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Introduction

The notion of the module of a family of curves goes back to the works of L. Alhfors and

A. Beurling [2], where they introduced the notion of extremal length to study the analytic

functions of one complex variable. Later on it was discovered that the module of a family

of curves is invariant under conformal transformation. Recall that the linear map given by

the differential map of a conformal maps transforms circles to circles.

Two dimensional quasiconformal mappings were introduced by Grötzsch [4] in 1928. A

rather comprehensive treatment can be found in [1, 8]. A homeomorphic quasiconformal

mapping differs from a conformal mapping by the fact that the distortion coefficient is not

equal to one anymore, but instead of being uniformly bounded. Geometrically it means

that, at a point the derivative of a quasiconformal map transforms an infinitesimal circle

to an infinitesimal ellipse for which the ratio between the major axis and the minor axis is

bounded by the coefficient of quasiconformality. The quasiconformal maps due to it’s more

flexible structure are widely used in mathematics, for example in studies of certain elliptic

partial differential equations [19], extremal problems on the Riemannian surfaces and

Kleinian groups [18]. The modulus of a family of curves is invariant under the conformal

maps but is not anymore invariant under the quasiconformal maps, but nevertheless it

changes according to the coefficient of the quasiconformality.

Extremal problems of mappings of finite distortion was initiated by Astala, Iwaniec,

Martin and Onninen in [6]. Whereas mappings of finite distortion are generalisations of

quasiconformal mappings, these do not have uniform bound on their distortion. In the

extremal problems for quasiconformal mappings, we minimize the maximal distortion,

whereas for mappings of finite distortion we minimize the mean distortion functional.

Zoltan M. Balogh, Katrin Fässler, and Ioannis D. Platis in [11] developed a separate

method to study minimisation problems for the mean distortion functional in the class

of finite distortion homeomorphisms by modulus of a family of curves. Furthermore, they

went on to prove extremality of the spiral stretch mapping defined on annulus in the

complex plane.

In 2005, Rodin’s gives a method in [17] for finding the extremal function of the module

of a extremal family of curves explicitly. In our thesis we consider minimization problems

for the mean distortion functional in the class of finite distortion homeomorphisms by

modulus of family of curve, in particular, we prove that extremal spiral stretch map in

[11], can be obtained also by an explicit formula which is based on Rodin’s theorem in

7
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[17].

The extremal quasiconformal map f is a solution of the Beltrami equation with the Bel-

trami coefficient µf given by the function k ϕ
|ϕ| , where k is arbitrary constant and ϕ(ζ)dζ2

is a holomorphic quadratic differential in a corresponding domain. The quasiconformal

solutions of the Beltrami equations with this special Beltrami coefficients (associated to a

quadratic differential) are called the Teichmüller maps. In [11], it is also shown that the

quasiconformal spiral stretch map fN in the class of finite distortion maps is the minimizer

of the mean distortion functional. In our thesis we prove that the above extremal function

fN is a Teichmüller map, which has Beltrami coefficient of form

µf (z) = k
ϕ(z)

|ϕ(z)|
,

where ϕ(z)dz2 is holomorphic quadratic differential. This relation to the extremal spiral

stretch map fN induces the length element given by |√ϕ||dz| = k|dz|
|z| . Moreover, the length

element is up to a constant defined by the extremal metric ρ = k|dz|
|z| associated to fN .

The aim of the thesis is to study one example of an extremal problem in a class of

quasiconformal homeomorphic mappings in [16] and also for class of finite distortion in

[11], acting from an annulus domain to another annulus domain with some part of the

boundary fixed. We explain how the extremal function in the class of homeomorphic map-

pings with finite distortion is related to the Teichmüller map by finding the corresponding

quadratic differential.

In Chapter 1, we start with the basic idea and definitions on the theory of quasicon-

formal maps which can be found in [1, 8, 14] and with the definition of the modulus of

a family of curves. Some basic definition required for modulus of a family of curves and

some related theorem can be found [9]. Also we present examples of the module of some

families of curves. In Chapter 2 we present an example of an extremal problem for quasi-

conformal maps and for mappings with finite distortion, for which we define spiral stretch

map. In Chapter 3 will give some definitions that can be found in [3, 5, 12, 13, 15] and

we prove the spiral stretch map is a Teichmüller map. In Chapter 4, lastly, in addition,

we state Rodin’s theorem for finding the some modules of a family of curves and extremal

functions. Also we will give two explicit formulas for finding module and extremal function

and we will prove that how modules of a family of curves and extremal functions obtained

by using of Rodin’s explicit formulas and method developed in [11] coincide with each

other. We conclude the thesis by providing some relation between the shear map and the

spiral map.



Chapter 1

Preliminary Introduction

In this chapter we will give an overview of the quasiconformal theory and present different

notions of a quasiconformal map. We also show that notion of quasiconformality is orig-

inated from a notion of conformality. We define the modulus of a curve family, and give

some example on modulus of family of curves.

1.1 Quasiconformal map

Quasiconformal mappings are generalisations of conformal mappings. They are less rigid

than conformal mappings and are therefore more applicable. The concept of quasiconfor-

mal mappings was introduced by Grötzsch [4] in 1928. He introduced the first extremal

problem which led to the notion of quasiconformality, where he considered the following

problem: Let Q be a square and R be a rectangle (that is not a square). Then there is no

a conformal mapping that maps vertices to vertices. Instead Grötzsch asked for ”the map-

ping closest to being conformal homeomorphic mapping” f : Q→ R that maps vertices to

vertices.

Before we explain the Grötzsch problem by using simple example, see Example 1.14,

we will give some necessary definitions.

Definition 1.1. Let Ω be an open set in C. A map f : Ω→ C is called conformal if f is

bijective, holomorphic and there exists a homeomorphic extension f̃ to the boundary of

the domain Ω.

Let z ∈ C be written as z = x + iy and w = f(z) = u + iv. Assuming that f is

differentiable in the variables (x, y) we obtain

df = du+ idv =

(
∂u

∂x
+ i

∂v

∂x

)
dx+

(
∂u

∂y
+ i

∂v

∂y

)
dy. (1.1)

Using the relations x = z+z̄
2 , y = z−z̄

2i , dx = dz+dz̄
2 , dy = dz−dz̄

2i , equation (1.1) can be

rewritten as

df =
1

2

(
∂f

∂x
− i∂f

∂y

)
dz +

1

2

(
∂f

∂x
+ i

∂f

∂y

)
dz̄

=
∂f

∂z
dz +

∂f

∂z̄
dz̄ = fzdz + fz̄dz̄. (1.2)

9
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The partial derivatives are

fz =
∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
, fz̄ =

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (1.3)

Recall that if f is R-differentiable at z0, then there exists a matrix

(
ux uy

vx vy

)
such

that

f(z) = f(z0) +

(
ux uy

vx vy

)(
x− x0

y − y0

)
+ o(z − z0).

If f ∈ C1 at z0 = x0 + iy0, then using the complex notation, we get

f(z) = f(z0) + ux(x− x0) + uy(y − y0) + ivx(x− x0) + ivy(y − y0) + o(z − z0). (1.4)

We modify equation (1.4) as follows,

f(z) = f(z0) +
ux
2

(z + z̄ − z0 − z̄0) +
uy
2i

(z − z̄ − z0 + z̄0) +

i
vx
2

(z + z̄ − z0 − z̄0) + i
vx
2i

(z − z̄ − z0 − z̄0) + o(z − z0)

= f(z0) +
(ux

2
+
uy
2i

+ i
vx
2

+
vy
2

)
(z − z0) +(ux

2
− uy

2i
+ i

vx
2
− vy

2

)
(z̄ − z̄0) + o(z − z0).

Thus

f(z) = f(z0) + fz(z0)(z − z0) + fz̄(z0)(z̄ − z̄0) + o(z − z0). (1.5)

Here a function f ∈ C1 can be well approximated near z0 by

L(z) = f(z0) + fz(z0)(z − z0) + fz̄(z0)(z̄ − z̄0).

Note that L can be written as the composition Tf(z0) ◦ L1 ◦ T−z0 where T−z0 = z − z0,

Tf(z0) = z + f(z0) are translations, and L1(z) = fz(z0)z + fz̄(z0)z̄ is a linear map. If we

consider f as a function of two variables, it’s Jacobian at z0 = x0 + iy0 is given by

Jf (z0) = det

(
ux uy

vx vy

)
= |fz|2 − |fz̄|2.

Proposition 1.2. Let f be an orientation preserving function that is |fz| > |fz̄|.
Then the linear map

L1(z) = fz(z0)z + fz̄(z0)z̄ (1.6)

maps circles to the ellipses.

Proof. For simplicity we first consider the function

L1µ(z) = z + µz̄, where µ(z0) =
fz̄(z0)

fz(z0)
,
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since f is orientation preserving so fz(z0) 6= 0. Then L1(z) = fz(z0)L1µ. Consider a circle

x2 + y2 = r2 of radius r centred at the origin, or in polar coordinates reiθ.

Then

L1µ(z) = z + µz̄ = x+ iy + µx+ iµy (1.7)

= (1 + µ)x+ i(1 + µ)y

maps (x, y) to (u, v) = ((1+µ)x, (1−µ)y), which implies that x = u
1+µ and y = v

1−µ . Hence,

the image of the circle x2 + y2 = r2 under L1µ(z) is the ellipse
(

u
(1+µ)r

)2
+
(

v
(1−µ)r

)2
= 1

where r(1 − µ) is the minor axis and r(1 + µ) is the major axis. Our aim is to find the

image under the function L1(z). We use polar coordinates to write z = |z|eiθ = reiθ,

fz = |fz|eiθ1 , and µ = |µ|eiθ2 . Thus

L1(z) = fz(z + µz̄) = |fz|eiθ1
(
reiθ + |µ|eiθ2re−iθ

)
= |fz|re

i
(
θ1+

θ2
2

)(
e
i
(
θ− θ2

2

)
+ |µ|e−i

(
θ− θ2

2

))
.

If we denote by g(z) = |fz|re
i
(
θ1+

θ2
2

)
and h(z) = re−i

θ2
2 , then we observe that g(z) is

a rotation and a dilation and h(z) is simply a rotation. Therefore, L1(z) becomes L1(z) =

g ◦ L1|µ| ◦ h and it also maps a circle to an ellipse with the minor axis |fz|r(1 − |µ|) and

the major axis |fz|r(1 + |µ)|, and the ratio of major axis to minor axis is 1+|µ|
1−|µ| .

Hence we conclude that f maps infinitesimal circles centred at z0 to infinitesimal

ellipses where the ratio of the major and minor axis is

Df (z0) :=
1 + |µ|(z0)

1− |µ|(z0)
=

1 + |fz̄(z0)|
|fz(z0)|

1− |fz̄(z0)|
|fz(z0)|

=
|fz(z0)|+ |fz̄(z0)|
|fz(z0)| − |fz̄(z0)|

≥ 1. (1.8)

The number Df (z0) is called the dilatation (or distortion) of f at z0, and µ(z0) = fz̄
fz

is called the complex dilatation of f at z0.

Remark 1.3. We have |µ| = |fz |
|fz̄ | < 1 since f is an orientation preserving maps, defined

in Proposition 1.2. Moreover, from definition Df we obtain |µ| = Df−1
Df+1 , therefore Df ≤ K

for some K if and only if |µ| ≤ K−1
K+1 .

We now formulate a preliminary definition of a quasiconformal map.

Definition 1.4. A smooth map f : Ω → C is quasiconformal if k̃f := sup
z∈Ω

Df (z) < ∞.

We say that f is K quasiconformal if k̃f ≤ K.

Remark 1.5. The constant k̃f ≥ 1, since Df ≥ 1. Hence K ≥ k̃f ≥ 1.

If f is conformal then we know fz̄ = 0. Therefore, Df = 1 which implies k̃f = 1.

Here we shown one of the implication of the following theorem,

Theorem 1.6. [1, page 16] A map f is conformal if and only if f is 1-quasiconformal.
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Remark 1.7. If f is quasiconformal, then the number k̃f measures how close f is to being

conformal.

