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Foreword

The purpose of this thesis is to analyse and classify the automorphism groups of pseudo
H-type Lie algebras, which are particular types of two-step nilpotent Lie algebras.

The paper which marks the beginning of the study of two-step nilpotent Lie algebras is
[M*] by Metrevier. In particular, Metrevier considers those two-step nilpotent Lie algebras
which satisfy the so-called hypothesis H: given a Lie algebra n = Z @V, where Z is the
centre of n and V is its complement, the adjoint map adx : n — Z is surjective for any
X € V. These Lie algebras have also been called fat or non-singular in [KT13].

The research on two-step nilpotent Lie algebras then branched out in two directions,
investigating, respectively, their associated Lie groups (see [Ebe94]) and the Lie algebras
of Heisenberg type, also called Lie algebras of H-type. These particular algebras were
first defined by A. Kaplan in [Kap80]. In particular, Kaplan used H-type Lie algebras
to examine a class of hypoellyptic PDE; later, a relation was found between the H-type
Lie algebras and the Clifford algebra representations over a scalar product of signature
(r,0). In particular, the H-type Lie algebras inherit the periodicity specific of the Clifford
algebras, and in the paper [Saa96], L. Saal classifies the group of automorphisms of H-type
Lie algebras.

The starting point for our thesis is the notion of pseudo H-type Lie algebra, which
was introduced independently by P. Ciatti [Cia00] and by I. Markina, M. Molina and A.
Korolko [ref]. Such Lie algebras are correlated to Clifford algebra representations over a
scalar product with a signature (r,s). In [FM17], I. Markina and K. Furutani study the
isomorphism groups of pseudo H-type Lie algebras, providing the structure of a generic
isomorphism ® : 3V — 3@ V. In particular, they show that an isomorphism is possible
only between certain pseudo H-type Lie algebras, namely between n™® and n®", where
(r,s) and (s, r) represent the signatures of the which is the carrier space of the respective
Clifford algebras representations.

Our goal is to describe the structure of the group of automorphisms of a generic
pseudo H-type Lie algebra and to provide a classification of these groups according to the
signature. Such classification will be finite because of the mentioned periodicity within
pseudo H-type Lie algebras.

The thesis is composed of the following parts.

In Chapter 1 we introduce the basic definitions that we will use during our classification.
We will also list a number of isomorphisms between some of the classical Lie groups
constructed over different fields.

In Chapter 2 we deal with the structure of the automorphism groups. We will start
from the known results for two-step nilpotent Lie algebras ([KT13] and [Saa96]), which
will allow us to characterise the automorphism group Aut(n) of a pseudo H-type Lie al-
gebra n by a particular subgroup, called Aut®(n). We will then define a pseudo H-type
Lie algebra as a two-step nilpotent Lie algebra satisfying an additional condition; all the
results for two-step nilpotent Lie algebras will then still hold in our case. We will see how
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the additional condition will produce an important tool for the sought classification.

We will then briefly show the correlation between pseudo H-type Lie algebras and Clif-
ford algebras, namely the one-to-one correspondence between the former and admissible
modules of the latter. Lastly, we will list some of the already known results about H-type
Lie algebras ([Saa96]).

Chapter 3 is dedicated to the classification of the automorphism groups of pseudo
H-type Lie algebras; using the tables presented in the Appendix and the isomorphisms
illustrated in Chapter 1, we will describe Aut’(n) for every pseudo H-type Lie algebra
n = n"% We will study together all the cases in which the admissible modules appear to
have similar bases. All the groups Aut®(n) will result to be isomorphic to a classical Lie
group.

Lastly, the Appendix, which constitutes an important part of this thesis, presents the
tables of involutions and bases of admissible modules, which are used in Chapter 3. Once
we know such involutions, we will be able to provide a basis for the minimal admissible
module of each pseudo H-type Lie algebra, and hence to conclude our classification.



Chapter 1

Preliminary notions

In this chapter we will list the basic notions that will be employed throughout the ex-
position. We will present an account of some classical Lie groups and the definition of
split-complex and split-quaternion numbers, which, despite lacking the property of being
a field, still can be used to construct matrix Lie groups. We will also provide some useful
isomorphisms between low-dimensional matrix Lie groups.

1.1 Classical Lie groups

We will start with the main definitions.

Definition 1.1. Let us consider a vector space v. We call scalar product a bilinear
operator

(—,—) :oxpv—=R

(v,w) — (v, w)

such that:
e (—, —) is symmetric, i.e. (v,w) = (w,v) for all v, w € v.
e (—,—) is non-degenerate, i.e. (v,w) =0 for all v € v, then w = 0.

We say that (—, —) is positive definite if for every v € v we have that (v,v) > 0, and
that (v,v) = 0 if and only if v = 0. We say that (—, —) is negative definite if for every
v € v we have that (v,v) <0, and that (v,v) = 0 if and only if v = 0.

Definition 1.2. Given a vector space v of dimension n endowed with a scalar product
(—,—), we say that (7, s) is the signature of (—, —) if r + s = n and there exists a basis
{Z1,...,Z,} of v such that

ZiZj + Z]Zl = 2€i(T, S)(Sij, (11)

1 ifie{l,...,r}

o and ¢;; is the Kronecker delta.
-1 ifie{r+1,...,r+s}

where ¢;(r,s) = {

Definition 1.3. Given a matrix A, we denote with A? its transpose, and with A7 its
transpose with respect to the metric given by a scalar product, i.e. given a scalar product
(—,—) over v,

(Az,y) = (x, ATy) for all z,y € v.
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Definition 1.4. A complex number is a number written as a + ib, where a, b € R and
i satisfies the condition i = —1.

A quaternion number is a number written in the form a + ib + jc + kd where a, b, c,
d € R and i, j, k satisfy the relations:

i’ ==k = -1, ij=—ji=k,  jk=—kj=i, ik = —ki=—j.

A triple of quaternion units in a group is a triple of elements satisfying the same relations
as 1, j and k.
Both the complex numbers and the quaternion numbers form a field.

Definition 1.5. A split-complex number is a number written as a+4*b where a, b € R
and i* satisfies i*2 = 1. We denote the split-complex numbers with the symbol SC.

We define the conjugation of a split-complex number z = a + i*b as Z := a — i*b.

A split-quaternion number is a number written as a + i*b + j*c + k*d where a, b, c,
d € R and i*, j*, k* satisfy:

- ) - - b - — ) - - ) - - .
The set {1,:*,j*, k*} is a basis of a four-dimensional real vector space equipped with a
multiplicative operation. We denote the split-quaternion numbers with the symbol SH.
Let ¢ = a + i*b + j*c + k*d be a split-quaternion number; then we define two different
types of conjugations:

g:=a—1"b—j'c—k*d

g:=a—1ib+jc+k*d
Remark 1.6. The split-complex and the split-quaternion numbers are not fields, since
they both contain zero divisors. Nevertheless, they are both associative algebras; hence,

we can provide a definition for all the groups in Definition 1.7 also when using SC and SH
instead of F.

Definition 1.7. Given a field F and a space M, ,(F) of (n x n)—matrices over F, we give
the following definitions.
- The general linear group GL(n,F) of degree n over F is

GL(n,F) := {M € M, ,(FF) | M is invertible}.
- The special linear group SL(n,F) of degree n over F is
SL(n,F) := {M € GL(n,F) | det(M) = 1}
- The general orthogonal group O(p,q,F) over F is
O(p,q,F) = O(p.q) := {M € GL(p + ¢,F) | M*'nM = n}

=7 ). (1.2

where I is the (k x k) identity matrix.
The subgroup O(p,0,F) < O(p, ¢,F) is called orthogonal group of degree p and is
denoted with O(p,F). In particular,

O(p,F) := {M € GL(p,F) | M'M = MM' = 1d}
= {M € GL(p,F) | M~ = M*}.

with

The matrices in the orthogonal group, also called orthogonal matrices, have the
property that det(M) = +1. When we consider F = R, we simply write O(p).



- The special general orthogonal group SO(p, ¢,F) over F is
SO(p, q,F) := {M € O(p,q,F) | det(M) = 1}.

The subgroup SO(p,0,F) < SO(p,q,F) is called special orthogonal group of
degree p and is denoted by SO(p,F). When we consider F = R, we simply write
SO(n).

- The general unitary group U(p, ¢, F) of degree n over the field F is

U(p, ¢, F) := {M € GL(1,F) | M'nM = n}

where 7 is as in (1.2).
The subgroup U(p,0,F) < U(p, q,F) is called unitary group U(p,F) of degree p.
In particular,

U(p,F) := {M € GL(p,F) | M' = M~ '}.

In particular, if we consider F = R, then U(p, ¢, R) = O(p, ¢, R).
- The symplectic group Sp(2n,F) of degree 2n over F is

Sp(2n,F) := {M € GL(2n,F) | M'Q,M = Q,}

0 -Id,
where Q,, := (Idn 0 ) .

The compact symplectic group Sp(n) of degree 2n is
Sp(n) := U(2n) N Sp(2n, C).
- The conjugate symplectic group Sp(2n,F) of degree 2n over F is
Sp(2n,F) := {M € GL(2n,F) | M!Q,M = Q,,}

where {2, is as in the definition of the symplectic group.

Observe that Sp(2n,R) = Sp(2n, R).

If F = SH, we have two different definitions of conjugation; in particular, we denote
with

Sp(2n, SH) := {M € GL(2n,SH) | M'Q, M = Q,}
Sp(2n,SH) := {M € GL(2n,SH) | MtQ,M = Q,}.

- The group T(n,F) is defined as

T(n,F) :={M € GL(n,F) | Mto,M = 0,,},

here o, 1= 0 Idy
w Op 1= M, o)

Remark 1.8. All symplectic matrices have determinant equal to 1, so
Sp(2n,F) < SL(2n, F). (1.3)
Moreover, the following isomorphism holds:

Sp(2,F) = SL(2,F).



Indeed, the left inclusion follows trivially from (1.3); the right inclusion follows from the

Z) with a, b, ¢, d € F, we have that

I 0 bc —ad\ 0 —det(4)\
A4 = (ad —be 0 ~ \det(A) 0 =4

since det(A) = 1 by construction.

fact that, given a generic A = (Z

Remark 1.9. The groups O(1,0,R), O(0,1,R) and O(1,R) are isomorphic. In fact:

O(1,R) = {M € GL(LR) | M =M™} = {a € R | a = 2} — (+1).

O( 303

1,0,R) = {M € GL(1,R) | MTIdM =1d} = {a € R | aTa = 1} = {£1}.
0(0, 1,

)={M € GL(1,R) | MT(-1d)M = —Id}
={acR|—ala=-1=a"a=1} = {£1}.

R
R

Remark 1.10. The group O(1,C) is given by {£1}. In fact, given A = (z) € 0(1,0),
we have that z is a complex number which satisfies the condition AT A = Id; since A is a
number, then A7 = A and AT A =1d, so A2 = Id. Hence, if 2 = a + ib, then the condition
becomes a? — b% + i2ab = 1; this implies

a? - =1
2ab = 0.
Hence b = 0 and a? = 1, implying A = (:l:l).

1.2 Isomorphisms

In Chapter 3 we will deal with certain computations on matrices. Since such computa-
tions are easier when the matrices involved are of lower dimensions, we will make use of
the isomorphisms delineated in this section, which relate some classes of four- or eight-
dimensional real matrices to two-dimensional complex or quaternion matrices. The same
isomorphisms are also useful for the identification of the specific groups we will work with.
We start with a known remark, and we proceed with a list of isomorphisms.

Remark 1.11. Consider a 2 X 2 real matrix A = <CCL Z) commuting with 7 = <(1) _01>

By easy computation, one can see that A must be of the form

A= (“ b) —a-Td—b-i,
-b a

which that implies A € GL(1,C).

Consider now a (4 x 4) real matrix A; let 4, j, k be quaternion units in GL(4,R). Assume
that A commutes with two of the three matrices ¢, j and k; then it also commutes with
the third one. For example, if A commutes with 7 and j, we have the chain of implications:

Avi=i- A=A i-j=i-A-j=Aij=ij A=A k=k- A

In this case, by easy computation, one can see that A =a-Id+b-7+c-j + d -k, hence
we can conclude that A € GL(1, H).



Analogously, given a 4 x 4 real matrix A; let ¢*, j* and k* be split-quaternion units written
as 4 x 4 real matrices. Assume that A commutes with two of them; then it also commutes
with the third one. For example, if A commutes with i* and j*, we have the chain of
implications:

A-i*=i" A=A =" A =A - 7"=i"-7 A=A -k =k*- A
In this case, by easy computation, one can see that A =a-Id+b-i*+c-j* 4+ d - k*, hence
we can conclude that A € GL(1, SH).

Proposition 1.12. A matriz A € GL(4,R) which commutes with

0 -1 0 O
1 0 0 O
I= 0O 0 0 -1
0O 0 1 0
has the form
ap by ax by
M= —bl al —bg a9 (1'4)

az bz as by
—b3 a3 —by a4

The matrices in the form (1.4) form a subgroup of GL(4,R) which is isomorphic to
GL(2,C).

Proof. 1f we take a generic A € GL(4,R) and impose the condition A-I =1 - A, it follows
from easy computations that A has to be in the form (1.4).

M has trivially an inverse since it belongs to GL(4,R); moreover, simple computations
prove that the product of any two matrices in the form (1.4) has still the same form.

We will now construct a group homomorphism between GL(2,C) and the subgroup of
the matrices in the form (1.4). Let us consider z1, 29, 23, z4 € C written in the form
zj = a; +1bj for every j = 1,...,4. The map

ap by az b
21 22 —b1 a1 —by a

©: <z3 24> > by by (1.5)
—bs a3 —by ay

is trivially bijective and maps Id into Id. We will see that ¢ is a group homomorphism.
Indeed, let us consider two matrices A, B € GL(2,C) of the form

A= A1 22 B = w; w2
z3 z4)’ w3 wy)’
where z; = a; +ib; and w; = a; +4b; for all j € {1,...,4}. Then

A.B— Z1W1 + 2ows3  21W2 + zZowy
23W1 + 24W3  Z3W2 + 24ws )

We notice that
X123 Yii23 Xi2o4  Yioo4
o(A-B) = Y1123 X1123 —Yioo4 Xi224
X3143 Y3143 X3o44 Y3ou4
—Y3143 X3143 —Y32u4 X3244



where
Xijm = ajafc + alain — bjb;C — blb;n
ij,lm = Cij;C + afkbj + alb;n + a;nbl.
On the other side,
al b1 a9 bQ
—b1 al —bQ a9

a3 by as by
—bz a3 —bs a4

p(A) =

and ¢(B) is of a form akin to ¢(A), once substituted a;, b; for aj, b} respectively. After
easy computations, it follows that ¢(A) - p(B) = p(A - B). As ¢ was bijective and its
inverse is the inverse group homomorphism, it is an isomorphism of groups. O

Proposition 1.13. Any matriz A € GL(4,R) which commutes with
-1 0

00

0 0
J= 10
0 1
s of the form
ap az —by —by
a3 a4 —b3 —b4
by by a1 a
bg b4 as a4

The matrices of the form (1.6) form a subroup of GL(4,R) which is isomorphic to GL(2, C).

N = (1.6)

Proof. Proving the first part of the statement follows from some easy computations. For
the second part, we want to construct an isomorphism between GL(2, C) and the subgroup
of GL(4,R) of matrices in the form (1.6).

We define the map

al ag —bl —b2
(a1 + b1 as + iby ag a4 —by —by
<a3 +ibs a4 + ib4> ~ by b aq as (1'7)

b3 by az as

This is trivially a bijection; moreover, it maps Id into Id. We want to prove that, given
any two matrices A, B € GL(2,C), then p(A) - p(B) = ¢p(A- B). Write A and B as

Ao (@ +ib ag+iby B a) +ib]  aly+ bl
az +1ibs ag+iby)’ ay + by aly + b))

Then,
X123 Xi224 —Yi123 —Yio4
A.B)— X31,43 X3oa4 —Y3143 —Y3244 18
11,23 Y1224 11,23 12,24
Y3143 Y3244 X3143 X3214
where

/ / / /
Xjklm = ajayg + a;Q,, — bjbk — blbm

/ / / /
ijk,lm = ajbk + bjak + albm + blam

Computing ¢(A) - ¢(B), one can see that it has the form as in (1.8). O



Remark 1.14. Let A € GL(4,R) be a matrix of the form (1.4) or (1.6). Then
(At = pI(A)
(A7) = o1 (A),
where  is the complex conjugation.

