking all the incident edges of x1 first, then all the incident
edges of x2 and the remaining edges in any order of your liking. To prove its
optimality let σ be any linear branch decomposition of Mn, with 2 ≤ n, and let i
be the lowest i such that the size of cut(σ, i) is at least n, which always exists by
theorem 6.1. Observe that since all vertices in Mn has degree at least n cut(σ, i)
must be a superset of all sets cut(σ, j) for j < i. If cut(σ, i) = V (Q) then the
first i elements in σ are all within Q. Let element j in σ be the first element
after i incident to x1, x2 or x3, then |cut(σ, j)| = n+ 1. If cut(σ, i) 6= V (Q) then
there exists an v ∈ V (Q) whose incident edges all appear after edge i in σ, since
cut(σ, i) is a superset of all previous cut sets. Let element j in σ be the first
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edge incident to v. Then cut(σ, j) will be of size n + 1 unless, without loss of
generality, all the incident edges of x1 appear before element j+ 1 in σ, but then
cut(σ, j) = V (Q) and we can use the similar argument as in the previous case.
In conclusion Kn and Mn, for 2 ≤ n, proves the tightness of theorem 6.1.

It can also bee shown that for a given graph G

Theorem 6.2. Given a graph G with at last one edge then lmmw(G) ≤ pw(G) ≤
2 ∗ lmmw(G).

Proof. (lmmw(G) ≤ pw(G))
Given a graph G with a path decomposition X1, X2, . . . , Xm of width k

we can construct a linear maximum matching decomposition ω of width at
most k. Let X ′1, X

′
2 . . . X

′
n be the path decomposition after removing the bags

in X1, X2, . . . , Xm that is a subset of any other bag in X1, X2, . . . , Xm and
preserving the bag ordering. This will not violate any of the path decomposition
criteria, and note that every bag has at least one vertex that is not part of the
next bag. The vertex ordering of ω will be constructed by iterating through the
bags X ′1, X

′
2 . . . X

′
n and greedily adding all the new vertices from each bag, first

the ones that are not part of the next bag, then the rest. Now, for any given
vi ∈ ω we need to show that Bω,i has maximum matching mo more than k. Let
X ′j be the bag that first contains vi. By construction there is a vertex on the
same side as vi in Bω,i from X ′j that can only have neighbours within X ′j , since
all its neighbours are in the bags before and in X ′j and these vertices has priority.
Further, any edge in Bω,i has at least one end in X ′j because of property 3 of
path decomposition. This means that since the size of X ′j is at most k + 1 a
maximum matching in Bω,i of size larger than k would have to use every vertex
in X ′j where each matching edge used only one vertex from X ′j each. But this
cannot be the case since there is at lest one vertex with neighbours only within
X ′j . And thus ω can not have a width of no more than k.

(pw(G) ≤ 2 ∗ lmmw(G))
If a graph G has linear maximum matching-width k, then it has a linear maximum
matching decomposition ω = (x1, x2, . . . , xn) of width k. From ω we can easily
create a subtree representation R = (T, {T1, T2, . . . , Tn}) that is node connected
with respect to G with edge width k. Start with a path Pn = (ν1, ν2, . . . , νn) and
add a leaf li to each node νi to get T . Now a maximum matching decomposition
(T, ∂) of G, where ∂ is the bijection between each vertex xi in ω and leaf li from
T . The bipartite subgraphs induced by (T, ∂) will be the same ones as in ω
with de addition of the ones induced by the leaf edges, but these will only have
maximum matching of one, and since we are dealing with graphs with at most
one edge it will not impact the width.

When we have a maximum matching decomposition we know from theorem
3.4 that there exists a subtree representation R = (T, {T1, T2, . . . , Tn}) that is
node connected with respect to G with edge width k of G. To get such a subtree
representation we turn to the proof of theorem 3.4 from [5]. It is a constructive
proof that uses the decomposition tree from a maximum matching decomposition
as the decomposition tree in the subtree representation, also the leaf edges are
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only covered by the subtree corresponding with the vertex paired with this
leaf node from the maximum matching decomposition. For all non-leaf nodes
νi ∈ T let Xi be a bag containing all the vertices that corresponds to a subtree
that covers νi. Now X1, X2, . . . , Xn will be a path decomposition, since all path
decomposition properties follow from the definition of a subtree representations
that is node connected with respect to the graph in question. Since R has edge
width k, any bag Xi has size at most 2k + 1. The plus 1 comes from the leaf.
This means that pw(G) ≤ 2k = 2 ∗ lmmw(G) and we are done.

