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Foreword

The purpose of this thesis is to analyse and classify the automorphism groups of pseudo
H-type Lie algebras, which are particular types of two-step nilpotent Lie algebras.

The paper which marks the beginning of the study of two-step nilpotent Lie algebras is
[M+] by Metrevier. In particular, Metrevier considers those two-step nilpotent Lie algebras
which satisfy the so-called hypothesis H: given a Lie algebra n = Z ⊕ V , where Z is the
centre of n and V is its complement, the adjoint map adX : n → Z is surjective for any
X ∈ V . These Lie algebras have also been called fat or non-singular in [KT13].

The research on two-step nilpotent Lie algebras then branched out in two directions,
investigating, respectively, their associated Lie groups (see [Ebe94]) and the Lie algebras
of Heisenberg type, also called Lie algebras of H-type. These particular algebras were
first defined by A. Kaplan in [Kap80]. In particular, Kaplan used H-type Lie algebras
to examine a class of hypoellyptic PDE; later, a relation was found between the H-type
Lie algebras and the Clifford algebra representations over a scalar product of signature
(r, 0). In particular, the H-type Lie algebras inherit the periodicity specific of the Clifford
algebras, and in the paper [Saa96], L. Saal classifies the group of automorphisms of H-type
Lie algebras.

The starting point for our thesis is the notion of pseudo H-type Lie algebra, which
was introduced independently by P. Ciatti [Cia00] and by I. Markina, M. Molina and A.
Korolko [ref]. Such Lie algebras are correlated to Clifford algebra representations over a
scalar product with a signature (r, s). In [FM17], I. Markina and K. Furutani study the
isomorphism groups of pseudo H-type Lie algebras, providing the structure of a generic
isomorphism Φ : z⊕ V → z⊕ V . In particular, they show that an isomorphism is possible
only between certain pseudo H-type Lie algebras, namely between nr,s and ns,r, where
(r, s) and (s, r) represent the signatures of the which is the carrier space of the respective
Clifford algebras representations.

Our goal is to describe the structure of the group of automorphisms of a generic
pseudo H-type Lie algebra and to provide a classification of these groups according to the
signature. Such classification will be finite because of the mentioned periodicity within
pseudo H-type Lie algebras.

The thesis is composed of the following parts.
In Chapter 1 we introduce the basic definitions that we will use during our classification.

We will also list a number of isomorphisms between some of the classical Lie groups
constructed over different fields.

In Chapter 2 we deal with the structure of the automorphism groups. We will start
from the known results for two-step nilpotent Lie algebras ([KT13] and [Saa96]), which
will allow us to characterise the automorphism group Aut(n) of a pseudo H-type Lie al-
gebra n by a particular subgroup, called Aut0(n). We will then define a pseudo H-type
Lie algebra as a two-step nilpotent Lie algebra satisfying an additional condition; all the
results for two-step nilpotent Lie algebras will then still hold in our case. We will see how
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the additional condition will produce an important tool for the sought classification.
We will then briefly show the correlation between pseudo H-type Lie algebras and Clif-
ford algebras, namely the one-to-one correspondence between the former and admissible
modules of the latter. Lastly, we will list some of the already known results about H-type
Lie algebras ([Saa96]).

Chapter 3 is dedicated to the classification of the automorphism groups of pseudo
H-type Lie algebras; using the tables presented in the Appendix and the isomorphisms
illustrated in Chapter 1, we will describe Aut0(n) for every pseudo H-type Lie algebra
n = nr,s. We will study together all the cases in which the admissible modules appear to
have similar bases. All the groups Aut0(n) will result to be isomorphic to a classical Lie
group.

Lastly, the Appendix, which constitutes an important part of this thesis, presents the
tables of involutions and bases of admissible modules, which are used in Chapter 3. Once
we know such involutions, we will be able to provide a basis for the minimal admissible
module of each pseudo H-type Lie algebra, and hence to conclude our classification.



Chapter 1

Preliminary notions

In this chapter we will list the basic notions that will be employed throughout the ex-
position. We will present an account of some classical Lie groups and the definition of
split-complex and split-quaternion numbers, which, despite lacking the property of being
a field, still can be used to construct matrix Lie groups. We will also provide some useful
isomorphisms between low-dimensional matrix Lie groups.

1.1 Classical Lie groups

We will start with the main definitions.

Definition 1.1. Let us consider a vector space v. We call scalar product a bilinear
operator

〈−,−〉 : v× v→ R
(v, w) 7→ 〈v, w〉

such that:

• 〈−,−〉 is symmetric, i.e. 〈v, w〉 = 〈w, v〉 for all v, w ∈ v.
• 〈−,−〉 is non-degenerate, i.e. 〈v, w〉 = 0 for all v ∈ v, then w = 0.

We say that 〈−,−〉 is positive definite if for every v ∈ v we have that 〈v, v〉 ≥ 0, and
that 〈v, v〉 = 0 if and only if v = 0. We say that 〈−,−〉 is negative definite if for every
v ∈ v we have that 〈v, v〉 ≤ 0, and that 〈v, v〉 = 0 if and only if v = 0.

Definition 1.2. Given a vector space v of dimension n endowed with a scalar product
〈−,−〉, we say that (r, s) is the signature of 〈−,−〉 if r + s = n and there exists a basis
{Z1, . . . , Zn} of v such that

ZiZj + ZjZi = 2εi(r, s)δij , (1.1)

where εi(r, s) =

{
1 if i ∈ {1, . . . , r}
−1 if i ∈ {r + 1, . . . , r + s}

and δij is the Kronecker delta.

Definition 1.3. Given a matrix A, we denote with At its transpose, and with AT its
transpose with respect to the metric given by a scalar product, i.e. given a scalar product
〈−,−〉 over v,

〈Ax, y〉 = 〈x,AT y〉 for all x, y ∈ v.

9



Definition 1.4. A complex number is a number written as a+ ib, where a, b ∈ R and
i satisfies the condition i2 = −1.
A quaternion number is a number written in the form a + ib + jc + kd where a, b, c,
d ∈ R and i, j, k satisfy the relations:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ik = −ki = −j.

A triple of quaternion units in a group is a triple of elements satisfying the same relations
as i, j and k.
Both the complex numbers and the quaternion numbers form a field.

Definition 1.5. A split-complex number is a number written as a+ i∗b where a, b ∈ R
and i∗ satisfies i∗2 = 1. We denote the split-complex numbers with the symbol SC.
We define the conjugation of a split-complex number z = a+ i∗b as z := a− i∗b.
A split-quaternion number is a number written as a + i∗b + j∗c + k∗d where a, b, c,
d ∈ R and i∗, j∗, k∗ satisfy:

i∗2 = −1, j∗2 = k∗2 = 1, i∗j∗ = −j∗i∗ = k∗, j∗k∗ = −k∗j∗ = −i∗, k∗i∗ = −i∗k∗ = j∗.

The set {1, i∗, j∗, k∗} is a basis of a four-dimensional real vector space equipped with a
multiplicative operation. We denote the split-quaternion numbers with the symbol SH.
Let q = a + i∗b + j∗c + k∗d be a split-quaternion number; then we define two different
types of conjugations:

q := a− i∗b− j∗c− k∗d
q̃ := a− i∗b+ j∗c+ k∗d

Remark 1.6. The split-complex and the split-quaternion numbers are not fields, since
they both contain zero divisors. Nevertheless, they are both associative algebras; hence,
we can provide a definition for all the groups in Definition 1.7 also when using SC and SH
instead of F.

Definition 1.7. Given a field F and a space Mn,n(F) of (n×n)−matrices over F, we give
the following definitions.

- The general linear group GL(n,F) of degree n over F is

GL(n,F) := {M ∈Mn,n(F) |M is invertible}.

- The special linear group SL(n,F) of degree n over F is

SL(n,F) := {M ∈ GL(n,F) | det(M) = 1}

- The general orthogonal group O(p, q,F) over F is

O(p, q,F) = O(p, q) := {M ∈ GL(p+ q,F) |M tηM = η}

with

η :=

(
Ip 0
0 −Iq

)
, (1.2)

where Ik is the (k × k) identity matrix.
The subgroup O(p, 0,F) < O(p, q,F) is called orthogonal group of degree p and is
denoted with O(p,F). In particular,

O(p,F) := {M ∈ GL(p,F) |M tM = MM t = Id}
= {M ∈ GL(p,F) | M−1 = M t}.

The matrices in the orthogonal group, also called orthogonal matrices, have the
property that det(M) = ±1. When we consider F = R, we simply write O(p).



- The special general orthogonal group SO(p, q,F) over F is

SO(p, q,F) := {M ∈ O(p, q,F) | det(M) = 1}.

The subgroup SO(p, 0,F) < SO(p, q,F) is called special orthogonal group of
degree p and is denoted by SO(p,F). When we consider F = R, we simply write
SO(n).

- The general unitary group U(p, q,F) of degree n over the field F is

U(p, q,F) := {M ∈ GL(1,F) |M t
ηM = η}

where η is as in (1.2).
The subgroup U(p, 0,F) < U(p, q,F) is called unitary group U(p,F) of degree p.
In particular,

U(p,F) := {M ∈ GL(p,F) | M t
= M−1}.

In particular, if we consider F = R, then U(p, q,R) = O(p, q,R).
- The symplectic group Sp(2n,F) of degree 2n over F is

Sp(2n,F) := {M ∈ GL(2n,F) |M tΩnM = Ωn}

where Ωn :=

(
0 − Idn

Idn 0

)
.

The compact symplectic group Sp(n) of degree 2n is

Sp(n) := U(2n) ∩ Sp(2n,C).

- The conjugate symplectic group Sp(2n,F) of degree 2n over F is

Sp(2n,F) := {M ∈ GL(2n,F) |M tΩnM = Ωn}

where Ωn is as in the definition of the symplectic group.
Observe that Sp(2n,R) = Sp(2n,R).
If F = SH, we have two different definitions of conjugation; in particular, we denote
with

Sp(2n, SH) := {M ∈ GL(2n,SH) |M tΩnM = Ωn}

S̃p(2n, SH) := {M ∈ GL(2n,SH) | M̃ tΩnM = Ωn}.

- The group T(n,F) is defined as

T (n,F) := {M ∈ GL(n,F) |M tσnM = σn},

where σn :=

(
0 Idn

Idn 0

)
.

Remark 1.8. All symplectic matrices have determinant equal to 1, so

Sp(2n,F) < SL(2n,F). (1.3)

Moreover, the following isomorphism holds:

Sp(2,F) ∼= SL(2,F).



Indeed, the left inclusion follows trivially from (1.3); the right inclusion follows from the

fact that, given a generic A =

(
a b
c d

)
with a, b, c, d ∈ F, we have that

AtΩA =

(
0 bc− ad

ad− bc 0

)
=

(
0 −det(A)

det(A) 0

)
= Ω,

since det(A) = 1 by construction.

Remark 1.9. The groups O(1, 0,R), O(0, 1,R) and O(1,R) are isomorphic. In fact:

O(1,R) = {M ∈ GL(1,R) | M−1 = MT } = {a ∈ R | a =
1

a
} = {±1}.

O(1, 0,R) = {M ∈ GL(1,R) | MT IdM = Id} = {a ∈ R | aTa = 1} = {±1}.
O(0, 1,R) = {M ∈ GL(1,R) | MT (− Id)M = −Id}

= {a ∈ R | − aTa = −1⇒ aTa = 1} = {±1}.

Remark 1.10. The group O(1,C) is given by {±1}. In fact, given A =
(
z
)
∈ O(1,C),

we have that z is a complex number which satisfies the condition ATA = Id; since A is a
number, then AT = A and ATA = Id, so A2 = Id. Hence, if z = a+ ib, then the condition
becomes a2 − b2 + i2ab = 1; this implies{

a2 − b2 = 1

2ab = 0.

Hence b = 0 and a2 = 1, implying A =
(
±1
)
.

1.2 Isomorphisms

In Chapter 3 we will deal with certain computations on matrices. Since such computa-
tions are easier when the matrices involved are of lower dimensions, we will make use of
the isomorphisms delineated in this section, which relate some classes of four- or eight-
dimensional real matrices to two-dimensional complex or quaternion matrices. The same
isomorphisms are also useful for the identification of the specific groups we will work with.
We start with a known remark, and we proceed with a list of isomorphisms.

Remark 1.11. Consider a 2× 2 real matrix A =

(
a b
c d

)
commuting with i =

(
0 −1
1 0

)
.

By easy computation, one can see that A must be of the form

A =

(
a b
−b a

)
= a · Id−b · i,

which that implies A ∈ GL(1,C).
Consider now a (4× 4) real matrix A; let i, j, k be quaternion units in GL(4,R). Assume
that A commutes with two of the three matrices i, j and k; then it also commutes with
the third one. For example, if A commutes with i and j, we have the chain of implications:

A · i = i ·A⇒ A · i · j = i ·A · j ⇒ A · i · j = i · j ·A⇒ A · k = k ·A.

In this case, by easy computation, one can see that A = a · Id +b · i + c · j + d · k, hence
we can conclude that A ∈ GL(1,H).



Analogously, given a 4×4 real matrix A; let i∗, j∗ and k∗ be split-quaternion units written
as 4× 4 real matrices. Assume that A commutes with two of them; then it also commutes
with the third one. For example, if A commutes with i∗ and j∗, we have the chain of
implications:

A · i∗ = i∗ ·A⇒ A · i∗ · j∗ = i∗ ·A · j∗ ⇒ A · i∗ · j∗ = i∗ · j∗ ·A⇒ A · k∗ = k∗ ·A.

In this case, by easy computation, one can see that A = a · Id +b · i∗+ c · j∗+ d · k∗, hence
we can conclude that A ∈ GL(1,SH).

Proposition 1.12. A matrix A ∈ GL(4,R) which commutes with

I =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


has the form

M =


a1 b1 a2 b2
−b1 a1 −b2 a2

a3 b3 a4 b4
−b3 a3 −b4 a4

 . (1.4)

The matrices in the form (1.4) form a subgroup of GL(4,R) which is isomorphic to
GL(2,C).

Proof. If we take a generic A ∈ GL(4,R) and impose the condition A · I = I ·A, it follows
from easy computations that A has to be in the form (1.4).
M has trivially an inverse since it belongs to GL(4,R); moreover, simple computations
prove that the product of any two matrices in the form (1.4) has still the same form.
We will now construct a group homomorphism between GL(2,C) and the subgroup of
the matrices in the form (1.4). Let us consider z1, z2, z3, z4 ∈ C written in the form
zj = aj + ibj for every j = 1, . . . , 4. The map

ϕ :

(
z1 z2

z3 z4

)
7→


a1 b1 a2 b2
−b1 a1 −b2 a2

a3 b3 a4 b4
−b3 a3 −b4 a4

 (1.5)

is trivially bijective and maps Id into Id. We will see that ϕ is a group homomorphism.
Indeed, let us consider two matrices A,B ∈ GL(2,C) of the form

A =

(
z1 z2

z3 z4

)
, B =

(
w1 w2

w3 w4

)
,

where zj = aj + ibj and wj = a′j + ib′j for all j ∈ {1, . . . , 4}. Then

A ·B =

(
z1w1 + z2w3 z1w2 + z2w4

z3w1 + z4w3 z3w2 + z4w4

)
.

We notice that

ϕ(A ·B) =


X11,23 Y11,23 X12,24 Y12,24

−Y11,23 X11,23 −Y12,24 X12,24

X31,43 Y31,43 X32,44 Y32,44

−Y31,43 X31,43 −Y32,44 X32,44





where

Xjk,lm = aja
′
k + ala

′
m − bjb′k − blb′m

Yjk,lm = ajb
′
k + a′kbj + alb

′
m + a′mbl.

On the other side,

ϕ(A) =


a1 b1 a2 b2
−b1 a1 −b2 a2

a3 b3 a4 b4
−b3 a3 −b4 a4


and ϕ(B) is of a form akin to ϕ(A), once substituted aj , bj for a′j , b

′
j respectively. After

easy computations, it follows that ϕ(A) · ϕ(B) = ϕ(A · B). As ϕ was bijective and its
inverse is the inverse group homomorphism, it is an isomorphism of groups.

Proposition 1.13. Any matrix A ∈ GL(4,R) which commutes with

J =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


is of the form

N =


a1 a2 −b1 −b2
a3 a4 −b3 −b4
b1 b2 a1 a2

b3 b4 a3 a4

 . (1.6)

The matrices of the form (1.6) form a subroup of GL(4,R) which is isomorphic to GL(2,C).

Proof. Proving the first part of the statement follows from some easy computations. For
the second part, we want to construct an isomorphism between GL(2,C) and the subgroup
of GL(4,R) of matrices in the form (1.6).
We define the map

ϕ :

(
a1 + ib1 a2 + ib2
a3 + ib3 a4 + ib4

)
7→


a1 a2 −b1 −b2
a3 a4 −b3 −b4
b1 b2 a1 a2

b3 b4 a3 a4

 . (1.7)

This is trivially a bijection; moreover, it maps Id into Id. We want to prove that, given
any two matrices A, B ∈ GL(2,C), then ϕ(A) · ϕ(B) = ϕ(A ·B). Write A and B as

A =

(
a1 + ib1 a2 + ib2
a3 + ib3 a4 + ib4

)
, B =

(
a′1 + ib′1 a′2 + ib′2
a′3 + ib′3 a′4 + ib′4

)
Then,

ϕ(A ·B) =


X11,23 X12,24 −Y11,23 −Y12,24

X31,43 X32,44 −Y31,43 −Y32,44

Y11,23 Y12,24 X11,23 X12,24

Y31,43 Y32,44 X31,43 X32,44

 , (1.8)

where

Xjk,lm = aja
′
k + ala

′
m − bjb′k − blb′m

Yjk,lm = ajb
′
k + bja

′
k + alb

′
m + bla

′
m

Computing ϕ(A) · ϕ(B), one can see that it has the form as in (1.8).



Remark 1.14. Let A ∈ GL(4,R) be a matrix of the form (1.4) or (1.6). Then

ϕ−1(At) = ϕ−1(A)t,

where is the complex conjugation.

Proposition 1.15. Let A ∈ GL(4,R) be a matrix which commutes with

I =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ;

then A is of the form

O =


a1 a2 b2 b1
a3 a4 b4 b3
b3 b4 a4 a3

b1 b2 a2 a1

 . (1.9)

The matrices of the form (1.9) form a subgroup of GL(4,R) which is isomorphic to
GL(2, SC).

Proof. Given z1, z2, z3 and z4 split-complex numbers in the form zj = aj + i∗bj , we can
construct the bijective map

ϕ :

(
z1 z2

z3 z4

)
7→


a1 a2 b2 b1
a3 a4 b4 b3
b3 b4 a4 a3

b1 b2 a2 a1

 . (1.10)

The map ϕ maps Id to Id; moreover, it is a group homomorphism. Indeed, given two

matrices A =

(
z1 z2

z3 z4

)
with zj = aj + i∗bj and B =

(
w1 w2

w3 w4

)
with wj = a′j + i∗b′j , then

A ·B =

(
z1w1 + z2w3 z1w2 + z2w4

z3w1 + z4w3 z3w2 + z4w4

)
.

