
Interactive Dynamic Volume Illumination
with Refraction and Caustics

Jens G̊asemyr Magnus, author Stefan Bruckner, supervisor

Master Thesis

University of Bergen
Department of Informatics

1

Acknowledgments

I would like to thank Professor Stefan Bruckner for supervising this thesis
and for the great discussions we frequently had giving rise to the solutions
presented in this thesis. I would also like to thank Itai Kallos for informative
discussions giving insight in the physics behind our light model.

2

Abstract

Figure 0.1: The visible human CT dataset rendered using the proposed tech-
nique – the skeleton is embedded in a colored transmissive medium with higher
refractive index than its surroundings.

In recent years, significant progress has been made in developing high-quality
interactive methods for realistic volume illumination. However, refraction –
despite being an important aspect of light propagation in participating media
– has so far only received little attention. In this thesis, we present a novel
approach for refractive volume illumination including caustics capable of in-
teractive frame rates. By interleaving light and viewing ray propagation, our
technique avoids memory-intensive storage of illumination information and
does not require any precomputation. Propagation of refracted illumination
is realized by employing a Semi-Lagrangian backward integration scheme, in-
spired by texture advection from the field of texture-based flow visualization.
It is fully dynamic and all parameters such as light position and transfer func-
tion can be modified interactively without a performance penalty.

Contents

Contents 3

1 Introduction 5
1.1 Motivation . 5
1.2 Refraction . 6
1.3 Problem and Contribution . 6
1.4 Thesis Structure . 7

2 Related Work 8
2.1 Volume Illumination, Shadowing and Occlusion 8
2.2 Rendering of Refraction . 10
2.3 Nonlinear Raytracing . 11

3 Interactive Volume Rendering 13
3.1 Reconstruction . 14
3.2 Transfer Functions . 14
3.3 Volume Rendering Integral . 14
3.4 Emission-Absorption Integral 15
3.5 Volume Rendering Algorithms 16
3.6 Compositing . 18
3.7 Opacity Correction . 19
3.8 Gradients and Lighting . 19
3.9 Preintegration . 20
3.10 Empty Space Skipping . 22

4 Interactive Volume Refraction 24
4.1 Model . 25
4.2 Light Propagation . 26
4.3 Viewing Ray Propagation . 30
4.4 Environment Mapping . 33

5 Implementation 35
5.1 Preintegration Lookup Table 36
5.2 Ray Propagation . 36

3

CONTENTS 4

5.3 Post Processing . 37

6 Results 39

7 Discussion and Limitations 51

8 Conclusions and Future Work 54

Bibliography 56

Chapter 1

Introduction

1.1 Motivation

Interactive volume rendering refers to the rendering and visualization of 3D
scalar fields, also called or volumes, at frame rates high enough as to allow user
interactions such as changing camera positions. Volume rendering is widely
used the field of scientific visualization and for rendering volumetric visual
phenomena, such and atmospheric effects and smoke. Commonly, volume
rendering is done by assigning different optical properties to the values of a
scalar field. In the context of medical visualization, scalar values in volumes
often represent physical materials, such as bone or soft tissues. If the aim
of a visualization is to show bone structures, one could assign visible optical
properties to the scalar values associated with bone.

Advanced illumination effects, such as shadowing, ambient occlusion and light
scattering, can provide important visual cues for the perception of complex
spatial structures [1]. However, for the sake of performance and to allow in-
teractive frame rates, simplified illumination models are often employed. This
is particularly true in the context of rendering volume data where, due to the
lack of discrete homogeneous objects, illumination contributions must in prin-
ciple be evaluated and propagated at every point in space. Research in recent
years, partly fueled by the performance and flexibility advances of current
GPUs, has successfully developed efficient high-quality methods for interac-
tively rendering volume data with advanced illumination effects. However, one
aspect that has been neglected so far is refraction, i.e., directional changes in
light propagation due to differences in the speed of light between transmission
media. Despite the fact that translucency is commonly used in the visualiza-
tion of volume data, refraction effects are typically ignored and all rays are
treated as straight. In this thesis we aim to enable interactive rendering of

5

CHAPTER 1. INTRODUCTION 6

refraction and present an approach capable of rendering refracted illumination
for volume rendering at interactive frame rates.

1.2 Refraction

Light is refracted when the speed at which it can propagate in a medium
changes. When transitioning to a medium where the propagation speed is
slower, the light will change direction toward the the slower medium. Re-
fraction is responsible for a wide range of optical phenomena that often sig-
nificantly affect the appearance of transparent materials. For instance, the
directional change towards the normal of a light ray entering a convex glass
lens surrounded by air, which has a higher speed of light, will cause a magni-
fying behavior. Caustics are a well-known phenomenon caused by refraction.
Caustics refer to the shadow patterns emerging when light passing through
a curved surface is concentrated in some areas and dispersed in others. An
example of this are the dancing patterns seen underwater due to a wavy water
surface.

1.3 Problem and Contribution

As mentioned earlier, caustics form when photons are focused in some regions,
leaving other regions shadowed. When rendering refraction and caustics, both
the viewing rays and light rays are curved. This is problematic because track-
ing which light rays that contribute to the illumination of some point along a
viewing ray is not trivial. Offline techniques, such as volumetric photon map-
ping presented by Gutierrez [2], aim to simulate this phenomenon directly, by
shooting photons through a scene and storing illumination contributions where
they land. These techniques require large amounts of photons to be simulated
for the result to appear continuous, and are thus prohibitively expensive for
interactive applications. Additionally, if particles are forward integrated like
this, there is no guarantee that the result will be continuous. Regions entirely
devoid of particles may appear.

We draw inspiration from the field of texture-based flow visualization, who
was faced with a similar issue, and adopt the use of a semi-Lagrangian back-
ward integration scheme. Rather than forward integrating the photons and
depositing their values where they land, the values for each pixel are found by
looking backward in time, in the direction of the photon movement, to find the
value that is to be transported here. This approach guarantee a continuous
result. Light is backward integrated and propagated through the volume in a
plane-by-plane manner. By simultaneously propagating the light and viewing
rays, illumination does only need to be stored for the current plane, we thus

CHAPTER 1. INTRODUCTION 7

avoid the need for an intermediate illumination volume. Our approach sup-
ports soft shadows and caustics, as demonstrated in Figure 0.1, at interactive
frame rates. To the best of our knowledge, our work is the first fully inter-
active method capable of rendering volume data using advanced refractive
effects. Furthermore, our technique was designed to avoid precomputation
allowing fully dynamic manipulation of all rendering parameters.

1.4 Thesis Structure

First, in the following chapter (Chapter 2), we give an overview of scientific
work related to this thesis. In Chapter 3, we cover the basics and theoretical
background of GPU-based interactive volume rendering based on raycasting
and slicing approaches. The main contribution of the thesis is covered in
Chapter 4. Here we describe ray propagation schemes, light calculations and
compositing. Following this, we discuss implementation details in Chapter 5.
In Chapter 6, we go through a selection of images rendered with our imple-
mentation showing the capabilities of our approach, as well as performance
tests. The final chapters, 7 and 8, are devoted to discussions and limitations,
and conclusions and future work, respectively.

Chapter 2

Related Work

In this chapter we will cover previous work on advanced illumination tech-
niques. First we go through previous technique for volume illumination, fol-
lowed by techniques for rendering refractive effects and finally nonlinear ray-
tracing, such as the modeling of mirages caused by atmospheric refraction.
In principle, light transport in participating media is guided by the radiative
transfer equation as described by Chandrasekhar [3]. However, due to the
high computational costs of physically-based rendering, interactive techniques
typically employ simplified optical models. As discussed by Max [4], com-
mon simplifications include the emission-absorption model which disregards
scattering effects or approaches that only consider single scattering. In recent
years, a number of interactive volume rendering methods have been presented
that incorporate more advanced effects as comprehensively discussed in the
survey by Jönsson et al. [5].

2.1 Volume Illumination, Shadowing and
Occlusion

Ambient occlusion techniques aim to calculate shadowing from ambient light
sources. The addition of ambient occlusion in a rendered image does not only
help making images look more realistic, but can also help to make spatial
structures more apparent by providing visual cues [1]. To enable dynamic
ambient occlusion, Ropinski et al. [6] used local data histograms to speed
up the computation when the transfer function is changed. The histograms
provide information about the data value distribution in the neighbourhood
of a voxel. Because holding one local histogram for each voxel would require
large amounts of memory, the histograms are sorted into clusters using vector
quantization. A 3D texture is used to map voxels to the cluster the particular
voxels are associated with. The local histograms for each cluster are stored as

8

CHAPTER 2. RELATED WORK 9

rows in a 2D texture that is used during interactive rendering. The histograms
are computed independently of the current transfer function, allowing the
transfer function to be specified without the need for further preprocessing.
The histograms are used during interactive rendering to approximate ambient
occlusion, subsurface scattering, color bleeding, and glow.

Hernell et al. [7] proposed a local variant of ambient occlusion which is cal-
culated in a spherical neighborhood of a voxel. Their algorithm works by
progressively accumulating ambient light contributions for each voxel from
discrete directions in a spherical pattern. For each voxel they calculate the
ambient light contributions from one direction at every frame and add it to
the accumulated ambient light. The ambient light calculations are interleaved
with the main rendering pass, allowing for user interaction although the am-
bient light computation may not be finished.

Schlegel et al. [8] used 3D summed area tables (SATs) over extinction coeffi-
cients for interactive directional soft shadows. To calculate the shadows they
use the SAT to approximate the light extinction in a cone by summing over
a series of cuboids. If the light source is moved, the light cache is recalcu-
lated. Their method also allows for the computation of ambient occlusion and
color bleeding. This is done by calculating the extinction coefficients, using
the summed area table, for progressively larger boxes around the point to be
shaded, weighting the extinction coefficients by the inverse square of the cor-
responding radius. These calculations are independent of the light positions.
Ament et al. [9] solve full light transport within finite spherical regions stored
in a preintegration table and combine this information with local illumination
and ambient occlusion. They build upon the observations made by Schlegel
et al. that the spatial distribution of extinction coefficients has little effect on
the final results. Additionally scattering effects from far away have negligible
effects on a given location due to their exponential nature. This means that
the spherical region that is preintegrated over can be small. Light transport
is computed by Monte-Carlo simulation and stored in the preintegration ta-
ble. The preintegration table is independent of specific data sets and transfer
functions. In later work [10], Ament et al. also presented a technique that
uses summed area tables to compute soft shadows for multiple directional and
point light sources. Zhang and Ma [11] presented a method to compute light
transport by solving a convection-diffusion equation. They also developed an
approach for decoupled shading that separates global lighting evaluation from
per-sample material shading [12].

Sunden et al. [13] proposed a selective update scheme to minimize computa-
tions when light settings are changed. Multiple light sources are propagated

CHAPTER 2. RELATED WORK 10

through the volume using a technique named coherence-base light propaga-
tion. In this technique, lights are sorted in groups based on which principle
axis their directions are the closest to. Lighting information is stored, for all
lights, in a single illumination volume. By using a higher precision floating-
point texture to store the illumination volume, energy from one or more light
source can be added or subtracted freely without having to recompute the
volume for all lights. This way updating illumination from one light source
can be done simply by first subtracting the old illuminate cast by this light
before reintroducing it with the new settings.