This inequality is tight on the complete graphs.

. . . , xi, . . .

νi

l2

. . .

Xi

. . .

Figure 19: A three part figure demonstrating the transitions in the proof 6.4
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7 Minimal forbidden minors

We know from definition that trees have no cycles in them, in short: a graph is
a tree if it does not have a cycle of length three as a minor. Minors is another
construct relating bigger graphs with smaller graphs that encapsulates subgraphs
and edge contraction. With respect to forbidding certain graphs as minors the
triangle graph upper bounds trees, we call it a forbidden minor. A graph class
can have multiple forbidden minors, for instance the planar graphs, which has
the complete graph K5 and the complete bipartite graph K3,3 as forbidden
minors by Kuratowki’s theorem. Together they are the minimal forbidden minors
(MFM), since nether one of them is a minor of the other. These two minor upper
bounds work because a minor of a tree and a planar graph is still a tree and a
planar graph, tree-width and planarity are closed under minors.We say that a
graph property is closed under minors if for a graph G that has this property,
all its minors has the property.

One of the bigger result in graph theory is the graph minor theorem by Neil
Robertson and Paul D. Seymour. The theorem states: ”For infinite set of finite
graphs, one of its members is isomorphic to a minor of another” [10]. The proof
is derived at through 20 papers published over the span of 21 years from 1983 to
2004. What the graph minor theorem tells us is that for a graph class that is
closed under minors there is a finite set of minimal forbidden minors, since any
infinite set of forbidden minors will not be minimal. We will in this section show
that linear branch-width and linear maximum matching-width is closed under
minors and look into the minimal forbidden minors for different values of the
tree-like and path-like parameters

7.1 MFM for tree-like parameters

For completeness sake, we will give the basic definitions of new terminology
in this section then move onto the minimal forbidden minors of the tree-like
parameters.

Definition 7.1. Minor
A graph H is a minor of a graph G if you can get a graph that is isomorphic to
H from G with the three minor operators vertex deletion, edge deletion and edge
contraction.

Note that a minor might not be connected, but we will not encounter them
here. The figure 20 shows an example of a graph G and one of its minors H.

Definition 7.2. A graph property is closed under minors if for any graph G
with this property all its minors has the same property.

We say that a graph parameter is closed under minors if all minors of any
graph G has less or equal value in the parameter than G. Tree-width is closed
under minors, as well as branch-width and maximum matching-width. We can
see this by looking at each minor operator on a graph G through how we might
alter a subtree representation that is node connected or edge connected with
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Figure 20: Here H is a minor of G since we can get H by removing vertex d and
edge fh and contracting edge ce.

respect to G to become a fitting subtree representation of the resulting graph.
With edge deletion no alteration is needed, with vertex deletion we remove the
subtree corresponding to the deleted vertex and edge contraction just removes
the two subtrees corresponding with the ends of the contracted edge and adds
a new subtree that covers the union of the two deleted subtrees. Note that
with edge contraction the two deleted subtrees overlap, so our new subtree is
connected. Neither one of node weight or edge weight in any of the nodes or edges
will increase under any of the minor operations. Thus tree-width, branch-width
and maximum matching-width is minor closed.

Definition 7.3. Minimal Forbidden Minors
Given a minor closed graph class A then a family of graphs F is a set of forbidden
minors of A if every graph that has a minor in F is not part of A, and every
graph that does not have a minor in F is part of A. F is minimal if none of the
graphs in F is a minor of any other graph in F.

