Al. The subroutine that was used in the simulations

subroutine LARS TEST LAB()

integer :: ind, count rand walks, j, 1
integer :: food item selected
real :: step rwalk, cost step

integer, dimension (proto parents%population size)
random_ sample individuals

!> Lars' variables are prefixed with lars_
!> OUTPUT: Declaring record which has the data values appended for each

individual

character (1len=2000) :: lars file record append data gos label
character (len=2000) :: lars file record append data gos_ arousal
character (len=2000) :: lars file record append data gos repeated

!'! OUTPUT: Declaring file names as character string variables

character (len=:), allocatable :: lars output filename data gos label
character (len=:), allocatable :: lars output filename data gos_ arousal
character (len=:), allocatable

lars output filename data gos repeated

!> OUTPUT: Declaring file units as integer numbers. We need file units
for

!'! behind the scene work, even though they are not directly used here.

! All the CSV routines can refer to the file by its name.

integer lars output fileunit data gos_ label

integer lars output fileunit data gos_arousal

integer lars output fileunit data gos_ repeated

!> This variable keeps a short description component for the csv output

'l file names:
character (len=*), parameter :: lars ADF File descript = "pattern 1"

!> Make an array of random integers that we will use for sampling random
'! fish from the whole population
random sample individuals =

PERMUTE RANDOM (proto parents$population size)

L e e e e
!> OUTPUT: Opening the output file for **gos label**.
' 1. we first set file name:
lars output filename data gos label = "0000 lars gos label ADF " //

lars ADF File descript // csv
! 2. second, set internal file unit (we do not use the unit afterwards
but it is
' used by fortran internally)
lars output fileunit data gos label = GET FREE FUNIT() ! get file unit
automatically
! 3. and physically open the output file for writing:

43

call CSV_OPEN WRITE (lars output filename data gos label,

&
lars output fileunit data gos label)

! 4. producing a whole record with column labels using our function

! 'do_row_header': VAR 001, VAR 002.... VAR 100

lars _file record append data gos label = do row header (100)

! 5. write this first record that contains column labels

call CSV_RECORD WRITE (record=lars file record append data gos label,
&

csv_file name=lars_output filename data gos label)

!> OUTPUT: Opening the output file for **gos arousal*¥*.

lars output filename data gos arousal = "0000 lars gos arousal ADF "
!/ &
lars ADF File descript // csv
lars output fileunit data gos arousal = GET FREE FUNIT() ! get file unit
automatically
call CSV_OPEN WRITE (lars output filename data gos arousal,
&
lars output fileunit data gos arousal)
!> producing a whole record with column labels
lars file record append data gos arousal = do row header (100)
call CSV_RECORD WRITE (
record=lars_file record append data gos arousal, &

csv_file name=lars output filename data gos arousal)

!> OUTPUT: Opening the output file for **gos repeated counter**.
lars output filename data gos repeated = "0000 lars gos repeated ADF "
/] &
lars ADF File descript // csv
lars output fileunit data gos repeated = GET FREE FUNIT() ! get file
unit automatically
call CSV_OPEN WRITE (lars output filename data gos repeated,

lars output fileunit data gos repeated)
!> producing a whole record with column labels
lars file record append data gos repeated = do_row header (100)
call CSV_RECORD WRITE (
record=lars_file record append data gos repeated, &

csv_file name=lars output filename data gos repeated)
L o I B B B o B e B

! First loop through a random sample of 10 fish out from the whole
population
INDS: do j=1, 10

! Choose the current individual ID number to work with from the
random sample.
ind = random sample individuals (Jj)

! Exclude dead fish.
if (proto parents%individual (ind) %is dead()) then

44

call LOG MSG ("WARNING: Found dead agent # " // TOSTR(ind))
exit INDS
end if

V+++++++++H++

!'> OUTPUT: Make the record an empty string when we start writing
data

'! for each new individual

lars file record append data gos label = ""

lars file record append data gos arousal = ""

lars file record append data gos repeated = ""

T e e IR

! Start random walks of the fish
WALKS: do i=1, 100

call LOG_DELIMITER(LOG_LEVEL_CHAPTER)
call LOG DBG ("Agent walk no=" // TOSTR(i) // " , agent ID " //

&
TOSTR (proto_parents%individual (ind) $get _id()) //
&
" (# "™ // TOSTR(ind) // "), name:"
&
// proto parents%individual (ind) %$individ label ()
//u.u)
! do random walk
step rwalk = dist2step(170.0)
call LOG DBG (" Step size for randomwalk: " // TOSTR (step rwalk)
// &

", " // TOSTR(step rwalk /
proto parents%individual (ind) %get length()) // &
" agent's body sizes.")

call proto parents%individual (ind) %rwalk(step rwalk,0.5, &

habitat safe)

call LOG DBG(" cycle ind:walk "// TOSTR(ind) // ":"// TOSTR (i)
/] &

TOSTR (proto_parents%individual (ind) $location (.TRUE.)))
call LOG DBG (" way "//
&

TOSTR (proto_parents%individual (ind) sway ()))

cost step =
proto parents$individual (ind) %cost swim burst (step rwalk)
call LOG DBG (" Cost of random walk step: " // TOSTR(cost step)
/] &
" is " // TOSTR(100.0 SRP * cost step /
proto parents%individual (ind) $body mass) // &
"$ of agent's body mass.")

