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Abstract

This thesis, within the field of seismology, investigates the process and effect of im-

plementing a complex reference model in a teleseismic migration technique based

on the Inverse Generalized Radon Transform. This migration technique utilizes

concepts from the field of integral geometry, in order to accurately generate high

resolution images of the subsurface. This technique is particularly powerful in the

case of subduction zones, as indicated by previous applications, such as that of Ron-

denay et al. (2001).

A subduction zone is a geological setting in which one tectonic plate plunges under-

neath another. As the plate plunges downwards, it releases water due to an increase

in pressure and temperature. This water enters the mantle of the overriding plate

and changes the petrology of this area, the forearc mantle, through hydrothermal

reactions.

Understanding this process is important, as it might lead to an increased under-

standing of mantle dynamics in general, and the dynamics of subduction zones in

particular. A key step to an increased understanding is to accurately map the spa-

tial extent and material properties of the plunging plate and the forearc mantle.

To better image these features, this thesis describes the implementation of an im-

proved imaging method that addresses a limitation in the original teleseismic mi-

gration approach of Rondenay et al. (2001). The original technique utilizes a 1D

background velocity model as a basis for key calculations. Assuming that the seismic

properties of a subduction zone is restricted to a 1D geometry is a major simplifica-

tion. In this thesis I address this simplification by modifying the method to account

for a 2D background velocity model.

By addressing this limitation I am able to generate images of higher robustness and

resolution. I demonstrate the effect of this implementation by applying the new

modified method to both synthetic data and real data obtained from the Cascadia

subduction zone. Through this application I observe that the imaging of the dip of

the subducting plate is better resolved by the implementation of a 2D background

model, and that the features of the subduction zone are, in general, better con-

strained using the new improved method.

I therefore conclude that, while more research and development can and should be

done in this area, the implementation of a 2D background velocity model described

in this thesis is a promising step towards a better resolved subduction zone system.
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Chapter 1

Introduction

1.1 Background

Subduction zones are defined as areas where one tectonic plate moves underneath

another (Fowler, 2005). This creates a complex system of forces interacting with

each other, resulting in strain and stress on the system. As the plate is pushed

down into the mantle, it is subjected to an increase in temperature and pressure,

fluids escape from the subducting plate and we observe a change in the material

composition of the overriding mantle.

Subduction zones are of great interest in the Earth sciences. Understanding sub-

duction zones is important for hazard studies and for mantle dynamics, as it might

lead to a better understanding of the generation of new mantle material, large scale

mantle flow and the dynamics of the subduction zone. The material properties of

the forearc mantle wedge, which is a key geological feature of a subduction zone,

might provide an insight to the mantle dynamics in specific, and subduction zone

system in general (Bostock et al., 2002). Subduction zones may be studied using

methods such as seismic tomography, refraction and wide angle reflection surveys,

magnetotelluric surveys and migration methods (Unsworth and Rondenay, 2013).

The development of more powerful tools and accumulation of more accurate data al-

low us to improve upon these methods over time. The data quality is ever increasing,

both in terms of number of stations recording seismic events, increase in the quality

of the stations, and the overall number of seismic events recorded as time progresses.

More powerful tools allow us to revisit previously developed techniques with fewer

constraints. Among the methods, teleseismic migration is particularly interesting as

it provides high resolution images by utilizing multiple scattering phases, adding an

additional level of constraint to the produced image(Rondenay, 2009). However, the
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technique so far has assumed a (flat earth) 1D background velocity model, severely

simplifying the spatial properties of a subduction zone. Further, its computational

power is limited as it only observes perturbations in a 2D plane. This serves as a

severe limitation to the method, as the results of primary calculations in the tech-

nique relies on an accurate seismic model, leading to significant deviations when the

reference model is overly simplified (Bostock and Rondenay, 1999). In this thesis,

the results of a Master’s project that addresses this limitation is presented. As part

of the project, I have implemented a more complex background velocity model, uti-

lizing improvements in computational tools and power to cater to the more or less

two dimensional structure of a subduction zone.

We revisit the technique of the 2D generalized Radon transform inversion (inverse

GRT), proposed by Beylkin (1984), Miller et al. (1987) and, Beylkin and Burridge

(1990). A technique further developed by Bostock, Shragge and Rondenay in 2001

(Bostock et al., 2001), (Shragge et al., 2001),(Rondenay et al., 2001). The basic

concept of the inverse GRT is to take advantage of an analogy between the Radon

transform and the back projection of acoustic scattering potential. The Radon trans-

form maps the points along an integral surface (a surface described by an integral) in

a data space onto a single point in a model space. The acoustic scattering potential

describes the propagation of seismic energy from a source. The back projection of

the acoustic scattering potential projects the scattered data back to its source, i.e.

a transformation from a surface (scattering potential) to a point(source). This anal-

ogy allows us to reconstruct the seismic properties of a point in space, by generating

a weighted diffraction stack of the related seismic data along the isochronal surface

corresponding to this point.

The previous implementations of the technique utilize a 1D background velocity

model to calculate the various parameters needed for the GRT inversion. A 1D

velocity model not only limits the amount of calculations for each image point, but

also the variance in input parameters, allowing one set of input parameters to be

used for several image points. Calculating these parameters in advance and storing

the generated values in a table provides a major increase in efficiency. A 1D velocity

model is, however, a major simplification of the actual subsurface, leading to a sub-

par stacking of data, in turn resulting in less clear images where finer structures

might be overlooked or missing. This simplification has been a necessity in order

to limit the computational demand of the method, but leads to a lower signal-to-

noise ratio, influencing the quality of the generated image. Modifying the method to

allow for a more complex background velocity model should alleviate much of this

concern and generate a better resolved model in terms of reliability and resolution.
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In particular, there are two noteworthy elements from the study by Rondenay et al.

(2001) whose imaging could benefit from a more precise model:

– The dip of the subducting slab, and the assumed kink in this slab.

– The petrological properties and extension of the forearc mantle.

The project is written in Matlab. Matlab is a programming language developed for

solving scientific and engineering problems. This project is a further development of

a set of already existing Matlab-scripts generated by Rondenay as part of his PhD-

project, published in 2001. The evaluation of the project was based on synthetic

and real datasets. The synthetic datasets were generated by Felix Halpaap using

the software Specfem, a software for simulating the propagation of seismic waves.

The real dataset is part of the dataset CASC93, the same dataset used in 2001 by

Stéphane Rondenay.

1.2 Outline of project

1.2.1 Research questions

The primary task of this project was to develop the tools and methods needed to

implement a 2D background velocity model in the technique presented by Bostock,

Shragge and Rondenay in 2001, as well as implementing the actual model. As part

of this project it is relevant to evaluate the following research questions:

1. Will incorporating a 2D background velocity model provide a significant im-

provement to the models generated by the original method?

(a) Will incorporating a 2D background velocity model allow us to ultimately

identify the proposed kink in the dipping slab imaged by the old technique

as a feature or as an artefact generated by the old method?

(b) Is the mantle wedge more discernible by utilizing a 2D background ve-

locity model?

2. Will incorporating a 2D background velocity model provide an improvement

significant enough to justify the additional processing time?
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1.2.2 Project description

In this thesis I am expanding from the 1D background velocity model to a 2D back-

ground velocity model, varying perpendicular to the strike of the subduction zone.

A 2D velocity model provides a more accurate depiction of the subsurface, as a sub-

duction zone has a high degree of variation perpendicular to the direction of strike.

This expansion will provide an improvement to the accuracy of the travel time, as

well as other inversion parameters, thus improving the stacking of the data. This

should lead to a more constructive summation of scattered signals and thus a better

signal-to-noise ratio and a better resolved model.

The evaluation of whether or not the improvement constitutes a “significant im-

provement” will be evaluated in a qualitative fashion. Of particular interest will be

observations that confirm or conflict with the inferred subsurface structure from the

previous study by Rondenay et al. (2001). Observations regarding the subducting

slab dip and supposed mantle wedge will be of special concern, adhering to the focus

of the research questions.

Given a correction in dip we may evaluate if this correction supports or contradicts

the increase in slab dip at 40 km generating a kink in the slab as proposed by Ron-

denay et al. (2001). The mantle wedge may be identified through the properties

of the crust-mantle transition. Rondenay and Bostock identified the mantle wedge

of the Cascadia subduction zone as heavily serpentinized(Rondenay et al., 2001),

(Bostock et al., 2002) ,(Bostock, 2012). The serpentinization of a mantle wedge will

reduce its seismic velocities, softening the crust-mantle discontinuity. Given enough

serpentinization, the discontinuity may disappear completely or even reappear as

an inverted discontinuity, with a transition from fast to slow seismic velocities, in

contrast to the slow to fast transition normally associated with the crust-mantle

discontinuity. By observing the crust-mantle transition above the forearc mantle we

may be able to evaluate the degree of serpentinization and the horizontal extent of

the mantle wedge.

The evaluation of additional processing time will also be done in a qualitative man-

ner. The evaluation of this research question is not critical for a proof of concept,

but it is relevant for potential further improvement. A “long processing time” is

of course a relative measure, as is “significant improvement”. A partial goal of

the project is to minimize the increase in processing time to facilitate further work.

This question will be evaluated relative to the primary research question, comparing

increase in total processing time against the relative success of the project.
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Chapter 2

Subduction zones

2.1 Plate tectonics

The Earth’s lithosphere is a dynamic system consisting of a number of tectonic plates

moving and interacting with each other. This creates tension and compression, ul-

timately leading to the creation of new lithosphere and destruction of old. There

exist about 15 major tectonic plates, divided into continental and oceanic plates.

They largely behave as rigid entities, so that most deformation occurs along their

boundaries (Stein and Wysession, 2009). The interaction between two plates may be

categorized as one of three types: Divergent, transform and convergent, depending

on their relative direction of movement. A divergent interaction occurs when two

plates move away from each other, creating new lithosphere in the resulting gap. A

transform interaction is when two plates move parallel to each other, so that little

to no lithosphere is destroyed or created. A convergent interaction arises when two

plates move towards each other, eventually overlapping. Such an interaction forces

the underlying plate to plunge into the mantle due to the weight of the overlaying

plate. The converging scenario where one tectonic plate is forced underneath an-

other is also known as a subduction, as one of the two plates is subducted. The

region where subduction occurs may be referred to as a subduction zone. In this

thesis the main focus is on oceanic-continental subduction zones and in particular

the Cascadia subduction zone.

2.2 Geometry of a subduction zone

As already determined, a subduction zone consists of two tectonic plates, one heav-

ier, usually oceanic, subducting plate, and one, overriding, lighter, usually continen-

tal plate, see figure 2.1. The line of intersection, where the overriding plate meets
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the subducting plate, evolves to become an oceanic trench. A wedge of sediment

builds up along the intersection as the overriding plate scrapes the upper sediments

off of the subducting plate. The subducting slab causes a change in the mantle com-

position, temperature and flow, creating a mantle wedge. This causes an upwelling

of mantle, resulting in volcanic activity in the nearby upper continental crust, cre-

ating a volcanic arc. The area between the volcanic arc and line of intersection is

called the forearc, while the area of the continental overriding plate landward of the

volcanic arc is called the backarc. The still intact subducting oceanic plate is simply

called the oceanic plate, while the subducted part of the oceanic plate is referred to

as the slab.

Subduction zone

Oceanic 
lithosphere

Forearc

Accretionary wedge

Volcanic arc

Back-arc

Hydration

Trench

Mantle 

wedge

Continental 
lithosphere

Magma 

chamber

Asthenosphere

Ocean basin

Figure 2.1: Illustration of a subduction zone. Modified from wikimedia (Wikime-
dia Commons, 2016)

2.3 Mantle wedge

The mantle wedge is located in the mantle beneath the forearc. It is part of the man-

tle, but has a different rheology than the nearby asthenosphere. This is due to its

lower temperature and the presence of fluids originating from the colder subducted

lithospheric slab. This affects the properties of the forearc mantle, for instance by a

decrease in seismic velocities, reducing density and increasing Poisson’s ratio (Hyn-

dman and Peacock, 2003).

The subducting oceanic crust contains free water in pore spaces and water bound

in hydrous minerals. The oceanic plate acts a vessel for the transportation of fluids
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into the mantle, facilitating the hydration of the forearc mantle (see figure 2.2).