Kniss et al. [14] proposed an approach that allows for the interleaving of light
and viewing computations, thereby eliminating the need for an intermediate
illumination volume. They introduced the concept of half angle slicing, where
slices are angled half way between the view direction and the light direction.
Their method supports phase functions and direct illumination and was the
first interactive volume rendering solution to incorporate multiple scattering
[5]. Schott et al. [15] used a similar approach for a view-dependent approxima-
tion of ambient occlusion using incremental convolution. In their setup slices
are aligned with the view plane. Occlusion for the current slice is calculated
by averaging samples from the previous plane in a conical neighbourhood
around the current fragment. Šoltészová et al. [16] extended this approach
to enable user-specified light positioning. This was later extended by Patel
et al. [17] who proposed an efficient convolution-based approach capable of
generating dynamic soft shadows. They introduce a stochastic elliptical Dirac
filter kernel achieving results similar to that of a Gaussian kernel with very
few samples. Sunden et al. [18] proposed a plane sweep approach that also
enables incremental lighting computations with a small memory footprint.
Their method enables advanced illumination effects such as shadowing and
scattering in a raycasting-based solution. While many efficient methods for
interactive advanced volume illumination have been developed, none of the
above approaches supports refraction.

2.2 Rendering of Refraction

Several methods for the real-time rendering of refractive effects on surfaces
have been presented. Wyman [19] used an image-space approach to approx-
imate refraction of a distant environment through two interfaces. They ap-
proximate the position of the second interface by estimating the depth along
the refracted ray. The estimation is done by interpolating between the mesh
depth along the view vector and along the surface normal. The interpolation
is weighted based on the ratio between the angle of the incident ray to the
normal and the angle of the refracted ray to the normal. The normals of the
back faces are stored in a buffer, and can thus be retrieved at the estimated po-

CHAPTER 2. RELATED WORK 11

sition of the second interface. In later work they extended this approximation
to also handle caustics through either photon emission or photon gathering on
the GPU [20]. Oliveira and Brauwers [21] used a similar method to enable the
rendering of refractive deformable objects. Rather than approximating the in-
tersections points of noninitial interfaces based on the angles of incidence and
transmittance, they approximate them using a ray perspective-depth-buffer
intersection solution. The intersection is done against the depth buffer of the
back-faces. The technique by Davis and Wyman [22] additionally handles to-
tal internal reflection. They, like Wyman [19] and Oliveira and Brauwers [21],
employ a screen space solution. They also intersect against the depth buffer,
but do so using a binary search in the depth buffer to approximate, within a
threshold, the intersection points in logarithmic time.

The rendering of refraction effects on rough objects was investigated by Wal-
ter et al. [23], who showed how existing microfacet models could be extended
to simulate materials such as etched glass. They presented an offline ren-
dering solution using importance sampling to speed up computations. De
Rousiers et al. [24] proposed a real-time technique capable of rendering rough
refractive materials using a combination of cone tracing and macro geometry
filtering together with a pre-convolved environment map. Their cone tracing
is done against back face depth buffers using the ray perspective-depth-buffer
intersection described by Oliveira and Brauwers [21], but is done on four rays
bounding a spherical Gaussian lobe. The back face buffers are downsampled
and filtered such that this tracing allows them to approximate the refracted
Gaussian lobe leaving the mesh, which is used for sampling the environment
map.

2.3 Nonlinear Raytracing

An early approach to approximate ray propagation in media of non-constant
refractive indices by repeated application of Snell’s law was used by Berger et
al. [25] to render atmospheric effects such as mirages. They simulate mirages
by tracing rays through a mirage box consisting of multiple layers of varying
index of refraction. Gröller [26] presented a general approach to nonlinear ray
tracing for the visualization of mathematical and physical systems. Weiskopf
et al. [27] developed a GPU-based technique for nonlinear ray tracing in the
context of relativistic visualization, modeling phenomena such as gravitational
lensing. Stam and Languenou [28] extended a standard ray tracing algorithm
to handle non-constant media by employing the eikonal equation, for example,
to model continuous variations of the refractive index in air causing mirages.
Full global illumination of continuously refracting participating media can be
performed using volume photon mapping, as proposed by Gutierrez et al. [2].
Their approach simulates curved light paths and inelastic scattering for the

CHAPTER 2. RELATED WORK 12

rendering of atmospheric effects.

Ihrke et al. [29] achieved real-time frame rates for the rendering refractive
surface models by utilizing a voxelized version of the model and precomputing
light using wavefront tracking based on the eikonal equation. In their method,
light is propagated incrementally as particles, bundled into packets of four
forming a wavefront patch. At each step the intensity of the light is calculated
based on the size of the wavefront patch, using the intensity law of geometric
optics, and deposited into an illumination volume by rendering the particles
as point primitives. Refraction is calculated based on the ray equation of
geometric optics (derived from the eikonal equation) which models refraction
in non-constant media. Sun et al. [30] proposed a similar solution for rendering
voxelized surface models, but additionally allowing lighting parameters to be
changed at interactive frame rates. They adopt the ray equation of geometric
optics Ihrke et al. used. They employed an octree decomposition of the
refractive index field to enable adaptive ray marching, allowing them to take
larger steps when computing the illumination volume. Cao et al. [31] presented
a raytracing approach that like Ihrke et al. and Sun et al.’s methods handle
non-constant refractive media. However, instead of basing their refraction
calculations on the ray equation of geometric optics, they employ the ray
equation of gradient-index optics. This allows them to do larger steps when
traversing the media in comparison to those based on geometric optics, and
thus gaining performance.

Ament et al. [32] introduced the refractive radiative transfer equation which
models the continuous bending of light rays for the physically-based render-
ing of participating media with spatially varying index of refraction. Their
approach uses photon mapping to accurately simulate continuous refraction
and multiple scattering. In the context of volume rendering, only few at-
tempts have been made to incorporate refraction. Li and Mueller [33] used a
spline-based filter for the high-quality reconstruction of gradients to improve
the appearance of refraction effects and employed an octree to speed up com-
putations [34], but they also focus discretely sampled surface-based objects.
Rodgman and Chen [35] presented a refractive volume rendering framework
based on discrete ray tracing. They use anisotropic nonlinear diffusion to fil-
ter the data in order to reduce noise in the refractive indices. None of these
approaches, however, is capable of rendering refractive volumetric scalar fields
at interactive frame rates.

Chapter 3

Interactive Volume Rendering

In this section we give an overview of GPU-based direct volume rendering. The
method presented in this thesis is a direct volume rendering solution. Volume
rendering is a collective noun referring to rendering methods that produce 2D
images from 3D volumetric data. Rendering of volumetric data is important
in a number of situations such as scientific visualization, medical imaging and
in computer graphics to model phenomena not easily represented by surfaces.
In the context of scientific visualization, volume rendering methods are of-
ten applied to visualize volumetric data gathered from either simulations or
experiments. The field of medical imaging field is often concerned with visual-
izing volumetric data gathered from, for example, CT (computed tomography)
scans or MRI (magnetic resonance imagery).

1-y

bilinear

y

cdp

pab

p

h

p

e

1-z
z

raenilirtraenil

p

1-xx

a

d

x 1-x

a

1-xx

a

d

b b b

f

c c

g

Figure 3.1: Linear (left), bilinear (middle) and trilinear (right) interpolation.
Image taken from [36].

13

CHAPTER 3. INTERACTIVE VOLUME RENDERING 14

3.1 Reconstruction

Volumetric data is generally represented by discretized grids, which is in turn
represent continuous 3D scalar fields f : R3 → R, which we refer to as vol-
umes. For the purpose of this thesis we assume that the volumetric data is
stored in discrete regular grids, that is the cells of the grid are cuboid. Volu-
metric data, in the form of discrete regular grids, can be conveniently stored
in GPU memory as 3D textures. For the remainder of this thesis, we assume
that the volumes are stored in 3D textures. Because the data is discretized,
the continuous function must be reconstructed from the discrete grid. There
are various reconstruction filters that can be applied in order reconstruct con-
tinuous scalar fields from discrete ones. Examples of such filters are nearest
neighbour filtering, trilinear interpolation or more accurate, but expensive,
filters such as cubic B-spline filtering [36]. Trilinear filtering of textures is
supported by graphics hardware, which means that by representing the scalar
field as a 3D texture the continuous field can be reconstructed with small per-
formance impacts. The reconstructed volume function can then be accessed
by simple texture lookups in shaders. Figure 3.1 illustrates the expansion
from linear filtering to bilinear and to trilinear filtering.

3.2 Transfer Functions

In the context of direct volume rendering, the scalar values in the volume
are assigned optical properties. This is done by applying a transfer functions
to the volume. Transfer functions are typically used to map the sampled
values from the volume to RGB colors and alpha, corresponding to a mapping
tf : R→ R4. Transfer functions are stored in GPU memory as texture lookup
tables where the sampled values are used as texture coordinates. Transfer
functions can be applied either directly to the elements of the discrete scalar
field before reconstruction (pre-interpolative), or they can be applied to the
reconstructed values sampled from the volume (post-interpolative) [36]. In
Figure 3.2 we can see the effects of applying the transfer function before and
after reconstruction. The post-interpolative method yields the better results.

3.3 Volume Rendering Integral

In general, the mathematical formulation of light transport in a participating
medium is given by the radiative transport equation which describes the total
radiance L(x, ω) at a position x in direction ω [4]:

L(x, ω) = T (x0, x) · L0(x0, ω) +

x∫
x0

T (x′, x) · σ(x′) · Ls(x′, ω) dx′, (3.1)

CHAPTER 3. INTERACTIVE VOLUME RENDERING 15

Figure 3.2: Pre-interpolative (left) and post-interpolative (right) transfer func-
tion application. Applying the transfer function before reconstruction causes
detrimental artifacts. Image taken from [36].

where L0(x0, ω) is the background radiance from a boundary position x0 and
σ(x) is the extinction coefficient at a position x. The transmittance T (xi, xj)
between any two points xi and xj is:

T (xi, xj) = e−τ(xi,xj), (3.2)

where τ(xi, xj) is the optical depth defined as:

τ(xi, xj) =

xj∫
xi

σ(x′) dx′. (3.3)

Ls(x, ω) corresponds to the amount of radiance arriving from all directions at
a point x in the direction ω:

Ls(x, ω) =

∫
Ω

P (x, ω′, ω) · T (xb, x) · L0(x0,ω
′) dω′, (3.4)

where Ω is the sphere of all directions. Scattering probability is described by
the phase function P (x, ω′, ω), which is the probability density of radiance
being scattered from an incident direction ω′ to direction ω.