45

!> Subtract the cost of swimming here:

proto parents%individual (ind) 3body mass=proto parents%individual (ind) $bod

y_mass - &
cost _step

1
! Inner perceptions: stomach, bodymass, energy, age
call proto parents%individual (ind) *perceptions_inner ()

1
! Environmental perceptions: light, depth

call proto parents%individual (ind) *perceptions_environ ()
call LOG DBG ("Environmental perceptions: light " //

&

TOSTR (proto_parents%individual (ind) $perceive light%get current()) // &
", depth " //

&

TOSTR (proto_parents%individual (ind) $perceive depth%get current()))

!
! Spatial perceptions food, conspecifics, predators
call

proto parents%individual (ind) $see food (habitat safe%food, 1)

call
proto_parents%individual (ind) $see consp (proto_parents%individual, &
proto parents%individual%*get length(),
&
proto parents%individual%is_alive ())

call
proto parents%individual (ind) $see pred(habitat safe%predators, &
habitat safe%predators%get size())

1
call

proto parents%individual (ind) $motivations percept components ()
call proto parents%individual (ind) *motivations primary calc()
call proto parents%individual (ind) *modulation ()
call proto parents%individual (ind) *motivations_ to memory ()
call proto parents%individual (ind) %*gos_find ()

e o o

! OUTPUT: We are to place some code for producing outputs of
motivational

! variables below here.

call CSV_RECORD APPEND (
lars file record append data gos label, &

46

proto parents3individual (ind) $gos_label ())

call CSV_RECORD APPEND (
lars file record append data gos_arousal, &

proto parents%individual (ind) $arousal ())

call CSV_RECORD APPEND (
lars file record append data gos_ repeated, &

proto_parents%individual (ind) $gos_repeated)

L

!> Check if the fish has died of starvation
if (proto_parents%individual (ind) $starved death()) then
call proto parents%individual (ind) %dies ()
call LOG_DELIMITER(LOG_LEVEL_SECTION)
call LOG DBG ("INFO: Agent dies due to starvation, ID: " //

TOSTR (proto_parents%individual (ind) $get id()))

call LOG DBG (" Body length: " //
) TOSTR (proto_parents%individual (ind) $body length) //
) ", body mass: " //
) TOSTR (proto_parents%individual (ind) $body mass) //
) ", maximum mass: " //
&

TOSTR (proto_parents%individual (ind) $body mass maximum) // &

", birth mass : " //
&
TOSTR (proto_parents%individual (ind) $body mass birth)
)
call LOG DBG (" Energy :" //
&
TOSTR (proto_parents%individual (ind) $energy current)
// &
", energy maximum: " //
&
TOSTR (proto_parents%individual (ind) $energy maximum)
)
call LOG_DELIMITER(LOG_LEVEL_SECTION)
exit WALKS
end if
call LOG DBG("GOS 1is " //
proto parents3individual (ind) $gos_label ())
call LOG DBG("GOS arousal :" //

TOSTR (proto parents%individual (ind) Sarousal()))

47

call LOG DBG("**** can see food: " //
TOSTR (proto_parents%individual (ind) $perceive food%get count()))

!> Check if there is any food items in proximity (visibility
range)
if (proto parents%individual (ind) %has food()) then
call LOG DBG(" distance > //

TOSTR (proto_parents%individual (ind) *perceive food%foods distances))
call LOG DBG(" dist. (d/1) >" //
&

TOSTR (proto_parents%individual (ind) $perceive food%foods distances &
/
proto parents%individual (ind) $get length()))

call LOG DBG (" +++ Current mass: " //
TOSTR (proto_parents%individual (ind) %mass()) // &
", length: " //
TOSTR (proto_parents%individual (ind) $length()) // &
", energy: " //

TOSTR (proto_parents%individual (ind) 3get energy()))
!> Select the optimal food item out from its perception:
food item selected =
proto parents$individual (ind) $food item select (rescale max motivation=6.0
SRP)

!> Try to eat the optimal food item:

call
proto parents%individual (ind) $food item eat (food item selected,
habitat safe%food)

call LOG DBG("**** Tried to eat food item: " //
TOSTR (food item selected))
call LOG DBG (" +++ Updated mass: " //
TOSTR (proto_parents%individual (ind) %mass()) // &
", length: " //
TOSTR (proto_parents%individual (ind) $length()) // &
", energy: " //

TOSTR (proto parents%individual (ind) $get energy()))
- Istop "EATEN" -
else
!'> If no food objects were encountered we still grow with zero
food gain.
call proto parents%individual (ind)%mass grow (0.0_SRP)
call proto parents%individual (ind) %len grow (0.0_SRP)

end if
call LOG DBG("**** can see consp: " //
TOSTR (proto_parents%individual (ind) $perceive consp%get count ()))
if (proto_ parents%individual (ind) %has _consp()) then
call LOG DBG(" coord(1) > /)

48

TOSTR (proto_parents%individual (ind) $perceive consp%conspecifics seen (1) 31
ocation(.TRUE.)))
call LOG DBG(" iid > //

TOSTR (proto_parents%individual (ind) *perceive consp%conspecifics seen%get
cid()))

end if
call LOG DBG("**** can see pred: " //
TOSTR (proto_parents%individual (ind) $perceive predator3get count()))
if (proto parents%individual (ind) %has pred()) then
call LOG DBG(" coord(l) =" //

TOSTR (proto_parents%individual (ind) $perceive predator3predators seen (1) 31
ocation(.TRUE.)))
call LOG DBG(" iid =" //

TOSTR (proto_parents%individual (ind) *perceive predatorspredators seen(l) g
et cid()))

call LOG DBG(" dist =" //
&

TOSTR (proto_parents%individual (ind) *perceive predatorspredators seen(l) 3g

et dist()))
end if

end do WALKS

Vbt
!> OUTPUT: Physically write the record to the disk
call CSV_RECORD WRITE (
record=lars_file record append data gos label, &

csv_file name=lars_ output filename data gos label)

call CSV_RECORD WRITE (
record=lars_file record append data gos arousal, &

csv_file name=lars_ output filename data gos arousal)

call CSV_RECORD WRITE (
record=lars_file record append data gos repeated, &

csv_file name=lars output filename data gos repeated)

e ot oo e oo e e e e e o o o o

call LOG DBG("INFO: Subtracting cost of living for agent # " //

TOSTR (ind) // " and add weight and length to the
49

history.")