Hence,

ϕ(A ·B) =


X11,23 X12,24 Y12,24 Y11,23

X31,43 X32,44 Y32,44 Y31,43

Y31,43 Y32,44 X32,44 X31,43

Y11,23 Y12,24 X12,24 X11,23

 , (1.11)

where

Xjk,lm = aja
′
k + ala

′
m + bjb

′
kblb

′
m

Yjk,lm = ajb
′
k + bja

′
k + alb

′
m + bla

′
m

One can compute ϕ(A) · ϕ(B) and observe that it is in the form (1.11).

Remark 1.16. Let A ∈ GL(4,R) be a matrix of the form (1.9). Then

ϕ−1(At) = ϕ−1(A)t.



Proposition 1.17. A matrix A ∈ GL(8,R) which commutes with the matrices

I =



0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0


and J =



0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0


is of the form

α =



a1 b1 c1 d1 a2 b2 c2 d2

−b1 a1 −d1 c1 −b2 a2 −d2 c2

−c1 d1 a1 −b1 −c2 d2 a2 −b2
−d1 −c1 b1 a1 −d2 −c2 b2 a2

a3 b3 c3 d3 a4 b4 c4 d4

−b3 a3 −d3 c3 −b4 a4 −d4 c4

−c3 d3 a3 −b3 −c4 d4 a4 −b4
−d3 −c3 b3 a3 −d4 −c4 b4 a4


. (1.12)

The matrices of the form (1.12) form a subgroup of GL(8,R) isomorphic to GL(2,H).

Proof. The first part of the statement can be proven via some easy computations. As for
the second part, given z1, z2, z3, z4 ∈ H in the form zm = am + ibm + jcm + kdm, we can
construct a bijective map

ϕ :

(
z1 z2

z3 z4

)
7→ α. (1.13)

The map ϕ maps Id to Id; moreoveprover, it is a group homomorphism. Indeed, if we have

two matrix A =

(
z1 z2

z3 z4

)
and B =

(
w1 w2

w3 w4

)
with zm = am + ibm + jcm + kdm and

wl = a′l + ib′l + jc′l + kd′l, then

A ·B =

(
z1w1 + z2w3 z1w2 + z2w4

z3w1 + z4w3 z3w2 + z4w4

)
.

Then

ϕ(A·B) =



X11,23 Y11,23 W11,23 Z11,23 X12,24 Y12,24 W12,24 Z12,24

−Y11,23 X11,23 −Z11,23 W11,23 −Y12,24 X12,24 −Z12,24 W12,24

−W11,23 Z11,23 X11,23 −Y11,23 −W12,24 Z12,24 X12,24 −Y12,24

−Z11,23 −W11,23 Y11,23 X11,23 −Z12,24 −W12,24 Y12,24 X12,24

X31,43 Y31,43 W31,43 Z31,43 X32,44 Y32,44 W32,44 Z32,44

−Y31,43 X31,43 −Z31,43 W31,43 −Y32,44 X32,44 −Z32,44 W32,44

−W31,43 Z31,43 X31,43 −Y31,43 −W32,44 Z32,44 X32,44 −Y32,44

−Z31,43 −W31,43 Y31,43 X31,43 −Z32,44 −W32,44 Y32,44 X32,44


where

Xlm,no = ala
′
m − b′mbl − clc′m − dld′m + ana

′
o − bnb′o − cnc′o − dnd′o

Ylm,no = alb
′
m + bla

′
m + cld

′
m − dlc′m + anb

′
obna

′
o + cnd

′
o − dnc′o

Wlm,no = alc
′
m − bld′m + cla

′
m + dlb

′
m + anc

′
o − bnd′o + cna

′
o + dnb

′
o

Zlm,no = ald
′
m + blc

′
m − clb′m + dla

′
m + and

′
o + bnc

′
o − cnb′o + dna

′
o

It follows by computation that ϕ(A) · ϕ(B) = ϕ(A ·B).



Proposition 1.18. A matrix A ∈ GL(8,R) which commutes with the matrices

I =



0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0


and J =



0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0


is of the form

β =



a1 a2 −b2 b1 c2 −c1 d1 d2

a3 a4 −b4 b3 c4 −c3 d3 d4

b3 b4 a4 −a3 d4 −d3 −c3 −c4

−b1 −b2 −a2 a1 −d2 d1 c1 c2

−c3 −c4 −d4 d3 a4 −a3 −b3 −b4
c1 c2 d2 −d1 −a2 a1 b1 b2
−d1 −d2 c2 −c1 b2 −b1 a1 a2

−d3 −d4 c4 −c3 b4 −b3 a3 a4


. (1.14)

The matrices of the form (1.14) form a subgroup of GL(8,R) isomorphic to GL(2,H).

Proof. Again, the first part of the statement can be proven by easy computation. As for
the second part, given z1, z2, z3, z4 ∈ H in the form zl = al + ibl + jcl + kdl, we can
construct a map

ϕ :

(
z1 z2

z3 z4

)
7→ β. (1.15)

The map ϕ is trivially bijective and maps Id to Id. Moreover, it is a group homomorphism:

in fact, given two matrices A =

(
z1 z2

z3 z4

)
and B =

(
w1 w2

w3 w4

)
with zl = al+ ibl+jcl+kdl

and wm = a′m + ib′m + jc′m + kd′m; then

A ·B =

(
z1w1 + z2w3 z1w2 + z2w4

z3w1 + z4w3 z3w2 + z4w4

)
.

Then

ϕ(A·B) =



X11,23 X12,24 −Y12,24 Y11,23 W12,24 −W11,23 Z11,23 Z12,24

X31,43 X32,44 −Y32,44 Y31,43 W32,44 −W31,43 Z31,43 Z32,44

Y31,43 Y32,44 X32,44 −X31,43 Z32,44 −Z31,43 −W31,43 −W32,44

−Y11,23 −Y12,24 −X12,24 X11,23 −Z12,24 Z11,23 W11,23 W12,24

−W31,43 −W32,44 −Z32,44 Z31,43 X32,44 −X31,43 −Y31,43 −Y32,44

W11,23 W12,24 Z12,24 −Z11,23 −X12,24 X11,23 Y11,23 Y12,24

−Z11,23 −Z12,24 W12,24 −W11,23 Y12,24 −Y11,23 X11,23 X12,24

−Z31,43 −Z32,44 W32,44 −W31,43 Y32,44 −Y31,43 X31,43 X32,44


where

Xlm,no = ala
′
m − b′mbl − clc′m − dld′m + ana

′
o − bnb′o − cnc′o − dnd′o

Ylm,no = alb
′
m + bla

′
m + cld

′
m − dlc′m + anb

′
obna

′
o + cnd

′
o − dnc′o

Wlm,no = alc
′
m − bld′m + cla

′
m + dlb

′
m + anc

′
o − bnd′o + cna

′
o + dnb

′
o

Zlm,no = ald
′
m + blc

′
m − clb′m + dla

′
m + and

′
o + bnc

′
o − cnb′o + dna

′
o

One can compute ϕ(A) · ϕ(B) and prove it has the same form as ϕ(A ·B).



Remark 1.19. Given a matrix A ∈ GL(8,R) in the form (1.12) or (1.14), we have
ϕ−1(At) = ϕ−1(A)t where is the quaternion conjugation.

Proposition 1.20. A matrix A ∈ GL(8,R) which commutes with the matrices

I∗ =



0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0


and J∗ =



0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0


is of the form

γ =



a1 a2 −b2 b1 c2 c1 d1 −d2

a3 a4 −b4 b3 c4 c3 d3 −d4

b3 b4 a4 −a3 −d4 −d3 c3 −c4

−b1 −b2 −a2 a1 d2 d1 −c1 c2

c3 c4 −d4 d3 a4 a3 b3 −b4
c1 c2 −d2 d1 a2 a1 b1 −b2
d1 d2 c2 −c1 −b2 −b1 a1 −a2

−d3 −d4 −c4 c3 b4 b3 −a3 a4


. (1.16)

The matrices of the form (1.16) form a subgroup of GL(8,R) isomorphic to GL(2, SH).

Proof. As in the previous propositions, the first part of the statement can be proven
by easy computations. As for the second part, given z1, z2, z3, z4 ∈ SH in the form
zl = al + i∗bl + j∗cl + k∗dl, we can construct a map

ϕ :

(
z1 z2

z3 z4

)
7→ γ. (1.17)

The map ϕ is trivially bijective and maps Id to Id. Moreover, it is a group homomorphism:

in fact, given two matrices A =

(
z1 z2

z3 z4

)
and B =

(
w1 w2

w3 w4

)
with zl = al + i∗bl + j∗cl +

k∗dl and wl = a′l + i∗b′l + j∗c′l + k∗d′l; then

A ·B =

(
z1w1 + z2w3 z1w2 + z2w4

z3w1 + z4w3 z3w2 + z4w4

)
.

Then

ϕ(A·B) =



X11,23 X12,24 −Y12,24 Y11,23 W12,24 W11,23 Z11,23 −Z12,24

X31,43 X32,44 −Y32,44 Y31,43 W32,44 W31,43 Z31,43 −Z32,44

Y31,43 Y32,44 X32,44 −X31,43 −Z32,44 −Z31,43 W31,43 −W32,44

−Y11,23 −Y12,24 −X12,24 X11,23 Z12,24 Z11,23 −W11,23 W12,24

W31,43 W32,44 −Z32,44 Z31,43 X32,44 X31,43 Y31,43 −Y32,44

W11,23 W12,24 −Z12,24 Z11,23 X12,24 X11,23 Y11,23 −Y12,24

Z11,23 Z12,24 W12,24 −W11,23 −Y12,24 −Y11,23 X11,23 −X12,24

Z31,43 Z32,44 W32,44 −W31,43 −Y32,44 −Y31,43 X31,43 −X32,44





where

Xlm,no = ala
′
m − b′mbl + clc

′
m + dld

′
m + ana

′
o − bnb′o + cnc

′
o + dnd

′
o

Ylm,no = alb
′
m + bla

′
m + cld

′
m − dlc′m + anb

′
o + bna

′
o + cnd

′
o − dnc′o

Wlm,no = alc
′
m + bld

′
m + cla

′
m − dlb′m + anc

′
o − bnd′o + cna

′
o − dnb′o

Zlm,no = ald
′
m + blc

′
m − clb′m + dla

′
m + and

′
o + bnc

′
o − cnb′o + dna

′
o

One can compute ϕ(A) · ϕ(B) and prove it has the same form as ϕ(A ·B).

Remark 1.21. Let A ∈ GL(8,R) be a matrix of the form (1.16). Then

ϕ−1(At) = ˜ϕ−1(A)t,

where ˜ is the conjugation of split-quaternion as defined in Definition 1.5.

Proposition 1.22. The group GL(1,H) is isomorphic to the subgroup U(2) of GL(2,C)

given by the matrices of the form α =

(
z1 z2

−z2 z1

)
.

Proof. We know by Proposition 1.12 that a matrix A ∈ GL(2,C), A =

(
z1 z2

z3 z4

)
with

zj = aj + ibj , is isomorphic to a matrix in the form
a1 b1 a2 b2
−b1 a1 −b2 a2

a3 b3 a4 b4
−b3 a3 −b4 a4

 ,

while it is known that the matrices in GL(1,H) can be represented as matrices in the form
a b c d
−b a −d c
−c d a −b
−d −c b a

 .

These two matrices are equal if we impose the conditions

a1 = a, b1 = b, a2 = c, b2 = d, a3 = −c, b3 = d, a4 = a, b4 = −b,

which are equivalent to the conditions

z1 = a+ ib, z2 = c+ id, z3 = −c+ id, z4 = a− ib,

hence z3 = −z2 and z4 = z1.

Proposition 1.23. The group GL(2,H) is isomorphic to the subgroup of GL(4,C) of the
matrices in the form 

z1 z2 z3 z4

−z̄2 z̄1 −z̄4 z̄3

z5 z6 z7 z8

−z̄6 z̄5 −z̄8 z̄7

 .



Proof. We know by Proposition 1.17 that a matrix

A =

(
w1 w2

w3 w4

)
∈ GL(2,H),

with wl = al + ibl + jcl + kdl, can be written as

a1 b1 c1 d1 a2 b2 c2 d2

−b1 a1 −d1 c1 −b2 a2 −d2 c2

−c1 d1 a1 −b1 −c2 d2 a2 −b2
−d1 −c1 b1 a1 −d2 −c2 b2 a2

a3 b3 c3 d3 a4 b4 c4 d4

−b3 a3 −d3 c3 −b4 a4 −d4 c4

−c3 d3 a3 −b3 −c4 d4 a4 −b4
−d3 −c3 b3 a3 −d4 −c4 b4 a4


.

On the other hand, a matrix

B =


z1 z2 z3 z4

z5 z6 z7 z8

z9 z10 z11 z12

z13 z14 z15 z16

 ∈ GL(4,C),

with zj = xj + iyj , can be written as

x1 y1 x2 y2 x3 y3 x4 y4

−y1 x1 −y2 x2 −y3 x3 −y4 x4

x5 y5 x6 y6 x7 y7 x8 y8

−y5 x5 −y6 x6 −y7 x7 −y8 x8

x9 y9 x10 y10 x11 y11 x12 y12

−y9 x9 −y10 x10 −y11 x11 −y12 x12

x13 y13 x14 y14 x15 y15 x16 y16

−y13 x13 −y14 x14 −y15 x15 −y16 x16


.

In order to have an equality between these two expressions of A and B, we need to impose
the following conditions on xj and yj :

x1 = a1, x2 = c1, x3 = a2, x4 = c2, x5 = −c1, x6 = a1, x7 = −c2, x8 = a2

x9 = a3, x10 = c3, x11 = a4, x12 = c4, x13 = −c3, x14 = a3, x15 = −c4, x16 = a4

y1 = b1, y2 = d1, y3 = b2, y4 = d2, y5 = d1, y6 = −b1, y7 = d2, y8 = −b2
y9 = b3, y10 = d3, y11 = b4, y12 = d4, y13 = d3, y14 = −b3, y15 = d4, y16 = −b4.

These conditions imply z5 = −z2, z6 = z1, z7 = −z2, z8 = z2 and z13 = −z10, z14 =
z9, z15 = −z12, z16 = z11; hence, the proposition is proved.



Chapter 2

Automorphism groups of pseudo
H-type Lie algebras

Our goal is to describe the structure of the automorphism groups of pseudo H-type Lie
algebras. We will start by giving some insight on the theory already known for two-step
nilpotent Lie algebras. Our main reference for this section is the paper by Kaplan and
Tiraboschi [KT13], which describes the structure of the automorphism group of a fat Lie
algebra. Some of the results appearing in that paper are also relevant to the more general
class of two-step nilpotent Lie algebras. We will later see that pseudo H-type Lie algebras
are two-step nilpotent, hence the same results will apply to our analysis.

2.1 Two-step nilpotent Lie algebras

We will begin with the general definitions of a Lie algebra and a nilpotent algebra.

Definition 2.1. A Lie algebra is a vector space n over some field F together with a
binary operation [−,−] : n× n→ n, called Lie bracket, that satisfies:

• bilinearity, i.e. [ax+ by, z] = a[x, z] + b[y, z] and [x, ay + bz] = a[x, y] + b[x, z]
• anticommutativity, i.e. [x, y] = −[y, x]
• the Jacobi identity, i.e. [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

for all x, y, z ∈ n and for all a, b ∈ F.
Anticommutativity implies alternativity, i.e. [x, x] = 0 for all x ∈ n. We define the centre
of n as the set z = zn := {x ∈ n | [x, s] = 0 for all s ∈ n}.

Definition 2.2. A Lie algebra is called two-step nilpotent if [x, [y, z]] = 0 for all
x, y, z ∈ n. In other words, if n is two-step nilpotent, then the Lie bracket is a map
[−,−] : n× n→ z.

We are now interested in studying the structure of the automorphisms of a generic
two-step nilpotent Lie algebra.

Let n = (V ⊕ z, [−,−]) be a two-step nilpotent Lie algebra and Aut(n) be a group of
automorphisms of n. Let n = dim(V ) and m = dim(z). The automorphisms of two-step
nilpotent Lie algebras preserve the centre; therefore, an element ϕ ∈ Aut(n) has to be of
the form (

A 0
B C

)
, with A ∈ GL(n), C ∈ GL(m), B ∈Mn×m,

where C([u, v]) = [Au,Av].
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Remark 2.3. The subgroup B < Aut(n) given by

B =
{(t Idn 0

B t2 Idm

)
, B ∈Mn×m, t 6= 0

}
is normal. Indeed, for ϕ =

(
A 0
B C

)
, we have ϕ−1 =

(
A−1 0

−C−1BA−1 C−1

)
. Then, for any

b =

(
t Idn 0
B t2 Idm

)
, we have

ϕbϕ−1 =

(
A 0
B C

)(
t Idn 0
B t2 Idm

)(
A−1 0

−C−1BA−1 C−1

)
=

(
t Idn 0(

(t− t2) Idm +C
)
BA−1 t2 Idm

)
∈ B.

Remark 2.4. The factor group

Autgr(n) := Aut(n)/B =
{(A 0

0 C

)
, A ∈ SL(n), C([u, v]) = [Au,Av]

}
, for u, v ∈ n, is a subgroup complementary to the normal group B. Indeed, if b ∈ B and
ψ ∈ Autgr(n), then

bψ =

(
t Idn 0
B t2 Idm

)(
A 0
0 C

)
=

(
tA 0
BA t2C

)
∈ Aut(n).

We will now define the semi-direct product B o Autgr(n) by means of the action
µ : Autgr(n)× B → B defined by µ(ψ, b) = ψ(b), where

ψ(b) =

(
A 0
0 C

)(
t Idn 0
B t2 Idm

)(
A−1 0

0 C−1

)
=

(
t Idn 0

CBA−1 t2 Idm

)
∈ B.

The product • on Aut(n) = B o Autgr(n) = (B ×Autgr(n), •) is now defined by:

(n1, ψ1) • (n2, ψ2) = (n1ψ1(n2), ψ1ψ2) ∈ B ×Autgr(n).

The next step is to show that the group

Aut0(n) =
{(A 0

0 Idm

)
, A ∈ SL(n)

}
is a normal subgroup of Autgr(n). Recall that Aut0(n) acts on n by [Ax,Ay] = [x, y] for
any x, y ∈ v. We have that, for any ψ ∈ Autgr(n) and ζ ∈ Aut0(n),

ψζψ−1 =

(
A 0
0 C

)(
A1 0
0 Idm

)(
A−1 0

0 C−1

)
=

(
AA1A

−1 0
0 Idm

)
∈ Aut0(n).

Thus the quotient group Autgr(n)/Aut0(n) is isomorphic to the group

C(n) = {C ∈ GL(m) | C[x, y] = [A′x,A′y] for some A′ ∈ SL(n)}.