For every minor closed graph classes the set of all the graphs not in the graph
class is a set of forbidden minors. This set, however, tends to be infinite. Luckily
for us the graph minor theorem tells us that in any infinite set of finite graphs
there is at least one graph that is superfluous with respect to a set of forbidden
minors set by transitivity of minors. In fact through the graph minor theorem
we can deduce that any minor closed graph class has a unique and finite set of
minimal forbidden minors. If A is a minor closed graph class and F is the set of
all the graphs not A then let M be the set of graphs in M that has no other
minors within M than itself. Note that M is not empty, it has to contain all the
graph with the least amount of edges among the graphs with the least amount
of vertices. Any graph G of F not in M has a minor in M , if not all its minors
would need to have a minor, including the ones with the least amount of edges
of the ones with the least amount of nodes, which can not be the case. M has to
be finite, if not it would contradict the graph minor theorem, and is a unique
set of minimal forbidden minors by construction.
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7.2 MFM path-width

Since path-width is a restricted form of tree-width it is easy to see that path
width is closed under minors by the same argument as with all the tree-like
parameters.

The minimal forbidden minors of graphs with path-width less than 1 is the
single edge graph, since the only graph of path-width less then one is the empty
graph and the trivial graph.

For graph with path-width less than 2 there two minimal forbidden minors,
the complete K3 graph and the S3,2 graph which is a graph with a central vertex
with three paths leading out from it of length 2. The graphs without K3 and S3,2

as a minor are the caterpillar graphs, trees where if we where to remove all degree
one vertices we would end up with a path. A path decomposition of a caterpillar
graph is constructed by iteratively going through the underlying path. Start with
all the leaf edge pairs at the beginning of the path, then the first edge pair in the
underlying path, then the leaf edge pairs of the second vertex in the underlying
path, then the second edge pair in the underlying path, and so on. It is trivial
to se that this decomposition has width 1. Theorem 3.1 is why pw(K3) = 2. To
see why pw(S3,2) = 2 note that for any path decomposition there is a left most
bag XL containing an edge pair ab and a right most bag XR containing an edge
pair cd which leaves us with at least one path (v1, v2, v3), where v1 is the centre
vertex and a, b, c and d is neither v2 nor v3. All bags between XL and XR has
to contain at least one vertex from remaining path that does not include v2 and
v3, since every bag containing a given vertex is contiguous and every edge pair
in the path has a bag in common. This together with the fact that the bag Xi

containing the edge pair v2v3 is some where between XL and XR means that
there has to be a bag containing three vertices. A simple decomposition of S3,2

with width 2 is just having three bags each containing one of the three paths
that starts at the centre vertex in any order.
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When it comes to the minimal forbidden minors of graphs with path-width
less then 3 the amount of forbidden minors drastically increases. A computer
aided proof found all the 110 minimal forbidden minors through the gate matrix
layout problem [6], since the two problems are equivalent in the sense that for
every graph with path-width k we can create a gate matrix layout instance of
value k + 1 and vice versa. At the end in the same paper they cite that the
minimal forbidden minors of graphs with path-width at most 4 is at last 122
million graphs, and that as the parameter grows the size of the minimal forbidden
minors will not decrease. Although 110 elements seem a little much, it pales in
comparison with 122 million.

pw
At most 0

At most 1
At most 2 110 graphs [6]

Figure 22: A table showing the different minimal forbidden minors for given
path-width upper bounds

7.3 MFM linear branch-width

Since pw(G) ≤ lbw(G) ≤ 1 + pw(G) for every graph with more than two edges
we would expect the minimal forbidden minors of bounded linear branch-width
to be similar to the minimal forbidden minors of path-width with the same
bound. We of course need to prove that linear branch-width is closed under
minors. To prove that linear branch-width is closed under minors we again use
the same argument as with the subtree representations. For vertex deletion and
edge deletion the new edge ordering is the ordering after removing the vertices
and edges in question from any linear branch decomposition of the original graph.
Edge contraction removes the contracted edge and relabels every instance of
the two ends to one label, for instance the lexicographical first one. If linear
branch-width were to increase after an edge contraction on an edge ab there
must be an i such that the cut set at position i of the new edge ordering would
be of size one larger that the corresponding cut set j in the old edge ordering.
The only ”new” element a is the relabelled b. The cut set j in the old ordering
can not have an a or a b in both sides, since we assumed the cut set i to have a
”new” element. So there must be an a on one side and a b on the other, but since
the edge ab is on one of the sides the cut set j in the old ordering accounts for
the ”new” element with either a or b. Thus linear branch-width can not increase
with minor operations.