3.4 Emission-Absorption Integral

In practice, the costly integration over the sphere is often avoided and replaced
by simpler models. The most commonly employed model is the emission-
absorption model. In this model scattering is ignored. Instead of the scattering

CHAPTER 3. INTERACTIVE VOLUME RENDERING 16

term Ls(x
′, ω), we use only the emissive term Le(x

′), which is independent of
direction. The background radiance L0(x0, x) is usually assumed to be 0 for
volume visualization leaving us with the following integral[37]:

L(x) =

x∫
x0

T (x′, x) · σ(x′) · Le(x′) dx′ (3.5)

This integral can be discretely approximated with a Riemann sum:

L(x) ≈
n∑
i=1

T (xi, x) · σ(xi) · Le(xi) ∆xi︸ ︷︷ ︸
c(xi)

(3.6)

where c(xi) denotes the radiance at xi. Later, when compositing is discussed
in Section 3.6, we refer to this radiance as the premultiplied color, that is
the color at xi multiplied with the associated opacity. Substituting in ci
(for convenience) and the definition of T (xi, x) we can also approximate the
transmittance term:

L(x) ≈
n∑
i=1

c(xi) · exp

− x∫
xi

σ(x′) dx′

≈

n∑
i=1

c(xi) · exp

− i−1∑
j=1

σ(xj) ∆xj

=

n∑
i=1

c(xi) ·
i−1∏
j=1

exp (−σ(xj) ∆xj)

=
n∑
i=1

c(xi) ·
i−1∏
j=1

(1− α(xj))

(3.7)

with opacity αj at position xj defined as:

α(xj) = 1− exp(−σ(xj)∆xj) (3.8)

Generally the premultiplied color c(xi) and opacity α(xi) are retrieved by
applying a transfer function to the scalar values associated with position xi.

3.5 Volume Rendering Algorithms

In this section we will go through the two volume rendering algorithms most
related to the method presented in this thesis, namely raycasting and view-
aligned slicing.

CHAPTER 3. INTERACTIVE VOLUME RENDERING 17

image
plane

eye

rays

Figure 3.3: In the raycasting method rays are traversed from the eye along
rays through the volume. Image taken from [36].

Raycasting

Raycasting is an important technique that many volume renders and volume
rendering techniques build upon. Raycasting aims to evaluate the volume
rendering integral directly by sampling the volume at discrete intervals along
rays leaving the camera in a manner that essentially amounts to the Riemann
sums we discussed in the previous section [36]. Each pixel in a rendered image
represent a single ray (except when supersampling is used) leaving the camera
as illustrated in Figure 3.3. To render an image by raycasting in a front-to-
back manner, we start by initializing the pixels to a fully transparent color.
After initialization we start sampling the volume along the ray associated with
this pixel. At each sample along the ray, we apply the transfer function to the
sampled value to retrieve the optical properties, such as the color, associated
with this value. The color is then composited under the current color in the
pixel as we will discuss in Section 3.6.

View-aligned Slicing

Another popular technique in volume rendering is view-aligned slicing [36].
The idea of this technique is to transverse the volume in a plane-by-plane
manner, outputting the optical properties of the volume at the positions of
the current plane and compositing them in the final output image. The slices
are aligned with the view plane as seen in Figure 3.4. The planes can be
represented as planar geometry that are swept through the volume. The
slices can be processed in a front-to-back or back-to-front order. When using
front-to-back traversal, the evaluated slice is composited under the previously
process slices, and in the case of back-to-front it is composited over, using the
under and over operators [38] as discussed in the next section.

CHAPTER 3. INTERACTIVE VOLUME RENDERING 18

image plane

image plane

viewing

rays

viewing
rays

eye eye

Figure 3.4: In the view-aligned slicing method the volume is processed in a
plane-by-plane manner. Image taken from [36].

3.6 Compositing

Compositing is the mechanism used when iteratively evaluating the volume
rendering integral, for example as done in raycasting. If we look back to
the discretized volume rendering integral for emission and absorption, we can
reformulate it to support recursive evaluation.

L(x) ≈
n∑
i=1

c(xi)︸ ︷︷ ︸
ci

·
i−1∏
j=1

(1− α(xj)︸ ︷︷ ︸
αi

) (3.9)

Here we define ci as the premultiplied color at the current position xi while
αi denotes the opacity. If we evaluate the integral in a front-to-back scheme,
compositing is done with an under operation. The equations for this operation
are:

Ci = Ci−1 + (1−Ai−1) · ci
Ai = Ai−1 + (1−Ai−1) · αi

(3.10)

where Ci and Ai are the accumulated color and opacity for index i. If the
integral is evaluated in a back-to-front scheme the composition must be done
with an over operation. The equations for this are:

Ci = ci + (1− αi) · Ci−1

Ai = αi + (1− αi) ·Ai−1
(3.11)

CHAPTER 3. INTERACTIVE VOLUME RENDERING 19

3.7 Opacity Correction

Usually the transfer functions are specified in relation to a fixed sample dis-
tance. Our previous definition of opacity,

αi = α(xi) = 1− exp(−σ(xi)∆xi)︸ ︷︷ ︸
1−αi

, (3.12)

assumes that the opacity is specified for a sample distance of ∆xi. If we want
to change the sample rate the opacity must be corrected if the output is to
appear similar. There are several reasons one might want to change the sample
rates. Increasing the sample rate can for example be done in order to produce
an image of higher quality, decreasing the sample rate can be done to increase
performance. If we increase the sample rate without correcting the opacity,
regions in the volume would end up appearing more opaque than they should.
Opacity for a sample distance of ∆x′i, based on an opacity specified for a
sample distance of ∆xi, can be calculated using the following equation [39]:

α′i = 1− exp
(
−σ(xi)∆x

′
i

)
= 1− exp

(
−σ(xi)∆xi

∆x′i
∆xi

)
= 1− exp (−σ(xi)∆xi)

∆x′i
∆xi

= 1− (1− αi)
∆x′i
∆xi

(3.13)

The premultiplied color must also be corrected since it has been multiplied
with the uncorrected opacity.

c′i = ci
α′i
αi

(3.14)

3.8 Gradients and Lighting

Lighting is crucial for how humans perceive 3D objects. Without lighting
discerning the shapes or curvatures of objects can be very difficult. Most
illumination models commonly used in computer graphics compute lighting
for surfaces based on the surface normals. In our case however we don’t have
defined surfaces but we want to apply the same illumination models. The
typical solution to this issue is to use the gradient of the scalar field as the
normal when shading points in the volume along rays. The gradient does in
fact give us the normal of the isosurface passing through the point associated
with the value of that point [36]. The gradient of a scalar field f is defined
as:

∇f =

∂f
∂x
∂f
∂y
∂f
∂z

 (3.15)

CHAPTER 3. INTERACTIVE VOLUME RENDERING 20

Since we usually don’t have the gradient of the volume as part of the data, we
need to calculate an estimate. The simplest and most commonly used method
of estimating the gradient is by calculating finite differences like the central
difference:

∇f(x, y, z) ≈ 1

2h

f(x+ h, y, z)− f(x− h, y, z)
f(x, y + h, z)− f(x, y − h, z)
f(x, y, z + h)− f(x, y, z − h)

 (3.16)

where h denotes the distance of the samples. Using the gradient as the normal
one can employ illumination models such as Lambertian reflectance which
models diffuse reflection. The Lambertian reflectance states that the light
intensity as reflected of a surface is proportional to the cosine of the angle
between the light direction and surface normal.

3.9 Preintegration

In order to achieve interactive frame rates in the context of volume rendering,
the number of volume samples that can be evaluated per frame is limited. The
lower sample rates often chosen for volume rendering will cause artifacts. To
remedy these artifacts, preintegration can be employed. In Figure 3.5 we can
see these artifacts and the results of using preintegration. When preintegra-
tion is employed, evaluation of the volume rendering integral is done using the
trapezoid rule of numerical integration rather than with a Riemann sum. In-
stead of sampling the transfer functions at only the currently evaluated scalar
value, we can consider the integral between the current value and the previous
value. By assuming a linear relationship between the two we can precalculate
an approximation of the integral between all pairs of values. These precal-
culated transfer function colors are then stored in 2D or 3D lookup tables.
Figure 3.6 shows two examples of images rendered using preintegration along
with the lookup tables used for the retrieval of transfer function colors. We
denote the alpha between points xi and xj by:

α(xi, xj) = 1− exp

(
−
∫ xj

xi

σ(x′) dx′
)

≈ 1− exp

(
−∆x

∫ 1

0
σ((1− λ)f(xi) + λf(xj)︸ ︷︷ ︸

Λ(xi,xj ,λ)

) dλ

)

= 1− exp

(
−∆x

∫ 1

0
σ(Λ(xi, xj , λ)) dλ

)
︸ ︷︷ ︸

1−α(xi,xj)

(3.17)

α(xi, xj) is thus a function dependent on xi, xj and ∆x, or more specifically
the scalar values from the volume function at position xi and xj and the

CHAPTER 3. INTERACTIVE VOLUME RENDERING 21

Figure 3.5: Volume rendering of an engine without preintegration on the left,
and with on the right.

Figure 3.6: Isosurfaces rendered for two datasets with their corresponding
preintegration lookup tables. Image taken from [40].

sample rate ∆x [39, 40]. We approximate the premultiplied color in a similar
fashion:

c(xi, xj) ≈∆x

∫ 1

0
c
(
Λ(xi, xj , λ

′)
)

· exp

(
−∆x

∫ λ

0
σ(Λ(xi, xj , λ

′)) dλ′
)
dλ

(3.18)

Like αi,j , ci,j is a function dependent on the scalar values at xi, xj and the
sample rate ∆x. Alternatively, one can assume the sample rate ∆x to be

CHAPTER 3. INTERACTIVE VOLUME RENDERING 22

Figure 3.7: Visible regions are shown as white cubes. The volume is divided in
uniformly sized blocks. In the left image roughly 40% of the fragments where
skipped. In the right image around 80% of the fragments where skipped [36].
Image taken from [36].

constant and correct the opacity after the preintegration. The benefit of doing
this is that the lookup texture can be 2D instead of 3D. The opacity corrected
version of α′i,j is then:

α(xi, xj)
′ = 1− (1− α(xi, xj))

∆x′
∆x , (3.19)

using the same logic as in section 3.7. These functions are approximated for
all combinations of values in the preintegraion table, typically in the range
[0, 1]. They can be solved either analytically as the integrals are now over
linear functions, or numerically using Riemann sums.

3.10 Empty Space Skipping

Extensive regions of volumes might not contribute to the final rendering [36].
Consider the case where all points in a region map to fully transparent colors
via the transfer function, the region will be fully invisible. Performance can be
gained by skipping these regions during rendering. The conventional approach
for this is to partition the regions of the volume into visible and invisible
regions. The regions can be partitioned, for example, by constructing an
octree around the visible regions of the volume, or dividing it into uniformly
sized blocks thus dividing the volume based on visibility [41]. In the context of
raycasting, the empty space can be skipped by starting the ray at the nearest
visible region. In Figure 3.7 we can see such a partitioning. The empty regions

CHAPTER 3. INTERACTIVE VOLUME RENDERING 23

of the volume are invisible, whilst the regions contributing the the image are
marked as white-outlined cubes.

Chapter 4

Interactive Volume Refraction

Figure 4.1: Viewing rays () are forward integrated while light rays ()
are backward integrated. The paths of the light rays are reconstructed by
looking back to the previous illumination plane.

The goal of our method is to render volumetric refractive participating media
with illumination at interactive frame rates while avoiding precomputation. In
particular, we want to avoid the explicit generation of an illumination volume
as, in the context of refraction, such a discretization is problematic since the
curved light rays greatly complicate sampling on a regular grid. For non-
interactive applications, techniques such as volumetric photon mapping [2,
32] have been employed to render scalar fields with refractive media. These
techniques are, however, prohibitively expensive for interactive applications
as the amount of photons needed for the result to appear continuous is too

24

CHAPTER 4. INTERACTIVE VOLUME REFRACTION 25

large. Rather than shooting individual photons, our technique propagates
light in a plane-by-plane manner while simultaneously advancing viewing rays
as illustrated in Figure 4.1. The volume is traversed in planes parallel to the
image plane and, in the following description, we assume a single directional
light source. Before discussing the details of light and viewing ray propagation
in Sections 4.2, 4.3, and 4.4, we will first briefly outline the foundations of our
model in Section 4.1.