Water is released due to metamorphic reactions in the slab, caused by an increase

in pressure and temperature at lower depth. The release of water diminishes with

depth, meaning that most of the water is released beneath the forearc while some is

released later, facilitating magma generation connected to the volcanic arc.

Free water is released early in the subduction process due to the compaction of pore

spaces. Water bound in minerals is released through metamorphic reactions. The

main metamorphic dehydration of the subducting slab occurs through a process

known as eclogitization. Eclogitization is associated with an increase in density and

decrease in seismic contrast (Bostock et al., 2002). Different metamorphic reactions

occur based on pressure and temperature conditions. Once released from the slab,

water fluxes into the mantle wedge above and reacts with rocks there.

Figure 2.2: Illustration of a the dehydration process in a subduction zone, Hyndman
and Peacock (2003).

2.4 Hydration

The presence of water in a subduction setting has a significant affect on the expres-

sion of the seismic properties in the region (Bostock, 2012). A dry mantle forearc

is thought to consist of depleted ultramafic rocks, mainly consisting of olivine and

orthopyroxene (Hyndman and Peacock, 2003). The addition of water creates hy-

drous minerals such as serpentine, talc and brucite, depending on the temperature

and pressure conditions (see overview by Hyndman and Peacock (2003) as shown

in figure 2.2). The amount of water supplied is dependent on the convergence rate

(speed of the subduction), the age and thickness of the incoming oceanic plate and

the dip of the subducting slab. The hydration of the mantle wedge affects the rheol-
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Figure 2.3: Laboratory conditions, mantle peridotite. VP/VS-ratio and Poisson’s
Ratio as a function of serpentinization. Figure by Hyndman and Peacock (2003),
Data originally obtained by Christensen (1966).

ogy, as hydrated materials generally have lower seismic velocities than the original

material. The decrease in seismic velocities and increase in Poisson’s ratio in rela-

tion to the degree of serpentinization is evident through figure 2.3 by Hyndman and

Peacock (2003). In their article they conclude that a serpentinization degree of 20%

is common and that serpentinization locally may reach as high as 50%.

The presence of hydrated minerals in the forearc mantle is supported by observations

of serpentine mud volcanoes located on the Mariana and Izu-Bonin forearcs, and

outcrops of hydrated ultramafic rocks, suspected to originate from paleo-subduction

zones. Seismic properties resolved through wide-angle refraction studies also support

a hydrated forearc mantle (Hyndman and Peacock, 2003).
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Chapter 3

Geophysical imaging of subduction

zones

The goal of this thesis is to better image the subsurface using the generalized Radon

transform (GRT), by incorporating a new, more detailed background velocity model.

Before going into how this will image the subsurface with increased accuracy, it is

imperative to first understand how the subsurface is imaged in general and by the

GRT specifically. It is helpful to have a clear understanding of where the background

velocity model is utilized, and why modifying it might lead to improvement of the

produced model. It is also beneficial to have an understanding of the techniques

used to incorporate the new 2D background velocity model.

Common techniques for imaging subduction zones are:

– Seismic tomography: An inverse technique that uses artificial or natural

sources to create 3D images of the earth by computing the travel time of ray

paths through the a medium, and comparing them to observed travel times,

to infer volumetric anomalies in the material properties.

– Teleseismic imaging: Maps the subsurface by observing the effect of per-

turbations in the medium on the scattered wavefield, using natural sources.

– Refraction and wide-angle reflection surveys: Maps an area using arti-

ficial sources and evaluating the perturbations in velocity using travel times

and scattered waves to image discontinuities.

– Magnetotelluric surveys: Determines the Earths structure by investigating

the electrical resistivity and thus inferring information on the fluid content.

In this project, teleseismic imaging has been used due to the need for a high reso-

lution image in the 0-200 km depth range, a result not obtained by the other three

methods (Unsworth and Rondenay, 2013).

9



Mapping the subsurface using teleseismic data utilizes the same premise as echolo-

cation. By observing recorded seismic energy generated by a known source, known

as a trace, we may make an educated guess about the properties of the medium

which the energy travelled through, and by extension the materials present in this

medium. The trace is recorded as a time series, usually in three perpendicular di-

rections: One in the vertical and two in the horizontal plane. We record the energy

in this fashion in order to detect seismic energy arriving from all directions, as well

as determining its direction of origin, through backpropagation. Recording multiple

sources of energy, at multiple locations, moving through the same medium, allow us

to map the medium with a higher precision and reliability.

3.1 Wave equation

In seismic imaging, as well as seismic tomography, the results are found using meth-

ods based on the wave equation. Methods utilizing the wave-equation to image medi-

ums are equivalent to finding a numerical solution to a partial differential equation.

The wave equation describes the propagation of a wave in the proposed medium.

Where possible, the medium is usually reduced to the simplest feasible case.

The simplest possible case is an acoustic medium. In an acoustic medium the energy

moves through the medium only as a compressional (or dilatational) wave, and the

response of the medium is the same, regardless of the direction in which the energy

is moving. Water and air are primary examples of acoustic media. Describing the

wave propagation in a more complex, elastic isotropic case, provides a more accu-

rate depiction of real life geological scenarios. This allows for the propagation of

shear waves while the response of the medium is still unaltered by the direction of

movement. As shear waves are necessary to support the different scattering modes

used for GRT, an elastic isotropic medium is required for this method.

Equation 3.1 is the wave equation for an elastic isotropic medium, which describes

how a medium experiences a (small) displacement in response to an external force.

In this equation ui is the displacement of the medium caused by the external force,

ρ is the density, cijkl is the elastic tensor and f is the external force. Equation 3.2 is

the Ray equation. It describes the response of the pressure field at position x to a

point-source. In this equation ω = 2πf , angular frequency, T (x) is the traveltime,

and A(x) the amplitude, both at position x (Auld, 1973).
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ρ
∂2ui
∂t2

= ∂j (cijkl∂kul) + fi (3.1)

u = A (x) eiωT (x) (3.2)

3.2 Wave propagation and Ray theory

The propagation of a wave may be described using a wave front or a ray. The wave

front describes the total propagation of the energy in a volume generated by the

source. In an acoustic 3D medium this would be described by a perfect sphere. The

wave front at any point in space is always perpendicular to the direction of propa-

gation in that point. The ray describes the direction of the propagation of the wave,

radiating outwards from the source. The wave front is useful for tracking the entire

wave-field, while the ray is used for tracking the energy propagating in a particular

direction between two distinct points in space. As the wave front propagates out-

wards, the curvature of the front becomes smaller and smaller as the sphere becomes

bigger. The wavefront of energy originating from teleseismic distances has such a

small curvature that we may assume a planar wavefront for mathematical simplicity,

while still retaining a good approximation of the wave front. Figure 3.1 illustrates

the relationship between a ray, wave front and the implication of the assumption of

a planar wave front.

Ray

Figure 3.1: Illustration of a ray and wave front, modified from Stein and Wysession
(2009).

The propagation of a wave through space can be described by Huygens’ principle,

stating that each point in space agitated by a wave can be considered a new source of
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energy. The energy radiating outwards along the wavefront interferes destructively

along the wave front, while the energy propagating onwards interferes constructively,

in sum generating the spherical wavefront observed, see figure 3.2. The scattering/d-

iffraction of the energy in this fashion is what allows the energy of the wave to move

around obstacles.

0t

t

t2

1

Figure 3.2: Illustration of Huygens principle, modified from Stein and Wysession
(2009).

We classify seismic waves based on the direction of particle motion caused by the

seismic energy. The volume waves are in general divided into P-waves and S-waves.

Surface waves are commonly divided into Love waves and Rayleigh waves, but will

be ignored for the remainder of this thesis. P-waves are waves caused by a par-

ticle movement parallel to the direction of propagation, causing a compressional

or dilatational wave, depending on whether the particle moves in the direction of

propagation, or against the direction of propagation. S-waves cause particle motion

perpendicular to the direction of propagation, subdivided into SH-waves and SV-

waves, moving in the horizontal direction and vertical direction respectively.

3.3 Scattering

At a point scatterer, the seismic energy is not only propagated onwards in the same

phase, but rather diffracting into multiple phases. A compressional P-wave may

transmit or reflect seismic energy both as a compressional P-wave and as a shear

S-wave. Any interface may be considered a series of scatterers, just as a line in

geometry may be considered as a series of points. As Huygens’ principle applies the

energy propagating from each scatterer will interfere constructively and the energy
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Figure 3.3: Illustration of the particle motion of P-wave and S-wave propagation,
modified from Stein and Wysession (2009).

transmitted or reflected will be observed as a wave front.

Figure 3.4: Illustration of reflection and transmission of seismic energy into multiple
phases, modified from Stein and Wysession (2009).

A discontinuity in the medium, a sudden change in a material property, will cause

the energy to be reflected or transmitted, changing the direction of propagation.

The change in direction depends on the changes in properties across the disconti-

nuity, in accordance with Snell’s law (equation 3.3). Here, θ1 is the incidence angle

and θ2 is the scattering angle, v1 and v2 are the seismic velocities of the the media

on either side of the discontinuity.
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v1
sinθ1

=
v2

sinθ2
(3.3)

Snell’s law allows us to estimate the fastest ray path between two points in space,

and thus the travel path of the first arriving wave. The spatial geometry of the two

points and the medium, dictates the fastest path. This is the path that spends the

most time in the fastest layer and the least time in the slowest. The direction of the

ray path, measured by its angle against the vertical, may be described by the ray pa-

rameter. The ray parameter is the reciprocal of the horizontal apparent velocity cx,

which is the velocity of the seismic energy measured only in the horizontal direction.

p =
1

cx
=
sinθi
v

(3.4)

The ray parameter, equation 3.4, remains constant along the entire ray path, making

it useful for mathematical calculations. The ray parameter may also be referred to as

the horizontal component of the slowness of the wave. The slowness of the wave, the

inverse of the velocity, may be divided into its horizontal and vertical components,

using vector decomposition, see figure 3.5. The horizontal component of the slowness

vector is thus independent of the vertical movement, while the vertical component

is independent of the horizontal movement.

Figure 3.5: Illustration of vector decomposition.

Energy transmitted at a discontinuity may be described as a forward scattering, or

more precisely as a forward scattered P-to-P, if the energy had a compressional or
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dilatational particle motion, P-phase, before and after the interaction a discontinu-

ity. Reflected energy, may be described as a backscattered P-to-P, again assuming

both phases are compressional/dilational particle-motion.

Each of these scatterers are inhomogeneities in the medium, caused by a perturba-

tion in the Lamé parameters, resulting in a change in seismic velocity or density,

diffracting the seismic energy. The Lamé parameters λ and µ describe the elastic

properties of the medium, which in turn affect the seismic velocity of the medium. µ

describes the rigidity of the medium and the bulk modulus is described by κ (Stein

and Wysession, 2009).

P-velocity: α =

√
λ+ 2µ

ρ
=

√
κ+ 4µ

3

ρ
(3.5)

S-velocity: β =

√
µ

ρ
(3.6)

Bulk modulus: κ = λ+
2

3
µ (3.7)

The rigidity is the medium’s resistance to shearing, or a non-volumetric change of

shape. The bulk modulus is the incompressibility of the medium, or the resistance

to change in volume. An inhomogeneity in the medium is in other words a change

in the medium’s ability to compress or distort, correlating to a petrological change,

i.e. a change the chemical structure and/or the composition of the medium.

3.4 Seismic imaging

Seismic imaging is generally divided into inverse and forward modelling, classified

based on the approach used to image the medium, illustrated in figure 3.6. In inverse

modelling, we start with the observed traces, and from this we infer the likely

properties of the medium, applying the theory of wave propagation and utilizing

various mathematical techniques, such as the Fourier transform. Forward modelling

is an iterative process in which we use the theory of wave-propagation to propose

a medium that might generate the observed traces. The traces produced by the

proposed model is then compared to the original traces and adjustments are made.

The process is then repeated until the misfit between the original traces and the

generated traces fall within a predetermined margin of error.
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Inverse modeling: Estimating a model m based on the observed arrival times

d, utilizing the generalized inverse G−g to account for a potential overdetermined

system of equations:

∆m = G−g∆d = (GTG)−1GT∆d (3.8)

Forward modeling: Predicting the model m that produces arrival times d:

∆d = G(∆m) (3.9)

Figure 3.6: Illustration of inverse vs. forward modeling (Rondenay et al., 2005).