We can weaken the requirement of C1 differentiability of f , and simply ask that f

has distributional derivatives or it is from ACL class, the space of absolutely continuous

functions on almost all lines parallel to the coordinate axes. Thus, if a map f : Ω → C,

Ω ⊂ C is smooth and
fz̄
fz
≤ k < 1,

then the map f is quasiconformal. Let µ : Ω → C be an arbitrary measurable function

such that ‖µ‖∞ = k < 1, or in other words µ ∈ B(0, 1) ⊂ L∞(Ω).

Definition 1.8 (Analytic definition of a quasiconformal map). Let Ω be an open

set in C. A map f : Ω → C is called quasiconformal if f is belongs in ACL in Ω, and

satisfies the Beltrami equation

fz̄ = µ(z)fz (1.9)

almost everywhere in Ω. The homeomorphism f is said to be K̃-quasiconformal if

‖ µ(z) ‖∞= ess sup
z∈Ω
|µ(z)| ≤ k < 1, with K̃ =

1 + k

1− k
.

The coefficient K̃ is an analogous to the dilatation Df . If f is conformal, then µ(z) ≡ 0.

The function µ is called the Beltrami coefficient and measures how far f is from being a

conformal map at every point.

Theorem 1.9. [3] Let f : Ω → C be a solution to the Beltrami equation (1.9). Assume

that fz̄, fz ∈ L2(Ω). Denote by fµ the solution of (1.9) in Ω = C = C ∪ {∞} such

that f(0) = 0, f(1) = 1, and f(∞) = ∞. We say that f is normalised at 0, 1,∞.

Then the set of normalised solutions fµ is in one-to-one correspondence with the Beltrami

coefficients from the open unit ball B(0, 1) ⊂ L∞(C̄). Moreover, the solutions fµ depend

holomorphically on µ and for any R > 0 there exists δ > 0 and a constant CR > 0 such

that

|f tµ(z)− z − tF (z)| ≤ CRt2 for |z| < R and |t| < δ,

where

F (z) = −z(z − 1)

π

∫
C

µ(ζ) dξ dη

ζ(ζ − 1)(ζ − z)
, ζ = ξ + iη.

We also have the following convergences, see [3].

1. If {µn(z)} is a sequence in B(0, 1) ⊂ L∞(C̄) converging to µ(z) pointwise almost

everywhere and the fµn and fµ are the corresponding (unique) solutions to the Bel-

trami equations in C̄, then fµn converges to fµ uniformly on compact subsets of

C.

2. If {fn} is any sequence of normalised (at 0, 1,∞) quasiconformal homeomorphisms

of C̄ such that their dilatations are uniformly bounded: K(fn) ≤ K0 for every n,

then there is a subsequence fnk converging uniformly on compact subsets of C to a

normalised quasiconformal map f with K(f) ≤ K0.
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Let us introduce a geometric definition of quasiconformality, which does not require

differentiability of f.

Definition 1.10. A quadrilateral Q(z1, z2, z3, z4) is a Jordan domain with four distinct

vertices z1, z2, z3, z4 with cyclic order on boundary.

Denote by R(a, b) the rectangle with vertices 0, a, a+ ib, ib.

Theorem 1.11. [14] For any quadrilateral Q(z1, z2, z3, z4) there exist unique a > 0,

b > 0, and a conformal map h : Q(z1, z2, z3, z4)→ R(a, b) such that h(z1) = 0, h(z2) = a,

h(z3) = a+ ib, and h(z4) = ib.

Remark 1.12. The rectangle R(a, b) from Theorem 1.11 is called the canonical rect-

angle for Q(z1, z2, z3, z4).

The number a
b is called conformal modulus of the quadrilateral Q(z1, z2, z3, z4) and is

denoted by M(Q(z1, z2, z3, z4)) := a
b . We provide a more general definition of the modulus

of a family of curves in Section 1.2. This construction immediately implies that if there

is a conformal map from Theorem 1.11 ϕ : Q(z1, z2, z3, z4) → Q′(z′1, z
′
2, z
′
3, z
′
4), then both

quadrilaterals have conformal modulus equal to a
b . This shows that the conformal modulus

is invariant under the conformal transformations.

Definition 1.13 (Geometric definition of a quasiconformal map). Let Ω,Ω1 be

domains in the complex plane, f : Ω→ Ω1 a homeomorphism, and K ≥ 1 a given constant.

The map f is called K quasiconformal on Ω if

M(f(Q)) ≤ KM(Q), (1.10)

for any quadrilateral Q, such that Q̄ ⊂ Ω.

We now explain the Grötzsch problem by an example:

Example 1.14. Let Q be a square and R be a rectangle (not square). Consider a map

f : Q→ R, such that

f(x, y) = (ax, y) = ax+ iy,

where a > 1 or 0 < a < 1, see Figure 1.1

• Case a > 1

We compute ∂f
∂x = a and ∂f

∂y = i, therefore, by equation (1.3) we obtain

fz =
∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
=

1

2
(a− ii) =

a+ 1

2

|fz| =
√
fzfz =

√(
a+ 1

2

)(
a+ 1

2

)
=
|a+ 1|

2
=
a+ 1

2
,

since a > 1 > 0. Similarly, we get

|fz̄| =
|a− 1|

2
=
a− 1

2
,
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Figure 1.1

since a > 1. By Definition 1.8 of distortion we get

Df =
|fz|+ |fz̄|
|fz| − |fz̄|

=
a+ 1 + a− 1

a+ 1− a+ 1
= a > 1.

• Case 0 < a < 1

We compute

fz =
∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
=

1

2
(a− ii) =

a+ 1

2

|fz| =
√
fzfz =

√(
a+ 1

2

)(
a+ 1

2

)
=
|a+ 1|

2
=
a+ 1

2
,

since 0 < a < 1. Similarly, we get

|fz̄| =
|a− 1|

2
=

1− a
2

,

because 0 < a < 1. By Definition 1.8 of distortion we get

Df =
|fz|+ |fz̄|
|fz| − |fz̄|

=
a+ 1 + 1− a
a+ 1− 1 + a

=
1

a
> 1.

Hence f is quasiconformal map, but not conformal by Theorem 1.6.

1.2 The module of a family of curves and extremal length

The dilatation of a quasiconformal map can be measured along curves, producing so called

linear dilatation. This leads to the notion of extremal length and the length-area method,

which is widely used in the theory of conformal and quasiconformal mappings on Riemann

surfaces. The extremal length has its far going generalisation: the outer measure, called

the module of a family of curves, that is one of the main tools in the theory of spacial qua-

siconformal, quasiregular mapping, mappings with finite distortion and other functional

spaces requiring that the dilatation function k(z) is an element of some integrability class.
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1.2.1 Curves

We start by fixing the notation and listing some basic definitions

Definition 1.15. Let I ⊂ R1 be an interval, which is either open, closed or semi open. A

continuous mapping γ : I → Rn, is called a curve. A curve is referred to as open or closed

if I is open or closed, respectively.

Definition 1.16. Let γ : [a, b] → Rn be a curve and let a = t0 ≤ t1 ≤ · · · ≤ tk = b be a

subdivision of [a, b]. The length of curve γ is defined by

l(γ) = sup
γ∈[a,b]

n∑
k=1

|γ(tk)− γ(tk−1)|.

Remark 1.17. The length of the curve γ satisfies 0 ≤ l(γ) ≤ ∞ and l(γ) = 0 if and only

if γ is constant.

Definition 1.18. If l(γ) < ∞, then γ : [a, b] → Rn is called a rectifiable curve. If

l(γ) =∞, then γ is called a non-rectifiable curve.

Definition 1.19. A curve γ : I → Rn is called locally rectifiable if γ restricted to each

closed subinterval of I is rectifiable.

Theorem 1.20. [9, page 8] If γ : (a, b) → Rn is absolutely continuous on every closed

subinterval of (a, b), then

l(γ) =

∫ b

a

∣∣∣dγ(t)

dt

∣∣∣ dt.
Definition 1.21. The curve γ0 : [0, l(γ)] → Rn is called the normal representation of

γ, or the parametrization of γ by means of arc length.

Definition 1.22. For each rectifiable curve γ : [a, b] → A, where A ⊂ Rn is a Borel set,

we define the line integral over γ of a non-negative Borel function ρ : A→ R, by∫
γ
ρ ds =

∫ l(γ)

0
ρ(γ0(t)) dt,

where γ0 is the normal representation of γ.

Theorem 1.23. [9, page 9] If γ : [a, b]→ A is absolutely continuous, then∫
γ
ρ ds =

∫ b

a
ρ(γ(t))

∣∣∣dγ(t)

dt

∣∣∣ dt.
Remark 1.24. Let γ : I → Ω, Ω ⊂ C, Then we use complex notation and write∫

γ
ρds =

∫
γ
ρ|dz|.
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1.2.2 Extremal length and module of a family of curves

Definition 1.25. Let Γ be a family of locally rectifiable curves in C = C∪{∞}. A function

ρ is said to be an admissible metric if ρ ≥ 0 is measurable, and

A(ρ) =

∫∫
ρ2 dL2(z) 6= 0,∞.

The length of γ ∈ Γ with respect to ρ is

Lγ(ρ) =

∫
γ
ρ |dz|.

We denote

L(ρ) := inf
γ∈Γ

Lγ(ρ).

The extremal length is defined by

λ(Γ) := sup
ρ

L(ρ)2

A(ρ)
,

where the supremum is taken over all admissible metrics ρ.

Note that Lγ(1) coincides with the length l(γ) defined Definition in 1.16, because of

Theorem 1.20.

Definition 1.26. Let Γ be a family of locally rectifiable curves in Ω ⊂ Rn. We define

F (Γ) : =
{
ρ : Rn → R : ρ is non-negative Borel function, and

∫
γ
ρ ds ≥ 1 for all γ ∈ Γ

}
.

We call ρ ∈ F (Γ) an admissible function. For each p ≥ 1 we set

Mp(Γ) := inf
ρ∈F (Γ)

∫∫
ρp dL2(z),

where dL2(z) is the two dimensional Lebesgue measure. The number Mp(Γ) is called the

p-module of the family Γ. If p = n, then Mn(Γ) is called conformal module of Γ. In

the our thesis we only consider the case p = 2.

Remark 1.27. The extremal length of Γ is equal to 1
M2(Γ) for a family of curves Γ in

Ω ⊂ C.

We can exemplify λ(Γ) = 1
M2(Γ) in the case of mappings from quadrilateral to rectangle

by making use the geometric definition of quasiconformality.

We consider a quasiconformal map f mapping the quadrilateral Q(z1, z2, z3, z4) onto

the rectangle R = {u+ iv, 0 < u < a, 0 < v < b}. Then∫∫
Q
|f ′(z)|2 dxdy = ab.

Let Γ be the family of all locally rectifiable Jordan curves in Q which joins the sides (z1, z2)

and (z3, z4). Then ∫
γ
|f ′(z)| |dz| ≥ b
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for every γ ∈ Γ, with equality if γ is the inverse image of a vertical line segment of R

joining its horizontal sides. Hence

1

λ(Γ)
=

∫∫
Q |f

′(z)|2 dxdy

inf
γ∈Γ

(∫
γ |f ′(z)| |dz|

)2 =
ab

b2
=
a

b
. (1.11)

We know M2(Q) = a
b . Here we can get rid of the chosen quasiconformal map f and

introduce the set F (Γ), whose elements ρ are non negative, Borel measurable functions on

Q(z1, z2, z3, z4) and
∫
γ ρ|dz| ≥ 1 for every γ ∈ F (Γ). Thus we will obtain

inf
ρ∈F (Γ)

∫∫
Q
ρ2dxdy = M2(Γ)

and by equation (1.11). Hence we conclude that λ(Γ) = 1
M2(Γ) .

Theorem 1.28. [9, page 16] The p-module of a family of curves for p ≥ 1 has the following

properties,

1) Mp(∅) = 0.

2) If Γ1 ⊂ Γ2, then Mp(Γ1)) ≤Mp(Γ2).

3) Mp

( ∞⋃
k=1

Γk

)
≤
∞∑
k=1

Mp(Γk).

This shows that the modulus is an outer measure on a set of continuous maps on an

interval.

Theorem 1.29. For a map f : Ω→ C, Ω ⊂ C the following is true:

1) [1, page 11 with K = 1] If f is conformal, then M2(Γ) = M2(f(Γ));

2) [1, page 11] If f is K quasiconformal, then 1
KM2(Γ) ≤M2(f(Γ)) ≤ KM2(Γ).