Knowing C(n) we can write Autgr(n) = Aut0(n) o C(n). We define the action of C(n) on
Aut0(n) by ν(c, a) = c(a), where c ∈ C(n), a ∈ Aut0(n), and

c(a) =

(
A′ 0
0 C

)(
A 0
0 Idm

)(
A′−1 0

0 C−1

)
=

(
A′AA′−1 0

0 Idm

)
∈ Aut0(n).



The product • on Autgr(n) = Aut0(n) o C(n) is now defined by

(a1, c1) • (a2, c2) = (a1c(a2), c1c2) ∈ Aut0(n) o C(n).

In particular, we have a decomposition of Aut(n) which focuses on the normal subgroup
Aut0(n). This implies that if we find a way to describe C(n), then Aut0(n) will be the only
unknown component of the automorphism group of a two-step nilpotent Lie algebra.

2.2 Pseudo H-type Lie algebras

We will now introduce pseudo H-type Lie algebras and study the structure of their au-
tomorphisms. These algebras are two-step nilpotent and will hence satisfy the conditions
depicted in the previous section. Moreover, we will describe an ulterior property satisfied
by pseudo H-type Lie algebras, which will be the tool we will use in order to classify
Aut0(n).

Definition 2.5. Let n be a (real) two-step nilpotent Lie algebra endowed with a scalar
product 〈−,−〉. Assume that the restriction 〈−,−〉z of the scalar product to the centre z
of n is not degenerate; this is equivalent to say that n = z⊕ V , where V = z⊥. We define,
for all Z ∈ z, a map JZ : V → V via the condition

〈JZX,Y 〉 = 〈Z, [X,Y ]〉 (2.1)

for all X, Y ∈ V .

Remark 2.6. JZ is a skew-adjoint operator. In fact

〈JZX,Y 〉 = 〈Z, [X,Y ]〉 = −〈Z, [Y,X]〉 = −〈JZY,X〉 = −〈X,JZY 〉.

Definition 2.7. We call n a pseudo H-type Lie algebra if

〈JZX, JZX〉 = 〈Z,Z〉〈X,X〉 (2.2)

for all Z ∈ z, X ∈ V . In particular we say that n is a (r, s)-H-type algebra, or a
(r, s)-algebra, if 〈−,−〉z has signature (r, s). We reserve the notation nr,s for a generic
(r, s)-algebra.

Remark 2.8. By polarization, if n is a pseudo H-type Lie algebra, then the following
equalities hold:

〈JZX, JZ′X〉 = 〈Z,Z ′〉〈X,X〉, 〈JZX, JZX ′〉 = 〈Z,Z〉〈X,X ′〉.

From (2.2) and Remark 2.6 we also get

J2
Z = −〈Z,Z〉 IdV . (2.3)

Proposition 2.9. Any two of the following three statements imply the other one:

1) 〈JZX, JZX〉 = 〈Z,Z〉〈X,X〉,
2) 〈JZX,Y 〉 = −〈X, JZY 〉 ,
3) J2

Z = −〈Z,Z〉 IdV .



Proof. First, we will prove that (1) and (2) imply (3). This follows from:

〈Z,Z〉〈X,X〉 = 〈JZX, JZX〉 = −〈JZJZX,X〉 = −〈J2
ZX,X〉.

Then, we will prove that (2) and (3) imply (1). This follows from:

〈JZX, JZX〉 = −〈JZJZX,X〉 = −〈J2
ZX,X〉 = −〈−||Z||2X,X〉 =

= ||Z||2〈X,X〉 = 〈Z,Z〉〈X,X〉.

Lastly, we prove that (1) and (3) imply (2). We see that

〈J2
ZX,X〉 = 〈JZX, JTZX〉,

but also

〈J2
ZX,X〉 = 〈−||Z||2X,X〉 = −〈Z,Z〉〈X,X〉 = −〈JZX, JZX〉 = 〈JZX,−JZX〉.

Therefore, JTZ = −JZ .

We will now study the structure of the group of automorphisms of pseudo H-type Lie
algebras. We already have some results for the general two-step nilpotent Lie algebras, as
described in the previous section. The extra condition (2.2) on pseudo H-type Lie algebras
will provide us with a tool used in the classification of Aut(n); in particular, as we have
seen in the previous section, we are mainly interested in the subgroup Aut0(n) < Aut(n).

What follows in this section is an adaptation of [FM17]. This paper deals with the
isomorphisms of pseudo H-type Lie algebras and many results can be adapted to fit the
study of the groups of automorphisms.

Theorem 2.10. Let Φ : nr,s(V ) → nr,s(V ) be an automorphism of pseudo H-type Lie
algebras. Then Φ is of the form

Φ =

(
A 0
B C

)
: V ⊕ Rr,s → V ⊕ Rr,s, (2.4)

where A : V → V and C : Rr,s → Rr,s are linear bijective maps satisfying the relation

ATJZA = JCT (Z) for all Z ∈ Rr,s.

Moreover, there is no condition on B : V → Rr,s. Finally, if |det(AAT )| = 1, then
CCT = ± Id if r = s and CCT = Id if r 6= s.

Proof. If a Lie Algebra automorphism Φ : nr,s(V ) → nr,s(V ) exists, then it must be in
the form (2.4), since it maps the centre to the centre. By the definition of Lie bracket we
obtain:

〈ATJZA(X), Y 〉V = 〈JZA(X), A(Y )〉V = 〈Z, [A(X), A(Y )]〉Rr,s = 〈Z,C([X,Y ])〉Rr,s

= 〈CT (Z), [X,Y ]〉Rr,s = 〈JCT (Z)X,Y 〉V

for all X, Y ∈ V , for all Z ∈ Rr,s. Hence, ATJZA = JCT (Z).

Conversely, if we know that ATJZA = JCT (Z) holds, by the previous calculations we can
obtain [A(X), A(Y )] = C([X,Y ]), so Φ = A⊕ C is a Lie algebra automorphism.
Let us now consider a Lie algebra automorphism Φ : nr,s(V )→ nr,s(V ) in the form (2.4).
Then

(ATJZA)2 = J2
CTZ = −〈CT (Z), CT (Z)〉Rr,s



Hence, assuming dim(V ) = 2N , we have:

det((ATJZA)2) = (det(AAT ))2〈Z,Z〉2NRr,s = 〈CT (Z), CT (Z)〉2NRr,s

Now assume r 6= s. Then the map CT : Rr,s → Rr,s preserves the sign. This means that

|det(AAT )|
1
N 〈Z,Z〉Rr,s = 〈CT (Z), CT (Z)〉Rr,s = 〈CCT (Z), Z〉Rr,s

Under the assumption that | det(AAT )| = 1, we then obtain CCT = Id .
Assume now r = s. Then the map CT : Rr,s → Rr,s may preserve or reverse the sign. This
means that

|det(AAT )|
1
N 〈Z,Z〉Rr,s = ±〈CT (Z), CT (Z)〉Rr,s = ±〈CCT (Z), Z〉Rr,s

Again assuming that |det(AAT )| = 1, we obtain, in this case, that CCT = ± Id.

Remark 2.11. The assumption | det(AAT )| = 1 in Theorem 2.10 is a rephrasing of the
fact that A ∈ SL(n).

What emerges from this proof is the condition ATJZA = JC(Z), which characterizes
the automorphism groups of pseudo H-type Lie algebras. This condition will be heavily
employed during the classification of Aut0(n).

Remark 2.12. It has been proven in [FM17] that, when studying these groups of automor-
phisms, one can assume that the condition CTC = Id holds not only when r 6= s (mod 4),
but also when r = s 6= 3 (mod 4). As we will see, n3,3 and n7,7 have isomorphic groups of au-
tomorphisms. This implies that the only case that we need to study for which CTC = − Id
is the case n3,3.

2.2.1 The subgroup C(n)

Now we want describe the group C(n); after doing so, we will be able to focus on the
subgroup Aut0(n). We denote the group C(n) by Cliff(nr,s(V )). The map

Rr,s 3 z 7→ −z ∈ Rr,s ⊂ Clr,s

can be extended to the Clifford algebra automorphism α : Clr,s → Clr,s by the universal
property of Clifford algebras. We denote by Cl×r,s the group of invertible elements in Clr,s
and in particular Rr,s× = {v ∈ Rr,s | 〈v, v〉r,s 6= 0}. The representation

Ãd: Rr,s× → End(Rr,s)

is defined as

Ãdv(Z) = −vZv−1 =

(
Z − 2

〈Z, v〉r,s
〈v, v〉r,s

v

)
∈ Rr,s for Z ∈ Rr,s, v ∈ Rr,s×.

The map Ãdv : Rr,s → Rr,s is the reflection of the vector z ∈ Rr,s with respect to the
hyperplane orthogonal to the vector v ∈ Rr,s. This extends to the so-called twisted
adjoint representation Ãd : Cl×r,s → GL(Clr,s) by setting

Cl×r,s 3 ϕ 7→ Ãdϕ, Ãdϕ(z) = α(ϕ)zϕ−1, z ∈ Clr,s . (2.5)



The map Ãdv for v ∈ Rr,s×, leaving the space Rr,s ⊂ Clr,s invariant, is also an isometry:

indeed, 〈Ãdv(Z), Ãdv(Z)〉r,s = 〈Z,Z〉r,s. Moreover, the properties to preserve the space
Rr,s and the bilinear symmetric form 〈−,−〉r,s are fulfilled for the group

P (Rr,s) = {v1 · · · vk ∈ Cl×r,s | 〈vi, vi〉r,s 6= 0}.

Note that (Ãdϕ−1)T = Ãdϕ. The subgroups of P (Rr,s) ⊂ Cl×r,s defined by

Pin(r, s) = {v1 · · · vk ∈ Cl×r,s | 〈vi, vi〉r,s = ±1},
Spin(r, s) = {v1 · · · vk ∈ Cl×r,s | k is even, 〈vi, vi〉r,s = ±1},

are called pin and spin groups, respectively. More information about the twisted adjoint
representation and the groups Pin and Spin can be found in [LM89].

Proposition 2.13. [LM89] The maps

Ãd: Pin(r, s)→ O(r, s) and Ãd: Spin(r, s)→ SO(r, s)

are the double covering maps.

We make the identification Spin(r)× Pin(s) ∼= Spin(r, 0)× Pin(0, s) ⊂ Pin(r, s).

Proposition 2.14. Let J : Clr,s → End(U) be a Clifford algebra representation and ϕ ∈
Spin(r)× Pin(s). Then Jϕ−1 ⊕ (Ãdϕ)τ ∈ Autgr(nr,s(U)). The group homomorphism

A : Spin(r)× Pin(s) → Autgr(nr,s(U)),

ϕ 7→ Jϕ−1 ⊕ (Ãdϕ)τ

is injective and the diagram

0 −−−−→ Aut0(nr,s(U)) −−−−→ Autgr(nr,s(U))
A⊕C 7→C−−−−−−→ O(r, s)x A

x x=

0 −−−−→ Z2 −−−−→ Spin(r)× Pin(s)
Ãd−−−−→ O(r, s)

(2.6)

is commutative. The kernel Aut0(nr,s(U)) consists of automorphisms of the form A⊕ Id.

Proof. By the definition of the twisted adjoint representation, we have

Jα(ϕ)JzJϕ−1 = J
Ãdϕ(z)

, z ∈ Rr,s×.

If we show that Jα(ϕ) = JTϕ−1 , or equivalently Jα(ϕ−1) = JTϕ for ϕ ∈ Pin(r, s), then it will

imply that Jϕ−1 ⊕ (Ãdϕ)
T
∈ Autgr(n

r,s) due to the relation ATJzA = JCT (z).
If v ∈ Rr,s× is such that 〈v, v〉r,s = −1, then

JTv−1 = JTv = −Jv = Jα(v),

and hence Jv−1 ⊕ (Ãdv)
T ∈ Autgr(n

r,s(V )). If instead v is such that 〈v, v〉r,s = 1, then

JTv−1 = JT−v = Jv 6= Jα(v),



and therefore the map Jv−1 ⊕ (Ãdv)
T does not belong to Autgr(n

r,s(V )). If ϕ = v1v2 with
〈vi, vi〉r,s = ±1, i = 1, 2, then

J(v1v2)−1 = Jv2v1 = JTα(v1v2).

This implies that J(v1v2)−1 ⊕ (Ãdv1v2)T ∈ Autgr(n
r,s(V )).

In general, if ϕ = x1 · · ·x2p · y1 · · · yq ∈ Pin(r, s) with 〈xi, xi〉r,s = 1, i = 1, . . . , 2p, and
〈yj , yj〉r,s = −1, j = 1, . . . , q, then we obtain

(J(x1···x2p·y1···yq)−1)T = (Jyq ,···y1·x2p···x1)T = (−1)2p+qJx1···x2p·y1···yq = Jα(x1···x2p·y1···yq).

Remark 2.15. Let G be a group with a normal subgroup N and a subgroup H, such that
every element g ∈ G can be written uniquely in the form g = nh where n ∈ N and h ∈ H.
Let ϕ : H → Aut(N) be the homomorphism h 7→ ϕh, defined by ϕh(n) = hnh−1 for all
n ∈ N , h ∈ H. Then G is isomorphic to the semidirect product N o ϕH; and applying
the isomorphism to the product nh gives the tuple (n, h). In G, we have

(n1h1)(n2h2) = n1h1n2

(
h−1

1 h1

)
h2 =

(
n1ϕh1(n2)

)(
h1h2

)
= (n1, h1) • (n2, h2)

which shows that the map above is indeed an isomorphism and also explains the definition
of the multiplication in N o ϕH.

Recall a version of the splitting lemma for groups. It states that a group G is isomorphic
to a semidirect product of the two groups N and H if and only if there exists a short exact
sequence

0 −−−−→ N
β−−−−→ G

α−−−−→ H (2.7)

and a group homomorphism γ : H → G such that αγ = IdH . In this case, the map
ϕ : H → Aut(N) is given by ϕ(h) = ϕh, where

ϕh(n) = β−1
(
γ(h)β(n)γ(h−1)

)
.

2.2.2 Commutation of JZi

In the proof of Theorem 2.10 we have seen that the groups of automorphisms of pseudo
H-type Lie algebras are defined by the condition ATJZA = JC(Z). This equation is used
in the following lemma to obtain other relations between the matrix A and products of
operators JZi .

Lemma 2.16. Let {Zi}r+si=1 be an orthogonal basis of Rr,s with r 6= s or r = s 6= 3 (mod 4),
and let

Φ = A⊕ C : V ⊕ Rr,s → V ⊕ Rr,s

be an automorphism of Lie algebras (as in Theorem 2.10). The following relations hold:

• If p = 2m, m ∈ N, then

A

p∏
j=1

JZj =

p∏
j=1

JC(Zj)A, AT
p∏
j=1

JZj =

p∏
j=1

JCT (Zj)A
T (2.8)

ATA

p∏
j=1

JZj =

p∏
j=1

JZjA
TA, AAT

p∏
j=1

JC(Zj) =

p∏
j=1

JC(Zj)AA
T (2.9)



• If p = 2m+ 1, m ∈ N, then

A

p∏
j=1

JZjA
T =

p∏
j=1

JC(Zj), AT
p∏
j=1

JZjA =

p∏
j=1

JCT (Zj) (2.10)

ATA

p∏
j=1

JZjA
TA =

p∏
j=1

JZj , AAT
p∏
j=1

JZjAA
T =

p∏
j=1

JZj (2.11)

Proof. We only prove the equalities on the right, since one can obtain the ones from the
left by transposition. We will start by proving (2.10) and (2.8).

Firstly, observe that (2.10) for m = 0 is ATJZA = JCT (Z), which holds because of
Theorem 2.10. We will prove that (2.10) for m = 0 implies (2.8) for m = 1.

ATJZ1JZ2 = ATJZ1AA
−1JZ2 = JCT (Z1)A

−1JZ2 =

JCT (Z1)A
−1JZ2(AT )−1AT = JCT (Z1)JCT (Z2)A

T ,

where the second-last equality comes from the following observation:

A−1JZ(AT )−1 = (ATJ−1
Z A)−1 =

(
− 1

〈Z,Z〉
ATJZA

)−1

=

(
− 1

〈Z,Z〉
JCT (Z)

)−1

= −〈Z,Z〉
(
− 1

〈CT (Z), CT (Z)〉
JCT (Z)

)
= JCT (Z)

for all Z, since
〈CT (Z), CT (Z)〉 = 〈CCT (Z), Z〉 = 〈Z,Z〉.

We will now prove that (2.8) for m = 1 and (2.10) for m = 0 imply (2.10) for m = 1.

ATJZ1JZ2JZ3A = JCT (Z1)JCT (Z2)A
T = JCT (Z1)JCT (Z2)JCT (Z3).

In general, if (2.10) holds for m ≥ 1, then (2.8) holds for m+ 1:

AT
2m+1∏
j=1

JZjJZ2m+2 = AT
2m+1∏
j=1

JZjAA
−1JZ2m+2

=

2m+1∏
j=1

JCT (Zj)A
−1JZ2m+2(AT )−1AT =

2(m+1)∏
j=1

JZjA
T .

Moreover, if (2.8) holds for m ≥ 2, then (2.10) holds for m as well:

AT
2m+2∏
j=1

JZjJZ2m+3A =
2m+2∏
j=1

JCT (Zj)A
TJZ2m+3A

=

2m+2∏
j=1

JCT (Zj)JCT (Z2m+3) =

2m+3∏
j=1

JCT (Zj).

we have hence proven (2.8) and (2.10) for every m.
We can now prove (2.9) for any m using both the equations in (2.8):

ATA

2m∏
j=1

JZj = AT
2m∏
j=1

JC(Zj)A =

2m∏
j=1

JCTC(Zj)A
TA =

2m∏
j=1

JZjA
TA.



Lastly, we prove (2.11) for any m using both equations in (2.10):

ATA
2m+1∏
j=1

JZjA
TA = AT

2m+1∏
j=1

JC(Zj)A =
2m+1∏
j=1

JC(Zj) =
2m+1∏
j=1

JCTC(Zj) =
2m+1∏
j=1

JZj .

Remark 2.17. If we restrict to the subgroup of automorphisms that act trivially on the
centre, i.e. if we consider Aut0(n) where C = Id, then we have three interesting results:

ATJZiA = JZi , ATJZiJZk
JZl

A = JZiJZk
JZl

, AJZiJZj = JZiJZjA.

2.3 Admissible Clifford modules

We will now describe a way to construct pseudo H-type Lie algebras from a Clifford algebra.
We will start by giving the definition of an admissible module of a Clifford algebra; we will
then follow [Cia00] and show that there is a one-to-one correspondence between pseudo
H-type Lie algebras and admissible modules of Clifford algebras.

Definition 2.18. An n-ary quadratic form over a field F is a homogeneous polynomial
of degree 2 in n variables with coefficients in F:

q(x1, . . . , xn) =

n∑
i=1

n∑
j=1

aijxixj , aij ∈ F.

Remark 2.19. Any bilinear form has an associated quadratic form. In particular, if we
consider the scalar product, the associated quadratic form is q(v) = 〈v, v〉.

