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Abstract 

Intrusion of sills into sedimentary successions is a fundamental and widespread process in 

basins at volcanic rifted margins. Although intrusions emplaced at shallow paleodepths (<1.5 

km) are relatively well understood, intrusions emplaced at deeper basinal levels (>1.5 km) are 

much less understood due to lack of large-scale outcrops and limitation in seismic illumination 

and resolution. This study makes an attempt to improve the understanding of emplacement 

mechanisms of deeply emplaced intrusions and how these are controlled by host rock 

structure and stratigraphy, by using a 25 km long digital outcrop LIDAR model from 

exceptionally well-exposed outcrops at Traill Ø, East Greenland. This is a world-class outcrop, 

exposing thick sill intrusions (up to 200 m) emplaced in a complex host rock with faults and 

variable stratigraphy. Traill Ø shares much of its history with the conjugate Møre Margin on 

the Norwegian continental shelf, and therefore provides an excellent analogue for 

understanding igneous sills seen in seismic data from the Møre Basin. Synthetic seismic is 

compared to seismic data from the Møre Margin to fill the gap between field observations 

and seismic data. Results show that the emplacement of deeply emplaced sill intrusions (c. 3-

4 km) is controlled by host rock lithology, pre-existing structures and the strength of the host 

rock. Sills show brittle emplacement structures with little deformation around the sill margins 

despite the intrusions of large amount of sills into the host rock. Sill intrusions seems to prefer 

extensive mudstone units, thinly interbedded mudstone and sandstone and 

carbonate/evaporite units.  Comparison between outcrop data, synthetic seismic and seismic 

data can improve the understanding of deeply emplaced sill complexes in the subsurface. Thin 

sills and steeply dipping intrusions are commonly not imaged in seismic, leading to 

underestimation of the volume of sills in basins. This study demonstrates the importance of 

host rock lithology, pre-existing structures and basin history, in order to predict emplacement 

mechanisms and expression in seismic data of deeply emplaced sill intrusions. Furthermore, 

it contributes to the understanding of deep sill complexes in sedimentary basins on volcanic 

margins worldwide.  
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1 Introduction 
 

Magmatic intrusions are common at rifted margins and in extensional basins (Magee et al. 

2016). The magmatism is often associated with rifting and continental break up, often in the 

presence of large igneous provinces (Skogseid et al. 1992, Larsen et al. 2014), but it can also 

be associated with large igneous provinces away from rift zones (Bryan and Ferrari 2013).  

Intrusive igneous systems in rifted margins are often a network of interconnected complexes 

that can cover large vertical and lateral distances (Cartwright and Hansen 2006, Magee et al. 

2016). Sill complexes commonly form in mafic systems where magma flows easily, while 

intrusive in granitic systems are more viscous and more commonly form laccoliths and plutons 

(Bryan and Ferrari 2013).  Studies of igneous intrusion in 3D seismic reflection data have 

shown that these interconnected sill networks, play a major role in transporting magma 

through the crust (Cartwright and Hansen 2006, Holford et al. 2013, Schofield et al. 2015), 

implying that existing models of vertically stacked systems are potentially oversimplified. 

Consequently, igneous intrusions in sedimentary successions can present a risk to 

hydrocarbon exploration, but can also be beneficial to hydrocarbon systems under some 

circumstances (e.g. Senger et al. in press). Magmatic sills may act as potential pathways for 

hydrocarbon migration, act as conducts, lead to compartmentalization of petroleum systems 

and influence reservoir properties (Holford et al. 2013, Schofield et al. 2015). Igneous 

intrusions are also important water reservoirs and barriers several places, e.g. in the arid 

Karoo Basin in South Africa (Chevallier and Woodford 1999), and they can be an important 

factor in CO2 sequestration and underground repositories as they can act as barriers for CO2 

reservoirs and aquifers (Senger et al. 2013).  

Interpretation of 3D seismic data and fieldwork have led to a good understanding of relatively 

shallow emplaced intrusions (<1,5km) (Cartwright and Hansen 2006, Hansen and Cartwright 

2006, Schofield et al. 2015). These shallow intrusions have a saucer shaped geometry, and are 

easy to observe and image in seismic, because of the high impedance contrast between the 

sediments and the sills (Cartwright and Hansen 2006). As a consequence, shallow igneous 

intrusions are commonly seen as high amplitude reflections in the seismic (Magee et al. 2015). 
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However, sill intrusions that are emplaced at deeper depths (>1,5km), which have a more 

planar geometry, are generally much less understood than shallow intrusions. 

There are several reasons for why deep intrusions are less understood than shallow intrusions. 

Lack of data is one of the problems. Only a few well exposed, large-scale outcrops that are 

comparable in scale to seismic datasets, have been studied (Hutton 2009, Eide et al. 2017). 

They are also challenging to study due to the inaccessibility of currently active subsurface 

systems, and general lack of exposures of ancient systems at the Earth’s surface (Magee et al. 

2016). Another reason is that deep intrusions are sometimes hard to image in seismic, because 

of the limitation in seismic resolution. They are often poorly imaged, since much of the energy 

can be reflected back from overlying shallower intrusions and lava flows. Comparison between 

seismic and well data has shown that a large proportion of sills in a basin are not identified 

from seismic data, because they are thinner than the seismic detectability. Even though each 

one of these unimagined intrusions may be thin, their total volume is large and combined they 

can have a huge impact in sedimentary systems (Schofield et al. 2015). 

 

The fact that these deep intrusions are so poorly understood both because of poor imagining 

in seismic and lack of data, can lead to problems for reservoir forecasting, mainly in the 

petroleum industry, but also for other application such as CO2 storage (Senger et al. 2013). 

Studies have shown that these deep intrusions are quite common towards the base of some 

basins along the NE Atlantic, that are important for hydrocarbon exploration (Planke et al. 

2000, Skogseid et al. 2000, Skogseid 2001, Schofield et al. 2015). It is therefore important to 

understand the distribution and connectivity of these complexes to reduce exploration risks 

in the petroleum industry. 
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Figure 1.1:  Maps of the study area. a) Map of Traill Ø and the outcrop at Svinhufvuds Bjerge shown in red. b) 
Overview of the NE Atlantic rift system and the conjugate margins. c) Overview of the Møre Basin and the 3D 
seismic dataset. 

More studies are needed in both seismic and in the field to understand these intrusions better. 

Interpretation of deep intrusions in the field can be used as analogues for igneous sill 

intrusions in seismic. Using synthetic seismic modelling of intrusions in the field can offer 

insight that can be used to better understand these deep sills in seismic, and increase the 

understanding of interaction between igneous activity, sediments and faults in general. 

In order to understand these deep intrusions better, this thesis presents the results of a 25 km 

long cliff section of intruded and faulted sedimentary rocks, located on the southwestern side 

of Traill Ø in East Greenland in the western part of the NE Atlantic Margin (Fig. 1.1a,b). The sill 

intrusions on Traill Ø are dolerites (Price et al. 1997), and they form large sill complexes in the 

study area.  The Møre Margin in the Norwegian Sea (Fig. 1.1b,c) shares much of its history 

with the conjugate Traill Ø. Therefore, this outcrop on Traill Ø can be used as an analogue for 

the Møre Margin. 

The aims of this thesis are: (1) to investigate large-scale architecture and controls on intrusions 

emplaced in a complex host rock with faults and variable stratigraphy in a world class outcrop 
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on the southwestern side of Traill Ø (East Greenland), (2) to use synthetic seismic modelling 

of the studied sill complex to investigate how thick (>100 m) sill complexes would be imaged 

in seismic data; and (3) compare the exposed intrusions on Traill Ø with equivalent intrusions 

from seismic data from the Møre Margin as an analogue to the Møre Basin.
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2 Geological history 
 

2.1 Tectonic history of the region 

Since the Devonian and the collapse of the Caledonian orogeny, the NE Atlantic Rift System 

has experienced several rift events (Ziegler 1992, Surlyk 2003). The rifting culminated with the 

onset of seafloor spreading in the Norwegian-Greenland Sea around 55 million years ago 

(Price et al. 1997, Brekke and Nøttvedt 2000, Fig. 2.1c). The NE Atlantic region experienced a 

similar geological development, from the Caledonian orogeny and the breakup of Pangea in 

the Paleozoic, to the opening of the NE Atlantic Ocean in the Paleogene (Stoker et al. 2016). 

Before break up Traill Ø and East Greenland lay adjacent to the Norwegian Continental Shelf 

(Fig. 2.1a and b), however following the onset of seafloor spreading, the Norwegian and the 

Greenland Margin evolved separately (Price et al. 1997, Whitham and Price 1997).  

The result of these pre-Paleogene rift events in East Greenland was west-dipping rotated fault 

blocks bounded by a series of east dipping normal faults with large displacement. In the 

studied area, the spacing between faults is around 5-30 km, and the maximum vertical throw 

up to several kilometers (Price et al. 1997, Whitham and Price 1997).  

The formation of a series of north-south trending extensional basins, started during the 

Devonian along the Greenland-Norway Margin, after the collapse of the Caledonian orogeny 

(Surlyk 1990, Surlyk 2003). This basin initiation was a result of the first rift event in the Middle 

Devonian (Larsen and Bengaard 1991, Surlyk 2003). Since that time, the zone of major 

extension and subsidence in NE Greenland has migrated eastward in a stepwise manner 

(Schlindwein and Jokat 1999). The basin initiation in the Devonian was caused by extensional 

dip-slip faulting, and sinistral transpressional faulting, and was restricted to the west by the 

Fjord Region detachment (Larsen and Bengaard 1991). This rifting resulted in two major NNE-

SSW trending normal faults that crops out in the inner fjord of East Greenland, west of Traill 

Ø. These faults separated N-S trending fault blocks around 90 km wide, and they had large 

displacements (Larsen and Bengaard 1991).  

In the Late Devonian to Visean (early Carboniferous) times, and during late Carboniferous, E-

W extension occurred in East Greenland (Stemmerik et al. 1991). In the Traill Ø region, 
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Carboniferous strata have a low regional dip (<20°) suggesting a low stretching factor for these 

rift events (Whitham and Price 1997). The next rift phase happened in Early Triassic, and is 

recognized by an increase in basement subsidence rate (Price et al. 1997). Several west-tilted 

half-grabens were formed in the Early Triassic in East Greenland, and a marine seaway was 

situated between Greenland and Norway (Ziegler 1992, Stoker et al. 2016).  

The next rift phase is the rifting between Middle Jurassic (Bajocian) and Late Cretaceous 

(Valanginian) (Price et al. 1997, Whitham et al. 1999). On Traill Ø, the start of this rift event is 

recognized by increased basement subsidence. The fault evolution in this period can be 

divided into two stages. The first stage is characterized by Middle and Upper Jurassic 

sediments thickening towards the west towards the Månedal Fault on Traill Ø (Fig. 2.2). The 

thickening of the sediments had a greater extent than present-day fault spacing. This means 

that the extension happened on wider fault blocks than seen today (Price et al. 1997). The 

second stage of fault evolution in this period, happened in Early Cretaceous, and is 

characterized by the development of new faults and narrower fault blocks than what is seen 

today. During this rift event, the major faults within the study area, Mols Bjerge, Laplace 

Bjerge and Vælddal faults (Fig. 2.2) were formed in the Traill Ø region, followed by erosion of 

Jurassic strata on their uplifted footwall crest. After this rift event, fault block crests in Traill Ø 

were buried by Cretaceous marine mudstone (Whitham and Price 1997). These Cretaceous 

sediments were deposited during thermal subsidence of the NE Atlantic rift system (Price et 

al. 1997).  
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Figure 2.1: Paleogeographic map of the NE Atlantic during a) deposition of the Traill Ø Group, b) deposition of 
Jameson Land Group, c) main phase of rifting and emplacement of the Paleogene sill intrusions. d) Present-day 
setting. Modified from (Blakey 2012). 
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The most important phase of rifting in relation to structures and sedimentology in East 

Greenland, seen by normal faults and fault block rotation, was the rifting during the Cenozoic. 

The reason is that most of the faulting and fault block rotation in Traill Ø was a result of 

Paleogene rifting. Two periods of rifting happened in the Traill Ø region during the Cenozoic 

(Price et al. 1997). The first period of rifting may have been initiated in the latest Cretaceous 

as seen from the conjugate Norwegian Continental Shelf (Skogseid et al. 1992), and the rift 

event eventually led to development of oceanic crust. This rift phase is associated with 

voluminous igneous activity (Larsen et al. 1989, Brooks et al. 2011), which is treated in detail 

in Section 2.3 of this thesis. In Traill Ø, Cenozoic pre-breakup fault displacement was mostly 

shared between two faults, and therefore the stretching was accommodated on the two 

bounding faults of a 10 km wide fault block (Price et al. 1997).  

The second rift event during the Paleogene was related to the westward shift of the spreading 

ridge, from the now extinct Ægir Ridge to the presently active Kolbeinsey Ridge (Talwani and 

Eldholm 1977, Mjelde et al. 2008). This resulted in the separation of the Jan Mayen 

microcontinent from the East Greenland Margin around 36 Ma (Price et al. 1997, Larsen et al. 

2014).  

This second Paleogene rift event was mostly associated with internal breakup of existing fault 

blocks in the Traill Ø region. In addition to new faults forming, almost all preexisting faults in 

this region were reactivated, indicated by the displacement of post-Cretaceous igneous 

intrusions. The post-magmatic extension led to internal break up of fault blocks, and the fault 

displacement was more evenly distributed between faults (Price et al. 1997). Extension in the 

Paleogene was greater in the crust east of the Månedal Faults (Fig. 2.2), relative to the region 

to the west (Parsons et al. 2017). 

Uplift of the East Greenland Margin during the Cenozoic resulted in exhumation of deeply 

buried Mesozoic and Paleozoic stratigraphy.  In the Traill Ø region, the amount of exhumation 

is 1.5-3.0 km from the Miocene to the present, and it increased towards the west (Price et al. 

1997, Thomson et al. 1999).  
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Figure 2.2:  Geological map of Traill Ø. Modified from Parson et al. (2017). Location of studied outcrop is located 
at the profile A-A’. 

Three regional phases of post-breakup uplift and exhumation of Eastern Greenland have 

shaped the present-day topography (Japsen et al. 2014, Parsons et al. 2017).  Post-breakup 
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subsidence and burial continued until the Eocene-Oligocene transition, and a major phase of 

uplift affected the margins along the NE Atlantic at this time. Apatite fission-track data from 

East Greenland also reveal a cooling event that started between 40 and 30 Ma (Thomson et 

al. 1999). This event is believed to be contemporaneous with the alkalic magmatic event 

(Thomson et al. 1999), which is further described in Section 2.3.  Apatite fission track analyses 

suggest that the next phase of exhumation and uplift began in Late Miocene around 10 Ma 

(Thomson et al. 1999, Japsen et al. 2014). The last phase of uplift and exhumation started in 

the Early Pliocene around 5 Ma (Japsen et al. 2014). This event is widespread throughout the 

NE Atlantic region (Thomson et al. 1999, Japsen et al. 2014), and this cooling event is believed 

to be caused by the extinction of the spreading axis in the Labrador Sea, resulting in changes 

in the North Atlantic spreading direction and plate stress regimes (Thomson et al. 1999).

 

2.2 Sedimentological history 

Traill Ø comprises a near complete record of Devonian to Late Cretaceous sediments 

(Whitham and Price 1997, Parsons et al. 2017, see Stratigraphic column Fig. 2.4). The rocks in 

the studied outcrop interval were deposited during the Carboniferous to the Cretaceous (Figs. 

2.3 and 2.4). The stratigraphic record of Carboniferous to Eocene rocks preserved in the East 

Greenland Margin is one of the most important sources and analogues to understand the 

record within offshore basins on East Greenland and the Norwegian continental shelf (Surlyk 

1990, Whitham et al. 1999). 