In seismic imaging, we solve for the unknown medium through a process called mi-

gration. Migration of seismic data may, in short, be described as a summation of

recorded traces corrected for traveltime offset. A trace is the signal recorded at

the station. In the case of teleseismic imaging, imaging using passively recorded

earthquakes, the trace may, once corrected for the source and instrument response,

be referred to as a receiver-function, and represents the response of the earth to the

seismic event. The trace does, however, still contain a lot of unwanted information,

also known as noise.
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When summing traces constructively, they need to be aligned so that the wanted

signal, the incident energy, interferes constructively while the remaining signal, the

noise, interferes destructively, meaning that the alignment serves to reduce the noise

in the stacked data. When summing traces, a correction for travel time offset there-

fore needs to be made, as seismic energy must travel a longer time period to reach

a station further away from the source; the incident energy will arrive at different

times at different stations. The time shift is estimated based on a background ve-

locity model. A more accurate time-shift will lead to a better signal-to-noise ratio

and in turn a better resolved model.

Figure 3.7: Illustration of summing of traces (Stein and Wysession, 2009).

Different migration techniques differ in how they estimate the time shift required

to get the best output trace; The stacked trace with the highest signal-to-noise ratio.

In the early days of migration, summation was based on a purely geometrical un-

derstanding of the source and receiver configurations. Today this is referred to as

classical migration or diffraction stack migration, as the traces are corrected for

travel time offsets by summing along a diffraction hyperbola. The diffraction hy-

perbola is calculated based on the geometry and d=v/t (Gazdag and Sguazzero,

1984)(Miller et al., 1987). This was later exchanged for an approach relying more

on the mathematical understanding of wave-propagation using the wave-equation.

The recorded energy was then backpropagated in time and the image was estimated

based on the wave field (Miller et al., 1987).

The migration technique used in this project was developed in the 1980s by among

others Miller et al. (1987) and Beylkin (1984). It was developed to address both the
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problem of the underdetermined wave equation method, and the geometry depen-

dence and over-simplification associated with the classical migration. The technique

decouples the forward and inverse methods in a way that allows for inversion of

multi-receiver, multi-source experiments afforded by classical migration, while still

keeping the level of accuracy afforded by the wave equation and the mathematical

analysis of the forward problem.

3.5 Generalized Radon Transform

Conceptually, the Generalized Radon Transform is a combination of both wave-

equation based migration and classical migration, as we use methods developed

from the wave-equation to determine the diffraction hyperbola associated with clas-

sical migration. First in this section, a geometrical understanding of the Generalized

Radon Transform will be explained, as it relates to an isotropic medium. The equa-

tion and computations, that later follows, are explained as they relate to an elastic

isotropic medium, as this is more relevant in terms of the implementation itself.

The basic concept is to take advantage of an analogy between the Radon trans-

form and the back-projection of the scattering-potential. The Radon transform is a

concept from the mathematical field of integral geometry. From the integrals over

a general geometric object we are able to reconstruct the function associated with

the object, using the inverse of the generalized Radon transform. The scattering

potential is the seismic energy that radiates outward from a source, described as a

projection integral. Back-projecting the seismic energy recorded at the receivers is

the basic concept of a diffraction stack, or classical migration. This back-projection

allows us to reconstruct the scattering potential, from which we may derive the

material parameters. The analogy between the Radon transform and the back-

projection allows us to reconstruct the scattering potential. This is done using the

integral surfaces generated by the scattering potential, using the mathematical tools

afforded to us through the field of integral geometry (Miller et al., 1987).

The premise of migration is that the material parameters of any point in the sub-

surface may be imaged by detecting the field of seismic energy scattered from this

point. In classical migration, the seismic data is stacked along a diffraction curve de-

termined by the source-scatterer-receiver traveltime, known as the ‘reflection-time-

surface’, see figure 3.8 left. Here the curves RA and RB are the reflection-time-

surfaces associated with the source, receivers (located along the left side of the plot)

and the scatter-points A and B respectively, displayed in 3.8 right. The surfaces are
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generated based on the traveltime of each source-scatterer-receiver-combination and

the depth of the associated receivers.

Inverse GRT imaging is based on the same premise, but rather than setting a fixed

scatter point and finding the reflection time surface, we set a fixed traveltime, and

find a surface of scatter-points of equal traveltime, known as an isochronal surface.

This means that the seismic energy recorded at the station for a given traveltime,

originating from a given source, must have been scattered at one of the points on

the isochronal surface. In figure 3.8 you may see an isochronal surface illustrated

by the surface that is denoted Id. This is an isochronal surface that satisfies both

scatter point A and scatter point B. The energy travelling from the source to any

scatter point on this surface, and then on to the receiver, will have travelled for the

same amount of time. We know from common-tangent-stacking that stacking along

an isochronal surface will afford the same results as the diffraction stack, as the

numbers are just added in a different order (Miller et al., 1987). In figure 3.8 you

may also observe how the surface in the model space on the right may be displayed

as a point in the data space on the left.

Figure 3.8: Illustration of isohchron surface(Miller et al., 1987).

All in all, inverse GRT is a summation over isochronal surfaces. We sum over

the isochronal surfaces for a range of stations and a specific event, as the point

of intersection for all of these isochronal surfaces should be the common point at

which the energy is scattered. We sum the traces based on the traveltime defined

by equations 3.10, 3.11 and 3.12, which vary depending on the scattering mode of

the seismic energy.
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Scattering index q Description
1 forward scattered P-to-P
2 forward scattered P-to-S
3 backscattered P-to-P
4 backscattered P-to-S
5 backscattered S-to-P
6 backscattered S-to-S (polarization in-plane)
7 backscattered S-to-S (polarization out-of-plane)

Figure 3.9: Table with description of the scattering index
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Different scattering modes gets diffracted with different angles and as we only

model perturbations in a 2D plane, the velocity of the scattered energy will also

vary depending on the scattering mode. These equations, 3.10, 3.11 and 3.12, de-

scribes the travel time curves corresponding a unique scatterer-station-event com-

bination, corresponding to the scattering mode q indicating the ray path/parti-

cle motion. The diffraction modes are numbered 1-7 and corresponds to ‘Forward

scattered P-to-P’, ‘Forward scattered P-to-S’, ‘Backscattered P-to-P’,‘Backscattered

S-to-P’, ‘Backscattered S-to-S in-plane(vertical)’ and ‘Backscattered S-to-S out-of-

plane(horizontal)’, see table, figure 3.9, and illustration of ray paths in figure 3.11.

The traveltime curve T (x,x′,p0
⊥) is the traveltime that corresponds to a line-

perturbation in material parameters, perpendicular to our plane at position x, given

a receiver at position x′ and a horizontal slowness corresponding to an incoming

plane wave with a horizontal slowness p0
⊥. See figure 3.10.
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Figure 3.10: Illustration of parameters referenced in equations related to the scat-
tering potential (Bostock et al., 2001).

As we are working in an assumed 2D world, the effects of the third dimension,

obliquity, must be normalized. The obliquity corrected velocity is given by equa-

tions 3.13, which corrects the velocity of the seismic energy based on the direction

of the incident plane wave given by the ray parameter:

vq(y3) =

[
1

α2(y3)
− (p2)

2

]− 1
2

, q = 1, 3, 5

vq(y3) =

[
1

β2(y3)
− (p2)

2

]− 1
2

, q = 2, 4, 6, 7

(3.13)

The amplitude is expressed by equation 3.14 and associated geometrical spreading

JP by equation 3.15. The partial differential term in equation 3.17, is called Jacobian

(displayed separately in equation 3.16). It is used for transforming the operation

from an integration over angles to an integration over spatial parameters.
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This traveltime is used in combination with the radiation pattern, amplitude and a

series of weights to define the scattering potential gr:
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1

4π
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∫
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·
∑
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0
⊥, t = T q(x0,x

′)]
(3.17)

The backazimuth γ, in these equations, denotes the horizontal direction of the in-

coming plane wave, θ is the scattering angle measured against the vertical of the

scattered ray and ψ denotes the dip of the sensitivity of the isochronal surface, see

figure 3.10. The scattering-matrix W describes the radiation pattern of the scattered

energy, dependent on theta, scattering mode and material parameter perturbation.

A, the amplitude of the incident and scattered wave, varies dependent on the geo-

metrical spreading.

Equation 3.17 describes a weighted diffraction stack of data ν along the isochronal

surface, T . Defining the scatter potential is what allows us to deduce the elastic

properties at the scatter point. Evaluating the scatter potential is thus required at

each scatter point. The isochronal surface is effectively a moveout curve, varying

for different scattering modes.

In our method, we utilize scatterers to deduce how the medium varies as a function

of the seismic velocities, and, by extension, the elastic properties. We assume a

matrix of scatterers, each corresponding to one pixel in our generated image. We

record the incident P-wave at each receiver, in addition to the forward scattered

P-to-P and P-to-S, and the backscattered P-to-P, P-to-S, S-to-P and S-to-S, both

in-plane and out-of-plane, as the method assumes a 2D medium. The incident wave

is assumed to be planar due to the teleseismic distance (epicentral distance > 30◦)

between the stations and epicenter. The scatterers are in close proximity to the

stations, relative to the epicenter.
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Figure 3.11: Illustration of ray path of scattering modes.

The additional phases provide added constraints, as not all scattering modes propa-

gate equally well in all mediums. A weaker amplitude or complete absence of a scat-

tering mode provides general information on the elastic properties of the medium,

in addition to information obtained from the travel path and traveltime.

As the goal of this thesis is to implement a 2D background velocity model, it is worth

highlighting the effect of this action. The original method models 2D scatterers in a

1D reference medium. This is a major simplification in terms of traveltime. Seeing

as the calculation of the traveltime is so central to the method, this is bound to

cause a cascading error corrupting the final models. A new velocity model will

primarily affect the traveltime and ray path, and, by extension of the ray path, the

slowness and geometrical spreading. The travel time for each ray will be affected

as the number of layers increase and layers of both higher and lower velocities are

added. The ray path, and thus the slowness of most rays, will be affected, as

the ray path will always be the fastest path between two points in the medium,

adhering to Fermat’s principle, upon which Snell’s law is built. Introducing dipping

structures in the model also affects the ideal ray path. This will, however, be a

source of discrepancy in the new method, as the original method assumes horizontal

layers and this is a requirement not easily bypassed. The Geometrical spreading,

attenuating the energy of a wave with a factor of 1/r2 , is also affected, as a change

in ray path is also a change in distance travelled, r. This will in turn affect the

isochronal surfaces and the weighted diffraction stack.
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Chapter 4

The Cascadia subduction zone

4.1 Overview

The Cascadia subduction zone is located along the west coast of North America. It

extends 1000 km from Northern Vancouver Island in British Columbia to Cape Men-

docino in the northern part of California (Pacific Network, 2017). The subduction

zone is an interaction between the oceanic Juan de Fuca plate and the continental

North American plate, see figure 4.1. The Juan de Fuca plate subducts at a rate of

approximately 42 mm/year, in a North-Eastern direction of 69 degrees. The Juan

de Fuca plate is one of the smaller oceanic plates and subducts while still relatively

warm and young, at an age of approximately 4-10 Myr (Hyndman and Wang, 1993).

The subduction zone is an area of lower than expected seismicity, with very few

earthquakes unambiguously occurring at the interface between the two plates. Megath-

rust earthquakes are estimated to occur with a return interval of 400-600 years. The

last known megathrust earthquake occurred in the northwest, in January of 1700

(Pacific Network, 2017). Some aseismic slip is thought to occur at depth.