Definition 2.20. Let v be a vector space over the field F and let q be a quadratic form
on v. The Clifford algebra Cl(v, q) associated to v and q is an associative algebra with
unit 1 defined as follows. Consider the tensor algebra T(v) :=

∑∞
r=0

⊗r v of v. We define
Iq(v) to be the ideal in T(v) generated by all the elements of the form v ⊗ v + q(v)1 for
v ∈ v. Then Cl(v, q) := T(v)/Iq(v).

Remark 2.21. We denote with Cl(r, s) the Clifford algebra built on v = Rr+s associated
to a scalar product with signature (r, s). An orthogonal basis {Z1, ..., Zr+s} of normalized
vectors of Rr+s is called a set of Clifford generators of Cl(r, s). They satisfy the relations
described in (1.1), which are called fundamental relations of Cl(r, s).

Remark 2.22. It is known ([LM89] and [ABS64]) that the Clifford algebras of the form
Cl(r, s) are periodic, in the following sense:

Cl(r, s+ 8) ' Cl(r, s)⊗ R(16)

Cl(r + 8, s) ' Cl(r, s)⊗ R(16)

Cl(r + 4, s+ 4) ' Cl(r, s)⊗ R(16)

where R(16) represents the matrices 16 × 16 with real entries. This property made it
possible (see for example [LM89]) to classify all the Clifford algebras of the form Cl(r, s).

Definition 2.23. Given a Clifford algebra Cl(r, s), we define a Cl(r, s)-module as a vector
space γ which is the carrier space for a representation J : γ → Jγ of Cl(r, s).



Definition 2.24. Given a Cl(r, s)-module V and a scalar product 〈−,−〉V on V , we call
the pair (V, 〈−,−〉V ) an admissible (r, s)-module if the operators JZ are skew-adjoint
for all Z ∈ z, i.e., if

〈JZX,Y 〉V = −〈X, JZY 〉V . (2.12)

In [Cia00] there is a proof of the following lemma.

Lemma 2.25. Let z be a real vector space of dimension k endowed with a scalar product
〈−,−〉z of signature (r, s) with r+ s = n and let V be a Cl(r, s)-module. Then the algebra
n = z ⊕ V is a pseudo H-type Lie algebra if and only if there exists a scalar product
〈−,−〉 : V × V → R such that (V, 〈−,−〉V ) is admissible.

We now state the theorem by P. Ciatti which proves that, for any two integers r, s
and for any Cl(r, s)-module V , at least one between V and V ⊕ V can be endowed with
a scalar product which satisfies (2.12). We remark that Ciatti in [Cia00] uses a slightly
different notation from ours.

Theorem 2.26. For all (r, s) there exists at least one admissible Cl(r, s)-module.

In particular, P. Ciatti finds an admissible module (V, 〈−,−〉) for the cases r =
3 (mod 4) and for the cases s = 0 (mod 4); for all the other cases he constructs an admis-
sible module over V ⊕ V . This result does not exclude a priori the existence of admissible
modules V where the existence is verified by V ⊕ V .

Remark 2.27. From now on, we will only consider the minimal admissible modules. In
general the classification will depend on the dimension on the module.

So far we have followed [Cia00]; a result by I. Markina and K. Furutani gives us more
information about admissible modules; this will depend on the value of r − s.

Definition 2.28. Let us consider an orthonormal basis {Z1, . . . , Zr+s} of Rr,s, and let
JZ1 , . . . , JZr+s be the corresponding representation maps. We define the volume form

Ωr,s :=

r+s∏
i=1

Zi.

In the case r− s ≡ 3 (mod 4), the volume form is such that J(Ωr,s)2 = Id . This implies
the existence of two non-equivalent irreducible modules V + and V −, on which the volume
form acts respectively as Id and − Id . If neither of them is admissible, then the direct sum
of two of them is. We can hence summarize the possible structures of minimal admissible
modules for every case [FM17]:

r − s 6= 3 (mod 4) r − s = 3 (mod 4)

any s s is even s is even s is odd

V or V ⊕ V V + or V − V + ⊕ V + or V − ⊕ V − V + ⊕ V −

2.3.1 Block structure of an admissible module

As r and s increase, the dimension of the minimal admissible modules gets larger and
larger, and so the computations necessary for the classification of Aut0(n) will become
more challenging. In particular, the cases we need to study would have a dimension ranging
between 2 and 64. We will prove that it is enough to consider only one part (a “block”) of



the admissible module in order to classify Aut0(n). We will explain how a module can be
divided into blocks and what these blocks represent. The following results will not apply
to the case n3,3; in fact, as we have seen in Remark 2.12, in this case the matrix C does
not satisfy CTC = Id, and only consider the cases where this condition holds. In the case
n3,3 the condition satisfied by C is CTC = − Id, and thus we need to treat it separately.

What follows is an adaptation of [FM17]. As in Section 2.2, the original results refer
to isomorphism groups, while here they are adapted to the automorphism groups.

Definition 2.29. We define involution a linear map P : V → V such that P 2 = Id . In
particular we will consider involutions that are a product of a number of linear operators Ji.
We will denote with Ek with k ∈ {−1, 1} the eigenspace of P , according to the eigenvalue.

Remark 2.30. By Lemma 2.16, we can observe that involutions that are a product of
four elements will commute with the matrix A ∈ Aut0(n).

The following is a corollary of Lemma 2.16.

Corollary 2.31. Let r 6= s or r = s 6= 3 (mod 4), and let Φ = A⊕ Idm : nr,s → nr,s. Let
Pj for j = 1, . . . , N be mutually commuting isometric involutions on V r,s obtained by the
product of some Ji’s. Then the map A can be written as A =

⊕
AI where AI : EI → EI

for any choice of I = (k1, . . . , kN ), kl ∈ {±1} for all l. Moreover,

AI

2m∏
i=1

Ji =
2m∏
i=1

JiAI

AI

2m+1∏
i=1

Ji =

2m+1∏
i=1

Ji(A
T
I )−1

(2.13)

Theorem 2.32. Let Pj, j = 1, . . . , N be mutually commuting isometric involutions on

V r,s, obtained by the product of some Ji’s. Let E1 :=
⋂N
j=1E

1
Pj
. We assume there exists

GI : E1 → EI for all multi-indices I written as GI =
∏
Ji. We also assume that there

exists A1 : E1 → E1 satisfying (2.13). Then there exists a map A : V r,s → V r,s such that
A⊕ Idm : nr,s → nr,s is a Lie algebra automorphism.

Proof. We define the maps AI : EI → EI by:

AI =

{
GI(A

−1
1 )TG−1

I if GI =
∏p=2m+1
i=1 Ji

GIA1G
−1
I if GI =

∏p=2m
i=1 Ji.

Then we can write the adjoint maps as

ATI =

{
GI(A

−1
1 )G−1

I if GI =
∏p=2m+1
i=1 Ji

GIA
T
1 G
−1
I if GI =

∏p=2m
i=1 Ji.

We set A :=
⊕
AI . We need to check the condition AJiA

T = Ji for any Zi in the
orthonormal basis for Rr,s.
One can observe that the spaces EI are mutually orthogonal; in fact, if Pj(X) = X and
Pj(Y ) = −Y for some isometry Pj , then

〈X,−Y 〉V r,s = 〈Pj(X), Pj(Y )〉V r,s = 〈X,Y 〉V r,s .



This implies that 〈X,Y 〉V r,s = 0. Thus V r,s =
⊕
EI , where the direct sums are orthogonal.

The maps GI are invertible and

G−1
I = (

p∏
i=1

Ji)
−1 = (−1)p

p∏
i=1

〈zi, zi〉−1
p−1∏
k=0

Jp−k.

From Lemma 2.16 we know that the following relationships hold:

(A−1
1 )T

2m+1∏
i=1

JiA
−1
1 =

2m+1∏
i=1

Ji, A1

2m+1∏
i=1

JiA
T
1 =

2m+1∏
i=1

Ji (2.14)

(A−1
1 )T

2m∏
i=1

JiA
T
1 =

2m∏
i=1

Ji, A1

2m∏
i=1

JiA
−1
1 =

2m∏
i=1

Ji (2.15)

For arbitrary Ji0 and Y ∈ V r,s, we can write Y =
⊕
YI with YI ∈ EI . For the multi-index

I we find a multi-index K such that G−1
K Ji0GI leaves invariant the space E1. Since GI

and GK can be product of an even or an odd number of Jk’s, we consider the different
cases:

AJi0A
T yI = AKJj0A

T
I YI =

=


GK(A−1

1 )TG−1
K Ji0GIA

−1
1 G−1

I YI if GI =
∏2m+1
i=1 Ji, GK =

∏2k+1
l=1 Jl

GKA1G
−1
K Ji0GIA

−1
1 G−1

I YI if GI =
∏2m+1
i=1 Ji, GK =

∏2k
l=1 Jl

GK(A−1
1 )TG−1

K Ji0GIA
T
1 G
−1
I YI if GI =

∏2m
i=1 Ji, GK =

∏2k+1
l=1 Jl

GKA1G
−1
K Ji0GIA

T
1 G
−1
I YI if GI =

∏2m
i=1 Ji, GK =

∏2k
l=1 Jl

which we get by the definition of AI and ATI . Counting the elements Ji in every product
G−1
K Ji0GI , we can apply the formulas in (2.14) and (2.15) to obtain:

AJi0A
TYI =

=


GKG

−1
K Ji0GIG

−1
I YI if GI =

∏2m+1
i=1 Ji, GK =

∏2k+1
l=1 Jl

GKG
−1
K Ji0GIG

−1
I YI if GI =

∏2m+1
i=1 Ji, GK =

∏2k
l=1 Jl

GKG
−1
K Ji0GIG

−1
I YI if GI =

∏2m
i=1 Ji, GK =

∏2k+1
l=1 Jl

GKG
−1
K Ji0GIG

−1
I YI if GI =

∏2m
i=1 Ji, GK =

∏2k
l=1 Jl

Thus AJi0A
TYI = Ji0YI .

2.3.2 The group Aut0(nr,0)

The pseudo H-type Lie algebras with positive definite scalar product have already been
studied, in particular by L. Saal [Saa96]. These Lie algebras have already been classi-
fied, and here we provide the proposition which summarizes this classification. The first
proposition is a general result, while the corollary is its restriction to minimal admissible
modules, which is the case we will focus on.

Proposition 2.33. Let nr,0 = Rr,0 ⊕ V be an algebra of H-type, let dimR(V ) = n. Then



Aut0(nr,0) is isomorphic to

Sp(n · 2−( r+1
2

),R) if r = 1 (mod 8)

Sp(n · 2−( r+2
2

),C) if r = 2 (mod 8)

U(n1 · 2−( r+1
2

), n−1 · 2−( r+1
2

),H) if r = 3 (mod 8)

GL(n · 2−( r+2
2

),H) if r = 4 (mod 8)

SO∗(2n · 2−( r+1
2

)) if r = 5 (mod 8)

O(n · 2−( r
2

),C) if r = 6 (mod 8)

O(n1 · 2−( r−1
2

), n−1 · 2−( r−1
2

),R) if r = 7 (mod 8)

GL(n · 2−( r
2

),R) if r = 0 (mod 8)

where n1 and n−1 = n − n1 are the dimensions of the eigenspaces of V with respect to
Ωr,0, and SO∗(2l) := GL(l,H) ∩O(2l,C).

Corollary 2.34. If we assume V to be of minimal dimension, we have:

Sp(1,R) if r = 1 (mod 8)

Sp(1,C) if r = 2 (mod 8)

U(1, 0,H) if r = 3 (mod 8)

GL(1,H) if r = 4 (mod 8)

SO∗(2) if r = 5 (mod 8)

O(1,C) if r = 6 (mod 8)

O(1, 0,R) if r = 7 (mod 8)

GL(1,R) if r = 0 (mod 8)





Chapter 3

Classification of Aut0(nr,s)

In this chapter we will classify the automorphism groups of pseudo H-type Lie algebras.
Because of the periodicity of Clifford algebras described in Remark 2.22, we will only need
to study the cases nr,s for r, s corresponding to the non-empty cells in this table:

s

8 1

7 2 4 8 8

6 4 4 4 4

5 8 8 4 2

4 4 4 2 1 1

3 8 8 4 2 4 8 8

2 4 4 4 4 4 4 4 4

1 2 4 8 8 8 8 4 2

0 2 4 4 4 4 2 1 1

0 1 2 3 4 5 6 7 8 r

Table 3.1

The number written in every position is the dimension of the minimal admissible module of
nr,s, or, if the pseudo H-type Lie algebra admits mutually commuting isometric involutions,
the dimension of its minimal eigenspace. The cases coloured in blue are the ones which
admit an involution which is a product of three linear operators.

For the cases that admit one or more involutions, we will consider only the first common
eigenspace as in Theorem 2.32, since by that theorem we know that this is enough to
provide a structure of the entirety of Aut0(n). The first eigenspace will be one-, two-,
four- or eight-dimensional; we will study these four cases separately. Some of them will
yield the same group Aut0 n, even though the starting pseudo H-type Lie algebras are not
isomorphic; these cases will be treated together.

We will make extensive use of the following lemmas.

Lemma 3.1. Consider three operators Ji, Jk and Jl and assume they satisfy the conditions
AJiJk = JiJkA and ATJlA = Jl. Then ATJiJkJlA = JiJkJl.

Proof. We have the chain of implications:

ATJlA = Jl ⇒ ATJlAJiJk = JlJiJk ⇒ ATJlJiJkA = JlJiJk ⇒ ATJiJkJlA = JiJkJl.
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Lemma 3.2. Let Ωn be the matrix as in the definition of the symplectic group of degree
2n and let σn be the matrix as in the definition of the group T of degree n (as in Definition
1.7). Consider the matrix

η :=

(
Idn 0
0 − Idn

)
.

Then η · Ωn = −σn and η · σn = −Ωn (by computation).

The main tool employed in our analysis is the knowledge of a basis for each admissible
module of nr,s and the subdivision of such bases in common eigenspaces. This data, the
collection of which represents an important part of this thesis, is presented in the tables
in Appendix A. In the same tables, all the involutions of each admissible module of a
pseudo H-type Lie algebra are also listed. We notice that the metric of every first common
eigenspace can either be neutral or sign definite.

The techniques we adopted in order to gather the data included in those tables are ex-
plained in Appendix A.

As shown in Table 3.1, we reduce our analysis to the study of n × n real matrices, with
n = 1, 2, 4, 8. The linear operators Ji that we will encounter will be represented as real
matrices of the appropriate dimension. The isomorphisms presented in Section 1.2 will
further reduce these cases to the study of matrices of lower dimensions in other fields
(such as C and H).

Remark 3.3. As we can see from Table 3.1, many admissible modules (marked in blue)
admit involutions which are a product of three linear operators. These involutions do not
satisfy the conditions of Theorem 2.32, so we will not consider them when subdividing
the modules into common eigenspaces. Nevertheless, it follows from Lemma 2.16 that any
involution P which is a product of three Ji’s satisfies ATPA = P.

Proposition 3.4. Let E be a common eigenspace of mutually commuting isometric invo-
lutions and let A : E → E be as in Theorem 2.32 (hence we know that A is an invertible
real matrix). Let P be an involution which is a product of three linear operators. Then, the
condition ATPA = P implies ATA = Id .

Proof. Let us first observe that the condition ATPA(x) = P (x) for every x ∈ E is equiv-
alent to the condition ATPA = P as matrices, by the definition of a linear operator. We
want to prove that ATA = Id. Observe that P , being an involution, divides the space into
two eigenspaces, E+ and E−, on which it acts respectively as Id and − Id.
The claim is proved by contradiction. Assume first that there exists x0 ∈ E such that

ATAx0 = y 6= x0 with y 6= 0. (3.1)

First, assume x0 ∈ E+. Let y ∈ E; for every x ∈ E+, the relation ATPAx = Px = x
holds; Hence ATPA = Id holds on E+. Multiplying on both sides by AT , we obtain
ATPAAT = AT . Hence ATPAATx0 = ATx0, which implies, by (3.1):

ATPy = ATx0. (3.2)

If y ∈ E+, it follows that AT y = ATx0. Since A is invertible, then AT is as well, hence
we come to the contradiction y = x0. If instead y ∈ E−, then the equation (3.2) becomes



−AT y = ATx0. Since AT is invertible, we obtain y = −x0. But we are assuming x0 ∈ E+,
so −x0 ∈ E+. Since y ∈ E−, also in this case we come to a contradiction.
Assume now that x0 ∈ E−. We can observe that ATPAx = Px = −x for every x ∈ E−.
Hence, ATPA = − Id on E−. We can multiply on the right both sides by AT we obtain
ATPAAT = −AT . Then ATPAATx0 = −ATx0, which implies, by (3.1):

ATPy = −ATx0. (3.3)

If y ∈ E−, then −AT y = −ATx0. Since A is invertible, then AT is as well, hence we come
to the contradiction −y = −x0, i.e. y = x0. If instead y ∈ E+, then the equation (3.3)
becomes AT y = −ATx0. Since AT is invertible, we obtain y = −x0. But we are assuming
x0 ∈ E−, so −x0 ∈ E−. Since y ∈ E+, we come to a contradiction.

Remark 3.5. Let P be an involution which is a product of three operators, and let E
be the first common eigenspace with respect to the involutions which are products of
four linear operators; if P has two non-trivial eigenspaces E+ and E− on which it acts
respectively as Id and − Id, then, since P is a simmetric operator, we know that E+ and
E− are orthogonal. Moreover, Proposition 3.4 proves that A maps each eigenspace in itself,
i.e. A : E+ ⊕ E− → E+ ⊕ E−. Hence, if E+ and E− are isomorphic to GL(n,F) with n
F fields, then A represents the orthogonal matrices over F. In particular, if the metric is
sign definite we conclude that A ∈ O(2n,F); if instead the metric is neutral, we conclude
that A ∈ O(n, n,F).
One cannot conclude the same if one between E+ and E− is trivial.

What follows is a table which summarizes the results obtained in this chapter.

8 GL(1,R)

7 T(2,R) Sp(2,C) Sp(2,H) Sp
†
(2,H)

6 GL](2,C) Sp
∗
(2,C) GL(1,H) GL∗C(1,H)

5 Sp(2,H) Sp
†
(2,H) Sp

∗
(2,C) Sp∗(2,R)

4 GL(1,H) GL∗C(1,H) O(1,C) O(1,R) GL(1,R)

3 T(2,H) S̃p
∗
(2, SH) GL∗C(1,SH) T(2,R) Sp(2,C) Sp(2,H) Sp

†
(2,H)

2 Sp(2,C) GL∗C(1, SH) GL(1,H) GL∗C(1,SH) GL](2,C) Sp
∗
(2,C) GL(1,H) GL∗C(1,H)

1 Sp(2,R) Sp(2, SC) S̃p(2,SH) Sp
∗
(2,H) Sp(2,H) Sp

†
(2,H) Sp

∗
(2,C) Sp∗(2,R)

0 Sp(2,R) Sp(2,C) U(1,H) GL(1,H) GL∗C(1,H) O(1,C) O(1,R) GL(1,R)

0 1 2 3 4 5 6 7 8

In the table we have used the following notation. Given G a group, we define:
- G∗(2n,F) := G(2n,F) ∩ {A ∈ GL(2n,F) | AtηA = η}.
- G∗F′(n,F) := G(n,F′) ∩ {A ∈ GL(2n,F) | AtηA = η}, for F, F′ different fields.