4.1 Model

We assume a continuous scalar-valued volumetric function f : R3 → R as
well as an additional field η : R3 → R that defines the refractive index at
every point. Based on the ray equation of geometric optics [28], we can then
describe the path of a light ray in this field as:

d

ds

(
η
dx

ds

)
= ∇η (4.1)

where ds denotes an infinitesimal step in the direction tangential to the curved
ray. We adopt the discretized version of this equation described by Ihrke
et al. [29] and later used by Sun et al. [30]. They define the ray direction
as v = η dxds and rewrite the equation as a system of first-order differential
equations:

dx

ds
=
v

η
,

dv

ds
= ∇η, (4.2)

which can be discretized as:

xi+1 = xi +
∆s

η
vi, vi+1 = vi + ∆s∇η, (4.3)

where xi and xi+1 correspond to the previous and new position, respectively,
along the ray, vi and vi+1 are its previous and new directions, and ∆s is the
step size. With this we can model the changes in ray direction caused by
refraction, as ∇η can also be discretized using finite differences. In practice, it
is usually convenient to specify η as a function of the scalar value (and/or other
attributes), as is commonly done for other optical properties such as color
and opacity. We therefore, in addition to the color transfer function ctf and
the opacity transfer function αtf , provide a refraction transfer function ηtf .
Volume rendering commonly uses the particle model of Porter and Duff [38].
However, when introducing refraction it is convenient to also provide explicit
control over the color of the transmissive medium. We therefore additionally
introduce a medium color transfer function mtf .

Following the physically-based color model by Oddy and Williams [42], we can
interpret the values provided by these functions as pigment particles suspended

CHAPTER 4. INTERACTIVE VOLUME REFRACTION 26

in a filter-like medium. The color of the pigments is specified by ctf while the
color of the medium is given by mtf . Intuitively, the value of αtf controls
the proportion of medium vs. particles, i.e., αtf = 0 means that no reflective
particles are present, while αtf = 1 corresponds to densely packed particles
that do not permit transmittance. If the medium color is constant white, this
exactly corresponds to the standard Porter-Duff model. For varying medium
colors, however, it implies that in this model it is possible to have a visible
contribution of the volume to the final image even if αtf is constant zero. An
example of this would be (idealized) tinted glass which only exhibits filtering
but not reflective behavior.

4.2 Light Propagation

As discussed in the previous section, we can discretize light paths in a refract-
ing medium by forward-integrating them using the gradient of the refractive
index field. The major disadvantage of this approach is that it makes it
difficult to efficiently store illumination information, which is needed during
viewing ray traversal. We draw inspiration from the field of texture-based flow
visualization where a similar issue occurs. When forward-advecting a texture
in an unsteady vector field in a Lagrangian manner, holes may appear and
a dense coverage of the domain is difficult to maintain. A solution is to use
a hybrid Lagrangian-Eulerian scheme [43], where backward integration on a
regular grid is employed. Given the similarity between the two scenarios, we
adopt an analogous approach for light propagation in refractive media.

Light is propagated in a plane-by-plane manner, storing its direction and
radiance in 2D buffers. For every point in the light buffer we backward-
integrate the light direction and intersect it with the previous light plane.
This gives us the incoming radiance, which is then attenuated and filtered
based on the particle and medium contributions between the two planes. The
gradient of the refractive index field ∇η is then used to update the light ray
direction. More formally, for every pixel position on the current light buffer
Li, we compute:

Li = Li−1Ii(1− α)m, (4.4)

where Li denotes the light color on light plane i and Ii is its intensity (see
the discussion on intensity correction below). L0 is initialized with the color
of the light source. Light is attenuated by the opacity, α, and filtered by the
medium color m, of the particles between the planes i − 1 and i. We use
preintegration tables based on the corresponding transfer functions, which are
updated whenever they are changed. The light direction is updated using the
ray equation of geometric optics discussed earlier:

ldi = ldi−1 + ∆s∇η. (4.5)

CHAPTER 4. INTERACTIVE VOLUME REFRACTION 27

(a) (b)

Figure 4.2: Effects of light filtering. (a) No filtering. (b) Filtering of light and
light direction.

The ray direction changes in the direction of the gradient of the field of indices
of refraction and ld0 is the direction of the light prior to any refraction events.
As with Li−1, ldi−1 is obtained by intersecting back to the previous light plane
in the direction of the light.

Light Filtering

This backward integration scheme as-is models a directional light source. How-
ever, following the approach of Patel et al. [17], we can use incremental convo-
lution to efficiently support distant area light sources with controllable softness
with little additional costs. The intuition of this is that by applying the blur-
ring kernel to the previous light plane at every iteration, earlier light events,
like shadowing, will become increasingly diffuse as light progresses. Their el-
liptical convolution kernel which uses a randomized rotational offset can be
straightforwardly employed instead of a simple texture lookup, and requires
only two additional texture fetches (for the three-sample kernel, which is used
throughout the thesis). Additionally, we use the same kernel to filter the ray
directions to remedy artifacts caused by the backward mapping approach. The
artifacts are caused by the fact that refracted rays tend to move toward the
refractive media. The backward mapping will have a bias towards light near
the boundary of the media, where light is dispersed, because the backward ray
direction will tend to point into the direction of the boundary. The filtering
counteracts this bias to some degree. The filtered versions of light color and
direction are then simply used instead of Li−1 and ldi−1 in Equations 4.4 and
4.5. An example of the effect of applying this filtering is shown in Figure 4.2.

CHAPTER 4. INTERACTIVE VOLUME REFRACTION 28

Figure 4.3: Light intensity is dimmed from S0 to S1, and brightened again
from S1 to S2.

Intensity Correction

Caustics are caused by the concentrations and dispersal of light and represent
an important aspect of light transfer in refractive media. When used naively,
the backward mapping approach lets us propagate and diffuse light, but does
not capture caustics. The intensity law of geometric optics states that the en-
ergy within an infinitesimal stream tube formed from rays leaving a wavefront
element of size dS1 and hitting one of size dS2 is constant [44]:

I1dS1 = I2dS2, (4.6)

where I1 denotes the light intensity on dS1 and I2 the intensity on dS2. In
our approach, we use a discretized version of the intensity law:

Ii =
Ii−1Si−1

Si
, (4.7)

where Ii is then the intensity of the light on an element with an area of Si
originating from an element with an area of Si−1 and intensity Ii−1. Figure 4.3
illustrates the intensity law. Light leaving S0 is dimmed as it travels to S1,
and is again brightened as it travels from S1 to S2.

In principle, we could compute the required areas by backward-integrating the
vertices of a regular shape. However, a more efficient solution is to approxi-
mate them using screen-space partial derivatives of the intersection between
the light ray and the current and previous line planes as modern GPUs of-
fer built-in functions to compute these derivatives. The areas S1 and S2 in
Equation 4.7 are then given by:

Si ≈
∣∣∣ d
dx
pi

∣∣∣∣∣∣ d
dy
pi

∣∣∣, (4.8)

CHAPTER 4. INTERACTIVE VOLUME REFRACTION 29

Figure 4.4: Effects of light intensity correction. Left: no refraction. Middle:
no intensity correction. Right: intensity correction recovers caustics.

where pi is the intersection point of the light ray and the corresponding plane.
This approximation is then used in Equation 4.7 to calculate the caustics.

Figure 4.4 shows the importance of caustics for proper shadowing of refracted
light. The shadows disappear in the middle image because the light is bent
around the chin, but because caustics are not considered the light intensity in
the created gap remains the same. When caustics are considered the shadow
returns because the dispersal of the light causes its intensity be to lowered.

CHAPTER 4. INTERACTIVE VOLUME REFRACTION 30

4.3 Viewing Ray Propagation

In contrast to light propagation, viewing rays are advanced using regular for-
ward integration, i.e., we store their position, direction, and accumulated color
in a set of 2D buffers. To enable the distinction between reflective and filtering
behavior as outlined in Section 4.1, we also need an additional intermediate
buffer for the medium color. Each pixel in these buffers corresponds to one
viewing ray. In order to propagate the viewing rays together with the light,
we intersect the viewing rays with the current illumination plane.

Shading

The incoming diffuse illumination is accessed by looking up the value in the
light buffer at the current location of the viewing ray. We also calculate a
specular component analytically using a Cook-Torrance BRDF [45] with GGX
[23]. This calculation is done based on the direction of the light, the viewing
ray, and the normal. We use the gradient of the scalar field as the normal,
and calculate the reflectivity of the interface based on the relative index of
refraction between the current and previous illumination planes. The Cook-
Torrance BRDF specular reflectance model defines the specular reflection to
be:

Rs =
D(h)F (v, h)G(l, v, h)

4(n · l)(n · v)
(4.9)

where D denotes the facet slope distribution function, G the geometric atten-
uation function and F the Fresnel term. The v, l and h terms denote the view,
light, and halfway vectors, respectively. There are multiple choices that could
be used for the D, G, and F terms. Karis investigated various combinations
of terms when working on the shading model for Unreal Engine 4 (UE4) [46].
We adopt the same D and G terms as chosen for UE4, namely Trowbridge-
Reitz GGX [47] for the D term and a modified version of Schlick’s model [48]
for the G term. The Trowbridge-Reitz GGX D term is given by:

D(h) =
α2

π((n · h)2(α2 − 1) + 1)2
(4.10)

Note that for these equations we use the α from the cited papers denoting
roughness and not opacity. We, like Karis, also adopt Disney’s remapping of
α = roughness2 [49]. The modified Schlick model for G is defined as:

G(l, v, h) = G1(l)G1(v)

G1(v) =
n · v

(n · v)(1− k) + k

k =
(roughness + 1)2

8

(4.11)

CHAPTER 4. INTERACTIVE VOLUME REFRACTION 31

For the F term we use the one described by Cook and Torrance [23, 45]:

F (v, h) =
1

2

(g − c)2

(g + 2)2

(
1 +

c(g + c)− 1

c(g − c) + 1

)
where g =

√
η2
t

η2
i

− 1 + c2 and c = v · h
(4.12)

Here ηt denotes the index of refraction on the transmitted side, and ηi the
index of refraction on the incident side. We chose this Fresnel term because
its dependent on the incident and transmitted indices of refraction rather than
some term dependent on the refractive index relative to air, making it more
convenient when used with scalar fields.

Compositing

Given the fact that we explicitly handle reflective and transmissive behavior,
the compositing step differs from standard volume rendering. Substituting
into the equations by Oddy and Willis [42, Sections 4.2 and 4.3], we obtain:

Ci = Ci−1 + (1−Ai−1) ·Mi−1 · (α · c · id + is)

Ai = Ai−1 + (1−Ai−1) · α
Mi = Mi−1 ·m

(4.13)

where C, A, and M , correspond to the previous (index i− 1) and new (index
i) values of particle color, opacity, and medium color, c, α, and m denote
the contributions of the ray segment, and id and is correspond to the diffuse
and specular illumination contributions. This equation has several differences
from standard compositing in volume rendering. First, we note that in the
original model by Oddy and Willis [42] the color was multiplied by the medium
color Mi−1 twice because they model the light as passing through the medium
and being filtered once before getting reflected of the particles and passing
through the medium again on the way back to the viewer. In our model, the
light used for the compositing has already been filtered by the medium, so we
disregard the second multiplication. Also, the specular lighting contribution
is not multiplied by the opacity, meaning that purely transmissive parts of the
volume without opacity contribution may still exhibit specular reflections, as
is desired in the case of materials such as glass.