Proposition 1.15. Let A € GL(4,R) be a matriz which commutes with

0 0 01
0 010
I'= 01 0 0}’
1 0 0O
then A is of the form
ay az bz b1
o | a1 b bs (1.9)

bs by as as
by by ax ax

The matrices of the form (1.9) form a subgroup of GL(4,R) which is isomorphic to
GL(2, SC).

Proof. Given 21, 22, 23 and 2z split-complex numbers in the form z; = a; +i*b;, we can
construct the bijective map

a1 ax by by

(2 22 ag a4 by b3
cp.(z3 Z4)»—> bs by as as | (1.10)

bl bg as ap
The map ¢ maps Id to Id; moreover, it is a group homomorphism. Indeed, given two

. 21 % . . wy W . ,
matrices A = (“} “?) with zj = a; +1i"b; and B = L2 with wj = a; +i*V;, then
z3 24 w3 wy J J

A.B— Z1W1 + 2ow3  21W2 + zowy
23W1 + Z4Ww3 23w + z4w4 )

Hence,
X123 Xi224 Yi2214 Y1123
X3143 X3244 Y3214 Y3143
A.-B) = , : : 43| 111
ol ) Y3143 Y3244 X3244 X3143 (1.11)
Yi123 Yi224 Xiooa X123
where
Xjk,lm = CLjCL;c + ala;n + bjb%blb;n
}/jklm = ajb;. + bjCL?c + alb;n + bla'm
One can compute ¢(A) - ¢(B) and observe that it is in the form (1.11). O

Remark 1.16. Let A € GL(4,R) be a matrix of the form (1.9). Then

p (A" = T (A)



Proposition 1.17. A matriz A € GL(8,R) which commutes with the matrices

0O -10 0 0 O 0 O 0O 0 -1 00 O 0 O
1 0 0 0 0 0 0 O 0O 0 0 10 O 0 O
0 0 0O -1 0 0 0 O 1 0 0 00 0O 0 O
j 0o 0 1.0 O O O O and J = 0 -1 0 00 O 0 O
0 0o 0o 06 0-10 O 0 0 0 00 0 —-120
o 0 0 0 1 0 0 O O 0 0 o0 O 0 1
0O 0o 0o 0 0 0 0 -1 0O 0 0 01 0 0 O
o 0 0 0 0 O 1 O 0o 0 0 00 -1 0 O
1s of the form
ag b a di ax by ca dy
—b1 al —d1 C1 —bQ a9 —dg (&)
—C1 d1 aq —b1 —C2 d2 a9 —b2
—d1 —C1 b1 al —d2 —C9 bg a9
«= as bg C3 dg a4y b4 Cyq d4 (112)
—bg as —d3 C3 —b4 a4 —d4 Cy
—c3 d3 a3 —by —cq4 dy ay —by
—d3 —C3 b3 as —d4 —C4 b4 a4

The matrices of the form (1.12) form a subgroup of GL(8,R) isomorphic to GL(2,H).

Proof. The first part of the statement can be proven via some easy computations. As for
the second part, given z1, 22, 23, 24 € H in the form z,, = am, + by, + jem + kdp,, we can

construct a bijective map
zZ1 22
: — Q. 1.1
e (2 2)ra (1.13)

The map ¢ maps Id to Id; moreoveprover, it is a group homomorphism. Indeed, if we have

two matrix A = (Zl z2> and B = (wl “’2) With 2y = am + ibm + jem + kdm and
23 24 w3 W4

wy = aj + ib) + jc, + kd}, then

A.B— Z1W1 + Zowsg  Z1W2 + 22W4
23w + Z4w3  23wWg + zaws )

Then
X11,23 Yites Wiz Ziigs Xiooa Yiooa  Wizos  Zi2o4
Y1123  X1123 —Zi123 Witz —Yiooa  Xioos  —Zizosa Wioou
~Wii2s  Zii2z3  Xi123 Y123 —Wigos  Ziooa X124 —Yi224

p(A-B) = —Z1123 —Wiips Yoz Xi123  —Zi2oa —Wigos  Yiooa Xiooa
X31,43 Y3143 Ws143  Z3143  X3244 Yaoaa  Waous  Z3ou4
—Y3143  X3143 —Z3143 W3143 —Yzous  Xzous —Z3zp44 Ws3o a4
~W3143  Z3143  X3143 Y3143 —Wioas  Z3oasa  X3244 —Y3244
—Z3143 —Wisias Y3143 X3143 —Z3oaa —Wsoua Yious  Xzoaa

where

Ximno = ajal, — b by — cich, — did,,, + apal, — bybl, — el — dypd),
Yim.no = aibly, + bial, + cid, — dich, + anblbpal, + cpd,, — dncl,
Wimno = @iCp, — bidy, + cran, + dib, + anc;, — bpd,, + cnay, + dnb,
Zimmo = aid,y, + bich, — eibl, + dial, + and,, + bncl, — cpbl, + dpal,
It follows by computation that ¢(A) - ¢(B) = (A - B). O




Proposition 1.18. A matriz A € GL(8,R) which commutes with the matrices

O 0 0 -1 0 O O O 0 O 0O 0 0 -1 0 O
o o 1 0 0 O o0 O 0 O 0O 01 0 0 O
O -1.0 0 O O O ©O 0 O 0O 0 0 O 0 1
j 1 0 0 0 0O 0 0 O and T — 0 O 0O 00 0 -—-120
o 0 0 0 o o0 o0 -1 0O -1 0 0 0 O 0 O
O 0 0 0O o0 o0 1 o0 1 0 0O 0 0 O 0O O
O 0 0 0 0O -1 0 O 0 O 0O 1 0 O 0 O
O 0 0 0 1 0 0 o 0O 0 -1 00 O 0O O
s of the form
ap  az —by by ¢ —c1 di do
a3 ay —by b3y ¢4 —cg d3 dy
b3 by ay —az dy —d3 —c3 —c4
by —by —az a1 —dy di ¢ ¢
p= —c3 —c4 —dy d3 ag —az —by —by (1.14)
¢t ¢ dy —di —az a1 by b
—Cl1 —dQ (&) —C1 bg —b1 al a9
*dg *d4 C4 —C3 b4 *bg as a4

The matrices of the form (1.14) form a subgroup of GL(8,R) isomorphic to GL(2,H).

Proof. Again, the first part of the statement can be proven by easy computation. As for
the second part, given zi, 22, 23, z4 € H in the form z; = a; + ib; + j¢ + kd;, we can

construct a map
Z1 2
p: ( ) — .
z3

24
The map ¢ is trivially bijective and maps Id to Id. Moreover, it is a group homomorphism:

in fact, given two matrices A = <Zl 22) and B = <w1 w2> with z; = a;+ib;+ jep + kd;

(1.15)

23 24 w3 W4
and wy, = a,, + b}, + jc,, + kd,,; then

Z3W2 + Z4Wy

21w + zow
A.B = (AWt 22w
23w1—|—24w3

z1wa + zgw4>

Then
X1123 X224  —Yioos  Yi193 Wigos Wit  Zi123 Z12,24
X3143  X3244  —Y3ou4 Y3143 Wso4a  —W3143 23143 232,44
Y31 43 Y30 44 X344 —X3143  Z3oaa  —Z3143 —W3143 —Wious
o(A-B) = Y1123 —Yiooa —Xi224 Xi123  —Zi224 Z1123 Wites Wiz
~W3143 —Wsoua —Z3244  Z3143 X3244 —X3143 —Y3143 —Y3ou4
Wites  Wigpos  Zi224  —Z1123 —Xi224  X11,23 Yi123 Y1924
—Z11,23 —Z1224 Wizos —Witps  Yiooa —Yii2z X112z Xioa
—Z3143 —Z3244 Wiaoaa  —W31a3  Yzous  —Y3143  X3143  Xz2u
where
! / / ! ! / / !
le,no = Q|G — bmbl — CCpy, — dldm + anQ, — bnbo — CnCy — d”do
Yimno = aibl, + bia,, + ad,, — dic), + apb,byal, + cnd, — dpc,
Wimmo = alc;n — bld’m + cla;n + dlb;n + anc:, - bndlo + cna'o + dnb'O
Zimomo = aidy, + b, — abl, + diay, + and), + by, — e b, + dpal
One can compute ¢(A) - ¢(B) and prove it has the same form as ¢(A - B). O




Remark 1.19. Given a matrix A € GL(8,R) in the form (1.12) or (1.14), we have
@ 1(AY) = = 1(A)t where ~ is the quaternion conjugation.

Proposition 1.20. A matriz A € GL(8,R) which commutes with the matrices

O 0 0 —-10 O O O 00 00 O0OT1TO0O0
o 0 1 0 0O 0 0 o0 000 O0O1UO0O0TPO0
O -10 0 O O 0 O 00 00 O0O0OTO01
I 1 0 0 0O O O 0 o0 and  JF — 000 O0O0OO0OT1TFPOQO0
O o 0 0 0 0 0 -1 01 0 0 O0O0O0O0
o 0 0 o0 o o0 1 o0 1 0000 0 0O
o 0 0 0 0 -1 0 O0 00010 O0O0O0
o 0 0 o0 1 0 0 o0 001 0O0UO0O0UPO0
1s of the form
ap  az —by b1 ca ¢ di  —da
a3 a4 —by by ¢4 3 dz  —dy
b3 by ay —az3 —dy —d3 c3 —c4
by by —az a1 do di —c1 e
Tl e e —di ds as ag by —by (1.16)
¢t ¢ —dy di az ar by —b
di  do ¢ —c1 by —b1 a1 —as
—d3 —dy —c4 c3 by b3 —az a4

The matrices of the form (1.16) form a subgroup of GL(8,R) isomorphic to GL(2,SH).

Proof. As in the previous propositions, the first part of the statement can be proven
by easy computations. As for the second part, given zy, 22, 23, 24 € SH in the form
z1 = a; + 1% 4+ j%¢ + k*d;, we can construct a map

o ("’1 ZQ) 5. (1.17)

23 24

The map ¢ is trivially bijective and maps Id to Id. Moreover, it is a group homomorphism:

in fact, given two matrices A = <Zl Zz) and B = <w1 w2> with z; = a; + "0 + j* ¢ +
Z3 Z4 w3 W4

k*dy and w; = @) + i*b} + j*¢ + k*d}; then

A.B— [AW + 2wz w2 + 2wy
23wy + z4w3  Z3Wo + zawys )

Then
X123 X224 —Yi2oa Y112z Wigos Witz Zi12s —Z1224
X31,43  X3244 Y3244 Y3143 Wi3oa4 Wi3143  Z3143  —Z3244
Y3143 Y344  X3ou4 —X3143 —Z3oaa —Z3143 W3z143 —Wious

H(A-B) = Y1123 —Yiooa —Xi224 X1123 Z1224  Z1123 Witz Wiz
W3143 Wsoua —Z3244  Z3143  Xz244  X3143 Y3143 Y3244
Witz Wisos —Zi22a  Z1123  Xi2oa  Xi123 Y123 —Yiou
Z1123  Zi1224 Wizoa —Wiros —Yioos —Yi123 Xi123  —Xi224

23143 23244  Ws244  —W3143 —Y30u4 —Y3143 X3143 —X3244




where

Ximno = aiay, — b, by + cicl, + didy, + anal, — bpbl, + cncl, + dyd,,
Yimno = alb:n + bla;n + cld;n —dic,, + anbg + bna; + cnd; - dncg
Wimmo = aich, + bid,, + cla;n — dlb/m + ancf) — bpd, + cpal, — dnb;
Zimmo = aidy, + bic,, — abl, + dial, + and), + bycl, — ey b, + dpal

One can compute ¢(A) - ¢(B) and prove it has the same form as ¢(A - B). O

Remark 1.21. Let A € GL(8,R) be a matrix of the form (1.16). Then

p (A" = o 1 (A),
where ~ is the conjugation of split-quaternion as defined in Definition 1.5.

Proposition 1.22. The group GL(1,H) is isomorphic to the subgroup U(2) of GL(2,C)

given by the matrices of the form a = ( Z; ?)
—Z2

Proof. We know by Proposition 1.12 that a matrix A € GL(2,C), A = <il ?) with
3 24

zj = aj + ibj, is isomorphic to a matrix in the form

ap by az by
b1 a1 —by as

az bz as by |’
—bs a3 —by a4

while it is known that the matrices in GL(1,H) can be represented as matrices in the form

a b c d
b a —-d c
—c d a -b
—d —c b a

These two matrices are equal if we impose the conditions
ap=a, b =b ax=c by=d, a3=-c, b3=d, ag=a, by=-Db,
which are equivalent to the conditions
z1 = a + ib, 29 = c+1d, 23 = —c+1d, z4 = a — b,
hence z3 = —Z5 and z4 = Z7. O

Proposition 1.23. The group GL(2,H) is isomorphic to the subgroup of GL(4,C) of the
matrices in the form

Al z9 zZ3 Z4

—Z2 Z1 —Z4 %3

25 Z6 27 28

—Z6 Z5 —Z28 21



Proof. We know by Proposition 1.17 that a matrix

w2
W4

A—(W
w3

with w; = a; + ib; + j¢ + kd;, can be written as

al b1 C1 d1 a9 b2 (&) d2
—b1 al —d1 C1 —b2 a9 —dg (&)
—C1 dl aq —b1 —C9 d2 a9 —bQ
—d1 —C1 bl al —d2 —C9 bQ a9
as bg C3 d3 a4 b4 Cq d4
—bg as —d3 C3 —b4 ay —d4 Cy
—C3 d3 as —bg —C4 d4 a4 —b4
—d3 —C3 b3 as —d4 —C4 b4 a4
On the other hand, a matrix
Z1 2y 23 24
z Z z Z
B= | 2 " ™ 1eGL(40),
Z9 210 211 12
Z13 214 215 216
with z; = x; +iy;, can be written as
T1 n €2 Y2 z3 Y3 T4 Ya
—U1 X —Y2 T2 —Ys T3 —Ys T4
s Ys T6 Yo T7 Y7 g Ys
—Y5 T5 —Ys Tg —Yr Tr —Ys T
T9 Yo 10 Yo L1111 Y11 T12 Y12
—Y9 9 —Yio Ti0o —Yu1 T —Yi2 T12
13 Y13 T4 Y14 Ti5 Y15  Tie Y16
—Y13 T13 —Yi4 T4 —Yi5 T15 —Yie Ti6
In order to have an equality between these two expressions of A and B, we need to impose
the following conditions on z; and y;:
ry=a, I2=C, T3=0a2, T4=C, IT5=—C, Tg=0al, Ty = —C2, T8 =az2
g = az, Ti0=1C3, T11 = a4, T12 =C4, T13 = —C3, Ti14 = ags, T1s = —C4, 16 = Q4
y1=">01, yo=di, yz3=be, ys=dz, y5=d, ye = —b1, yr=da, ys = —bo
Yo =0b3, yio=d3, yi1="bs, y12=ds, y13=d3, Yuu= b3, yi5s=d4, Y16 = —by.
These conditions imply z5 = —Z3, z¢ = Zz1, 27 = —22, 28 = 22 and z13 = —Z10, 214 =
Z9, 215 = —Z12, 216 = 211, hence, the proposition is proved. ]

> € GL(2,H),




Chapter 2

Automorphism groups of pseudo
H-type Lie algebras

Our goal is to describe the structure of the automorphism groups of pseudo H-type Lie
algebras. We will start by giving some insight on the theory already known for two-step
nilpotent Lie algebras. Our main reference for this section is the paper by Kaplan and
Tiraboschi [KT13], which describes the structure of the automorphism group of a fat Lie
algebra. Some of the results appearing in that paper are also relevant to the more general
class of two-step nilpotent Lie algebras. We will later see that pseudo H-type Lie algebras
are two-step nilpotent, hence the same results will apply to our analysis.

2.1 Two-step nilpotent Lie algebras

We will begin with the general definitions of a Lie algebra and a nilpotent algebra.