- G†(2n,F) := G(2n,F) ∩ {A ∈ GL(2n,F) | AtηA = η}.
- G†F′(n,F) := G(n,F) ∩ {A ∈ GL(2n,F′) | AtηA = η}, for F, F′ different fields.
- GL](2,C) := GL(2,C) ∩ T(4,R).
- We denote denote with the color red all the cases where the first common eigenspace

(or the module itself if there is no division in eigenspaces) has a sign definite metric.

3.1 One-dimensional common eigenspaces

As we can see from Table 3.1, there are only five one-dimensional cases. In particular,
n8,0 and n0,8 are isomorphic pseudo H-type Lie algebras, so we expect their respective



Aut0(n)’s to be isomorphic. It turns out that also n4,4 has the same Aut0(n).
The other two cells in the table correspond to n7,0 and n3,4, which satisfy r−s = 3 (mod 4).
Hence, both cases admit two non-equivalent irreducible admissible modules V + and V −;
they will turn out to have the same Aut0(n).

s

8 1

7 2 4 8 8

6 4 4 4 4

5 8 8 4 2

4 4 4 2 1 1

3 8 8 4 2 4 8 8

2 4 4 4 4 4 4 4 4

1 2 4 8 8 8 8 4 2

0 2 4 4 4 4 2 1 1

0 1 2 3 4 5 6 7 8 r

Table 3.1, one-dimensional cases circled.

3.1.1 Cases n7,0 and n3,4

The minimal admissible modules of n7,0 and n3,4 have a very similar structure. Indeed, they
both admit four different involutions, three of which are products of four linear operators,
while the last one is the product of three linear operators (see Subsections A.1.1, A.1.2).
The first three involutions, named P1, P2 and P3, divide the admissible module into one-
dimensional blocks, while the fourth one, named P4, has a different role. We know, in fact,
that in the case r − s ≡ 3 (mod 4) the pseudo H-type Lie algebra has two non-equivalent
minimal admissible modules, on which the volume form acts as Id or − Id. The involution
P4 acts differently on the two admissible modules, which we call V + and V −.
We will analyse the case n7,0, as the case n3,4 is analogous, and we will prove that
Aut0(n) ∼= O(1,R).

First we will show that Aut0(n) ⊂ O(1,R). Consider an element v such that 〈v, v〉 = 1
and belonging to the first block in V +. Then we have the following chain of implications:

Ωv = v ⇒ J1J2J3J4J5J6J7v = v ⇒ J5J6J7J1J2J3J4v = v ⇒ J5J6J7v = v

⇒ J2
1J

2
2J5J6J7v = v ⇒ −J1J2J7J1J2J5J6v = v ⇒ −J1J2J7v = v

⇒ P4v = −v.

Similarly, if we choose an element w in the first block of V −, we can obtain that P4w = w.
We will proceed to study V +. Following the tables in Subsections A.1.1, A.1.2, we can
construct the basis of V +:

{v, J7v, J6v, J5v, J4v, J3v, J2v, J1v}

Since we managed to divide the admissible module into one-dimensional blocks, we know
that A ∈ GL(1,R). We can use the involution P4 to obtain more information. In fact, by
Lemma 2.16, we have that ATP4A = P4. We are currently considering the module V +, on
which P4 acts as − Id . Hence we obtain −ATA = − Id, which implies that ATA = Id. This



implies that A ∈ O(1,R), so, in particular, A ∈ {±1}. This result is not in contradiction
with the one provided by Saal (Corollary 2.34): indeed, we have proven in Remark 1.9
that O(1, 0,R) ' O(1,R). Hence, Aut0(n) ∼= O(1,R).
Note that, even though the admissible module of Cl3,4 has a neutral metric, the first block
has a definite positive metric, so one can apply exactly the same computations as the ones
for the case n7,0.

We now want to prove that O(1,R) ⊂ Aut0(n). Let M ∈ O(1,R), so M ∈ {±1}. We
need to check that it satisfies the condition MTJ1J2J7M = J1J2J7, where J1J2J7 acts as
− Id . In particular, we obtain the condition MT IdM = Id, but since M is a real number,
its transpose is simply M itself and it also commutes with any matrix. Hence, we obtain
MM = Id . Now since M = {±1}, MM = 1, so the condition holds and O(1,R) ⊂ Aut0(n).

We conclude that Aut0(n) ∼= O(1,R) for the considered cases.

3.1.2 Cases n8,0, n0,8 and n4,4

We already know that n8,0 and n0,8 are isomorphic, so we can expect a similar behaviour
once we consider their automorphism groups; we will see that n4,4 will also have the same
automorphism group, which we will prove to be isomorphic to GL(1,R).
From Subsections A.1.3, A.1.4 and A.1.5, we see that these three cases all have four invo-
lutions which are products of four linear operators. These involutions divide the admissible
module into one-dimensional blocks. We will study the case n8,0, as the two other ones
will behave in the same way.

First, we will prove the inclusion Aut0(n) ⊂ GL(1,R). As shown in the table in Sub-
section A.1.3, a basis for the first eigenspace is given by {v}, where v is an element in
the first eigespace such that 〈v, v〉 = 1. As there is no further condition on the basis, we
conclude that Aut0(n) ⊂ GL(1,R).

Proving the inclusion GL(1,R) ⊂ Aut0(n) is trivial: as an element in GL(1,R) is simply
a number in R×, it trivially acts as an automorphism on the first block.

We conclude that Aut0(n) ∼= GL(1,R) for the considered cases.

3.2 Two-dimensional common eigenspaces

We identify in Table 3.1 eight two-dimensional cases. We will see that they can actually
be gathered in four different classes. Some of the results we obtained were expected – it
is known, for example, that n1,0 and n0,1 are isomorphic – while other ones are surprising.
As the dimension of the minimal admissible module of the common eigenspaces is 2, the
automorphism groups will be subgroups of GL(2,R) or GL(1,C).

3.2.1 Cases n1,0 and n0,1

The pseudo H-type Lie algebras n1,0 and n0,1 are isomorphic, but we must study them
separately. In both cases we have a single linear operator J1. The admissible module is
two-dimensional, and in the tables in Subsections A.2.1 and A.2.2 we construct a basis
of it, given by {v, J1v}. We will show that in both cases, the automorphism groups are
isomorphic to Sp(2,R).

First, we will prove the inclusion Aut0(n) ⊂ Sp(2,R). Since there is obviously no even
product of operators in the basis, we can say that A ∈ GL(2,R). From the condition
ATJ1A = J1, we obtain that ηAtηJ1A = J1, and hence At(ηJ1)A = (ηJ1).
In the case n1,0, we have that J2

1 = − Id, so its matrix representation has the same form
as Ω1. The condition ATJ1A = J1 resolves into AtΩ1A = Ω1, since the metric is definite



s

8 1

7 2 4 8 8

6 4 4 4 4

5 8 8 4 2

4 4 4 2 1 1

3 8 8 4 2 4 8 8

2 4 4 4 4 4 4 4 4

1 2 4 8 8 8 8 4 2

0 2 4 4 4 4 2 1 1

0 1 2 3 4 5 6 7 8 r

Table 3.1, two-dimensional cases circled.

positive. Hence, A ∈ Sp(2,R).
In the case n0,1, we have that J2

1 = Id, so its matrix representation is of the form as σ1.
In this case, though, the metric is neutral, so its matrix representation is

η =

(
1 0
0 −1

)
.

By Lemma 3.2, η ·σ1 = −Ω1. So the condition ATJ1A = J1 gives again At(−Ω1)A = −Ω1,
so AtΩ1A = Ω1. Hence A ∈ Sp(2,R). So, in both the cases n1,0 and n0,1, we have that
Aut0(n) ⊂ Sp(2,R).

We will now prove the inclusion Sp(2,R) ⊂ Aut0(n). Let M ∈ Sp(2,R); we need to
check if it satisfies the condition MTJ1M = J1, which in both cases becomes M tΩ1M = Ω1

because J2
1 = ± Id. This is also the necessary condition for M to be in Sp(2,R); hence,

the inclusion is trivially verified.

We conclude that Aut0(n) ∼= Sp(2,R) for the considered cases.

3.2.2 Cases n6,0 and n2,4

The admissible modules of these two pseudo H-type Lie algebras admit three involutions
each; two of them are products of four operators, while the last one is a product of three
linear operators. The module has dimension 8, and can be divided in two-dimensional
blocks by the first two involutions. We will study the case n6,0, as the case n2,4 is analogous.
We will in particular prove that Aut0(n) ∼= O(1,C).

We start by proving Aut0(n) ⊂ O(1,C). In the tables in Subsection A.2.3 we have
constructed a basis for the minimal admissible module; in particular, a basis for the first
block is given by {v, J1J2v}. Note that (J1J2)2 = − Id, and can be described as a matrix
as Ω1. Moreover, J1J2 is the product of two operators; hence, it commutes with the matrix
A. It is known that Ω1 is a matrix representation for i; hence by Remark 1.11 it follows
that A ∈ GL(1,C). We now need to consider the ulterior condition ATP3A = P3, given
by the involution P3, as described in Subsection A.2.3. By Proposition 3.4, this condition
implies ATA = Id. Note that P3 divides the first common eigenspaces in two non-trivial
eigenspaces which are both isomorphic to GL(1,R); hence, because of Remark 3.5, we
obtain that A ∈ O(2,R). We know that GL(1,C) ∩ O(2,R) ∼= O(1,C); hence,we have
proven Aut0(n) ⊂ O(1,C).



Note that also in this case, as in the case n3,4 studied above, the first eigenspace has a
definite positive metric even though the metric of the admissible module of n2,4 is neutral;
hence, the condition ATA = Id becomes AtA = Id in both n6,0 and n2,4.

We now want to prove the inclusion O(1,C) ⊂ Aut0(n). We need to check that any
matrix A in O(1,C) commutes with J1J2 and that ATA = Id . The first condition follows
from the fact that A is a complex matrix, and the matrix form of J1J2 is one of the
equivalent matrix form for i. The condition ATA = Id resolves into AtA = Id, which is
the defining condition of the group O(1,C); hence it is trivially satisfied.

We conclude that Aut0(n) ∼= O(1,C) for the considered cases.

3.2.3 Cases n0,7 and n4,3

The admissible modules of both n0,7 and n4,3 admit three involutions; all of them are
products of four linear operators. These three involutions subdivide the admissible module
in two-dimensional common eigenspaces. We can study n0,7 and n4,3 together because, as
one can see from the tables of Subsection A.2.5 and A.2.6, their bases coincide. We want
to prove that Aut0(n) ∼= T(2,R).

We first prove the inclusion Aut0(n) ⊂ T(2,R). The basis of the first common eigenspace
constructed in the tables is given by {v, J1J2J7v}. Note that (J1J2J7)2 = − Id, but since
this is the product of three operators, it does not commute with A. Hence, A ∈ GL(2,R)
because of the dimension of the eigenspace. We need, moreover, to consider the relation
ATJ1J2J7A = J1J2J7, which implies ηAtηJ1J2J7A = J1J2J7, where η is the matrix repre-
sentation of the metric, and lastly becomes At(ηJ1J2J7)A = ηJ1J2J7. In particular, since
(J1J2J7)2 = − Id, its matrix representation is Ω1. Note that the metric is neutral; hence,
by Lemma 3.1, we obtain η · Ω1 = −σ1. We can hence conclude that A ∈ T(2,R), so
Aut0(n) ⊂ T(2,R).

We now want to prove the inclusion T(2,R) ⊂ Aut0(n). Given a matrix M ∈ T(2,R),
we want to prove that it satisfies the condition MTJ1J2J7M = J1J2J7; by the construction
of J1J2J7, we know that this condition is equivalent to ask M tσ1M = σ1, which is satisfied
by hypothesis.

We conclude that Aut0(n) ∼= T(2,R) for the considered cases.

3.2.4 Cases n7,1 and n3,5

The admissible module of n7,1 and n3,5 both admit four involutions, three of which are
a product of four Ji’s, while the last one is a product of three operators. The first three
involutions divide the module into two-dimensional eigenspaces. We will only consider n7,1,
as the two cases are analogous. We will prove that Aut0(n) ∼= Sp(2,R) ∩O(1, 1,R).

First, we prove the inclusion Aut0(n) ⊂ Sp(2,R) ∩ O(1, 1,R). As one can see from
the tables in Subsection A.2.7, a basis of the first common eigenspace of the minimal
admissible module of n7,1 is {v, J8v}, with J2

8 = Id. Since J8 is not a product of an even
number of operators, A does not commute with it; hence A ∈ GL(2,R). We have two
more relations that we need to consider: first of all, the existence of an involution which
is a product of three operators implies the condition ATA = Id by Proposition 3.4. Note
that since the metric of the first eigenspace is neutral, the condition becomes ηAtηA = Id,
which implies AtηA = η; by definition, this means that A ∈ O(1, 1,R). Secondly, we have
the chain of implications:

ATJ8A = J8 ⇒ ηAtηJ8A = Ji ⇒ At(ηJ8)A = ηJ8,



where η is the matrix representation of the metric. In this case the metric is neutral;
moreover, since J2

8 = Id, it is easy to see that its matrix representation is σ1. Hence
by Lemma 3.1, η · J1 = −Ω1. What we obtain is hence AtΩ1A = Ω1, which implies
A ∈ Sp(2,R). We have hence proven Aut0(n) ⊂ Sp(2,R) ∩O(1, 1,R) =: Sp∗(2,R).

In order to conclude the proof, we need to show that Sp∗(2,R) ⊂ Aut0(n). In particular
we want to show that any matrix M ∈ Sp∗(2,R) satisfies the conditions MTM = Id and
M tΩ1M = Ω1. As these are the defining conditions of Sp∗(2,R), the inclusion is trivially
verified.

We conclude that Aut0(n) ∼= Sp∗(2,R) for the considered cases.

3.3 Four-dimensional common eigenspaces

As we can see from Table 3.1, most of the admissible modules are four-dimensional or
can be divided into eigenspaces of dimension 4. In this setting, we start encountering
groups constructed over quaternion numbers, but also split-quaternion and split-complex
numbers. Here we also start to use extensively the isomorphisms described in Section 1.2.
As usual, some of the results of our study are expected: for example, n2,0 and n0,2 are
isomorphic and share the same automorphism group. However, we also find isomorphic
automorphism groups for non-isomorphic pseudo H-type Lie algebras, as for example those
of n3,2 and n2,3. Moreover, we find pseudo H-type Lie algebras of different dimensions
which have the same automorphism groups, as for example n4,0 and n6,2; this happens
because their mutual commuting isometric involutions subdivide the admissible module
in eigenspaces of the same dimension.
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Table 3.1, four-dimensional cases circled.

3.3.1 Cases n2,0 and n0,2

We want to prove that if n = n2,0 or n = n0,2, then Aut0(n) ∼= Sp(2,C). It is enough to
prove the statement for n = n2,0; once we have done it, the proof for n = n0,2 will follow,
similarly to the cases treated in Section 3.2.1 for n0,1 and n1,0.

We start by proving Aut0(n) ⊂ Sp(2,C). In the tables in Subsection A.3.1 we have
constructed a basis for the admissibe module, given by {v, J2J1v, J2v, J1v}. Note that the



matrix form of J2J1 is 
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .

In particula,r J1J2 is of the form I described in Proposition 1.12. Hence, since we need
to impose that A commutes with J1J2, we can apply the proposition; if we denote with
A the matrix A through the isomorphism (1.5), then A ∈ GL(2,C). We can observe
that the matrix form of J2 is −Ω2 ∈ GL(4,R). The metric is positive definite, and Ω2 is
mapped via the isomorphism (1.5) into Ω1 ∈ GL(2,C). Hence, the condition ATJ2A = J2

becomes AtΩ1A = Ω1 and we can conclude that A ∈ Sp(2,C). We have then proven that
Aut0(n) ⊂ Sp(2,C).

In order to prove the inclusion Sp(2,C) ⊂ Aut0(n) it is enough to prove that a matrix
M ∈ Sp(2,C) commutes with J1J2 and satisfies the condition MTJ1M = J1. The first
condition follows from the fact that M has complex entries and the matrix form of J1J2 is
one of the equivalent matrix descriptions for i. The second one follows from the fact that
J2 can be written as a matrix as Ω1 via the isomorphism (1.5), so the condition is trivially
satisfied.

We conclude that Aut0(n) ∼= Sp(2,C) for the considered cases.

3.3.2 Case n1,1

The admissible module of n1,1 is four-dimensional and does not admit any involution. We
want to prove that Aut0(n) ∼= Sp(2, SC).

Let us start by proving the inclusion Aut0(n) ⊂ Sp(2, SC). In the tables of Subsection
A.3.3 we have found a basis for the admissible module, given by {v, J1v, J2v, J1J2v},
where i∗ := J1J2 satisfies i∗2 = Id. Since i∗ is the product of two linear operators, A
must commute with it. In particular, one can see that the matrix form of i∗ is as in
I from Proposition 1.15; hence, because of the same theorem, the image of A via the
isomorphism (1.10), which we call A, belongs to GL(2, SC). Observe that the matrix form
of J1 is σ2 ∈ GL(4,R). Since the metric of the module is neutral, η · J1 = Ω2 ∈ GL(4,R)
by Lemma 3.2; moreover,Ω2 is mapped to Ω1 ∈ GL(2,C) via the isomorphism (1.10). The
condition ATJ1A = J1 becomes hence AtΩ1A = Ω1; this implies that A ∈ Sp(2,SC). We
can moreover observe that J1J2 ·J1 = −J2, hence, by Lemma 3.1, J2 does not provide any
ulterior conditions. We have hence proven that Aut0(n) ⊂ Sp(2,SC).

We now want to prove that Sp(2, SC) ⊂ Aut0(n). Consider M ∈ Sp(2, SC); since the
matrix form of J1J2 is one of the equivalent matrix which describes i∗, it follows trivially
that M commutes with it. Note that, once we map the product η ·J1 into Sp(2,SC) via the
isomorphism (1.10), the condition M tη ·J1M = η ·J1 is satisfied because M is symplectic.

We conclude that Aut0(n) ∼= Sp(2,SC) for the considered case.

3.3.3 Case n3,0

The admissible module of n3,0 is four-dimensional and admits an involution which is a
product of three linear operators. We want to prove that Aut0(n) ∼= U(1,H).

Let us first prove the inclusion Aut0(n) ⊂ U(1,H). As one can see in the tables in
Subsection A.3.4, we have constructed the basis {v, J1J2v, J2J3v, J3J1v}, where i := J1J2,
j := J2J3 and k := J3J1 all satisfy the conditions to be quaternion units; since they all are
product of an even number of linear operators, they all commute with A. In particular,
by Remark 1.11 we know that A ∈ GL(1,H). The module admits an involution which is



a product of three operators and acts as Id on the entire module. Hence, we obtain the
condition ATA = Id, which becomes AtA = Id since the metric is positive. This implies
that A ∈ U(1,H). We have hence proven the inclusion Aut0(n) ⊂ U(1,H).