Since the single edge graph is the only graph where linear branch-width
is less than path-width the minimal forbidden minors of graphs with linear
branch-width less than 1, which consists of the graph P2, is the only instance
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where the minimal forbidden minors of linear branch-width is not bounded by
the minimal forbidden minors for path-width of similar bound.

For graph with linear branch-width less than 2 the minimal forbidden minors
is the same as with minimal forbidden minors for the graph of path-width less
than 2, K3 and S3,2. Both of them has linear branch-width at least 2 since they
both have path-width 2. The remaining graph are, again, the caterpillar graphs.
The linear branch decomposition of a caterpillar is the same as the one for path
decomposition if we interpret the bags of two vertices as an edge, the contiguous
nature of path width ensures us that the size of the cut sets can not exceed 2.

We know that the minimal forbidden minors of graphs with path-width less
than 3 is a set of 110 graphs [6]. Looking through them we can find out that not
all of them are minimal forbidden minors of graphs with linear branch-width
less than 3, since some of them has minors with linear branch-width 3. Groups
of them even have the same minor with linear branch-width 3. For instance the
3, 4, 5, 6 graph list at the end of the paper all have the M2 graph as a minor. A
very rough count of these groups gives us 68 groups where each has a unique
minor with linear branch-width 3 that only has minors of linear branch-width
less than 3. In other words a rough estimate on the amount of minimal forbidden
minors of graphs with linear branch-width less then 3 is roughly at least 68. It is
not clear that all minimal forbidden minors of graphs with linear branch-width
at most 3 is a minor of a graph that is a minimal forbidden minors of graphs
with path-width less then 3. If this were the case, a quick brute force program
could go through the 110 graph and check for graphs with minors with linear
branch-width 3 and list the minimal such minors for each graph if not already
listed.

pw lbw
At most 0

At most 1
At most 2 110 graphs [6] Roughly at least 68 graphs

Figure 23: A table showing the different minimal forbidden minors for given
path-width and linear branch-width upper bounds
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7.4 MFM linear maximum matching-width

We first prove that linear maximum matching-width is closed under minors.

Theorem 7.1. For any k the set of graphs that has linear maximum matching-
width at most k is minor closed.

Proof. Let G be a graph with a linear maximum matching decomposition ω of
width k. If we delete edges and vertices from G, then a trimmed ω will still be a
linear maximum matching decomposition of the resulting graph. The trimming
is just removing any vertices from ω that is deleted in G. The only thing that
changes is that some of the bipartite graphs from the edge cuts of ω lose some
of their edges and/or vertices, but the width will not increase.

If we contract edge vivj ∈ E(G) then removing vj from ω will give a linear
maximum matching decomposition ω′ of the resulting graph. Let B be a bipartite
graph from a cut in ω and B′ the resulting graph after contracting vi and vj in B.
Any maximum matching set M ′ in B′ has a corresponding maximum matching
set M in B. The only difference between M and M ′ is whenever vivl ∈M ′ and
vivl /∈ E(B). If vi and vj are on the same side in B it must be the case that
vjvl ∈ E(B). So we just substitute vivl with vjvl in M ′ to get M . If vivj is an
edge in B we just substitute vivl with vivj in M ′ to get M . In other words, the
maximum matching of B will never be less then the maximum matching of B′.
Since any cut set in ω′ will be an edge contracted version of some cut set in ω
we know that the width of ω′ can not be more than the width of ω.

Since every minor operator never increases linear maximum matching-width
it proves the theorem.

The only graphs with linear maximum matching-width less then 1 is the
empty graph and the trivial graph so the minimal forbidden minors is merely
the single edge graph.

The minimal forbidden minors of graphs with linear maximum matching-
width less than 2 share some similarities with the two minimal forbidden minors
of graphs with path-width less than 2. It includes the S3,2 but instead of the C3

cycle (K3) it contains the C4 cycle with the addition of the graph having a cycle
of length three and a degree one neighbour for all three vertices in the cycle.
Figure 24 depicts these three graphs.

(a) H1 (b) H2 (c) H3

Figure 24: MFM of graphs with linear maximum matching-width less than 2
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Before we move onto the proof that these are indeed the minimal forbidden
minors we first prove a small lemma regarding minor relations. This will help us
assessing whether two graphs does not have a minor relation.