We use preintegration in our solution to improve the quality of the output
images without increasing the sample rate. Oddy and Willis’ model must
therefore be adapted to support preintegration. We approximate the integral
between two points by assuming a linear relationship and storing the prein-
tegrated values in a lookup table. Note that the compositing of the medium

CHAPTER 4. INTERACTIVE VOLUME REFRACTION 32

color is fully multiplicative, we therefore utilize the multiplicative integral of
multiplicative calculus [50, 51] given by:

b∏
a

f(x)dx = lim
∆xi→0

n−1∏
i=0

f(ξi)
∆xi = exp

(∫ b

a
ln(f(x)) dx

)
where ξi ∈ [xi−1, xi] and x0 = a, xn−1 = b

(4.14)

The alpha compositing of Oddy and Willis’ model is identical with the stan-
dard alpha compositing, we can therefore simply use the approximation dis-
cussed in Section 3.9:

α(xi, xj) = 1− exp

(
−
∫ xj

xi

σ(x′) dx′
)

≈ 1− exp

(
−∆x

∫ 1

0
σ((1− λ)f(xi) + λf(xj)︸ ︷︷ ︸

Λ(xi,xj ,λ)

) dλ

)

= 1− exp

(
−∆x

∫ 1

0
σ(Λ(xi, xj , λ)) dλ

)
︸ ︷︷ ︸

1−α(xi,xj)

(3.17 revisited)

We express the medium color between two points using a multiplicative inte-
gral:

m(xi, xj) =

xj∏
xi

mtf (f(x′))dx
′

≈

(
1∏
0

mtf (Λ(xi, xj , λ))dλ

)∆x (4.15)

Note that the medium color can be opacity corrected for smaller sample dis-
tances by rising it to the power of ∆x′. The color compositing is identical
to the standard one, as discussed in Section 3.9, with the exception that the
medium color between the two points must be taken into account. The color
is multiplied by the medium color term:

c(xi, xy) ≈ ∆x

∫ 1

0
c(Λ(xi, xj , λ))

· exp

(
−∆x

∫ λ

0
σ(Λ(xi, xj , λ

′)) dλ′
)

·

(
λ∏
0

mtf (Λ(xi, xj , λ
′))dλ

′

)∆x

dλ

(4.16)

CHAPTER 4. INTERACTIVE VOLUME REFRACTION 33

We approximate and store these equations for a fixed sample distance ∆x
for all combinations of values in a 256 by 256 lookup table using a compute
shader. In practice it is easiest to use the compositing equations with opacity
corrections directly to compute the preintegration table. For each pair of
values we take 256 samples interpolated between the two, compositing each
sample in the final value and opacity correcting them for a sample distance of
∆x′ = 1/256. Because we assume a fixed sample distance, the preintegrated
values must also be opacity corrected should the sample distance not be ∆x.

4.4 Environment Mapping

In contrast to common volume rendering models, where transparent structures
are represented by reflecting matter, our approach can also generate visible
contributions without the presence of opaque material along a viewing ray
due to changes is the ray direction caused by refraction. The refracted rays
will distort the background, making the shape of the distorting media more
apparent. However, this effect will not be visible on a solid background. For
this reason, after ray traversal has finished, we apply an optional environment
mapping step where the final viewing ray directions are used to retrieve the
background color from a texture that is then blended with the volume ren-
dering based on medium and particle color and opacity. For simplicity, we
employ a simple equiangular environment map, but other approaches such as
a cube maps could be used as well. As neighboring rays that have undergone
refraction may exhibit large differences in direction, we use summed area ta-
bles to anti-alias the environment map as to avoid noisy results. In Figure 4.5
we can see this aliasing, even with mipmapping, and that by using summed
area tables, the noise is greatly reduced.

CHAPTER 4. INTERACTIVE VOLUME REFRACTION 34

Figure 4.5: Distorted environment map behind a refractive medium with
mipmapping anti-aliasing (left) and summed area table anti-aliasing (right).

Chapter 5

Implementation

Ray Propagation
Shader

Post-Process
Shader

Setup Shader

Color Texture
Medium Color Texture

View Ray Position Texture
View Ray Direction Texture

Light Color Texture
Light Direction Texture

Preintegration
Shader

Preintegraion Lookup Table

Repeat propagation for all planes

Figure 5.1: Overview of our algorithm. Initially the preintegration table is
recomputed using a compute shader if the transfer function has changed. The
setup compute shader clears out and initializes the buffers. In the ray prop-
agation step, viewing rays and light are propagated front-to-back between all
illumination planes. Finally, an environment map is composited behind the
model, using the color, medium and ray direction buffers, and the final image
is rendered to the screen.

The presented method was implemented using OpenGL 4.5. All the ma-
jor steps of our algorithm are executed on the GPU. Figure 5.1 shows an
overview of the major steps in our algorithm. All buffers are stored in layered
2D textures with two layers each. These layers are written to and read from
in a ping-pong fashion. Modern OpenGL allows for a cheap method of ping-
ponging using multi-layer framebuffer attachments. By writing the gl Layer
built-in variable, a geometry shader can specify which layer of the attachment
is written. Synchronization is realized with glTextureBarrier, which assures
that texture writes have been completed and that texture caches are inval-
idated. Our algorithm uses 6 layered textures: the light color texture, the

35

CHAPTER 5. IMPLEMENTATION 36

light direction texture, the view ray position and direction textures, and the
accumulated color and medium texture. These textures are initialized using
a compute shader. This initialization shader clears the color and medium
texture, calculates the view ray directions and initial positions based on the
viewing transformation matrix and initializes the light and light direction tex-
tures with the color and direction of the light source. Directions and positions
are stored in viewing coordinates.

5.1 Preintegration Lookup Table

When the transfer function is changed, the preintegration lookup table is
recomputed in a compute shader. The four transfer functions used in our
algorithm require in total eight channels, three for the particle color, three
for the medium color, one for opacity and one for indices of refraction. We
preintegrate the paricle color, medium color and alpha. The index of refraction
transfer function is not preintegrated. The preintegration lookup table must
therefore hold seven channels. To facilitate this we store it in a 256 by 256
RGBA texture with two layers. This leaves us with a spare channel that
could in principle hold preintegrated values for indices of refraction, but in
our implementation we do not use this.

5.2 Ray Propagation

Light and viewing ray propagation are then performed in a single shader
program executed for every light plane. A geometry shader first constructs
the light plane as a triangle strip. The fragment shader carries the main
workload of the algorithm and consists of the two stages described in Sec-
tions 4.2 and 4.3. A more detailed outline of the entire algorithm is given in
Algorithm 1. During our ray propagation stage, no state changes take place
leading to very little driver overhead. At every iteration we first call glTex-
tureBarrier to make sure the work from the previous iteration is completed,
followed by one draw call, with one vertex. Which plane the shader is working
on is determined by the vertex data of the single vertex supplied in the draw
call.

Light Propagation

Light propagation from the previous plane is performed using backward in-
tegration. The values to be propagated to the current location are accessed
by intersecting, in the direction of the light at the current position, with the
previous illumination plane. The intersection point is transformed to screen
coordinates, which are used as texture coordinates for looking up the light
color and direction. The elliptical convolution kernel by Patel et al. [17] is

CHAPTER 5. IMPLEMENTATION 37

used to filter the sampled light, using a pseudorandom rotational offset. The
light intensity calculation is performed using GLSL’s built-in derivative func-
tions. The ratio between the differences of the current light positions and
the intersection points gives us a cheap approximate of the intensity at the
current position. The contributions of the volume between the two planes are
determined using the preintegration tables for the medium and particle color
and opacity and used to compute the new light color. The index of refrac-
tion gradient is computed on-the-fly, by applying ηtf to the neighboring data
values before computing the central differences. It is then used to update the
light direction.

Viewing Ray Propagation

The incoming illumination is retrieved from the light texture and specular
shading is computed using the volume gradient (which is also computed on-
the-fly) and the BRDF model described in Section 4.3. The light texture
is accessed by transforming the current position of a viewing ray to screen
coordinates, giving us the appropriate sample location. As in the light propa-
gation stage, the contributions of the current ray segment are retrieved from
the preintegration tables and are used to compute the new opacity, particle
color and medium colors. The ray direction is updated using the refractive
index gradient. Finally, the ray position is advanced by intersecting it with
the next light plane.

5.3 Post Processing

Finally, after the ray propagation stage, the post process shader is executed
to finalize the image and render it to the screen. This stage composites the
environment map behind the rendered volume. The sample locations of the en-
vironment map are determined by the ray directions in the view ray direction
texture. To reduce noisy aliasing of the environment map (due to incoherent
ray directions) we store the environment map as a summed area table and use
this to calculate the environment color in the polygon formed from the ray
directions of the current fragment and three of its neighbours. The environ-
ment map is composited behind the rendered volume using Oddy and Willis’
model [42], taking into account the alpha and medium color overlaying it.

CHAPTER 5. IMPLEMENTATION 38

Data:
lb : light buffer
ldb : light direction buffer
cb : color buffer
mb : medium buffer
vpb : viewing ray position buffer
vdb : viewing ray direction buffer
∆s : sample distance

initializeBuffers(lb,ldb,cb,mb,vpb,vdb)

foreach plane pi ∈ planes do
writelayer = i mod 2
readlayer = 1− writelayer
foreach fragment x ∈ fragments do

light propagation
ldi = texture(ldb, x, readlayer)
lpi−1 = intersect(pi−1,x,-ldi)

Li−1 = filter(lb, lpi−1, readlayer)
ldi−1 = filter(ldb, lpi−1, readlayer)

Si = |dFdx(x)| · |dFdy(x)|
Si−1 = |dFdx(lpi−1)| · |dFdy(lpi−1)|
Ii = Si−1 / Si

[α,m] = integrationTable(lpi−1,x)
Li = Li−1 · Ii · (1− α) ·m
ldi = ldi−1 + ∆s∇η

store(lb, Li, x, writelayer)
store(ldb, ldi, x, writelayer)

end
view propagation

vpi = texture(vpb, x, readlayer)
vdi = texture(vdb, x, readlayer)
[Ci−1, Ai−1] = texture(cb, x, readlayer)
Mi−1 = texture(mb, x, readlayer)

id = texture(lb, x, readlayer)
is = specularBDRF(ldi,vdi,∇f)

[c, α,m] = integrationTable(vpi−1,vpi)
Ci = Ci−1 + (1−Ai−1) ·Mi−1 · (Mi−1 · α · c · id + is)
Ai = Ai−1 + (1−Ai−1) · α
Mi = Mi−1 ·m

vdi+1 = vi + ∆s∇η
vpi+1 = intersect(pi+1,vpi,vdi+1)

store(vpb, vpi+1, x, writelayer)
store(vdb, vdi+1, x, writelayer)
store(cb, [Ci, Ai], x, writelayer)
store(mb, Mi, x, writelayer)

end

end

end

Algorithm 1: Pseudocode of our algorithm. For brevity, sampling of the
volume and gradient reconstruction have been omitted.