We now want to prove U(1,H) ⊂ Aut0(n). This inclusion follows trivially: since any
element M ∈ U(1,H) is simply a quaternion number, it trivially commutes with any
matrix; moreover, being in U(1,H) grants the fullfillment of the condition AtA = Id.

We conclude that Aut0(n) ∼= U(1,H) for the considered cases.

3.3.4 Cases n1,2, n3,2 and n2,3

The admissible module of n1,2 is four-dimensional and admits a single involution, which
is a product of three linear operators. The admissible modules of n3,2 and n2,3 both admit
two involutions; one of them is a product of three operators, while the other one is a
product of four operators and divides the module into two four-dimensional common
eigenspaces. We will study n1,2, as the two other cases are analogous; our aim is to prove
that Aut0(n) ∼= GL(1, SH) ∩O(1, 1,C).

In the tables in Subsection A.3.5, we have constructed the basis {v, J2J3v, J1J2v, J3J1v},
where i∗ = J2J3, j∗ = J1J2 and k∗ = J3J1 all satisfy the conditions to be split-quaternion
units. Since i∗, j∗ and k∗ are all product of an even number of operators, they commute
with A; this is equivalent to say that A ∈ GL(1,SH), by Remark 1.11. The existence of an
involution which is a product of three linear operators imposes the condition ATA = Id
by Propostion 3.4; this resolves into AtηA = η. Note that the said involution divides the
module in two non-trivial eigenspaces, each of which isomorphic to GL(1,C). We can hence
apply Remark 3.5 and conclude that A ∈ O(1, 1,C), since the metric is neutral.We have
hence proven the inclusion Aut0(n) ⊂ GL(1, SH) ∩O(1, 1,C) =: GL∗C(1,SH).

We want to prove the inclusion GL∗C(1,SH) ⊂ Aut0(n). Let M ∈ GL(1,SH)∩O(1, 1, C).
It trivially commutes with any triple of split-quaternion units, so in particular it commutes
with J2J3, J1J2 and J3J1. Moreover, the condition MT ηM = η is trivially satisfied by any
matrix in O(1, 1,C).

We conclude that Aut0(n) ∼= GL(1,SH) ∩O(1, 1,C) for the considered cases.

3.3.5 Cases n4,0, n2,2, n0,4, n6,2 and n2,6

The admissible module associated to the pseudo H-type Lie algebras n4,0, n2,2 and n0,4 are
eight-dimensional and admit one involution each, which is a product of four linear opera-
tors and divides the admissible module in two four-dimensional eigenspaces. The admis-
sible modules of n6,2 and n2,6 are both 32-dimensional and admit three involutions which
are a product of four linear operators and divide the module in eight four-dimensional
eigenspaces. We will study the case n4,0, as the procedure is the same. We will prove that
Aut0(n) ∼= GL(1,H).

We start by proving the inclusion Aut0(n) ⊂ GL(1,H). In the tables in Subsection A.1.5
we constructed a basis {v, J1J2v, J2J3v, J3J1v}, where i := J1J2, j := J2J3 and k := J3J1

all satisfy the conditions to be quaternion units. Since i, j and k are products of two linear
operators, A must commute with them; hence, by Remark 1.11, A ∈ GL(1,H). Since there
is no other condition which A needs to satisfy, we conclude that Aut0(n) ⊂ GL(1,H).
The admissible module of n6,2 and n2,6 have as a basis {v, J1J2v, J1J3J5J7v, J2J3J5J7v}
(see Subsections A.3.21 and A.3.22). In particular, products of four linear operators appear
in the basis. Note that the condition A

∏p
i=1 Ji =

∏p
i=1 JiA described in Lemma 2.16 holds

for every even p; hence, the previous computations still make sense.

We conclude that Aut0(n) ∼= GL(1,H) for the considered cases.



3.3.6 Cases n5,0 and n1,4

The minimal admissible modules of n5,0 and n1,4 are both eight-dimensional and admit
two involutions; one of them is a product of three linear operators, while the other one is
the product of four operators and divides the module into two four-dimensional blocks.
We can study the case n5,0, as considering n = n1,4 leads to analogous computations. In
particular, we want to prove that Aut0(n) ∼= GL(1,H) ∩O(2,C).

Let us first prove the inclusion Aut0(n) ⊂ GL(1,H) ∩ O(2,C). As one can see in the
tables in Subsection A.3.9, we have constructed the basis {v, J1J2v, J2J3v, J3J1v}, where
i := J1J2, j := J2J3 and k := J3J1 all satisfy the conditions to be quaternion units;
since they all are product of an even number of linear operators, they all commute with
A. In particular, by Remark 1.11 we know that A ∈ GL(1,H). The module admits an
involution which is a product of three operators; this said involution divides the first
common eigenspace in two eigenspaces, each isomorphic to GL(1,C); hence, we can apply
Remark 3.5, and obtain the condition A ∈ O(2,C), since the metric is sign definite. We
have hence proven the inclusion Aut0(n) ⊂ GL(1,H) ∩O(2,C) =: GL∗C(1,H).
We can observe that, although n1,4 has an admissible module of neutral metric, the first
block has a sign definite metric, we can still conclude A ∈ O(2,C).

We now want to prove GL∗C(1,H) ⊂ Aut0(n). This inclusion follows trivially: since any
element M ∈ GL∗C(1,H) is simply a quaternion number, it trivially commutes with any
matrix representation of i, j and k; moreover, being in O(2,C) grants the fullfillment of
the condition AtA = Id.

We conclude that Aut0(n) ∼= GL∗C(1,H) for the considered cases.

3.3.7 Cases n0,6 and n4,2

The minimal admissible module of both n0,6 and n4,2 admit two involutions which are
a product of four linear operators and divide the admissible module in four dimensional
common eigenspaces. We will consider the numerical example of n0,6 as n4,2 is analogous.
We will prove that Aut0(n) ∼= GL(2,C) ∩ T(4,R).

We start by proving the inclusion Aut0(n) ⊂ GL(2,C) ∩ T(4,R). As one can see
in the tables in Section A.3.13 , a basis for the first common eigenspace is given by
{v, J2J1v, J2J3J5v, J1J3J5v}, where i := J1J2 satisfies i2 = − Id and the other two terms
S := J2J3J5 and Q := J1J3J5 squared are again − Id . We separate i from S and Q because
the first one is the only one which is a product of an even number of terms; in particular we
know that i commutes with A, and the matrix form of i is the same as in Proposition 1.13.
We can hence apply the preposition, and the image of the matrix A via the isomorphism
1.5 - namely A - belongs to GL(2,C). Consider now S; its matrix form is given by Ω2.
Since S is product of three linear operators, we need to apply the condition ATSA = S,
which resolves into At(ηS)A = (ηS). We know from Lemma 3.2 that η · Ω2 = −σ2; note
that we can’t map σ2 through the isomorphism 1.7; we hence conclude that A ∈ T(4,R).
We have hence proven Aut0(n) ⊂ GL(2,C) ∩ T(4,R) =: GL](2,C).
Note that Q doesn’t give any more informations: in fact

i · S = J1J2J1J3J5 = −J1J3J5 = −Q

hence by Lemma 3.1 the condition ATQA = Q follows immediately.
We will now prove the inclusion GL(2,C)∩T(4,R) ⊂ Aut0(n). ConsiderM ∈ GL(2,C)∩

T(4,R); since it has complex entries, it commutes with J1J2 as it has a matrix form which
is equivalent to a matrix form of i. The condition MTSM = S is trivially satisfied by the
fact that η · S = σ2 and M ∈ T(4,R).



We conclude that Aut0(n) ∼= GL(2,C) ∩ T(4,R) for the considered cases.

3.3.8 Cases n6,1, n1,6, n5,2 and n2,5

The minimal admissible modules of n6,1 and n2,5 both admit four involutions; three of them
are a product of four linear operators, while the last one is a product of three operators.
We can study the two cases together, as the basis of the first common eigenspace is the
same. The cases n1,6 and n5,2 follows, since we know the isomorphisms n1,6 ∼= n6,1 and
n5,2 ∼= n2,5 by [FM17]. We will prove that Aut0(n) ∼= Sp(2,C) ∩O(1, 1,C).

We begin by proving the inclusion Aut0(n) ⊂ Sp(2,C)∩O(1, 1,C). As shown in the ta-
bles in Subsections A.3.17 and A.3.18, a possible basis is given by {v, J1J2v, J7v, J1J2J7v},
where (J1J2)2 = − Id, J2

7 = Id and (J1J2J7)2 = − Id . The matrix form of J1J2 is as I
of Proposition 1.12; since A needs to commute with J1J2, we can apply the isomoprhism
(1.5); in particular, the image of A through the isomorphism, which we can call A, be-
longs to GL(2,C). The matrix representation of J7 is σ2, and since we have a neutral
metric, we conclude that the condition ATJ7A = J7 becomes AtΩ1A = Ω1 by means of
Lemma 3.2 and the isomorphism (1.5), which maps Ω2 ∈ GL(4,R) to Ω1 ∈ GL(2,C).
Hence, A ∈ Sp(2,C). Observe that J1J2J7 does not provide any other condition, as
(J1J2)J7 = J1J2J7 and one can apply Lemma 3.1. To complete the case, we need to
consider the remaining involution product of three operators. Observe that said involution
has two non-trvial eigenspaces, which are both isomorphic to GL(1,C); we can hence apply
Remark 3.5, and obtain A ∈ O(1, 1,C), since the metric is neutral. We have hence proven
the inclusion Aut0(n) ⊂ Sp(2,C) ∩O(1, 1,C) =: Sp

∗
(2,C).

We now want to prove the inclusion Sp
∗
(2,C) ⊂ Aut0(n). Consider M ∈ Sp

∗
(2,C);

since it has complex entries, it commutes with J1J2, whose matrix representation is iso-
morphic to one of the equivalent matrix representation of i. Asking that A satisfies the
condition MTJ7M = J7 is equivalent, by means of the isomorphism (1.5), to require
M tΩ1M = Ω1, which is trivially satisfied by construction. Moreover, the orthogonality
condition is satisfied by the fact that M belongs to O(1, 1,C).

We conclude that Aut0(n) ∼= Sp
∗
(2,C) for the considered cases.

3.3.9 Cases n1,7 and n5,3

THe admissible module of n1,7 and n5,3 both admit three involutions which are a product
of four linear operators and subdivide the 32-dimensional minimal admissible module into
four-dimensional eigenspaces. We will study the case n1,7, since the other one behaves very
similarly. We will prove that Aut0(n) ∼= Sp(2,C).

We start by proving the inclusion Aut0(n) ⊂ Sp(2,C). A basis for the first common
eigenspace is given by {v, J1v, J1J6J7J8v, J6J7J8v}, where (J1J6J7J8)2 = − Id (see Sub-
section A.3.19). Since J1J6J7J8 is the product of four linear operators, it commutes with
A; in particular its matrix form is as J of Proposition 1.13. By the same proposition, the
image of A via the isomorphism (1.7), which we call A, belongs to GL(2,C). We impose
the condition ATJ1A = J1, which becomes At(η · J1)A = η · J1. One can write J1 and η
as four-dimensional matrices; their product is given by

η · J1 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0





which via the isomorphism (1.7) is isomorphic to Ω1 ∈ GL(2,C). Hence, the condition
becomes AtΩ1A = Ω1, which implies A ∈ Sp(2,C). We have then proven the inclusion
Aut0(n) ⊂ Sp(2,C).

In order to prove the inclusion Sp(2,C) ⊂ Aut0(n), we consider M ∈ Sp(2,C). Since it
is a complex matrix, it commutes with any linear complex unit, so in particular it com-
mutes with J1J6J7J8, which has a matrix representation isomoprhic to i. By construction,
moreover, the condition MTJ1M = J1 is satisfied, since M ∈ Sp(2,C), once we recall that
M t ∈ GL(2,C) is mapped to M t ∈ GL(4,R).

We conclude that Aut0(n) ∼= Sp(2,C) for the considered cases.

3.3.10 Cases n3,6 and n7,2

The admissible modules of n3,6 and n7,2 both admit four involutions; three of them are a
product of four linear operators, while the last one is a product of three linear operators.
The first three involutions divide the module into four-dimensional common eigenspaces.
We will consider only the case n = n3,6, since n = n7,2 behaves analogously. We will prove
that Aut0(n) ∼= GL(1,H) ∩O(1, 1,C).

We start by proving Aut0(n) ⊂ GL(1,H) ∩ O(1, 1,C). One can see from the tables in
Subsection A.3.23 that a basis for the first eigenspace is {v, J1J2v, J1J4J7J8v, J2J4J7J8v}.
We define i := J1J2, j := J1J4J7J8 and k := J2J4J7J8 and we can observe that they
satisfy all the conditions in order to be quaternion units. In particular, since i, j and k are
all product of an even number of operators, it follows that A commutes with the three of
them; because of Remark 1.11, this implies that A it is isomorphic to some A ∈ GL(1,H).
The involution which is a product of three operators divides the block in two non-trivial
eigenspaces, both of which are isomorphic to GL(1,C). Hence, by Remark 3.5, we can
conclude that A ∈ O(1, 1,C), since the metric is neutral.We have proven the inclusion
Aut0(n) ⊂ GL(1,H) ∩O(1, 1,C) =: GL∗C(1,H).

We want to prove the inclusion GL∗C(1,H) ⊂ Aut0(n). Let M ∈ GL(1,H) ∩O(1, 1, C).
It trivially commutes with any triple of quaternion units, so in particular it commutes with
J1J2, J1J4J7J8 and J2J4J7J8. Moreover, the orthogonality condition is trivially satisfied
by any matrix in O(1, 1,C).

We conclude that Aut0(n) ∼= GL∗C(1,H) for the considered cases.

3.4 Eight-dimensional common eigenspaces

From Table 3.1, we can distinguish twelve eight-dimensional cases, which correspond to
pseudo H-type Lie algebras featuring very different automorphism groups. Our analysis
shows that these are all subgroups of GL(2,H) or GL(2,SH).

3.4.1 Case n0,3

The minimal admissible module of n0,3 does not admit any involution, hence we will not
consider its common eigenspaces. We will prove that Aut0(n) ∼= T(2,H).

We begin by proving the inclusion Aut0(n) ⊂ U(1,H). A basis for the admissible
module is {v, J2J1v, J3J2v, J1J3v, J1J2J3v, J3v, J1v, J2v} (see tables in Subsection A.4.1).
The products i := J2J1, j := J3J2 and k := J1J3 all satisfy the conditions to be quaternion
units; moreover, the matrix forms of i and j are as I and J of Proposition 1.17. Since we
require A to commute with i, j and k, we can apply Proposition 1.17 and obtain that
the image A of A via the isomorphism (1.13) belongs to GL(2,H). Observe then that
(J1J2J3)2 = − Id, which has Ω4 ∈ GL(8,R) as matrix representation. The metric of



s

8 1

7 2 4 8 8

6 4 4 4 4

5 8 8 4 2

4 4 4 2 1 1

3 8 8 4 2 4 8 8

2 4 4 4 4 4 4 4 4

1 2 4 8 8 8 8 4 2

0 2 4 4 4 4 2 1 1

0 1 2 3 4 5 6 7 8 r

Table 3.1, eight-dimensional cases circled.

the admissible module is neutral; the product η · J1J2J3 = σ4 by Lemma 3.2; via the
isomorphism (1.13), σ4 is mapped into σ1 ∈ GL(2,H); hence, the condition ATJ1J2J3A =
J1J2J3 becomes Atσ1A = σ1. This implies that A ∈ T(2,H). We have hence proven the
inclusion Aut0(n) ⊂ U(1,H).

We now want to prove the inclusion T(2,H) ⊂ Aut0(n). Let M ∈ T(2,H); then
it commutes with i, j and k; we know that J1J2, J1J4J7J8 and J2J4J7J8 all satisfy
the properties to be quaternion units, hence A commutes with them. The condition
MTJ1J2J3M = J1J2J3 becomes M tσ4M = σ4 by construction of J1J2J3; applying the iso-
morphism in Proposition 1.17, the new condition is trivially satisfied by any M ∈ T(2,H),
once we recall that M t ∈ GL(2,H) is mapped to M t ∈ GL(8,R).

We conclude that Aut0(n) ∼= T(2,H) for the considered case.

3.4.2 Case n2,1

The admissible module of n2,1 is eight-dimensional and does not admit any involution. We
want to prove that Aut0(n) ∼= S̃p(2,SH).

We start by proving the inclusion Aut0(n) ⊂ S̃p(2, SH). In the tables in Subsection
A.4.2 we have found a basis {v, J3v, J2J3v, J3J1v, J1J2J3v, J1J2v, J1v, J2J3v}, where i∗ =
J1J2, j∗ = J1J3 and k∗ = J2J3 satisfy the conditions to be split-quaternion units. In
particular, i∗ and k∗ have the same matrix form as I∗ and J∗ of Proposition 1.20. If we
call A the image of A via the isomorphism (1.17), then A ∈ GL(2,SH) by Proposition
1.20. We can moreover observe that the matrix form of η · J1J2J3 is

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


which, via the isomorphism (1.17, is mapped to k∗·Ω1. The condition ATJ1J2J3A = J1J2J3

becomes hence ÃtΩ1A = Ω1 ; hence, we can conclude that A ∈ S̃p(2,SH). We have hence



proven the inclusion Aut0(n) ⊂ S̃p(2, SH).

We will now prove the inclusion S̃p(2,SH) ⊂ Aut0(n).Let M ∈ Sp(2, SH); it commutes
with any triple of split-quaternion units, such as J1J2, J2J3 and J3J1. By construction,
moreover, the condition MTJ1J2J3M = J1J2J3 is satisfied, since M ∈ S̃p(2, SH), once we

recall that M̃ t ∈ GL(2,SH) is mapped to M t ∈ GL(8,R).

We conclude that Aut0(n) ∼= S̃p(2,SH) for the considered cases.

3.4.3 Case n1,3

We want to prove that Aut0(n) ∼= S̃p(2,SH) ∩O(1, 1, SH) for n = n1,3.

We start by proving the inclusion Aut0(n) ⊂ S̃p(2,SH) ∩ O(1, 1,SH). We can follow
the proof of Subsection 3.4.2, and prove that A ∈ Sp(2,SH), with A the image if A
via the isomorphism (1.17). The existence of an involution which is a product of three
operators and which divides the module in two non-trivial eigenspaces, each isomorphic
to GL(1,SH), provides the extra condition A ∈ O(1, 1, SH), since the metric is neutral.

We can conclude that Aut0(n) ⊂ S̃p(2, SH) ∩O(1, 1,SH).

In order to prove S̃p(2,SH) ∩ O(4, 4,R) ⊂ Aut0(n) one can follow the proof of the
previous case. The extra condition ATP1A = P1 resolves into ATA = Id, which is satisfied
by construction by any matrix in O(1, 1,SH).

We conclude that Aut0(n) ∼= S̃p(2,SH) ∩O(1, 1,H) for the considered cases.