Devonian strata are found in the western part of Traill Ø (Whitham and Price 1997), and is not 

a part of the studied outcrop (Fig. 2.2). This unit consists of continental deposits (Surlyk 1990, 

Fig. 2.4). Devonian continental deposits continued into the Carboniferous, with the deposition 

of the Traill Ø Group (Vigran et al. 1999, Fig. 2.1a). The Traill Ø Group mainly consists of 

sandstone, interbedded with mudstones and coals, deposited in a fluvial and lacustrine 

environment (Surlyk 1990, Fig. 2.4).  
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Figure 2.3:  Geological cross section of the southwestern coast of Traill Ø showing stratigraphy and fault block geometry. See Fig. 2.2 for location. Modified from Parson et 
al. (2017). 
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Figure 2.4: Stratigraphy in Traill Ø. Grey areas represent stratigraphy which is not present in the studied 
outcrop, but is present at Traill Ø. Modified from Parson et al. (2017).  
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The Carboniferous-Permian boundary is marked by a regionally extensive unconformity. This 

unconformity was caused by uplift and erosion of rift blocks in Late Carboniferous-Early 

Permian before deposition of Late Permian strata on top of this angular unconformity (Surlyk 

1990). The structural setting during the Permian-Triassic period was a N-S trending rift basin 

along the NE Greenland Margin (Stoker et al. 2016). Permian record shows an overall 

development from fluvial deposits, followed by shallow marine, platform evaporites, basinal 

evaporites, carbonate and marine mudstone deposits of the Foldvik Creek Group (Surlyk 1990, 

Fig. 2.4).  

Conglomerate, sandstone and mudstone of the Permian Huledal Formation were deposited 

by alluvial fans passing into fluvial braidplains and intermontane lakes, and they represent the 

initial phase of subsidence by thermal contraction after a long period of extension (Surlyk 

1990). A major regional transgression took place in Middle-Upper Permian in East Greenland 

at the end of the deposition of Huledal Formation, and resulted in the formation of a shallow 

marine hypersaline deposits. These deposits are a part of the Karstryggen Formation (Surlyk 

1990). Towards the top of the Permian sequence is the deposits consists of the largely 

contemporaneous carbonates and source rock prone interval of organic rich shale of the 

Wegener Halvø and Ravnefjeld Formations (Christiansen et al. 1993). The last deposits in 

Permian represent siliciclastic basin fill of the Schuchert Dal Formation, which was deposited 

during relative sea level fall, where subsidence could not keep up with the sediment supply 

(Surlyk 1990).  

A major sea level fall during the Upper Permian marked the transition into the Triassic. In Traill 

Ø, Triassic deposits are dominated by marginal marine sediments and continental deposits of 

the Scoresby Land Group (Stoker et al. 2016). In the Early Triassic, the Permian succession was 

eroded along the basin margin, and the sea rapidly retreated over the Permian basin, leaving 

behind a thick succession of shallow marine deposits of the Wordie Creek Formation (Parsons 

et al. 2017). This Lower Triassic sequence is up to 1 km thick on Traill Ø, and consists of 

sandstone, conglomerates, shales and some minor carbonates. After the Early Triassic, the 

marine basin filled in, and the rest of the Triassic deposits are mostly characterized by 

continental deposits (Surlyk 1990, Stoker et al. 2016).  
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Table 2-1: Stratigraphy of Jurassic strata in the Traill Ø area. Only mid-Jurassic strata are present in the studied 
outcrop. 

 

The lower boundary of the Jurassic is an erosional unconformity against the Triassic in the 

Traill Ø area (Stoker et al. 2016). The Middle-Upper Jurassic succession consists mainly of 

sandstone from the Jameson Land Group (Table 2-1), which represent a major 

northwestwards expansion of shallow marine facies (Parsons et al. 2017). The Bernbjerg 

Formation is poorly preserved in Traill Ø, and absent in the studied outcrop, because of the 

Middle Cretaceous unconformity (Surlyk 2003, Vosgerau et al. 2004, see Table 2-1 for detailed 

description of each formation).  

Today Jurassic strata are exposed as scattered outcrops onshore along the East Greenland 

Margin (Fig. 2.2). The scattered outcrops are a result of deposition in the crest of partly eroded 

tilted fault blocks (see cross section Fig. 2.3), leading to wedge shape geometries of exposed 

units. Along the studied outcrop, Jurassic strata are exposed on the eastern side of the 

Svinhufvuds Bjerge on the hanging wall of the Månedal Fault. In this location, only the Pelion 

Formation and the Bristol Elv Formation are present (Whitham and Price 1997, Therkelsen 

2016). Interestingly, sandstone of the Pelion Formation forms the reservoir rock of the 

exhumed hydrocarbon trap which is exposed in Svinhufvuds Bjerge within the study area 

(Whitham and Price 1997). 

The Cretaceous succession is exposed on top of the Jurassic strata along the eastern part of 

the studied outcrop in Traill Ø, and the Månedal Fault forms the western limit of preserved 

Cretaceous deposits (Parsons et al. 2017, Figs. 2.2 and 2.3). Deposits of Cretaceous age occur 

along a system of narrow fault blocks. The succession is dominated by dark-grey marine silt 

and mudstones with intervals of coarse-clastic deep-water deposits, possibly related to rift 

related fault events, footwall uplift and erosion. On Traill Ø, this succession is up to about 2 

Jurassic strata

Group Formation Age Lithology Environment Reference

Bristol Elv Fm.
Mid-

Sandstone, thin shales 

and coals
Braided rivers Therkelsen and Surlyk (2004)

Jameson 

Land Gp.
Pelion Fm.

Jurassic Sandstone and thin 

shales
Shallow marine Parson et al. (2017)

Olympen Fm. Late - Sandstone Shallow marine Alsen and Surlyk (2004)

Hall 

Bredning Gp.
Bernbjerg Fm.

Jurassic Micaceous organic rich 

shale with thin 

sandstone laminae

Anoxic and low 

energy shelf

Surlyk (1990), Strogen et al. 

(2005)
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km thick (Surlyk and Noe-Nygaard 2001).  

In addition to these sedimentary rocks, Cenozoic igneous rocks are abundant in the Traill Ø 

area. These are described in Section 2.3 (Igneous history). 

 

2.3 Igneous history 

Continental breakup of the Northeast Atlantic led to extensive magmatism along 2000 km of 

the rifted margin (Brooks 2011). Along the East Greenland and Norwegian Margin, the plate 

started to separate during the Early Eocene, and resulted in extensive Paleogene igneous rocks 

(Brooks 2011).  

There are two main periods of magmatism related to the continental break up in the NE 

Atlantic during the Paleogene, with ages of c. 62-58 Ma and c. 57-53 Ma (Hansen et al. 2009, 

Brooks 2011). Both of these magmatic periods are often implied to relate to the arrival of the 

Icelandic plume, and the main phase of rifting and continental breakup (Hansen et al. 2009, 

Larsen et al. 2014). The magmatism on Traill Ø corresponds to the second period (Price et al. 

1997). 

Around the time of break up, the NE Greenland Margin was located immediately west of the 

Norwegian Margin (Fig. 2.1c). Early Eocene magmatism in NE Greenland and in the 

Møre/Vøring Margin had a close spatial relationship (Upton et al. 1995), and there is an early 

Eocene igneous complex that link these two margins together during the early stage of 

seafloor spreading (Skogseid et al. 1992, Olesen et al. 2007).  

Following the onset of seafloor spreading, the margins evolved separately. On the Norwegian 

Continental Margin, magmatism ceased, and went into compression (Price et al. 1997), while 

on East Greenland magmatism continued into Early Oligocene times (Upton et al. 1995, Price 

et al. 1997). 

Magmatism on Traill Ø can be divided into two periods, one at c. 54 Ma and another at c. 36 

Ma, based on dated specimens (Price et al. 1997, Larsen et al. 2014). Each of these periods is 

related to one of the periods of Paleogene rifting, described in Section 2.1 above.  The first of 
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these periods happened in Early Eocene and gave rise to a large amount of tholeiitic sills and 

dykes (Upton et al. 1995, Price et al. 1997). A large number of Paleogene tholeiitic dykes and 

sill are intruded into the Late Paleozoic to Mesozoic succession on Traill Ø (Price et al. 1997). 

On Traill Ø, the average section intruded by igneous rock is about 1 km thick, and sill intrusions 

are quite common and some reach thicknesses of up to 200 meters (Price et al. 1997, Larsen 

et al. 2014).  

The second period of magmatism was related to the formation of syenite plutons, and more 

alkaline basaltic intrusions (Price et al. 1997). Two of these large syenite complexes are 

exposed at Kap Parry and at Kap Simpson in the Eastern Traill Ø (Price et al. 1997, Fig. 2.2). No 

intrusives of this period have been documented to occur within the section studied in this 

work (Parsons et al. 2017). This event is dated to be of Late Eocene- Early Oligocene age (c. 35 

Ma), which coincides with the separation of the Jan Mayen microcontinent from the East 

Greenland Margin (Price et al. 1997).  

Igneous rocks in Traill Ø are part of a larger igneous province in East Greenland. Tholeiitic 

intrusions crop out in the entire area around Traill Ø. In addition to intrusions, large amount 

of flood basalts are found in the East Greenland area (Brooks 2011), and seaward dipping-

reflectors are imaged on regional seismic lines (Berger and Jokat 2008). Up to 2 km thick flood 

basalts overflowed the East Greenland Margin during the Paleogene (Larsen and Marcussen 

1992). Uplift and erosion have led to preservation of these Early Paleogene lava successions 

in Hold with Hope, Wollaston Foreland and South of Scoresby Sund (Larsen and Marcussen 

1992, Hald and Tegner 2000). No lava is present in Jameson land and Traill Ø, but plateau 

basalts are found on  Geographical Society Ø at Kap MacKenzie and Leitch Bjerg (Parsons et 

al. 2017, Fig. 2.2), and sills and dykes are quite abundant in all areas. Dating of the tholeiitic 

sills on Traill Ø, support the fact that they were intruded at the same time as the thick basaltic 

lavas were extruded elsewhere (Larsen et al. 2014).  
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3 Theoretical background 
 

3.1 General emplacement mechanisms for sills 

Host rock lithology has an important influence on the emplacement of sill intrusions into 

sedimentary successions. This results in a link between emplacement mechanisms and 

intrusion morphology (Schofield et al. 2012b, Eide et al. 2017, Fig. 3.1). An important control 

in respect to emplacement mechanism is the strength of the host rock at the time of intrusion 

and the ability to act brittle or non-brittle during intrusion.  This brittle or non-brittle 

emplacement mechanism will be controlled to a large degree by the burial diagenesis and the 

cementation history of the host rock prior to the intrusion of magma (Schofield et al. 2012b). 

These two different emplacement mechanisms lead to distinctly different structures 

developing during magma intrusion, and these structures can in some cases be used to 

understand the magma flow direction (Schofield et al. 2012b). 

Steps and bridges (Fig. 3.1a, b) are emplacement structures associated with brittle 

emplacement. Steps form from slightly offset or en echelon segmented intrusion tips that later 

coalesce as one sheet (Rickwood 1990, Fig. 3.1b). The offsets between the segments are 

preserved as steps on sill margins and each segment is therefore parallel to the direction of 

magma flow (Rickwood 1990, Schofield et al. 2012b). Bridges form when two separate 

overlapping sills propagate along horizons with slight offsets. Further inflation of the sills will 

bend the host rock strata between the sills, and create a structure called a bridge (Hutton 

2009, Schofield et al. 2012b). On the outer bend of these bridges, tensile cross fractures may 

develop perpendicular to the bridge. If inflation of the sills continue the tensile stress will 

increase, and cross fractures may breach the bridge linking the two sills, creating a broken 

bridge (Hutton 2009, Schofield et al. 2012a, Fig. 3.1b). Bridges and broken bridges seen in 

cross sections indicate that magma flow direction was perpendicular to the outcrop (Hutton 

2009). 

Non-brittle/ductile propagation of magma leads to formation of magma fingers and magma 

lobes (Fig. 3.1c). These structures will often occur in host rock with low mechanical strength 

and cohesion. Magma emplacement in these cases leads to the development of a viscous-

viscous interface between host rocks causing the magma to create magma fingers (Pollard 
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1973, Schofield et al. 2012b). Intrusion into poorly consolidates sediment can form a zone of 

incoherent and clast like mixture of sediment and igneous rock called ‘peperite’ (Fig. 3.1d,e), 

as a result of dynamic interaction between sediments and magma (Skilling et al. 2002). If 

several small-scale magma fingers coalescing, magma lobes can be constructed. The term lobe 

is often more used in seismic as lobes often are observed in seismic (Schofield et al. 2015). 

The final intrusion morphology can be used to understand the magma emplacement 

mechanism and host rock properties during intrusion (Schofield et al. 2012b). Figure 3.1 shows 

brittle and non-brittle magma emplacement structures and their features.  

 

Figure 3.1: Overview of brittle a,b) and non-brittle c-e) emplacement structures and their features. From Eide et 
al. (2017). a) Steps on sill margin and how these relate to magma propagation direction. b) Devlopment of 
broken bridges. c) Development of magma fingers. d, e) Example of perperite. 
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3.2 Emplacement models 

Emplacement mechanisms of sill intrusions are still poorly understood, and a large range of 

various models exists. It is clear from the underlying assumptions that some models are more 

applicable in certain cases and in certain host rocks than others. These models are summarized 

briefly here and in Figure 3.2: 

3.2.1 Linear Elastic Fracture Mechanism (LEFM)-Splitting Model 

The LEFM-Splitting Model is the most commonly accepted model. It assumes that the host 

rock behaves purely elastic, and sills propagate by tensile fracturing of the surrounding rock 

(Fig. 3.2a) (Pollard 1973). This model is normally used for modelling of sheet intrusions (e.g. 

Kavanagh et al. 2013), and the displaced host rocks show little deformation ahead of the 

fracture tip.   

3.2.2 LEFM Barenblatt Cohesive Zone Model 

Rubin (1993) suggested that the LEFM-Splitting Model was too simplistic, and proposed a 

cohesive plastic zone at the intrusion tip.  In this model, the intrusions will also propagate by 

tensile fracturing of the host rock, however suction induced by the tip cavity will lead to 

compression, and the host rock is expected to be pulled into the sill tip (Fig. 3.2b). 

3.2.3 Brittle and ductile faulting models  

Sill intrusions are known to commonly follow host rocks of certain lithologies, such as 

mudstone (Pollard et al. 1975, Thomson 2007, Schofield et al. 2010, Magee et al. 2014). 

Mudstones are easily deformed in an inelastic manner, which indicate that the LEFM models 

cannot explain these type of emplacement mechanisms. These emplacement mechanisms are 

better explained by inelastic deformation of the host rock. 

Pollard (1973) came up with two models explaining the propagation of the magma, brittle or 

ductile faulting (Fig. 3.2c,d). The propagation of magma can lead to faulting ahead of the 

intrusion tip, and these faults will accommodate the compression of the propagating magma. 

The main difference between these models is that brittle faulting has a 30° shear plane, and 

the ductile has a 45° shear plane (Pollard 1973). 
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3.2.4 Fluidization Model 

Propagation of magma can also be accommodated by fluidization of host rock (Schofield et al. 

2010, Schofield et al. 2012b). As magma is emplaced into the host rock, it heats up the 

surrounding rock. This can lead to boiling of the pore fluids and the resulting pressure build-

up in the rock, can trigger fluidization (Schofield et al. 2010, Fig 3.2e). This model can produce 

magma fingers and the so-called ‘perperite’ explained in Section 3.1 (Schofield et al. 2012b, 

Fig. 3.1d,e). 

3.2.5 Viscous Indenter Model 

The magma viscosity also plays a major role during magma emplacement, and magma 

propagation can form complex systems. In this model, the viscous shear stresses near the 

magma tip are higher than the host rock strength (Galland et al. 2014). This result in magma 

pushing rock ahead of the sill tip like an indenter with a blunt or rectangular tip (Abdelmalak 

et al. 2012, Fig. 3.2f). 