4.2 Previous studies

One of the first direct seismic images of the Cascadia subduction zone was produced

using receiver functions, specifically teleseismic P-wave conversions, by Langston

(1981). He identified the crust-mantle-boundary, the Moho, of the Juan de Fuca

plate at 40-50 km depth beneath Corvallis, Oregon, dipping eastward at 20 de-

grees (Rondenay et al., 2001). Weaver and Michaelson (1985) found abnormally low

crustal seismicity in the forearc of the southern part of the subduction zone, com-

pared to the northern part. They attribute this to a segmentation of the dipping

plate, where the southern part is believed to be less coupled. A Magnetotelluric
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Figure 4.1: Tectonic map of the Cascadia subduction zone (Rondenay et al., 2001).

survey was conducted by Wannamaker (1989). He set out to identify the major fea-

tures of the subduction zone system as determined by the resistivity. In this survey

he identified highly conductive areas in the forearc mantle, which he attributed to

the presence of fluids within subducting crust (Rondenay et al., 2001).

A range of controlled source seismic studies have later been conducted, among oth-

ers by Tréhu et al. (1994), on the crustal architecture on the forearc. They identified

a low velocity layer dipping beneath the Coast Ranges located on the coast outside

Oregon. The layer was interpreted to be 5 to 8 km thick with a landward dip of

13-16 degrees. Another survey of importance was performed by Flueh et al. (1998).

They imaged the subduction zone using wide angle reflection and refraction seis-

mic data, and multichannel seismic reflection data, and suggested the presence of

extensive dehydration of the oceanic crust at depth. In 1999 Flemming and Tréhu

concluded that demagnetization of the subducting oceanic plate below the continen-

tal shelf, inferred by magnetotelluric surveys, could be explained by a hydrothermal

alteration, a mineralogical change occurring from interaction with hot water-based

fluids (Fleming and Tréhu, 1999).
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In 2002 Bostock et al. confirmed very low shear velocities in the cold forearc mantle-

Bostock et al. (2002). They concluded this based on the inverted continental Moho

discontinuity, a transition from fast to slow as opposed to the expected slow to fast

transition associated with the mantle discontinuity Bostock et al. (2002). Audet

et al. (2010) demonstrated that the Poisson’s ratio in the low velocity zone was

unusually high, ρ = 0.4. Elastic properties on this scale can not be attributed to

lithology, or physical characteristics, alone. A Poisson’s ratio of this scale must in-

volve fluids and a high pore-pressure, in addition to very low S-velocities Bostock

(2012). A progressive weakening of the velocity contrast starting at 45 km depth,

disappearing completely at 100 km depth, was identified by Rondenay et al. (2008).

Bostock attributes the change in velocity to eclogitization, a release of fluids hydrat-

ing the mantle forearc (Bostock, 2012). He proposes that the absence of a sharp

velocity contrast in the mantle forearc is due to such an extensive eclogitization that

the rheology of the forearc mantle is comparable to the rheology of the lower conti-

nental crust, in some cases reducing the seismic velocities to such an extent that it

justifies an inversion of the continental Moho discontinuity above the mantle fore-

arc. In 2014 Wannamaker et al. (2014) repeated the study of 1989 (Wannamaker,

1989), a magnetotelluric study that concluded on ‘low resistivity fluidized zones’ in

the slab at a depth of 35-40 km, approximately 100 km west of the arc which they

interpreted as ‘prograde metamorphic fluid release from the subducting slab’.

4.3 Application to the Cascadia subduction zone

The objective of the three-part series, written by Bostock, Shragge and Rondenay

in 2001 (Bostock et al., 2001),(Shragge et al., 2001),(Rondenay et al., 2001) (on

which this project is based), was to develop a method for formal inversion of the

P-wave coda to identify 2D variations in elastic properties. The objective of the

third paper in particular, is to apply the method to a dataset (CASC93) provided

by the Incorporated Research Institute for Seismology - Program for Array Seismic

Studies for the Continental Lithosphere, IRIS-PASSCAL.

The dataset was recorded across central Oregon in 1993 and aims to map the Cas-

cadia subduction zone. The white squares in figure 4.1 indicate receiver positions.

The study utilized 44 broadband seismometers, relocated multiple times in the span

of a 1 year period, leading to a total of 69 sites and a station spacing of ∼5 km.

Events were selected based on signal-to-noise ratio for the P-waves and converted

P- and S-phases, in a qualitative fashion. As the method estimates perturbations

in a 2D plane, we must choose the orientation of the plane of interest in relation to
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our dataset. The orientation was chosen based on the available surface features of

the subduction zone. The deformation front runs approximately North-South, the

orientation of the plane is therefore set to approximately East-West.

The background velocity model should be general enough to be broadly applicable,

but specific enough to be an approximately accurate representation of reality. The

background velocity model for S-waves chosen by Rondenay et al. (2001) for the

application to Cascadia, was an adaptation of the results of a study by Li (1996).

This produced a 1D velocity model informed by the World Wide Standardized Seis-

mograph Network station COR (Corvallis, Oregon) and the 2D velocity model as-

sociated with the CASC93 dataset. The P-wave velocity model was obtained from

the S-velocity model by employing a Poisson ratio of 0.33.

Different scattering modes travel along different ray-paths and with a different par-

ticle motion. The information recorded by different scattering modes will therefore

differ in how well the information on the medium’s material properties is recovered.

By weighting mode contribution we are able to remove poorly resolved signals and

produce a clearer model. The weights applied to each scattering mode were chosen

in an ad hoc fashion.

The method resolves perturbations in seismic velocities in the medium. The model

displays the perturbations with a resolution of 2 by 2 km, for a 120 km vertical by

300 km horizontal grid. The perturbations are visualized with a red-to blue colour

scale. Red represents a negative perturbation(i.e. slower velocity), while blue rep-

resents a positive perturbation(i.e. faster velocity). The method produces a model

for each scattering mode, in addition to a compilation model for the perturbations

in P- and S-velocity for all events, and a compilation model for all the reverberations.

In the generated models, figure 4.2, Rondenay identified a dipping low-velocity fea-

ture located on the left side of the model. He assumed this to be the subducting

Juan de Fuca oceanic crust, dipping from ∼20 km at the coast to 40 km beneath the

volcanic arc with an inferred dip of ∼12 degrees and average thickness of about 10

km. At about 40 km the oceanic crust dissipates, while the oceanic mantle appears

to continue with a change in dip, now ∼27 degrees. This is the, supposed, kink

in the slab discussed earlier. A clear slow-to-fast horizontal feature is located on

the right in the model at 35-40 km depth. This discontinuity is assumed to be the

continental Moho. The features in the central part of the image displaying the beta

perturbations appear more ambiguous.
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Figure 4.2: Images produced in study by Rondenay et al. (2001), modified.

The dissipation of the oceanic crust at 40 km is associated with a larger change:

the oceanic mantle appears to increase in dip and thickness. While Rondenay ac-

knowledges that it might be an erroneous feature, perhaps due to an additional

unaccounted for planar structure, he still concludes that the apparent bend of the

subducting slab is a real feature. The source of the dissipating oceanic crust and

increase in dip angle is in general attributed to one of two scenarios: delamination

or dehydration into the overriding mantle, illustrated in figure 4.3.

Delamination refers to the decoupling of the subducting oceanic crust and lower

lithosphere. This occurs when the lower oceanic lithosphere is denser than the con-

tinental asthenosphere. When the continental asthenosphere comes in contact with

the subducting slab, the oceanic crust, being more buoyant than the continental

asthenosphere, separates from the remaining oceanic lithosphere and floats along

the bottom of the continental lithosphere, while the oceanic lithosphere sinks into

the mantle. The consequence of delamination is an increase in slab dip, as the

lighter oceanic crust no longer acts as a flotation vessel. Reflective bands discovered

in previous studies are found to coincide with a detached oceanic crust redirected

towards the surface (Tsumura et al., 1999) or into low-viscosity zones (Rondenay

et al., 2001). Given this scenario, the lower velocities would be expected to dis-

appear completely below 40 km, this was not the case in the images generated by

Rondenay. This, coupled with the absence of exhumed oceanic crust, were the rea-

sons he dismissed delamination as a viable explanation.
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Hydration of the mantle wedge refers to the dehydration of the subducting slab,

causing fluids trapped in pores and minerals to enter the continental mantle. The

introduction of water in the mantle causes a petrological change as hydrothermal

reactions occur (as described in the geological background section 2.4 ). The serpen-

tinization that occurs on account of the dehydration of the oceanic crust decreases

the seismic velocities and increases the resistivity, both in line with the results

observed in fig. 4.2. Rondenay proposes that the increase in slab dip might be

attributed to an increase in density following the eclogitization.

Rondenay therefore conclude that the thickening and increase of dip of the sub-

ducting Juan de Fuca plate is caused by dehydration of the oceanic crust and the

associated metamorphic reactions in the oceanic crust increasing the density of the

slab.

Figure 4.3: Illustration of delamination vs. hydration (Rondenay et al., 2001).
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Chapter 5

Methods

5.1 Motivation

Underlying this project are some assumptions about the feasibility of the project

and the relationship between the technological development in the project, and the

scientific merit of this thesis:

– The implementation of a 2D background velocity model should be possible

with the present tools and techniques available. The evaluation of success is

therefore reliant upon the degree of improvement rather than the feasibility of

the project itself.

– The process of implementation is in itself not central to the scientific aspect of

the written thesis. The process is, however, important for comprehension and

replicability of the project and will therefore be covered in brief in chapter 5.4,

and in detail in appendix A.2.

The original method employed in this project utilized a 1D velocity model as the

basis of the proposed model. A 1D velocity model however, is a major simplification

of a subduction zone. A poorly fitting velocity model leads to a sub-par stacking of

data, as the diffraction hyperbola along which stacking is performed, is estimated

based on the background velocity model. An ill fitting diffraction hyperbola results

in a model with a high degree of noise, where finer structures might be overlooked.

This simplification was a necessity in order to limit the computational demand, but

as computational power becomes cheaper and more accessible, this is less of a con-

cern.

The velocity model used by the original method was a 1D model, consisting of a

40 km thick multilayered crust, and mantle below, where the total depth of the

velocity model was 300 km. This model provides no horizontal variation in material
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Pvel Svel Density ρ
km/s km/s g/cm3

Crust 6.46 3.80 2.80
Mantle 8.05 4.50 3.20

Figure 5.1: Illustration of 1D velocity model, with table of parameters, as used by
Rondenay et al. (2001)

parameters and, as such may be seen as an oversimplification. A subduction zone

can not be simplified to a strict 1D medium without significant problems.

A 2D velocity model would take into account a dipping oceanic crust and permit an

optional low-velocity mantle wedge. In this thesis, I account for both, by creating

two similar, but distinct, 2D velocity models. A 2D model should allow us to better

approximate the correct travel times and allow us to do a more reliable evaluation of

the inferred property perturbations, but will unfortunately necessitate an increase

in computational demand.

A 3D model would of course facilitate all the same solutions as a 2D model, with

relatively little gain (due to the approximately 2D geometry of a subduction zone in

the upper mantle), but with an additional computational increase. The mathemati-

cal solution is more complicated, as an additional angle of movement must be taken

into account. This leads to an additional increase in the amount of computations

and less transitive sections from the original 1D case.

This thesis mainly describes a proof of concept, and as such the complication afforded

by the 3D case is unnecessary to achieve the goals of the project. Further, in keeping

with the tenets of the scientific approach, it is natural to first make a solution for the

simplest possible case, and then make incremental adjustments and improvements

to incorporate a higher level of accuracy. Developing the method to account for a

2D background velocity model is therefore a natural next step. The tools created as

part of this project are therefore not designed to handle a 3D model, but they have

been designed with a possible future implementation of a 3D medium in mind.
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5.2 Research method

In an effort to keep as much of the original computations as possible, it was de-

termined that the best approach to implementing the 2D velocity model was to

implement a series of unique 1D velocity models, each corresponding to the travel

path of each ray.

This was considered the most reasonable approach, as it required few structural

changes to the migration algorithm, while maintaining the accuracy provided by

a 2D velocity model. A vital assumption in this approach is that the algorithm

expects the material parameters to vary as a function of depth. Adhering to this

constraint was determined a more productive, less invasive, approach to implement-

ing the 2D velocity model, than requiring the method to accept a new type of input

which would most likely require extensive changes to both the method and the im-

plementation. This was not considered feasible within the scope of a Master thesis.

The unique 1D velocity models were created by ray-tracing through the 2D velocity

model, and storing the depth information at each interface along with the properties

of each layer, see figure 5.2. The process of ray tracing will be explained in detail

later in section 5.4.3.