!> Subtract the cost of living
call proto parents%individual (ind) %subtract living cost()

call
add to history(proto parents%individual (ind) *body length history, &
proto parents%individual (ind) 3body length)

call
add_to_history(proto parents%individual (ind) *body mass_history, &
proto parents%individual (ind) $body mass)

if (proto_parents%individual (ind) %$starved death()) then
call proto parents%individual (ind) *dies_debug ()
call LOG_DELIMITER(LOG_LEVEL_SECTION)
call LOG DBG ("INFO: Agent dies due to starvation, ID: " //

TOSTR (proto_parents%individual (ind) $get id()))

call LOG DBG (" Body length: " //

&

TOSTR (proto_parents%individual (ind) $body length) //
&

", body mass: " //
&

TOSTR (proto_parents%individual (ind) $body mass) //
&

", maximum mass: " //
&

TOSTR (proto_parents%individual (ind) $body mass maximum) // &

", birth mass : " //
&

TOSTR (proto parents%individual (ind) $body mass birth)
)

call LOG DBG (" Energy :" //

&

TOSTR (proto_parents%individual (ind) %energy current)
// &

", energy maximum: " //
&

TOSTR (proto_parents%individual (ind) $energy maximum)

call LOG_DELIMITER(LOG_LEVEL_SECTION)
end if

end do INDS

' +++++++++H++
!> OUTPUT: Finally, we are closing the output files.
call CSV _CLOSE(csv_file name=lars output filename data gos label)
call CSV _CLOSE(csv_file name=lars output filename data gos arousal)
call CSV _CLOSE(csv_file name=lars output filename data gos repeated)

50

T S o

contains

V+4+4+++++++++++++++
! OUTPUT: Produce a whole record with the names of the columns.
function do row header (n vars) result (string record)

integer, intent(in) :: n vars
character (1len=2000) :: string record

!'> Local vars
integer :: 1

!> producing a whole record with column labels
string record = ""
do i=1, n _vars
call CSV_RECORD APPEND(string record, "VAR " // TOSTR(i,n_vars)
end do

end function do row header

end subroutine LARS TEST LAB

51

A2. The Global Organismic State

> Find and set the global organismic state (GOS) based on the various

! available motivation values.

! @note GOS generation is a little changed in the new generation model.
! 1. We try to avoid constant switching of the GOS by requiring that
! the difference between motivational components should exceed
! some threshold value, if it does not, retain old GOS. So minor
! fluctuations in the stimulus field are ignored. Threshold is
! a dynamic parameter, so can also be zero.

1

!
!
!
!
!
!
!
!
! 2. The threshold is inversely related to the absolute value of

the

L} motivations compared, when the motivations are low, the

[} threshold is big, when their values are approaching 1, the

[} threshold approaches zero. So motivations have relatively
little

' effects.

subroutine gos find global state (this)

class (GOS_GLOBAL), intent (inout) :: this

!> Local variables

!> Arousal is the maximum level of motivation among all available new

'! incoming motivations ones. But we still have the older/previous
"current"

'! arousal value "%gos_arousal’ until it is updated from the newly

incoming
!'! perceptions and motivations.
real (SRP) :: arousal new

!> Dynamic threshold of GOS, the threshold a motivation has to exceed to
'! win the competition with the current motivation.
real (SRP) :: gos dthreshold

!> PROCNAME is the procedure name for logging and debugging (with
MODNAME) .
character (len=*), parameter :: PROCNAME = " (gos find global state)"

!> Arousal is the maximum level among all available motivations (**final**
'! motivational components). This is the **new** state depending on all
'! the currently incoming perceptions.

arousal new = this%motivations%max final ()

> The GOS competition threshold is a function of the current arousal
! level, if it is very low, we need a relatively high competing motivation
! to win competition, if it is high (1) then very small difference is
! enough. But note that this is the relative differences. So if we have
! a low motivation 0.1, we need 0.155 to win (threshold=0.55,

! 0.155=0.140.1A-0.55), but if we have high motivation 0.8, almost any
! exceeding motivation (>0.808) will win. So we limit the possible
! effects of low motivations. We get the actual value as a nonparametric
! function, currently by nonlinear interpolation of the grid values
! defined by the "MOTIVATION COMPET THRESHOLD CURVE ' parameter arrays.
! @plot “aha gos_arousal winthreshold.svg’

gos_dthreshold = DDPINTERPOL (

52

MOTIVATION COMPET THRESHOLD CURVE ABSCISSA, &

MOTIVATION_COMPET_THRESHOLD_CURVE_ORDINATE, &
this%gos_arousal)

!> Save the interpolation plot in the debug mode using external command.
!'! @warning Involves **huge** number of plots, should normally be

L disabled.

call debug interpolate plot save(

grid_xx=MOTIVATION COMPET THRESHOLD CURVE ABSCISSA,

- grid yy=MOTIVATION COMPET THRESHOLD CURVE ORDINATE,

) ipol value=this%gos_ arousal, algstr="DDPINTERPOL",

- output file="plot debug arousal gos threshold " //

- TOSTR (Global Time Step Model Current) //

- TAG MMDD() // " a "// trim(this%individ label()) //
&

" " // RAND STRING (LABEL LENGTH,
LABEL CST, LABEL CEN) &
// PS)

!> Now as we have the dynamic threshold, we can compare the current
!'! motivation level with the current (previous) arousal. If the motivation
!'! exceeds the current arousal by more than the threshold, the GOS

!'! changes to the new motivation. If not, we are still left with the
'l previous GOS.