3.4.4 Cases n0,5, n4,1, n2,7 and n6,3

The admissible modules of n0,5 and n4,1 admit one single involution which is a product of
four linear operators. The admissible modules of n2,7 and n6,3 admit three involutions, all
of which are a product of four operators. We will consider the case n0,5, as the other ones
are analogous. We will prove that Aut0(n) ∼= Sp(2,H).

We will start by proving the inclusion Aut0(n) ⊂ Sp(2,H). In the tables in Subsection
A.4.5 we find a basis for the first common eigenspace as

{v, J1J2v, J2J4v, J1J4v, J5v, J1J2J5v, J2J4J5v, J1J4J5v},

where i := J1J2, j := J2J4 and k := J1J4 satisfy the conditions to be quaternion units.
Since all three of them are products of two elements, the matrix A commutes with them;
in particular, J1J2 and J2J4 are in the forms I and J of Proposition 1.17, hence its image
A via the isomorphism (1.13) belongs to GL(2,H). We need to consider the condition
ATJ5A = J5; one can observe that the matrix representation of J5 is σ4. The metric of the
eigenspace is neutral, hence, by Lemma 3.2, we obtain the condition ATΩ4A = Ω4 which
via the same isomorphism becomes AtΩ1A = Ω1. We can conclude that A ∈ Sp(2,H). We
have hence proven that Aut0(n) ⊂ Sp(2,H).
Observe that J1J2J5, J2J4J5 and J1J4J5 can all be obtained by the product of i, j and k
with J5; hence, by Lemma 3.1, they do not provide any new information. Moreover, for
the cases n2,7 and n6,3 we need to use the isomorphism (1.15), since A commutes with
J2J1 and J1J3J6J8, which are of the form I and J in Proposition 1.18. Through that
isomorphism the product η · J2J1J9 is mapped to Ω1, so the outcome does not change.

We now want to prove the inclusion Sp(2,H) ⊂ Aut0(n). In order to do so, one can sim-
ply follow the proof of Subsection 3.4.2, replacing split-quaternion numbers with quater-
nion numbers.

We conclude that Aut0(n) ∼= Sp(2,H) for the considered cases.



3.4.5 Case n3,1

The admissible module of n3,1 admits a single involution, which is a product of three
operators. We will prove that Aut0(n) ∼= Sp(2,H) ∩O(1, 1,H).

First, we prove the inclusion Aut0(n) ⊂ Sp(2,H) ∩ O(1, 1,H). We have constructed
a basis for the admissible module of n3,1 in the tables in Subsection A.4.4; this is given
by {v, J1J2v, J2J3v, J3J1v, J4v, J1J4v, J2J4v, J3J4v}, where i := J1J2, j := J2J3 and k :=
J3J1 are quaternion units. In particular, the matrix forms of J1J2 and J2J3 are as I and
J from Proposition 1.17. Hence, the image A of A via the isomorphism (1.13) belongs to
GL(2,H). We now need to impose the condition ATJ4A = J4. The element J4 has σ4 as
matrix form and the admissible module has a neutral metric. By Lemma 3.2, the condition
ATJ4A = J4 becomes AtΩ4A = Ω4, which is mapped via the isomorphism (1.13) to the
condition AtΩ1A = Ω1; hence, A ∈ Sp(2,H). This admissible module admits an involution
which is a product of three linear operators; in particular, it divides the module in two
non-trivial eigenspaces, both of which are isomorphic to GL(2,H). Hence, by Remark 3.5,
we can conclude that A ∈ O(1, 1,H) since the metric is neutral. We have hence proven the
inclusion Aut0(n) ⊂ Sp(2,H) ∩O(1, 1,H) =: Sp

∗
(2,H).

In order to prove Sp
∗
(2,H) ⊂ Aut0(n) , it is enough to follow the proof in Subsection

3.4.3, replacing split-quaternion numbers with quaternion numbers, and considering the
standard quaternion conjugation instead of the split-quaternion conjugation ˜ .

We conclude that Aut0(n) ∼= Sp
∗
(2,H) for the considered cases.

3.4.6 Cases n5,1, n1,5, n7,3 and n3,7

The minimal admissible modules of these four pseudo H-type Lie algebras look very differ-
ent from each other; nevertheless, similarities emerge once we consider their first common
eigenspaces. In particular, all the considered admissible modules admit one involution
which is a product of three linear operators. The admissible modules of n5,1 and n1,5 both
admit one more involution which is a product of four linear operators, while the admissible
modules of n3,7 and n7,3 admit three involutions which are products of four linear opera-
tors. We will study the case n5,1, as the other four are completely analogous. In particular,
we will prove that Aut0(n) ∼= Sp(2,H) ∩U(1, 1,H).

First, we prove the inclusion Aut0(n) ⊂ Sp(2,H) ∩ U(1, 1,H). We have constructed a
basis for the admissible module of n5,1 in the tables in Subsection A.4.4; this is given by
{v, J1J2v, J1J3v, J2J3v, J6v, J1J2J6v, J1J3J6v, J2J3J6v}, where i := J1J2, j := J2J3 and
k := J1J3 are quaternion units. In particular, the matrix forms of J1J2 and J2J3 are as I
and J from Proposition 1.17. Hence, the image A of A via the isomorphism (1.13) belongs
to GL(2,H). We now need to impose the condition ATJ6A = J6. The element J6 has σ4 as
matrix form and the admissible module has a neutral metric. By Lemma 3.2, the condition
ATJ6A = J6 becomes AtΩ4A = Ω4, which is mapped via the isomorphism (1.13) to the
condition AtΩ1A = Ω1; hence, A ∈ Sp(2,H). This admissible module admits an involution
which is a product of three linear operators; in particular, it divides the module in two non-
trivial eigenspaces; these two eigenspaces do not have neither a complex nor a quaternion
structure; hence, we can’t apply Remark 3.5. Instead, the condition ATA = Id becomes
via the isomorphism (1.13) AtA = Id; hence we conclude A ∈ U(1, 1,H) since the metric is

neutral. We have hence proven the inclusion Aut0(n) ⊂ Sp(2,H)∩U(1, 1,H) =: Sp
†
(2,H).

Observe that, when working with the admissible modules of n7,3 and n3,7, we need to
use the isomorphism (1.15); in fact, the matrix representation of the operators J2J1 and
J1J4J6J8 are the same as the matrices I and J of Proposition 1.18. In any case, the
element η · J2J1J10 is mapped to Ω1 via the latter isomorphism; hence, the condition is



still satisfied.
we now want to prove Sp

†
(2,H) ⊂ Aut0(n). Let M ∈ Sp

†
(2,H); then it commutes with

J1J2, J1J3 and J2J3, since they are quaternion units. The condition MTJ6M = J6 is the
defining condition of the group Sp(2,H), once we recall that M t ∈ GL(2,H) is mapped into
M t ∈ GL(8,R). By the same reasoning the condition MTM = Id ∈ GL(8,R) is trivially
satisfied by any matrix M ∈ U(1, 1,H).

We conclude that Aut0(n) ∼= Sp
∗
(2,H) for the considered cases.





Appendix A

Tables for the constructions of the
bases

We include here a collection of tables for every considered pseudo H-type Lie algebra nr,s.
The data provided with these tables accounts to the following:

– the dimension of the minimal admissible module V of nr,s;
– a list of its involutions;
– a table of commutations for every linear operator Ji that belong to nr,s with the

involutions;
– a possible basis for the admissible module V , subdivided into common eigenspaces

if involutions are admitted.

The bases will always have either a positive definite or neutral metric; in particular, we
will mark in black the elements w ∈ V such that 〈w,w〉 = 1 and in red the elements
w′ ∈ V such that 〈w′, w′〉 = −1.

We will now describe how such data can be determined.

Firstly, the dimension of the minimal admissible module V is known (see, for example,
[FM17]). From this, we can obtain the number p of involutions that V admits that can be
written as a product of three or four linear operators. Indeed, we know that the dimension
of V is 2r+s−p, where p is the number of involutions. Hence, p = r+ s− log2(n) From this,
a complete list of involutions can be obtained combinatorially:

– the involutions P that can be written as a product P = J1 · · · Jm, where m = 3, 4,
need to be such that an even number of operators Ji satisfy J2

i = Id;
– any two such involutions need to have exactly two operators Ji, Jj in common.

The tables of commutation are obtained by simple computations, recalling the property
of skew-adjointness that the operators need to satisfy.

Lastly, we will show how to construct a basis for V using the data collected above. We will
only need to know the list of involutions of V that are products of four operators: indeed,
only those satisfy the necessary conditions of Corollary 2.31. These involutions divide the
admissible module into common eigenspaces; a basis for V will be constructed upon the
bases for each of those eigenspaces. To construct a basis for every common eigenspace, we
rely on the commutation tables obtained as above: an element w in EI commutes with
the involutions that act as Id on W and anticommutes with the involutions that act as
− Id on w. In particular, we will always choose a v in E1, the eigenspace on which every
involution acts as Id, as a starting point to construct our basis.
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We will also provide the products of operators acting as GI as explained in Theorem 2.32.
These appear as a last, separate line in the tables relative to the construction of the bases.

A.1 One-dimensional cases

A.1.1 Case n7,0

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 P4 = J1J2J7 8
P2 = J1J2J5J6

P3 = J1J3J5J7

Table of commutativity:

J1 J2 J3 J4 J5 J6 J7

P1 a a a a c c c

P2 a a c c a a c

P3 a c a c a c a

P4 c c a a a a c

P1V + - dim = 4

P2(P1V ) + - + - dim = 2

P3(P2(P1V )) + - + - + - + - dim = 1

basis v J7v J6v J5v J4v J3v J2v J1v

Observe that E1 = E+
P4

.

A.1.2 Case n3,4

Involutions product of four Involutions product of three dim(V )

P1 = J4J5J6J7 P4 = J1J4J5 8
P2 = J2J3J4J5

P3 = J1J3J5J7

Table of commutativity:

J1 J2 J3 J4 J5 J6 J7

P1 c c c a a a a

P2 c a a a a c c

P3 a c a c a c a

P4 c a a c c a a

P1V + - dim = 4

P2(P1V ) + - + - dim = 2

P3(P2(P1V )) + - + - + - + - dim = 1

basis v J1v J2v J3v J6v J7v J4v J5v

Observe that E1 = E+
P4

.
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A.2 Two-dimensional cases

A.2.1 Case n1,0

Involutions product of four Involutions product of three dim(V )

2

Costruction of the basis:

V dim=2

basis v
J1v

A.2.2 Case n0,1

Involutions product of four Involutions product of three dim(V )

2

Costruction of the basis:

V dim = 2

basis v
J1v

A.2.3 Case n6,0

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 P3 = J1J3J5 8
P2 = J1J2J5J6

table of commutativity:

J1 J2 J3 J4 J5 J6

P1 a a a a c c

P2 a a c c a a

P3 c a c a c a

Construction of the basis:

P1V + - dim = 4

P2(P1V ) + - + - dim = 2

basis v J5v J4v J1v
J1J2v J6v J3v J2v

GI J5 J4 J1

Observe that E1 = E+
P3
⊕ E−P3

, with

E+
P3

= span{v}
E−P3

= span{J1J2v}.



A.2.4 Case n2,4

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 P3 = J1J3J5 8
P2 = J1J2J5J6

table of commutativity:

J1 J2 J3 J4 J5 J6

P1 a a a a c c

P2 a a c c a a

P3 c a c a c a

Construction of the basis:

P1V + - dim = 4

P2(P1V ) + - + - dim = 2

basis v J5v J1v J4v
J1J2v J6v J2v J3v

GI J5 J1 J4

Observe that E1 = E+
P3
⊕ E−P3

, with

E+
P3

= span{v}
E−P3

= span{J1J2v}.

A.2.5 Case n0,7

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 16
P2 = J1J2J5J6

P3 = J1J3J5J7

Table of commutativity:

J1 J2 J3 J4 J5 J6 J7

P1 a a a a c c c

P2 a a c c a a c

P3 a c a c a c a

Construction of the basis:

P1V + - dim = 8

P2(P1V ) + - + - dim = 4

P3(P2(P1V )) + - + - + - + - dim = 2
basis v J7v J6v J5v J4v J3v J2v J1v

J1J2J7v J1J2v J5J7v J6J7v J3J7v J4J7v J1J7v J2J7v

GI J7 J6 J5 J4 J3 J2 J1



A.2.6 Case n4,3

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 16
P2 = J1J2J5J6

P3 = J1J3J5J7

Table of commutativity:

J1 J2 J3 J4 J5 J6 J7

P1 a a a a c c c

P2 a a c c a a c

P3 a c a c a c a

Construction of the basis:

P1V + - dim = 8

P2(P1V ) + - + - dim = 4

P3(P2(P1V )) + - + - + - + - dim = 2
basis v J7v J6v J5v J4v J3v J2v J1v

J1J2J7v J1J2v J5J7v J6J7v J3J7v J4J7v J1J7v J2J7v

GI J7 J6 J5 J4 J3 J2 J1

A.2.7 Case n7,1

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 P4 = J1J2J7 16
P2 = J1J2J5J6

P3 = J1J3J5J7

Table of commutativity:

J1 J2 J3 J4 J5 J6 J7 J8

P1 a a a a c c c c

P2 a a c c a a c c

P3 a c a c a c a c

P4 c c a a a a c a

Construction of the basis:

P1V + - dim = 8

P2(P1V ) + - + - dim = 4

P3(P2(P1V )) + - + - + - + - dim = 2

v J7v J6v J5v J4v J3v J2v J1v
basis J8v J7J8v J6J8v J5J8v J4J8v J3J8v J2J8v J1J8v

GI J7 J6 J5 J4 J3 J2 J1

Observe that E1 = E+
P4
⊕ E−P4

, with

E+
P4

= span{v}
E−P4

= span{J8v}.



A.2.8 Case n3,5

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J4J5 P4 = J1J2J3 16
P2 = J1J2J6J7

P3 = J1J3J5J7

Table of commutativity:

J1 J2 J3 J4 J5 J6 J7 J8

P1 a a c a a c c c

P2 a a c c c a a c

P3 a c a c a c a c

P4 c c c a a a a a

Construction of the basis:

P1V + - dim = 8

P2(P1V ) + - + - dim = 4

P3(P2(P1V )) + - + - + - + - dim = 2

Basis v J3v J6v J7v J4v J5v J2v J1v
J8v J3J8v J6J8v J7J8v J4J8v J5J8v J2J8v J1J8v

GI J3 J6 J7 J4 J5 J2 J1

Observe that E1 = E+
P4
⊕ E−P4

, with

E+
P4

= span{v}
E−P4

= span{J8v}.

A.3 Four-dimensional cases

A.3.1 Case n2,0

Involutions product of four Involutions product of three dim(V )

4

Construction of the basis:

V dim=4

basis v
J2J1v
J2v
J1v

A.3.2 Case n0,2

Involutions product of four Involutions product of three dim(V )

4

Construction of the basis:



V dim = 4
basis v

J2J1v
J1v
J2v

A.3.3 Case n1,1

Involutions product of four Involutions product of three dim(V )

4

Construction of the basis:

V dim = 4

basis v
J1v
J1J2v
J2v

A.3.4 Case n3,0

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3 4

Table of commutativity:

J1 J2 J3

P1 c c c

Construction of the basis:

V dim=4
basis v

J1J2v
J2J3v
J3J1v

Observe that E1 = E+
P3

.

A.3.5 Case n1,2

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3 4

Table of commutativity:

J1 J2 J3

P1 c c c

Construction of the basis:

V dim = 4
basis v

J2J3v
J1J2v
J3J1v

Observe that E1 = E+
P3

.



A.3.6 Case n4,0

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 8

Table of commutativity:

J1 J2 J3 J4

P1 a a a a

P1V + - dim = 4

basis v J3v
J1J2v J4v
J2J3v J2v
J3J1v J1v

GI J3

A.3.7 Case n0,4

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 8

Table of commutativity:

J1 J2 J3 J4

P1 a a a a

P1V + - dim = 4

basis v J3v
J1J2v J4v
J2J3v J2v
J3J1v J1v

GI J3

A.3.8 Case n2,2

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 8

Table of commutativity:

J1 J2 J3 J4

P1 a a a a

P1V + - dim = 4

basis v J3v
J1J2v J4v
J2J3v J2v
J3J1v J1v

GI J3



A.3.9 Case n5,0

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 P2 = J1J2J5 8

Table of commutativity:

J1 J2 J3 J4 J5

P1 a a a a c

P2 c c a a c

P1V + - dim = 4

basis v J3v
J1J2v J4v
J2J3v J2v
J3J1v J1v

GI J3

Observe that E1 = E+
P2
⊕ E−P2

, with

E+
P2

= span{v, J1J2v}
E−P2

= span{J2J3v, J3J1v}.

A.3.10 Case n1,4

Involutions product of four Involutions product of three dim(V )

P1 = J2J3J4J5 P2 = J1J2J3 8

Table of commutativity:

J1 J2 J3 J4 J5

P1 c a a a a

P2 c c c a a

Construction of the basis:

P1V + - dim = 4

basis v J4v
J2J3v J5v
J3J4v J3v
J2J4v J2v

GI J4

Observe that E1 = E+
P2
⊕ E−P2

, with

E+
P2

= span{v, J2J3v}
E−P2

= span{J3J4v, J2J4v}.



A.3.11 Case n3,2

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J4J5 P2 = J3J4J5 8

Table of commutativity:

J1 J2 J3 J4 J5

P1 a a c a a

P2 a a c c c

Construction of the basis:

P1V + - dim = 4

basis v J1v
J4J5v J2v
J1J4v J4v
J1J5v J5v

GI J1

Observe that E1 = E+
P2
⊕ E−P2

, with

E+
P2

= span{v, J4J5v}
E−P2

= span{J1J4v, J1J5v}.

A.3.12 Case n2,3

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 P2 = J1J4J5 8

Table of commutativity:

J1 J2 J3 J4 J5

P1 a a a a c

P2 c a a c c

Costruction of the basis:

P1V + - dim = 4

v J2v
J3J4v J1v

basis J2J4v J4v
J2J3v J3v

GI J2

Observe that E1 = E+
P2
⊕ E−P2

, with

E+
P2

= span{v, J2J3v}
E−P2

= span{J2J4v, J3J4v}.



A.3.13 Case n0,6

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 16
P2 = J1J2J5J6

Table of commutativity:

J1 J2 J3 J4 J5 J6

P1 a a a a c c

P2 a a c c a a

Construction of the basis:

P1V + - dim = 8

P2(P1V ) + - + - dim = 4

v J5v J3v J1v
basis J2J1v J6v J4v J2v

J2J3J5v J2J3v J2J5v J4J5v
J1J3J5v J1J3v J1J5v J3J5v

GI J5 J3 J1

A.3.14 Case n4,2

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 16
P2 = J1J2J5J6

Table of commutativity:

J1 J2 J3 J4 J5 J6

P1 a a a a c c

P2 a a c c a a

Construction of the basis:

P1V + - dim = 8

P2(P1V ) + - + - dim = 4

v J5v J3v J1v
basis J1J2v J6v J4v J2v

J2J3J5v J2J3v J2J5v J4J5v
J1J3J5v J1J3v J1J5v J3J5v

GI J5 J3 J1

A.3.15 Case n1,6

Involutions product of four Involutions product of three dim(V )

P1 = J2J3J4J5 P3 = J1J2J3 16
P2 = J2J3J6J7

Table of commutativity:



J1 J2 J3 J4 J5 J6 J7

P1 c a a a a c c

P2 c a a c c a a

P3 c c c a a a a

Construction of the basis:

P1V + - dim = 8

P2(P1V ) + - + - dim = 4

v J6v J4v J2v
J2J3v J7v J5v J3v

basis J2J4J6v J2J4v J2J6v J4J6v
J3J4J6v J3J4v J3J6v J5J6v

GI J6 J4 J2

Observe that E1 = E+
P3

.