Definition 2.1. A Lie algebra is a vector space n over some field F together with a

binary operation [—, —| : n x n — n, called Lie bracket, that satisfies:
e bilinearity, i.e. [azx + by, z] = alx, z] + by, 2] and [z, ay + bz] = a[z,y] + b[z, 2]
e anticommutativity, i.e. [x,y] = —y, z]

e the Jacobi identity, i.e. [z, [y, 2]] + [z, [z, 9]] + [, [2,2]] = 0
for all z, y, z € n and for all a, b € F.
Anticommutativity implies alternativity, i.e. [x,z] = 0 for all € n. We define the centre
of nas theset 3 =3, :={z €n|z,s] =0 for all s € n}.

Definition 2.2. A Lie algebra is called two-step nilpotent if [z,[y,z]] = 0 for all
x, y, z € n. In other words, if n is two-step nilpotent, then the Lie bracket is a map
[ —] inxn—3.

We are now interested in studying the structure of the automorphisms of a generic
two-step nilpotent Lie algebra.

Let n = (V &3, [—,—]) be a two-step nilpotent Lie algebra and Aut(n) be a group of
automorphisms of n. Let n = dim(V') and m = dim(3). The automorphisms of two-step
nilpotent Lie algebras preserve the centre; therefore, an element ¢ € Aut(n) has to be of
the form

<;‘ g) . with A € GL(n), C € GL(m), B € My,

where C([u,v]) = [Au, Av].
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Remark 2.3. The subgroup B < Aut(n) given by

o= {48 ) Bt 40

: A 0 3 At 0
is normal. Indeed, for ¢ = B ) Ve have o= = _Cc-1BA-l 1) Then, for any

_(tld, 0
b= < B tQIdm>’We have

ho-l — A 0\ [tld, O A1 0
we =\p ¢)\ B 14, ) \-c'BA"! ¢!

t1d,, 0
- <((t—t2)Idm +C)BA™L 2 Idm> €b.

Remark 2.4. The factor group

Auti(n) = Aut(w)/5 = (“01 g) - A€SL(n), O((u,v]) = [Au, Av]}

, for u, v € n, is a subgroup complementary to the normal group B. Indeed, if b € B and
Y € Autg(n), then

tld, 0 \ (A 0\ _(tA 0
by = < B t21dm> <o c> - <BA t20> € Aut(n).

We will now define the semi-direct product B x Autg(n) by means of the action
p : Autgr(n) x B — B defined by p(,b) = ¢ (b), where

A 0\ (tld, 0 A7t 0 [ tld, 0
W’):(o C’)(B t?ldm>< 0 C—l)_<CBA—1 tQIdm>€B'

The product @ on Aut(n) = B x Autg(n) = (B x Autg(n), e) is now defined by:

(n1,¢1) ® (n2,¥2) = (n1th1(n2), 11h2) € B x Autg(n).
The next step is to show that the group

Aut(n) = { <6‘ Iiﬂ) - AeSLin)

is a normal subgroup of Autg (n). Recall that Aut’(n) acts on n by [Az, Ay] = [z,y] for
any z,y € v. We have that, for any 1/ € Autg(n) and ¢ € Aut’(n),

A A A AA A
et = <0 g) <o1 1£m> ( 0 CO—1> = < 0 1§m> € Aut’(u)

Thus the quotient group Autg, (n)/ Aut’(n) is isomorphic to the group
C(n) ={C € GL(m) | Cz,y] = [A'z, A'y] for some A" € SL(n)}.

Knowing C(n) we can write Autg (n) = Aut’(n) x C(n). We define the action of C'(n) on
Aut®(n) by v(c,a) = c¢(a), where ¢ € C(n), a € Aut’(n), and

A0\ /(A 0 A= 0 ATAATL 0
C<“)_<o C) <o Idm>( 0 Cl>_< 0 Idm>€AutO(“)'



The product e on Autg (n) = Aut®(n) x C(n) is now defined by
(a1,¢1) @ (a2, ¢2) = (arc(as), crca) € Aut®(n) x C(n).

In particular, we have a decomposition of Aut(n) which focuses on the normal subgroup
Aut®(n). This implies that if we find a way to describe C(n), then Aut’(n) will be the only
unknown component of the automorphism group of a two-step nilpotent Lie algebra.

2.2 Pseudo H-type Lie algebras

We will now introduce pseudo H-type Lie algebras and study the structure of their au-
tomorphisms. These algebras are two-step nilpotent and will hence satisfy the conditions
depicted in the previous section. Moreover, we will describe an ulterior property satisfied
by pseudo H-type Lie algebras, which will be the tool we will use in order to classify
Aut®(n).

Definition 2.5. Let n be a (real) two-step nilpotent Lie algebra endowed with a scalar
product (—,—). Assume that the restriction (—, —); of the scalar product to the centre 3
of n is not degenerate; this is equivalent to say that n = 3 ® V, where V = 3. We define,
for all Z € 3, amap Jz : V — V via the condition

(JzX,Y)=(Z,[X,Y]) (2.1)
forall X,Y e V.
Remark 2.6. J; is a skew-adjoint operator. In fact
(J7X,Y) = (Z,[X,Y]) = —(Z, [V, X]) = —(J5Y, X) = —(X, J5Y).
Definition 2.7. We call n a pseudo H-type Lie algebra if
(JzX,JzX)=(Z,Z)(X,X) (2.2)

for all Z € 3, X € V. In particular we say that n is a (r,s)-H-type algebra, or a
(r, s)-algebra, if (—, —); has signature (r,s). We reserve the notation n™* for a generic
(r, s)-algebra.

Remark 2.8. By polarization, if n is a pseudo H-type Lie algebra, then the following
equalities hold:

(JzX,Jp X)) =(Z,72"){X, X), (JzX,Jz X" ={(Z,Z)(X, X").
From (2.2) and Remark 2.6 we also get
J2 =—(Z,Z)1dy . (2.3)
Proposition 2.9. Any two of the following three statements imply the other one:
1) (12X, J2X) = (2, 2)(X, X),

2) (JzX,Y) = —(X,JzY),
8) Ji=—(Z,Z)1dy.



Proof. First, we will prove that (1) and (2) imply (3). This follows from:
(Z, ZMX, X) = (Jz X, JzX) = —{(JzJz X, X) = —(J2X, X).
Then, we will prove that (2) and (3) imply (1). This follows from:

(JzX,J2X) = =(JzJ2X,X) = —(J3X, X) = —(—||Z|’X, X) =
= 1ZIP(X, X) = (2, Z)(X, X).

Lastly, we prove that (1) and (3) imply (2). We see that
(J3X,X) = (JzX,J; X),
but also
(23X, X) = (|| ZIPX, X) = —{Z, Z2)(X, X) = —(JzX, J7X) = (J;X, ~J;X).
Therefore, Jg =—-Jz. O

We will now study the structure of the group of automorphisms of pseudo H-type Lie
algebras. We already have some results for the general two-step nilpotent Lie algebras, as
described in the previous section. The extra condition (2.2) on pseudo H-type Lie algebras
will provide us with a tool used in the classification of Aut(n); in particular, as we have
seen in the previous section, we are mainly interested in the subgroup Aut’(n) < Aut(n).

What follows in this section is an adaptation of [FM17]. This paper deals with the
isomorphisms of pseudo H-type Lie algebras and many results can be adapted to fit the
study of the groups of automorphisms.

Theorem 2.10. Let & : n™*(V) — n"(V) be an automorphism of pseudo H-type Lie
algebras. Then ® is of the form

A 0 T, r,5
<I>_<B C> VAR - VaR, (2.4)

where A 'V =V and C : R™® — R"™® are linear bijective maps satisfying the relation
AT JzA = Jcr () for all Z € R™.

Moreover, there is no condition on B :'V — R™. Finally, if |det(AAT)| = 1, then
CCT ==+1d ifr =5 and CCT =1d if r # s.

Proof. 1If a Lie Algebra automorphism ® : n™*(V) — n™*(V) exists, then it must be in
the form (2.4), since it maps the centre to the centre. By the definition of Lie bracket we
obtain:

(ATJZA(X),Y)y = (JZA(X), AY))v = (Z,[AX), A(Y))rrs = (Z,C([X,Y]))mrs
= (CT(2),[X,Y))rre = (Jor (X, Y)v

for all X, Y € V, for all Z € R™*. Hence, ATJ;A = Jor (z)-
Conversely, if we know that ATJ;A = Jor(z) holds, by the previous calculations we can
obtain [A(X), A(Y)] = C([X,Y]), so ® = A® C is a Lie algebra automorphism.
Let us now consider a Lie algebra automorphism ® : n™*(V) — n™*(V) in the form (2.4).
Then

(AT JzA)? = J2r, = —(CT(2),C7(Z))rrs



Hence, assuming dim(V') = 2N, we have:
det((ATJ7A)2) = (det(AAT))X(Z, Z)2Y. = (CT(2),CT(2))2Y.

Now assume 7 # s. Then the map CT : R™* — R"™* preserves the sign. This means that
| det(AAT)|N (Z, Z)prs = (CT(Z),CT(Z))pre = (CCT(Z), Z)prs

Under the assumption that | det(AAT)| = 1, we then obtain CCT =1d.
Assume now r = s. Then the map C7 : R™ — R™* may preserve or reverse the sign. This
means that

| det(AAT)|N (Z, Z)grs = £(CT(Z),CT(Z))grs = £(CCT(Z), Z)grs
Again assuming that | det(AAT)| = 1, we obtain, in this case, that CCT = +1d. O

Remark 2.11. The assumption |det(AAT)| = 1 in Theorem 2.10 is a rephrasing of the
fact that A € SL(n).

What emerges from this proof is the condition A7 J;A = Jco(z), which characterizes
the automorphism groups of pseudo H-type Lie algebras. This condition will be heavily
employed during the classification of Aut®(n).

Remark 2.12. It has been proven in [FM17] that, when studying these groups of automor-
phisms, one can assume that the condition C*'C = Id holds not only when r # s (mod 4),
but also when r = s # 3 (mod 4). As we will see, n®? and n™7 have isomorphic groups of au-
tomorphisms. This implies that the only case that we need to study for which CTC = —1d
is the case n33.

2.2.1 The subgroup C(n)

Now we want describe the group C(n); after doing so, we will be able to focus on the
subgroup Aut’(n). We denote the group C(n) by Cliff(n, 5(V)). The map

R™ 3z -2 R CCl,

can be extended to the Clifford algebra automorphism « : Cl, s — Cl, s by the universal
property of Clifford algebras. We denote by Clrfs the group of invertible elements in Cl, ,
and in particular R™** = {v € R™® | (v,v), s # 0}. The representation

Ad: R™** — End(R"™)
is defined as

<Z, U>r,s
<U7 U>r,s

:AHU(Z) = wZv = (Z -2 v) eR™ for Z e R v e R,

The map &1@ : R™ — R™® is the reflection of the vector z € R™® with respect to the
hyperplane orthogonal to the vector v € R™®. This extends to the so-called twisted
adjoint representation Ad : CI; — GL(Cl,) by setting

CITX’S S K&W Avd(p(z) =a(p)zp™t, z€ Clys. (2.5)



The map K(/iv for v € R™**, leaving the space R"* C Cl, s invariant, is also an isometry:
indeed, (Ady(Z),Ady(Z))rs = (Z,Z),s. Moreover, the properties to preserve the space
R™* and the bilinear symmetric form (—, —), ; are fulfilled for the group

P(Rr’s) = {’01 Vg € Cl;fs | <’UZ‘,’UZ‘>7,75 75 O}
Note that (A\(/:qu)T = ELP. The subgroups of P(R™) C CI%; defined by

Pin(r,s) = {v1---v; € Clés (vi, vi)rs = £1},
Spin(r,s) = {vy---vx € Cl§5 | k is even, (vj,v;)rs = £1},

are called pin and spin groups, respectively. More information about the twisted adjoint
representation and the groups Pin and Spin can be found in [LMB89].

Proposition 2.13. [LM89] The maps
Ad: Pin(r,s) = O(r,s) and Ad: Spin(r, s) — SO(r, s)
are the double covering maps.
We make the identification Spin(r) x Pin(s) = Spin(r,0) x Pin(0, s) C Pin(r, s).

Proposition 2.14. Let J: Cl, s — End(U) be a Clifford algebra representation and ¢ €
Spin(r) x Pin(s). Then J,-1 @ (Ady)" € Auty(n.s(U)). The group homomorphism

A:  Spin(r) x Pin(s) — Autg,(n,5(U)),

%) = Joo1 @ (Ady)T
1s injective and the diagram

0 —— Aut'(n,o(U)) ——  Autg(ns(U) 2225 O(r,s)

T Al |- (2.6)
0 — Lo —— Spin(r) x Pin(s) & O(r, s)
is commutative. The kernel Aut®(n, s(U)) consists of automorphisms of the form A @ Id.
Proof. By the definition of the twisted adjoint representation, we have

Ja(gp)Jsz—l = Jﬂiw(z)’ z € RMX,

If we show that J,(,) = Jg,l, or equivalently J,,-1) = Jg for ¢ € Pin(r, s), then it will

~ T
imply that J,-1 ® (Ad,) € Autg,(n™*) due to the relation ATJ,A = Jor (.-
If v € R™** is such that (v,v), s = —1, then
‘]311 = ‘]1? =—Jy= Ja(v)a
and hence J,—1 @ (A\aU)T € Autg,(n™*(V)). If instead v is such that (v,v),s =1, then

Jg—l = JTU =Jy 7& Ja(v)7



and therefore the map .J,—1 & (Ad,)” does not belong to Autg, (n™*(V)). If ¢ = vivy with
(vi, vi)p,s = £1, i = 1,2, then

J(v1v2)71 = Jv2”U1 = ‘]T

a(viva)®

This implies that J(;,,,,)-1 © (Ady,0,)T € Autg,(n™*(V)).
In general, if ¢ = x1-- 29, - y1---yq € Pin(r,s) with (x;,2;)rs = 1,7 = 1,...,2p, and
(Yj,yj)rs = —1,7=1,...,q, then we obtain

T T 2
(Joraspyiyg)-1) = Tygranaop—a1) = ()P ay gy = Ja(arazpyroyg): D

Remark 2.15. Let G be a group with a normal subgroup N and a subgroup H, such that
every element g € G can be written uniquely in the form ¢ = nh where n € N and h € H.
Let ¢ : H — Aut(N) be the homomorphism h + ¢y, defined by ¢p,(n) = hnh~! for all
n € N, h € H. Then G is isomorphic to the semidirect product N x pH; and applying
the isomorphism to the product nh gives the tuple (n,h). In G, we have

(n1h1)(n2h2) = nihing (hl_lhl)hg = (nlgohl (ng)) (hlhg) = (n1,h1) ® (n2, he)

which shows that the map above is indeed an isomorphism and also explains the definition
of the multiplication in N x ¢H.

Recall a version of the splitting lemma for groups. It states that a group G is isomorphic
to a semidirect product of the two groups N and H if and only if there exists a short exact
sequence

b, oo,y (2.7)

and a group homomorphism v : H — G such that ay = Idg. In this case, the map
¢ : H— Aut(N) is given by ¢(h) = ¢, where

0 N

en(n) =B~ (v(h)B(n)y(h™1).

2.2.2 Commutation of J,

In the proof of Theorem 2.10 we have seen that the groups of automorphisms of pseudo
H-type Lie algebras are defined by the condition ATJ;A = Jo(z)- This equation is used
in the following lemma to obtain other relations between the matrix A and products of
operators Jz,.

Lemma 2.16. Let {Z;}/17 be an orthogonal basis of R™* withr # s orr = s # 3 (mod 4),
and let

P=AC : VR VR

be an automorphism of Lie algebras (as in Theorem 2.10). The following relations hold:
o If p=2m, m €N, then

p p p p
AT 7z =[] Ve A AT 7z =[] Jerz) A" (2.8)
Jj=1 Jj=1 j=1 j=1

P P P P
ATA] 7z, =[] 72,A" A, AAT [T Jeczy) = T Iz AAT (2.9)
j=1 j=1

j=1 j=1



o Ifp=2m+1, meN, then

p p p p
AT 72, A" = T] Joez,), AT 7zA=]]Vorz)y (210
J=1 J=1 j=1 j=1
p P p P
ATAT] Tz, A"A=T] Tz, AAT [ 77, AAT = T 77, (2.11)
j=1 j=1 j=1 j

Proof. We only prove the equalities on the right, since one can obtain the ones from the
left by transposition. We will start by proving (2.10) and (2.8).
Firstly, observe that (2.10) for m = 0 is ATJzA = Jor(z), which holds because of
Theorem 2.10. We will prove that (2.10) for m = 0 implies (2.8) for m = 1.
ATJZ1J22 = ATJZIAA_IJZ2 = JCT(Zl)A_1J22 =
JCT(ZI)A_IJZQ(AT)_IAT = JCT(Z1)JCT(ZQ)AT7

where the second-last equality comes from the following observation:

1 -1
A_IJZ(AT)_I - (ATngA)_l - < <Z?Z>ATJZA> - <<Z,1Z>JCT(Z)>
1
- ~(0.2)(~ ez emizy o) = Jerie

for all Z, since

(C"(2),c"(2)) = (€C"(2),2) = (2, Z).
We will now prove that (2.8) for m = 1 and (2.10) for m = 0 imply (2.10) for m = 1.