Figure 5.2: Illustration of conversion from ray path through 2D velocity model to a
1D velocity model.
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Keeping as much of the original code as possible, allow us to attribute the changes

in the produced images to the change of background velocity model rather than

the structural or mathematical changes in the method, as well as minimizing the

potential errors and bugs that would occur throughout this project.

5.2.1 Evaluation

The object of this thesis is to solve a scientific question, by utilizing and expanding

upon present tools, as well as developing new tools as part of the project. The tools

developed are inherently an important part of the project, but not of the thesis, as

the focus in the thesis is on the scientific method and the scientific results. The

images produced by the tools will be evaluated using a qualitative approach, com-

paring the original images and the images generated by the new method, as well as

the computational demand of the new method.

5.3 Objectives

Below, I will detail the specific objectives of this study, and the method that will be

employed to obtain these.

The first objective is to recreate the original images for a set of test data, using the

new method. Ray tracing through the original 1D velocity model should generate

the same 1D velocity model for each ray path, identical to the original 1D velocity

model, and thus produce images identical to those of the original method. Recre-

ating the original images using a 1D model should ensure that all changes to the

images produced using the 2D model, can be attributed to the actual 2D velocity

model.

The second objective is to apply the new method to synthetic data, still comparing

the original method and the new method, both incorporating the original 1D veloc-

ity model, to identify any discrepancies. We apply the method to a synthetic data

set to correctly evaluate the accuracy of the method and what to expect and eval-

uate, when applying the method to real data sets. The synthetic data is generated

for two separate cases, incorporating a slow mantle wedge and a fast mantle wedge.

The dataset is generated by Felix Halpaap using the software specfem. Specfem

is a tool utilizing a spectral element method to simulate the propagation of elastic

waves through a realistic medium (Komatitsch and Vilotte, 1998). It incorporates
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free-surface topography and it is an efficient and flexible tool for studying diffracted

waves in a 2D or 3D medium. Halpaap modeled the response of 10 ray parame-

ters ([0.04, 0.05, 0.06, 0.07, 0.08, -0.04, -0.05, -0.06, -0.07, -0.08]), corresponding to

ten individual seismic events,arriving from both directions, within the 2D plane. It

utilizes 61 seismometers with a 5 km spacing between 100 and 400 km. The geome-

try of the velocity model used for generating the synthetic data was restricted to a

geometry easily available through specfem, but the properties of the medium were

set to resemble the 2D velocity model appropriated from Bostock et al. (2002). See

figure 5.3 for an illustration of the velocity model used for the synthetic dataset.

Figure 5.3: Illustration of 2D velocity model used for generating synthetic dataset.

The data is then tested for the 2D background velocity model, using two sets of

data, both with and without a serpentinized/slower mantle wedge. The success of

the synthetic tests are evaluated based on how the images generated adhere to the

velocity model used for generating the synthetic datasets. The focus of the evalua-

tion is on the accuracy of the dip of the subduction zone and the constrainment of

the mantle wedge.

The final objective is to apply the new method to a real dataset from the Cascadia

subduction zone, comparing the images generated by the original method and the

new method for a series of background velocity models. The focus of the real test

is to observe and evaluate whether the changes identified in the synthetic tests can

be identified in the real models as well.
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5.4 Implementation

5.4.1 Overview

Incorporating a range of bespoke 1D velocity models is comparable to incorporating

a single 2D velocity model, as the only parameters that are relevant on any given

occasion, are the parameters along the ray path. Unfortunately, the 1D velocity

model contains no information about the dip at each interface, neither is the method

developed to take dipping layers into account, so it is still an approximation. The

take-off angle and incidence angles along the ray paths will therefore be lost in the

conversion. The take-off angle must be recalculated for each new, unique 1D velocity

model with horizontal layers. This is because the take-off angle is affected by dipping

layers, and the method requires the specific take-off angle from the scatter-point to

a specific station, given horizontal layers.

Figure 5.4: Illustration of the effect of a 2D velocity model on the ray paths.

Each ray path is determined based on the geometry of a unique combination of

event, scattering-point and receiver. This creates a multitude of ray paths which

are incorporated into the algorithm by iterating the corresponding sections for each

event, scattering-point and receiver.

The GRT-inversion uses both the incident and scattered waves in the migration.

The event-receiver ray path may vary greatly from the event scatterer-receiver ray
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path. Based on this, we utilize two unique velocity model for each event-scatterer-

receiver combination, one for the incident wave, and one for the scattered wave. As

we are only interested in scattered energy after it has been scattered, we only trace

the ray from the scatter-point to the receiver.

Figure 5.5: Illustration of ray path, and overlay of resulting 1D velocity model,
associated with the plane wave and the scattered wave.

The ray paths of the scattered energy are independent of the direction of the incom-

ing energy, allowing for reuse of the same scatterer-receiver ray paths for all incoming

events, which reduces the computational demand. Based on this, we are interested

in the ray path to all stations from each scatterer and storing these in a table for

easy access. The event-receiver ray path associated with the plane incident wave

is still unique and must be retraced for each iteration. The ray path is determined

based on the receiver position and the horizontal slowness associated with the event.

The implementation requires a 2D velocity model, a ray tracer to obtain the be-

spoke 1D velocity models for each ray paths, and a change of loop structure in the

original code. Most parameters are calculated directly, as needed, in contrast to the

original calculations, where many parameters were obtained by interpolating across

values obtained by referencing a table. This increases the computational demand

as there is a vast increase in the number of calculations, but the elimination of

many interpolation-operations should lead to more accurate values, even using the

original 1D model. The reduction of interpolation will also provide a reduction in

computational demand in certain sections, but not enough to combat the increase

caused by the number of new calculations.
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5.4.2 2D velocity model

The 2D velocity model I am using for this thesis was adapted from an image gen-

erated by Bostock et al. (2002), figure 5.6. The image is the result of a survey of

the Cascadia subduction zone conducted in 1993-1994. The top image displays the

perturbations in S-velocity with respect to a smoothly varying one dimensional ref-

erence model, this is the same image as described in section 4.3. The middle image

displays a thermal model constructed based on the top image. The bottom image

displays the interpretation of the top image. The velocity model I am using is a

simplification of the interpreted results obtained in the Bostock study.

The 2D model is a improvement from the simple 1D velocity model, as it takes

into account a dipping interface and a mantle wedge, in addition to the original

crustal lithosphere and underlying mantle. The model still makes simplifying as-

sumptions though, such as linear, sharp interfaces, a homogeneous medium within

the set boundaries, and a generally isotropic model. The new dipping slab is 50

km thick, consisting of 10 km oceanic crust and 40 km asthenosphere. The kink,

as interpreted by Rondenay et al. (2001), has been ignored for this new proposed

velocity model, as the kink adds an additional complicating element to the project,

and its assumed existence might turn out to be caused by the assumption of a 1D

structure. The slab is dipping at 15 degrees, measured against the horizontal, in

the inland direction. Bostock et al. (2002) references a 10 degree dip above 45 km

and a 30 degree dip below 45 km. The mantle wedge is assumed to start below the

crust with a total width of 100 km.

The material parameters P-velocity(α), S-velocity(β) and density(ρ) are assigned

to each structure based on commonly used values and suggestions from Rondenay.

The velocity model has been generated for an area that is 350 km wide and 350 km

deep. The interfaces are stored as lines using two points of intersection, for easy

ray-tracing. The greatest effect on the results of a 2D implementation, is suspected

to be the introduction of a mantle wedge, the area of the greatest variance in seismic

properties, from the original 1D model. Two velocity models are therefore gener-

ated, one with a fast mantle wedge and one with a slow mantle wedge. In the case

of the fast mantle wedge the seismic properties of the mantle wedge is set to that

of the surrounding mantle, indicating 0% serpentinization. In the case of the slow

mantle wedge the seismic properties are set to extremely low values, to accentuate

the variance from the 1D model, equivalent to a serpentinization degree of ∼ 80%,

in line with figure 2.3.
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Figure 5.6: Image and thermal model of the Cascadia subduction zone (Bostock
et al., 2002).
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Figure 5.7: Illustration of 2D velocity model with a slow mantle wedge.

Figure 5.8: Illustration of 2D velocity model with no mantle wedge.
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p-vel s-vel density
km/s km/s g/cm3

Crust 6.46 3.80 2.80
Mantle 8.05 4.50 3.20
Wedge 5.90 2.80 2.60
Sub. Crust 7.80 4.38 3.40
Sub. Lithosphere 8.30 4.74 3.40

Figure 5.9: Table of parameters used in the new 2D velocity model. (The wedge is
omitted in figure 5.8).

Application to the synthetic dataset

As the velocity model used to generate the synthetic dataset did not consider a con-

tinental asthenosphere, this was removed for the application of the method to the

synthetic dataset. Mantle properties were instead assumed. The synthetic dataset

assumed a transition in seismic properties at 50 km depth, to higher values, here set

to the values I presumed for the oceanic asthenosphere. As I assume a continuous

oceanic crust I set the values of the slab equal to the upper subducting slab, as this

is the area of greatest interest. The subducting oceanic crust were set to the upper

crustal velocities. These changes were set in place to utilize a velocity model that

approximates the velocity model used to generate the synthetic dataset as close as

possible, while still adhering to the constraints set in place for the ray tracer.

Application to the real Cascadia dataset

The original method, when applied to the Cascadia dataset, utilized a more complex

1D velocity model than the simple, two layered model associated with the test data

for which the 2D velocity model was developed. The more complex 1D velocity

model contained a total of seven unique layers, all within the crust, see table in

figure 5.10. Tests proved that this provided a significant improvement to the pro-

duced models. The velocity model used for the application to the Cascadia dataset

is therefore a combination of the two models. The continental crust in the generated

2D model is divided into seven layers adhering to the depths and properties of the

original multi layered 1D velocity model used. The properties of the mantle in the

multilayered model was also adopted.

As the seismic velocities assigned to the slow mantle wedge might be unrealisti-

cally low, an additional 2D velocity model with seismic velocities representing a

more realistic serpentinization degree is included. The serpentinization in this 2D

velocity model is set to ∼ 50 % serpentinization. Again using the diagram gen-

41



depth p-vel s-vel density
km km/s km/s g/cm3

Crust 1 0-5 5.50 2.77 2.60
Crust 2 5-8 6.35 3.20 2.60
Crust 3 8-11 6.47 3.26 2.90
Crust 4 11-16 6.67 3.36 3.10
Crust 5 16-21 6.75 3.40 3.10
Crust 6 21-25 6.93 3.49 3.10
Crust 7 25-40 7.16 3.61 3.10
Mantle 40-300 8.10 4.33 3.50

Figure 5.10: Table containing the values of the complex 1D velocity model.

erated by Hyndman and Peacock (2003), using values found in laboratory condi-

tions found by Christensen (1966). Reasonable seismic velocities were found to be

Pvel = 6.20km/s, Svel = 3.20km/s and density was kept at ρ = 2.60g/cm2. This

velocity model was added in order to compare the images generated from the new

method with results of previous studies, using images generated based on more

realistic values.

5.4.3 Ray Tracer

The objective of the 2D ray tracer is to find the 1D velocity models bespoke to

the ray path between a source-point and the receivers in a 2D velocity model. To

determine the ray paths, I created a simple ray-tracer.

Given a source position and a take-off angle, the ray tracer is able to trace the ray

path from the source position to the surface, bending in accordance with Snell’s law.

The tracer runs through an iterative process in which it calculates the intersection

between the line defined by the source-position and given take-off angle, and the line

that describes the model interface. The new intersection is the point at which the

ray hits this interface. This is set as a new ’source’-point and a new take-off angle

is determined by first estimating the incidence angle with regards to the dipping

surface and then applying Snell’s law. This process is repeated until the ray hits

the surface, is critically reflected or excessively out of bounds of our velocity model.

Some deviation from the defined horizontal extent of the model is tolerable, and even

encouraged, as there is a receiver at 0 km offset, and rays hitting at negative offset

are therefore required for the interpolation to work properly. As the model consists

of lines, the lines extend indefinitely. As long as the intersection between the ray

and the interfaces are within a reasonable horizontal offset, here set at [-250,600],

the ray path is accepted as reasonable. The ray tracer does not tolerate downward

propagating rays.