Lemma 7.1. Given a graph G and G′ where G′ is a minor of G, then if G has
no cycles then G′ has no cycles. Further, if the longest cycle of G has length l
then the longest cycle in G′ can not be longer than l.

Proof. Its trivial to see that this is the case when we use edge and vertex deletion.
Let G′ be the graph after contracting a edge vivj in G and Cl = (v1, v2, . . . , vl)
a cycle in G′ of length l. If all the edges in Cl are in G we are fine. If not then
vi is on Cl and at least one of vivi−1 or vivi+1 is not an edge in G. If both are
not in E(G) then replacing vi with vj in Cl will yield a cycle in G of length l. If
only one of them is not part of E(G) then adding vj right before or right after
vi in Cl will yield a cycle in G of length l + 1.

Since its true for all the minor operators, it will be true for any combination
of these.

Now for the proof.

Theorem 7.2. H1, H2 and H3 from figure 24 are the minimal forbidden minors
of graphs with linear maximum matching-width less than 2.

Proof. Because of their symmetries it’s quick to check that the three graphs
have linear maximum matching-width 2.

For H1 we see that if we want an linear maximum matching decomposition
ω to have width 1 a neighbour pair where one of them is a leaf has to be the
two first elements. Then, for position three, the only option is the central vertex.
Then any choice for position four will result ω having width at least 2. In fact
any ordering as described above will have width 2.

In H2’s case observe that for any linear maximum matching decomposition
ω the bipartite graph Bω,3 will have a maximum matching of size at least 2. An
linear maximum matching decomposition ω of the vertices of width 2 is first
taking two degree one vertices then their two neighbours, then the rest.

For H3 observe that there are only two unique ways to start a linear max-
imum matching decomposition ω. Either with two neighbours or with two
non-neighbours. In both cases the bipartite graph Bω,2 has maximum matching
of size two. For all other bipartite subgraphs of H3, the maximum matching is
trivially either one or zero.

H1 is not a minor of H2 or H3 because it has more vertices than both of
them. Same for H2 not being a minor of H3. By lemma 7.1 H3 and H2 can not
be a minor of H1. Same for H3 not being a minor of H2.

To prove that all graphs without H3, H1 and H2 as a minor has linear
maximum matching-width less than 2 we will describe them generally. Let A be
the family of all graph without H1, H2 and H3 as minors. Let G be a graph in
A and let P = (x1, x2, . . . , xm) be a longest path in G.

Except for the edges in the path P G can only have two types of edges. The
first type are the edges that are incident only to vertices in P . We will call these
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shortcut edges. Let xixj be such an edge. Without loss of generality let i < j. If
j 6= i+ 2, G will have a cycle xi, xi+1, . . . , xj of length at lest 4, and G will have
H3 as a minor. Thus all shortcut edges will be of the form xixi+2. Further G
can not have a shortcut edge xixi+2 if xi+1 has a neighbour v outside P . If it
had such an edge and i = 1 it would mean that (v, x2, x1, x3, x4, . . . , xm) would
be longer than P . An analogous arguments holds when i+ 2 = m. For the case
where 1 < i < m− 2, {xi−2, xi−1, xi, xi+1, xi+2, v} would induce H2 in G, or at
least a graph with H2 as a subgraph. Lastly two shortcut edges can not cross, in
the sense that if xixi+2 ∈ E(G) then xi+1xi+3 /∈ E(G) since (xi, xi+2, xi+3, xi+1)
would then make a 4 cycle.

The other type of edge are edges that have one end in P the other outside P .
Let xiv be such an edge on G. Then we already know that xi−1xi+1 cant be an
edge in G. Further, 1 6= i 6= m since P is a longest path. Also if 2 ≤ i ≤ m− 1,
v can not have a neighbour u except xi. Assume vxj ∈ E(G) for any xj in
P xj 6= xi This would contradict P being a longest path when j = i − 1 or
j = i+ 1, and else would cause G to have a cycle of length at least four. Since
u can not be part of P assume now uv ∈ E(G) with u not in P . For i = 2
or i = m − 1 it would violate P being a longest path, and for 2 < i < m − 1
{xi−2, xi−1, xi, v, u, xi+1, xi+2} would induce a graph with H1 as a subgraph in
G. In short: any vertex of G not in P must have degree one, i.e. leaves.
Note that since G is connected and all vertices not in P has degree 1, G can
not have any other vertices than the path vertices and the leaf vertices. To
summarise, if G ∈ A and P is a longest path in G, then G only has three types
of edges.