AROUSAL THRESHOLD: if (arousal new - this%gos_arousal <

&
gos dthreshold * this%gos arousal)
then
!> If the maximum current arousal does not exceed the threshold,
!'! we are left with the old GOS. However, we reduce the current arousal
!'! spontaneously using a simple linear or some non-linear dissipation
!'! pattern using the "%gos_repeated’ parameter that sets the number of
'l repeated occurrences of the same (current) GOS.
'! First, increment GOS repeat counter.
this%gos repeated = this%gos repeated + 1
!'> And spontaneously decrease, **dissipate**, the current arousal
level.
!'! Spontaneous dissipation of arousal is implemented by multiplying the
!'! current level by a factor within the range [0.0..1.0] that can depend
'! on the number of times this GOS is repeated.
!'! @note Note that the dissipation function is local to this procedure.
" ‘arousal decrease_factor fixed®' = fixed value
' ‘arousal decrease_factor nonpar® = nonlinear,
nonparametric,
' based on nonlinear interpolation.
'! @plot "aha_gos_arousal dissipation.svg’
this%gos arousal = this%gos arousal *
&

53

arousal decrease factor nonpar (this%gos repeated)
else AROUSAL THRESHOLD B
!> If the maximum new arousal exceeds the threshold, we get to a
'l **pnew GOS**. That is, the **highest** among the **new** competing
!'! motivations defines the new GOS.
!'! @note Use “associate construct to set alias for long object
hierarchy.
!'! @note Note that "this%gos_repeated’ is initialised to 1 at
‘gos_reset’.
associate (MOT => this%motivations)
!> Check **hunger**.
GOS IS MAX: if (MOT%is max final (MOT%hunger)) then
!> Reset all motivations to **non-dominant**.
call this%gos reset()
!> Set new GOS for hunger...
MOT%hungersdominant state = .TRUE.
this%gos main = MOT%hunger%label
this%gos arousal = MOT%hunger%motivation finl
!> Check **passive avoidance*¥*.
else if (MOT%is max final (MOT%avoid passive)) then GOS IS MAX
!> Reset all motivations to **non-dominant**.
call this%gos reset()
!> Set new GOS for passive_ avoidance...
MOT%avoid passive%dominant state = .TRUE.
this%gos main = MOT%avoid passive%label
this%gos arousal = MOT%avoid passiveSmotivation finl
!> Check **active_avoidance**. B
else if (MOT%is max final (MOT%avoid active)) then GOS IS MAX
!> Reset all motivations to **non-dominant**.
call this%gos reset()
!> Set new GOS for active_avoidance...
MOT%avoid active%dominant state = .TRUE.
this%gos main = MOT%avoid active%label
this%gos arousal = MOT%avoid active%motivation finl
!> Check **reproduction**.
else if (MOT%is max final (MOT%reproduction)) then GOS IS MAX
!> Reset all motivations to **non-dominant**.
call this%gos reset()
!> Set new GOS for reproduction...
MOT%reproductionsdominant state = .TRUE.
this%gos main = MOT%reproduction%label
this%gos arousal = MOTS%reproduction®motivation finl
end if GOS IS MAX
end associate

end if AROUSAL THRESHOLD

!> Add the current GOS parameters to the emotional memory stack

!'! @note Note that the memory stack arrays are defined in

" APPRAISAL and cleaned/init in ‘init appraisal’

!'! @note We can use the dedicated procedures. Here disabled so far to avoid
L} speed overhead.

'call this%memory motivations$%gos_to_memory (

! v_gos_label=this%gos_main,
54

! v_gos_arousal= this%gos_arousal,

! v_gos_repeated=this%gos_repeated)
call add to history(this%memory motivations%gos main, this%gos main)
call add_to_hlstory(thlsomemory_motlvatlonsogos_arousal,

this%gos arousal)
call add to history(this%memory motivations%gos repeated,

this%gos_ repeated)

!> Finally recalculate the attention weights for all the states'
perception

!'! components. The dominant GOS state will now get its default attention
!'! weights whereas all non-dominant states will get modulated values, i.e.
!'! values recalculated from a non-linear interpolation based **attention

!'! modulation curve*¥*,
call this%attention modulate ()

!'! @note Note that type-bound functions can be used (although this makes
[} sense only outside of this module to avoid a small function-call

[} overhead) : "if (this%motivations%hunger%is_dominant())
then . For the
[} motivational state label we can use the accessor function
["%$label is® : ‘return gos =
this%motivations%hunger%label is() " (it is
[} **mandatory** outside of this module as label is declared
[} ‘private’).
if (this%motivations%hunger%*dominant state) then
return gos = this%motivations%hunger%label
else if (this®motivations%avoid passive%dominant state) then
return _gos = this%motivations%avoid passive%label
else if (thlsomotlvatlonsoav01d activesdominant state) then
return gos = this%motivations%avoid active%label
else if (this®motivations%reproduction%dominant state) then
return gos = this%motivations%reproduction%label
end if

end function gos global get label

!> Calculate the overall level of arousal. Arousal is the current level
!'! of the dominant motivation that has brought about the current GOS at the

!'! previous time step.
elemental function gos get arousal level (this) result (arousal out)
class (GOS _GLOBAL), intent(in) :: this

!> Arousal is the current level of motivation that has brought about GOS.

real (SRP) :: arousal out

!> It is saved in this GOS-object component.
arousal out = this%gos arousal

end function gos get arousal level

55

A3. The Attention Modulation Factor

!> Modulate the attention weights to suppress all perceptions alternative

to the current GOS. This is done using the attention modulation
interpolation curve.

!'! @warning This subroutine is called from within "gos_find and should not

be called separately.

subroutine gos_ attention modulate weights (this)

class (GOS_GLOBAL), intent (inout) :: this
!> Local variable, the weight given to the attention weight components
!'!" of all the non-dominant motivation states. Based on nonlinear

'l interpolation.
real (SRP) :: percept w

!> **First**, we calculate the attention weight given to all non-dominant
!l perceptions via nonlinear interpolation.
percept w = DDPINTERPOL(ATTENTION MODULATION CURVE ABSCISSA,
ATTENTION MODULATION CURVE ORDINATE,
this%gos_arousal)
!> Save the interpolation plot in the debug mode using external command.
!'! @warning Involves **huge** number of plots, should normally be
L} disabled.
call debug interpolate plot save(
grid xx=ATTENTION MODULATION CURVE ABSCISSA,
grid yy=ATTENTION MODULATION CURVE ORDINATE,
ipol value=this%gos arousal, algstr="DDPINTERPOL",
output file="plot debug attention modulation " //
TOSTR (Global Time Step Model Current) //

TAG MMDD () // " a "// trim(this%individ label()) //

" " // RAND STRING (LABEL LENGTH,

LABEL CST,LABEL CEN) &

!> **Second**, we reset the attention weights for the **dominant GOS
!l state** to their **default** parameter values whereas for all other
!'! states, to the **recalculated** “percept w modulated

'l value.