 

Figure 3.2: Sill emplacement models. Pm is the overpressure in the magma pushing on the sills. Elastic models: 
a) LEFM -Splitting Model and b) LEFM-Barenblatt Cohesive Zone Model. Inelastic models: c) and d) Brittle and 
Ductile Faulting Model, e) Fluidization Model and f) Viscous Indenter Model. From Spacapan et al. (2016).  
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4 Data and methods 

In this chapter, the data and the methods used in this thesis will be presented.  This includes 

digital LIDAR outcrop data from East Greenland (4.1), which was used for large-scale 

interpretation and study of the relationships between stratigraphy, faults and igneous 

intrusions. This LIDAR model is the basis for the seismic modelling, which will be presented in 

Section 4.2. Digital outcrop models allow for detailed interpretation of sub-seismic geometries 

and structural relationships.  The use of synthetic seismic modelling illuminates what can and 

cannot be imaged in offshore seismic data. Comparing synthetic seismic to intrusions imaged 

in actual seismic data from the Møre Margin (Section 4.3) can inform seismic interpreters to 

create more confident interpretations and improve our understanding of sills observed in 

seismic data. The use of synthetic seismograms obtained from outcrop observations also 

provide valuable insight into the limitations of reflection seismic data, particularly illumination 

and resolution, and interpretation issues related to these limitations.  

4.1 LIDAR data 

The study area is located on the southwestern coast of Traill Ø in East Greenland (Fig. 1.1a). 

The area is called Svinhufvuds Bjerge, and the dataset consists of a 25 km long and 1 km thick, 

high-resolution virtual outcrop model (Fig. 4.1) acquired using oblique helicopter-mounted 

laser scanning, also known as LIDAR scanning. LIDAR data can be an easy and time efficient 

method for obtaining outcrop data, and it can be an useful tool for studying large-scale 

architecture and geometries. LIDAR (light detection and ranging) uses laser light to measure 

distances (Buckley et al. 2008). A laser is a very stable beam of light, which results in low 

divergence over long ranges. Laser travels at the speed of light, which means that large 

amount of measurements can be taken in a short period. Because of this rapid data 

acquisition, it is  possible to cover large areas and high cliffs in a short period of time (Buckley 

et al. 2008).  
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Figure 4.1: LIDAR virtual outcrop model from Svinhufvuds Bjerge at Traill Ø, East Greenland. The entire outcrop 
is 25 km long and 1 km high.  

Data collection was conducted using methods described by Buckley et al. (2008). The data 

were acquired using a laser scanner combined with a digital medium-format camera. Using a 

flying data acquisition platform is a great advantage as it provides good coverage of the 

outcrop as it can maneuver and can be positioned where images can be taken orthogonally to 

the outcrop, resulting in a detailed outcrop model (Buckley et al. 2013). 

The LIDAR scanner collects a large number of 3D data points from the outcrop. Each of these 

points corresponds to a measurement of the shape of the outcrop, and the entire cloud of 

such points record the shape of the entire study area. The point-cloud is later processed into 

a 3D model of the outcrop. Digital images are also captured in the field at the same time as 

the laser scanning, and these images have been used to texture the 3D model. This yields a 

photorealistic 3D model of the outcrop, which has been used to interpret sedimentary, 

structural and igneous features. The distance from the helicopter to the outcrop during data 

acquisition was c. 350 m, resulting in a point spacing of 50 cm and a pixel resolution in the 

finished models of 7 cm.  

4.1.1 Interpretation of LIDAR data 

The interpretation was done by visually inspecting features in the LIDAR outcrop model 

focusing on intrusions, emplacement structures, sedimentary beds and structural elements 

such as faults. The software LIME was used to do this interpretation. 

The magmatic intrusions are seen as dark brown bodies in the outcrop. The strong color 

contrast between the intrusions and the stratigraphy makes them relatively easy to recognize 

(Fig. 4.2). However, there are some difficulties in places where the LIDAR model has limited 

resolution or in areas where the intrusions are covered by scree. In order to improve the 
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interpretation in some of these areas where the resolution is low, the unprocessed images 

taken of the outcrop during the data acquisition have been used to pick the intrusions margins 

more confidently, as these have slightly higher resolution. 

 

Figure 4.2: Interpretation of intrusions (outlined). Strong color contrast between the dark brown intrusions and 
the stratigraphy makes the intrusions easy to interpret. 

The stratigraphy of the outcrop includes sedimentary succession from the Carboniferous to 

the Cretaceous. Some of the boundaries between these units have been difficult to define 

confidently because sedimentary logs from the outcrop have not been available to me during 

the study, and because no fieldwork was conducted as part of this thesis work. Comparison to 

previous work has therefore been critical in order to reliably define the stratigraphy (Table 4-

1).  

The stratigraphy of the area is complex, and consists of several relatively thin units. For this 

study, the stratigraphy has been grouped into seven units, which can be confidently 
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recognized across the entire outcrop (Table 2-1). In the outcrop, the base of the upper 

Permian succession is an angular unconformity with the underlying Carboniferous Traill Ø 

Group (Parsons et al. 2017). In some exceptionally well-exposed locations, this angular 

unconformity is obvious (Fig. 4.3). In the LIDAR data, the Permian succession, which consists 

of the Foldvik Creek Group, two units have been interpreted: The first consists of the Huledal 

Fm (sandstone and conglomerate), Karstryggen Fm (evaporites, carbonates and mudstone) 

and the Wegener Halvø Fm (carbonates), and the second unit is the Ravnefjeld Formation 

(organic rich shale). The boundaries between all of the Permian units are hard to correlate 

throughout the outcrop, however at some places you can observe the contacts (Fig. 4.3). 

 

Figure 4.3: Showing detailed interpretation of the Permian Foldvik Creek Group. In the LIDAR data, the Permian 
succession has been interpreted as two units. Notice that the Carboniferous succession has been interpreted as 
one unit.   

In Traill Ø, the Triassic succession is almost entirely made up of the Wordie Creek Formation 

(Bjerager et al. 2006). However, the Pingo Dal Formation and the Fleming Fjord Formation are 

also present, but they have been interpreted as one unit since they show similar lithologies. 

In addition, it is difficult to pick the boundaries between these units across the outcrop. 

However, red colored strata indicate Triassic Pingo Dal Formation on the left side of the fault 

(Månedal Fault in Fig. 4.4), while red colored strata at the right side of the fault is interpreted 

as the Fleming Fjord Formation (Therkelsen and Surlyk 2004). 
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Table 4-1: Interpreted units along the outcrop. 

   

  

 

 Interpreted unit Age Nature in litterature
Defining characterics used to interpret 

(base)
Any particular issues

Figure showing 

interpretation
Key references

Traill Ø Group Carboniferous

Coarse to medium grained sandstone, 

interbedded with minor mudstone and 

coals

Base Carboniferous is not seen along the 

outcrop
Figure 4.3 Parson et al. 2017

Foldvik Creek Group: 

Huledal Fm., Karstryggen 

Fm., Wegener Halvø Fm.

Upper Permian
Conglomerates, sandstones, carbonates 

and evaporites (gypsum)

Angular unconformity with underlaying 

Traill Ø Gp. Picked under rhe resistant 

Huledal conglomerate layer

Correlation of the 

different formations 

within this group is 

challenging 

Figure 4.3 Bugge et al. 2002

Foldvik Creek Group: 

Ravnefjeld Fm.
Upper Permian Black organic rich shale Color change to black Figure 4.3

Bugge et al. 2002 

Christiansen et al. 1993

Scoresby Land Group: 

Wordie Creek Fm./Pingo 

Dal Fm./Fleming Fjord 

Fm.

Early Triassic

Gray-green mudstones and sandstone 

overlain by red mudstone and 

sandstone

Picked at Ravnefjeld Fm. upper boundary Figure 4.4
Bjerarger et al. 2006 

Parson et al. 2017

Jameson Land Group: 

Bristol Elv Fm.
Mid Jurassic

Yellow /whitish sandstone with a few 

mudstone layers

Slight colour change from the underlying 

Triassic deposits

Difficult to pick base 

Jurassic
Figure 4.4 Therkelsen 2016

Jameson Land Group: 

Pelion Fm
Mid Jurassic Yellow homogenous sandstone

Contrast between sandstone with 

mudstone layers and homogenous 

sandstone

Difficult to see transition 

from Bristol Elv to Pelion 

Fm.

Figure 4.4 Therkelsen 2016

Hold with Hope Group Late Cretaceous Dark mudstone
Color contrast between Cretaceous 

mudstone and light Jurassic sandstone
Figure 4.4 Parson et al. 2017
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Figure 4.4: Interpretation of Triassic, Jurassic and Cretaceous strata. In the LIDAR data, the Triassic succession 
has been interpreted as one unit as it is hard to pick the boundaries between the Wordie Creek Formation and 
Pingo Dal Formation. 

The basal contact of the Cretaceous is an angular unconformity (Parsons et al. 2017). The 

angularity of this contact is not evident in the outcrop data, but the boundary is interpreted 

at an upwards color change from yellow sandstone to dark mudstone.  

Faults have been interpreted where there either is an offset in the stratigraphy or in the 

intrusions. Most intrusions have been cut by faults, and only a small number are not. 

The final interpretation of the LIDAR outcrop was exported as an image file and then made 

into a geological model. The model consists of a number of colors, where different colors 

represent intrusions and different stratigraphic units. For detailed description, see Section 

4.2.1. 
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4.2 Seismic modelling 

Seismic modelling is a necessity to understand wave propagation in the subsurface, and 

modelling can guide geological interpretation of real seismic data. In addition, digital outcrop 

models with large amount of details can lead to more realistic geological models, and these 

models can thus be used to do more adequate seismic modelling, in order to get insight into 

complex geometry in real seismic data (Lecomte et al. 2016). 

Seismic modelling can be done in a number of ways, including full-wavefield methods like 

finite-difference modelling, and ray-based approaches such as 1D convolution and 2D 

convolution (Lecomte et al. 2015). These methods vary in their complexity and their accuracy. 

A 2D ray-based convolution modelling has been chosen here because it provides suitable 

results with a method that is sufficiently easy to use. Another advantage is that the method 

may be run within a short enough timeframe (Lecomte et al. 2016) considering the scope of 

work that must be done in this thesis.  

The selected 2D ray-based convolution method simulates pre-stack depth migrated (PSDM) 

seismic sections. This method builds a filter function in the wavenumber domain (PSDM filter), 

which is equivalent to a point spread function (PSF) in the space domain, i.e., PSF and PSDM 

filters are related by the Fourier Transform. The PSF is actually the response of a point 

scatterer through seismic imaging and corresponds to the convolution operator applied to the 

input geological model in the 2D convolution modelling (Lecomte et al. 2003). This method 

provides cost-effective modelling for geological interpretations, and gives more reliable 

results than the standard 1D convolution method geologist tends to depend on when more 

advanced modelling is not affordable (Lecomte 2008, Lecomte et al. 2015, Magee et al. 2015). 

In 1D convolution modelling, each seismic trace of a section is generated individually by 

convolving the vertical reflectivity log with a given wavelet. The method is used to generate 

post-stack time-migrated seismic sections by gathering each modelled trace side by side. This 

gives a good estimate of the vertical resolution and is extensively used to study, e.g., tuning 

effects at wedges. However, the concept derives from a very simple geological model, i.e., 

homogenous horizontal layers, and no lateral resolution effect from seismic imaging or lack of 

illumination is accounted for. This method is therefore too simplistic to aid interpretation of 
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complex geological models, such as igneous intrusions, which exhibits extremely complex 

architectures. On the contrary, the 2D ray-based convolution derived from a PSDM imaging 

approach takes also into account lateral resolution and illumination effects. 

Theoretically, the vertical resolution is defined as a quarter wavelength, λ/4, and defines the 

tuning thickness (Herron 2011, Simm et al. 2014). Lateral resolution is defined by the Fresnel 

zone, which is defined by constructive interference over an area along the wavefront and is 

larger than λ/2 (Fig. 4.5). However, seismic migration collapses this zone to a lateral resolution 

of λ/2 in standard imaging (Herron 2011, Simm et al. 2014), and in an ideal case, lateral 

resolution should be λ/4 (perfect illumination). In the 2D convolution modelling, the PSF 

shows us numerically how a diffraction points appear after (PSDM) migration. As even 

reflectors can be decomposed into dense set of point scatterers (Huygens’ principle), the PSF 

provides a tool for analyzing both resolution and illumination issues, as will be discussed in 

the following section. 

 

Figure 4.5: Illustration of the Fresnel zone. The Fresnel zone is defined by constructive interference over an area 
along the wavefront. Modified from Herron (2011). 

Figure 4.6 illustrates the key elements of the modelling process, which is described in detail in 

Lecomte (2008). The first step is to calculate the illumination vector ISR at a given reference 

point in the target (Fig. 4.6a). This vector is the difference between two slowness vectors 

(inverse of velocity) PS (from a shot S) and PR (towards a receiver R) at the reference point (Fig. 

4.6b). Ray tracing in a background velocity model down to the reference point (Fig. 4.6a) gives 

PS and PR. Their length is proportional to the slowness at the reference point and their 

orientation depends on ray bending in the velocity model.  
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Figure 4.6: a) Raypaths towards a reference point. Background model are used to calculate ISR  b) The 
illumination vector (ISR), calculated from the slowness vectors PR,PS. c) ISR  shows one illuminated reflector. θSR is 
the incident angle. d) A ISR span with a range of different illuminated reflector dips. e) Unknown background 
model: use a generic ISR span. From Lecomte et al. (2016). 

ISR is characterized by its length and orientation, but the length is not only defined as a function 

of velocity (V), due to the length of PS and PR, but also by the opening angle between the 2 

slowness vectors (opening angle = 2 x θSR in Fig. 4.6c). The larger the velocity V, the shorter ISR 

is. Similarly, the wider the angle θSR, the shorter ISR is. Note that θSR increases with the offset 

(distance) between S and R, so a large offset means a short ISR. The orientation of ISR results 

from the combination of PS and PR (Lecomte et al. 2016).  Both length and orientation of ISR 

are key controlling factors of the resolution and illumination effects in seismic imaging. In 

particular, the orientation of ISR indicates which reflector dips can be illuminated: reflectors in 

the vicinity of the reference point and perpendicular to ISR will be seen as primary reflections 

for the considered (S, R) pair, this according to Snell’s law; θSR (Fig. 4.6c) is the incident angle 

in that case. 

Different set of (S, R) pairs from a given acquisition survey will give a span of ISR at the 

reference point. The span will thus give us a range of reflector dips that can be illuminated 

nearby that point. The ISR span of Figure 4.6d shows for instance that reflectors dipping more 

than 45° to the left or more than 25° to the right will not be imaged. If there is no available 

background velocity model and survey geometry, generic ISR spans can be created by just 
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defining an average velocity (V), an incident angle (θSR) and the maximum reflector dip to 

illuminate (Fig. 4.6e). V and θSR will control the “height” of that span, while its “lateral opening” 

is controlled by the maximum reflector dip. 

When the illumination vectors have been calculated, the next step is to generate scattering 

wavenumbers KSR(f)=f*ISR, where f is frequency. Multiplying all the ISR with the transmitted 

wavelet (given frequency spectrum) will generate PSDM filters in the wavenumber domain 

(Lecomte 2008). A Fourier Transform (FT) is applied to the PSDM filter to produce the PSF in 

the spatial domain. PSDM simulated images will be created by convolution between an input 

reflectivity model at the target and the PSF (Lecomte et al. 2015).  

 

Figure 4.7: PSDM filter with corresponding PSF after Fourier-transformation of the PSDM filter for respectively 
a) PSDM filter with V=3 km/s, θSR=0°, wavelet with f=20 Hz and max dip angle of ±45°, and  b) PSDM filter with 
perfect illumination (±90°). From Lecomte et al. (2016). 

Figure 4.7a illustrates a generic frequency-dependent ISR span with a symmetric maximum 

illuminated dip (±45°), a 20-Hz Ricker wavelet, an average velocity of 3 km/s and an incident 

angle of 0°. It is also possible to do modelling with perfect illumination (ISR span ±90°) (Fig. 