ATJZ1JZ2J23A - JCT(Z1)JCT(Z2)AT - JCT(Zl)JCT(Zz)JCT(Zg)'
In general, if (2.10) holds for m > 1, then (2.8) holds for m + 1:

2m+1 2m+1
AT T 72,9200 = AT [[ T2,447 I 21
Jj=1 Jj=1
2m—+1 m+1
= [ Jorz)A " za (A7) 1 AT = H Jz, AT
7j=1

Moreover, if (2.8) holds for m > 2, then (2.10) holds for m as well:

2m—+2 2m—+2
T
AT T 72,9 20m5A = [ Jorz) AT Tzam s A
Jj=1 Jj=1
2m+2 2m+3

H JCT JCT(Z2m+3 H JCT(ZJ)

we have hence proven (2.8) and (2.10) for every m.
We can now prove (2.9) for any m using both the equations in (2.8):

ATAHJZ_A HJCZ)A HJCTC GATA = HJZATA

Jj=1 Jj=1 Jj=1 Jj=1



Lastly, we prove (2.11) for any m using both equations in (2.10):

2m+1 2m+1 2m+1 2m+1 2m+1

T T T
ATA T 7,47 A= AT 1] JepA= 11 Jowzy = 11 Jerew) = 11 72
j=1 j=1 j=1 j=1 Jj=1

O

Remark 2.17. If we restrict to the subgroup of automorphisms that act trivially on the
centre, i.e. if we consider Aut’(n) where C' = Id, then we have three interesting results:

ATz A=z, AV J. Tz, 07 A = Jz,07,J2, Az, Jz, = Jz,Jz,A.

2.3 Admissible Clifford modules

We will now describe a way to construct pseudo H-type Lie algebras from a Clifford algebra.
We will start by giving the definition of an admissible module of a Clifford algebra; we will
then follow [Cia00] and show that there is a one-to-one correspondence between pseudo
H-type Lie algebras and admissible modules of Clifford algebras.

Definition 2.18. An n-ary quadratic form over a field F is a homogeneous polynomial
of degree 2 in n variables with coefficients in [F:

n n

q(l‘l,...,l'n) = Zzaijl‘il’j, Qij eF.

i=1 j=1

Remark 2.19. Any bilinear form has an associated quadratic form. In particular, if we
consider the scalar product, the associated quadratic form is ¢(v) = (v, v).

Definition 2.20. Let v be a vector space over the field F and let ¢ be a quadratic form
on v. The Clifford algebra Cl(v, q) associated to v and ¢ is an associative algebra with
unit 1 defined as follows. Consider the tensor algebra T(v) := > 2 @" v of b. We define
I,(v) to be the ideal in T(v) generated by all the elements of the form v ® v + ¢(v)1 for
v € v. Then Cl(v, ¢) := T(v)/1I,(v).

Remark 2.21. We denote with Cl(r, s) the Clifford algebra built on v = R"** associated
to a scalar product with signature (7, s). An orthogonal basis {Z1, ..., Z,4s} of normalized
vectors of R""# is called a set of Clifford generators of Cl(r, s). They satisfy the relations
described in (1.1), which are called fundamental relations of Cl(r,s).

Remark 2.22. It is known ([LM89] and [ABS64]) that the Clifford algebras of the form
Cl(r, s) are periodic, in the following sense:

Cl(r,s + 8) ~ Cl(r, s) ® R(16)
Cl(r + 8, s) ~ Cl(r, s) ® R(16)
Cl(r+4,s+4) ~ Cl(r,s) @ R(16)

where R(16) represents the matrices 16 x 16 with real entries. This property made it
possible (see for example [LM89]) to classify all the Clifford algebras of the form Cl(r,s).

Definition 2.23. Given a Clifford algebra Cl(r, s), we define a Cl(r, s)-module as a vector
space vy which is the carrier space for a representation J : v — J, of Cl(r, s).



Definition 2.24. Given a Cl(r, s)-module V" and a scalar product (—, —)y on V', we call
the pair (V, (—, —)v) an admissible (r, s)-module if the operators Jz are skew-adjoint
for all Z € 3, i.e., if

(JzX,Y)y = —(X,JzY)y. (2.12)

In [Cia00] there is a proof of the following lemma.

Lemma 2.25. Let 3 be a real vector space of dimension k endowed with a scalar product
(—,—); of signature (r,s) with r +s=mn and let V be a Cl(r, s)-module. Then the algebra
n=3®V is a pseudo H-type Lie algebra if and only if there exists a scalar product
—,—) : V. xV = R such that (V, (—,—)v) is admissible.

We now state the theorem by P. Ciatti which proves that, for any two integers r, s
and for any Cl(r, s)-module V, at least one between V and V & V can be endowed with
a scalar product which satisfies (2.12). We remark that Ciatti in [Cia00] uses a slightly
different notation from ours.

Theorem 2.26. For all (r,s) there exists at least one admissible Cl(r, s)-module.

In particular, P. Ciatti finds an admissible module (V,(—,—)) for the cases r =
3 (mod 4) and for the cases s = 0 (mod 4); for all the other cases he constructs an admis-
sible module over V @ V. This result does not exclude a priori the existence of admissible
modules V' where the existence is verified by V & V.

Remark 2.27. From now on, we will only consider the minimal admissible modules. In
general the classification will depend on the dimension on the module.

So far we have followed [Cia00]; a result by I. Markina and K. Furutani gives us more
information about admissible modules; this will depend on the value of r — s.

Definition 2.28. Let us consider an orthonormal basis {Z1,...,Z,4+5} of R™* and let

Jzy...,Jz,., be the corresponding representation maps. We define the volume form

r4s

Qns = H Zi.
i=1

In the case r —s = 3 (mod 4), the volume form is such that Jgr.s)2 = Id. This implies
the existence of two non-equivalent irreducible modules V' and V ~, on which the volume
form acts respectively as Id and — Id . If neither of them is admissible, then the direct sum
of two of them is. We can hence summarize the possible structures of minimal admissible
modules for every case [FM17]:

r—s# 3 (mod 4) r—s =23 (mod 4)
any s s is even s is even s is odd
VoVeV Vtor V- | VTaVTior V-V |[VIaV™

2.3.1 Block structure of an admissible module

As r and s increase, the dimension of the minimal admissible modules gets larger and
larger, and so the computations necessary for the classification of Aut’(n) will become
more challenging. In particular, the cases we need to study would have a dimension ranging
between 2 and 64. We will prove that it is enough to consider only one part (a “block”) of



the admissible module in order to classify Aut®(n). We will explain how a module can be
divided into blocks and what these blocks represent. The following results will not apply
to the case n®3; in fact, as we have seen in Remark 2.12, in this case the matrix C' does
not satisfy CTC = Id, and only consider the cases where this condition holds. In the case
n33 the condition satisfied by C is CTC = —1d, and thus we need to treat it separately.

What follows is an adaptation of [FM17]. As in Section 2.2, the original results refer
to isomorphism groups, while here they are adapted to the automorphism groups.

Definition 2.29. We define involution a linear map P : V — V such that P2 =1d. In
particular we will consider involutions that are a product of a number of linear operators J;.
We will denote with E¥ with k& € {—1, 1} the eigenspace of P, according to the eigenvalue.

Remark 2.30. By Lemma 2.16, we can observe that involutions that are a product of
four elements will commute with the matrix A € Aut®(n).

The following is a corollary of Lemma 2.16.

Corollary 2.31. Let r # s orr = s # 3 (mod 4), and let ® = A®1d,, : n"° — n"*. Let
Pj for j =1,...,N be mutually commuting isometric involutions on V"* obtained by the
product of some J;’s. Then the map A can be written as A = @ Ar where Ay : El - FI
for any choice of I = (k1,...,kn), ki € {1} for all . Moreover,

2m 2m
A7 =] %A
i=1 i=1

2m+1 2m+1 (2.13)
A I 7= [T #AaD™
i=1 =1
Theorem 2.32. Let Pj, j = 1,..., N be mutually commuting isometric involutions on

Vs obtained by the product of some J;’s. Let E' := ﬂ;vzl E}Dj. We assume there exists

G1 : EY = E! for all multi-indices I written as Gy = [17i. We also assume that there
exists Ay : E' — E' satisfying (2.13). Then there exists a map A : V™5 — V™ such that
A®Id, : n™% —=n"% is a Lie algebra automorphism.

Proof. We define the maps A; : ET — E! by:

A JGnar HWrarl it Gp =122
"Gt it Gy =T= 2mJ

Then we can write the adjoint maps as

qr_ Gy hart it ap=T1P=rm
GrATaY it Gr =115 2m

We set A := @ A;. We need to check the condition AJ;AT = J; for any Z; in the
orthonormal basis for R™*.

One can observe that the spaces E! are mutually orthogonal; in fact, if Pj(X) = X and
P;(Y) = =Y for some isometry Pj, then

<X7 _Y>V’VS = <Pj(X)7Pj(Y)>V“S = <X7 Y)VTvS-



This implies that (X, Y)yrs = 0. Thus V"* = @ E!, where the direct sums are orthogonal.
The maps Gy are invertible and

D
ot = ([ = (-0 [z =) HJp .
=1

=1

From Lemma 2.16 we know that the following relationships hold:

2m+1 2m+1 2m+1 2m+1
)T H J AT = H Ji, A ] 74T = H J; (2.14)
2m 2m Z2m1
AT 7AT =] 7 A [ 7AT = HJi (2.15)
=1 =1 =1 =1

For arbitrary J;, and Y € V"%, we can write Y = @ Y; with Y; € E. For the multi-index
I we find a multi-index K such that Gl}l JiyG1 leaves invariant the space E'. Since G
and G can be product of an even or an odd number of J;’s, we consider the different
cases:

AJioATyI - AKJ]OA?Y[ =
Cr(ATY)T G GIAT G Y i G =2 ), G = 1—[2k+1

GrA1G T, GrAT Gy Yy it Gr=T1"""0, Gr =117
Cr(ATHTG A T, GIATGTYy it Gy =112 i, Gr =117
Gr MG i, GrAT G Y, if Gr=1I2"J, G =[[*J

which we get by the definition of A; and AT. Counting the elements .J; in every product
G JiyG1, we can apply the formulas in (2.14) and (2.15) to obtain:

AT ATY; =
GG T, GGy it Gr=T1""" g, G =112 )
GG, GGy it G =T g, G =117, 7,
GG, GrGT Yy it Gr =T 0, Gr =112,
GG T, GiGTYy it Gr=T12" 7, Gk =117

Thus AJ;,ATYr = J;, Y7 O

2.3.2 The group Aut’(n™?)

The pseudo H-type Lie algebras with positive definite scalar product have already been
studied, in particular by L. Saal [Saa96]. These Lie algebras have already been classi-
fied, and here we provide the proposition which summarizes this classification. The first
proposition is a general result, while the corollary is its restriction to minimal admissible
modules, which is the case we will focus on.

Proposition 2.33. Let n™0 = R™Y @ V be an algebra of H-type, let dimg(V) = n. Then



Aut®(n"0) is isomorphic to

Sp(n - 2_(%),1@ if r =1 (mod 8)
Sp(n - 2_(%2), C) if r =2 (mod 8)
U(ny - 27(%1) n_y- 27(%1),11%1) if r =3 (mod 8)
GL(n -2~ (5 , H) if r =4 (mod 8)
SO*(2n - 2 21)) if r =5 (mod 8)
O(n-2-3) C) if r =6 (mod 8)
O(ny -2~z Dong - 2_(751),]1%) if r="T (mod 8)
GL(n-2"(3) R) if r =0 (mod 8)

where n1 and n_1 = n — ny are the dimensions of the eigenspaces of V' with respect to
00 and SO*(21) := GL(I,H) N O(2l,C).

Corollary 2.34. If we assume V' to be of minimal dimension, we have:

Sp(L,R)  ifr=1 (mod 8
Sp(1,C)  ifr=2 (mod 8
U(1,0,H) ifr =3 (mod8
GL(1,H) ifr=4 (mod8
SO*(2) if r =5 (mod 8
0(1,C) if r =6 (mod 8
O(1,0,R) ifr=7 (mod 8
|GL(L,R) ifr =0 (mod 8

)
)
)
)
)
)
)
)






Chapter 3

Classification of Auto(ur>s)

In this chapter we will classify the automorphism groups of pseudo H-type Lie algebras.
Because of the periodicity of Clifford algebras described in Remark 2.22, we will only need
to study the cases n™*® for r, s corresponding to the non-empty cells in this table:

=N |00

O FIN| W | OO 00| w»
DO | | CO| | CO| | D[ —

o
— | ro| | | oo| | oo | i
|

vof| | oo | | ro| x| x| 00
col| | oo i

| | oo| | po| —

o] x| oo | i~

ol ro| x| x| 00
)~ o | oo

[ 4]

Table 3.1

( 8 |r

The number written in every position is the dimension of the minimal admissible module of
n™* or, if the pseudo H-type Lie algebra admits mutually commuting isometric involutions,
the dimension of its minimal eigenspace. The cases coloured in blue are the ones which
admit an involution which is a product of three linear operators.

For the cases that admit one or more involutions, we will consider only the first common
eigenspace as in Theorem 2.32, since by that theorem we know that this is enough to
provide a structure of the entirety of Aut’(n). The first eigenspace will be one-, two-,
four- or eight-dimensional; we will study these four cases separately. Some of them will
yield the same group Aut”n, even though the starting pseudo H-type Lie algebras are not
isomorphic; these cases will be treated together.

We will make extensive use of the following lemmas.

Lemma 3.1. Consider three operators J;, Ji and J; and assume they satisfy the conditions
AJiJk = JiJkA and ATJZA = Jl. Then ATJiJleA = JiJle.

Proof. We have the chain of implications:

ATJlA = Jl = ATJZAJZ‘Jk = JIJZ‘J]C = ATJZJZ‘JkA = JlJiJk = ATJiJleA = JZ‘J]CJI.

35
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Lemma 3.2. Let Q, be the matrixz as in the definition of the symplectic group of degree
2n and let o, be the matriz as in the definition of the group T of degree n (as in Definition

1.7). Consider the matriz
_(1d, 0
T=\o -1d,)°
Then n-Q, = —oy, and n - oy = =K, (by computation). O

The main tool employed in our analysis is the knowledge of a basis for each admissible
module of n™® and the subdivision of such bases in common eigenspaces. This data, the
collection of which represents an important part of this thesis, is presented in the tables
in Appendix A. In the same tables, all the involutions of each admissible module of a
pseudo H-type Lie algebra are also listed. We notice that the metric of every first common
eigenspace can either be neutral or sign definite.

The techniques we adopted in order to gather the data included in those tables are ex-
plained in Appendix A.

As shown in Table 3.1, we reduce our analysis to the study of n x n real matrices, with
n =1, 2, 4, 8. The linear operators .J; that we will encounter will be represented as real
matrices of the appropriate dimension. The isomorphisms presented in Section 1.2 will
further reduce these cases to the study of matrices of lower dimensions in other fields
(such as C and H).

Remark 3.3. As we can see from Table 3.1, many admissible modules (marked in blue)
admit involutions which are a product of three linear operators. These involutions do not
satisfy the conditions of Theorem 2.32, so we will not consider them when subdividing
the modules into common eigenspaces. Nevertheless, it follows from Lemma 2.16 that any
involution P which is a product of three J;’s satisfies ATPA = P.

Proposition 3.4. Let E be a common eigenspace of mutually commuting isometric invo-
lutions and let A : E — E be as in Theorem 2.32 (hence we know that A is an invertible
real matriz). Let P be an involution which is a product of three linear operators. Then, the
condition ATPA = P implies ATA =1d.