!> The **dominant** state is **hunger**:
(this%motivations%hunger%is dominant ()) then

RESET DOMINANT: if

!> @note Dominant is **hunger*¥*.
call this%motivations%hunger%attention weight%attention init

(weight light
weight depth
weight food dir
weight food mem
weight conspec
weight predator
weight stomach
weight bodymass
weight energy
weight age

weight reprfac

(weight light

percept w, &

weight depth

percept w, &

weight food dir

percept w, &

weight food mem

percept w, &

weight conspec

percept w, &

weight predator

percept w, &

weight stomach

percept w, &

weight bodymass

percept w, &

weight energy

percept w, &

&

weight age

weight reprfac

percept w)

call this%motivations$

ATTENTION WEIGHT HUNGER LIGHT,
ATTENTION WEIGHT HUNGER DEPTH,
ATTENTION WEIGHT HUNGER FOOD DIR,
ATTENTION WEIGHT HUNGER _FOOD MEM,
ATTENTION WEIGHT HUNGER_CONSPEC,
ATTENTION WEIGHT HUNGER PREDATOR,
ATTENTION WEIGHT HUNGER_STOMACH,
ATTENTION WEIGHT HUNGER BODYMASS,
ATTENTION WEIGHT HUNGER_ENERGY,
ATTENTION WEIGHT HUNGER AGE,

ATTENTION WEIGHT HUNGER REPRFAC)

ATTENTION WEIGHT AVOID PASS LIGHT *

ATTENTION WEIGHT AVOID PASS DEPTH *

ATTENTION WEIGHT AVOID PASS FOOD DIR *
ATTENTION WEIGHT AVOID PASS FOOD MEM *
ATTENTION WEIGHT AVOID PASS CONSPEC *
ATTENTION WEIGHT AVOID PASS PREDATOR *
ATTENTION WEIGHT AVOID PASS STOMACH *
ATTENTION WEIGHT AVOID PASS BODYMASS *

ATTENTION WEIGHT AVOID PASS ENERGY *

avoid passive%attention weight%attention init

ATTENTION WEIGHT AVOID PASS AGE * percept w,

ATTENTION WEIGHT AVOID PASS REPRFAC *

call this%motivations%avoid active%attention weight%attention init

57

(weight light = ATTENTION WEIGHT AVOID ACT LIGHT * percept w,
weight depth = ATTENTION WEIGHT AVOID ACT DEPTH * percept w,

weight food dir = ATTENTION WEIGHT AVOID ACT FOOD DIR *
percept w, &

weight food mem = ATTENTION WEIGHT AVOID ACT FOOD MEM *
percept w, &

weight conspec = ATTENTION WEIGHT AVOID ACT CONSPEC *
percept w, &

weight predator = ATTENTION WEIGHT AVOID ACT PREDATOR *
percept w, &

weight stomach = ATTENTION WEIGHT AVOID ACT STOMACH *
percept w, &

weight bodymass = ATTENTION WEIGHT AVOID ACT BODYMASS *
percept w, &

weight energy = ATTENTION WEIGHT AVOID ACT ENERGY *
percept w, &

weight age = ATTENTION WEIGHT AVOID ACT AGE * percept w,
&

weight reprfac = ATTENTION WEIGHT AVOID ACT REPRFAC *

percept w)

call this%motivations%reproduction%attention weight%attention init

(weight light ATTENTION WEIGHT REPRODUCE LIGHT * percept w,

weight depth = ATTENTION WEIGHT REPRODUCE DEPTH * percept w,

weight food dir = ATTENTION WEIGHT REPRODUCE FOOD DIR *
percept w, &

weight food mem = ATTENTION WEIGHT REPRODUCE FOOD MEM *
percept w, &

weight conspec = ATTENTION WEIGHT REPRODUCE CONSPEC *
percept w, &

weight predator = ATTENTION WEIGHT REPRODUCE PREDATOR *
percept w, &

weight stomach = ATTENTION WEIGHT REPRODUCE STOMACH *
percept w, &

weight bodymass = ATTENTION WEIGHT REPRODUCE BODYMASS *
percept w, &

weight_energy = ATTENTION WEIGHT REPRODUCE ENERGY *
percept w, &

weight age = ATTENTION WEIGHT REPRODUCE AGE * percept w,
&

weight reprfac = ATTENTION WEIGHT REPRODUCE REPRFAC *

percept w)

!> The **dominant** state is **avoid passive**:
else if (this%motivations%avoid passive%is dominant ()) then
RESET DOMINANT

call this%motivations%hunger%attention weight%attention init

58

(weight light = ATTENTION WEIGHT HUNGER LIGHT * percept w,

weight depth ATTENTION WEIGHT HUNGER DEPTH * percept w,

weight food dir = ATTENTION WEIGHT HUNGER FOOD DIR * percept w,
weight food mem = ATTENTION WEIGHT HUNGER FOOD MEM * percept w,
weight conspec = ATTENTION WEIGHT HUNGER CONSPEC * percept w,

weight predator = ATTENTION WEIGHT HUNGER PREDATOR * percept w,

weight stomach ATTENTION WEIGHT HUNGER STOMACH * percept w,
weight bodymass = ATTENTION WEIGHT HUNGER BODYMASS * percept w,

weight energy = ATTENTION WEIGHT HUNGER ENERGY * percept w,

weight age ATTENTION WEIGHT HUNGER AGE * percept w,

weight reprfac ATTENTION WEIGHT HUNGER REPRFAC * percept w)

!> @note Dominant **avoid passive**.
call this%motivations%avoid passive%attention weight%attention init