4.7b). Both cases (Figs. 4.7a and b) will corresponds to a vertical resolution of /4, while the 
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lateral resolution of Figure 4.7a will be /2 (as often quoted in literature), in opposition to the 

perfect case of Figure 4.7b with a lateral resolution of /4 (the PSF is a perfect sphere in the 

latter case).  

In this thesis, neither a background velocity model nor detailed survey information are 

available. Therefore, only PSFs calculated from generic ISR spans are used. By using these PSFs, 

it is however possible to investigate how illumination and resolution react to changes in 

parameters. The 2D convolution modelling is used to investigate how intrusions are imaged in 

PSDM seismic images by using interpretations from the virtual outcrop model. The process 

going from outcrop model to seismic modelling is described in detail in the next section.  

4.2.1 Seismic modelling workflow: From outcrop model to seismic model 

Interpretations of intrusions, faults and sedimentary units were transferred to the seismic 

modelling and modelled using the following five steps (Fig. 4.8): 

1. Interpretations were projected onto a vertical section parallel to the outcrop. In this 

process, distortion of the interpretation can happen in areas were the outcrop is far 

from parallel to the vertical plane, for example in valleys.  The outcrop is slightly bent, 

and in order to accurately reproduce the interpretation of the outcrop, three panels 

parallel to the outcrop have been used.  

2. The projections of the geological interpretations in (1) were exported as three graphic 

files (PNG format), and each of the recognized stratigraphic units (later referred to as 

“blocks”), including the intrusions, were assigned a distinct color using a bitmap editing 

program.  Resolution of 1 m horizontally and 40 cm vertically was chosen, as this 

faithfully reproduces the interpreted geometries, while yielding files that are small 

enough to be handled efficiently by the modelling method. The exported files had the 

following sizes in pixels: 12539x2750, 8312x2750 and 4047x2750. The first panel is 

mostly used for seismic modelling throughout this thesis. 

3. The colored graphic files were turned into 8-bit greyscale graphic files where each 

stratigraphic unit corresponds to a single color value to ease the link between colors 

and block properties.  

4. The graphic files were converted to a SEG-Y file (standard seismic format used by the 
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modelling software) using a python script, and then imported into the 2D convolution 

software. Each grey color from the model now corresponds to a specific stratigraphic 

unit (block) in the new target model. A total of 7 different blocks are defined and each 

block is assigned with homogeneous properties, i.e., constant values all across zones 

with same block index. In order to do the seismic modelling, each of these 

layers/blocks is assigned with different elastic-wave properties as required for seismic 

modelling.  

5. Populating the target model with properties results in a reflectivity model of the 

outcrop. Convolution between the reflectivity model and the PSF results in PSDM 

seismic images. 

 

Figure 4.8: Seismic modelling workflow: showing steps from the interpretation of the LIDAR data to the resulting 
seismic modelling. 
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The elastic properties required in the 2D convolution modelling are P-wave velocity (VP), S-

wave velocity (VS) and density (ρ). Values from the Norwegian Sea have been used in order to 

make the comparison between synthetic seismic data and real seismic data more reliable. The 

values are mostly found from stratigraphy that correspond to or are similar in composition to 

the stratigraphy in Traill Ø. The regional correlations presented by Stoker et al. (2016) have 

been used to identify equivalent stratigraphy across the North Atlantic. Cretaceous, Jurassic, 

Triassic and the Permian Foldvik Creek Group have all equivalents that are similar in 

composition and age in the Norwegian Sea (Table 4-2). However, the Permian Ravnefjeld 

Formation and the Carboniferous Traill Ø Group do not have any clear equivalents.  The 

organic rich Spekk Fm from the Jurassic in the Norwegian Sea is similar to the Ravnefjeld Fm 

as both of them are organic rich mudstone, and values from this formation are used as input 

to the Ravnefjeld Formation. The Carboniferous Traill Ø Group corresponds to a braided river 

system. Since there are no similar drilled deposits of braided river systems in the Norwegian 

Sea, values from The Billefjorden Group from the Barents Sea have been used, since both the 

Trall Ø Group and the Billefjorden Group are of similar age (Carboniferous), and represent 

braided river systems dominated by sandstone, conglomeratic sandstone with interbedded 

beds of mudstone and coal. All the information are taken from well data at a depth of around 

3 kilometer, if possible and present, since the purpose of this study is to image how deep 

intrusions behave at this depth.   

Host rock VP velocities used for the seismic modelling lie between 2,4 - 4,4 km/s (see Table 4-

2 for more details). P-wave velocity for sills are set to 6,0 km/s, as the dolerite intrusions in 

East Greenland (Price et al. 1997) have values comparable to well-studied intrusions from 

West of Shetland by Smallwood et al. (2002). The rock density lie between 2,20 - 2,75 g/cm3 

(Table 4-2). Sills have a higher density than the sedimentary host rock, 3,0 g/cm3 are used in 

the seismic modelling.  

VS have been calculated from the Vp velocities by using Vp/Vs ratios from relevant literature.  

Vp/Vs ratio for the intrusions has been set to 1,86 (Smallwood et al. 2002). The connection 

between Vp/Vs and lithology is quite well established. A low Vp/Vs is associated with sandstone 

(1,6-1,75) and limestone (1,84-1,99), while shales typically have higher values (1,7-3) 

(Domenico 1984, Mjelde et al. 2003).  Another important thing to remember is that the Vp/Vs 
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ratio is influenced by other rock parameter such as porosity, pore fluid, and degree of 

consolidation (Mjelde et al. 2003). The Vp/Vs ratio are proven to decrease with depth, which 

correspond to an increase in compaction and consolidation of the rocks (Mjelde et al. 2003). 

At a depth of around 3-4 kilometers the Vp/Vs ratios have been set to be 1,7 for sandstone, 1, 

75 for shale, and 1,8 for limestone. 

Table 4-2: Summary of properties Vp, Vs and ρ used for seismic modelling including units interpreted on Traill Ø 

and their equivalent stratigraphy in the Norwegian sea, well and depth at which the property is collected and 

additional references. 

 

In the base case model, the seismic properties within each of the stratigraphic units are 

homogenous and identical throughout the layer and there is no internal reflectors. However, 

an alternative model with a more complex layered geological model has also been created to 

investigate the influence of internal stratigraphic heterogeneity on seismic imaging. This 

model includes internal heterogeneities which corresponds to the bedding observed in the 

outcrop. For instance, the Triassic succession predominantly consists of sandstone, 

interbedded with planar mudstone layers. This lamination was modelled as 4 meters thin 

layers placed within the otherwise homogeneous units, and these layers were modelled with 

a 10% decrease in p-wave velocity and density. 

In this thesis, the goal is to model something simple and general, and it is therefore not needed 

to use complicated survey geometries and parameters that will vary from case to case.  PSF 

was generated from user-defined parameters: frequency, average velocity and maximum 

Unit Greenland Unit Norwegian Sea Depth (m) Well References Vp (km/s) Vs (km/s) ρ (g/cm3)

Dolerite intrusions 4400 219/20-1 Smallwood and Maresh 2002 6,0 3,2 3,00

Carboniferous- Traill Ø Gp.

Similar to Billefjorden 

Gp, Soldogg Fm. in the 

Barent Sea

2490 7128/6-1 npd.no factpages 4,4 2,6 2,35

Permian- Foldvik Creek Gp. Zechstein Gp. 1880 6609/7-1
npd.no factpages, Bugge et al. 

2002 2,8 1,6 2,75

Permian- Ravnefjeld Fm. Spekk Fm. 2900 6407/2-1 npd.no factpages 2,5 1,4 2,25

Triassic- Wordie Creek Fm. Grey Beds 2930 6204/11-1 npd.no factpages 3,8 2,2 2,70

Jurassic- Bristol Elv Fm. Fangst Gp, Ile Fm. 3450 6507/3-3

npd.no factpages, Stemmerik 

et al. 1998 3,6 2,1 2,35

Jurassic- Pelion Fm. Fangst Gp, Garn Fm. 3370 6507/3-3

npd.no factpages, Stemmerik 

et al. 1998 3,4 2,0 2,20

Creatceous- Hold with Hope Gp. Cromer Knoll Gp. 3200 6506/12-4 npd.no factpages 3,0 1,7 2,35
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illuminated dip. The average velocity was found by taking the average of the P-wave velocity 

from the lithologies and is set to be 3,2 km/s. The seismic modelling was performed with 

different dominant frequencies, i.e. 10 Hz, 20 Hz, 30 Hz and 40 Hz, in order to observe how 

the different frequencies influence the seismic resolution and imaging. The chosen wavelet 

was of zero-phase Ricker type. In addition, seismic modelling was done by varying the 

maximum illuminated dip, which is also a way of changing the lateral resolution in addition to 

control the illumination of the steeper structures. The PSDM filter, described in Section 4.2, 

not only determines the vertical resolution, but also the lateral resolution by varying max 

illumination dip. The max dip was initially set to 45°, which typically represents a good 

standard seismic acquisition in a rather horizontally layered overburden, thus resulting in the 

standard /2 lateral resolution and no illumination of reflectors steeper than 45°. 

 

4.3 Seismic data and interpretation 

Detailed interpretation of the sill complexes, host rock, and their interaction in the 3D seismic 

dataset is beyond the scope of this work. Rather, the 3D seismic dataset has been used for 

comparison between real seismic data and seismic modelling, since the seismic data give good 

examples of imaging of similar intrusions to those at Traill Ø. Examination of sill intrusion 

geometries in seismic is important, in order to get a better understand of the seismic 

expression of intrusions.  The seismic data can also give insight to the resolvability and 

illumination of deeply emplaced sill intrusions by comparing this to well imaged sills in 

synthetic seismic. Some seismic interpretation of the large-scale geometry of the sills has been 

done to get a better visual image of the deep intruded sills. 

The seismic data used in this work are from the Norwegian Sea on the Norwegian Continental 

Shelf. This area shares much of its history with the conjugate East Greenland Margin, since 

they are at the opposite sides of the NE Atlantic rift system. East Greenland and the conjugate 

Mid-Norwegian Margin have equivalent sedimentary succession, and a large number of sill 

intrusions have intruded both margins. One of the differences is that these sedimentary 

successions are exposed on land in East Greenland. This is a huge advantage since East 

Greenland can be used as a good analogue for better understanding sill intrusions in seismic 
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data. Another important difference is the fact that intrusions in the seismic data are emplaced 

mainly into the Cretaceous mudstone, while on East Greenland intrusions are emplaced into 

different stratigraphy from Carboniferous to the Cretaceous. 

A 3D seismic cube from the Solsikke area located in the northern part of the Møre Basin (Figs. 

1.1b,c and 4.9) is used to compare to the seismic modelling results. The Møre Basin is limited 

by the Jan Mayen lineament to the north, and this lineament divides the Møre Basin from the 

Vøring Basin (Brekke 2000, Fig. 4.9). The basin have a thick Cretaceous succession (Brekke 

2000) and is an example of a rifted volcanic margin. Extensive sill complexes are present in 

large parts of both the Møre and the Vøring Basin.  

This seismic cube covers an area of c. 1050 km2, and the data are zero phase time migrated 

(Hansen and Cartwright 2006). Blue in the seismic data denotes an impedance increase. The 

focus of this study have been the most northwestern side of the cube as intrusions are present 

in this part. Only one well is present in the study area, exploration well 6403/10-1 (Fig. 4.9). 

The exploration well reached a total depth of 3400 m (1700 m below the sea surface, water 

depth 1700 m) and reached Upper Cretaceous sediments. 

 
 
Figure 4.9: Seismic cube from the Solsikke area.  The Solsikke area located south of the Jan Mayen Lineament in 
the Møre Basin. 
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Intrusions imaged in 3D seismic data are characterized by their very strong reflectivity/high 

seismic amplitudes compared to the surrounding host rocks, their lateral discontinuity and the 

tendency to crosscut stratigraphy (Smallwood et al. 2002). They may also exhibit concordant 

relationship with the host rock (Hansen and Cartwright 2006).  Sills in seismic data are referred 

to as continuous sheet, which is either concordant or discordant with the stratal reflections. 

It may be hard to interpret sills, because they can split into several units or several units can 

merge into one unit. Sills can also transgress (move up and down in the stratigraphy), and sill 

intrusions may contain holes (Planke et al. 2005).  

 

Figure 4.10: Seismic section showing shallow and deep sill intrusions in the seismic data.  

On the northwestern side of this cube, there are prominent high amplitude reflections. There 

are both high amplitude reflectors at shallow (c. 3,5 s TWT) and deep depths (4-5,5 s TWT). 

The focus will be at the deep intrusions. Shallow emplaced sills are often saucer shaped in the 

seismic (Fig. 4.10), and have a concave upward geometry, which cross cut the surrounding 
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stratal reflections. Deeply emplaced intrusions may be hard to see in the seismic due to poor 

quality data at depth, and shallow intrusion can mask deeper intrusion by reflecting all the 

seismic energy.
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5 Results  

This section first presents the results from the analysis of the virtual outcrop model (5.1), 

focusing on large-scale structures (5.1.1) and architecture and large-scale intrusive geometry 

and relationships (5.1.2). Secondly the seismic data from the Solsikke Survey are presented 

(5.2) with a summary of the stratigraphy and intrusion geometry of deeply emplaced sill 

intrusions. The seismic modelling results are presented in Section 5.3 with focus on different 

expressions in the modelled seismic as frequency (5.3.1) and maximum dip angle (5.3.2) are 

changed. Finally, the effect of internal layering in the sedimentary sections on imaging of 

deeply emplaced intrusions is investigated (5.3.2). 

5.1 Virtual outcrop model 

 

5.1.1 Large scale structures 

The outcrop consists of 11 rotated fault blocks cut by both post- and pre-magmatic normal 

faults (Fig. 5.1). The Månedal Fault and the Bordbjerget Fault are two of the pre-magmatic 

faults with the largest pre-magmatic displacement (Faults 2 and 13, Fig. 5.2). Around 80% of 

the total pre-magmatic extension is shared between the Månedal Fault and the Bordjerget 

Fault. The pre-magmatic extension was accommodated on these faults, which then bounded 

a 10 km wide fault block (Price et al. 1997). These two faults have also experienced some 

reactivation, and thus have a minor amount of post-magmatic displacement (Price et al. 1997). 

The Månedal Fault has a displacement of over 1 km (Price et al. 1997), and Cretaceous, Jurassic 

and Triassic strata are down thrown against Triassic strata in the footwall.  Pre-magmatic 

deformation of one of the splays to the Månedal Fault (Fault 12, Fig. 5.2) is evidenced by 

undeformed sills and dykes cutting through and following the fault. Carboniferous, Permian 

and Triassic strata are downthrown against Carboniferous strata in the Bordbjerget Fault 

(Fault 2, Fig. 5.2), and the fault has a displacement of around 1 km if both pre- and post-

magmatic displacement are taken into account (Price et al. 1997).  
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Figure 5.1: Overview of the entire outcrop at Svinhufvudsbjerge at Traill Ø showing dolerite intrusions, faults and stratigraphy. Note absence of large faults west of the 
Bordbjerget Fault 

Figure 5.2: Overview of the eastern side of the outcrop showing faults, dolerite intrusion geometry and stratigraphy. The outcrop is shown with a vertical exaggeration of 2x. 
Faults are labeled from 1-14, red faults are pre-magmatic, blue faults are post-magmatic ones and green faults are reverse faults. Dykes are labeled A-E.
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The post-magmatic faults are a result of internal break-up of these earlier formed fault blocks 

with only minor reactivation along the bounding faults (Price et al. 1997). Several post-

magmatic faults are interpreted along the outcrop (Fig. 5.2). They mostly show displacement 

of a couple of meters to around 150 meters, which is minor compared to the kilometer-scale 

displacement on pre-magmatic faults. The intrusions do not show any evidence of interaction 

with these faults, and the architecture of the faults are easily reconstructed by cutting sections 

of images along faults and restoring the sections (Fig. 5.3). This indicates that the faults have 

not formed prior to intrusion, and that they are fully post-magmatic. Some of the faults have 

been reconstructed in Figure 5.3 in order to study stratigraphy and intrusions before the 

faulting, and this shows that the intrusions seems to follow the stratigraphy before they were 

influenced by the post-magmatic faulting.  