A.3.16 Case n5,2

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 P3 = J1J2J5 16
P2 = J1J2J6J7

Table of commutativity:

J1 J2 J3 J4 J5 J6 J7

P1 a a a a c c c

P2 a a c c c a a

P3 c c a a c a a

Construction of the basis:

P1V + - dim = 8

P2(P1V ) + - + - dim = 4

v J6v J3v J1v
J1J2v J5J6v J3J5v J1J5v

basis J2J3J6v J2J3v J2J6v J4J6v
J1J3J6v J1J3v J1J6v J3J6v

GI J6 J3 J1

Observe that E1 = E+
P3

.

A.3.17 Case n6,1

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 P3 = J1J3J5 16
P2 = J1J2J5J6

Table of commutativity:



J1 J2 J3 J4 J5 J6 J7

P1 a a a a c c c

P2 a a c c a a c

P3 c a c a c a a

Construction of the basis:

P1V + - dim = 8

P2(P1V ) + - + - dim = 4

v J5v J3v J1v
J1J2v J6v J4v J2v

basis J7v J5J7v J3J7v J1J7v
J1J2J7v J6J7v J4J7v J2J7v

GI J5 J3 J1

Observe that E1 = E+
P3
⊕ E−P3

, with

E+
P3

= span{v, J1J2J7v}
E−P3

= span{J1J2v, J7v}.

A.3.18 Case n2,5

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 P3 = J1J3J5 16
P2 = J1J2J5J6

Table of commutativity:

J1 J2 J3 J4 J5 J6 J7

P1 a a a a c c c

P2 a a c c a a c

P3 c a c a c a a

Construction of the basis:

P1V + - dim = 8

P2(P1V ) + - + - dim = 4

v J6v J4v J2v
J1J2v J5v J3v J1v

basis J7v J6J7v J4J7v J2J7v
J1J2J7v J5J7v J3J7v J1J7v

GI J6 J4 J2

Observe that E1 = E+
P3
⊕ E−P3

, with

E+
P3

= span{v, J1J2J7v}
E−P3

= span{J1J2v, J7v}.



A
.3

.1
9

C
a
se

n
1
,7

In
vo

lu
ti

o
n

s
p

ro
d

u
ct

of
fo

u
r

In
vo

lu
ti

on
s

p
ro

d
u

ct
of

th
re

e
d

im
(V

)

P
1

=
J

2
J

3
J

4
J

5
32

P
2

=
J

2
J

3
J

6
J

7

P
3

=
J

2
J

4
J

6
J

8

T
ab

le
o
f

co
m

m
u

ta
ti

v
it

y
:

J
1

J
2

J
3

J
4

J
5

J
6

J
7

J
8

P
1

c
a

a
a

a
c

c
c

P
2

c
a

a
c

c
a

a
c

P
3

c
a

c
a

c
a

c
a

C
o
n

st
ru

ct
io

n
of

th
e

b
a
si

s:

P
1
V

+
-

d
im

=
1
6

P
2
(P

1
V

)
+

-
+

-
d

im
=

8

P
3
(P

2
(P

1
V

))
+

-
+

-
+

-
+

-
d

im
=

4

v
J

8
v

J
7
v

J
6
v

J
5
v

J
4
v

J
3
v

J
2
v

b
as

is
J

1
v

J
1
J

8
v

J
1
J

7
v

J
1
J

6
v

J
1
J

5
v

J
1
J

4
v

J
1
J

3
v

J
1
J

2
v

J
1
J

6
J

7
J

8
v

J
1
J

6
J

7
v

J
1
J

6
J

8
v

J
1
J

7
J

8
v

J
1
J

4
J

8
v

J
1
J

2
J

7
v

J
1
J

2
J

8
v

J
1
J

3
J

8
v

J
6
J

7
J

8
v

J
6
J

7
v

J
6
J

8
v

J
7
J

8
v

J
4
J

8
v

J
2
J

7
v

J
2
J

8
v

J
3
J

8
v

G
I

J
8

J
7

J
6

J
5

J
4

J
3

J
2



A
.3

.2
0

C
a
se

n
5
,3

In
vo

lu
ti

o
n

s
p

ro
d

u
ct

of
fo

u
r

In
vo

lu
ti

on
s

p
ro

d
u

ct
of

th
re

e
d

im
(V

)

P
1

=
J

1
J

2
J

3
J

4
32

P
2

=
J

1
J

2
J

7
J

8

P
3

=
J

2
J

4
J

6
J

8

T
ab

le
o
f

co
m

m
u

ta
ti

v
it

y
:

J
1

J
2

J
3

J
4

J
5

J
6

J
7

J
8

P
1

a
a

a
a

c
c

c
c

P
2

a
a

c
c

c
c

a
a

P
3

c
a

c
a

c
a

c
a

C
o
n

st
ru

ct
io

n
of

th
e

b
a
si

s:

P
1
V

+
-

d
im

=
1
6

P
2
(P

1
V

)
+

-
+

-
d

im
=

8

P
3
(P

2
(P

1
V

))
+

-
+

-
+

-
+

-
d

im
=

4

v
J

6
v

J
7
v

J
8
v

J
3
v

J
4
v

J
1
v

J
2
v

B
a
si

s
J

5
v

J
5
J

6
v

J
5
J

7
v

J
5
J

8
v

J
5
J

3
v

J
5
J

4
v

J
5
J

1
v

J
5
J

2
v

J
1
J

4
J

5
J

8
v

J
1
J

2
J

5
v

J
2
J

4
J

5
v

J
1
J

4
J

5
v

J
2
J

5
J

8
v

J
1
J

5
J

8
v

J
4
J

5
J

8
v

J
3
J

5
J

8
v

J
1
J

4
J

8
v

J
1
J

2
v

J
2
J

4
v

J
1
J

4
v

J
2
J

8
v

J
1
J

8
v

J
4
J

8
v

J
3
J

8
v

G
I

J
6

J
7

J
8

J
3

J
4

J
1

J
2



A
.3

.2
1

C
a
se

n
6
,2

In
vo

lu
ti

o
n

s
p

ro
d

u
ct

of
fo

u
r

In
vo

lu
ti

on
s

p
ro

d
u

ct
of

th
re

e
d

im
(V

)

P
1

=
J

1
J

2
J

3
J

4
32

P
2

=
J

1
J

2
J

5
J

6

P
3

=
J

1
J

2
J

7
J

8

T
ab

le
o
f

co
m

m
u

ta
ti

v
it

y
:

J
1

J
2

J
3

J
4

J
5

J
6

J
7

J
8

P
1

a
a

a
a

c
c

c
c

P
2

a
a

c
c

a
a

c
c

P
3

a
a

c
c

c
c

a
a

C
o
n

st
ru

ct
io

n
of

th
e

b
a
si

s:

P
1
V

+
-

d
im

=
1
6

P
2
(P

1
V

)
+

-
+

-
d

im
=

8

P
3
(P

2
(P

1
V

))
+

-
+

-
+

-
+

-
d

im
=

4

v
J

7
v

J
5
v

J
1
J

3
v

J
3
v

J
1
J

5
v

J
1
J

7
v

J
1
v

b
as

is
J

1
J

2
v

J
8
v

J
6
v

J
1
J

4
v

J
4
v

J
1
J

6
v

J
1
J

8
v

J
2
v

J
1
J

3
J

5
J

7
v

J
1
J

3
J

5
v

J
1
J

3
J

7
v

J
5
J

7
v

J
1
J

5
J

7
v

J
3
J

7
v

J
3
J

5
v

J
3
J

5
J

7
v

J
2
J

3
J

5
J

7
v

J
2
J

3
J

5
v

J
2
J

3
J

7
v

J
6
J

7
v

J
2
J

5
J

7
v

J
4
J

7
v

J
4
J

5
v

J
4
J

5
J

7
v

G
I

J
7

J
5

J
1
J

3
J

3
J

1
J

5
J

1
J

7
J

1



A
.3

.2
2

C
a
se

n
2
,6

In
vo

lu
ti

o
n

s
p

ro
d

u
ct

of
fo

u
r

In
vo

lu
ti

on
s

p
ro

d
u

ct
of

th
re

e
d

im
(V

)

P
1

=
J

1
J

2
J

3
J

4
32

P
2

=
J

1
J

2
J

5
J

6

P
3

=
J

1
J

2
J

7
J

8

T
ab

le
o
f

co
m

m
u

ta
ti

v
it

y
:

J
1

J
2

J
3

J
4

J
5

J
6

J
7

J
8

P
1

a
a

a
a

c
c

c
c

P
2

a
a

c
c

a
a

c
c

P
3

a
a

c
c

c
c

a
a

C
o
n

st
ru

ct
io

n
of

th
e

b
a
si

s:

P
1
V

+
-

d
im

=
1
6

P
2
(P

1
V

)
+

-
+

-
d

im
=

8

P
3
(P

2
(P

1
V

))
+

-
+

-
+

-
+

-
d

im
=

4

v
J

7
v

J
5
v

J
1
J

3
v

J
3
v

J
1
J

5
v

J
1
J

7
v

J
1
v

b
as

is
J

1
J

2
v

J
8
v

J
6
v

J
1
J

4
v

J
4
v

J
1
J

6
v

J
1
J

8
v

J
2
v

J
1
J

3
J

5
J

7
v

J
1
J

3
J

5
v

J
1
J

3
J

7
v

J
5
J

7
v

J
1
J

5
J

7
v

J
3
J

7
v

J
3
J

5
v

J
3
J

5
J

7
v

J
2
J

3
J

5
J

7
v

J
2
J

3
J

5
v

J
2
J

3
J

7
v

J
6
J

7
v

J
2
J

5
J

7
v

J
4
J

7
v

J
4
J

5
v

J
4
J

5
J

7
v

G
I

J
7

J
5

J
1
J

3
J

3
J

1
J

5
J

1
J

7
J

1



A
.3

.2
3

C
a
se

n
3
,6

In
vo

lu
ti

o
n

s
p

ro
d

u
ct

of
fo

u
r

In
vo

lu
ti

on
s

p
ro

d
u

ct
of

th
re

e
d

im
(V

)

P
1

=
J

1
J

2
J

4
J

5
P

4
=
J

1
J

2
J

3
32

P
2

=
J

1
J

2
J

6
J

7

P
3

=
J

1
J

2
J

8
J

9

T
ab

le
o
f

co
m

m
u

ta
ti

v
it

y
:

J
1

J
2

J
3

J
4

J
5

J
6

J
7

J
8

J
9

P
1

a
a

c
a

a
c

c
c

c

P
2

a
a

c
c

c
a

a
c

c

P
3

a
a

c
c

c
c

c
a

a

P
4

c
c

c
a

a
a

a
a

a

C
o
n

st
ru

ct
io

n
of

th
e

b
a
si

s:

P
1
V

+
-

d
im

=
1
6

P
2
(P

1
V

)
+

-
+

-
d

im
=

8

P
3
(P

2
(P

1
V

))
+

-
+

-
+

-
+

-
d

im
=

4

v
J

8
v

J
7
v

J
1
J

5
v

J
5
v

J
1
J

7
v

J
1
J

8
v

J
1
v

J
1
J

2
v

J
3
J

8
v

J
3
J

7
v

J
2
J

5
v

J
3
J

5
v

J
2
J

7
v

J
2
J

8
v

J
2
v

b
as

is
J

1
J

4
J

7
J

8
v

J
1
J

4
J

7
v

J
1
J

4
J

8
v

J
6
J

8
v

J
2
J

7
J

8
v

J
4
J

8
v

J
4
J

7
v

J
4
J

7
J

8
v

J
2
J

4
J

7
J

8
v

J
2
J

4
J

7
v

J
2
J

4
J

8
v

J
7
J

8
v

J
1
J

7
J

8
v

J
5
J

8
v

J
5
J

7
v

J
5
J

7
J

8
v

G
I

J
8

J
7

J
1
J

5
J

5
J

1
J

7
J

1
J

8
J

1

O
b

se
rv

e
th

a
t
E

1
=
E

+ P
4
⊕
E
− P 4

,
w

it
h

E
+ P
4

=
sp

an
{v
,J

1
J

2
v
}

E
− P 4

=
sp

an
{J

1
J

4
J

7
J

8
v
,J

2
J

4
J

7
J

8
v
}.



A
.3

.2
4

C
a
se

n
7
,2

In
vo

lu
ti

o
n

s
p

ro
d

u
ct

of
fo

u
r

In
vo

lu
ti

on
s

p
ro

d
u

ct
of

th
re

e
d

im
(V

)

P
1

=
J

1
J

2
J

8
J

9
P

4
=
J

7
J

8
J

9
32

P
2

=
J

3
J

4
J

8
J

9

P
3

=
J

5
J

6
J

8
J

9

T
ab

le
o
f

co
m

m
u

ta
ti

v
it

y
:

J
1

J
2

J
3

J
4

J
5

J
6

J
7

J
8

J
9

P
1

a
a

c
c

c
c

c
a

a

P
2

c
c

a
a

c
c

c
a

a

P
3

c
c

c
c

a
a

c
a

a

P
4

a
a

a
a

a
a

c
c

c

C
o
n

st
ru

ct
io

n
of

th
e

b
a
si

s:

P
1
V

+
-

d
im

=
1
6

P
2
(P

1
V

)
+

-
+

-
d

im
=

8

P
3
(P

2
(P

1
V

))
+

-
+

-
+

-
+

-
d

im
=

4

v
J

5
v

J
3
v

J
1
J

8
v

J
1
v

J
3
J

8
v

J
5
J

8
v

J
8
v

J
8
J

9
v

J
6
v

J
4
v

J
2
J

8
v

J
2
v

J
4
J

8
v

J
6
J

8
v

J
9
v

b
as

is
J

1
J

3
J

5
J

9
v

J
1
J

3
J

9
v

J
1
J

5
J

9
v

J
3
J

6
v

J
3
J

5
J

9
v

J
1
J

6
v

J
2
J

3
v

J
1
J

3
J

6
v

J
1
J

3
J

5
J

8
v

J
1
J

3
J

8
v

J
1
J

5
J

8
v

J
4
J

6
v

J
3
J

5
J

8
v

J
1
J

5
v

J
1
J

3
v

J
1
J

3
J

5
v

J
5

J
3

J
1
J

8
J

1
J

3
J

8
J

5
J

8
J

8

O
b

se
rv

e
th

a
t
E

1
=
E

+ P
4
⊕
E
− P 4

,
w

it
h

E
+ P
4

=
sp

an
{v
,J

8
J

9
v
}

E
− P 4

=
sp

an
{J

1
J

3
J

5
J

9
v
,J

1
J

3
J

5
J

8
v
}.



A.4 Eight-dimensional case

A.4.1 Case n0,3

Involutions product of four Involutions product of three dim(V )

8

Construction of the basis:

V dim = 8

basis v
J2J1v
J3J2v
J1J3v
J1J2J3v
J3v
J1v
J2v

A.4.2 Case n2,1

Involutions product of four Involutions product of three dim(V )

8

Construction of the basis:

V dim = 8

basis v
J2v
J1v
J1J2v
J3v
J2J3v
J1J3v
J1J2J3v

A.4.3 Case n1,3

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3 8

Table of commutativity:

J1 J2 J3 J4

P1 c c c a

Construction of the basis:

V dim = 8

basis v
J1J2J4v
J1J3J4v
J2J3v
J4v
J1J2v
J1J3v
J2J3J4v



Observe that E1 = E+
P1
⊕ E−P1

, with

E+
P1

= span{v, J2J3v, J1J2v, J1J3v}
E−P1

= span{J4v, J2J3J4v, J1J2J4v, J1J3J4v}.

A.4.4 Case n3,1

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3 8

Table of commutativity:

J1 J2 J3 J4

P1 c c c a

Construction of the basis:

V dim = 8

basis v
J1J2v
J2J3v
J3J1v
J4v

J1J2J4v
J2J3J4v
J3J1J4v

Observe that E1 = E+
P1
⊕ E−P1

, with

E+
P1

= span{v, J2J3v, J1J2v, J1J3v}
E−P1

= span{J4v, J2J3J4v, J1J2J4v, J1J3J4v}.

A.4.5 Case n0,5

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 16

J1 J2 J3 J4 J5

P1 a a a a c

Construction of the basis:

P1V + - dim = 8

v J1v
J1J2v J2v
J4J2v J3v
J1J4v J4v
J5v J1J5v

J1J2J5v J2J5v
basis J4J2J5v J3J5v

J1J4J5v J4J5v

GI J1



A.4.6 Case n4,1

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 16

J1 J2 J3 J4 J5

P1 a a a a c

Construction of the basis:

P1V + - dim = 8
v J1v

J1J2v J2v
J2J4v J3v
J1J4v J4v

basis J5v J1J5v
J1J2J5v J2J5v
J2J4J5v J3J5v
J1J4J5v J4J5v

GI J1

A.4.7 Case n5,1

Involutions product of four Involutions product of three dim(V )

P1 = J1J2J3J4 P2 = J1J2J5 16

Table of commutativity:

J1 J2 J3 J4 J5 J6

P1 a a a a c c

P2 c c a a c a

Construction of the basis:

P1V + - dim = 8

v J3v
J1J2v J4v
J1J3v J1v
J2J3v J2v

basis J6v J3J6v
J1J2J6v J4J6v
J1J3J6v J1J6v
J2J3J6v J2J6v

GI J3

Observe that E1 = E+
P2
⊕ E−P2

, with

E+
P2

= span{v, J1J2v, J1J3J6v, J2J3J6v}
E−P1

= span{J6v, J2J3v, J1J3v, J1J2J6v}.



A.4.8 Case n1,5

Involutions product of four Involutions product of three dim(V )

P1 = J2J3J4J5 P2 = J1J2J3 16

Table of commutativity:

J1 J2 J3 J4 J5 J6

P1 c a a a a c

P2 c c c a a a

Construction of the basis:

P1V + - dim = 8

v J5v
J2J3v J4v
J2J4v J3v
J3J4v J2v

basis J6v J5J6v
J2J3J6v J4J6v
J2J4J6v J3J6v
J3J4J6v J2J6v

GI J5

Observe that E1 = E+
P2
⊕ E−P2

, with

E+
P2

= span{v, J2J3v, J2J4J6v, J3J4J6v}
E−P1

= span{J6v, J2J4v, J3J4v, J2J3J6v}.
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