(weight light

ATTENTION WEIGHT AVOID PASS LIGHT,

weight depth = ATTENTION WEIGHT AVOID PASS DEPTH,

weight food dir = ATTENTION WEIGHT AVOID PASS FOOD DIR,
weight food mem = ATTENTION WEIGHT AVOID PASS FOOD MEM,
weight conspec = ATTENTION WEIGHT AVOID PASS CONSPEC,
weight predator = ATTENTION WEIGHT AVOID PASS PREDATOR,
weight stomach = ATTENTION WEIGHT AVOID PASS STOMACH,

weight bodymass = ATTENTION WEIGHT AVOID PASS BODYMASS,

weight energy = ATTENTION WEIGHT AVOID PASS ENERGY,
&
weight age — ATTENTION WEIGHT AVOID PASS AGE,
&
weight reprfac = ATTENTION WEIGHT AVOID PASS REPRFAC)

call this%motivations%avoid active%attention weight%attention init
(weight light = ATTENTION WEIGHT AVOID ACT LIGHT * percept w,
weight depth = ATTENTION WEIGHT AVOID ACT DEPTH * percept w,
weight food dir = ATTENTION WEIGHT AVOID ACT FOOD DIR *

percept w, &
weight food mem = ATTENTION WEIGHT AVOID ACT FOOD MEM *

59

percept w, &

weight conspec = ATTENTION WEIGHT AVOID ACT CONSPEC *
percept w, &

weight predator = ATTENTION WEIGHT AVOID ACT PREDATOR *
percept w, &

weight stomach
percept w, &

weight bodymass = ATTENTION WEIGHT AVOID ACT BODYMASS *
percept w, &

ATTENTION WEIGHT AVOID ACT STOMACH *

weight energy = ATTENTION WEIGHT AVOID ACT ENERGY *
percept w, &
weight age = ATTENTION WEIGHT AVOID ACT AGE * percept w,

&

weight reprfac
percept w)

ATTENTION WEIGHT AVOID ACT REPRFAC *

call this%motivations%reproduction%attention weight%attention init
(weight light = ATTENTION WEIGHT REPRODUCE LIGHT * percept w,
weight depth = ATTENTION WEIGHT REPRODUCE DEPTH * percept w,

weight food dir = ATTENTION WEIGHT REPRODUCE FOOD DIR *
percept w, &

weight food mem = ATTENTION WEIGHT REPRODUCE FOOD MEM *
percept w, &

weight conspec = ATTENTION WEIGHT REPRODUCE CONSPEC *
percept w, &

weight predator = ATTENTION WEIGHT REPRODUCE PREDATOR *
percept w, &

weight stomach = ATTENTION WEIGHT REPRODUCE STOMACH *
percept w, &

weight bodymass = ATTENTION WEIGHT REPRODUCE BODYMASS *
percept w, &

weight energy = ATTENTION WEIGHT REPRODUCE ENERGY *
percept w, &

weight age = ATTENTION WEIGHT REPRODUCE AGE * percept w,
&

weight reprfac = ATTENTION WEIGHT REPRODUCE REPRFAC *

percept w)

!> The **dominant** state is **avoid active**:
else if (this%motivations%avoid active$is dominant ()) then
RESET DOMINANT
call this%motivations%hunger%attention weight%attention init
(weight light = ATTENTION WEIGHT HUNGER LIGHT * percept w,
weight_depth = ATTENTION WEIGHT HUNGER DEPTH * percept w,

weight food dir = ATTENTION WEIGHT HUNGER FOOD DIR * percept w,

weight food mem = ATTENTION WEIGHT HUNGER FOOD MEM * percept w,

60

weight conspec
weight predator
weight stomach
weight bodymass
weight energy
weight age

weight reprfac

(weight light

percept w, &

weight depth

percept w, &

weight food dir

percept w, &

weight food mem

percept w, &

weight conspec

percept w, &

weight predator

percept w, &

weight stomach

percept w, &

weight bodymass

percept w, &

weight energy

percept w, &

&

weight age

weight reprfac

percept w)

!> @note Dominant is
call this%motivations

(weight light
weight depth
weight food dir
weight food mem
weight conspec

weight predator

ATTENTION WEIGHT HUNGER CONSPEC * percept w,

ATTENTION WEIGHT HUNGER PREDATOR * percept w,

ATTENTION WEIGHT HUNGER _STOMACH * percept w,

ATTENTION WEIGHT HUNGER BODYMASS * percept w,

ATTENTION WEIGHT HUNGER _ENERGY * percept w,
ATTENTION WEIGHT HUNGER AGE * percept w,

ATTENTION WEIGHT HUNGER REPRFAC * percept w

call this%motivations%avoid passive%attention weight%attention init

ATTENTION WEIGHT AVOID PASS LIGHT *
ATTENTION WEIGHT AVOID PASS DEPTH *
ATTENTION WEIGHT AVOID PASS FOOD DIR *
ATTENTION WEIGHT AVOID PASS FOOD MEM *
ATTENTION WEIGHT AVOID PASS CONSPEC *
ATTENTION WEIGHT AVOID PASS PREDATOR *
ATTENTION WEIGHT AVOID PASS_ STOMACH *
ATTENTION WEIGHT AVOID PASS BODYMASS *
ATTENTION WEIGHT AVOID PASS ENERGY *
ATTENTION WEIGHT AVOID PASS AGE * percept w,

ATTENTION WEIGHT AVOID PASS REPRFAC *

**avoid active*¥*.
%avoid active%attention weight%attention init

ATTENTION WEIGHT AVOID ACT LIGHT,
ATTENTION WEIGHT AVOID ACT DEPTH,
ATTENTION WEIGHT AVOID ACT FOOD DIR,
ATTENTION WEIGHT AVOID ACT FOOD MEM,
ATTENTION WEIGHT AVOID ACT CONSPEC,