Remark 1.30. [8] Module of a family of non-rectifiable curves Γ̃ is zero that is M2(Γ̃) = 0.

1.2.3 Examples of the module of some families of curves.

We provide a couple of examples on how one can numerically compute module of families

of curves. We, moreover, show M2(Γ) = M2(f(Γ)) for a conformal map f .

Example 1.31. Let R = {(x, y) ∈ R2, 0 ≤ x ≤ α, 0 ≤ y ≤ β}. We want to calculate the

module M2(Γ) of a family of locally rectifiable curves Γ connecting horizontal sides of the

rectangle R, see Figure 1.2

Thus, we need to calculate

M2(Γ) = inf
{∫∫

R
ρ2 dL2(z) ; over all ρ ∈ F (Γ)

}
.

For the function ρ = 1
β and an arbitrary γ ∈ Γ, we obtain from Definition 1.21 and

Theorems 1.20 and 1.23,∫
γ
ρ ds =

∫ l(γ)

0

dt

β
=

1

β

∫ l(γ)

0
dt =

l(γ)

β
≥ 1. (1.12)
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Figure 1.2

since β = l(γ0), where γ0 is a vertical segment connecting horizontal sides of the rectangle

R. Relation (1.12) implies that the function ρ = 1
β is admissible for Γ. Let Γ0 ⊂ Γ be a

family of vertical segments connecting horizontal sides of R. Then for ρ = 1
β , and for any

γ0 ∈ Γ0 we obtain
∫
γ0
ρ ds = 1 equation from (1.12). Moreover, for any ρ ∈ F (Γ), and for

any γ ∈ Γ such that γ : [a, b]→ R we get

1 ≤
∫
γ
ρ ds =

∫ b

a
ρ(γ(t))

∣∣∣dγ(t)

dt

∣∣∣ dt =

∫ b

a
ρ(γ(t))

∣∣∣dγ(t)

dt

∣∣∣ 1
2
∣∣∣dγ(t)

dt

∣∣∣ 1
2
dt

≤

(∫ b

a
ρ2(γ(t))

∣∣∣dγ(t)

dt

∣∣∣dt) 1
2
(∫ b

a

∣∣∣dγ(t)

dt

∣∣∣dt) 1
2

≤

(∫
γ
ρ2 ds

) 1
2

l(γ)
1
2

by the Cauchy-Schwarz inequality and Theorem 1.20. Thus we obtain

1

l(γ)
≤
∫
γ
ρ2 ds,

by squaring and dividing by l(γ). Particularly, for γ0 ∈ Γ0 we deduce

1

β
≤
∫ β

0
ρ2(t) dt. (1.13)

Integrating both parts of inequality (1.13) over [0, α], we obtain∫ α

0

1

β
ds =

α

β
≤
∫ α

0

∫ β

0
ρ2(t) dt ds =

∫∫
R
ρ2 dL2(z) (1.14)

for any ρ ∈ F (Γ0). Thus we conclude that α
β ≤M2(Γ0) by taking infimum over all functions

ρ ∈ F (Γ0) in equation (1.14). Hence we obtain a lower bound for M2(Γ):

α

β
≤M2(Γ0) ≤M2(Γ) (1.15)
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by Theorem 1.28. Now we find an upper bound for M2(Γ). Since ρ0 = 1
β is admissible for

Γ, we have

M2(Γ) = inf
ρ∈F (Γ)

∫∫
R
ρ2 dL2(z) ≤

∫∫
R
ρ2

0 dL2(z) =
1

β2
αβ =

α

β
. (1.16)

Hence we obtain
α

β
≤M2(Γ) ≤ α

β

from equation (1.15) and equation (1.16), which implies M2(Γ) = α
β .

Remark 1.32. If we consider a family of locally rectifiable curves Σ connecting vertical

sides of the rectangle R, see Figure 1.3.

Figure 1.3

Then we obtain from an analogous way as in Example 1.31 M2 (Σ) = β
α . This implies

M2(Γ)M2 (Σ) = 1.

Example 1.33. Let A = {z = reiθ : r1 < |z| = r < r2, 0 < θ ≤ 2π} and let Γ be the

family of all locally rectifiable curves γ : [r1, r2]→ A, joining the boundaries in annulus A,

see Figure 1.4.

For the function ρ = 1
r log(

r2
r1

)
and an arbitrary γ ∈ Γ, we obtain∫

γ
ρ ds =

∫
γ

dt

r log
(
r2
r1

) =
1

log
(
r2
r1

) ∫
γ

dt

r
=

1

log
(
r2
r1

) ∫ r2

r1

|γ̇(t)|
|γ(t)|

dt

=
1

log
(
r2
r1

) ∫ r2

r1

∣∣∣∣ γ̇(t)

γ(t)

∣∣∣∣ dt ≥ 1

log
(
r2
r1

) ∣∣∣∣∫ r2

r1

γ̇(t)

γ(t)
dt

∣∣∣∣ (1.17)

=
1

log
(
r2
r1

) ∣∣∣∣log

(
r2

r1

)∣∣∣∣ = 1.
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Figure 1.4

We deduce that the function ρ = 1
r log(

r2
r1

)
is admissible for Γ. Let Γ0 ⊂ Γ, where Γ0 is the

family of radial curves connecting the boundaries |z| = r1 and |z| = r2 in the annulus A.

Let γ0 ∈ Γ0 and consider the parametrization of γ0 = (x1, x2) given by (x1 = t cos θ, x2 =

t sin θ), t ∈ [r1, r2]. Then dγ0(t)
dt =

(
dx1(t)
dt , dx2(t)

dt

)
= (cos θ, sin θ) and

∣∣∣dγ0(t)

dt

∣∣∣ =
√

cos2 θ + sin2 θ = 1. (1.18)

If we set function ρ = 1

r(log
(
r2
r1

)
)

in Theorem 1.23 and use equation (1.18), then we get

∫
γ0

ρ ds =

∫ r2

r1

1

r log
(
r2
r1

) dt =
1

log
(
r2
r1

) ∫ r2

r1

1

r
dt = 1,

for any γ0 ∈ Γ0. Moreover

1 ≤
∫
γ
ρ dr =

∫ r2

r1

ρ(γ(r))
∣∣∣dγ(r)

dr

∣∣∣ dr =

∫ r2

r1

ρ(reiθ) dr =

∫ r2

r1

ρ(reiθ)r
1
2 r
−1
2 dr

for any ρ ∈ F (Γ) and for any γ ∈ Γ such that γ : [r1, r2] → A. When we integrate over

[0, 2π] and obtain ∫ 2π

0
1dθ ≤

∫ 2π

0

∫ r2

r1

ρ(reiθ)r
1
2 r
−1
2 drdθ.

Applying the Cauchy-Schwarz inequality, we see that

2π ≤

(∫ 2π

0

∫ r2

r1

ρ2(reiθ)r drdθ

)1/2(∫ 2π

0

∫ r2

r1

r−1 drdθ

)1/2

=

(∫ 2π

0

∫ r2

r1

ρ2 rdrdθ

)1/2(
2π log

(
r2

r1

))1/2

.
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Squaring both sides we obtain

4π2 ≤

(∫ 2π

0

∫ r2

r1

ρ2 rdrdθ

)(
2π log

(
r2

r1

))
.

We then deduce

2π

log
(
r2
r1

) ≤ ∫∫
A
ρ2 dL2(z) and

2π

log
(
r2
r1

) ≤M2(Γ) (1.19)

by taking infimum over all function ρ ∈ F (Γ). Since the function ρ0 = 1

r log
(
r2
r1

) is admis-

sible for Γ, we also have

M2(Γ) = inf
ρ∈F (Γ)

∫∫
ρ2 dL2(z) ≤

∫∫
A
ρ2

0 dL2(z) =
2π

log
(
r2
r1

) , (1.20)

from equation (1.17). Hence from equation (1.19) and equation (1.20) we conclude that

M2(Γ) = 2π

log
(
r2
r1

) .

Remark 1.34. If we consider a family of locally rectifiable curves Σ separating the bound-

aries in annulus A, see Figure 1.5,

Figure 1.5

then we get M2 (Σ) =
log

(
r2
r1

)
2π . This implies that we have M2(Γ)M2 (Σ) = 1.

Example 1.35. In this example we show that module is invariant under a conformal

map. Let A = {z = reiθ : 1 < |z| = r < eα, 0 < θ ≤ 2π}. We consider a family Γ of locally

rectifiable curves connecting the boundaries in an annulus A, see Figure 1.6. By using

Example 1.33 we obtain

M2(Γ) =
2π

log
(
eα

1

) =
2π

α
. (1.21)
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Now, consider a conformal mapping f : A → f(A) given by f(z) = log z. If z = reiθ

then f(reiθ) = log(reiθ) = log r+ iθ. When r = 1 then f(reiθ) = iθ and when r = eα then

f(reiθ) = α + iθ. This means that the image f(A) is the rectangle R = {(x, y) ∈ R2, 0 ≤
x ≤ α, 0 ≤ y ≤ 2π}. We also obtain that the image f(Γ) is the family of locally rectifiable

curves connecting the vertical sides of rectangle R see Figure 1.6. So from Example 1.31

Figure 1.6

we know

M2(f(Γ)) =
2π

α
=

2π

log
(
eα

1

) . (1.22)

From equation (1.21) and equation (1.22) we conclude

M2(Γ) = M2(f(Γ)).



Chapter 2

Extremal problems for functional

spaces

In this Chapter we describe Grötzsch’s problem for quasiconformal maps formulated for

annula domains. Moreover, we study the extremal problem for quasiconformal maps and

for mappings with finite distortion.

2.1 Classes of mappings

We summarise the following properties of the homeomorphic maps f : Ω → C defined on

some open set Ω ⊂ C. Let fz, fz̄ ∈ L2
loc(Ω). Assume that there exists a measurable function

k : Ω→ R+ such that

‖Df(z)‖2 ≤ k(z)J(f, z)a.e., (2.1)

where J(f, z) = det(Df(z)), ||Df(z)|| = max{|Df(z)ν| : |ν| = 1}.

Then

1) f : Ω→ C is conformal if k(z) = 1.

2) f : Ω → C is K quasiconformal if k(z) is uniformly bounded, that is there is a

constant K ≥ 1 such that |k(z)| ≤ K for all z ∈ Ω.

3) f : Ω → C is called of finite distortion if k(z) is finite, that is k(z) < ∞ for all

z ∈ Ω.

Definition 2.1. The linear distortion function for f is defined by

k(z, f) : =


‖Df(z)‖2
J(f,z) if J(f, z) > 0

1 otherwise
=


|fz(z)|+|fz̄(z)|
|fz(z)|−|fz̄(z)| if J(f, z) > 0,

1 otherwise.

We need to show that ‖Df(z)‖2
J(f,z) = |fz(z)|+|fz̄(z)|

|fz(z)|−|fz̄(z)| .

We know that

Df(z)ν = fzν + fz̄ ν̄ = Df(z)eiθ = fz(z)e
iθ + fz̄(z)e

−iθ

23
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since ν = |ν|eiθ, and the Jacobian J(f, z) = |fz|2 − |fz̄|2. Also fz, fz̄ can be written as

fz = |fz|eiα and fz̄ = |fz̄|eiβ. Therefore,

|Df(z)eiθ| = | |fz(z)|eiαeiθ + |fz̄(z)|eβe−iθ| (2.2)

= | |fz(z)|ei(θ+α) + |fz̄(z)|ei(β−θ)|.

Now, |Df(z)| has maximum length when ei(θ+α) = ei(β−θ),

‖Df(z)‖ = max
|ν|=1

|Df(z)|

= | |fz(z)|ei(θ+α) + |fz̄(z)|ei(θ+α)|

= |fz(z)|+ |fz̄(z)|.

Hence we get,

‖Df(z)‖2

J(f, z)
=

(|fz(z)|+ |fz̄(z)|)2

|fz(z)|2 − |fz̄(z)|2

=
(|fz(z)|+ |fz̄(z)|)2

(|fz(z)|+ |fz̄(z)|)(|fz(z)| − |fz̄(z)|)

=
(|fz(z)|+ |fz̄(z)|)
(|fz(z)| − |fz̄(z)|)

.

Definition 2.2. The maximal distortion of a conformal or quasiconformal map is given

by kf := ess sup
z∈Ω

k(z, f).