Chapter 6

Results

In order to demonstrate the capabilities of our algorithm, we show several ex-
amples of volumetric datasets with refractive properties specified using trans-
fer functions for particle and medium color as well as refractive index. In
practice, the specification of the refractive index transfer function ηtf and
the medium color transfer function mtf is performed using an additional user
interface widget, which allows for the specification of ηtf as a curve, while
mtf is specified using a color gradient. Initially, ηtf is constant one while
mtf is constant white, amounting to conventional volume rendering without
refraction. While any added complexity to the already non-trivial process of
transfer function specification is potentially problematic from a usability point
of view, we found these functions surprisingly easy to control.

Figure 6.1 shows a timestep of a supernova simulation lit from above. A
ground plane was added to show the effects of refractions on the shadow.
The outermost layer uses a purple medium color, but is otherwise transparent
revealing inner structures. In Figure 6.1 (a) all refractive indices are equal
and the difference between the refractive indices of the outer and inner layers
increases from (b) to (d). In addition to the appearance of caustics, the
increasing distortion is also clearly visible in the zoom-ins on the bottom of
the figure.

The piggy bank dataset, depicted in Figure 6.2, exhibits complex light pat-
terns due to due to its curved nature. We use a combination of white reflective
contributions and a yellow media color, to create the appearance of a semi-
transparent material such as plastic. The effect of light source softness can be
seen by comparing Figure 6.2 (a), (b), (c), and (d) – with increasingly softer
light, the caustics smoothen out and become less prominent.

39

CHAPTER 6. RESULTS 40

Figure 6.3 demonstrates the importance of refraction for the appearance of
transparent structures. In Figure 6.3 (a) a volumetric scene of a glass filled
with liquid is rendered without refraction using only reflective material prop-
erties (i.e., conventional Porter-Duff compositing without a medium color).
Both the glass and the fluid were given low opacity values to make them semi-
transparent. In Figure 6.3 (b), we show the same scene rendered using our
method, but still with constant refraction indices, i.e., no refraction. However,
we use more realistic material properties by specifying negligible absorption
(i.e., opacity) for both the glass and the liquid. The colors are solely deter-
mined by the medium color. Figure 6.3 (c) specifies the refractive indices
for both glass and liquid, but both have zero opacity simulating the appear-
ance of a mostly transparent drink such as beer. Note the colored caustics on
the ground and back planes and at the base of the stem. In Figure 6.3 (d),
we increase the opacity of the liquid to recreate the appearance of a denser
drink such as juice – in comparison to the previous figure, the liquid now
absorbs most of the incoming light resulting in a dark shadow on the wall.
Furthermore, a semicircular pattern caused by refraction at the rim of the
glass becomes visible on the liquid. Finally, in Figure 6.3 (d) we change the
medium color of the glass to a green tint and the medium color of the liquid
to a red shade with similar refraction indices as in Figure 6.3 (c), resulting in
a dark red appearance of the liquid similar to red wine in a green glass.

In Figures 6.4 and 6.5 we can see total internal reflection. Figure 6.4 shows a
water like volume with a floor. Light shafts and caustics caused by the wavy
surface can be seen. The medium color transfer function is set to a heavy
blue-green color. Figure 6.5 shows a model of a ship encased in a refractive
blue box-shaped medium and demonstrates total internal reflection. Viewing
rays entering the volume are perfectly reflected when they hit the internal
walls of the volume. It is worth noting that the total internal reflection is
modeled inherently by the ray equation of geometric optics.

Figure 6.6 shows a CT angiography scan of a human head with different
refractive indices for air and soft tissue. The medium color for the soft tissue
is set to a shade of yellow, while the remaining tissues have mostly opaque
reflective properties leading to an appearance similar to an amber trapping. A
clipping plane has been specified to set the opacity in one half of the head to
zero, but leaving all other material properties unchanged. The distortions due
to refraction are clearly visible, as is the refraction on the boundary between
the soft tissue and the air-filled lungs in the bottom left part of the image.

Figure 6.7 shows an MRI scan of a kiwifruit rendered with and without re-
fraction. It is worth noting that the image rendered without refraction might

CHAPTER 6. RESULTS 41

Dataset Resolution Render Time FPS

Supernova 432x432x432 108.53 ms 9.21
Piggy bank 512x512x134 157.04 ms 6.37
Glass 768x768x800 217.20 ms 4.60
Hand 244x124x257 52.77 ms 18.95
Head 512x512x333 205.12 ms 4.88

Table 6.1: Rendering performance as measured on an Intel i5-6600K 3.50
GHz CPU equipped with an NVIDIA GeForce 1070 GTX GPU. Table of
performance measurements. The measurements show the average render time
over 100 frames with a viewport size of 768× 768 and a sample distance of 1.

actually be more realistic than the one with. Even though the flesh of the
kiwifruit is fairly translucent, light is scattered too much by the various mate-
rials for smooth refractions. It could potentially be argued that the refraction
in this instance adds some depth to the material, and thus making features in
the kiwi easier to distinguish.

In Figure 6.8, a CT scan of a human hand is shown with transfer functions
that use both medium and particle color to highlight different structures. The
difference in refractive indices between the individual tissue types give the
blood vessels the appearance of colored glass and cause a complex interplay
between light and shadow regions.

Finally, while it is not our goal to accurately simulate light transport in par-
ticipating media, but rather to achieve plausible results at interactive frame
rates, we show a comparison between our approach and a physically-based
renderer in Figure 6.9. Figure 6.9 (a) shows a simple scene rendered with
our technique, while Figure 6.9 (b) uses NVIDIA’s Iray, a state-of-the-art
physically-based global illumination engine. Image generation with Iray took
approximately three minutes. While there are obviously a number of differ-
ences between the two images, partially caused by different material models,
but also due to the fact that our renderer uses a voxelized version of the scene
while the original triangle mesh was used in Iray, it can be seen that the main
refraction characteristics including the caustics are approximated quite well.

To evaluate the performance of our method, we conducted measurements on
an Intel i5-6600K 3.50 GHz CPU and an NVIDIA GeForce 1070 GTX GPU
for five of the datasets. Performance was measured on an Intel i7-2600K 4.20
GHz CPU and an NVIDIA GeForce 980 GTX GPU for the three last. In our
implementation the sample distance, i.e., the distance between light planes,
is specified as a multiplier for the minimum dimensions of a voxel – a sample

CHAPTER 6. RESULTS 42

Dataset Resolution Render Time FPS

Water 256x256x128 327.31 ms 3.05
Ship 256x256x385 443.69 ms 2.25
Kiwi 256x256x128 155.15 ms 6.45

Table 6.2: Rendering performance as measured on an Intel i7-2600K 4.20
GHz CPU equipped with an NVIDIA GeForce 980 GTX GPU. Table of per-
formance measurements. The measurements show the average render time
over 100 frames with a viewport size of 768× 768 and a sample distance of 1.

distance of one ensures a minimum of one sample per voxel for all orientations.
All results and images in this thesis were generated using a sample distance
of one. Table 6.1 lists performance measurements, run on the 1070 GTX
machine, of the algorithm on the datasets used to produces the images in this
section, while Table 6.2 lists performance measurements run on the 980 GTX
machine. Higher resolution datasets are rendered using a higher number of
illumination planes and thus generally take longer to render. While naturally,
the incorporation of refraction comes at a cost, our algorithm produces high-
quality images at subsecond frame rates with all computations performed
on-the-fly.

CHAPTER 6. RESULTS 43

(a) (b)

(c) (d)

Figure 6.1: One timestep of a supernova simulation with increasing refractive
index of the outermost layer from (a) to (d). The bottom row shows zoom-ins
of the middle left parts of the top row images.

CHAPTER 6. RESULTS 44

(a) (b)

(c) (d)

Figure 6.2: CT scan of a piggy bank with refraction and combination of trans-
missive and reflective material properties and increasing light source softness
from (a) to (d).

CHAPTER 6. RESULTS 45

(a) (b) (c)

(d) (e)

Figure 6.3: A volumetric dataset of a filled glass rendered with different ma-
terial properties. (a) Constant refractive index and only reflective colors, with
a constant white medium color. (b) Constant refractive index with varying
medium colors. (c) Different refractive indices for glass and liquid with vary-
ing medium colors (”beer”). (d) Higher absorption for the liquid (”juice”).
(e) Different medium colors for glass and liquid (”red wine in green tinted
glass”).

CHAPTER 6. RESULTS 46

Figure 6.4: Caustics under a wavy surface.

Figure 6.5: Model of a ship in a refractive box.

CHAPTER 6. RESULTS 47

Figure 6.6: CT scan of a human head with different refractive indices for air,
soft tissue, and other tissues. Only the denser tissues have opacity contribu-
tions, but an additional clipping plane has been specified to set then to zero
in parts of the dataset without affecting the transmissive properties.

CHAPTER 6. RESULTS 48

Figure 6.7: MRI of a Kiwifruit. The left image is rendered without refraction
while the right is rendered with.

CHAPTER 6. RESULTS 49

Figure 6.8: CT scan of a human hand with a mixture of transmissive and
reflective properties and varying refractive indices.

CHAPTER 6. RESULTS 50

(a) (b)

Figure 6.9: Comparison of our method to a physically-based offline renderer.
(a) Our technique. (b) NVIDIA’s Iray.

Chapter 7

Discussion and Limitations

While we have demonstrated that our technique is capable of rendering plau-
sible refractive effects for volumetric data at interactive frame rates, there are
also several limitations. At present, our implementation only supports a sin-
gle distant light source. While, in principle, multiple light sources could be
handled, current GPU restrictions on the number of concurrent render targets
constrain the number of light buffers. Even without these constraints, how-
ever, due to the need of a single coherent traversal direction, all light sources
would have to lie on the same hemisphere.

While we currently choose to orient the light plane to coincide with the image
plane, this is not a restriction of our approach. An arbitrary orientation could
be selected straightforwardly, so it would also be possible two use the half angle
plane between view and light direction as proposed by Kniss et al. [14]. While
this approach would avoid artifacts at a 90 degree angle between light source
and viewing direction, it also results in a slight undersampling of the light
buffer for the viewing rays. This could of course be remedied by increasing
the light buffer resolution, but this would mean that separate framebuffer
objects would have to be used as OpenGL requires all attachments to have
the same dimensions incurring a performance overhead. In our experiments,
the current solution has proven to be a good trade-off in the majority of the
cases and artifacts only appear very close to the 90 degree angle between
viewing and light direction. The fact that the light is propagated from slice
to slice means that light cannot be refracted more than 90 degrees. This is
not a major issue, however, because in most cases such large changes of ray
direction do not happen, and in the case where they could occur, the result
would likely appear noisy.

Our technique tend to produce inaccurate results when the light source is

51

CHAPTER 7. DISCUSSION AND LIMITATIONS 52

Figure 7.1: Rendering of CT scan of a human head with mild refractive index
on the left and high refractive index on the right.

small (sharper shadows). Figure 4.2 from Section 4.2 illustrates this. When
the light source is small, artifacts from the backward mapping, the bias toward
rays near the boundary of the medium, is more prominent. With a larger light
source this effect is diminished as the elliptical filter allows for more light to
propagate from the center and spread through the volume.