42



The ray tracer is utilized to find the 1D velocity models needed to calculate the

travel time of the incident plane wave and the scattered waves. This ray tracer

works well for the incident plane wave when modified to trace from the receiver and

backwards toward the event. For the scattered rays, we do not know the correct

scattering angle necessary to reach the exact position of the receiver prior to ray

tracing. To circumvent this, we trace a series of ray paths from the scatter-point and

outwards, with a take off angles set to 201 values in the range of [−π/2 : π/2]. From

this, we get a series of points where the ray hits the surface. From these surface

positions we interpolate for the station positions, obtaining the ray path required to

reach the station, see illustration figure 5.11. This ray path is then converted into a

1D velocity model, illustration figure 5.12.

The scattering angle, the take-off-angle at the scatter-point against the vertical, is

required for some of the calculations. The scattering-angle depends on the dip of

the layers in the velocity model. As we have now obtained a 1D velocity model

with no dip, the ray path needs to be recalculated through our new 1D velocity

model. An illustration of the retraced ray path is illustrated in pink in figure 5.12,

this illustration is, however, an exageration in terms of change in scattering angle

θ. The actual retraced ray deviates less from the original ray path, an exaggeration

was done for illustrative purposes. Retracing the ray will insure a correct scattering

angle, θ, for later calculations.

This process is iterated for the ray paths corresponding to both the P-wave and the

S-wave for the scattered waves. The incident wave is by design a teleseismic P-wave

and only the P-ray path is therefore obtained.
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Figure 5.11: Illustration of interpolation.
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Figure 5.12: Illustration of conversion from ray path to 1D velocity model.
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Technical implementation

The technical implementation of the ray tracer function may be divided into five

steps:

1. Ray tracing through the model from the scattering point using the scattering

angle range to obtain the points where the ray intersects with the layers of the

2D model and generate a 1D velocity model.

2. Expand the obtained 1D velocity model to prepare for subsequent interpola-

tion.

3. Interpolate across the surface positions obtained to obtain the values associ-

ated with the station positions.

4. Contract the values associated with the station positions to obtain 1D velocity

models corresponding to the scatter point station combination, to make it

usable for the migration.

5. Finally retrace through the final 1D velocity model to obtain the correct scat-

tering angles.

Next is a detailed explanation on each step.

Step 1: Ray tracing through the 2D velocity model

The objective of the first step is to find a velocity model corresponding to a range

of take of angles, θ. To do this, we set the source position to slightly off the scatter

point to avoid potential issues that may arise when doing the interpolation.

From the source position and take off angle, we determine the linear equation de-

scribing the ray, and from the velocity model, we get the linear equation describing

the interface.

Ray: art+ br = k (5.1)

Interface: alt+ bl = k (5.2)

ar =[cos(θ), sin(θ)] br =[zs, xs] (5.3)

al =[Li,3 − Li,1, Li,4 − Li,2] bl =[Li,3, Li,4] (5.4)
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In these equations, t and k are unknowns, L is a matrix associated with the velocity

model containing the coordinates of the end points defining the interfaces. i is

the index for looping over the layers in the model. We find the intersection point

between the two lines by setting the equation describing the ray equal to the equation

describing the interfaces and solving for t. The intersection point is where the ray

originating from the source point would hit the interface, given the take-off angle.

We substitute t by the obtained value, to find z and x coordinates of the intersection.

(
ar,1
ar,2 ) t+

(
br,1
br,2

)
=
( al,1
al,2

)
k +

(
bl,1
bl,2

)
(5.5)

t =
bl,1 − br,1 +

al,1
al,2

(br,2 − bl,2)
ar,1 − al,1

al,2
ar,2

(5.6)

znew = ar,1t+ br,1 xnew = ar,2t+ br,2 (5.7)

The intersection point is saved to the ray path matrix and set as the new source

point. The incidence angle when hitting a dipping layer is corrected using equation

5.8

θi = sin−1
(
al · ar
|al||ar|

)
(5.8)

We find which layer the ray will be moving through next based on the current spatial

position, and use the properties of this layer and the previous layer to determine the

new take off angle using Snell’s law.

All substeps of step 1 are repeated for each layer/interface until the surface is

reached.

Step 2: Expanding the velocity model to prepare for interpolation

The next step is to prepare the obtained velocity models for interpolation. As dif-

ferent rays may go through a different number of layers, interpolating to find the

correct velocity model is a bit less straightforward. All velocity models correspond-

ing to scatter points are transformed to similar multilayered models. The thickness

of each layer of these velocity models is set to ∼1 km. As all originate from the

same depth, this results in the same number of layers, suitable for interpolation.
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Based on the upper and lower extent of each layer we create an array corresponding

to depth [zmin : 1 : zmax] and an array corresponding to the horizontal position for

each depth increment (1 x for each z on the interval [xmin : xmax]), and we create

arrays of the P-velocity, S-velocity, density(ρ) and layer number with equal values

for all indices of the array corresponding to a length of z. We combine the transform

of these arrays to create the expanded velocity model, by concatenating the set of

arrays into a matrix. This is repeated for each layer, and generates a velocity model

where each row of the matrix corresponds to a 1 km thick slice of the 1D medium,

unique to the traced ray.

Step 3: Interpolate expanded velocity model to find ray path to station

In this step we do the actual interpolation. As one row in the velocity model matrix

corresponds to 1 km horizontal slice of the model, we interpolate the values asso-

ciated with the positions on the surface for receiver positions, for each layer in the

velocity model.

The spatial parameters are interpolated using linear interpolation, and the material

parameters are interpolated using nearest-neighbour interpolation. This was done

to keep the distinct material parameter values, but get the most accurate spatial

points. If the receiver position is located outside of the range of the traced surface

positions, the ray path is set to be the nearest, most extreme feasible ray path. This

is to avoid any unnatural ray paths.

Step 4: Contract interpolated expanded velocity model to as few layers

as possible

To obtain a usable velocity model, consisting of the original layers, the model must

be contracted. As some of the calculations in the method require a summation over

layers, for instance the calculation of traveltime and other parameters, a contraction

is necessary to limit the computational demand of the method.

The model was contracted by identifying the unique numbers in the layer number

array and the indices of the their first occurrences. The spatial position of the layer

corresponding to the index of the first and last occurrence of each unique number,

corresponding to the entire layer, were extracted to create the spatial points of the

velocity model. The material parameters were extracted from the line corresponding

to the median of the layer, by averaging the index corresponding to first and last

occurrence of the layer.
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Step 5: Retrace through the 1D velocity model to obtain the correct

scattering angle

As the dip of the layers affect the path of the ray, and thus the scattering angle,

the ray must be retraced through the new 1D model to find the correct scattering

angle required by the method. This is found using the same algorithm as explained

in step 1, bypassing the step of correcting for dip, and the check of spatial position

for the parameters of the next layer, for an increase in computational speed.

Exception

A major exception in the ray tracer is the top crustal layer. As ray tracing outwards

from 2 km depth would make it difficult to get a range vast enough to reach the

majority of the stations, and as the first layer contains no diffraction, the first layer

is treated as a homogeneous half-space model. The scattering angle is calculated

directly using Pythagoras theorem. The spatial positions are set to the receiver and

scatterer position, while the material parameters are set to the material parameters

of the first layer.

5.4.4 Modifications to existing structure

With the tools required to implement the new 2D velocity model, all that is left to

do is to make the necessary modifications to the structure of the original method.

The original structure, algorithms and flow of the code provided for project was

reverse engineered to identify the key parts and natural progression of the compu-

tations. A detailed overview of these results may be found in appendix A.2. From

this it was determined that the sections that needed to be modified were the scripts

prep table.m, plane wave alt.m and migration.m, as these are the scripts that ref-

erence the velocity model parameters directly, see figure 5.13. Prep table.m and

plane wave alt.m needed to be modified to take into account the new velocity mod-

els, while migration needed to be modified as some parameters now are varying with

each iteration.

In the script prep table.m, the travel time, slowness and Jacobian associated with

the scattered waves are calculated. The specific calculations are kept, but the input

is changed as it now needs to reference a new velocity model for each iteration. The

ray tracing script determining the unique 1D velocity models is implemented to find

the velocity model associated with the P-wave ray path and S-wave ray path. As

this script is designed to be run separately from the main process, information on

the events are not available to the script. The parameters are therefore calculated

for a series of ray-parameters (51 values in the range [0:0.008]) and stored in a table.
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Figure 5.13: Flowchart overview of the structure. The locations of the three scripts
highlighted is indicated on the right.

50



The correct parameters may then be found through interpolation when needed. This

is still a reduction of interpolations, as the former method required an interpolation

for station, event, scattering-angle and scatter-point.

In the script plane wave alt.m, the traveltimes to the scatter point of the incident

plane wave, as well as the incident plane wave reverberated at the free surface, both

as a P-wave and as a S-wave, are calculated. Most computations are kept, but the

script is converted to a function, calculating the travel times of the incident wave

with the variables provided, as needed. Backwards ray tracing is incorporated and

performed for each iteration based on the ray parameter of the specific event and

the receiver position. All interpolations formerly associated with the incident plane

wave are removed.

To the script migration.m, minor changes were made to the computations. The

interpolations associated with the plane wave were removed, and the interpolations

associated with the scattered wave were substituted for a single interpolation with

respect to the ray-parameter of the event. Major structural changes were however

put in place in order to recalculate all the required calculations for each iteration.

With all tools developed and all structural changes incorporated, the development

part of the project is now described. In the next chapter, I present the images

generated by this new method, and a short summary on how the images generated

using a 2D velocity model differ from the images generated using a 1D velocity

model.
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Chapter 6

Results

In this section I will detail all of the outcomes of the new method. This includes

preliminary test data used in development, as well as all results of the method ap-

plied to synthetic and real data from the Cascadia subduction zone, using various

background velocity models.

6.1 Test case

This project was developed based on a set of test data. As outlined in section

5.3, the first objective of the project was to recreate the original images, using the

original 1D background velocity model. This objective was set in place to derive a

baseline for evaluating the accuracy of the new method. Figure 6.1 is a side by side

comparison of the test data using the original method; left, and the new method;

right. The image was generated using the information obtained from a single event.

This was therefore a natural first step, as the development and calculation times

were short, and conclusive results could be obtained quickly. The simplicity of the

data set also made for easier debugging.

The image, using proper scaling, displays a significant decrease in amplitude across

the diagonal from the lower left part of the image. Modifying the amplitude scale

was therefore a necessary step to evaluate the accuracy of the entire model. The

scaling of the figures are set to facilitate a comparison of shapes and positions, as

these are the key elements to evaluate how well the original results are reproduced

by the new method. The placements and shapes of all features in the two images

are virtually identical, except for some discrepancies near the transitions between

positive (blue) and negative (red) perturbations. As the transitions from red to blue

are the areas of smallest amplitude, minor discrepancies near edges are not of great

concern. The demonstration of the validity of the tools and techniques developed
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Figure 6.1: Models generated by test-data. Left: original method. Right: new
method.

as part of the project can thus be considered a success, and the rest of this chapter

will be focused on the results of the concrete application of the new method.

6.2 Overview

Our results may be divided according to the overview detailed in figure 6.2. The two

main categories are results from the application to synthetic data, and the applica-

tion to real data from the Cascadia subduction zone. In the case of the synthetic

data we have two datasets; one with a fast and one with a slow mantle wedge. The

dataset used for the Cascadia subduction zone is the dataset CASC93, obtained by

Nabelek et al. (1993), previously described in section 4.3, hereafter referred to as

the real dataset, and subsequent real results.

In the case of the synthetic datasets we apply the velocity model best fitting to

each of the datasets. We apply the new method with a fast mantle wedge, in the

case of the fast mantle wedge and vice versa. In the case of the real data we may

divide the results in two main categories, one with a homogeneous crust and one

with a multilayered crust, as prefaced in section 5.4.2, application to the real Casca-

dia dataset. For each of these categories we will apply new method using the three

different different 2D velocity models, labelled fast, slow and moderate, in reference

to the fast, slow and moderate seismic velocities of the mantle wedge, relatively.
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The velocity models will be implemented in this sequence, in the order of least to

most interesting. The original and new method is applied to all cases using the best

fitting 1D velocity model.