Proof. Let us first observe that the condition AT PA(x) = P(x) for every z € E is equiv-
alent to the condition AT PA = P as matrices, by the definition of a linear operator. We
want to prove that AT A = Id. Observe that P, being an involution, divides the space into
two eigenspaces, E+ and E~, on which it acts respectively as Id and — Id.

The claim is proved by contradiction. Assume first that there exists xg € E such that

AT Azg =y # xo with y # 0. (3.1)

First, assume zg € E1. Let y € E; for every € ET, the relation ATPAx = Pz = x
holds; Hence ATPA = Id holds on ET. Multiplying on both sides by A”, we obtain
ATPAAT = AT, Hence ATPAATzq = AT 2, which implies, by (3.1):

AT Py = ATy, (3.2)

If y € ET, it follows that ATy = ATx. Since A is invertible, then A7 is as well, hence
we come to the contradiction y = xg. If instead y € E~, then the equation (3.2) becomes



— ATy = ATzy. Since AT is invertible, we obtain y = —z. But we are assuming =g € ET,
so —xg € ET. Since y € E~, also in this case we come to a contradiction.

Assume now that zq € E~. We can observe that AT PAx = Pz = —x for every x € E~.
Hence, ATPA = —1d on E~. We can multiply on the right both sides by A7 we obtain
ATPAAT = —AT. Then ATPAATxy = — ATz, which implies, by (3.1):

ATpPy = — ATy, (3.3)

If y € E-, then —ATy = —ATz. Since A is invertible, then A” is as well, hence we come
to the contradiction —y = —xzg, i.e. y = xo. If instead y € ET, then the equation (3.3)
becomes ATy = —ATx(. Since AT is invertible, we obtain y = —zg. But we are assuming

x9 € E~, s0o —x9 € E~. Since y € ET, we come to a contradiction.
O

Remark 3.5. Let P be an involution which is a product of three operators, and let F
be the first common eigenspace with respect to the involutions which are products of
four linear operators; if P has two non-trivial eigenspaces E+ and E~ on which it acts
respectively as Id and — Id, then, since P is a simmetric operator, we know that E* and
E~ are orthogonal. Moreover, Proposition 3.4 proves that A maps each eigenspace in itself,
ie. A: EY®E~ — ET ® E~. Hence, if ET and E~ are isomorphic to GL(n,F) with n
F fields, then A represents the orthogonal matrices over F. In particular, if the metric is
sign definite we conclude that A € O(2n,F); if instead the metric is neutral, we conclude
that A € O(n,n,F).

One cannot conclude the same if one between £+ and E~ is trivial.

What follows is a table which summarizes the results obtained in this chapter.

8 | GL(1,R)

7| T2R) | Sp2C) | Sp(2H) | Sp'(2H)

6 | GLF(2,C) | Sp(2,C) | GL(1,H) | GLL(1,H)

5 SpH) | Sp'2H) | Sp'2.0) | SR

4| GL(1,H) | GLL(1,H) | 0O(1,0C) O(1,R) | GL(1,R)

3| T(@2H) | Sp (2,SH) | GLL(1,SH) T(2,R) Sp(2,C) | Sp(2,H) | Sp'(2,H)

2| sp(2,€) | GL:E(1,SH) | GL(1,H) | GLL(1,SH) | GL#(2,C) | Sp (2,C) | GL(1,H) | GL(1,H)

1| Sp(2,R) | Sp(2,SC) | Sp(2,SH) | Sp'(2,H) | Sp(2,H) | Sp'(2,H) | Sp"(2,C) | Sp*(2,R)

0 Sp(2,R) Sp(2,C) U(1,H) | GL(1,H) | GLL(1,H) | O(1,C) | O(1,R) | GL(1,R)
[ 0o ] 1 2 3 I 5 | 6 ] 7 8

In the table we have used the following notation. Given G a group, we define:
- G*(2n,F) := G(2n,F) N {A € GL(2n,F) | AlnA = n}.

- G3/(n,F) := G(n,F')N{A € GL(2n,F) | A'nA = n}, for F, F’ different fields.

- GT(2n,F) := G(2n,F) N {A € GL(2n,F) | AtnA = n}.

- GITF/ (n,F) := G(n,F) N {A € GL(2n,F') | AlnA = n}, for F, I different fields.

- GL#(2,C) := GL(2,C) N T(4,R).
- We denote denote with the color red all the cases where the first common eigenspace
(or the module itself if there is no division in eigenspaces) has a sign definite metric.

3.1 One-dimensional common eigenspaces

As we can see from Table 3.1, there are only five one-dimensional cases. In particular,

n30

and n%8 are isomorphic pseudo H-type Lie algebras, so we expect their respective




Aut®(n)’s to be isomorphic. It turns out that also n** has the same Aut®(n).

The other two cells in the table correspond to n”Y and n®%, which satisfy r—s = 3 (mod 4).
Hence, both cases admit two non-equivalent irreducible admissible modules V* and V—;
they will turn out to have the same Aut®(n).

M»-POO»POO»P[\D@

ORI W[ |w

W
2
4
8
4
4

o | | ] ool i | oo x|
vof| i (ool x| x| o | | x| 00
o] i | oo | >
ol ro | x| | oo

8
Ollo
7

( 8 |r

o
—
—

[ 4] [

Table 3.1, one-dimensional cases circled.

3.1.1 Cases n”™Y and n®*

The minimal admissible modules of n” and n®? have a very similar structure. Indeed, they
both admit four different involutions, three of which are products of four linear operators,
while the last one is the product of three linear operators (see Subsections A.1.1, A.1.2).
The first three involutions, named P;, P, and P3, divide the admissible module into one-
dimensional blocks, while the fourth one, named Py, has a different role. We know, in fact,
that in the case r — s = 3 (mod 4) the pseudo H-type Lie algebra has two non-equivalent
minimal admissible modules, on which the volume form acts as Id or — Id. The involution
Py acts differently on the two admissible modules, which we call V™ and V.
We will analyse the case n”’, as the case n®* is analogous, and we will prove that
Aut’(n) = O(1,R).

First we will show that Aut®(n) € O(1,R). Consider an element v such that (v,v) = 1
and belonging to the first block in V. Then we have the following chain of implications:

Q=v=> J1Jo I3y 5 JeJv = v = J5JgJ7 1o 340 = v = J5JgJrv = v
= J2J2T5JsJrv = v = —J1JoJr 1 JodsJgv = v = —Jy JoJrv = v
= Pyv = —v.

Similarly, if we choose an element w in the first block of V' ~, we can obtain that Pyw = w.
We will proceed to study V. Following the tables in Subsections A.1.1, A.1.2, we can
construct the basis of VT:

{v, J7v, Jgv, Jsv, Jyv, Jsv, Jov, Jiv}

Since we managed to divide the admissible module into one-dimensional blocks, we know
that A € GL(1,R). We can use the involution P to obtain more information. In fact, by
Lemma 2.16, we have that AT PyA = P;. We are currently considering the module VT, on
which Py acts as — Id . Hence we obtain —AT A = — Id, which implies that AT A = Id. This



implies that A € O(1,R), so, in particular, A € {£1}. This result is not in contradiction
with the one provided by Saal (Corollary 2.34): indeed, we have proven in Remark 1.9
that O(1,0,R) ~ O(1,R). Hence, Aut’(n) = O(1,R).

Note that, even though the admissible module of C1*># has a neutral metric, the first block
has a definite positive metric, so one can apply exactly the same computations as the ones
for the case n"Y.

We now want to prove that O(1,R) C Aut®(n). Let M € O(1,R), so M € {+1}. We
need to check that it satisfies the condition M7 .J; JoJ- M = J1JoJ7, where JiJoJ; acts as
—1Id. In particular, we obtain the condition M7T Id M = Id, but since M is a real number,
its transpose is simply M itself and it also commutes with any matrix. Hence, we obtain
MM =1d. Now since M = {#1}, MM = 1, so the condition holds and O(1,R) C Aut’(n).

We conclude that Aut®(n) = O(1,R) for the considered cases.

3.1.2 Cases n®°, n%® and n**

We already know that n®Y and n®® are isomorphic, so we can expect a similar behaviour
once we consider their automorphism groups; we will see that n** will also have the same
automorphism group, which we will prove to be isomorphic to GL(1,R).

From Subsections A.1.3, A.1.4 and A.1.5, we see that these three cases all have four invo-
lutions which are products of four linear operators. These involutions divide the admissible
module into one-dimensional blocks. We will study the case n®?, as the two other ones
will behave in the same way.

First, we will prove the inclusion Aut’(n) ¢ GL(1,R). As shown in the table in Sub-
section A.1.3, a basis for the first eigenspace is given by {v}, where v is an element in
the first eigespace such that (v,v) = 1. As there is no further condition on the basis, we
conclude that Aut’(n) C GL(1,R).

Proving the inclusion GL(1,R) C Aut®(n) is trivial: as an element in GL(1, R) is simply
a number in R*, it trivially acts as an automorphism on the first block.

We conclude that Aut’(n) = GL(1,R) for the considered cases.

3.2 Two-dimensional common eigenspaces

We identify in Table 3.1 eight two-dimensional cases. We will see that they can actually
be gathered in four different classes. Some of the results we obtained were expected — it
is known, for example, that n™% and n%! are isomorphic — while other ones are surprising.
As the dimension of the minimal admissible module of the common eigenspaces is 2, the
automorphism groups will be subgroups of GL(2,R) or GL(1,C).

3.2.1 Cases n'? and n%!

The pseudo H-type Lie algebras n'? and n®! are isomorphic, but we must study them
separately. In both cases we have a single linear operator J;. The admissible module is
two-dimensional, and in the tables in Subsections A.2.1 and A.2.2 we construct a basis
of it, given by {v, Jiv}. We will show that in both cases, the automorphism groups are
isomorphic to Sp(2,R).

First, we will prove the inclusion Aut’(n) C Sp(2,R). Since there is obviously no even
product of operators in the basis, we can say that A € GL(2,R). From the condition
AT J1 A = J1, we obtain that nA‘nJ1 A = Ji, and hence A'(nJ1)A = (n.J1).

In the case n'¥, we have that J12 = —1Id, so its matrix representation has the same form
as Q1. The condition AT J; A = J; resolves into A'Q A = Q, since the metric is definite
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positive. Hence, A € Sp(2,R).
In the case n%!, we have that J12 = Id, so its matrix representation is of the form as o7y.
In this case, though, the metric is neutral, so its matrix representation is

(1 0
=0 5)
By Lemma 3.2, 7-01 = —€;. So the condition AT .J; A = J; gives again A(—Q)A = —Qy,
so A'Q1A = Q). Hence A € Sp(2,R). So, in both the cases n’? and n%! we have that
Aut’(n) C Sp(2,R).

We will now prove the inclusion Sp(2,R) C Aut’(n). Let M € Sp(2,R); we need to
check if it satisfies the condition M*.J; M = J;, which in both cases becomes M*Q; M = O
because JZ = 4 1Id. This is also the necessary condition for M to be in Sp(2,R); hence,
the inclusion is trivially verified.

We conclude that Aut’(n) = Sp(2,R) for the considered cases.

3.2.2 Cases n%Y and n?*

The admissible modules of these two pseudo H-type Lie algebras admit three involutions
each; two of them are products of four operators, while the last one is a product of three
linear operators. The module has dimension 8, and can be divided in two-dimensional
blocks by the first two involutions. We will study the case n%, as the case n?>% is analogous.
We will in particular prove that Aut®(n) = O(1,C).

We start by proving Aut’(n) € O(1,C). In the tables in Subsection A.2.3 we have
constructed a basis for the minimal admissible module; in particular, a basis for the first
block is given by {v, J1Jov}. Note that (J;.J2)> = —Id, and can be described as a matrix
as 1. Moreover, JiJs is the product of two operators; hence, it commutes with the matrix
A. Tt is known that ; is a matrix representation for i; hence by Remark 1.11 it follows
that A € GL(1,C). We now need to consider the ulterior condition AT P3A = P3, given
by the involution Pj3, as described in Subsection A.2.3. By Proposition 3.4, this condition
implies AT A = Id. Note that P; divides the first common eigenspaces in two non-trivial
eigenspaces which are both isomorphic to GL(1,R); hence, because of Remark 3.5, we
obtain that A € O(2,R). We know that GL(1,C) N O(2,R) = O(1,C); hence,we have
proven Aut’(n) C O(1,C).



Note that also in this case, as in the case n®* studied above, the first eigenspace has a
definite positive metric even though the metric of the admissible module of n?# is neutral;
hence, the condition AT A = Id becomes A*A = Id in both n%° and n?%.

We now want to prove the inclusion O(1,C) € Aut’(n). We need to check that any
matrix A in O(1,C) commutes with J;.Jo and that AT A = Id. The first condition follows
from the fact that A is a complex matrix, and the matrix form of J;J5 is one of the
equivalent matrix form for i. The condition AT A = Id resolves into A*A = Id, which is
the defining condition of the group O(1,C); hence it is trivially satisfied.

We conclude that Aut®(n) = O(1, C) for the considered cases.

3.2.3 Cases n*” and n*?

The admissible modules of both n%7 and n*3 admit three involutions; all of them are
products of four linear operators. These three involutions subdivide the admissible module
in two-dimensional common eigenspaces. We can study n%7 and n*3 together because, as
one can see from the tables of Subsection A.2.5 and A.2.6, their bases coincide. We want
to prove that Aut®(n) = T(2,R).

We first prove the inclusion Aut®(n) C T(2,R). The basis of the first common eigenspace
constructed in the tables is given by {v, J;.JoJ7v}. Note that (J;.JoJ7)%2 = —Id, but since
this is the product of three operators, it does not commute with A. Hence, A € GL(2,R)
because of the dimension of the eigenspace. We need, moreover, to consider the relation
AT J1JaJ7 A = J1JoJ7, which implies nAtnJyJoJ; A = JyJoJ7, where 1 is the matrix repre-
sentation of the metric, and lastly becomes A!(nJyJ2J7)A = nJiJoJ7. In particular, since
(J1J2J7)? = —1d, its matrix representation is €2;. Note that the metric is neutral; hence,
by Lemma 3.1, we obtain 7 - Q; = —o;. We can hence conclude that A € T(2,R), so
Aut’(n) € T(2,R).

We now want to prove the inclusion T(2,R) C Aut®(n). Given a matrix M € T(2,R),
we want to prove that it satisfies the condition M*.J; JyJ7 M = J;JoJ7; by the construction
of J1JoJ7, we know that this condition is equivalent to ask Mfo1 M = o1, which is satisfied
by hypothesis.

We conclude that Aut’(n) = T(2,R) for the considered cases.

3.2.4 Cases n”! and n?°

The admissible module of n”! and n®° both admit four involutions, three of which are
a product of four J;’s, while the last one is a product of three operators. The first three
involutions divide the module into two-dimensional eigenspaces. We will only consider n”!,
as the two cases are analogous. We will prove that Aut’(n) = Sp(2,R) N O(1,1,R).

First, we prove the inclusion Aut’(n) C Sp(2,R) N O(1,1,R). As one can see from
the tables in Subsection A.2.7, a basis of the first common eigenspace of the minimal
admissible module of n™! is {v, Jsv}, with J2 = 1d. Since Jg is not a product of an even
number of operators, A does not commute with it; hence A € GL(2,R). We have two
more relations that we need to consider: first of all, the existence of an involution which
is a product of three operators implies the condition A7 A = Id by Proposition 3.4. Note
that since the metric of the first eigenspace is neutral, the condition becomes nAinA = Id,
which implies A‘nA = n; by definition, this means that A € O(1,1,R). Secondly, we have
the chain of implications:

AT JgA = Jg = nAlnJsA = J; = Al(nJs)A = nJg,



where 7 is the matrix representation of the metric. In this case the metric is neutral;
moreover, since J82 = Id, it is easy to see that its matrix representation is o;. Hence
by Lemma 3.1, n-J; = —€;. What we obtain is hence A*Q;A = Qp, which implies
A € Sp(2,R). We have hence proven Aut’(n) C Sp(2,R) N O(1,1,R) =: Sp*(2,R).

In order to conclude the proof, we need to show that Sp*(2, R) € Aut’(n). In particular
we want to show that any matrix M € Sp*(2,R) satisfies the conditions M7 M = Id and
M!Qy M = ;. As these are the defining conditions of Sp*(2,R), the inclusion is trivially
verified.