The way we calculate caustics is prone to cause excessively bright spots when
rendering high indices of refraction, often bright enough to pass through nearly
opaque media. They occur when the light intensity for the current fragment
is calculated from neighbouring fragments whose ray directions vary greatly.
This will cause the wavefront element leaving to be very large on the previous
plane, causing high intensity as it is concentrated on the small wavefront
element around the evaluated fragment. Figure 7.1 shows these bright spots.
In the right image, there are several erroneous bright spots, particularly visible
in the eye.

Due to the fact that lighting information has to be propagated throughout
the volume, our implementation currently only incorporates a limited form of
empty space skipping that stops ray traversal as soon as the bounds of the

CHAPTER 7. DISCUSSION AND LIMITATIONS 53

contributing volume (either through opacity or through transmission) have
been reached. While viewing ray computations can be skipped as soon as
full opacity has been reached, illumination has to be further propagated and,
due to the inherently parallel nature of execution on the GPU, this only leads
to limited performance gains. In the future, we plan to investigate more
effective strategies for both empty space skipping and early ray termination
using features such warp voting.

A further limitation is that our approach treats the index of refraction as a
scalar quantity, disregarding the fact that physical refraction also affects the
wavelength of light (dispersion). This means that our method is therefore not
capable of capturing wavelength-dependent phenomena such as prisms. In
principle, this could be handled by specifying separate refractive indices for
the spectral samples, at the cost of making their specification more complex.
Alternatively, such a spectral refractive index could potentially be derived as
a function of the medium color, but we have not yet experimented with this.

For many visualization purposes, such as medical diagnosis, some of the ef-
fects of refraction are clearly undesirable. Refracting structures act as lenses,
distorting the appearance of other objects. If accurate judgment of sizes or
angles is important, such effects should be avoided. On the other hand, similar
to shadows, refraction effects may aid in the perception of shapes, supporting
an improved perception of properties such as curvature. In fact, distortion
lenses as a focus+context tool have a long tradition in many distinct areas of
visualization. While a detailed study of the perceptual implications of refrac-
tion effects is beyond the scope of this thesis, we believe that this could be
an interesting subject for further empirical research expanding on the work of
Lindemann and Ropinski [1]. One interesting aspect of refraction, in partic-
ular when combined with control over the medium color, is that it can pro-
vide information about the presence of objects without introducing occlusion.
Hence, a limited degree of refraction could represent an interesting approach
for sparsely encoding the presence of contextual structures. In this context,
we would also like to note that our method does not constrain the source of
the refractive index field, meaning that instead of the original scalar field – as
done for all the results in presented in this thesis – a different volume, e.g.,
in the case of multimodal data, could be used providing an additional optical
property that can represent additional information [52]. Moreover, with re-
spect to visualization for presentation, as opposed to analysis or exploration,
we believe that selectively used refractive effects can be a meaningful stylistic
tool capable of creating compelling images that was previously missing from
the volume visualization.

Chapter 8

Conclusions and Future Work

In this thesis, we have presented a novel technique for the rendering of volu-
metric data with refraction. By interleaving light and viewing ray propagation
and using a semi-Lagrangian backward integration scheme for illumination
propagation, we are able to generate fully dynamic volume illumination with
advanced effects such as soft shadows and caustics. Our method does not
use any precomputation and all rendering parameters can be changed inter-
actively. We have demonstrated that our technique is capable of creating
plausible approximations of complex refractive phenomena in participating
media that were previously only possible in offline renderers.

In our method the volume is traversed in a plane-by-plane manner on view-
aligned planes. Viewing rays are propagated by intersecting them with the
next plane. The illumination at each plane is computed by backward integra-
tion. For each pixel in the illumination buffer, the illumination information
are found by looking back to the previous plane in the direction of the light.
Soft shadows are realizing by iteratively convolving the illumination buffer by
an efficient blurring kernel, requiring only few additional samples. Caustics
are calculated based on the intensity law of geometric optics. The optical
properties between planes are retrieved from a preintegration lookup table.

As mentioned in chapter 7, our method is not capable of rendering dispersion,
that is the splitting of white light into a spectrum of colors. For future work
it could be interesting to investigate methods that could enable the render-
ing of dispersion. One possible way this could be achieved is to refract the
red, green and blue channels separately according to their wavelengths. By
iteratively convolving a blurring over the light buffer these channels would get
mixed potential producing a convincing spectrum. Currently our method pro-
duces inaccurate caustics for small light sources, due to the bias the backward

54

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 55

mapping has toward light near boundaries. For larger light sources the bias is
remedied by the filtering of the light buffer. Perhaps a different, or differently
weighted filter could be employed to remedy the bias without softening the
shadows and caustics. The filter would need to improve the amount of light
pointing toward the currently evaluated point that gets propagated to this
point. In the current implementation, specular reflections are not occluded.
Rendering physically based reflections in refractive participating media would
require refracted volumetric occlusion. If refracted volumetric occlusion could
be accessed either by real-time computations or by looking up preprocessed
data, it could be coupled with an environment mapping solution to produce
more realistic reflections. Our model only supports refraction through smooth
media. It could be interesting to investigate techniques that could allow our
model to be expanded to allow the rendering or refraction through rough me-
dia. This would require efficient blurring of viewing rays progressing past the
rough refraction event while also propagating the light further.

Bibliography

[1] F. Lindemann and T. Ropinski, “About the influence of illumination
models on image comprehension in direct volume rendering,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17, no. 12,
pp. 1922–1931, 2011. doi: 10.1109/TVCG.2011.161.

[2] D. Gutierrez, A. Munoz, O. Anson, and F. J. Seron, “Non-linear Volume
Photon Mapping,” in Eurographics Symposium on Rendering (2005),
K. Bala and P. Dutre, Eds., The Eurographics Association, 2005. doi:
10.2312/EGWR/EGSR05/291-300.

[3] S. Chandrasekhar, Radiative transfer. New York: Dover Publications,
1960.

[4] N. Max, “Optical models for direct volume rendering,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–108,
1995. doi: 10.1109/2945.468400.

[5] D. Jönsson, E. Sundén, A. Ynnerman, and T. Ropinski, “A survey of
volumetric illumination techniques for interactive volume rendering,”
Computer Graphics Forum, vol. 33, no. 1, pp. 27–51, 2014. doi: 10.
1111/cgf.12252.

[6] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann, and K.
Hinrichs, “Interactive volume rendering with dynamic ambient occlusion
and color bleeding,” Computer Graphics Forum, vol. 27, no. 2, pp. 567–
576, 2008. doi: 10.1111/j.1467-8659.2008.01154.x.

[7] F. Hernell, P. Ljung, and A. Ynnerman, “Local ambient occlusion in di-
rect volume rendering,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 16, no. 4, pp. 548–559, 2010. doi: 10.1109/TVCG.
2009.45.

[8] P. Schlegel, M. Makhinya, and R. Pajarola, “Extinction-based shading
and illumination in GPU volume ray-casting,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, no. 12, pp. 1795–1802,
2011. doi: 10.1109/TVCG.2011.198.

56

http://dx.doi.org/10.1109/TVCG.2011.161
http://dx.doi.org/10.2312/EGWR/EGSR05/291-300
http://dx.doi.org/10.1109/2945.468400
http://dx.doi.org/10.1111/cgf.12252
http://dx.doi.org/10.1111/cgf.12252
http://dx.doi.org/10.1111/j.1467-8659.2008.01154.x
http://dx.doi.org/10.1109/TVCG.2009.45
http://dx.doi.org/10.1109/TVCG.2009.45
http://dx.doi.org/10.1109/TVCG.2011.198

BIBLIOGRAPHY 57

[9] M. Ament, F. Sadlo, and D. Weiskopf, “Ambient volume scattering,”
IEEE Transactions on Visualization and Computer Graphics, vol. 19,
no. 12, pp. 2936–2945, 2013. doi: 10.1109/TVCG.2013.129.

[10] M. Ament, F. Sadlo, C. Dachsbacher, and D. Weiskopf, “Low-pass fil-
tered volumetric shadows,” IEEE Transactions on Visualization and
Computer Graphics, vol. 20, no. 12, pp. 2437–2446, 2014. doi: 10.
1109/TVCG.2014.2346333.

[11] Y. Zhang and K.-L. Ma, “Fast global illumination for interactive vol-
ume visualization,” in Proceedings of the Symposium on Interactive 3D
Graphics and Games, 2013, pp. 55–62. doi: 10 . 1145 / 2448196 .
2448205.

[12] Y. Zhang and K.-L. Ma, “Decoupled shading for real-time heterogeneous
volume illumination,” Computer Graphics Forum, vol. 35, no. 3, pp. 401–
410, 2016. doi: 10.1111/cgf.12916.

[13] E. Sundén and T. Ropinski, “Efficient volume illumination with multiple
light sources through selective light updates,” in IEEE Pacific Visual-
ization Symposium, 2015, pp. 231–238. doi: 10.1109/PACIFICVIS.
2015.7156382.

[14] J. Kniss, S. Premoze, C. Hansen, P. Shirley, and A. McPherson, “A
model for volume lighting and modeling,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 9, no. 2, pp. 150–162, 2003. doi:
10.1109/TVCG.2003.1196003.

[15] M. Schott, V. Pegoraro, C. Hansen, K. Boulanger, and K. Bouatouch,
“A directional occlusion shading model for interactive direct volume
rendering,” Computer Graphics Forum, vol. 28, no. 3, pp. 855–862, 2009.
doi: 10.1111/j.1467-8659.2009.01464.x.

[16] V. Šoltészová, D. Patel, S. Bruckner, and I. Viola, “A multidirectional
occlusion shading model for direct volume rendering,” Computer Graph-
ics Forum, vol. 29, no. 3, pp. 883–891, 2010. doi: 10.1111/j.1467-
8659.2009.01695.x.

[17] D. Patel, V. Šoltészová, J. M. Nordbotten, and S. Bruckner, “Instant
convolution shadows for volumetric detail mapping,” ACM Transac-
tions on Graphics, vol. 32, no. 5, 154:1–154:18, 2013. doi: 10.1145/
2492684.

[18] E. Sundén, A. Ynnerman, and T. Ropinski, “Image plane sweep vol-
ume illumination,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 12, pp. 2125–2134, 2011. doi: 10.1109/TVCG.
2011.211.

[19] C. Wyman, “An approximate image-space approach for interactive re-
fraction,” ACM Transactions on Graphics, vol. 24, no. 3, pp. 1050–1053,
2005. doi: 10.1145/1073204.1073310.

http://dx.doi.org/10.1109/TVCG.2013.129
http://dx.doi.org/10.1109/TVCG.2014.2346333
http://dx.doi.org/10.1109/TVCG.2014.2346333
http://dx.doi.org/10.1145/2448196.2448205
http://dx.doi.org/10.1145/2448196.2448205
http://dx.doi.org/10.1111/cgf.12916
http://dx.doi.org/10.1109/PACIFICVIS.2015.7156382
http://dx.doi.org/10.1109/PACIFICVIS.2015.7156382
http://dx.doi.org/10.1109/TVCG.2003.1196003
http://dx.doi.org/10.1111/j.1467-8659.2009.01464.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01695.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01695.x
http://dx.doi.org/10.1145/2492684
http://dx.doi.org/10.1145/2492684
http://dx.doi.org/10.1109/TVCG.2011.211
http://dx.doi.org/10.1109/TVCG.2011.211
http://dx.doi.org/10.1145/1073204.1073310

BIBLIOGRAPHY 58

[20] C. Wyman and S. T. Davis, “Interactive image-space techniques for
approximating caustics,” in Proceedings of the Symposium on Interactive
3D Graphics and Games, 2006, pp. 153–160. doi: 10.1145/1111411.
1111439.