The synthetic results will be presented first. The images of the synthetic case will

be presented with an overlay of the outline of the velocity model used for gener-

ating the synthetic dataset, as a frame of reference. The outline will provide the

correct placement of features and is a good measure of the absolute accuracy of the

method. The fast case will be presented first as it portrays the least change from

the 1D velocity model.

The real results with a homogeneous crust will be presented next, with no overlay,

but the features will be named in correlation with previous studies, in particular

the study by Bostock et al. (2002). This leaves case of the real data with a multi

layered crust for last.

Figure 6.2: Overview of results

This leaves a total of 16 subcategories to investigate, 12 applications of the new

method (8 with a 2D geometry and 4 with a 1D geometry), compared to 4 applica-
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tions of the original method with a 1D geometry,(see figure 6.2). For each of these

subcategories, seven images are generated by the methods:

– One image displaying both the alpha-perturbations and beta-perturbations,

based on all of the events

– One image displaying both the alpha-perturbations and beta-perturbations

based on just the reverberations of all of the events

– Five images displaying the results from the individual scattering modes: PP,

PS, direct S, SSv and SSh.

Of these, only the first image will be presented and discussed in this thesis, since

these images are compilations of all the different perturbations, giving the best

overview.

The results for all these subcategories will be presented in two stages:

1. The models generated by the original method will be compared to the new

method, using the same 1D background velocity model. This will demonstrate

the validity of the new method, as applied to the specific dataset.

2. The models generated using the new method and a 1D velocity model will

then be compared to the models generated using the new method and the 2D

velocity models. This insures that any minute changes between the models,

generated by the changes between the original and the new method, do not

contribute to the comparison across different velocity models and evaluation

of success.

When evaluating the images, I will look for the same trends as observed in the

original image, and (in the synthetic cases) in relation to the overlay image. In

all image presentations, the left image, displaying the alpha-perturbations, will be

denoted as image A, and the right image, displaying the beta-perturbations, will be

denoted as image B. The main focus will be on the dipping slab, the continental

Moho discontinuity, and the mantle wedge, as these are the areas most relevant to

my research questions. All images, including mode contributions, will be included

in appendix; A.1.
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6.3 Synthetic data - Fast mantle wedge

6.3.1 Validity - Comparison between original and new method

(1D background velocity model)

The first step is to demonstrate that the new method models the subsurface cor-

rectly, as compared to the original method. As evident by figure 6.3, all the major

features are correctly located and have the right dimensions. There are no discernible

differences between the two images, neither in terms of alpha- or beta-perturbations.

6.3.2 Features - 1D background velocity model

There are two main features in these images. There is the diagonal red structure

dipping with 7 degrees from 25 km depth on the left. In image A, we can see

the feature ending abruptly at an offset of 120 km at a depth of 50 km, with an

increased thickness and an obvious underlying blue structure. The structure is at all

times adhering to the lines of the overlay, extending ever so slightly in the direction

of subduction. In image B, the structure appears to be spanning across the entire

model, with a substantial decrease in thickness in the right half of the image, and

an overall more convex shape. The structure is adhering to the lower boundary of

the outline in the left section of the image and the second lowest line in the right

section of the image.

The other prominent feature is the horizontal red-to-blue structure at 30 km depth,

spanning from about 60 km offset, where it meets the upper boundary of the diagonal

structure, near the right end of the image. This feature is more prominent in the

image A, but has a softer transition than in image B. This might be a result of the

difference in perturbation % scale between the two images.

6.3.3 Features - 2D background velocity model

The change between the images generated using a 1D velocity model and a 2D

velocity model, with no serpentinization, is minute at best. The same main features

that were identified in the 1D case are observed in the 2D case. Both features are

positioned in the same locations and with the same extensions. A slight increase

in the dip of the dipping feature could be argued, as it appears to follow the lower

boundary a little closer in the 2D case, slightly extending beyond the boundary near

50 km depth. In image A, the right end of the dipping feature appears to have a

more diffuse edge and a more horizontal cut-off. The blue section underlying the

dipping feature appears more consistent in thickness, and follows a more convex
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shape, in contrast to the slight lense shape in the 1D image. The reverberations

beneath the dipping feature also appear more planar in the 2D case, in contrast

to the almost concave expression in the 1D case. All features above the dipping

section, including the horizontal red-to-blue transition, appear identical in the 1D

and 2D case.

Comparison 
Fast mantle wedge

N
ew

N
ew

Figure 6.3: Images generated using synthetic data. In this figure from top down is
the images generated using the Original method, New method 1D, New method 2D
with a fast mantle wedge, respectively.
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6.4 Synthetic data - Slow mantle wedge

6.4.1 Validity - Comparison between original and new method

(1D background velocity model)

The images generated using synthetic data that included a slow mantle wedge is

displayed in figure 6.4. The images generated by both the original method, top, and

new method, middle, are identical everywhere in terms of the shape and positioning

of the features.

6.4.2 Features - 1D background velocity model

In the left part of the images, we still see the dipping structure as we did in the case

with the fast mantle wedge. It appears to have a slightly steeper dip, and, in image

A, an abrupt transition at 55 km depth and 110 km offset. This takes the form

of a jump; 5 km vertically upward and 10 km eastward, to a continuation of the

red structure that disperses out to a thicker structure, eventually splitting before

ending at 200 km offset. The dipping feature extends beyond the boundaries set

by the overlay in both images. A red elongated feature, observed in image A, at

60-80 km depth and 120-160 km offset, located beneath the lower boundary, could

be identified as a continuation of the original dipping feature. The horizontal feature

observed in the previous synthetic case is only identified in the rightmost end of the

images, beyond 220 km offset, to the right of the ‘vertical’ line indicating the end of

the wedge. Above the section indicated to be the mantle wedge by the overlay, there

is no clear discontinuity in image A. In image B, a horizontal structure is identified,

but with a blue-to-red transition, rather than the previously identified red-to-blue

transition.

6.4.3 Features - 2D background velocity model

In the 2D case, the dipping feature follows the lower line of the overlay perfectly.

The feature is thinner than in the 1D case and the jump observed in the 1D case is

now a more gentle transition towards a planar feature. The section of the dipping

feature, that previously protruded below the outline, has been shifted upwards and

is exactly above the outline in the 2D case. The same shift occurred to the elongated

feature that was believed to be a continuation of the dipping feature. This feature

is now confined to a narrow segment along the dipping structure, as dictated by

the overlay. The lower section of the red structure, that in the 1D case appeared

as a continuation of the dipping feature into the area associated with the forearc

mantle, is shifted upwards as well, and is now constrained by the boundaries set
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by the overlay. The upper section of the same feature is still located at the same

position as in the 1D case, but with perhaps a more horizontal transition towards

the surface, resulting in an ultimately more constrained red feature. In image B, the

two segments of the dipping feature that protruded below the lower boundary of the

outline are shifted upwards, in the same fashion as in the image A. A red, elongated,

narrow structure is observed along the lower boundary, in the same location as in

image A. All in all we observe a diagonal shift upwards and to the right that has

affected the entire lower left diagonal of the image, in both images. The upper 40

km of the image, including the horizontal feature, remain identical in both the 1D

and 2D case.

Comparison 
Slow mantle wedge
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Figure 6.4: Images generated using synthetic data with a no mantle wedge. In
this figure from top down is the images generated using the Original method, New
method 1D, New method 2D with a slow mantle wedge, respectively.
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6.5 Cascadia data - Homogeneous crust

In this section, and in section 6.6, the images generated using the Cascadia dataset

will be presented. As this dataset is well studied, there is a general consensus on

the identification of the features displayed in the images (Rondenay et al., 2001),

(Rondenay et al., 2008), (Bostock et al., 2002), (Tréhu et al., 1994). For simplicity

and readability, I will, therefore, utilize the names of the interpreted features, as

proposed by these authors. The main source of inspiration will be the images gen-

erated by Bostock et al. (2002), observed in this thesis in figure 5.6. The features

will be defined in subsections 6.5.2 and 6.6.2.

6.5.1 Validity - Comparison between original and new method

(1D background velocity model)

In figure 6.5, we see the models generated by the original method and the new

method using the simplest 1D velocity model with the homogeneous crust. The

models are close to identical; the shapes and positions are similar. There appear to

be some artefacts in centre of image A from the original method, at 40 km depth and

140-180 km offset, that does not appear in the model generated by the new method.

The intensity of some of the features in image B, particularly around 70 km depth

and 110 km offset, are not perfectly resolved, but as the general shapes and positions

are correct I evaluate both images as successful, in terms of the replicability.

6.5.2 Features - 1D background velocity model

In the 1D model, we observe the dipping feature, located at 25 km depth, dipping

at ∼10 degrees landward, towards the right, corresponding to the basaltic crust of

the oceanic plate, Juan the Fuca. We see a thickening of the feature at 40 km depth

and a dissipation shortly after. It dissipates in two stages, where the lower half of

the subducting slab dissipates at 85 km offset while the upper half dissipates at 110

km offset, both at 55 km depth. In image A there is a large red feature in the lower

right section of the model, that appears to be a continuation of the dipping feature,

starting at an offset of 150 km and depth of 70 km, identified as eclogitized oceanic

crust. A similar, less constrained, less homogeneous feature is observed in the same

location in image B. The horizontal feature, identified in the synthetic dataset, is

easily identified in image B, with a reversal of polarity at 130 km offset. It appears

as a distinct, horizontal feature, and we observe the inversion of colours, as well as a

thickening as it connects to the dipping feature. This feature corresponds, in place-

ment and expression, to the continental Moho. It is difficult to observe in image A.
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6.5.3 Features - 2D with a fast mantle wedge

In the images generated using a 2D velocity model with a fast, unserpentinized

mantle wedge and a homogeneous crust, we observe a large section of the image

shifted slightly diagonally upwards. Similar to the one observed in the synthetic

case with a slow mantle wedge. We do observe some artefacts, in the form of some

odd coloured pixels occurring along two diagonal parallel lines, spanning across the

model, coinciding with the crust-asthenosphere and asthenosphere-mantle bound-

aries of the background velocity model. The upwards diagonal shift observed, affects

the dipping oceanic crust, causing it to appear as a more linear feature, with a con-

sistent dip of 7-8 degrees. The eclogitized crust, at the lower right section of the

images, have also been shifted upwards and are now weakly connected to the upper,

basaltic crust. It has, however, not shifted so far as to align with the underside of

the basaltic crust. The eclogitized crust might appear more constrained and with

a more consistent dip. The features above the oceanic crust, but beneath the con-

tinental Moho appear more horizontal, but have not been subjected to any major

changes worth mentioning. The Moho, itself, at 40 km depth, is about identical to

that of the 1D case, as is the medium above 40 km.

6.5.4 Features - 2D with a slow mantle wedge

The images generated using a 2D velocity model with a slow mantle wedge, repre-

senting a high amount of serpentinization, and a homogeneous crust, portrays many

of the same changes as observed in the case of the fast mantle wedge. The same

trends of off-coloured pixels are unfortunately observed, and a bright blue upper

right corner might be observed at 150 km offset and 40 km depth. This coincides

with the position of the mantle wedge in the background velocity model.

The basaltic crust observed in the 1D case is shifted diagonally upwards, appearing

as a more continuous feature than in the 2D fast mantle wedge case, and is shifted

slightly farther. The upper boundary of the dipping crust remains in the same

location in all previous cases. An additional upwards shift thus serves to further

constrain the extension of the crust, now appearing with a consistent thickness along

the structure. The step or jump observed in the synthetic case is also observed here,

in the upper, dipping, basaltic crust. The lower dipping, eclogitized crust, that is

believed to be a continuation, is shifted slightly upwards as well. It appears more

constrained, and is more clearly resolved, than in the slow 2D case. It appears to be
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aligned with the post jump section of the upper dipping structure. The link between

the upper and lower structure, observed in the 2D fast case is now broken, although

the positioning of the features still indicate that the lower dipping structure is a

continuation.