 

Figure 5.3: Planar parallel intrusions are easily reconstructed back to their original position by reconstructing the 
post-magmatic normal faults. Reconstructed image obtained by cutting along the faults. There is no visible 
deformation of the intrusions or stratigraphy after the reconstruction, indicating that the faults have not 
influenced the intrusions. 

As seen from Figure 5.1, the distribution of faults is densest at the eastern part of the outcrop. 

Most of the faults are normal faults, however Fault 4 and 14 on Figure 5.2 seem to be reverse 



  5 Results 

42 
 

faults. These two faults have small displacement and they cut through the intrusions. In 

addition to large pre- and post-magmatic normal faults, there is some evidence of small-scale 

faults and deformation close to the intrusions margins. However, this is at the limit of the 

resolution of the data, and therefore beyond the focus of this study.  

5.1.2 Architecture and large scale intrusive geometries and relationship 

Figure 5.1 shows all the intrusions along the studied outcrop. The sill intrusions show a wide 

range of thicknesses, and vary between 1 meter and 200 meters thick. The average thickness 

is 56 meters.  Sill splays, which are much thinner sills which originate from the main sill and 

often develop parallel to the main sills, are from around a meter to a couple of meters in 

thickness. These splays are found along the entire outcrop, and they commonly originate from 

irregularities on the sill margins. 

 

Figure 5.4: a) Thickness distribution of sills along the outcrop. Sills are measured in vertical lines every kilometer. 
Sill intrusions are divided into three groups: splays in blue, medium thick sills in red and thick sills in green. b) Pie 
diagram illustrating how much each of these groups constitute of the total thickness of sill intrusions in the 
outcrop.  

The thickness distribution of sills are shown in Figure 5.4a. This histogram shows that there is 

a large range of sill thicknesses along the outcrop. Most of the sills are from 1-9 meters thick. 

There is also a number of intrusions in the 40-49 meters range, which seems to be a common 
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thickness for some of the main sills in the area. Some of intrusions are more than 100 meters, 

and most of them are located on the eastern side of the outcrop (see Fig. 5.5). The intrusions 

can be divided into three groups based on their thickness, splays or thin sills from 1-9 meters 

thick, medium thick intrusions (10-69 meters) and thick intrusions (70-200 meters). As the 

histogram shows (Fig. 5.4a), a large number of splays and thin sills are observed along the 

outcrop, but they only constitute 2 % of the total thickness of the intrusions (see Pie diagram 

Fig. 5.4b), while the thickest sills are making up 57 % of the intrusions along the outcrop. 

Sill intrusions are emplaced into the stratigraphy along the entire outcrop, but the amount of 

intrusions shows significant variation along the outcrop. This is visualized in Figure 5.5, which 

shows the total thickness of intrusions measured on vertical lines every 1 kilometer along the 

outcrop. On the western half of the outcrop, the total thickness of the sills is small. This is due 

to presence of only Carboniferous deposits on this western half of the outcrop. Only four sill 

intrusions, in addition to splays, are emplaced into the Carboniferous succession along the 

outcrop, and none of these is thicker than 50 meters.  From 12 to 18 kilometer on Figure 5.5, 

the total thickness of the intrusions are almost constant. This is due to the presence of the 

same stratigraphic interval along this area, and the thickness of the intrusion are constant 

since they follow the same stratigraphic layers throughout this section. At 19-21 kilometers 

on the curve in Figure 5.5, there is a drop, corresponding to the presence of only intrusions 

within the Triassic interval. The total thickness is largest in the Cretaceous succession at the 

easternmost side of the outcrop. The total thickness of intrusions are also highest at the 

eastern side of the outcrop, reaching total thicknesses of around 250 m.  
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Figure 5.5: Graph showing variation in the total thickness of sill intrusions along the outcrop.  

The sill intrusions on Traill Ø exhibit a layer parallel geometry, and the presence of structures 

such as broken bridges and steps (Fig. 3.1a and b) can indicate that the sill intrusions were 

emplaced into a brittle host rock (Schofield et al. 2012b, Fig. 3.1). Two well defined broken 

bridges are observed in the outcrop. One of them is particularly well exposed (c.f. Fig. 5.6b). 

Unbroken bridges (Fig. 3.1) are not observed in the study area. Features typical for sills 

propagating in non-brittle rocks (Schofield et al. 2012b, Fig. 3.1c-e), such as fingers and lobes, 

have not been observed. 

Both broken bridges seen in Figure 5.6b and c are slightly deformed. They show a rectangular 

geometry, which means that the layering and bedding of the actual bridge is preserved parallel 

to each other, without being curved (Fig. 5.6c). The broken bridges are bent up as two separate 

magma flows have propagate with a slight offset. They are sometimes modified in shape by 

deformation where the bridge is bent (see Fig. 5.6b, d and e). Bridges are dominated by 

interbedded lithologies, and the bedding is always parallel to the longest dimension of the 

bridge (Fig. 5.6c). The bridges are 190 m and 250 m in length.  
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Figure 5.6: Broken bridges in the outcrop. a) Overview of the most well exposed bridge along the outcrop. Note 
the two sills on each side of the bridge that propagated as two separate sills before the broken bridge was 
made. See Fig. 5.1 for location.  b) Well exposed broken bridge clearly showing the rectangular shape and the 
interbedded lithologies. c) A smaller broken bridge. Interbedded layers are indicated, and observe that the 
layering is parallel to the longest dimension of the bridge. See Fig. 5.1 for location. d) Fold and minor thrust 
faults at the outer bend of the bridge e) with interpretation. 

5 dykes are observed along the outcrop (Fig. 5.2, marked from A to E), and these are 10-60 

meters wide. In addition, there are some intrusions along the outcrop that can be defined as 

either dykes or just as climbing sills. These intrusions originates from a horizontal sill, then 

climbing to a higher level before resulting in a new horizontal sill. Dyke D is a good example of 

this (Fig. 5.7a), and in addition there are two other examples of climbing sills along the outcrop 

that are not defined as dykes. All dykes are oblique with dips varying from 30 to 70 degrees, 

and no vertical dykes are observed. Most dykes cut sedimentary layering, but one obviously 

follows one of the major faults for around 750 meters before continuing into the Jurassic 
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strata in the hanging wall of the fault (Dyke C in Figs. 5.2 and 5.7a) before being offset by the 

Månedal Fault. Dyke C has a dip of 35° and an average width of around 35 meters. This dyke 

is present at almost the entire height of the outcrop and it has a small horizontal offset by one 

of the sill it cuts trough (Fig. 5.7a).  

 

Figure 5.7: Dykes in the study area. a) Oblique dykes: Dyke C (purple) interacts with two other sills in addition to 
following a fault, Dyke B (green) abruptly originates from a sill and is cut by the Månedal Fault and Dyke D in blue 
is linking two sills from different levels. b) and c) Thinner dykes cross-cutting sills and exploiting reverse faults. d) 
Overview of the outcrop and location of the dykes. 
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Two of the dykes seem to have exploited small reverse faults that cut through intrusions below 

the dykes (Dyke A and E Fig. 5.2 and Fig. 5.7b,c). These two dykes have a dip of around 70°. 

There is also evidence that the dykes have crosscut through the faulted sills as well. This 

indicates that these dykes were not emplaced contemporaneous with the rest of the 

intrusions.  

Dyke B shown in green in Figure 5.7a is cut by the Månedal Fault and has a dip of around 60°. 

This dyke seems to stop in the middle of the Jurassic succession and it starts abruptly as it 

bends away from a planar parallel sill intrusion. On the eastern side of the fault, the dyke 

seems to be cut by a number of small-scale faults since the dyke has small offsets. The last 

dyke is shown in blue in Figure 5.7. It is also reasonable to call this a climbing sill as it originates 

from a layer parallel sill and cut the stratigraphy for 500 meters before resulting in another 

layer parallel sill. This dyke has a dip of 52°.  

Sills make up c. 13 % of the outcrop, and are most common on the eastern side of the outcrop. 

Magmatic sill intrusions are emplaced into the stratigraphy along the entire outcrop, but some 

stratigraphic intervals contain a systematically greater proportion of intrusions than others, 

indicating that intrusions prefer some intervals more than others. The highest proportion of 

intrusions found within one interval is intrusions in the Cretaceous mudstone interval (Fig. 

5.8b). Intrusions make up 45 % of the Cretaceous interval and the thickest sill is found within 

this interval. The Triassic interval, which consists of interbedded sand and mudstone, contains 

the largest volume of intrusions (Fig. 5.8a). Over half of the intrusions along the outcrop are 

found within this interval. As seen from Figure 5.8a, only a low proportion of the sills occur in 

the homogenous sandstone of the Jurassic.  All interpreted intervals contain intrusions except 

the Permian organic rich mudstone of the Ravnefjeld Formation.  

If the proportion of intrusions in each stratigraphic interval is normalized to the area of each 

stratigraphic interval (Fig. 5.8b), it becomes clear that intrusions are preferentially emplaced 

within the Cretaceous mudstone, and intrusions are rarely emplace into the Jurassic 

homogenous sandstone and the interbedded sandstone and mudstone dominated 

Carboniferous. Figure 5.8b largely gives an expression on how easy it is for the intrusions to 

intrude into each of the different intervals. It shows how much of the interval consist of 

intrusions, and this indicates the extent to which it is easy to enter into each unit. 
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Figure 5.8a however, is a function of how the intrusions in this exact outcrop are distributed, 

and it shows the proportion of sills that are presence in each interval. This distribution will 

strongly depends on the size of the different intervals, and this percentage distribution could 

have been very different if the outcrop for example was placed 2 km further north. 

 

Figure 5.8: a) Histogram showing proportion of intrusions in each stratigraphic interval along the outcrop. Most 
of the intrusions are found within the Triassic heteroliths. b) Histogram showing the proportion of intrusions 
normalized to area of each stratigraphic interval. Example: 2,4 % of the Carboniferous succession is intrusions. 

There is a large variety in the lithology of the different host rock intervals within the study 

area. A majority of the sedimentary rocks consist of brittle, layered sandstone interbedded 

with mudstone from the Carboniferous Traill Ø Group and the Triassic Wordie Creek 

Formation (Parsons et al. 2017, Bjerager et al. 2006). There are also intervals with more 

homogenous sandstone with only minor amount of mudstone within the Jurassic Jameson 

Land Group and the Triassic Pingo Dal Formation (Therkelsen and Surlyk 2004, Parsons et al. 

2017). The Cretaceous consists of mudstone (Parsons et al. 2017), and the Permian Ravnefjeld 

Formation is dominated by organic rich shale (Christiansen et al. 1993). The rest of the 

Permian succession is dominated by carbonates and evaporites (Surlyk 1990). Sills propagating 

in these different lithologies show different morphologies and structures, and these are 

investigated below.  
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Sills emplaced within the Traill Ø Group in interbedded sandstone, mudstone and coal 

deposits 

Very few sills are seen within the Traill Ø Group, and no intrusions are observed within the 

Traill Ø Group east of the Bordbjerget fault zone (Fault 2, Fig. 5.2). Only 2,4 % of the 

Carboniferous interval consists of sill intrusions (Fig. 5.8b), which is the lowest amount of 

intrusions within any of the intervals along the entire outcrop. Generally, the sills emplaced in 

this interval follow the bedding, but in a few instances sills are observed to crosscut 

stratigraphy and ascend obliquely through the stratigraphy (see 15 km in Fig. 5.1 and Fig. 5.9a), 

most likely indicating that the sill have tried to exploit overlying, more mudstone-rich horizons.  

Splays are quite common parallel to the sill margins in the Carboniferous interval (Fig. 5.9c). 

In this interval, there are more irregularity on the sill margins than in any other interval. Splays 

in this interval usually originate from the irregularities along the margins, such as steps. All 

splays occur close to the main sills. One of the intrusions has caused a fold, indicating vertical 

inflation of the sill in the directly overlaying mudstone rich host rock (see 23,5 km in Fig. 5.1 

and Fig. 5.9d). 
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Figure 5.9: Intrusion geometries and features within brittle interbedded heteroliths of the Traill Ø Group. a) 
Climbing sill b) Overview image of the westernmost intrusions in the Traill Ø Group. c) Splays originate from 
irregularities along the sill margins and d) Emplacement of magma into the host rock has caused a fold, as the 
host rock was inflated and uplifted. e) Overview of the outcrop and location of sills in the Carboniferous. 
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Sills emplaced within the Permian strata dominated by carbonates and evaporites (Foldvik 

Creek Group)  

The intrusions in this interval make up around 21 % of the Permian interval, and within this 

interval, the sills exhibit two quite different morphologies. Sills mainly show planar parallel 

geometries without clear steps along their length, and there are only few irregularities along 

their margins (Fig. 5.10a). However, in a small interval between two normal faults (at 5 km Fig. 

5.2) the sill does not exhibit geometries parallel to the bedding. The sill seems to be emplaced 

in different levels in the host rock within the same interval, causing it to look different from 

the other sills (Fig. 5.10b). The sill exhibits an unusual geometry and the sill seems to change 

level within the interval and transgress up and down, and some places there seem to be large 

steps. This interval is partly covered in scree and it is therefore hard to observe detailed 

changes along the margins. No intrusions are emplaced within the Permian succession on the 

eastern side of the outcrop (Fig. 5.2, east of Fault 7). 

Sill emplacement in Triassic strata (Wordie Creek Group) mainly consisting of brittle 

sandstone interbedded with mudstone  

Around half of the intrusions along the outcrop are found within the Triassic interval, and 

around 20 % of the interval consists of intrusions. The intrusions commonly show steps along 

their length. The steps have vertical offsets of around 1 m. Broken bridges are also present in 

this interval. These bridges have developed between separated sills (Fig. 5.6b,c). Some splays 

are also observed in this interval. Sills that have propagated in this interval show many 

structures related to emplacement mechanisms commonly seen in brittle rocks, along the 

entire outcrop. This interval also shows individual thinner sills that are isolated from the main 

sill, but are still parallel to the main sill (Fig. 5.10a). This can indicate that these have exploited 

other horizons than the main sill or splays from the main sills that are connected outside the 

outcrop.           
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Figure 5.10: a) Overview showing sills emplaced into the Triassic and Permian interval. Note the difference in the 
expression of the Permian sill. b) Unusual expression of the sill’s boundaries. c) Overview of the western side of 
the outcrop, and location of Fig. 5.10a. 

Sill emplacement in Jurassic strata (Jameson Land Group) and Triassic strata (Pingo Dal 

Group) mainly consisting of brittle homogenous sandstone interbedded with small 

amounts of mudstone: 

Sills that have propagated in more homogenous sandstone show different morphologies than 
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sills intruded into the other intervals.  Intrusions seem to not follow stratigraphic layering to 

the same degree as in the Permian, and sills seem to transgress out of the Jurassic and Triassic 

homogenous sandstone interval over short distances (At 3 km in Fig. 5.2 and Fig. 5.11a,b). 

 

Figure 5.11: a) Overview of intrusions emplaced into Triassic, Jurassic and Cretaceous strata. Note the thick 
Cretaceous sill. See Fig. 5.1 for location. b) Sill in Jurassic homogenous sandstone transgress. The dyke has several 
small offsets. c) Several splays in the Triassic Pingo Dal Formation. 

Zones of visible contact metamorphism (shown in a blue stippled line in Fig. 5.11a,c) around 

the intrusions are observed  as a paler zone in the otherwise red-colored Pingo Dal Formation. 

This zone varies in thickness from almost zero to around 40 meters, away from the main sill 

margins. 

The sill in the Jurassic sandstone does not follow the bedding for more than 250 meters, and 
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then the intrusion continues to propagate as a dyke crosscutting the strata (Fig. 5.11b).  There 

are a number of small splays propagating in all directions.  Only a low proportion of the sills 

occur in this Jurassic succession, which indicates that propagating sills do not prefer sandstone 

intervals.  