We conclude that Aut®(n) 2 Sp*(2,R) for the considered cases.

3.3 Four-dimensional common eigenspaces

As we can see from Table 3.1, most of the admissible modules are four-dimensional or
can be divided into eigenspaces of dimension 4. In this setting, we start encountering
groups constructed over quaternion numbers, but also split-quaternion and split-complex
numbers. Here we also start to use extensively the isomorphisms described in Section 1.2.
As usual, some of the results of our study are expected: for example, n>? and n%? are
isomorphic and share the same automorphism group. However, we also find isomorphic
automorphism groups for non-isomorphic pseudo H-type Lie algebras, as for example those
of n? and n?3. Moreover, we find pseudo H-type Lie algebras of different dimensions
which have the same automorphism groups, as for example n*? and n%?2; this happens
because their mutual commuting isometric involutions subdivide the admissible module
in eigenspaces of the same dimension.
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3.3.1 Cases n*Y and n%?2

We want to prove that if n = n?0 or n = n%2, then Aut®(n) = Sp(2,C). It is enough to
prove the statement for n = n>?; once we have done it, the proof for n = n%? will follow,
similarly to the cases treated in Section 3.2.1 for n®! and n'?.

We start by proving Aut(n) € Sp(2,C). In the tables in Subsection A.3.1 we have

constructed a basis for the admissibe module, given by {v, JoJiv, Jov, Jiv}. Note that the



matrix form of JyJp is

0 -1 0 0
10 0 O
0 0 0 -1
0 0 1 0

In particula,r J;.Jo is of the form I described in Proposition 1.12. Hence, since we need
to impose that A commutes with J;Js, we can apply the proposition; if we denote with
A the matrix A through the isomorphism (1.5), then A € GL(2,C). We can observe
that the matrix form of Jy is —Q € GL(4,R). The metric is positive definite, and g is
mapped via the isomorphism (1.5) into Q1 € GL(2,C). Hence, the condition AT.JoA = J,
becomes A A = Q; and we can conclude that A € Sp(2,C). We have then proven that
Aut®(n) C Sp(2,C).

In order to prove the inclusion Sp(2,C) C Aut® (n) it is enough to prove that a matrix
M € Sp(2,C) commutes with .J;.Jo and satisfies the condition M7*.J;M = J;. The first
condition follows from the fact that M has complex entries and the matrix form of J;.Js is
one of the equivalent matrix descriptions for . The second one follows from the fact that
Jo can be written as a matrix as € via the isomorphism (1.5), so the condition is trivially
satisfied.

We conclude that Aut®(n) 2 Sp(2,C) for the considered cases.

3.3.2 Case n'!

The admissible module of n!+! is four-dimensional and does not admit any involution. We
want to prove that Aut®(n) = Sp(2,SC).

Let us start by proving the inclusion Aut’(n) € Sp(2,SC). In the tables of Subsection
A.3.3 we have found a basis for the admissible module, given by {v, Jiv, Jov, J1 Jov},
where i* := JyJy satisfies i*2 = Id. Since i* is the product of two linear operators, A
must commute with it. In particular, one can see that the matrix form of ¢* is as in
I from Proposition 1.15; hence, because of the same theorem, the image of A via the
isomorphism (1.10), which we call A, belongs to GL(2,SC). Observe that the matrix form
of Jy is 02 € GL(4,R). Since the metric of the module is neutral, n - J; = Q2 € GL(4,R)
by Lemma 3.2; moreover,{)s is mapped to 1 € GL(2,C) via the isomorphism (1.10). The
condition AT.J; A = J; becomes hence A'QA = Qy; this implies that A € Sp(2,SC). We
can moreover observe that JiJs-.J; = —Js, hence, by Lemma 3.1, Jo does not provide any
ulterior conditions. We have hence proven that Aut®(n) c Sp(2,SC).

We now want to prove that Sp(2,SC) ¢ Aut®(n). Consider M € Sp(2,SC); since the
matrix form of J;Jo is one of the equivalent matrix which describes ¢*, it follows trivially
that M commutes with it. Note that, once we map the product n-J; into Sp(2, SC) via the
isomorphism (1.10), the condition M'n-J; M = n-J; is satisfied because M is symplectic.

We conclude that Aut®(n) = Sp(2,SC) for the considered case.

3.3.3 Case n?Y

The admissible module of n3Y is four-dimensional and admits an involution which is a
product of three linear operators. We want to prove that Aut®(n) = U(1, H).

Let us first prove the inclusion Aut’(n) C U(1,H). As one can see in the tables in
Subsection A.3.4, we have constructed the basis {v, J1Jov, JaJsv, JsJiv}, where i := JyJa,
j = JaJ3 and k := J3J; all satisfy the conditions to be quaternion units; since they all are
product of an even number of linear operators, they all commute with A. In particular,
by Remark 1.11 we know that A € GL(1,H). The module admits an involution which is



a product of three operators and acts as Id on the entire module. Hence, we obtain the
condition AT A = Id, which becomes A*A = Id since the metric is positive. This implies
that A € U(1,H). We have hence proven the inclusion Aut®(n) c U(1,H).

We now want to prove U(1,H) ¢ Aut®(n). This inclusion follows trivially: since any
element M € U(1,H) is simply a quaternion number, it trivially commutes with any
matrix; moreover, being in U(1,H) grants the fullfillment of the condition AlA =1d.

We conclude that Aut®(n) = U(1,H) for the considered cases.

3.3.4 Cases n'?, n*? and n??3

The admissible module of n!? is four-dimensional and admits a single involution, which
is a product of three linear operators. The admissible modules of n3? and n?? both admit
two involutions; one of them is a product of three operators, while the other one is a
product of four operators and divides the module into two four-dimensional common
eigenspaces. We will study n'2, as the two other cases are analogous; our aim is to prove
that Aut’(n) = GL(1,SH) N O(1, 1,C).

In the tables in Subsection A.3.5, we have constructed the basis {v, JoJsv, J1 Jov, J3J1v},
where i* = JyJs, j* = J1Jo and k¥ = J3Jp all satisfy the conditions to be split-quaternion
units. Since ¢*, 7* and k* are all product of an even number of operators, they commute
with A; this is equivalent to say that A € GL(1,SH), by Remark 1.11. The existence of an
involution which is a product of three linear operators imposes the condition A7A = Id
by Propostion 3.4; this resolves into A‘nA = 1. Note that the said involution divides the
module in two non-trivial eigenspaces, each of which isomorphic to GL(1, C). We can hence
apply Remark 3.5 and conclude that A € O(1,1,C), since the metric is neutral. We have
hence proven the inclusion Aut’(n) € GL(1,SH) N O(1,1,C) =: GL%(1, SH).

We want to prove the inclusion GL(1, SH) € Aut®(n). Let M € GL(1,SH)NO(1,1,C).
It trivially commutes with any triple of split-quaternion units, so in particular it commutes
with JoJ3, J1Jo and J3.J;. Moreover, the condition MTnM = 7 is trivially satisfied by any
matrix in O(1,1,C).

We conclude that Aut®(n) = GL(1,SH) N O(1, 1,C) for the considered cases.

3.3.5 Cases n*?, n22, n%4, n%2 and n2¢

The admissible module associated to the pseudo H-type Lie algebras n*%, n??2 and n®* are

eight-dimensional and admit one involution each, which is a product of four linear opera-
tors and divides the admissible module in two four-dimensional eigenspaces. The admis-
sible modules of n%2 and n?% are both 32-dimensional and admit three involutions which
are a product of four linear operators and divide the module in eight four-dimensional
eigenspaces. We will study the case n*?, as the procedure is the same. We will prove that
Aut®(n) = GL(1, H).

We start by proving the inclusion Aut®(n) ¢ GL(1, H). In the tables in Subsection A.1.5
we constructed a basis {v, J1Jov, JoJsv, J3Jiv}, where i := JyJo, j := JoJs and k := J3J;
all satisfy the conditions to be quaternion units. Since 4, j and k are products of two linear
operators, A must commute with them; hence, by Remark 1.11, A € GL(1, H). Since there
is no other condition which A needs to satisfy, we conclude that Aut®(n) ¢ GL(1,H).
The admissible module of n%? and n?% have as a basis {v, JiJov, J1J3Js5J7v, JoJsJsJ7v}
(see Subsections A.3.21 and A.3.22). In particular, products of four linear operators appear
in the basis. Note that the condition A[[%_; J; = [[}_; J;A described in Lemma 2.16 holds
for every even p; hence, the previous computations still make sense.

We conclude that Aut’(n) = GL(1,H) for the considered cases.



3.3.6 Cases n°? and n'*

The minimal admissible modules of n>% and n'# are both eight-dimensional and admit
two involutions; one of them is a product of three linear operators, while the other one is
the product of four operators and divides the module into two four-dimensional blocks.
We can study the case n®Y as considering n = n'* leads to analogous computations. In
particular, we want to prove that Aut®(n) = GL(1,H) N O(2,C).

Let us first prove the inclusion Aut®(n) ¢ GL(1,H) N O(2,C). As one can see in the
tables in Subsection A.3.9, we have constructed the basis {v, J1.Jov, JoJ3v, J3Jiv}, where
1 := JiJo, j := JoJ3 and k := J3Ji all satisfy the conditions to be quaternion units;
since they all are product of an even number of linear operators, they all commute with
A. In particular, by Remark 1.11 we know that A € GL(1,H). The module admits an
involution which is a product of three operators; this said involution divides the first
common eigenspace in two eigenspaces, each isomorphic to GL(1, C); hence, we can apply
Remark 3.5, and obtain the condition A € O(2,C), since the metric is sign definite. We
have hence proven the inclusion Aut’(n) € GL(1,H) N O(2,C) =: GL&(1, H).

We can observe that, although n’* has an admissible module of neutral metric, the first
block has a sign definite metric, we can still conclude A € O(2,C).

We now want to prove GL% (1, H) C Aut®(n). This inclusion follows trivially: since any
element M € GL{(1,H) is simply a quaternion number, it trivially commutes with any
matrix representation of i, j and k; moreover, being in O(2,C) grants the fullfillment of
the condition A'A = Id.

We conclude that Aut®(n) =2 GL (1, H) for the considered cases.

3.3.7 Cases n*% and n*?

The minimal admissible module of both n%® and n*? admit two involutions which are
a product of four linear operators and divide the admissible module in four dimensional
common eigenspaces. We will consider the numerical example of n%6 as n*? is analogous.
We will prove that Aut’(n) = GL(2,C) NT(4, R).

We start by proving the inclusion Aut®(n) € GL(2,C) N T(4,R). As one can see
in the tables in Section A.3.13 | a basis for the first common eigenspace is given by
{v, JoJ1v, JoJ3J50, J1 J3J5v}, where i := JpJo satisfies i2 = —1d and the other two terms
S = JoJ3J5 and Q := J1J3J5 squared are again — Id . We separate ¢ from S and Q) because
the first one is the only one which is a product of an even number of terms; in particular we
know that ¢ commutes with A, and the matrix form of 7 is the same as in Proposition 1.13.
We can hence apply the preposition, and the image of the matrix A via the isomorphism
1.5 - namely A - belongs to GL(2,C). Consider now S; its matrix form is given by a.
Since S is product of three linear operators, we need to apply the condition ATSA = S,
which resolves into A*(nS)A = (nS). We know from Lemma 3.2 that 7 - Qo = —o9; note
that we can’t map oy through the isomorphism 1.7; we hence conclude that A € T(4,R).
We have hence proven Aut®(n) ¢ GL(2,C) N T(4,R) =: GL#(2,C).

Note that () doesn’t give any more informations: in fact

18 =NJoJ1J3Js = —J1J3J5 = —Q)

hence by Lemma 3.1 the condition ATQA = Q follows immediately.

We will now prove the inclusion GL(2, C)NT(4,R) C Aut’(n). Consider M € GL(2,C)N
T(4,R); since it has complex entries, it commutes with J;Jo as it has a matrix form which
is equivalent to a matrix form of i. The condition M7 SM = S is trivially satisfied by the
fact that n- S = oy and M € T(4,R).



We conclude that Aut®(n) = GL(2,C) N T(4,R) for the considered cases.

3.3.8 Cases n%!, n'6, n52 and n?°

The minimal admissible modules of n%! and n?® both admit four involutions; three of them
are a product of four linear operators, while the last one is a product of three operators.
We can study the two cases together, as the basis of the first common eigenspace is the
same. The cases n'® and n%? follows, since we know the isomorphisms n''® = n61 and
n%2 =25 by [FM17]. We will prove that Aut®(n) 22 Sp(2,C) N O(1,1,C).

We begin by proving the inclusion Aut’(n) c Sp(2,C)NO(1,1,C). As shown in the ta-
bles in Subsections A.3.17 and A.3.18, a possible basis is given by {v, Ji JJov, Jyv, J1 JaJ7v},
where (J1.J2)? = —1d, J? = Id and (J;J2J7)? = —Id. The matrix form of Jy.Jo is as [
of Proposition 1.12; since A needs to commute with JiJ2, we can apply the isomoprhism
(1.5); in particular, the image of A through the isomorphism, which we can call A, be-
longs to GL(2,C). The matrix representation of J; is o2, and since we have a neutral
metric, we conclude that the condition AT J; A = J; becomes A!Q; A = Q; by means of
Lemma 3.2 and the isomorphism (1.5), which maps Q2 € GL(4,R) to Q; € GL(2,C).
Hence, A € Sp(2,C). Observe that JiJoJ7 does not provide any other condition, as
(J1J2)J7; = JiJaJ7 and one can apply Lemma 3.1. To complete the case, we need to
consider the remaining involution product of three operators. Observe that said involution
has two non-trvial eigenspaces, which are both isomorphic to GL(1, C); we can hence apply
Remark 3.5, and obtain A € O(1,1,C), since the metric is neutral. We have hence proven
the inclusion Aut®(n) C Sp(2,C) N O(1,1,C) =: Sp" (2, C).

We now want to prove the inclusion Sp'(2,C) c Aut®(n). Consider M € Sp”(2,C);
since it has complex entries, it commutes with J;J2, whose matrix representation is iso-
morphic to one of the equivalent matrix representation of 7. Asking that A satisfies the
condition MT.J;M = J; is equivalent, by means of the isomorphism (1.5), to require
MO, M = Q, which is trivially satisfied by construction. Moreover, the orthogonality
condition is satisfied by the fact that M belongs to O(1,1,C).

We conclude that Aut’(n) 2 Sp™(2, C) for the considered cases.

3.3.9 Cases n*” and n®?

THe admissible module of n"7 and n®3 both admit three involutions which are a product
of four linear operators and subdivide the 32-dimensional minimal admissible module into
four-dimensional eigenspaces. We will study the case n!7, since the other one behaves very
similarly. We will prove that Aut®(n) = Sp(2, C).

We start by proving the inclusion Aut®(n) C Sp(2,C). A basis for the first common
eigenspace is given by {v, Jiv, J1 JeJ7Jgv, JgJ7Jsv}, where (JyJgJ7.J3)? = —1Id (see Sub-
section A.3.19). Since JyJgJ7Jg is the product of four linear operators, it commutes with
A; in particular its matrix form is as J of Proposition 1.13. By the same proposition, the
image of A via the isomorphism (1.7), which we call A, belongs to GL(2,C). We impose
the condition A”.J; A = J;, which becomes A’(n-.J1)A = n-J;. One can write J; and 7
as four-dimensional matrices; their product is given by

0 -1 0 0
1 0 0 0
=1ty 0 0 .1
0 0 1 0



which via the isomorphism (1.7) is isomorphic to ©; € GL(2,C). Hence, the condition
becomes AfQ A = €y, which implies A € Sp(2,C). We have then proven the inclusion
Aut’(n) C Sp(2,C).

In order to prove the inclusion Sp(2,C) € Aut®(n), we consider M € Sp(2, C). Since it
is a complex matrix, it commutes with any linear complex unit, so in particular it com-
mutes with J; JgJ7Js, which has a matrix representation isomoprhic to i. By construction,
moreover, the condition M7 .J; M = .J; is satisfied, since M € Sp(2,C), once we recall that
Mt € GL(2,C) is mapped to M* € GL(4,R).

We conclude that Aut®(n) = Sp(2,C) for the considered cases.