ATTENTION WEIGHT AVOID ACT PREDATOR,

61

weight stomach = ATTENTION WEIGHT AVOID ACT STOMACH,

weight bodymass ATTENTION WEIGHT AVOID ACT BODYMASS,

weight energy = ATTENTION WEIGHT AVOID ACT ENERGY,
&
weight age = ATTENTION WEIGHT AVOID ACT AGE,
&
weight reprfac = ATTENTION WEIGHT AVOID ACT REPRFAC)

call this%motivations%reproduction%attention weight%attention init
(weight light = ATTENTION WEIGHT REPRODUCE LIGHT * percept w,
weight depth = ATTENTION WEIGHT REPRODUCE DEPTH * percept w,

weight food dir = ATTENTION WEIGHT REPRODUCE FOOD DIR *
percept w, &

weight food mem = ATTENTION WEIGHT REPRODUCE FOOD MEM *
percept w, &

weight conspec = ATTENTION WEIGHT REPRODUCE CONSPEC *
percept w, &

weight predator = ATTENTION WEIGHT REPRODUCE PREDATOR *
percept w, &

weight stomach = ATTENTION WEIGHT REPRODUCE STOMACH *
percept w, &

weight bodymass = ATTENTION WEIGHT REPRODUCE BODYMASS *
percept w, &

weight energy = ATTENTION WEIGHT REPRODUCE ENERGY *
percept w, &

weight age = ATTENTION WEIGHT REPRODUCE AGE * percept w,
&

weight reprfac = ATTENTION WEIGHT REPRODUCE REPRFAC *

percept w)

!> The **dominant** state is **reproduction**:
else if (this%motivationsSreproduction%is dominant ()) then
RESET DOMINANT

call this%motivations%hunger%attention weight%attention init

(weight light ATTENTION WEIGHT HUNGER LIGHT * percept w,
weight depth = ATTENTION WEIGHT HUNGER DEPTH * percept w,
weight food dir = ATTENTION WEIGHT HUNGER FOOD DIR * percept w,
weight food mem = ATTENTION WEIGHT HUNGER FOOD MEM * percept w,
weight conspec = ATTENTION WEIGHT HUNGER CONSPEC * percept w,

weight predator = ATTENTION WEIGHT HUNGER PREDATOR * percept w,

weight stomach = ATTENTION WEIGHT HUNGER STOMACH * percept w,

62

weight bodymass = ATTENTION WEIGHT HUNGER BODYMASS * percept w,

weight energy
weight age

weight reprfac

ATTENTION WEIGHT HUNGER _ENERGY * percept w,
ATTENTION WEIGHT HUNGER AGE * percept w,

ATTENTION WEIGHT HUNGER REPRFAC * percept w)

call this%motivations%avoid passive%attention weight%attention init

percept w,

percept w,

percept w, &

percept w, &

percept w,

percept w, &

percept w,

percept w, &

percept w,

&

percept w)

(weight light

&
weight depth
&
weight food dir

weight food mem

weight conspec
&
weight predator

weight stomach
&
weight bodymass

weight energy
&
weight age

weight reprfac

call this%motivations%

percept w,
percept w,
percept w,
percept w,
percept w,
percept w,
percept w,

&

(weight light

weight depth

weight food dir

&

weight food mem

&

weight conspec
&

weight predator

&

weight stomach
&

weight bodymass

&

weight energy
&

weight age

ATTENTION WEIGHT AVOID PASS LIGHT *
ATTENTION WEIGHT AVOID PASS DEPTH *
ATTENTION WEIGHT AVOID PASS FOOD DIR *
ATTENTION WEIGHT AVOID PASS FOOD MEM *
ATTENTION WEIGHT AVOID PASS CONSPEC *
ATTENTION WEIGHT AVOID PASS PREDATOR *
ATTENTION WEIGHT AVOID PASS_ STOMACH *
ATTENTION WEIGHT AVOID PASS BODYMASS *
ATTENTION WEIGHT AVOID PASS ENERGY *
ATTENTION WEIGHT AVOID PASS AGE * percept w,

ATTENTION WEIGHT AVOID PASS REPRFAC *

avoid active%attention weight%attention init

ATTENTION WEIGHT AVOID ACT LIGHT * percept w,
ATTENTION WEIGHT AVOID ACT DEPTH * percept w,
ATTENTION WEIGHT AVOID ACT FOOD DIR *
ATTENTION WEIGHT AVOID ACT FOOD MEM *
ATTENTION WEIGHT AVOID ACT CONSPEC *
ATTENTION WEIGHT AVOID ACT PREDATOR *
ATTENTION WEIGHT AVOID ACT STOMACH *
ATTENTION WEIGHT AVOID ACT BODYMASS *
ATTENTION WEIGHT AVOID ACT ENERGY *

ATTENTION WEIGHT AVOID ACT AGE * percept w,

63

weight reprfac
percept w)

ATTENTION WEIGHT AVOID ACT REPRFAC *

!> @note Dominant **reproduction**.
call this%motivations%reproduction%attention weight%attention init

(weight light
weight depth
weight food dir
weight food mem
weight conspec
weight predator
weight stomach
weight bodymass
weight energy
weight age
weight reprfac

end if RESET DOMINANT

ATTENTION WEIGHT REPRODUCE LIGHT,
ATTENTION WEIGHT REPRODUCE DEPTH,
ATTENTION WEIGHT REPRODUCE FOOD DIR,
ATTENTION WEIGHT REPRODUCE FOOD MEM,
ATTENTION WEIGHT REPRODUCE CONSPEC,
ATTENTION WEIGHT REPRODUCE PREDATOR,
ATTENTION WEIGHT REPRODUCE STOMACH,
ATTENTION WEIGHT REPRODUCE BODYMASS,
ATTENTION WEIGHT REPRODUCE ENERGY,
ATTENTION WEIGHT REPRODUCE AGE,

ATTENTION WEIGHT REPRODUCE REPRFAC)

end subroutine gos attention modulate weights

64

A4. R-script for statistical analysis

Breakpoint linear regression, unconstrained, single breakpoint,

In this model x is ADF, y is AVERAGE GOS streak (average)