The Triassic Pingo Dal succession is situated between two large faults (Fig. 5.11a), and it seems 

that the intrusions are not follow the bedding. Instead, they are propagating in a stepwise 

manner through the stratigraphy. There are two sills propagating in different levels, before 

merging into a common dyke (Dyke C, Fig. 5.7a). The lowermost of these sills propagates as 

small splays instead of a sill close to the dyke (Fig. 5.11c). This behavior is not observed 

anywhere else along the outcrop. 

Sill emplacement in the Cretaceous mudstone interval: 

The sill observed in the Cretaceous mudstone is the thickest sill in the study area, and attains 

a thickness of c. 200 meters, and is also highest in the stratigraphy in the area (Fig. 5.11a).  The 

sill shows step-like features on the margins and a few small sills/splays up to 3 m in thickness 

originating from the main sill. Almost 50 % of the Cretaceous interval is occupied by intrusions 

(Fig. 5.8b), and even though there are only one main sill in this interval, it makes up 25 % of 

all the intrusions along the entire outcrop (Fig. 5.8a). 

 

5.2 Interpretation of seismic data 

A number of seismic surveys and a number of studies from the Norwegian Sea have shown 

that there are large amounts of igneous intrusions in the subsurface, and the Norwegian 

Continental Margin shows evidence of a classic volcanic rifted margin (Skogseid et al. 1992, 

Planke et al. 2005, Mjelde et al. 2008, Peron-Pinvidic et al. 2013, Schmiedel et al. 2017). 

The dataset from the Solsikke area, that is used in this thesis, shows well-imaged deeply 

emplaced sill intrusions (e.g. Hansen and Cartwright 2006). The seismic interpretation in this 

study focuses on the interval where the deep intrusions are emplaced. This interval is between 

4 s and down to 5,5 s two way travel time (TWT). Below this depth, which corresponds c. 4,5 
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km, the seismic quality is very poor and noisy, making it hard to do observations. 

A previous study of the seismic data from the Solsikke area by Hansen and Cartwright (2006) 

is available and consulted for interpretations of the stratigraphy and the shallow sills, which 

were the focus in their study. Correlation to the geological setting and structural evolution of 

the Mid-Norwegian Margin also provides useful information when proceeding to understand 

the local geological succession and intrusions (Brekke 2000).   

5.2.1 Stratigraphy and structural elements 

The recognition of the stratigraphy in the area has not been in focus in this study, and no 

interpretation of the stratigraphy has been done in the seismic data. Therefore, correlation to 

previous work done by Hansen and Cartwright (2006) has been used, to ensure some 

information regarding the stratigraphy. Borehole data from well 6403/10-1, which is present 

in the Solsikke area, was used in their study to identify the lithology of the upper 1700 meters 

of the seismic data. All maps and seismic sections shown here, display depth in two-way travel 

time (TWT). Two of the units recognized by Hansen and Cartwright (2006) are shown in Figure 

5.12. Horizon 1 is Upper Cretaceous, and horizon 2 represents the Base Paleocene. 

The exploration well 6403/10-1 reached a total depth of 3400 m and reached Upper 

Cretaceous sediments. The well is positioned at the southern side of the 3D-seismic dataset 

and has therefore avoided all the shallow intrusions (Fig. 4.9). It does not reach the studied 

interval with the deep intrusions. The well penetrated the Cenozoic Nordland, Hordaland and 

Rogaland groups, and the Cretaceous Shetland Group (Dalland et al. 1988). All of these groups 

mainly consist of mudstone and siltstone. The Base Paleocene boundary (Horizon 2 in Fig. 

5.12) corresponds to the upper boundary of the Shetland Group, and the Base of the Rogaland 

Group. 
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Figure 5.12: Seismic section showing faults, stratigraphy and shallow and deep intrusions. Lower figure show 
frequency distribution. The reflections interpreted as deep intrusions have a frequency of c. 12,5 Hz. Horizon 1 is 
Upper Cretaceous, and horizon 2 represents the Base Paleocene.  
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Below this depth, information about the general basin fill in the area is relied upon for 

information about the stratigraphy. The Cretaceous Cromer Knoll and the Jurassic Viking 

Group are present below this well. The Møre Basin is characterized by thick Cretaceous basins, 

and it is therefore reasonable to believe that the deep intrusions imaged in the seismic are 

emplaced into the Cretaceous Shetland Group and the Cromer Knoll Group. These Cretaceous 

sediments are dominated by mudstones and siltstones. The deeper Jurassic Viking Group is 

also dominated by mud- and siltstones, with the exception of locally developed sands (Dalland 

et al. 1988). 

Structural elements in this area include a number of NNW-SSE trending normal fault starting 

below the Paleocene surface, manly dipping towards the northwest, but there are also faults 

dipping towards the southeast. The lower fault tips are not easy to recognize and often ends 

where the deep intrusions start. This is likely caused by the high reflectivity of the intrusions 

masking the offsets of the faults. 

5.2.2 Sill intrusions: geometry and expression in seismic data 

Throughout the northwestern Solsikke area, several high-amplitude reflections are observed 

to crosscut the more laterally continuous, low-amplitude reflections from sedimentary strata. 

These are interpreted as igneous sill intrusions. At a TWT of around 3.5 s (c. 700-1100 m below 

the present-day sea bed), shallow sills are observed (Hansen and Cartwright 2006).  These 

shallow sills are most dense at the northwestern corner of the seismic cube. The focus of this 

study is however, the deep sills occurring at lower depths in the seismic data, present in the 

TWT interval between 4-5.5 s (Fig 5.12). 

 

Figure 5.13: Seismic expression of the deep sills in the Solsikke area. 
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In the 3D seismic cube, deep igneous intrusions are expressed as packages of high amplitude 

reflections. The tops of the intrusions are positive, and represent an abrupt downward  

increase in acoustic impedance (Fig. 5.13). There is a large network of deep sills in the seismic 

data, and many of these are masked by shallower saucer shaped intrusions making it hard to 

study them. Shallow sills are present throughout the NW part of the cube, leading to poor 

imaging of underlying deeper sills. Therefore, it is hard to image deep sills in particular this 

area (Fig. 5.14).  

 

Figure 5.14: Showing the effect of how shallow intrusions influence the imaging of deep sills. a)  With no shallow 
sills, the imaging of deep sills are relatively good. Note the gradual decrease in seismic frequency. b) With shallow 
sills present, the imaging below will be quite poor and noisy. 

Most of the sill reflections are single reflectors (tuned reflectors), indicating that the 

resolution is not high enough to image both top and base reflector of the sills without 

interference between the reflectors. The thickness of the sills in the seismic data are below 

the vertical resolution, since the tuning thickness can be an indication of the vertical 
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resolution (Simm et al. 2014). In the time interval of interest (4-5,5 s TWT), the intrusions in 

the seismic data have a dominant frequency of 12,5 Hz (see Fig. 5.12b). Since it is not 

possible to clearly separate top and base of the sills, the sill thickness are defined to be 

between the limit of detection and the limit of resolution. The range of the thicknesses of 

the sill intrusions were calculated using the dominant frequencies in the area of the sills 

intrusions which is 12,5 Hz, and Vp of 6000m/s (also used in seismic modelling). By 

calculating, the wavelength (λ=v/f) will be 480 m and by calculating the resolution, intrusions 

below a thickness of 120 meters will appear as tuned reflection packages (λ/4), whereas 

those below the detection limit of 48 meters (λ/10) will not be identified in the seismic 

(Planke et al. 2005).  

 

Figure 5.15:  Different geometry of the deeply emplaced sill intrusions. a) This sill seems to be climbing the 
stratigraphy, and the sill clearly follows one of the faults. b) Sills follow layering in the stratigraphy and the fault 
plane. c) Same expression as sill in Fig. b, with more intrusions close to the main sill. d) Horizontal sill that most 
likely follow the stratigraphic layering. No faults are observed in close proximity to this sill. 
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Figure 5.15 shows the expression of some of the deep sills. Deep sill intrusions in the seismic 

data have different geometry. The sills display either a strata concordant geometry, or sills 

transgress upwards following faults. Where shallow intrusions mask the deeper intervals, only 

the deepest intrusions are imaged (from 4,5-5,5 s TWT, see Fig. 5.14b). These seem to display 

a flat geometry without much influence of faults (Fig. 5.15d).  The deep intrusions in the 

interval between 4,0 – 4,5s TWT are more influenced by the faults. Some of them transgress 

up the stratigraphy by using fault planes (Fig. 5.15a-c).  

 

5.3 Seismic modelling 

The results of the seismic modelling are presented here. The modelling study has been carried 

out by varying parameters such as frequency and illumination angle (max dip angle), in order 

to study the effect of these parameters on the modelled seismic section. Various models have 

been run with frequencies between 10-40 Hz and illumination angles of 30°, 45° and 90° 

(perfect illumination), in addition to traditional 1D convolution. As explained in Section 3.2.1 

the point spread function (PSF) is important to take into account when looking at seismic 

resolution limitation. The PSF is therefore used in this chapter to explain different resolution 

limitation in relation to both frequency and max dip angle. In the modelled images, blue 

corresponds to an increase in acoustic impedance. 

5.3.1 Frequency 

In real seismic data, frequency decrease with depth, and since deep intrusions are modelled, 

modelling was performed with both low and high frequencies in order to better compare the 

synthetic seismic to real seismic with low frequencies. Figure 5.16 shows seismic images with 

different seismic signal frequencies and the effect on the seismic resolution. Frequencies are 

in the range from 10-40 Hz. By comparison, the deep intrusions in the real seismic data from 

the Solsikke cube have a dominant frequency of c. 12,5 Hz. By varying the seismic signal 

frequency and comparing the resulting images demonstrate that the amount of geological 

detail resolved in the seismic can vary significantly.  Figure 5.16 shows example of how sills 

will be imaged in 10, 20, 30 and 40 Hz respectively. The PSF for each model is plotted in each 

model, to give a sense of how the PSF influences resolution and illumination.  
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At 10Hz, none of the single sills are clearly resolved, except the 200 m thick sill emplaced into 

the Cretaceous succession, which is imaged with both top and base reflector. Sills are mostly 

tuned reflectors, and are therefore below the seismic resolvability.  Sills are interfering with 

each other and the stratigraphy, which makes it hard to tell different sills and stratigraphy 

apart. Broken bridges are barely resolved or not resolved at all (Fig. 5.16b). The PSF at 10 Hz 

gives a lateral resolution of around 200 meters and a vertical resolution of 69 meters.  

The 20 Hz modelled image shows more details than the 10 Hz image (Fig. 5.16c). The broken 

bridges are recognized, but there are still some interference between the different sills and 

stratigraphy. Most intrusions are still tuned reflectors, however the stratigraphy is imaged 

better. 

Above 30 Hz (Fig. 5.16d), many of the details along the outcrop can be observed in the 

modelled seismic. Top and base reflection of the sills are mostly recognized, which mean that 

the modelled seismic is above the seismic resolvability. Broken bridges and single stratigraphic 

layers are clearly imaged. The PSF gives a vertical resolution of 23 m and a lateral resolution 

of 60 m. Thin sills are imaged as tuned reflectors. The 40 Hz seismic image (Fig. 5.16e) gives a 

detailed model that clearly resemble the input model. Steeply dipping intrusions are however 

not well images (Fig. 5.16e). These high frequencies modelled images are however not 

realistic, since it is very rare that real seismic data have these high frequencies at depths below 

3 kilometers.  
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Figure 5.16: a) Overview of the Traill Ø outcrop model. b-e) Seismic images showing the effect of varying 
frequencies on seismic resolution. Each point spread function (PSF) is plotted in the top right corner to provide 
information of the seismic resolution. Maximum dip angle is set to 45°. 
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The post-magmatic normal faults are clearly seen in all the modelled images. These faults are 

recognized by clear offsets in the stratigraphy and the intrusions. On the contrary, it is hard to 

recognize the pre-magmatic faults with both high and low frequencies, especially the one fault 

with a dyke cutting across the fault. There can be several reasons for why the faults are not 

imaged. Firstly, the strong reflection from the intrusions might mask reflector stratigraphy. 

Limitation in lateral resolution when it comes to steeply dipping features are also an issue. 

5.3.2 Maximum dip angle 

Illumination angles of 30°, 45° and 90° are considered in Figure 5.17. A 1D convolution seismic 

section is also considered. The 2D convolution images obtained by varying the illumination 

(maximum dip angle) are showing significant differences in resolution and illuminated 

structures. The variable lateral resolution is here entirely due to variable illumination angle, 

since the frequency is set to 20 Hz in each of the modelled images. 

Figure 5.17b illustrates the modelling result with perfect illumination. Note the lateral 

resolution of the PSF modelling compared to the 1D convolution in Figure 5.17a. Lateral 

reflectors are more continuous in the perfect illumination case, since no lateral resolution 

effects are taken into account in the 1D convolution  

Figure 5.17c and d illustrate the modelling result with a max dip angle of 45° and 30° 

respectively. 30° max dip angle leads to lower lateral resolution (see PSF in Fig. 5.17d), and 

many of the steeply dipping layers are not imaged and are harder to observe than in the 45° 

modelled image.  
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Figure 5.17 Synthetic seismic images demonstrate the influence of different max dip angle on the seismic 
resolution. a) Traditional 1D convolution. b) Perfect illumination case. The modelled images c) and d) show the 
effect by varying the max dip angle from 45° to 30°.  

Figure 5.18 shows an example of one of the steep dipping dykes in the outcrop. Resolution of 

the dipping reflectors will be influenced by the degree of maximum dip angle, as the lateral 

resolution will be lower with a smaller max dip angle. In the perfect illumination case, the 

lateral resolution will be λ/4 and the lateral resolution for maximum dip angles of 45° and 30° 

will be larger than λ/2. The PSF shows how the vertical resolution is the same in both cases, 

however the lateral resolution is poorer in the 30° max dip. 
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Figure 5.18: Effect on Dyke B (Fig. 5.7a) by varying the max dip angle. a) Input model. b) The perfect illumination 
replicates the dyke very well. c) 45° illumination image the dyke quite well. Note the poor imaging of the dyke 
with d) 30° max dip.  

It is apparent that there is a significant improvement in resolution with higher max dip angles, 

and there is large limitation in resolution below a max dip angle of 30°. The perfect 90° angle 

of illumination creates the clearest images, but perfect illumination cases are not applicable 

in real seismic data. 

5.3.3 Layered model 

The two last models showing effects of frequency and maximum dip angle were created with 

homogenous host rocks. This is a simplification to make the modelling and the interpretation 

of the outcrop less time-consuming. However, in the real outcrop data the host rocks are 

heteroliths, which are taken into consideration in this last model. Layers of mudstone are 

included into the homogenous sandstone intervals, to observe how this affect the modelling 

of the intrusions. 
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Figure 5.19: a) and b) Seismic modelling with layered host rocks with different color scale. The layered model is 
compared to c) a homogenous host rock model. No apparent changes are recognized, except the weaker 
stratigraphic reflections marked by the arrow. In a) the layers are poorly imaged, but when the color scale is 
changed b) the internal layers are much clearer.  

No drastic changes are seen in the layered model (Fig. 5.19 a and b) compared to the model 

without layers (Fig. 5.19c). The reflections of the layers are clearly seen where there are no 

intrusions. By changing the color scale and amplify the amplitude, the internal layering is much 

clearer (Fig 5.19b). Some of the stratigraphic reflectors become weaker compared to the 
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model without internal layering (Fig. 5.19b). This can be due to interference between 

stratigraphic boundaries and internal layers. In this layered model, there also seem to be some 

interference between the layers and intrusions as well, which leads to different expression in 

the seismic (Fig. 5.20). The internal layers seem to interfere destructive with the intrusion, and 

making a gap in the reflection. 