2.2 One extremal problem for quasiconformal maps

We state the Grötzsch problem for quasiconformal maps formulated for annula domains.

Let A(q, 1) = {z | q < |z| < 1} and A(qk1 , 1) = {z | qk1 < |z| < 1} be two ring domains.

There are no conformal map from A(q, 1) to A(qk1 , 1) unless k1 = 1. It can be proved by

using the conformal invariance of the modulus of the family of curves Γ connecting the

circles: M2(Γ) = − 2π
log q for A(q, 1) and M2(Γ) = − 2π

k1 log g for A(qk1 , 1).

Grötzsch’s problem is to find the most nearly conformal mapping from A(q, 1) to

A(qk1 , 1). There is a question about what is the best way to define ”most nearly confor-

mal”. One way is to ask for a mapping with the smallest possible maximal dilation, which

is the more classical one and it is difficult to generalise. A second way is to ask for a

mapping with the minimum average dilatation. This can be applied not only to quasicon-

formal mappings but also to the mappings with finite distortion or mappings having other

restrictions for the dilatation. We illustrate the second approach for two different classes

of the mappings. In both cases the solution in the class of quasiconformal maps is unique

(up to postcomposition by conformal self-mapping of A(qk1 , 1)) if the Beltrami coefficient

has a special form: namely µf = k ϕ(z)
|ϕ(z)| . It is an analogue of the Teichmüller uniqueness

theorem.

We consider a mapping from the annulus A(q, 1) to the annulus A(qk1 , 1), k1 > 0,

in the complex plane which preserves the outer boundary |z| = 1 of annula A(q, 1) and

A(qk1 , 1) and will rotates by an angle the inner boundary.
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Definition 2.3. We denote by C the class of quasiconformal homeomorphisms mappings

f : A(q, 1)→ A(qk1 , 1) with fz, fz̄ ∈ L2
Loc(A(q, 1)) with k(z, f) ⊂ L1(A(q, 1)) and extension

to the boundary

f(z) =

z, |z| = 1

qk1−1zeiθ, |z| = q,
(2.3)

where θ ∈ [−π, π].

The maximal distortion kf in Definition 2.2, is finite for quasiconformal mappings. To

find a function that minimize this maximal distortion is the classical problem [16]. Let C
be as in Definition 2.3. Then the minimization problem can be written as:

Find f0 ∈ C such that kf0 ≤ kf for all f ∈ C and z ∈ Ω,

or

Find f0 ∈ C such that
∫
A(q,1) Ψ(kf0)ρ2(z)dL2(z) ≤

∫
A(q,1) Ψ(kf )ρ2(z)dL2(z) for all f ∈ C,

where Ψ is a continuous function and ρ is some measurable non negative function. We

can solve this problem by following five steps. Consider a map f : A(q, 1) → A(qk1 , 1) in

the class C. We denote by “z” the plane containing A(q, 1) and by “w” the plane containing

A(qk1 , 1).

Step 1 Let γ̃ be a radial segment in the w-plane. We find a curve Γ̃ in the z-plane which is

the pre-image of the curve γ̃, that is f(Γ̃) = γ̃, see Figure 2.1.
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Figure 2.1
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We move from the z-plane to a new ζ-plane by using the map ζ = log z, where

ζ = x+ iy, by the concept of branch cut. Similarly by branch cut we move from the

w-plane to the ω-plane by using map ω = logw, where ω = u + iv, see Figure 2.1.

Now we consider the images ζ(Γ̃) = Γ and ω(γ̃) = γ as it is shown in Figure 2.1.

Step 2 Let γu(v) be a vertical curve in the ω-plane for some fixed value u ∈ [log qk1 , 0] with

0 ≤ v ≤ 2π as a parameter. The curve γu(v) has length 2π. Consider the image

Γu(v) in ζ-plane, and observe that the length of Γu(v) is always greater than 2π.

Therefore, we obtain the following relation

2π ≤ l(Γu(v)) =

∫ 2π

0

∣∣∣∂Γu(v)

∂v

∣∣∣ dv, (2.4)

by using Theorem 1.20.

Step 3 Applying the Holder inequality and squaring, we get

4π2 ≤ 2π

(∫ 2π

0

∣∣∣∂Γu(v)

∂v

∣∣∣2 dv) .
By using relation (2.1), we obtain

2π ≤
∫ 2π

0
k(ω)J(g, ω)dv,

where k(ω) is w.r.t. to g in equation (2.1). Now we integrate on the interval [log qk1 , 0]

and use a change of variable. We obtain

2π log

(
1

qk1

)
≤
∫∫

A(q,1)
k(z, f)

1

|z|2
dL2(z).

Subtracting 2π log(1
q ) =

∫∫
A(q,1)

1
|z|2dL

2(z) from both sides, we deduce the following

inequality

− 1

2π

∫∫
A(q,1)

k(z, f)− 1

|z|2
dL2(z) ≤ log

(
qk1

q

)
. (2.5)

Step 4 Now we take a horizontal curve γv in ω-plane and obtain Γv in ζ-plane. We observe

that

log

(
1

q

)
≤ log

(
1

qk1

)
≤ l(Γv(u)) =

∫ 0

log qk1

∣∣∣∂d(Γv(u))

∂u

∣∣∣ du.
We repeat procedure of Step 3 and deduce

2π

(
log

(
1

q

))2

≤ log

(
1

qk1

)∫∫
A(q,1)

k(z, f)

|z|2
dL2(z).

We subtract

2π log

(
1

q

)
log

(
1

qk1

)
= log

(
1

qk1

)∫∫
A(q,1)

1

|z|2
dL2(z)

from both sides and obtain the inequality

log

(
qk1

q

)
≤ log qk1

2π log q

∫∫
A(q,1)

k(z, f)− 1

|z|2
dL2(z). (2.6)
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Step 5 After combining (2.5) and (2.6) we derive the inequality

− 1

2π

∫∫
A(q,1)

k(z, f)− 1

|z|2
dL2(z) ≤ log

(
qk1

q

)
≤ log qk1

2π log q

∫∫
A(q,1)

k(z, f)− 1

|z|2
dL2(z).

(2.7)

In the relation (2.7), the first inequality becomes an equality for the extremal function

w = eiβzϕ(|z|), where ϕ is arbitrary positive real function. Indeed, we first find the value

k(z, f) then we put that value in the left hand side of (2.7). Therefore, and setting

w = eiβzϕ(|z|) we obtain

∂w

∂z
= eiβ

∂zϕ(|z|)
∂z

= eiβ
(
ϕ(|z|) + zϕ′(|z|) z̄

2|z|

)
= eiβ

(
ϕ(|z|) +

|z|
2
ϕ′(|z|)

)
,

∂w

∂z
= e−iβ

(
ϕ(|z|) +

|z|
2
ϕ′(|z|)

)
∣∣∣∂w
∂z

∣∣∣ =

√
∂w

∂z

∂w

∂z

=

√(
eiβ
(
ϕ(|z|) +

|z|
2
ϕ′(|z|)

))(
e−iβ

(
ϕ(|z|) +

|z|
2
ϕ′(|z|)

))
=

(
ϕ(|z|) +

|z|
2
ϕ′(|z|)

)
.

Similarly, we can find ∣∣∣∂w
∂z̄

∣∣∣ =
|z|
2
ϕ′(|z|).

Therefore,

k(z, f) =
| ∂w∂z | + |

∂w
∂z̄ |

| ∂w∂z | − |
∂w
∂z̄ |

=

(
ϕ(|z|) + |z|

2 ϕ
′(|z|)

)
+ |z|

2 ϕ
′(|z|)(

ϕ(|z|) + |z|
2 ϕ
′(|z|)

)
− |z|2 ϕ′(|z|)

= 1 +
|z|ϕ′(|z|)
ϕ(|z|)

.

Hence

− 1

2π

∫∫
A(q,1)

k(z, f)− 1

|z|2
dL2(z) = − 1

2π

∫∫
A(q,1)

1 + |z|ϕ′(|z|)
ϕ(|z|) − 1

|z|2
dL2(z)

= − 1

2π

∫ 2π

0

∫ 1

q

sϕ′(s)
ϕ(s)

s2
sdsdθ = − 1

2π

∫ 2π

0

∫ 1

q

ϕ′(s)

ϕ(s)
dsdθ

= − 1

2π
2π log

(
ϕ(1)

ϕ(q)

)
= − log(ϕ(1)) + log(ϕ(q)).

We know that |w| = |eiβ||z||ϕ(|z|)| = |z||ϕ(|z|)|. When |z| = 1 then |w| = |ϕ(1)| = 1 and

when |z| = q then |w| = q|ϕ(q)| = qk1 . Therefore,

− 1

2π

∫∫
A(q,1)

k(z, f)− 1

|z|2
dL2(z) = log(qk1−1),
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and

log

(
qk1

q

)
= log

(
qϕ(q)

q

)
= log(ϕ(q)) = log(qk1−1).

Now, the second inequality in (2.7) becomes an equality if we use the extremal function

w = |z|αeiψ(argz), where ψ is an arbitrary positive real function. This also can be shown as

above, but for simplicity we do it for a particular function. So, let consider the extremal

function

w = |z|αei(argz+θ) = z
α
2 z̄

α
2 ei(argz+θ) or w = z

α
2 z̄

α
2 ei(−argz̄+θ).

Then

∂w

∂z
=

α

2z
|z|αei(argz+θ) + |z|αei(argz+θ)i−i

2z

=
α

2z
|z|αei(argz+θ) + |z|αei(argz+θ) 1

2z
,

and
∂w

∂z
=

α

2z̄
|z|αe−i(argz+θ) + |z|αe−i(argz+θ) 1

2z̄
.

Therefore,

∣∣∣∂w
∂z

∣∣∣ =

√
α2|z|2α
4|z|2

+
α|z|α
4|z|2

+
α|z|α
4|z|2

+
|z|α
4|z|2

=
|z|α

|z|

√
α2

4
+
α

2
+

1

4
=
|z|α

|z|

(
α+ 1

2

)
.

Similarly, we find

∂w

∂z̄
=

α

2z̄
|z|αei(−argz̄)+θ + |z|αei(−argz̄+θ)i i

2z̄

=
α

2z̄
|z|αei(−argz̄+θ) − |z|αei(−argz̄+θ) 1

2z̄
,

∂w

∂z̄
=

α

2z
|z|αe−i(−argz̄+θ) − |z|αe−i(−argz̄+θ) 1

2z
.

Therefore,

∣∣∣∂w
∂z̄

∣∣∣ =

√
α2|z|2α
4|z|2

− α|z|α
4|z|2

− α|z|α
4|z|2

+
|z|α
4|z|2

=
|z|α

|z|

√
α2

4
− α

2
+

1

4
=
|z|α

|z|

(
1− α

2

)
.

Hence,

k(z, f) =
| ∂w∂z | + |

∂w
∂z̄ |

| ∂w∂z | − |
∂w
∂z̄ |

=

|z|α
|z|
(

1+α
2

)
+ |z|α
|z|
(

1−α
2

)
|z|α
|z|
(

1+α
2

)
− |z|

α

|z|
(

1−α
2

) =
1

α
.

we know that |w| = ||z|α||ei(argz+θ)| = |z|α. When |z| = 1 then |w| = 1 and when |z| = q

then |w| = qα = qk1 . Hence,

log qk1

2π log q
=

log qα

2π log q
=

α log q

2π log q
=

α

2π
.
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Therefore,

log qk1

2π log q

∫∫
A(q,1)

k(z, f)− 1

|z|2
dL2(z) =

log qk1

2π log q

∫∫
A(q,1)

k(z, f)

|z|2
dL2(z)− log qk1

2π log q

∫∫
A(q,1)

1

|z|2
dL2(z)

=
α

2π

∫∫
A(q,1)

1

α|z|2
dL2(z)− α

2π

∫∫
A(q,1)

1

|z|2
dL2(z)

=
α

2πα
2π log

(
1

q

)
− α

2π
2π log

(
1

q

)
= (α− 1) log q,

and since k1 = α we obtain

log

(
qk1

q

)
= (α− 1) log q.

Hence we have equality for this particular choice of extremal function.