3.3.10 Cases n*% and n"?

The admissible modules of n3% and n”? both admit four involutions; three of them are a
product of four linear operators, while the last one is a product of three linear operators.
The first three involutions divide the module into four-dimensional common eigenspaces.
We will consider only the case n = n39, since n = n”2 behaves analogously. We will prove
that Aut®(n) = GL(1,H) N O(1,1,C).

We start by proving Aut’(n) € GL(1,H) N O(1,1,C). One can see from the tables in
Subsection A.3.23 that a basis for the first eigenspace is {v, J1 Jov, J1 JyJ7Jsv, JoJy J7Jgv}.
We define @ := JiJo, j := J1JyJ7Js and k = JoJyJ7Jg and we can observe that they
satisfy all the conditions in order to be quaternion units. In particular, since ¢, j and k are
all product of an even number of operators, it follows that A commutes with the three of
them; because of Remark 1.11, this implies that A it is isomorphic to some A € GL(1, H).
The involution which is a product of three operators divides the block in two non-trivial
eigenspaces, both of which are isomorphic to GL(1,C). Hence, by Remark 3.5, we can
conclude that A € O(1,1,C), since the metric is neutral. We have proven the inclusion
Aut’(n) € GL(1,H) N O(1,1,C) =: GL&(1, H).

We want to prove the inclusion GL&(1,H) € Aut®(n). Let M € GL(1,H) N O(1,1,C).
It trivially commutes with any triple of quaternion units, so in particular it commutes with
J1Js, J1J4J7Js and JoJyJ7Js. Moreover, the orthogonality condition is trivially satisfied
by any matrix in O(1,1,C).

We conclude that Aut®(n) =2 GL (1, H) for the considered cases.

3.4 Eight-dimensional common eigenspaces

From Table 3.1, we can distinguish twelve eight-dimensional cases, which correspond to
pseudo H-type Lie algebras featuring very different automorphism groups. Our analysis
shows that these are all subgroups of GL(2,H) or GL(2,SH).

3.4.1 Case n’3

The minimal admissible module of n%3 does not admit any involution, hence we will not
consider its common eigenspaces. We will prove that Aut®(n) 2 T(2, H).

We begin by proving the inclusion Aut®(n) c U(1,H). A basis for the admissible
module is {v, JoJ1v, JsJov, J1J3v, J1 JaJ3v, Jsv, Jiv, Jov} (see tables in Subsection A.4.1).
The products i := JoJ1, j := J3Js and k := J1J3 all satisfy the conditions to be quaternion
units; moreover, the matrix forms of ¢ and j are as I and J of Proposition 1.17. Since we
require A to commute with 4, 7 and k, we can apply Proposition 1.17 and obtain that
the image A of A via the isomorphism (1.13) belongs to GL(2,H). Observe then that
(J1J2J3)? = —1d, which has Q4 € GL(8,R) as matrix representation. The metric of
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the admissible module is neutral; the product n - J1JoJs = o4 by Lemma 3.2; via the
isomorphism (1.13), o4 is mapped into oy € GL(2, H); hence, the condition AT.J;.JyJ3A4 =
JiJ2J3 becomes Ato A = oq. This implies that A € T(2,H). We have hence proven the
inclusion Aut®(n) c U(1,H).

We now want to prove the inclusion T(2,H) C Aut(n). Let M € T(2,H); then
it commutes with 4, j and k; we know that JyJs, JiJyJ7Js and JoJyJ7Jg all satisfy
the properties to be quaternion units, hence A commutes with them. The condition
MT J,JyJs M = JyJoJ3 becomes Mo, M = oy by construction of J; JsJ3; applying the iso-
morphism in Proposition 1.17, the new condition is trivially satisfied by any M € T(2,H),
once we recall that M? € GL(2,H) is mapped to M* € GL(8,R).

We conclude that Aut®(n) = T(2,H) for the considered case.

3.4.2 Case n>!

The admissible module of n?! is eight-dimensional and does not admit any involution. We
want to prove that Aut®(n) = Sp(2, SH).

We start by proving the inclusion Aut’(n) C é\I/)(Z,SH). In the tables in Subsection
A.4.2 we have found a basis {v, Jsv, JoJsv, J3J1v, J1 JoJsv, JiJov, Jiv, JaJsv}, where i* =
JiJs, 75 = J1J3 and k¥ = JoJ3 satisfy the conditions to be split-quaternion units. In
particular, ¢* and k* have the same matrix form as I* and J* of Proposition 1.20. If we
call A the image of A via the isomorphism (1.17), then A € GL(2,SH) by Proposition
1.20. We can moreover observe that the matrix form of 7 - JyJoJs is

0 -1
-1

_ o OO o o oo
O R OO oo oo
o O O O O

|

—
coocor~o oo
cCoo0o0OoO OO

SO OO oo
OO O oo oo

which, via the isomorphism (1.17, is mapped to k*-€;. The condition AT.Jy JoJ3A = J1.JoJ3
becomes hence A2 A = € ; hence, we can conclude that A € Sp(2, SH). We have hence



proven the inclusion Aut®(n) C Sp(2, SH).

We will now prove the inclusion %(2, SH) c Aut®(n).Let M € Sp(2, SH); it commutes
with any triple of split-quaternion units, such as JyJs, JoJ3 and J3J;. By construction,
moreover, the condition M7 J,.JoJsM = JyJpJ3 is satisfied, since M € Sp(2, SH), once we
recall that M* € GL(2,SH) is mapped to M* € GL(8,R).

We conclude that Aut®(n) 2 Sp(2, SH) for the considered cases.

3.4.3 Case n'?

We want to prove that Aut®(n) = %(2, SH) N O(1,1,SH) for n = n'3.

We start by proving the inclusion Aut®(n) C %(Z,SH) N O(1,1,SH). We can follow
the proof of Subsection 3.4.2, and prove that A € Sp(2,SH), with A the image if A
via the isomorphism (1.17). The existence of an involution which is a product of three
operators and which divides the module in two non-trivial eigenspaces, each isomorphic
to GL(1,SH), provides the extra condition A € O(1,1,SH), since the metric is neutral.
We can conclude that Aut®(n) C §f)(2, SH) N O(1,1, SH).

In order to prove %(Q,SH) N O(4,4,R) C Aut’(n) one can follow the proof of the
previous case. The extra condition AT P; A = P; resolves into AT A = 1d, which is satisfied
by construction by any matrix in O(1, 1, SH).

We conclude that Aut®(n) 2 Sp(2, SH) N O(1, 1, H) for the considered cases.

3.4.4 Cases n’?, n*!, n?>7 and n%?3

The admissible modules of n%° and n*! admit one single involution which is a product of
four linear operators. The admissible modules of n*7 and n%3 admit three involutions, all
of which are a product of four operators. We will consider the case n%°, as the other ones
are analogous. We will prove that Aut®(n) = Sp(2, H).

We will start by proving the inclusion Aut’(n) C Sp(2, H). In the tables in Subsection
A.4.5 we find a basis for the first common eigenspace as

{v, hJov, JoJyv, J1 Jyv, J5v, J1 Jodsv, JoJyJ5v, J1 JyJ5v},

where ¢ := J1Js, j := JoJy and k := J1J; satisfy the conditions to be quaternion units.
Since all three of them are products of two elements, the matrix A commutes with them:;
in particular, JyJ2 and JoJy are in the forms I and J of Proposition 1.17, hence its image
A via the isomorphism (1.13) belongs to GL(2,H). We need to consider the condition
AT Js A = Js; one can observe that the matrix representation of Js is o4. The metric of the
eigenspace is neutral, hence, by Lemma 3.2, we obtain the condition ATQ4A = Q4 which
via the same isomorphism becomes A% A = ;. We can conclude that A € Sp(2, H). We
have hence proven that Aut®(n) C Sp(2, H).
Observe that JyJoJs, JoJyJs and J1JyJs can all be obtained by the product of ¢, j and k
with Js; hence, by Lemma 3.1, they do not provide any new information. Moreover, for
the cases n>” and n%3 we need to use the isomorphism (1.15), since A commutes with
JoJ1 and JiJ3JgJg, which are of the form I and J in Proposition 1.18. Through that
isomorphism the product 7 - JoJ1Jg is mapped to €21, so the outcome does not change.

We now want to prove the inclusion Sp(2, H) C Aut’(n). In order to do so, one can sim-
ply follow the proof of Subsection 3.4.2, replacing split-quaternion numbers with quater-
nion numbers.

We conclude that Aut’(n) = Sp(2, H) for the considered cases.



3.4.5 Case n>!

The admissible module of n®! admits a single involution, which is a product of three
operators. We will prove that Aut’(n) = Sp(2,H) N O(1, 1, H).

First, we prove the inclusion Aut®(n) C Sp(2,H) N O(1,1,H). We have constructed
a basis for the admissible module of n®! in the tables in Subsection A.4.4; this is given
by {v, J1Jov, JoJsv, JsJ1v, Jyv, J1 Jyv, JoJyv, JsJgv}, where ¢ := J1Jo, j := JoJ3 and k :=
J3J1 are quaternion units. In particular, the matrix forms of J;.Jy and JyJ3 are as I and
J from Proposition 1.17. Hence, the image A of A via the isomorphism (1.13) belongs to
GL(2,H). We now need to impose the condition AT J,A = J,. The element J; has o4 as
matrix form and the admissible module has a neutral metric. By Lemma 3.2, the condition
AT J4A = J4 becomes A'Q A = Qy4, which is mapped via the isomorphism (1.13) to the
condition A*Q; A = Q; hence, A € Sp(2, H). This admissible module admits an involution
which is a product of three linear operators; in particular, it divides the module in two
non-trivial eigenspaces, both of which are isomorphic to GL(2, H). Hence, by Remark 3.5,
we can conclude that A € O(1, 1, H) since the metric is neutral. We have hence proven the
inclusion Aut®(n) ¢ Sp(2,H) N O(1,1,H) =: Sp" (2, H).

In order to prove Sp (2,H) C Aut®(n) , it is enough to follow the proof in Subsection
3.4.3, replacing split-quaternion numbers with quaternion numbers, and considering the
standard quaternion conjugation — instead of the split-quaternion conjugation

We conclude that Aut®(n) 22 Sp™(2, H) for the considered cases.

3.4.6 Cases n*>!, n'%, n”3 and n37

The minimal admissible modules of these four pseudo H-type Lie algebras look very differ-
ent from each other; nevertheless, similarities emerge once we consider their first common
eigenspaces. In particular, all the considered admissible modules admit one involution
which is a product of three linear operators. The admissible modules of n®! and n® both
admit one more involution which is a product of four linear operators, while the admissible
modules of n®7 and n”3 admit three involutions which are products of four linear opera-
tors. We will study the case n>!, as the other four are completely analogous. In particular,
we will prove that Aut®(n) = Sp(2,H) N U(1, 1, H).

First, we prove the inclusion Aut®(n) C Sp(2,H) N U(1, 1, H). We have constructed a
basis for the admissible module of n®! in the tables in Subsection A.4.4; this is given by
{U,J1J2U,J1J32), J2J3U,J@?),J1J2J6U,J1J3J6U,J2J3J61)}, where 7 = Jljg, j = J2J3 and

:= J1J3 are quaternion units. In particular, the matrix forms of J;.Jo and JoJ3 are as [
and J from Proposition 1.17. Hence, the image A of A via the isomorphism (1.13) belongs
to GL(2, H). We now need to impose the condition AT JsA = Js. The element Jg has o4 as
matrix form and the admissible module has a neutral metric. By Lemma 3.2, the condition
AT JgA = Jg becomes A'Q4A = Qy4, which is mapped via the isomorphism (1.13) to the
condition A*Q; A = Q; hence, A € Sp(2, H). This admissible module admits an involution
which is a product of three linear operators; in particular, it divides the module in two non-
trivial eigenspaces; these two eigenspaces do not have neither a complex nor a quaternion
structure; hence, we can’t apply Remark 3.5. Instead, the condition A” A = Id becomes
via the isomorphism (1.13) A?A = Id; hence we conclude A € U(1, 1, H) since the metric is
neutral. We have hence proven the inclusion Aut’(n) C Sp(2, H)NU(1,1,H) =: @T(Z, H).
Observe that, when working with the admissible modules of n”3 and n®>7, we need to
use the isomorphism (1.15); in fact, the matrix representation of the operators JyJ; and
J1JyJgJg are the same as the matrices I and J of Proposition 1.18. In any case, the
element 7 - JoJ1J1g is mapped to 2; via the latter isomorphism; hence, the condition is



still satisfied.

we now want to prove %T(Z H) ¢ Aut®(n). Let M € %T(Z H); then it commutes with
JiJo, J1J3 and JoJ3, since they are quaternion units. The condition MT JsM = Jg is the
defining condition of the group Sp(2, H), once we recall that Mt € GL(2, H) is mapped into
M! € GL(8,R). By the same reasoning the condition M7 M = Id € GL(8,R) is trivially
satisfied by any matrix M € U(1,1, H).

We conclude that Aut®(n) = Sp™(2, H) for the considered cases.






Appendix A

Tables for the constructions of the
bases

We include here a collection of tables for every considered pseudo H-type Lie algebra n™*.
The data provided with these tables accounts to the following:
— the dimension of the minimal admissible module V' of n™%;
— a list of its involutions;
— a table of commutations for every linear operator J; that belong to n"™® with the
involutions;
— a possible basis for the admissible module V, subdivided into common eigenspaces
if involutions are admitted.
The bases will always have either a positive definite or neutral metric; in particular, we
will mark in black the elements w € V such that (w,w) = 1 and in red the elements
w' € V such that (w',w') = —1.

We will now describe how such data can be determined.

Firstly, the dimension of the minimal admissible module V' is known (see, for example,
[FM17]). From this, we can obtain the number p of involutions that V' admits that can be
written as a product of three or four linear operators. Indeed, we know that the dimension
of V is 2"57P where p is the number of involutions. Hence, p = r + s —log,(n) From this,
a complete list of involutions can be obtained combinatorially:

— the involutions P that can be written as a product P = J; - - - J,,,, where m = 3,4,

need to be such that an even number of operators J; satisfy Jf = 1d;
— any two such involutions need to have exactly two operators J;, J; in common.

The tables of commutation are obtained by simple computations, recalling the property
of skew-adjointness that the operators need to satisfy.

Lastly, we will show how to construct a basis for V' using the data collected above. We will
only need to know the list of involutions of V' that are products of four operators: indeed,
only those satisfy the necessary conditions of Corollary 2.31. These involutions divide the
admissible module into common eigenspaces; a basis for V' will be constructed upon the
bases for each of those eigenspaces. To construct a basis for every common eigenspace, we
rely on the commutation tables obtained as above: an element w in E! commutes with
the involutions that act as Id on W and anticommutes with the involutions that act as
—1Id on w. In particular, we will always choose a v in E', the eigenspace on which every
involution acts as Id, as a starting point to construct our basis.
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We will also provide the products of operators acting as GGy as explained in Theorem 2.32.
These appear as a last, separate line in the tables relative to the construction of the bases.

A.1 One-dimensional cases

A.1.1 Casen”®

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘

P = JyJoJ3Jy Py = J1JoJ7 8
Py = J1JyJ5Js
Py = J1J3J5J7
Table of commutativity:
Jl J2 J3 J4 J5 J6 J?
Pl al]al|a|al]c C C
Pyl alalc C a| alc
Ps| al|c|al|c a| c | a
Py | ¢ c|lal|al|a|a]|c
PV + - dim =4
Py (P V) + - + - dim = 2
P3(P(PV) |+ - + - 4+ - 4+ - |dim=1
basis v Jmw Jgv Jsv Jyv J3v Jyv  Jyw

Observe that E! = E; )
4

A.1.2 Case n?*

‘ Involutions product of four | Involutions product of three ‘ dim (V) ‘

Py = JyJsJgJ7 Py = J1JyJ5 8
Py = JoJ3J4J5
Py = J1J3J5J7
Table of commutativity:
Jl J2 J3 J4 J5 J6 J?
P | c C C a|al|al|a
P | c al|lal|al|al]c C
Pyl alc|lal|c|alc]|a
Pi| ¢ a| alc C a | a
P1V + - dim =4
Py(P V) + - + - dim = 2
Py(P(PV) |+ - + - + - 4+ - |dim=1
basis v Jiv Jov Jsv Jgv Jvo Jyvo Jzv

Observe that E! = E; )
4
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A.2 Two-dimensional cases

A.2.1 Case n'?