 

Figure 5.20: The effect of destructive interference between intrusions and stratigraphic layers. 
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6 Discussion 

A number of questions arise from this large-scale study of igneous intrusions, and in this 

section, the evaluation and discussion of the results will be addressed. The stratigraphic 

controls on sill emplacement (6.1), the comparison between outcrop data, seismic modelling 

and real seismic data will be considered (6.2, 6.3).   

6.1 Stratigraphic controls on sill emplacement 

No other study has done work on deeply emplaced intrusions in the field, where a large 

number of normal faults influence the intrusions, and where there are intrusions that are 

emplaced into host rocks spanning a large age range. The intrusions on Traill Ø are 

exceptionally well exposed. It is therefore an excellent opportunity to investigate stratigraphic 

controls on sill emplacement, and how these are similar or different from other studies on 

deeply emplaced intrusions. The dolerite intrusions on Traill Ø show many similarities with the 

intrusions from Jameson Land, East Greenland, south of Traill Ø (Eide et al. 2017).  They share 

the fact that intrusions seem to prefer to be emplaced in mudstone and heteroliths. The 

intrusions on Traill Ø however, are thicker than the ones in Jameson Land, and are influenced 

by faults. Sills from the Theron Mountains in Antarctica (Hutton 2009) also show similar 

geometries to the intrusions described in this thesis. They are planar parallel bodies, lateral 

continuous and show brittle emplacement structures such as steps and broken bridges. 

6.1.1 Emplacement model 

A number of emplacement models have been proposed for the emplacement of sills, largely 

based on outcrop observation supported by numerical and analogue modelling (e.g. Pollard 

1973, Rubin 1993, Schofield et al. 2012b, Abdelmalak et al. 2012, Spacapan et al. 2016). The 

study of the intrusions and host rocks on Traill Ø allows us to compare to other studies and 

other existing magma emplacement models. The observations from this study are in 

agreement with the LEFM-Splitting Model (Pollard 1973, see Section 3.2.1). In this model, sill 

tips will propagate by tensile fracture of the host rock and the magma will inflate, causing the 

roof to be uplifted with no or minor deformation. In the Traill Ø outcrop, there is no discernible 
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deformation around the margins of the sills or ahead of the sill tips on the scale of the dataset 

in this study. The vertical thickness of the sills seems to have been accommodated by uplift of 

the overlaying strata. A good example of the propagation of the sill tip and the vertical inflation 

of the sill along the outcrop is shown in Figure 5.9d. Magma has propagated into the fracture 

and later inflated vertically, causing the host rock (interbedded sandstone and mudstone) to 

be uplifted.  

Previous studies on sills emplaced at depth comparable to those at Traill Ø, show similar 

behavior (Hutton 2009, Eide et al. 2017), where there is no or little deformation around the 

sill tips. These deeper sill intrusions are mostly emplaced into well-consolidated host rock, and 

at these depths, the high mechanical strength of the host rock, the low pore fluid volume and 

the low porosity can prohibit deformation. On the contrary, sill emplacement at shallow depth 

(0-1,5 km) is often explained by inelastic emplacement models as the propagation of magma 

is accommodated by host rock deformation (Schofield et al. 2010, Schofield et al. 2012b, 

Magee et al. 2016). 

6.1.2 Broken bridge deformation during large vertical inflation  

Broken bridges have been studied in a few different outcrops, for example the Theron 

Mountains in Antarctica, Isle of Skye in Scotland and Jameson Land in Greenland (Hutton 2009, 

Schofield et al. 2016, Eide et al. 2017). The sills at Traill Ø are significant thicker than the sills 

in Jameson Land and Isle of Skye, and are of around the same thickness as the bridges from 

Theron Mountains.  

The formation of broken bridges is described in Section 3.1 (c.f Hutton 2009, Schofield et al. 

2012b, see Fig. 3.1b). However, further inflation of the magma than described in these and 

increased thickness of the bridge can result in an accommodation problem in the hinge zone. 

This can lead to deformation close to the hinge zone. The broken bridge (Fig. 5.6b) can develop 

thrust faults in the outer bend of the bridge in response to this accommodation problem (Fig. 

6.1d). No previous work has shown this deformation feature. The broken bridge at Traill Ø has 

been bent up to c. 40° (Fig. 5.6b). In the studies done by Eide et al. (2017) and Schofield et al. 

(2016), the opening angle of the broken bridges are mostly small, in the order of c. 5-10°. 

There seem to be no accommodation problems associated with these low opening angles. 
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Hutton (2009) described large broken bridges, but these bridges seem to behave differently 

from the bridges at Traill Ø. Instead of thrusting in the hinge line, broken bridges are bent and 

folded. Many bridges also have melt trails and some bridges show evidence of partial melting, 

which could be a result of melting of host rock due to hot magma or abundant heat due to 

large magma-volumes. The sills in the Theron Mountains attain a thickness of 160 m (Hutton 

2009), making the last hypothesis probable.  

 

Figure 6.1: Broken bridge development. Stage 4: Lack of accommodation space in the hinge line of the host rock 
as the magma inflates, can lead to folding and thrust faults in the hinge line. Modified from Eide et al. (2017). 



  6 Discussion 

72 
 

6.1.3 Emplacement mechanism and preferred intervals 

Generally, the sills exhibit a layer parallel geometry along the studied outcrop on Traill Ø, 

which are expected for deeply intruded sills propagating in brittle host rock (Schofield et al. 

2012b). The presence of morphological features such as steps and broken bridges, which are 

related to brittle fracture propagation in host rock,  parallel to the outcrop (Fig. 3.1 and Fig. 

5.6) indicate that the magma propagation direction was approximately perpendicular to the 

outcrop (Hutton 2009, Schofield et al. 2012b).  According to Stemmerik et al. (1993), the host 

rock in this area has a burial depth of c. 1, 5 - 3 km at the time of magma emplacement. This 

study is based on the vitrinite reflectance data from the upper Permian Ravnefjeld Formation. 

However, by studying the cross sections form Parson et al. (2017), the burial depth of the 

Permian succession assumes to be c.  4 km at the time of magma emplacement. This is based 

on the basaltic lava flows in Leitch Bjerg and Kap MacKenzie on NE Geographical Society Ø, 

north of Traill Ø (Fig. 2.2) that are of equivalent age with the intrusions emplaced into the host 

rock. At this depth, host rocks are well consolidated, therefore sill intrusions in these 

sequences are being dominated by brittle emplacement structures, as the host rocks were too 

cemented and mechanically strong to behave in a ductile manner. 

In addition, features typical for sills propagating in non-brittle rocks, such as fingers and lobes, 

have not been observed, indicating that the intrusions have propagated into well-consolidated 

sediments. Structures related to non-brittle host rocks are most common when sills are 

emplaced closer to the surface (Hansen and Cartwright 2006, Schofield et al. 2012b, Magee et 

al. 2016). 

From the work presented in the results, host rock lithology plays an important role in sill 

morphology and emplacement of intrusions. Numerous other studies have shown that sill 

emplacement is dependent on host rock properties (e.g. Thomson 2007, Schofield et al. 

2012b, Eide et al. 2017). Sill intrusions are emplaced along the stratigraphy along the entire 

outcrop. They seem to prefer some stratigraphic intervals more than others (Fig. 5.8b), and 

within each stratigraphic interval they prefer specific horizons. There are five intervals where 

the intrusions are emplaced: Interbedded sandstone, mudstone and coal in the Traill Ø Group 

(Carboniferous), carbonates and evaporites in Foldvik Creek Group (Permian), interbedded 

sandstone and mudstone in the Wordie Creek Formation (Triassic), Jurassic and Triassic 
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homogenous sandstone and Cretaceous mudstone.  How and why the intrusions are emplaced 

into one or several levels along the outcrop are discussed below. 

Permian:  

The intrusions emplaced into the Permian succession prefer the lowermost part of the 

succession, directly above the Huledal Formation, and intrusions follow this interval as long as 

it is emplaced into the Permian succession. This interval is the Kartstryggen Formation, which 

is mainly composed of limestone and in some places gypsum along the East Greenland Margin 

(Surlyk 1990). In one area, this intrusion within the Triassic Karstryggen Formation behaves 

differently (Fig. 5.10b). This behavior is hard to explain, but it may be due to the presence of 

gypsum. A previous study by Scofield et al. (2014), shows evidence that magma has the ability 

to heat hydrous salts and make it flow. Gypsum is a hydrous salt, and will start to melt between 

100 and 150°C (Schofield et al. 2014), but since there is no evidence of non-brittle 

emplacement structures such as perperite or magma fingers in this interval (Schofield et al. 

2012b, Schofield et al. 2014), the intrusions are presumable not intruded directly into a pure 

gypsum succession. However, it could be that the interval contains at least some amount of 

gypsum, and it is therefore easier for the intrusions to be emplaced within this specific 

interval. 

Triassic and Carboniferous: 

The intrusions within the Triassic Wordie Creek interval have been emplaced into several 

different levels along the outcrop, in contrary to the Permian interval. The Triassic deposits 

consist of interbedded sandstone and mudstone. Therefore, intrusions will be emplaced in 

different levels, wherever the host rock is a bit weaker, commonly within a mudstone layer. 

Laterally emplaced intrusions are known to exploit mudstone horizons (Mudge 1968), because 

they can act as zones of weakness. However, it seems that the intrusions have not followed 

the most homogenous mudstone layers within the Triassic. Rather, it appears that sills are 

preferentially emplaced where there are thin sandstone and thin mudstone layers 

interbedded.  
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Broken bridges are only seen in the Triassic deposits. According to Hutton (2009), bridges are 

typically composed of sandstone/siltstone with thin shaley layers and lamina. Pure shale 

bridges are very rare, but are observed in small-scale by Schofield et al. (2016). This is 

consistent with the bridges along the outcrop at Traill Ø, because they are dominated by 

sandstone interbedded with mudstone. The fact that bridges only are found within the Triassic 

unit, might indicate that the lithological contrast between units within the Triassic is low, and 

there is weak anisotropy of the host rock. This can lead to propagation of magma in several 

different intervals within this unit, which might lead to the formation of bridges when the 

vertically offset of minor sills coalesce as they grow (c.f. Fig. 6.1). 

Similar to the Triassic, the Carboniferous succession consists of interbedded sandstone and 

mudstone. However, the sills in the Carboniferous succession only account for 2,4 % of the 

entire interval, and intrusions are only exposed near the top of the outcrop, leaving a large 

part of the Carboniferous un-intruded. The intrusions show common splays, and stepping up 

in the stratigraphy. This can be due to strongly interbedded alternating sandstone and 

mudstone leading to strong anisotropy between the different layers.  

Jurassic and Triassic (Pingo Dal Group): 

Within the more homogenous sandstone units, the sills have no preferred interval and they 

transgress out of the interval over short distances as dykes (See Fig. 5.7, Dyke B). This suggests 

that intrusions do not prefer sandstone intervals and lack of strong lithological contrasts to 

follow or exploit. The sills emplaced into homogenous sandstone described from Jameson 

Land are also transgressing out of the sandstone interval over short distances (Eide et al. 

2017).  

Cretaceous 

Within the Cretaceous mudstone interval only one intrusion is emplaced along the outcrop, 

and the proportion of intrusions within Cretaceous deposits is large (Fig 5.8b). The intrusion 

makes up almost 50 % of the entire Cretaceous interval, and the intrusion occurs right above 

the Base Cretaceous Unconformity. This is in agreement with Parson et al. (2017), which state 

that the thickest sills on Traill Ø occur above the Base Cretaceous Unconformity and the 

intrusions within this interval can reach thicknesses of 300 meters. These thick sills are rarely 
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observed in field, however the Ferrar dolerite sills from the McMurdo Dry Valley, Antarctica 

can reach thicknesses of 500 meter (Hersum et al. 2007). It has been widely reported that sills 

have a tendency to prefer mudstone horizons (Pollard et al. 1975, Thomson 2007, Magee et 

al. 2014, Eide et al. 2017), because mudstone has a strong anisotropy and it is easier for 

intrusions to follow the mudstone layers in the horizontal plane than the vertical (Mudge 

1968). It seems that generally thick sills are emplaced into extensive mudstone succession. 

6.1.4 Connectivity of sill complexes 

Sill complexes have recently been shown to play a more important role in magma ascent 

through basins than previously believed (Cartwright and Hansen 2006, Schofield et al. 2015, 

Magee et al. 2016). These networks are typically dominated by mafic, relatively thin (<100 m 

thick) sills (Magee et al. 2016, Smallwood et al. 2002, Schofield et al. 2015), while more viscous 

magma in intermediate to felsic magma systems tends to form thick laccoliths and plutons 

(Johnson and Pollard 1973). The thick mafic sills observed in Trail Ø can however indicate that 

also thicker sills may play a major role in these mafic sill complexes. The intrusions within the 

studied outcrop show some connectivity with climbing sills and dykes transferring magma to 

higher levels within the outcrop, but most of the sill intrusions are flat over large distances. 

This is in agreement with work done on other deeply emplaced intrusions (Hutton 2009, Eide 

et al. 2017).  

Observations from the Svinhufvuds Bjerge outcrop indicate that the dykes are a minor 

component of the entire outcrop. Other field observation, also support this observation (Leat 

2008, Muirhead et al. 2014, Eide et al. 2017). It is therefore presumable to believe that sills 

mainly accommodate magma transport through the outcrop.   

Along the outcrop, two dykes follow the only two reverse faults in the outcrop. How these 

reverse faults originate are not certain, however they can be a result of compression as the 

pluton on Kap Simpson was emplaced (e.g. Parsons et al. 2017, c.f. Traill Ø geological map Fig. 

2.2). In this case, these dykes will have to be younger than the rest of the intrusions. They may 

thus be related to the second magmatic period on Traill Ø, which formed smaller volumes of 

alkaline dykes and the two large syenite complexes around c. 36 Ma (Price et al. 1997, see 

Section 2.3). There have been no dating of these dykes, therefore one cannot say for certain 
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what age these dykes are. Walker et al. (2017) observed a relationship between reverse faults 

cutting sills in the San Rafael subvolcanic field in Utah in an overall extensional system, and 

suggested that sill geometry provides an indication of regional stress during emplacement, 

and not all sill geometry is the response of bedding. Crosscutting relationships in this area 

provide evidence for sill emplacement during horizontal shortening in a tectonically inert or 

extensional system (Walker et al. 2017). 

6.1.5 Effect of pre-magmatic faults on primary intrusive geometry 

It can sometimes be hard to explain why intrusions follow one specific layer; however, it can 

seem that intrusions exploit weaknesses within the host rock, whether it is a mechanical weak 

layer (see Discussion 6.1.3) or a fault. Pre-existing faults can exert a major influence on magma 

flow pathways and emplacement of intrusions as they can offer paths of least resistance to 

magma intruding through a basin (Gaffney et al. 2007, Magee et al. 2013).  

Along the outcrop, one well-exposed intrusion follows a large-scale fault for part of its length, 

but leaves the fault at some point during its vertical ascent (see Fault 12 in Fig. 5.2 and Dyke 

C in Fig. 5.7). The intrusion originates from below the outcrop. The few other pre-magmatic 

faults along the outcrop (Fault 1,2,9 and 13 in Fig. 5.2) have not been exploited by intrusions. 

Where the intrusions crosscut through a fault (Fault 1, 9 and 13 in Fig. 5.2), it is possible that 

the reason for the lack of exploitation of faults, is mechanically similar lithologies at each side 

of the fault, or related to the magma propagation direction in relation to the fault plane 

(Magee et al. 2013). Magee et al. (2013) suggested that sills that approach a fault from the 

footwall side will continue to crosscut the fault, while if the sill approaches from the 

hangingwall side it is more likely to exploit the fault plane (Fig. 6.2). 
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Figure 6.2: The difference in sill propagation pathways when sills are emplaced into the A) hangingwall and the 
B) footwall of a fault. Arrows show magma propagation direction. σ3 is the minimum principal stress and σV  are 
the vertical stresses. From Magee et al. 2013. 

Intrusions in the Solsikke seismic survey also show this trend of intrusions following faults (Fig. 