Re-writing the right hand side of equation (2.7) we get

log

(
qk1

q

)
≤ log qk1

2π log q

∫∫
A(q,1)

k(z, f)

|z|2
dL2(z)− log qk1

2π log q

∫∫
A(q,1)

1

|z|2
dL2(z)

log

(
qk1

q

)
≤ log qk1

2π log q

∫∫
A(q,1)

k(z, f)

|z|2
dL2(z)− log qk1

2π log q

(
2π log

(
1

q

))

log(qk1)− log(q) ≤ log qk1

2π log q

∫∫
A(q,1)

k(z, f)

|z|2
dL2(z) + log qk1

−2π(log q)2

log qk1
≤
∫∫

A(q,1)

k(z, f)

|z|2
dL2(z)

2π

− log qk1
≤ 1

(log(q))2

∫∫
A(q,1)

k(z, f)

|z|2
dL2(z)

M2(f(Γ)) ≤ 1

(log(q))2

∫∫
A(q,1)

k(z, f)

|z|2
dL2(z)

which implies,

M2(f(Γ)) ≤
∫∫

A(q,1)
k(z, f)ρ2(z) dL2(z) (2.8)

where ρ = 1
− log q|z| . The inequality (2.8) is analogous to the inequality (2.14) proved in

[10] for mappings with finite distortion.

2.3 The spiral stretch map

Definition 2.4. The N-th spiral stretch map fN is defined by

fN (z) := z|z|k1−1eik2 log |z|, z ∈ A(q, 1),

where k1 > 0 and k2 := θ+2πN
log q , θ ∈ [−π, π], N ∈ Z.
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Figure 2.2

Example 2.5. We want to find the image of a radial curve z = γ = reit, where t = π
2

is fixed and 0.4 ≤ r ≤ 1 in annulus A(q, 1) see Figure 2.2, under the map given by

Definition 2.4.

For any general z = reit we obtain

fN (z) = reitrk1−1e
i
(
θ+2πN

log q
log r

)
= rk1e

i
(
t+

(
θ+2πN

log q
log r

))
.

We set k1 = 2, q = 0.4, θ = π/2 and present the images of the ray γ = rei
π
2 , 0.4 ≤ r ≤ 1

under the map fN for N = 0, 1, 2 on Figures 2.3, 2.4, 2.5 respectively.
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Figure 2.3

Figure 2.4

Figure 2.5

Spiral stretch map fN has constant distortion k(z, fN ) which can be calculated by

making use of Definition 2.1. We write fN (z) as

fN (z) = z(zz̄)
k1−1

2 eik2 log(zz̄)1/2
.
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First we find |∂fN∂z | =
√

∂fN
∂z

∂fN
∂z . We calculate

∂fN
∂z

= |z|k1−1 ei
k2
2

log(zz̄) [
1

2
(k1 + 1 + ik2)],

and

∂fN
∂z

= |z|k1−1 e−i
k2
2

log(zz̄) [
1

2
(k1 + 1− ik2)].

Hence,

∂fN
∂z

∂fN
∂z

=

(
k1 + 1

2

)2 (
|z|k1−1

)2
+
k2

2

4

(
|z|k1−1

)2
,

and ∣∣∣∂fN
∂z

∣∣∣ = |z|k1−1

√(
k1 + 1

2

)2

+

(
k2

2

)2

. (2.9)

In a similar way we find

∣∣∣∂fN
∂z̄

∣∣∣ = |z|k1−1

√(
k1 − 1

2

)2

+

(
k2

2

)2

. (2.10)

Therefore

k(z, fN ) =
| ∂fN∂z | + |

∂fN
∂z̄ |

| ∂fN∂z | − |
∂fN
∂z̄ |

=
|z|k1−1

√
(k1+1

2 )2 + (k2
2 )2 + |z|k1−1

√
(k1−1

2 )2 + (k2
2 )2

|z|k1−1
√

(k1+1
2 )2 + (k2

2 )2 − |z|k1−1
√

(k1−1
2 )2 + (k2

2 )2

=

√
(k1 + 1)2 + (k2)2 +

√
(k1 − 1)2 + (k2)2√

(k1 + 1)2 + (k2)2 −
√

(k1 − 1)2 + (k2)2
.

2.4 One extremal Problem for maps of finite distortion

If we change the class C of quasiconformal mappings in Definition 2.3 into the class C̃ of

mapping f : A(q, 1) → A(qk1 , 1) of finite distortion satisfying boundary condition (2.3),

then k(z, f) may be unbounded. We hence introduce the definition of mean distortion

functional

Definition 2.6. Let f : Ω → C be a homeomorphism with finite distortion. The mean

distortion functional is the map

f 7→
∫

Ω
k(z, f)ρ2(z)dL2(z),

where ρ is some non negative Borel function and dL2(z) is the Lebesgue measure on the

open set Ω ⊂ C.
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If C̃ is a class of mapping as defined above, then instead of minimising the maximal

distortion coefficient, one has to minimise the mean distortion functional. Hence we obtain

the following problem [11]:

Find f0 ∈ C̃ such that∫
Ω
k(z, f0)ρ2(z)dL2(z) ≤

∫
Ω
k(z, f)ρ2(z)dL2(z) for all f ∈ C̃. (2.11)

We will explain the method which can be found in [11]. To solve this problem, we first

divide the class C̃ in homotopic subclasses C̃N such that
⋃
N∈Z
C̃N = C̃. For every mapping

f ∈ C̃ we can find f̃N ∈ C̃ which is homotopic to f . Then there exists an extremal map

fN in C̃N for each N . Moreover the mapping fN are quasiconformal and therefore have

bounded distortions kfN has been proven in [11]. We obtain the following relation∫
Ω
k(z, fN )ρ2(z)dL2(z) ≤

∫
Ω
k(z, f)ρ2(z)dL2(z) for all f ∈ C̃N . (2.12)

It turns out that the map f0 is an extremal among the sequence {fN}, N ∈ Z, in the sense

that it minimises the distortion functions: that is kf0 ≤ kfN for all N ∈ Z. So we conclude

that ∫
Ω
k(z, f0)ρ2(z)dL2(z) ≤

∫
Ω
k(z, fN )ρ2(z)dL2(z) for all N ∈ Z. (2.13)

If we combine inequalities (2.12) and (2.13), then we obtain inequality (2.11). We present

some steps that show inequality (2.12).

Step 1 We use the inequality proved in [10]:

M2(f(Γ)) ≤
∫

Ω
k(z, f)ρ2(z)dL2(z) for all ρ ∈ F (Γ). (2.14)

Step 2 The following step is proved in [11] A quasiconformal map g : Ω → Ω that gives

the maximal stretching will possess the following properties. If Γ0 is a family of

absolutely continuous curves in Ω satisfying the condition:

a) gz̄(γ(s))γ̇(s)
gz(γ(s))γ̇(s) < 0 for almost every s and for every γ ∈ Γ0 and

b) if there exists ρ0 ∈ F (Γ0) such that

M2(Γ0) =

∫
Ω
ρ2

0(z) dL2(z), (2.15)

then

M2(g(Γ0)) =

∫
Ω
k(z, g)ρ2

0(z)dL2(z) for all ρ0 ∈ F (Γ0). (2.16)

Step 3 In this step it is shown that the quasiconformal spiral strech map fN with the

coefficient k(z, fN ) and the family of absolutely continuous curves Γ0,N satisfy the

requirements of Step 2. Moreover

M2 (fN (Γ0,N )) =
1

(− log q)2(1 + C2
N )

∫
A(q,1)

k(z, fN )
1

|z|2
dL2(z), (2.17)

where CN is some constant associated with the curves from the family Γ0,N .
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Step 4 We enlarge the family Γ0,N by considering all the curves homotopic to the curves

from Γ0,N . Namely, we denote by ΓN the family of absolutely continuous curves

γ : [q, 1]→ A(q, 1) that are homotopic to γCNΦ ∈ Γ0,N , see equation (2.18).

Step 5 Comparing M2(fN (Γ0,N )) and M2(f(ΓN )) for all f ∈ C̃N , one can deduce that

M2(fN (Γ0,N )) ≤M2(f(ΓN )).

This inequality yields the result∫
Ω
k(z, fN )ρ2(z)dL2(z) = M2(fN (Γ0,N )) ≤M2(f(ΓN )) ≤

∫
Ω
k(z, f)ρ2(z)dL2(z)

for all f ∈ C̃N .

Example 2.7. In this example we present the details of the proof of Step 3. Define

γtΦ(s) = sei(t log s+Φ), s ∈ [q, 1], t ∈ R, Φ ∈ [0, 2π).

Consider the family

Γ0,N =
{
γCNΦ : Φ ∈ [0, 2π)

}
, (2.18)

where

CN = C(k1, k2) =
−k2

1 − k2
2 + 1−

√
(k2

1 + k2
2 − 1)2 + 4k2

2

2k2
, k2 = k2(N) 6= 0. (2.19)

Definition 2.8. Define a non-negative Borel function

ρ0,N (z) =
1

− log q
√

1 + C2
N

1

|z|
, z ∈ A(q, 1). (2.20)

We will prove now that ρ0,N is admissible for Γ0,N and

M2(Γ0,N ) =

∫
A(q,1)

ρ2
0,N (z) dL2(z) =

−2π

(1 + C2
N ) log q

by making use of the procedure in the examples in Section 1.2.3. For any function ρ0,N

as in (2.20) and for any absolutely continuous curve γ : [q, 1]→ A(q, 1) written as γ(s) =

|γ(s)|eiϕ(s), ϕ : [q, 1]→ R, we obtain∫
γ
ρ0,N (z) ds =

1

− log q
√

1 + C2
N

∫
γ

ds

|z|
=

1

− log q
√

1 + C2
N

∫ 1

q

|γ̇(s)|
|γ(s)|

ds

≥ 1

− log q
√

1 + C2
N

∣∣∣ ∫ 1

q

γ̇(s)

γ(s)
ds
∣∣∣

=
1

− log q
√

1 + C2
N

∣∣∣ ∫ 1

q

d
ds |γ(s)|
|γ(s)|

+ iϕ̇(s) ds
∣∣∣ (2.21)

=
1

− log q
√

1 + C2
N

∣∣∣ log

(
|γ(1)|
|γ(q)|

)
+ i(ϕ(1)− ϕ(q))

∣∣∣.
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In particular, for γ = γCNΦ we have

|γ(1)| = 1, |γ(q)| = q, and ϕ(1) = Φ, ϕ(q) = CN log q + Φ.

Hence, ∫
γ
CN
Φ

ρ0,N (z) ds ≥ 1

− log q
√

1 + C2
N

∣∣∣ log

(
1

q

)
+ i(Φ− (CN log q + Φ))

∣∣∣
=
| − log q | |1 + iCN |

− log q
√

1 + C2
N

= 1.

Therefore, ∫
γ
CN
Φ

ρ0,N (z) ds ≥ 1, for any Φ ∈ [0, 2π).

Hence ρ0,N is admissible for Γ0,N . Furthemore

1 ≤
∫
γ
CN
Φ

ρ(z) ds =

∫ 1

q
ρ(γCNΦ )|γ̇CNΦ (s)|ds =

∫ 1

q
ρ(γCNΦ )

√
1 + C2

N ds

for an arbitrary ρ ∈ F (Γ0,N ). We integrate both sides from 0 to 2π with respect to Φ and

obtain

2π ≤
√

1 + C2
N

∫ 2π

0

∫ 1

q
ρ(sei(CN log s+Φ))dsdΦ

≤
√

1 + C2
N

∫ 2π

0

∫ 1

q
ρ(sei(CN log s+Φ))

1√
s

√
s dsdΦ.

Applying the Cauchy-Schwarz inequality, we get

2π ≤
√

1 + C2
N

(∫ 2π

0

∫ 1

q
(ρ(sei(CN log s+Φ)))2sdsdΦ

) 1
2
(∫ 2π

0

∫ 1

q

1

s
dsdΦ

) 1
2

=
√

1 + C2
N

(∫
A(q,1)

(ρ(g(z))2dL2(z)

) 1
2

(−2π log q)
1
2

=
√

1 + C2
N

(∫
A(q,1)

(ρ(g(z))2|J(g, z)|dL2(z)

) 1
2

(−2π log q)
1
2 .

because |J(g, z)| = 1, see Remark 2.11 and where g(z) = zeiCN log |z|. Using the change of

variables under the map g(z), we get

2π ≤
√

1 + C2
N

(∫
A(q,1)

ρ2(ζ)dL2(ζ)

) 1
2

(−2π log q)
1
2 .