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
| R

Costruction of the basis:

%4 dim=2

basis | v
Jiv

A.2.2 Case n%!

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
| | 2

Costruction of the basis:

Vv dim = 2
basis v

Jiv

A.2.3 Case n%°
‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
Py = J1JaJd3Jy P3 = J1J3J5 8
Py = J1J2J5Js

table of commutativity:

Pl ala|al|al]c C
P, al|alc c | al a
Pyl c|lal|c|alc

Construction of the basis:

P1V + - dim =4
PQ(P1V) + - + - dim =2
basis v Jsv Jyvo Jiv
J1J2’U J6U JgU JQ’U
Gr Js  Ji N

Observe that E' = E;B ©® Ep,, with

E;g = span{v}
Ep, = span{Ji Jov}.



A.2.4 Case n*?

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘

P, = J1JyJ3dy Py = J1J3J5 8
Py = J1J2J5J
table of commutativity:
J1 JQ Jg J4 J5 JG
P| a| a a | a C C
P, al|alc c | al| a
Ps| c|lalc|al]|c]|a
Construction of the basis:
P1V + - dim =4
PQ(Pl V) + - + - dim = 2
basis v Jsv  Jivo Jyv
J1J2’U J61,’ JQU Jg?)
G[ J5 J1 Ju

Observe that E' = E;S ® Ep,, with

E;.!3 = span{v}
Ep, = span{J;Jov}.

A.2.5 Case n%”

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘

Py = J1J2J3Js
Py = J1JoJ5Jg
Py = J1J3J5J7

Table of commutativity:

16

Ji | Jo | 3| Ja | 5| Jg | J7
Pl al]al|a|al]c C C
Pyl alalc C a | a
P3| al| c | a a | c
Construction of the basis:
PV + - dim =8
Py(PV) + - + - dim = 4
P (P (PV)) + - + - + - + - dim = 2
basis v Jrv Jgv Jsv Juv J3v Jov Jiv
Jl Jg.]ﬂj J1J2U J5J7U J@Jﬂ) J3J7U J4J7U J1J7U J2J7U
G J7 Js J5 Jy J3 J2 J1




A.2.6 Case n*3

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘

Py = J1J2J3Jy 16
Py = J1J2J5Js
Py = J1J3J5J7
Table of commutativity:
Jl J2 J3 J4 J5 J6 J?
Pl al]al|a|al]c C C
Pl ala|c|c|ala
P;| al|c| a a | ¢
Construction of the basis:
PV + - dim =8
PQ(P1V) + - + - dim =4
P3(P2(P1V)) + - + - + - + - dlm =2
basis v Jrv Jgv J5v Jyv J3v Jov Jiv
J1J2J7?) JlJQ’U J5J7U J6J7U J3J7’U .]4J71,' J1J7'U J2J7’U
Gy J7 Js Js Jy J3 Jo J1
A.2.7 Case n"!
‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
P, = J1JoJ3Jy Py = J1JoJ7 16
Py, = J1JoJd5Js
Py = J1J3J5J7
Table of commutativity:
Ji | o | I3 | Sy | Is | Je | J7 | s
Pl al|]al|a]|a]c C C C
P, al| a|c clal|a]|c C
Pyl alc|la|c|al|lc|al]ec
Pyl ¢ C a|al|alal]|c a
Construction of the basis:
PV + - dim =8
PQ(Pl V) =+ - + - dim =4
P3(Py(PV)) | + - + - + - + - dim = 2
v J7v Jgv Jsv Jyv J3v Jov Jiv
basis Jsv  Jrdgv  Jgdgv  JsJsv  Jgdgv J3dgv JoJdgv  JiJgv
Gy J7 Jg J5 Ju J3 Jo Ji

Observe that E' = Ea ® Ep,, with

E;F4 = span{v}

Ep, = span{Jgv}.




A.2.8 Case n??®

‘ Involutions product of four | Involutions product of three ‘ dim(V)

P, = J1JoJyJ5 Py = J1JoJ3 16
Py = J1JoJgJ7
Py = J1J3J5J7

Table of commutativity:

Jy | Ja | I3 | Ju | JIs | Je | Jr | Js
Pl al|al|c a| alc C C
P, al| al|c C c|lal|alc
Pyl alc|la|c|al|lc|al]ec
Pyl ¢ C C a|lal|al|al|a
Construction of the basis:
PV + - dim =8
PQ(P1V) + - + - dim =4
P3(P2(P1V)) + - + - + - + - dim =2
Basis v J3v Jev Jrv Jyv J5v Jov J1v
J8U Jng?) JﬁJgU J7J8’U J4J8U J5J8U -]2']87/’ J1 Jg?l
G J3 Jo J7 J4 Js5 Jo Ji

Observe that E' = E;‘ ® Ep,, with

E}i = span{v}
Ep, = span{Jgv}.

A.3 Four-dimensional cases

A.3.1 Case n?*Y

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
| | I

Construction of the basis:

\% dim=4
basis v
JQle
JQU
Jiv

A.3.2 Case n%?2

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
| | 4

Construction of the basis:




|4 dim =4
basis v
JQ J11)
J] v
JQ’U

A.3.3 Case nl!

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘

| | 4]
Construction of the basis:
|4 dim =4
basis v
Jl’l}
J] JQU
Jov

A.3.4 Case n??

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
| | Py = J1J2Js B

Table of commutativity:

J1 JQ Jg
P | c C C

Construction of the basis:

\% dim=4
basis v
Jl sz
JaJ3v
J3J1U

Observe that E! = E; .
3

A.3.5 Case n!?

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
| | Py = J1JyJ3 |4

Table of commutativity:

Ji | Ja2 | J3
P | c C ¢

Construction of the basis:

|4 dim =4
basis v
J2J3’U
J1 JQ?J
Jng’U

Observe that E! = E;S.



A.3.6 Case n*?

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
Py = J1JoJ3Jy 8

Table of commutativity:

Ji| Ja | I3 | Ju
Pl al]al|a|a
P1V + - dim =4

basis v J3v
J1J2’U J4v
J2J3U JQU
J3J11} le
G J3

A.3.7 Case n%*

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
Py = J1JaJ3Jy 8

Table of commutativity:

Ji| Jo | I3 | Ju

P1V + - dim =4
basis v J3v
JlJQU J4'U
J2J3’U JQ’U
J3J1v J[ v
Gr J3

A.3.8 Case n?>?

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
Py = JiJ2J3 4 8

Table of commutativity:

Ji | Jo | J3 | Jy
Pl ala]|a]|a

P1V + - dim =4
basis ) J3v
Jngv e]41)
J2J3/I/' JQU
J;;Jl?) le
Gy J3




A.3.9 Case n®Y

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
| Py = J1JyJ3J4 | Py = J1J2J5 8 |

Table of commutativity:

P | c C a | a

PV + - | dim=4
basis v J3v

J1J21) J4U

J2J31) JQ’U

Jng'U le
Gy J3

Observe that E' = E;Q ® Ep,, with
E;g2 = span{v, J; Jov}
Ep, = span{JaJ3v, J3J1v}.
A.3.10 Case n'*

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
| P = JyJ3J4Js | Py = J1J2J3 N

Table of commutativity:

P | c a | a

P | c C C a | a

Construction of the basis:

P1V + - dim =4
basis v Jav

J2J3U 9]51)

J3J41} ng

JoJgv  Jov
Gy Jy

Observe that B! = Ej;2 ® Ep,, with

EY, = span{v, JoJ3v}
Ep = span{JsJyv, JoJyv}.



A.3.11 Case n3?

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
| Py = J1J3J4J5 | Py = J3J4J5 8 |

Table of commutativity:

Py| a | a C C ¢

Construction of the basis:

PV + - | dm=4
basis v Jiv

J4J5’U JQU

J] J4?J J4’U

J 1 J. 5V J. 5V
Gy Ji

Observe that E' = E}g ® Ep,, with
E;Q = span{v, JyJ5v}
Ep = span{Jy Jyv, J1 J5v}.
A.3.12 Case n??

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
| P = JiJ2JsJy | Py = J1J4Js B

Table of commutativity:

Pl al|a]|a
P | c a | a C

Costruction of the basis:

P1V + - dlm =4
v Jov
J3J4U le
basis | JoJyv  Jyv
JoJsv  J3v
Gy Jo

Observe that E' = Eg ® Ep,, with

EY, = span{v, JoJ3v}
Ep, = span{JaJyv, J3.Jyv}.



A.3.13 Case n"°
‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
Py = JiJ2J3Jy 16
Py = J1J2J5Js

Table of commutativity:

Pl ala|al|al]c C

P, al|alc c | al a

Construction of the basis:

PV + - dim =8
Py(PV) + - + - | dim=14
v J5v J3v Jiv
basis JoJ1v Jgv Jav Jov
JQJ;;J{,U J2J3U J2J5U J4J5U
J1J3J57) J1J3U J1J51} J3J5’U
Gy J5 J3 Ji

A.3.14 Case n*?

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
P = J1J2J3J4 16

Py = J1J2J5Js

Table of commutativity:

Pl a|al|a|a]|c

Pl al|alc C a | a

Construction of the basis:

PV + - [dim=38
PQ(P1V) + - + - dlm = 4
v J5/U J3U Jl?.l
basis J1Jov Jev Jyv Jov
JQJ;;J5’U J2J3U JQ.]5?J J4J5’U
1711]31]5’0 J1J3U J1J5/U J3J5’U
G] Js J3 J1

A.3.15 Case n'®

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
Py = JyJ3Jyds Py = J1J2J3 16
Py = JaJsJeJ7

Table of commutativity:



Ji | Jo | I3 | Ja | JIs | Jg | Jr
P | c a|lal| a]| a c ¢
Py a| al|c C a | a
Ps C c|lal|al|a/|a
Construction of the basis:
PV + - dim =8
P2 (Pl V) + - + - dlm = 4
v Jgv Jyv Jov
J2J37} J7’U J5’U :]3"[)
basis JodyJgv  Jodyv  Jadgv  JuJgu
J;3J4J6’l) J3J4U J3J6'U J5J6’U
G[ J6 Jy Jo

Observe that E! = E; .
3

A.3.16 Case n*?
‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘

P = J1JoJ3dy Py = J1JoJ5 16
P, = JiJyJgJr
Table of commutativity:
Jl JQ Jg J4 J5 J6 J?
Pl al]al|a|al]c C C
P, al alc C a | a
Ps a | alc a
Construction of the basis:
PV + - dim =8
PQ(P1V) + - + - dim =14
v Jsv J3v Jiv
J1J2'U J5J6/U J3J5’U J1J51)
basis :]2:]3:]61) J2J3U JQJGU J4J6U
J1J3J()”U J1J3U J1J6”U JgJG’U
G] Jg J3 J1

Observe that E! = E; .
3

A.3.17 Case n%!
‘ Involutions product of four ‘ Involutions product of three ‘ dim (V) ‘

Py = J1JaJ3Jy Py = J1J3J5 16
Py = Ji1J2J5Js

Table of commutativity:



Ji | o | T3 | Ju | s | Jg | J7
P | a a |l al| a C c ¢
P,| a | a C a
P3| c a a | c a
Construction of the basis:
PV + - dim =38
P2 (PIV) + - + - dim =4
v Jsv J3v Jiv
Jl JQU J6’U J4U JQ?)
basis Jrv JsJv  JsJrv JiJru
Jl JQ J7’U ']6<]7U J4J71) JQ J7L‘
Gy J5 J3 J1

Observe that E' = E;S ® Ep,, with

E;S = span{v, J; JoJ7v}
Ep, = span{JyJov, J7v}.

A.3.18 Case n?®

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘

P = J1JoJ3dy Py = J1J3J5 16
Py, = J1JJ5Jg
Table of commutativity:
Jl JQ J3 J4 J5 J6 J?
Pl al]al|a|al]c C C
P| a | a c | al| a
P;| c | a a |l c| a
Construction of the basis:
P1V + - dim = 8
Py (P V) + - + - dim =4
v Jgv Jyv Jov
J1J2U J5'U Jg’l,’ Jﬂ}
basis J7U J6J7U J4J7U JQJ7U
J1J2J77) J5J7U J3J71} J1J7U
G[ J6 J4 JZ

Observe that E' = E;B ® Ep,, with

Ejgg = span{v, J1 JaJ7v}
Ep, = span{JiJov, J7v}.
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A.4 Eight-dimensional case

A.4.1 Case n%3

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
| | 8

Construction of the basis:

V dim =8
basis v
J2J1’U
J3Jov
J1J3’U
Jl ,]2 ng}
Jg?)
Jiv
JQ?)

A.4.2 Case n*!

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
| | 8

Construction of the basis:

V dim =8
basis v
JQU
Jiv
J1J2’U
,]3’0
JoJ3v
Jl Jg’U
-]1 JQ (]31)

A.4.3 Case n!?

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
P = J1JoJ3 8

Table of commutativity:

Ji| Jo | I3 | Jy
P c C c | a

Construction of the basis:

% dim =8
basis v
Jl J2J4U
J1J3Jgv
J2J3’U
Jyv
Jl JQU
J1J3’U
JoJgJsv




Observe that B! = E;l ® Ep , with

E;gl = span{v, JoJsv, Ji v, Jy JBU}
EI;1 = span{Jyv, JoJ3Jyv, J1 JoJyv, J1 J3Jyv}.

A.4.4 Case n’!

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
| | Py = J1J2J3 B

Table of commutativity:

Ji | Jo | I3 | Jy
P | c C ¢ a

Construction of the basis:

%4 dim =8
basis v

Jl JQ’U

J2J3’U

J3J1’U

J41)

JiJo Jyv
JaJ3Jyv
J3J1Jyv

Observe that E' = E;l ® Ep,, with

E;l = span{v, JoJ3v, J1Jov, J1 Jsv}
EI;1 = span{J4v, J2J3J4U, Jl J2J4U, J1<]3J4U}‘

A.4.5 Case n%°

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
| Py = J1J2J3Jy | | 16|

Jy | Ja| I3 | Ji| J5
Pl al]al|lal|al]c

Construction of the basis:

P1V + - dim = 8
v Jiv
Ji1Jov Jov
J4J2U :]31)
Jl J4’U J4L‘
J51J J1J5’U

Jl .]2,]51] J2J5U
basis | JyJoJsv  J3J5v
.]1 J4J5U J4J5U
G J1




A.4.6 Case n*!

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘
Py = J1J2Jd3Jy 16

Jy | Ja | J3 | Ji| Js5
Pl alal|al|a]|c

Construction of the basis:

P1V + - dim = 8
v Jiv
JlJQ'U JQU
J2J41) J37}
J1J4’U J4v

basis Jsv J1J5v
Jl 9]2,]51] JQJ{,U
JodyJsv  J3J5v
.]1 J4J5U J4J5”U
Gy J1

A.4.7 Case n*!

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V) ‘
‘ Py = J1JaJ3Jy ‘ Py = J1J2Js ‘ 16 ‘

Table of commutativity:

Pl alal|a|al|c]|c
P | c C al| alc a

Construction of the basis:

P1V + - dim =8
v J3v
J1J2U J4U
J1J3’U le
J2J3U JQU

basis Jgv J3Jgv
<]1<]2<]()"U J4J(5’U
JJ,J;;J(;U JV[JG’U
JoJsJgv  JoJgu
Gr J3

Observe that E' = E;Q ® Ep,, with

E;,‘Q = span{v, J1Jov, J1J3Jgv, J2J3J61)}
E;l = span{Jﬁv, J2J3U, J1J3U, J1J2J61)}‘



A.4.8 Case n!?

‘ Involutions product of four ‘ Involutions product of three ‘ dim(V') ‘

| P = JyJ3J4Js | Py = J1J2J3
Table of commutativity:
J1 JQ J3 J4 J5 JG
P a|al|al|al]|c
Py C clal|a]|a
Construction of the basis:
PV + - dim = 8
v Jsv
J2J3U J47J
J2J4’U Jg?)
J3J4U JQ/U
basis Jev Js5Jgv
JQJgJ()"U J4J61)
J2J4J(5U J3J6’U
J3J4J6/U JQJGU
G[ J5

Observe that B! = E?;2 ® Ep,, with

E;D; = Span{va J2']3v7 J2J4J67J, J3J4J61)}

E;l = span{Jﬁv, J2J4'U, J3J4U, J2J3J61)}.

16
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