[21] M. M. Oliveira and M. Brauwers, “Real-time refraction through de-
formable objects,” in Proceedings of the Symposium on Interactive 3D
Graphics and Games, 2007, pp. 89–96. doi: 10 . 1145 / 1230100 .
1230116.

[22] S. T. Davis and C. Wyman, “Interactive refractions with total internal
reflection,” in Proceedings of Graphics Interface, 2007, pp. 185–190. doi:
10.1145/1268517.1268548.

[23] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet
models for refraction through rough surfaces,” in Proceedings of the Eu-
rographics Symposium on Rendering, 2007, pp. 195–206. doi: 10.2312/
EGWR/EGSR07/195-206.

[24] C. de Rousiers, A. Bousseau, K. Subr, N. Holzschuch, and R. Ramamoor-
thi, “Real-time rough refraction,” in Proceedings of the Symposium on
Interactive 3D Graphics and Games, 2011, pp. 111–118. doi: 10.1145/
1944745.1944764.

[25] M. Berger, T. Trout, and N. Levit, “Ray tracing mirages,” IEEE Com-
puter Graphics and Applications, vol. 10, no. 3, pp. 36–41, 1990. doi:
10.1109/38.55151.

[26] E. Gröller, “Nonlinear ray tracing: Visualizing strange worlds,” The
Visual Computer, vol. 11, no. 5, pp. 263–274, 1995. doi: 10.1007/
BF01901044.

[27] D. Weiskopf, T. Schafhitzel, and T. Ertl, “GPU-based nonlinear ray
tracing,” Computer Graphics Forum, vol. 23, no. 3, pp. 625–633, 2004.
doi: 10.1111/j.1467-8659.2004.00794.x.

[28] J. Stam and E. Languénou, “Ray tracing in non-constant media,” in
Rendering Techniques ’96. Eurographics, 1996, pp. 225–234. doi: 10.
1007/978-3-7091-7484-5_23.

[29] I. Ihrke, G. Ziegler, A. Tevs, C. Theobalt, M. Magnor, and H.-P. Seidel,
“Eikonal rendering: Efficient light transport in refractive objects,” ACM
Transactions on Graphics, vol. 26, no. 3, 59:1–59:9, 2007. doi: 10.
1145/1276377.1276451.

[30] X. Sun, K. Zhou, E. Stollnitz, J. Shi, and B. Guo, “Interactive relighting
of dynamic refractive objects,” ACM Transactions on Graphics, vol. 27,
no. 3, 35:1–35:9, 2008. doi: 10.1145/1399504.1360634.

http://dx.doi.org/10.1145/1111411.1111439
http://dx.doi.org/10.1145/1111411.1111439
http://dx.doi.org/10.1145/1230100.1230116
http://dx.doi.org/10.1145/1230100.1230116
http://dx.doi.org/10.1145/1268517.1268548
http://dx.doi.org/10.2312/EGWR/EGSR07/195-206
http://dx.doi.org/10.2312/EGWR/EGSR07/195-206
http://dx.doi.org/10.1145/1944745.1944764
http://dx.doi.org/10.1145/1944745.1944764
http://dx.doi.org/10.1109/38.55151
http://dx.doi.org/10.1007/BF01901044
http://dx.doi.org/10.1007/BF01901044
http://dx.doi.org/10.1111/j.1467-8659.2004.00794.x
http://dx.doi.org/10.1007/978-3-7091-7484-5_23
http://dx.doi.org/10.1007/978-3-7091-7484-5_23
http://dx.doi.org/10.1145/1276377.1276451
http://dx.doi.org/10.1145/1276377.1276451
http://dx.doi.org/10.1145/1399504.1360634

BIBLIOGRAPHY 59

[31] C. Cao, Z. Ren, B. Guo, and K. Zhou, “Interactive rendering of non-
constant, refractive media using the ray equations of gradient-index op-
tics,” Computer Graphics Forum, vol. 29, no. 4, pp. 1375–1382, 2010.
doi: 10.1111/j.1467-8659.2010.01733.x.

[32] M. Ament, C. Bergmann, and D. Weiskopf, “Refractive radiative trans-
fer equation,” ACM Transactions on Graphics, vol. 33, no. 2, 17:1–17:22,
2014. doi: 10.1145/2557605.

[33] S. Li and K. Mueller, “Spline-based gradient filters for high-quality re-
fraction computations in discrete datasets,” in Proceedings of EuroVis,
2005, pp. 215–222. doi: 10.2312/VisSym/EuroVis05/215-222.

[34] S. Li and K. Mueller, “Accelerated, high-quality refraction computations
for volume graphics,” in Proceedings of IEEE VGTC Workshop, 2005,
pp. 73–81. doi: 10.1109/VG.2005.194100.

[35] D. Rodgman and M. Chen, “Refraction in volume graphics,” Graphical
Models, vol. 68, no. 5, pp. 432–450, 2006. doi: 10.1016/j.gmod.
2006.07.003.

[36] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf,
Real-time volume graphics. Wellesley: A K Peters, Ltd, 2006.

[37] M. Ament, “Computational visualization of scalar fields,” PhD thesis,
Faculty of Computer Science, Electrical Engineering and Information
Technology, University of Stuttgart, 2014.

[38] T. Porter and T. Duff, “Compositing digital images,” SIGGRAPH Com-
puter graphics and interactive techniques, vol. 18, no. 3, pp. 253–259,
1984. doi: 10.1145/964965.808606.

[39] J. P. Schulze, M. Kraus, U. Lang, and T. Ertl, “Integrating pre-integration
into the shear-warp algorithm,” in Proceedings of the IEEE TVCG work-
shop on Volume graphics, 2003, pp. 109–118. doi: 10.1145/827051.
827068.

[40] K. Engel, M. Kraus, and T. Ertl, “High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading,” in Proceedings of
the workshop on Graphics hardware, 2001, pp. 9–16. doi: 10.1145/
383507.383515.

[41] W. Li, K. Mueller, and A. Kaufman, “Empty space skipping and oc-
clusion clipping for texture-based volume rendering,” in Proceedings of
IEEE Visualization, 2003, pp. 317–324. doi: 10.1109/VISUAL.2003.
1250388.

[42] R. J. Oddy and P. J. Willis, “A physically based colour model,” Com-
puter Graphics Forum, vol. 10, no. 2, pp. 121–127, 1991. doi: 10.1111/
1467-8659.1020121.

http://dx.doi.org/10.1111/j.1467-8659.2010.01733.x
http://dx.doi.org/10.1145/2557605
http://dx.doi.org/10.2312/VisSym/EuroVis05/215-222
http://dx.doi.org/10.1109/VG.2005.194100
http://dx.doi.org/10.1016/j.gmod.2006.07.003
http://dx.doi.org/10.1016/j.gmod.2006.07.003
http://dx.doi.org/10.1145/964965.808606
http://dx.doi.org/10.1145/827051.827068
http://dx.doi.org/10.1145/827051.827068
http://dx.doi.org/10.1145/383507.383515
http://dx.doi.org/10.1145/383507.383515
http://dx.doi.org/10.1109/VISUAL.2003.1250388
http://dx.doi.org/10.1109/VISUAL.2003.1250388
http://dx.doi.org/10.1111/1467-8659.1020121
http://dx.doi.org/10.1111/1467-8659.1020121

BIBLIOGRAPHY 60

[43] B. Jobard, G. Erlebacher, and M. Y. Hussaini, “Lagrangian-eulerian
advection of noise and dye textures for unsteady flow visualization,”
IEEE Transactions on Visualization and Computer Graphics, vol. 8, no.
3, pp. 211–222, 2002. doi: 10.1109/TVCG.2002.1021575.

[44] M. Born and E. Wolf, Principles of optics: Electromagnetic theory of
propagation, interference and diffraction of light. Cambridge: Cambridge
University Press, 1999.

[45] R. L. Cook and K. E. Torrance, “A reflectance model for computer
graphics,” ACM Transactions on Graphics, vol. 1, no. 1, pp. 7–24, 1982.
doi: 10.1145/357290.357293.

[46] B. Karis, “Real shading in unreal engine 4,” 2013, [Online]. Available:
http://blog.selfshadow.com/publications/s2013-shading-
course/karis/s2013_pbs_epic_notes_v2.pdf.

[47] T. S. Trowbridge and K. P. Reitz, “Average irregularity representation
of a rough surface for ray reflection,” Journal of the Optical Society of
America, vol. 65, no. 5, pp. 531–536, 1975. doi: 10.1364/JOSA.65.
000531.

[48] C. Schlick, “An inexpensive brdf model for physically-based rendering,”
Computer graphics forum, vol. 13, no. 3, pp. 233–246, 1994. doi: 10.
1111/1467-8659.1330233.

[49] B. Burley, “Physically-based shading at disney,” 2012. [Online]. Avail-
able: http://blog.selfshadow.com/publications/s2012-
shading-course/burley/s2012_pbs_disney_brdf_notes_
v3.pdf.

[50] A. E. Bashirov, E. M. Kurpınar, and A. Özyapıcı, “Multiplicative cal-
culus and its applications,” Journal of Mathematical Analysis and Ap-
plications, vol. 337, no. 1, pp. 36–48, 2008. doi: 10.1016/j.jmaa.
2007.03.081.

[51] L. Florack and H. van Assen, “Multiplicative calculus in biomedical
image analysis,” Journal of Mathematical Imaging and Vision, vol. 42,
no. 1, pp. 64–75, 2012. doi: 10.1007/s10851-011-0275-1.

[52] E. Sundén, S. Kottravel, and T. Ropinski, “Multimodal volume illumi-
nation,” Computers and Graphics, vol. 50, pp. 47–60, 2015. doi: 10.
1016/j.cag.2015.05.004.

http://dx.doi.org/10.1109/TVCG.2002.1021575
http://dx.doi.org/10.1145/357290.357293
http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
http://dx.doi.org/10.1364/JOSA.65.000531
http://dx.doi.org/10.1364/JOSA.65.000531
http://dx.doi.org/10.1111/1467-8659.1330233
http://dx.doi.org/10.1111/1467-8659.1330233
http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf
http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf
http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf
http://dx.doi.org/10.1016/j.jmaa.2007.03.081
http://dx.doi.org/10.1016/j.jmaa.2007.03.081
http://dx.doi.org/10.1007/s10851-011-0275-1
http://dx.doi.org/10.1016/j.cag.2015.05.004
http://dx.doi.org/10.1016/j.cag.2015.05.004

	Contents
	Introduction
	Motivation
	Refraction
	Problem and Contribution
	Thesis Structure

	Related Work
	Volume Illumination, Shadowing and Occlusion
	Rendering of Refraction
	Nonlinear Raytracing

	Interactive Volume Rendering
	Reconstruction
	Transfer Functions
	Volume Rendering Integral
	Emission-Absorption Integral
	Volume Rendering Algorithms
	Compositing
	Opacity Correction
	Gradients and Lighting
	Preintegration
	Empty Space Skipping

	Interactive Volume Refraction
	Model
	Light Propagation
	Viewing Ray Propagation
	Environment Mapping

	Implementation
	Preintegration Lookup Table
	Ray Propagation
	Post Processing

	Results
	Discussion and Limitations
	Conclusions and Future Work
	Bibliography