Finally, we obtain
−2π

(1 + C2
N ) log q

≤
∫
A(q,1)

ρ2(ζ)dL2(ζ). (2.22)
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Taking infimum over all ρ ∈ F (Γ0,N ), we deduce

−2π

(1 + C2
N ) log q

≤M2(Γ0,N ). (2.23)

Since ρ0,N ∈ F (Γ0,N ) from equation (2.21), we have

M2(Γ0,N ) = inf
ρ∈F (Γ0,N )

∫∫
A(q,1)

ρ2 dL2(z) ≤
∫
A(q,1)

ρ2
0,N (z) dL2(z)

=
1

(− log q)2(1 + C2
N )

∫ 2π

0

∫ 1

q

1

r2
rdrdθ =

−2π

(1 + C2
N ) log q

. (2.24)

Hence, from inequality (2.22) and (2.24) we obtain

M2(Γ0,N ) =

∫
A(q,1)

ρ2
0,N (z) dL2(z) =

−2π

(1 + C2
N ) log q

.

Let γ ∈ ΓN be homotopic to γCNΦ ∈ Γ0,N . From equation (2.21) we obtain∫
γ
ρ0,N (z) dL2(z) ≥

∫
γ
CN
Φ

ρ0,N (z) dL2(z) ≥ 1,

which implies that ρ0,N is admissible for ΓN . We know that Γ0,N ⊂ ΓN . By Theorem 1.28

and by equation (2.23) we have

−2π

(1 + C2
N ) log q

= M2(Γ0,N ) ≤M2(ΓN ) . (2.25)

Since ρ0,N ∈ F (ΓN ), equation (2.24) implies

M2(Γ0,N ) ≤M2(ΓN ) = inf
ρ∈F (Γ0,N )

∫∫
A(q,1)

ρ2 dL2(z) ≤
∫
A(q,1)

ρ2
0,N (z) dL2(z)

=
−2π

(1 + C2
N ) log q

. (2.26)

Hence from equation (2.25) and equation (2.26) we conclude that

M2(Γ0,N ) = M2(ΓN ) =
−2π

(1 + C2
N ) log q

,

where ΓN is the family of curve which are homotopic to the family Γ0,N .

Remark 2.9. Notice that if CN = 0, then the curves γ0
Φ(s) are radial curves in the annulus

A(q, 1) and we obtain the result of Example (1.33). We also observe that the family Γ0,N

is the family of curves, that are tangent to the directions of the largest shrinking of the

map fN . In other words |dfN | = (|fNz| − |fN z̄|)|dz| along the curves from Γ0,N , this can

be obtain by applying analogous calculation in Lemma 4.5 . This property imply that

M2(fN (Γ0,N )) =
∫
A(q,1) k(f, z)ρ2

0,N dL2(z), where ρ0,N = 1

(− log q)
√

1+C2
N

1
|z| is such that∫

γ ρ0,N ds ≥ 1 for any γ ∈ Γ0,N .
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Remark 2.10. We also observe that in the family of curves ΓN homotopic to the curves

from Γ0,N the function ρ0,N = 1

(− log q)
√

1+C2
N

1
|z| is the extremal function in the sense that it

realises infimum in finding the module M2(ΓN ). Moreover, the family Γ0,N is extremal for

the same module in the sense that M2(ΓN ) = M2(Γ0,N ). The same condition was satisfied

in Examples 1.31 and 1.33 for the family of the vertical lines connecting the horizontal

sides of the rectangular and for the family of the radial curves connecting boundaries of

the annulus domain, respectively.

Remark 2.11. It is rest to show that |J(g, z)| = 1. Then

g(z) = zeiCN log |z| = (x+ iy)eiCN log(
√
x2+y2)

= x cos(CN log(
√
x2 + y2))− y sin(CN log(

√
x2 + y2)) +

i
(
x sin(CN log(

√
x2 + y2)) + y cos(CN log(

√
x2 + y2))

)
.

We denote by p and q the functions

p = Reg(z) = x cos(CN log(
√
x2 + y2))− y sin(CN log(

√
x2 + y2)),

and

q = Img(z) = x sin(CN log(
√
x2 + y2)) + y cos(CN log(

√
x2 + y2)).

For simplicity we denote A = CN log(
√
x2 + y2), then

dp

dx
= cos(A)− x sin(A)

xCN
x2 + y2

− y cos(A)
xCN
x2 + y2

,

dp

dy
= −x sin(A)

yCN
x2 + y2

− sin(A)− y cos(A)
yCN
x2 + y2

.

Similarly we find

dq

dx
= −y sin(A)

xCN
x2 + y2

+ sin(A) + x cos(A)
xCN
x2 + y2

,

dq

dy
= cos(A)− y sin(A)

yCN
x2 + y2

+ x cos(A)
yCN
x2 + y2

.

We hence compute J(g, z) = det

∣∣∣∣∣ dpdx dq
dx

dp
dy

dq
dy

∣∣∣∣∣
= det

∣∣∣∣∣cos(A)− x sin(A) xCN
x2+y2 − y cos(A) xCN

x2+y2 −y sin(A) xCN
x2+y2 + sin(A) + x cos(A) xCN

x2+y2−
x sin(A) yCN

x2+y2 − sin(A)− y cos(A) yCN
x2+y2 cos(A)− y sin(A) yCN

x2+y2 + x cos(A) yCN
x2+y2

∣∣∣∣∣
=

(
cos(A)−x sin(A) xCN

x2+y2 −y cos(A) xCN
x2+y2

)(
cos(A)−y sin(A) yCN

x2+y2 +x cos(A) yCN
x2+y2

)
−((

x sin(A) yCN
x2+y2 − sin(A)− y cos(A) yCN

x2+y2

)(
−y sin(A) xCN

x2+y2 + sin(A) + x cos(A) xCN
x2+y2

))

=

(
cos2(A)− y cos(A) sin(A) yCN

x2+y2 + x cos2(A) yCN
x2+y2−

x sin(A) cos(A) xCN
x2+y2 + xy sin2(A) xy(CN )2

(x2+y2)2 − x2 sin(A) cos(A) xy(CN )2

(x2+y2)2
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−y cos2(A) xCN
x2+y2 + y2 cos(A) sin(A) xy(CN )2

(x2+y2)2 − xy cos2(A)xy(CN )2

x2+y2

)
−(

xy sin2(A) xy(CN )2

(x2+y2)2 − x sin2(A) yCN
x2+y2 − x2 sin(A) cos(A) xy(CN )2

(x2+y2)2 +

y sin2(A) xCN
x2+y2 − sin2(A)− x sin(A) cos(A) xCN

x2+y2 + y2 cos(A) sin(A) xy(CN )2

(x2+y2)2−

y cos(A) sin(A) yCN
x2+y2 − xy cos2(A)xy(CN )2

x2+y2

)
= cos2(A) + sin2(A) = 1.
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Chapter 3

Quadratic differentials and

Extremal problem

3.1 Quadratic differential and Teichmüller map

The extremal problem for spiral stretch map is related to Teichmüller theory, even though

the class of mappings is wider then just quasiconformal. We try to explain relation of

the extremal problem to the Teichmüller approach. We begin from the giving necessary

definitions.

Definition 3.1. [12]

A Hausdorff topological space R is called a Riemann surface if there are:

• a collection of open sets Uα ⊂ R, where α ranges over some index set, which cover

R (i.e. R = ∪αUα ), and

• A homeomorphism ψα : Uα → Ũα for each α, where Ũα is an open set in C and

satisfies the property: for all α, β, the composition map ψα ◦ ψ−1
β is holomorphic on

its domain of definition.

The maps ψα are called charts, and the entire collection of data
(
Uα, Ũα, ψα

)
is called an

atlas.

Definition 3.2. [15] Let p : E → B be a continuous and surjective map, where E,B

are topological spaces. If every point b ∈ B has a neighborhood U such that the inverse

image p−1(U) can be written as the union of disjoint open sets Vα in E, and for each α,

the restriction of p to Vα is a homeomorphism of Vα onto U, then p is called a covering

map, and E is said to be a covering space of B.

Definition 3.3. Let R be a Riemann surface. Let U1, U2 ∈ R with U1 ∩ U2 6= ∅. Let

ψ1 : U1 → C and ψ2 : U2 → C be charts. Consider a conformal mapping g : U1 → U2. If

given functions ϕ∗ : U1 → C and ϕ : U2 → C in variable z = g(z∗) the following transfor-

mation law holds

ϕ∗(z∗)dz∗2 = ϕ(z)dz2, z = g(z∗), z∗ ∈ U1 ∩ U2, (3.1)

then the function ϕ(z)dz2 is called quadratic differential.

41
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In other words a quadratic differential is a collection of the functions defined on the

charts, which is invariant with respect to the change of variables on the charts.

Example 3.4. Let S be the Riemann sphere. We can consider the atlas {(U1 = C, Id), (U2 =

C∗ ∪ {∞}, w = 1
z )}. We choose an arbitrary function ϕ1(z) which is defined on the whole

plane and we can compute the function element ϕ2(w) defined on C∗ ∪ {∞} by the trans-

formation rule ϕ2(w)dw2 = ϕ1(z)dz2. We get

ϕ2(w)dw2 = ϕ1

(
1

w

)(
− 1

w2
dw

)2

,

ϕ2(w) = ϕ1

(
1

w

)
1

w4
.

From now on we will only consider the Riemann surfaces which are domains in the

complex plain.

Definition 3.5. Let D be a domain in C. A maximal regular curve γ on D on which

ϕ(z)dz2 > 0 is called the horizontal trajectory or simply trajectory of ϕ. Orthogonal

trajectories or vertical trajectory are the maximal regular curves a long which the

quadratic differential satisfies ϕ(z)dz2 < 0.

Definition 3.6. Let ϕ(z)dz2 be a holomorphic quadratic differential on R. The parameter

ζ =

∫ z

z0

√
ϕdz,

where z0 is an arbitrary point in R, is called the natural parameter for R associated

with quadratic differential.

Remark 3.7. Notice that dζ2 = ϕ(z)dz2 for the natural parameter associated with ϕ.

If a parametric curve γ : I → R is a horizontal trajectory of ϕ then ϕ(γ(t))γ′(t) > 0 and

therefore in the ζ-plane, where ζ is a natural parameter, the curve γ(t) is transformed

into a horizontal line. Correspondingly the vertical trajectories (the curves γ(t) where

ϕ(γ(t))γ′(t) < 0 ) are mapped into the vertical lines.

Definition 3.8. A length element of the metric ϕ associated with a quadratic differen-

tial ϕ(z)dz2 is a differential dsϕ :=
√
|ϕ||dz|.

Definition 3.9. The length of a piecewise differentiable curve γ with respect to this metric

ϕ is called the |ϕ|-length of γ and is equal to lγ(ϕ) =
∫
γ dsϕ.

Remark 3.10. A non constant holomorphic quadratic differential ϕ(z)dz2 carries several

invariants (under conformal transformations). The first one is the area element

dAϕ = |ϕ(z)|dxdy = dξ dη, z = x+ iy.

Here z is the local parameter on the Riemann surface R (annulus domain in our case)

and ζ = ξ + iη is any natural parameter (the rectangular in ζ-plane). Away from the
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singularities of ϕ (which is always true in our case) in the terms of the natural parameter

ζ = ξ + iη, one has ds2
ϕ = dξ2 + dη2, so local geodesics are just straight lines in the ζ-

plane. In the Figure 3.1, the radial curves are the horizontal trajectories of the quadratic

differential dz2

z2 , and they are mapped to the horizontal line. The vertical trajectories are

the circle and they are mapped to the vertical lines see Figure 3.1 .

Figure 3.1

Definition 3.11. A quasiconformal mapping f is said to be a Teichmüller map if it

satisfies the Beltrami equation fz̄ = µf fz with

µf (z) = k
ϕ(z)

|ϕ(z)|
, (3.2)

where ϕ(z)dz2 is a quadratic differential in D, and k is an arbitrary constant.