#

Based on the method from:

#
https://www.r-bloggers.com/r-for-ecologists-putting-together-a-piecew
ise-regression/

SVN version info:
$Id: script.breakpoint.R 3086 2017-03-20 19:02:56Z sbul62 $

ittt dgdstasdddstatdsdgdstatdgdatdtdndnsataRARAREEEAEEEE
#HAH SRS
Function to perform a breakdown linear model and determine a breakdown
point.
the optimal breakdown is determined using the standard parametric sigma
(standard deviation of the residuals) or AIC.
NOTE: In the function ADF is the independent variable (x) and
AVERAGE is the dependent variable (y))
breakdown.linear.model <- function (ADF, AVERAGE,
search min=0.4, search max=0.99,
min sigma=TRUE,
xlabel= "Predictor",
ylabel= "Response")

Make a variable to keep range of breakpoints
breaks <- ADF[which (ADF >= search min & ADF <= search max)]

Iteratively search breakpoints for the model minimize residual MSE
or AIC

mse <- numeric (length (breaks)) # Vector to keep residual MSE

aics <- numeric (length (breaks)) # Vector to keep AIC values

for(i in l:length (breaks)) {
model .piecewise.part <- 1m(AVERAGE ~ ADF* (ADF < breaks[i])
+
ADF* (ADF>=breaks[i]))
Calculate residual standard deviation (sigma)
mse[1] <- summary (model.piecewise.part) [6] # obtained from summary
#mse[i1] <- sigma (model.piecewise.part) # or 'sigma' function
Calculate AIC, Akaike Information Criterion value

65

aics[i] <- AIC(model.piecewise.part)

}

Print actual breakpoint vector to search the optimum within.
print ("The range of breakpoints to optimise:")
print (breaks)

MSEs AICs are keept in these vectors

mse <- as.numeric (mse) # require it to make mse a vector
print ("Output all values of 'sigma' and AIC:")

print (mse) # print sigmas

print (aics) # print AIC

print ("Minimum AIC for the broken model:")
print (min(aics))

The best model and respectively the optimal breakpoint is that which
minimises the standard deviation of the residuals (MSE) or AIC.
min mse <- breaks[which (mse==min (mse))]

min aics <- breaks[which(aics==min (aics))]

print ("ADF Breakpoint based on sigma and AIC:")

print (min mse) # print these values

print (min aics)

The breakpoint can be based either on MSE or AIC
if (min sigma) {
point <- min mse
print ("Optimisation is based on 'sigma'.")
}
else {
point <- min aics
print ("Optimisation is based on AIC.")
}
print ("The actual breakpoint value is:")
print (point)

Run the final model

model .piecewise <- 1m (AVERAGE ~ ADF* (ADF < point) + ADF* (ADF > point))
print ("Final fitted model parameters:")

print (summary (model.piecewise))

Plotting the two-part linear regression

1. basic scatterplot

plot (ADF,AVERAGE, ylim = c(0,30), pch=16, xlab=xlabel, ylab=ylabel)
2. first part of the linear curve with parameter estimates from model
summary

curve ((model.piecewiseScoefficients([1] +

model .piecewiseScoefficients[3]) +
(model .piecewise$coefficients[2] +
model .piecewiseS$Scoefficients[5]) * x,

66

add=T, from=0, to=point)

3. second part of the linear curvem after the breakpoint...

curve ((model .piecewiseScoefficients[1] +

model .piecewise$Scoefficients[4]) +

model.piecewiseScoefficients[2] * x,
add=T, from=point, to=max (ADF))

4. vertical breakpoint line

abline (v=point, lty=3)

Also plot the breakpoint minimum as bars of MSE or AIC
print (mse)
barplot (mse, names.arg = breaks,
ylab="Standard deviation of residuals", xlab="Breakpoint")
print (aics)
barplot (aics, names.arg = breaks, ylab="AIC", xlab="Breakpoint")

}
FHA A A A R A

FhHHHHEHSHH
Data analysis using this function

Data are obtained from the CSV data file:
streaks <- read.csv("streaks4 switch.csv")

Data 1s saved as 'streaks', attach first
attach (streaks)

Do the data analysis: breakdown model
breakdown.linear.model (ADF, SWITCHES, 0.4, 1.0, FALSE, "ADF", "Number of
switches")

Do additional data analysis: single line model
model .nobroken <- Im(SWITCHES ~ ADF)
summary (model.nobroken)
plot (ADF, SWITCHES, ylim=c(0,30), pch=16, ylab="Number of switches")
abline (summary (model.nobroken) $coefficients[1],
summary (model .nobroken) $coefficients[2])
print ("AIC for the Single-line model:")
print (AIC (model.nobroken))

Detach the working data frame
detach (streaks)

67

A5. Complete results

Probability of switching (%)

Attention Modulation Factor

Standard attention restriction

No attention restriction

Linear attention restriction

0,95 4,2 19,5 0
Constant 0,85 16,7 34,7 0
Arousal Dissipation Factor 0,20 30 34,7 84
Slow 3,3 15,4 0
Function | Intermediate 8,8 25,3 0
Fast 30 38,1 0,6
Probability of re-evaluating (%) Attention Modulation Factor
Standard attention restriction | No attention restriction | Linear attention restriction
0,95 26,2 29 28,6
Constant 0,85 44,5 49,2 46,3
Arousal Dissipation Factor 0,20 >3 24,2 25,3
Slow 20 22,7 21,2
Function | Intermediate 37 38,5 36,7
Fast 52,5 54,9 56,1

Switch ratio (switches / re-evaluations)

Attention Modulation Factor

Standard attention restriction

No attention restriction

Linear attention restriction

0,95 0,16 0,67 0
Constant 0,85 0,38 0,71 0
Arousal Dissipation Factor 0,20 0,57 0,64 0,15
Slow 0,17 0,68 0
Function | Intermediate 0,24 0,66 0
Fast 0,57 0,69 0,1

68