5.15a-c).  The sills seem to have been emplaced either at the base of the faults in the seismic 

data, because no faults are imaged below these deep intrusions, or they are emplaced and 

have exploited faults. The outcrop data is only in 2D, however studies on intrusions following 

faults in seismic data can lead to a better understanding of the movement of magma as the 

movement of magma can be studied in 3D. 

From these data and a number of studies done on interaction between faults and intrusions 

in seismic data (Gaffney et al. 2007, Thomson and Schofield 2008, Magee et al. 2013), the 

presence of faults can modify the geometry of intrusions. Sills can climb fault planes and 

exploits faults where it is possible. In many cases, sills exploit inclined dips of the beds between 

faults, but in other cases, they cut straight trough. Sill intrusions can also exploit the edge of 

tilted fault blocks to climb to stratigraphically higher levels (Thomson and Schofield 2008).  
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6.2 Comparison between outcrop and modelled seismic 

In this section, the discussion of how the synthetic seismic data relates to the outcrop model 

is presented. Synthetic seismograms can generally reproduce the geometry of the input 

intrusion model quite well, but it depends on seismic frequency and lateral resolution.  

Studies on sill intrusions in seismic data have helped our understanding of sill complexes 

within sedimentary basin (e.g Hansen and Cartwright 2006, Schofield et al. 2015, Magee et al. 

2016). However, interpretation of sills in seismic data depends on comparison with field 

analogues to interpret intrusion morphologies and features. The key problems associated with 

seismic data are the limitation in resolution. This resolution problem can be addressed by 

using seismic modelling to image the features with both high and low frequencies, which 

makes it easier to compare to the real seismic data (see Section 6.3).  

As seen from the results, the seismic expression of different sill intrusions can vary in response 

to changes in frequency, thickness of the sills and the presence of interbedded strata. 

Frequencies above 20 Hz used in this study, generally reproduce the outcrop with a good 

amount of details. The host rocks in this case are homogenous and the individual sill 

geometries are particularly well defined. However if 10 Hz is used many of the small details 

are not preserved and there are a lot of tuning effects and interference between different 

reflectors. The variation in amplitude of the reflectors correspond to interference between 

the upper and lower reflections. This tuning response occurs below the limit of 

resolution/seperability, and is influenced by the sill thickness and frequency of the seismic 

data (Smallwood et al. 2002). The impedance contrast between sill intrusions and host rock 

and other sill intrusions can lead to interference, and lower or higher seismic amplitude of sill 

reflectors.   

Figure 6.3 shows how the seismic modelling result (Section 5.3) relates and compares to the 

original outcrop on Traill Ø, by combining the modelled seismic in 20 Hz on top of the 

reflectivity model. The first thing to notice is that top and base sill reflectors interfere with 

each other, but in the case of thicker sills, the top and base of an intrusion are imaged (Fig. 

6.3). Another observation is that the amplitude of sill reflectors seems to vary in strength along 

the outcrop. This can be due to constructive or destructive interference between i.e. thin sills 
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and a thicker main sill or between stratigraphy and sill reflectors (Fig. 6.3). This interference 

pattern seems to be related to the geometry of the sills and the spacing between individual 

sills. Figure 6.3 shows how two sills, one thin sill on top of a thicker sill, interfere with each 

other creating a reflector with a low amplitude compared to the other sills. It also show 

constructive interference between a base sill reflection and top Permian reflection resulting 

in a strong amplitude. At frequencies above 20 Hz, it is possible to observe 5 m thin individual 

sills as tuned reflectors. However if these thin sills are close to another sill, they will not be 

imaged as individual reflectors, but interfere with the other sill. 

 

Figure 6.3 Modelled seismic overlain the reflection model. Upper figure showing outcrop with stratigraphy, sill 
intrusions and faults. Lower figure showing a combination of the modelled seismic data with a frequency of 20 
Hz and the reflectivity model represented by thin lines. Note the variation in amplitude strength. The variations 
in amplitude strength are mostly due to constructive and destructive interference between different reflectors. 
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Broken bridges are well imaged and easy to recognize at this scale and frequency. However, 

the sill intrusions on Traill Ø and in the Theron Mountains (Hutton 2009) are thick, and the 

broken bridges are large compared to other settings, e.g. Jameson Land and  San Rafael Swell 

(Eide et al. 2017, Walker et al. 2017). Since the intrusions on Traill Ø are much thicker than the 

sills in the other localities, broken bridges within them can be imaged more easily in seismic 

data. The broken bridge in Figure 6.3 consists of host rock and is shown as a downward 

decrease in seismic energy from the interface between the sill and the broken bridge. The 

broken bridge is therefore imaged as a red slightly dipping reflector below the top sill reflector 

(Fig. 6.3).  

Magee et al. (2015) demonstrated that stratigraphic reflections from layered rocks could 

interfere with reflections generated at the intrusive contact of sills and may produce seismic 

artifacts that could be misinterpreted as real features imaged in seismic datasets. This can 

lead to apparent steps (pseudosteps) in climbing sills and dykes. In the layered model 

presented in Section 5.3.3, there is no evidence of such pseudosteps. There could be several 

reasons for this: (1) The acoustic impedance contrast is lower between the layers in the model 

presented in this thesis, (2) the ratio between sandstone and mudstone is much lower or (3) 

the use of 2D convolution instead of the 1D convolution used in Magee et al. (2015). However, 

another difference seen from the outcrop layered modelled is that intrusions may be 

influenced by destructive interference from the changing stratigraphic layering. The 

destructive interference seen in Figure 5.19 can be misinterpreted to represent a gap in the 

intrusion. Different sills may cause similar reflection geometries, but have quite different 

expression in outcrop data. 

Pseudosteps can be important in some cases, e.g. when the contrast between the intrusions 

and the host rock is low. However, in this study, realistic velocities from well data have been 

used, and the result and the layered model show that the contrast between the dolerite sills 

and the sediments is too high, that the layering should be of much consequence. 

6.3 Comparison between seismic modelling and real seismic data 

In the previous section, the seismic modelling was compared with the outcrop model. This 

following section will examine the relationship between observation from outcrop, the 
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modelled seismic and the real seismic data from the Solsikke area in the Møre Basin. The 

target host rocks in the Møre Basin consist mostly of shales, while on Traill Ø there is a large 

variety in the stratigraphy in the area. This can also influence the geometry and morphology 

of sills. Post-magmatic faulting is more common in the Traill Ø area and they cut through the 

sill intrusions in the outcrop. Such post-magmatic faults are not observed in the Solsikke 

area. 

Synthetic seismic can help and guide interpretation of different geological features in the 

subsurface. Not many other seismic studies have compared features seen in intrusions in real 

seismic with seismic imaging. Magee et al. (2015) have done a study on controls on expression 

of igneous sills in seismic by using 1D convolution modelling to image hypothetical cases of 

interaction between sills and host rock, and then comparing these synthetic seismograms with 

real seismic data. Other studies have compared intrusions in field directly with seismic 

observation (Schofield et al. 2012a, Magee et al. 2016).   

In Figure 6.4, three examples of comparisons between features in modelled seismic and real 

seismic data are shown. The first example shows how an intrusion can follow a fault (Fig. 6.4a). 

Intrusions climbing faults are well know from the literature (Gaffney et al. 2007, Magee et al. 

2013, Schofield et al. 2015). The outcrop at Traill Ø shows one of these intrusions that follow 

a pre-magmatic fault. The dyke is almost impossible to see in the modelled seismic even at 

high frequencies. In real seismic data, intrusions seem to follow fault as well. Sometimes the 

intrusions show a low amplitude, and it is therefore not easy to recognize some of these dykes 

in the seismic. Dykes that are obliquely dipping are normally not well imaged in seismic. This 

is due to the limitation in lateral resolution and the illumination angle (e.g. Lecomte et al. 

2016). Dykes are normally too thin and steeply dipping to be imaged in seismic data (Planke 

et al. 2014). However, some of the intrusions are quite well imaged in the Solsikke data. This 

can be due to irregularities on the dykes margins, making it easier to image. It is reasonable 

to presume that many dykes that follow faults and dykes in general, are not imaged in the 

seismic, because of limitation in seismic resolution and illumination (Smallwood et al. 2002, 

Thomson 2007).  
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Figure 6.4: Comparison between intrusions in the outcrop data, the expression in synthetic seismic and seismic data from the Møre Basin. Examples of a) intrusion following a 
fault, b) broken bridge in seismic data and c) sills at different levels and complex interaction between sill intrusions.



  6 Discussion 

83 
 

The next example shows a broken bridge imaged at a frequency of 20 Hz (Fig. 6.4b). The sill 

reflector from a broken bridge in seismic shows a slight offset, that may resemble a small fault. 

This feature is also seen some places in the Møre seismic. Broken bridges imaged in seismic, 

are characterized by distinct separate magma lobes in regions away from the magma source, 

but closer to the source, the distinct magma lobes coalesce into a single reflection showing 

steps (Schofield et al. 2012a).  In the Solsikke seismic, this trend is also shown a couple of 

places, when two distinct reflectors coalescence into one. From the modelled seismic, there 

is only observed either two distinct reflectors not connected or totally connected reflectors 

without the stepped appearance.  

Broken bridges in mudstone are very rare (Hutton 2009), but are observed in small scale from 

Isle of Skye (Schofield et al. 2016). However, several broken bridges are observed in the 

seismic data from the Solsikke area, which are dominated by mudstone and siltstone. These 

bridges might indicate coarser grained areas within the mudstone. Since the broken bridges 

are imaged well in the synthetic seismic and in the seismic data, it is reasonable to assume 

that the intrusions in the Møre Basin have the same thickness as the intrusions on Traill Ø.  

The last example shows how intrusions at different stratigraphic levels are imaged, and how 

intrusions may form complex network of sills (Fig 6.4b). In the modelled seismic with a 

frequency of 10 Hz, it is apparent that the actual complexity within the area is not preserved. 

The thinner sills are not imaged, and the main sills are imaged as tuned reflectors. By 

comparing this with real seismic from the Møre Margin, there is a possibility that also the real 

complexity of this network of sills is not well represented in the seismic either.  

6.3.1 Resolution and detectability of sill intrusions 

There are numerous rules of thumb for determining seismic detectability, and these will 

predict different thickness for the thinnest layer that may be imaged. Planke et al. (2005) 

suggested that the seismic detectability for sill intrusions is represented by λ/10. However, 

Sheriff and Geldart (1995) suggested that low impedance sands with a reasonable data quality 

could already be imaged at λ/20 to λ/30. It follows from this that due to the higher impedance 

contrast between host-rock and intrusions, intrusions can be imaged at lower thicknesses than 

of normal sandstone beds. In reality, there is no simple rule of thumb when it comes to seismic 
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detectability, because the seismic detectability depends on several factors: signal to noise-

ratio in the data, acquisition, processing, and the acoustic impedance contrast between layers.   

If the seismic detectability according to Planke et al. (2005) is used, the deep sills in the seismic 

data from the Møre Margin have a calculated detectability of c. 48 m and a vertical resolution 

of c. 120 m (see Section 5.2.2 for calculation). This detectability limit is significantly lower than 

other seismic studies done on sills, since most studies have focused on shallow sills.  In the 

Solsikke 3D seismic survey on the Mid-Norwegian Margin (c.f. Section 5.2), all sills are imaged 

as tuned reflectors. It is therefore safe to assume that none of the sills are thicker than the 

resolution limit of 120 meters, and that the observed reflectors are above the detectability 

limit. In the published literature, the top and base reflectors of sill intrusions are very rarely 

observed. To my knowledge only laccoliths which typically are thicker than sills (Cruden et al. 

2017), are observed to show both top and base reflector in seismic data (Jackson et al. 2013).  

Intrusions along the Traill Ø outcrop make up 13 % of the outcrop. Even though sills generally 

are thick along the outcrop, by using the detectability limit of 48 m, only some of the sills in 

the area would be imaged in the subsurface at depths of c. 3 km. In the synthetic seismic 

generated however, some of the thin reflectors (often down to 5 m) are also imaged in seismic 

with frequencies of 10 and 20 Hz as weak reflectors. The modelling method used in this thesis 

does not show any acquisition noise, and it will not lose frequencies below the intrusions. 

Therefore, thin intrusions with a high impedance contrast can be imaged. This depends on the 

seismic quality of the data, and if the quality is good, intrusions below the detectability limit 

suggested by Planke et al. (2005), which is λ/10, can be imaged because of the high impedance 

contrast.  

Intrusions can also mask reflections of deeper sills, causing deeper sills with thicknesses above 

the vertical resolution to not be imaged. Bore hole data have suggested that as much as c.80 

% of intrusions are not imaged in seismic as they are below the limit of detectability in seismic 

data (Schofield et al. 2015). This implies that the deeply emplaced sill intrusions observed in 

the Møre Basin are only a small part of the entire volume of sill intrusions.
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7 Conclusions and further work 

 

7.1 Conclusions 

This thesis has presented exceptionally well-exposed intrusions along a virtual outcrop at Traill 

Ø, East Greenland, and used it as an analogue for seismic data from the Møre Margin. A better 

understanding of the controls on deeply emplaced intrusions and the expression of thick sill 

complexes in seismic data has been achieved by using outcrop data and seismic modelling.  

The result and discussion in this thesis have led to the following conclusions. 

1) Lithology has an important control on the emplacement mechanisms of sill intrusions, 

and the Traill Ø outcrop shows a large range of different lithologies. Sills preferentially 

exploit extensive thick mudstone units, where they commonly form thick intrusions, 

or thinly bedded sandstone and mudstone units. They also seem to prefer 

carbonate/evaporite units. Sills do not prefer homogenous sandstone as sill intrusions 

transgress out of sandstone units over short distances. 

2) Deep sill intrusions are mostly emplaced along stratigraphic layers and show mainly 

planar parallel sill geometries. Features like broken bridges and steps show that the 

intrusions are emplaced into a brittle host rock. 

3) Pre-existing faults can exert a major influence on the emplacement mechanism of sill 

intrusions, and intrusions can exploit faults as they can offer least resistance paths 

through sedimentary basins. 

4) Deeply emplaced intrusions have propagated by elastic tensile fracture, as magma 

propagation is accommodated by host-rock uplift with no or minor deformation. 

5) Comparison between outcrop data and synthetic seismic can improve mapping of 

intrusions in seismic data significantly. 

6) Sill intrusions are often well imaged in seismic data even when they are below the 

resolution, due to strong impedance contrast between intrusions and host rock. The 

detectability limit for intrusions are much higher than for siliciclastic rocks as the 

impedance contrast on intrusions are generally high. 
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7) Thin sills and steeply dipping intrusions are commonly not imaged in seismic, and it 

can be difficult to know their presence in seismic data, which can lead to the 

underestimation of sills in the subsurface. 

This thesis has shown the importance of the emplacement and geometry of deep sill intrusions 

in sedimentary basins on volcanic rifted margins. By understanding host rock lithology, pre-

existing structures and the emplacement mechanisms, it is possible to predict the sill intrusion 

geometry and expression in seismic data. The limited seismic coverage of deep sill complexes 

in the subsurface can be strengthened by correlation between outcrop, synthetic seismic and 

seismic data.  

7.2 Further work 

Igneous sill complexes have a high degree of complexity, and this thesis is a contribution to 

the understanding of these. However, the following future work ideas could improve and 

extend the study of sill intrusions on Traill Ø, and improve knowledge on sill complexes in 

general.  

 Fieldwork and stratigraphic logging of the host rock in the study area would lay more 

confidence into the interpretation, and make the connection between host rock and 

emplacement morphology clearer. 

 Study small-scale intrusions structures and deformation on the sill margins. It would 

be interesting to observe how these relates to the linear elastic fracture model for sill 

emplacement and the large-scale geometry of the sills.  

 Dating of the two dykes crosscutting the sills, in order to constrain their age, and find 

out if they are related to the first or second period of magmatism. 

 Seismic modelling of sill complexes with generally thin sills, and comparing this with 

this study on thick sill intrusions. 

 More focus on understanding deep sill intrusions in seismic data, as most of the work 

done in seismic data until now focuses on shallow sills. 
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