3.2 Spiral stretch map is a Teichmüller map

The quadratic differential related to the spiral and stretch map induces the length element

given by |√ϕ||dz| = k|dz|
|z| . This length element is up to a constant defines the extremal

metric in the module problem. Namely, ρ0,N = k|dz|
|z| is the metric such that M2(Γ0,N ) =∫∫

A(q,1) ρ
2
0,N dL2(z), from equation (2.24) We also observe that Γ0,N = fN (Γ0), i.e the

extremal family of curves Γ0,N is the image of family of radial curves Γ0 connecting

the boundaries of the annulus domain. The family Γ0 is given by the trajectories of the

quadratic differential dz2

z2 as it will be shown after Proposition 3.12.

Proposition 3.12. The spiral stretch map fN (z) defined in Definition 2.4 is a Teichmüller

map.

Proof. We compute the Beltrami coefficient µf (z) = fz̄
fz

with respect to the spiral-stretch

map fN (z), as below. We have

fN (z) = z(zz̄)
k1−1

2 eik2 log(zz̄)1/2
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We compute

∂fN
∂z

= |z|k1−1 ei
k2
2

log(zz̄) [
1

2
(k1 + 1 + ik2)]. (3.3)

and

∂fN
∂z̄

= |z|k1−1 z

z̄
ei
k2
2

log(zz̄) [
1

2
(k1 − 1 + ik2)]. (3.4)

We obtain

µf (z) =
fz̄
fz

=
z
z̄ (k1 − 1 + ik2)

(k1 + 1 + ik2)
=
z

z̄

[k1 − 1 + ik2

k1 + 1 + ik2

]
=
|z|2

z̄2

[k1 − 1 + ik2

k1 + 1 + ik2

]
. (3.5)

We write the Beltrami coefficient as µf (z) = k ϕ(z)
|ϕ(z)| , where

k =

√
(k1 − 1)2 + k2

2

(k1 + 1)2 + k2
2

, and ϕ(z)dz2 =
dz2

z2
is a quadratic differential.

Hence we conclude that the map fN is the Teichmüller map with respect to ϕ(z)dz2 =
1
z2dz

2.

Let us calculate the trajectories and the orthogonal trajectories of dz2

z2 .

Let z = reiθ. If we fix θ then dz = eiθdr and

dz2

z2
=
e2iθdr2

r2e2iθ
=
dr2

r2
> 0.

Therefore the trajectories of dz2

z2 are the radial lines (in red colour). If we fix r then

dz = rieiθdθ and
dz2

z2
=
−r2e2iθdθ2

r2e2iθ
= −dθ2 < 0.

Therefore, the orthogonal trajectories are circles (in blue colour). See Figure 3.2.

Recall that according to the Teichnüller theory any Beltrami coefficient with ‖µ∞‖ ≤ 1

is in one to one correspondence with the quasiconformal maps fµ satisfying some boundary

conditions (normalised maps) see Theorem 1.9. The class of quasiconformal maps satis-

fying the same boundary conditions defines a Riemannian surface and the quasiconformal

map minimising the norm of the Beltrami coefficient ‖µ∞‖ (or the distortion coefficient

kf (z)) is related to the quadratic differentials in the sense that µf = k ϕ(z)
|ϕ(z)| , where ϕ(z)dz2

is a holomorphic differential. Thus the extremal maps defining the Riemann surfaces are

the Teichmüller maps.

In this work we considered two extremal problems for the Rieman surfaces, defined by

the annulus domain: one in the class of the quasiconformal maps and one in the class of

the mappings with finite distortion. It is interesting that even if the class of the mappings

with finite distortion is bigger then the class of the quasiconformal mappings, the extremal

maps, that are spiral stretch maps fN are still the Teichmuller maps defining the different

Riemann surfaces, based on the same annulus domain, but having different covering maps.
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Figure 3.2

Remark 3.13. Notice also the following fact. The quadratic differential dz
2

z2 is actually the

area element in the mean distortion functional of Definition 2.6. It is also the area element

in the functionals of the estimate (2.7). The linear element k |dz||z| (up to the constant)

is the extremal metric ρ0 in the Examples 1.33 and the extremal metric ρ0,N in the

inequality (2.20) of Example 2.7.
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Chapter 4

Rodin’s theorem

In Chapter 2, we have explained the method to calculate the extremal function in the

module problem for spiral stretch map fN . Namely the function

ρ0,N (z) = − 1

log q
√

1 + C2
N

1

|z|
,

is such that

M2(Γ0,N ) =

∫
A(q,1)

ρ2
0,N (z) dL2(z),

and

M2(fN (Γ0,N )) =

∫
A(q,1)

k(z, fN )ρ2
0,N (z) dL2(z).

The problem of finding the extremal metric in the module problem goes back to a result

by Rodin. We state Rodin’s theorem.

Theorem 4.1. [7, Rodin’s Theorem] Let f be a sufficiently smooth, orientation preserving

homeomorphism of Q1b = {(x, y) ∈ C | 0 ≤ x ≤ 1, 0 ≤ y ≤ b} onto a region Q ∈ R2, such

that the Jacobi matrix exists and its determinant Jf is positive. Let Γ0 be the family of

vertical intervals vx(t) = {(x, t) : t ∈ [0, b]; x ∈ [0, 1] is fixed}, and let cx(t) = f(vx(t)) ∈ Q.

Thus, the image of Γ0 is f(Γ0) = {cx : [0, b]→ Q, x ∈ [0, 1]}.

Let

`(x) =

∫ b

0

|ċx|2

Jf
dt, x ∈ [0, 1],

where ċx = ∂
∂tcx(t). Then

ρ0(y) =
1

`(x)

(
|ċx|
Jf

)
◦ f−1(y), (x, t) ∈ Q1b, y = f(x, t) ∈ Q, (4.1)

is the extremal function for the 2-module of the family f(Γ0) and

M2(f(Γ0)) =

∫
Q
ρ2

0(y) dy =

∫ 1

0
`−1dx. (4.2)

We illustrate Theorem 4.1 on the example of the shear map.
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4.1 Rodin theorem for shear map

Definition 4.2. Let D be a rectangle, f : D → D1 = f(D) a map such that

f(z) = (x+ y cotα, y) = z − iz − z̄
2

cotα, α ∈
(

0,
π

2

]
. (4.3)

The image D1 = f(D) is a parallelogram, and the map f is often called shear map.

We apply Theorem 4.1 to the shear map f . We recall that f(z) = (x + y cotα, y) =

x+ y cotα + iy, we denote p = Ref(z) = x+ y cotα and q = Imf(z) = y. The Jacobian

of f is given by

Jf = J(f, z) = det

∣∣∣∣∣ dpdx dq
dx

dp
dy

dq
dy

∣∣∣∣∣ = det

∣∣∣∣∣ 1 0

cotα 1

∣∣∣∣∣ = 1.

Let Γ0 be the family of vertical straight lines parametrized by γx(t) = x + it, where

0 ≤ x ≤ 2π
logR is fixed, and 0 ≤ t ≤ 1. Then f maps a curve ΓD into ΓD1 with cx(t) =

f(x+ it) = x+ t cotα+ it, see Figure 4.2. Therefore,

ċx =
∂

∂t
(x+ t cotα+ it) = cotα+ i,

which implies

|ċx| =
√

1 + (cotα)2.

Hence,

`(x) =

∫ 1

0

|ċx|2

Jf
=

∫ 1

0
1 + (cotα)2 dt = 1 + (cotα)2.

We can also find

ρ0(y) =
1

`(x)

(
|ċx|
Jf

)
◦ f−1(y)

where 1
`(x)

(
|ċx|
Jf

)
is constant. So we get

ρ0(y) =
1

`(x)

(
|ċx|
Jf

)
=

1

1 + (cotα)2

(√
1 + (cotα)2

1

)
(4.4)

=
1√

1 + (cotα)2
. (4.5)

Hence, we get

M2(f(Γ0)) =

∫
D
ρ2

0(y) dy =

∫ 2π
logR

0
`−1dx =

∫ 2π
logR

0

1

1 + (cotα)2
dx = sin2 α

2π

logR
.

We also observe that the shear map f is a Teichmüller map. Indeed, since

fz = 1− i

2
cotα, and fz̄ =

i

2
cotα,

the Beltrami coefficient is

µ(z) = i
cotα

2− i cotα
.
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We can rewrite µ(z) as µf (z) = k ϕ(z)
|ϕ(z)| , where

k =
cosα√

4− 3 cos2 α
, θ = − arctan(2 tanα)

and hence ϕ(z)dz2 = dz2 is a quadratic differential. Hence we conclude that f is the

Teichmüller map with the ϕ(z)dz2 = dz2.

Now we calculate the trajectories for shear map.

Let z = x+iy, if y is fixed then dz = dx, hence dz2 = dx2 > 0. Therefore trajectories are

horizontal lines (in blue colour). Instead if x is fixed then dz = idy hence dz2 = −dy2 < 0.

Therefore orthogonal trajectories are vertical lines (in red colour), see Figure 4.1.

Figure 4.1

4.2 Rodin’s theorem for the spiral stretch map

We apply the analogous of Rodin’s theorem to annulus domain, see [17]

Proposition 4.3. [17] Consider a smooth homeomophic function f : A(1, R)→ f(A(1, R)).

If Γ0 is the family of radial curves connecting boundaries of an annulus A(1, R), then

M2(f(Γ0)) =

∫ 2π

0

1∫ R
1

Df,θ
r dr

dθ,

and the extremal function is given by

ρ0 ◦ f =
Df,θ

r |fr|
∫ R

1
Df,θ
r dr

,

where fr = eiθ(fz + e−2iθfz̄).

Proposition 4.4. [17] Consider a smooth homeorphic function f : A(1, R)→ f(A(1, R)).

If Γ′0 is a family of a logarithmic spiral curves connecting boundaries of an annulus A(1, R)

such that h(reiθ) = rei(−β log r+θ), then

M2(f(Γ′0)) =

∫ 2π

0

1∫ R
1 (1 + β2)

Df,θ0
r dr

dθ,
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where θ0 = −β log r + θ − arctanβ.

If we consider a function g(reiθ) = f(rei(−β log r+θ)) then

M2(f(Γ′0)) =

∫ 2π

0

1∫ R
1
|gr|2
Jg
dr
dθ, (4.6)

since |gr|2 = (1 + β2)|fz + fz̄e
−2iθ0 |2, and Jg = rJf . The extremal function is given by

ρ0 ◦ h =
Dh,θ

r |hr|
∫ R

1
Dh,θ
r dr

.

Lemma 4.5. We show that the Rodin’s type theorems will recuperate result for ρ0,N and

Γ0,N in the extremal problem for the spiral stretch map.

Consider the function g(reiθ) = fN ◦ γCNΦ (r), where γCNΦ (r) = rei(CN log r+θ). By equa-

tion (4.6), we get

M2(fN (Γ′0)) =

∫ 2π

0

1∫ 1
q
|gr|2
Jg
dr
dθ

=

∫ 2π

0

1∫ 1
q

(1+C2
N )|fNz+fNz̄ e

−2iθ0 |2
rJfN

dr
dθ

=

∫ 2π

0

1

(1 + C2
N )
∫ 1
q DfN ,θ0

dr
r

dθ (4.7)

where

DfN ,θ0 =
|fNθ0 |

2

JfN
=
|fNz + fNz̄e

−2iθ0 |2

JfN
=
|1 + e−2iθ0µf |2

1− |µf |2
(4.8)

is a directional dilatation of fN , and fNθ0 is directional derivative of fN in direction θ0,

where θ0 = CN log r + θ + arctanCN . From equations (3.3) and (3.4) it follows that

∂fN
∂z

= |z|k1−1 ei
k2
2

log(zz̄) [
1

2
(k1 + 1 + ik2)],

∂fN
∂z̄

= |z|k1−1 z

z̄
ei
k2
2

log(zz̄) [
1

2
(k1 − 1 + ik2)].

From equation (3.5) we have

µf =
fNz̄
fNz

=
z
z̄ (k1 − 1 + ik2)

(k1 + 1 + ik2)
=
z

z̄

[k1 − 1 + ik2

k1 + 1 + ik2

]
,

which implies

|µ(z)| = |fNz̄ |
|fNz |

=
(k1 − 1 + ik2)

(k1 + 1 + ik2)
.