1. The path edges in P .

2. Non-crossing shortcut edges between vertices with distance two in P .

3. And leaf edges, but not at the ends of P and between a shortcut edge.

The linear maximum matching decomposition ω of a graph G ∈ A is easy to
construct. Let P = (x1, x2, . . . , xm) be a longest path in G. Start with the order-
ing (x1, x2, . . . , xm). For every vertex xi in G that has leaf vertices l1, l2, . . . , ls
as neighbours, insert these vertices right before xi, (x1, . . . , xi−1, xi, . . . , xm)→
(x1, . . . , xi−1, l1, l2, . . . , ls, xi, . . . , xm).

Let ω = (v1, v2, . . . , vn) be the resulting linear maximum matching decompo-
sition of G. Every bipartite graph Bω,i will have maximum matching one. Let
vp and vq be the first path vertices before and after vi in ω respectively. If vi is
a leaf vertex the only path edge in Bω,i is vpvq. The only leaf edges present in
Bω,i are the ones incident to vq since in ω leaf vertices are places right before
the vertex they neighbour. Bω,i might have a shortcut edge incident to vq, but
there can not be a shortcut edge from vp to some vj for q < j, since vq has
leaf neighbours. Since all edges in Bω,i are incident to vq it will have maximum
matching of size one.
If vi is a path vertex, Bω,i will have no leaf edges, since in ω leaf vertices are
places right before the vertex they neighbour. Bω,i will have vivp as an edge,
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unless i = n, and no other path edges. There are two possible shortcut edges in
Bω,i vpvq and vivj , where vj is the next path vertex after vq. These two edges
cross, Bω,i will only have one of them. If it has vpvq all edges will be incident
to vp, and if it has vivj all edges will be incident to vi. Thus Bω,i will have
maximum matching of size 1.

In conclusion: All graphs in A have a linear maximum matching decomposition
of width at most 1.

In figure 25 we see a graph with linear maximum matching-width 1. It is
almost a caterpillar graph but it can have edge disjoint cycles of length 3 where
at least one of the vertices in each cycle has degree 2.

Figure 25: A graph of linear maximum matching-width 1

Figure 26

pw lbw lmmw
At most 0

At most 1 Figure 26
At most 2 110 graphs [6] Roughly at least 68 graphs ?

Figure 27

41



8 Conclusion

In this thesis we started by carefully presenting the known relationships between
the three tree-like parameters, tree-width, branch-width and maximum matching-
width, that arise from a common definition using subtree representations. We
have solved an open problem related to the fourth parameter definable by the
subtree representation by showing that it is the same as tree-width. We also gave
the full details of the proof of how maximum matching-width fits into the chordal
supergraph framework, as this proof had only been outlined previously. The main
contribution of this thesis is the study of the three related path-like parameters,
including the well-known path-width and the two new parameters defined in this
thesis that we called linear branch-width and linear maximum matching-width.
We showed that linear branch-width is either equal to path-width or equal to
path-width plus one. We also showed that linear maximum matching-width is
less then path-width but never less than half the path-width. Finally, we showed
that the classes of graphs of bounded parameter values are closed under minors
and investigated the minimal forbidden minors of these path-like parameters.
For path-width this set was known for the values 1, 2 and 3. We gave results
for minimal forbidden minors of both the class of graphs of linear branch-width
bounded by 1, 2 and 3 and also for the class of graphs of linear maximum
matching-width bounded by 1 and 2.

One open problems is whether all minimal forbidden minors of graphs with
linear branch-width less than k, is a minor of at least one of the minimal forbidden
minors of graph with path-width less than k. Another is what will we get if we
instead of restricting the maximum degree of the decomposition tree from 3 to
2 we loosen the restriction on maximum degree from 3 to 4? Here I think the
chordal supergraphs might be the way to attack this problem.
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