Therefore, the direction dilatationDfN ,θ0 becomes

DfN ,θ0 =
|fNθ0 |

2

JfN
=
|fNz + fNz̄e

−2iθ0 |2

JfN
=
|1 + e−2iθ0µf |2

1− |µf |2
. (4.9)
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First we calculate 1 + e−2iθ0µf on z = rei(CN log r+θ) :

1 + e−2iθ0µf = 1 + e−2iθ0 z

z̄

k1 − 1 + ik2

k1 + 1 + ik2
(4.10)

= 1 + e−2iθ0e2i(CN log r+θ)k1 − 1 + ik2

k1 + 1 + ik2

= 1 +
k1 − 1 + ik2

k1 + 1 + ik2
e2i(−CN log r−θ−arctanCN+CN log r+θ)

= 1 +
k1 − 1 + ik2

k1 + 1 + ik2
e2i arctanCN ,

where

e2i arctanCN = cos(2 arctanCN ) + i sin(2 arctanCN ) =
1− C2

N + i2CN
1 + C2

N

, (4.11)

by trigonometric property

cos2 x =
1

1 + tan2 x
and cos 2x = 2 cos2 x− 1 =

2

1 + tan2 x
− 1 =

1− tan2 x

1 + tan2 x
.

Therefore

cos 2 arctanCN =
1− tan2(arctanCN )

1 + tan2(arctanCN )
=

1− C2
N

1 + C2
N

,

From the property

sin2 2x = 1− cos2 2x = 1−
(

1− tan2 x

1 + tan2 x

)
=

4 tan2 x

(1 + tan2 x)2

we also obtain,

sin 2 arctanCN =
2CN

1 + C2
N

.

In order to simplify we rationalise the term k1−1+ik2
k1+1+ik2

and get

[k1 − 1 + ik2

k1 + 1 + ik2

][k1 + 1− ik2

k1 + 1− ik2

]
=

(k1 − 1)(k1 + 1) + ik2(k1 + 1)− ik2(k1 − 1)− i2k2
2

(k1 + 1)2 + k2
2

=
k2

1 + k2
2 − 1 + 2ik2

(k1 + 1)2 + k2
2

=
P

Q
, (4.12)

where we denote P = k2
1+k2

2−1+2ik2 and Q = (k1+1)2+k2
2. If we denote B = (k1−1)2+k2

2

then |P |2 = QB. We can also express CN in terms of P as

CN =
−ReP − |P |

ImP
.
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Now we calculate e2i arctanCN =
1−C2

N+i2CN
1+C2

N
in terms of P. In particular

1 + C2
N = 1 +

(ReP )2 + |P |2 + 2ReP |P |
(ImP )2

,

=
(ImP )2 + (ReP )2 + |P |2 + 2ReP |P |

(ImP )2
,

=
2|P |2 + 2ReP |P |2

(ImP )2
.

1− C2
N = 1− (ReP )2 + |P |2 + 2ReP |P |

(ImP )2
=

(ImP )2 − (ReP )2 − |P |2 − 2ReP |P |
(ImP )2

.

Therefore,

1− C2
N

1 + C2
N

=
(ImP )2 − (ReP )2 − |P |2 − 2ReP |P |2

2|P |2 + 2ReP |P |

=
(ImP )2 + (ReP )2 − (ReP )2 − (ReP )2 − |P |2 − 2ReP |P |

2|P |2 + 2ReP |P |

=
−2(ReP )2 − 2ReP |P |

2|P |2 + 2ReP |P |

=
−(ReP )2 −ReP |P |
|P |2 +ReP |P |

,

and

2CN
1 + C2

N

=
−2ReP−2|P |

ImP
2|P |2+2ReP |P |

(ImP )2

=
(−ReP − |P |)ImP
|P |2 +ReP |P |

,

Hence

1− C2
N + i2CN

1 + C2
N

=
−(ReP )2 −ReP |P |2 + i(−(ReP )(ImP )− |P |(ImP ))

|P |(|P |+ReP )

=
−ReP (ReP + |P |+ iImP )− i|P |ImP

|P |(|P |+ReP )

=
−ReP (P + |P |)− i|P |ImP

|P |(|P |+ReP )

=
−ReP (P )−ReP |P | − i|P |ImP

|P |(|P |+ReP )

=
−ReP (P )− |P |(ReP + iImP )

|P |(|P |+ReP )

=
−P (ReP + |P |)
|P |(|P |+ReP )

=
−P
|P |

. (4.13)
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Therefore, by using equations (4.12), (4.13), and (4.9) , we deduce

DfN ,θ0 =
|1 + e−2iθ0µf |2

1− |µf |2
=

∣∣∣∣∣1 + k1−1+ik2
k1+1+ik2

(
1−C2

N+i2CN
1+C2

N

) ∣∣∣∣∣
2

1−
∣∣∣k1−1+ik2
k1+1+ik2

∣∣∣2
=

∣∣∣1− P 2

Q|P |

∣∣∣2
1−

∣∣∣PQ ∣∣∣2 =

|Q|P |−P 2|2
|Q|2|P |2
|Q|2−|P |2
|Q|2

=
|Q|P | − P 2|2

|P |2(|Q|2 − |P |2)
(4.14)

If we solve |Q|2 − |P |2 we get

|Q|2 − |P |2 =
(
(k1 + 1)2 + k2

2

)2 − ((k2
1 + k2

2 − 1)2 + 4k2
2

)
= 4k1Q.

and

|Q|P | − P 2|2 = Q2|P |2 + |P 2|2 − 2Re(Q|P |P̄ 2)

= Q2((ReP )2 + (ImP )2) + |(ReP + iImP )2|2 − 2Q|P |Re(P̄ 2)

= Q2((ReP )2 + (ImP )2) + |(ReP )2 − (ImP )2 + 2iRePImP |2

−2Q|P |
(
(ReP )2 + (ImP )2

)
= Q2((ReP )2 + (ImP )2) +

(
(ReP )2 − (ImP )2

)2
+ 4(ReP )2(ImP )2 − 2Q|P |(ReP )2

−2Q|P |(ImP )2

= Q2((ReP )2 + (ImP )2) + (ReP )4 + (ImP )4 − 2(ReP )2(ImP )2 + 4(ReP )2(ImP )2

−2Q|P |(ReP )2 − 2Q|P |(ImP )2

= Q2(ReP )2 +Q2(ImP )2 + (ReP )2(ReP )2 + (ImP )2(ImP )2

+(ReP )2(ImP )2 + (ReP )2(ImP )2 − 2Q|P |(ReP )2 − 2Q|P |(ImP )2

= (ReP )2
(
Q2 + (ReP )2 + (ImP )2 − 2Q|P |

)
+(ImP )2

(
Q2 + (ReP )2 + (ImP )2 − 2Q|P |

)
= (ReP )2

(
Q2 + |P |2 − 2Q|P |

)
+ (ImP )2

(
Q2 + |P |2 − 2Q|P |

)
= (ReP )2

(
Q2 +QB − 2Q|P |

)
+ (ImP )2

(
Q2 +QB − 2Q|P |

)
=

(
Q2 +QB − 2Q|P |

)
(ReP )2 + (ImP )2

= (Q+B − 2|P |)Q|P |2,

Hence the equation (4.14) becomes

DfN ,θ0 =
|Q|P | − P 2|2

|P |2(|Q|2 − |P |2)
=

(Q+B − 2|P |)Q|P |2

4k1(Q)|P |2
=
Q+B − 2|P |

4k1
. (4.15)
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We now compute

1

k(z, fN )
=
|k1 + 1 + ik2| − |k1 − 1 + ik2|
|k1 + 1 + ik2|+ |k1 − 1 + ik2|

=

(
|k1 + 1 + ik2| − |k1 − 1 + ik2|
|k1 + 1 + ik2|+ |k1 − 1 + ik2|

)(
|k1 + 1 + ik2| − |k1 − 1 + ik2|
|k1 + 1 + ik2| − |k1 − 1 + ik2|

)

=
(k1 + 1)2 + k2

2 + (k1 − 1)2 + k2
2 − 2

√(
(k1 + 1)2 + k2

2

)
(k1 − 1)2 + k2

2

(k1 + 1)2 + k2
2 − (k1 − 1)2 − k2

2

=
Q+B − 2|P |

4k1
. (4.16)

Hence from equations (4.15) and (4.16) we get

DfN ,θ0 =
1

k(z, fN )
.

We put this value in (4.7) and obtain

M2(fN (Γ′0)) =

∫ 2π

0

1

(1 + C2
N )
∫ 1
q DfN ,θ0

dr
r

dθ

=

∫ 2π

0

1

(1 + C2
N )
∫ 1
q

1
k(z,fN )

dr
r

dθ

=

∫ 2π

0

k(z, fN )

(1 + C2
N )
∫ 1
q
dr
r

dθ

=

∫ 2π

0

k(z, fN )

(1 + C2
N )(− log q)

dθ

=
2π k(z, fN )

(1 + C2
N )(− log q)

=
2π k(z, fN )

(1 + C2
N )(− log q)

(− log q)

(− log q)

=
1

(1 + C2
N )(− log q)2

∫
A(q,1)

k(z, fN )
1

|z|2
dL2(z)). (4.17)

The extremal function given by

ρ0 ◦ γCNΦ (r) =
DfN ,θ0

r

∣∣∣∣∂γCNΦ (r)
∂r

∣∣∣∣ ∫ 1
q

DfN ,θ0
r dr

=

1
k(z,fN

r

∣∣∣∣∂γCNΦ (r)
∂r

∣∣∣∣ ∫ 1
q

1
r k(z,fN )

dr

=
1

r(− log q)
√

1 + C2
N

(4.18)

=
1

|z|(− log q)
√

1 + C2
N

.
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4.3 Relation between the shear map and spiral map

Definition 4.6. Let h : D → A(1, R) be a map such that

h(z) = e(iz+1) logR (4.19)

From Definition 4.6, the inverse of h is :

h−1(w) =
1

i

(
logw

logR
− 1

)
. (4.20)

The aim is to find the image of radial curves Γ in A(1, R), under the map F, where

F = h ◦ f ◦ h−1 is the composition of the functions f, h defined in Definitions 4.2, 4.6

respectively, see Figure 4.2. We proceed by steps.
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Figure 4.2
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Step 1 In Figure 4.2 we can observe that if Γ is a radial curve joining the boundaries in

annulus A(1, R), and if we take Γ = w = reit to be a parametrization of Γ, where

0 ≤ t ≤ 2π, 1 ≤ r ≤ R, then we obtain

h−1(w) =
1

i

(
log r + it

logR
− 1

)
.

If we impose the condition r = 1, then we get

h−1(w) = i for t = 0 and

h−1(w) =
2π

logR
+ i,

for t = 2π. Similarly, if we impose the condition r = R, then we get

h−1(w) = 0, for t = 0 and

h−1(w) =
2π

logR
,

for t = 2π. This means under the inverse function h−1(w) the radial curve Γ are

maped to the vertical curve ΓD connecting the horizontal sides of the rectangle D,

see Figure 4.2.

Step 2 We consider ΓD be a vertical curve connecting horizontal sides in D as shown in

Figure 4.2. We parametrize it as ΓD = a+ it, where 0 ≤ a ≤ 2π
logR is fixed, 0 ≤ t ≤ 1.

Then f maps a curve ΓD into ΓD1 as f(a+ it) = a+ t cotα+ it, see Figure 4.2.

Step 3 Let ΓD1 = a+ t(cotα+ i) be a parametrization of curve ΓD1 , where ΓD1 is a curve

connecting horizontal sides in D1, as shown in Figure 4.2 and a, t are as Step 2.

Then h acts as follows:

h(a+ t(cotα+ i)) = e[i(a+t(cotα+i))+1] logR = Re−t logR+i(a+t cotα) logR.

This implies that

|h(z)| = Re−t logR = R1−t and arg(h(z)) = a logR+ t cotα logR.

In conclusion we obtain that the image of family of radial curves in A(1, R), is

logarithmic spirals with winding number 0 under the composition of function F =

h ◦ f ◦ h−1, shown in Figure 4.2. But if we imposed that the range of cotα is
2π

logR ≤ cotα < 2 2π
logR then we get the same image as before, but now we obtain the

winding number 1. In general if N is a winding number then range of cotα becomes

N
2π

logR
≤ cotα < (N + 1)

2π

logR
where N ∈ N.
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