A red, upward extension of the lower dipping, eclogitized crust is observed in image

A, in the area of the mantle wedge, at 140 km offset and 55 km depth. This was

not observed in the case of the fast mantle wedge. This feature is also not clearly

identifiable in the image B. Above the lower end of the upper dipping structure

there appears to be a small, red, banana shaped structure, nearly separated from

the dipping basaltic crust itself. This feature is only observed in image A, as image

B instead displays a solid red transition from the dipping feature into the horizontal

feature. In the 1D case, this feature was not possible to separate from the dipping

crust. While the feature is more discernible in the 2D fast case, it is still not as

clearly resolved or of the same size as in this 2D slow case. The crustal section

of the model is identical to the 1D and 2D fast case, and there are no noteworthy

changes to the continental Moho, compared to the fast case.

6.5.5 Features - 2D with a moderate mantle wedge

The images generated using a 2D velocity model with a more moderate degree of

serpentinization of the mantle wedge, still with a homogeneous crust, is displayed in

the bottom row of figure 6.5. The features observed in these images are in general

fairly similar to the case of the slow mantle wedge. Some discrepancies, assumed to

be due to the difference in background velocity, are still observed. Slight variations

from the slow case is observed in the two dipping structures, corresponding to the

basaltic and eclogitized crust, mostly due to a less extensive uplift of the lower left

diagonal, compared to the slow case. The basaltic crust appears more linear, as

the jump is dampened, while the thickness is still continuous. The banana shaped

feature above the lower part of the upper dipping basaltic crust, is shifted vertically

downwards, and overlaps with the basaltic crust. The lower dipping eclogitized

crust is almost identical to the slow case, but appears, perhaps due to the shift of

the upper crust, as a more natural continuation to the upper basaltic crust. The

strange upwards protruding red structure is still present but at a slightly smaller

scale. There are no apparent changes to the continental Moho or the upper 40 km.
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Cascadia
Homogeneous Crust

Figure 6.5: Images generated using the Cascadia data set and a homogeneous crust.
In this figure from top down is the images generated using the Original method,
New method 1D, New method 2D: fast mantle wedge, New method 2D: slow mantle
wedge, New method 2D: moderate mantle wedge, respectively.
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6.6 Cascadia data - Multi layered crust

6.6.1 Validity - Comparison between original and new method

(1D background velocity model)

The images generated for the Cascadia dataset, using the custom 1D velocity model,

containing a multilayered crust is displayed in figure 6.6. The figure displays the

images generated using the original method and the new method on the first and

second rows, respectively. The images display a similar location, size and shape of

features, comparable to the previously discussed cases.

6.6.2 Features - 1D background velocity model

In the 1D model,second row, we observe the same features as in the case of the

simple crust, but in image A we see a slight downward shift of the features below

40 km, and upward shift of the features above 40 km. In image B we observe a

more general upwards shift of the features. In image A, this extension increases

the apparent dip of the upper dipping crust. The oceanic crust now dips from a

depth of 25 km and ∼17 degrees landward dip with an even thickness of about 10

km. The feature thickens at 40 km depth and 75 km offset (the same location as

the simple case), but appears more constrained than in the simple case. In image

B, the upper dipping basaltic crust is imaged with smoother boundaries, and the

thickening of the crust appears as a natural progression. The continuation of the

dipping structure, the eclogitized crust, reappears after a small gap at a depth of

∼65 km and offset of 140 km, and continues until the end of the model in image

A. It is poorly constrained and with a varying dip and thickness. In image B, the

upper dipping basaltic crust appears to transition into the horizontal feature. The

continental Moho is again only identifiable in image B, and even here it contains a

lot of noise between the offset of 110 km and 160 km, similar to the observations in

the case of the homogeneous crust.

6.6.3 Features - 2D with a fast mantle wedge

In the images generated by the new method applied using a 2D velocity model with

a fast mantle wedge and layered continental crust,third row, we observe a significant

amount of artefacts, in the form of odd coloured pixels, similar to those observed

in the cases of with homogeneous crust. We observe a diagonal upward shift of

the features, similar to the effect observed in the previous 2D cases, both in the

synthetic and Cascadia models. This reduces the apparent dip of the upper dipping

basaltic crust, from a landward dip of ∼17 degrees to ∼14 degrees. The thickening
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of the basaltic crust is reduced, as the lower boundary is shifted upwards while the

upper boundary remains largely stationary. The eclogitized crust is also shifted in

the same fashion. The lower boundary is shifted upwards, while the upper boundary

remains stationary. This effect is apparent, but poorly resolved, due to the artefacts

previously mentioned. The lower dipping eclogitized crust still appear to be more

constrained, with a lower, more consistent dip, and a more narrow shape. The

features in the mantle above the dipping oceanic crust appears more planar, as the

trend of the upwards shift forms a bulge. The continental Moho, at 40 km, is poorly

resolved in image A, but appear as a clear red-to-blue discontinuity from 150 km

and landward. This discontinuity is less defined in the area prior to 150 km offset.

The upper 40 km appears identical to the 1D case.

6.6.4 Features - 2D with a slow mantle wedge

The fourth row of figure 6.6, displays the images generated with the new method

using a 2D velocity model with a slow mantle wedge. Some off coloured pixels occur

along the same lines as in previous images, the protrusion of the upper right corner

of the mantle wedge being especially worrying. Similar to the observations made

in the case of the slow, homogeneous case, we observe an increased uplift in the

center of the image, 100-150 km offset, compared to the fast 2D case. We observe

a clear division into an upper dipping basaltic crust and lower dipping eclogitized

crust. The upper dipping basaltic crust appears as a homogeneous structure with a

consistent thickness. As the lower end of the basaltic crust is uplifted, the general

dip of the structure is altered. We observe a slight jump, or offset, similar to the

one identified in the 2D slow synthetic case and slow homogeneous Cascadia case.

The red banana shaped feature observed above the lower end of the upper dipping

basaltic crust, previously identified in the slow case of the homogeneous crust, is

not strictly apparent. An argument for a division of the lower end of the eclogitized

crust could be made, as a thickening is observed with a weaker segment crossing

through. This is not observed in the case of the 2D fast, multi-layered case.

Correctly identifying any minute changes to the lower dipping structure is difficult,

due to the noise observed. A general upwards shift and concentration of red features

around an offset of 100 to 150 km, is, however, clearly observed. The shape of

the structure in the mantle above the lower dipping structure is shifted upwards

compared to the 1D case, in a similar manner as in the 2D fast case, but the shape

of the feature in the 2D slow case is more remanent of that of the 1D case. The

horizontal feature at 40 km depth is unaltered, as are all features above 40 km.
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6.6.5 Features - 2D with a moderate mantle wedge

The bottom row of the figure are the images generated using the new method, a

more moderate assumption of serpentinization of the mantle wedge and a multi lay-

ered crust. The model is for all intents and purposes close to identical to that of the

slow mantle wedge and multi layered crust. Some slight changes between the two

models can be observed. These include a less extensive uplift of the structures in the

center of the image, offset 100-150 km and depth of 40-70 km, more so in image B

than in image A. In image B, the oceanic crust is less connected, and appears as two

more distinct features. All features in the upper 40 km, the horizontal discontinuity,

the Moho, at 40 km depth and the features in the mantle above the lower dipping

oceanic crust is identical to the case of the slow mantle wedge.
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Cascadia
Multi layered crust

Figure 6.6: Images generated using the Cascadia data set and a multi layered crust.
In this figure from top down is the images generated using the Original method,
New method 1D, New method 2D: fast mantle wedge, New method 2D: slow mantle
wedge, New method 2D: moderate mantle wedge, respectively.
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Chapter 7

Discussion

In this chapter I will discuss the main outcomes of the project. First, I will evaluate

whether or not the changes made to the method may be considered an improvement,

particularly in respect to the defined research questions. Then I will discuss some of

the constraints, challenges and solutions put in place to obtain these images as well

as a note on the computational demand. Finally, I will present some conclusions

and some suggestions for further work.

7.1 Discussion of results

7.1.1 Interpretation of results

Synthetic case

In the synthetic case of the fast mantle wedge, we observe two distinct features.

We observe a structure dipping inland from a depth of 25 km with a dip of ∼7

degrees across the left half of the model and a horizontal feature at 30 km depth

and at an offset of about 60 km where it intersects with the dipping feature and

to the end of the model. These coincide with the features outlined in the veloc-

ity model used to generate the synthetic data. The 2D background velocity model

in this case introduces a dipping feature representing a dipping oceanic crust. The

images produced are close to identical for both the original, new 1D and new 2D case.

In the synthetic case of the slow mantle wedge, we observe the same general features

as in the fast mantle case. We also observe a continuation of the red feature, beyond

the extension observed in the fast case. This feature disperses into a triangle shape

with two branches. As this feature is only observable in the synthetic case of the

slow mantle wedge this is believed to be indicative of slower seismic velocities in the

mantle wedge. The 2D background velocity model includes lower seismic velocities
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in the forearc mantle and we observe a significant improvement in the placement of

the features observed. The region above 40 km depth is unaffected. This is a trend

that is observed in all cases, as the velocity model associated with the scatterers

in this region is identical in the new and old method. In the case of a fast mantle

wedge, this trend extends down to the first dipping interface.

Cascadia case

In the models generated from the Cascadia dataset, we observe the same three fea-

tures. We observe a dipping feature, in the same location, that is interpreted, based

on previous studies Langston (1981),Tréhu et al. (1994) and Rondenay et al. (2001),

as the dipping oceanic lithosphere of the Juan de Fuca plate. We observe a horizontal

feature, also in the same location, that is, based on the same studies, interpreted as

the continental crust-mantle-discontinuity, also known as the Moho. The feature is

best observed in the images displaying the beta perturbations, indicating a sharper,

more abrupt transition in S-velocities, than in P-velocities. This might, however,

be due to a difference in scaling between the two images. We observe a thickening

of the subducting oceanic slab towards a depth of 50 km. This thickening may be

indicative of the presence of a slower mantle wedge, as the thickening might be an

effect similar to the effect observed in the synthetic case.

Slight differences may be observed in the models generated based on the homoge-

neous crust and the multilayered crust. The biggest difference is a vertical shift of

features. The image displaying the alpha perturbations underwent a vertical exten-

sion, resulting in a uplift of features in the top section and a downshift of features

below 30-40 km. The image displaying the beta perturbations experienced, on the

other hand, a general uplift. This is natural as the P-velocities were increased in

the mantle and decrease only in the top two layers, while the S-velocities experience

a consistent decrease. The features appear more constrained in the case of a multi-

layered crust and adhere to sharper transitions.

When we apply the new method to a more complex background velocity models

we observe a trend of an upwards shift of the lower left diagonal section of the im-

age. The shift varies depending on the velocity model incorporated. In the case

of the fast mantle wedge the shift may be described as an upward shift increasing

with depth and offset. With the introduction of a slow mantle wedge at the center

of the image, the area beneath the mantle wedge is even further lifted up, as the

area above experiences a decrease in velocities. This results in a total uplift with

a concave shape and bulging center. The uplift results in a decrease in the dip of
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the subducting oceanic crust and a better constrained lower dipping structure. The

continental Moho appears largely unchanged by the introduction of a 2D velocity

model. This is not surprising as the crust (upper 40 km) does not change by de-

sign. The spatial extent and the seismic parameters of the mantle wedge introduced

are highly uncertain as the landward end of the wedge is assumed to be a smooth

transition (Bostock et al., 2002). The petrological conditions, more specifically the

degree of hydration (which has a significant influence on seismic velocities), is under

continuous discussion.

The images generated using a 2D velocity model with a more moderate degree of

serpentinization of the mantle wedge and a multilayered crust, were deemed to be the

most accurate as they were generated using the presumed most realistic estimate of

the reference background velocity model. The images of this case will be compared

to the interpretations made by Rondenay et al. in 2001 and 2008 of the original

model(Rondenay et al., 2001)(Rondenay et al., 2008). Based on these evaluations I

will answer the research questions put forward in the introduction.

7.1.2 Implication

In this project I set out to determine if a 2D background velocity model would

provide a significant improvement of the migration technique; the inverse GRT. The

improvement would be evaluated in terms of the accuracy of the images produced,

both in terms of the reliability of the results observed and the accuracy of the

structures identified. As some artefacts are produced for 2D cases when real data

is used, the reliability of the new images produced is slightly diminished, at least

for the specific cases and positions where errors are known to occur. The accuracy

is, however, undoubtedly improved. Altering the background velocity model has

had a noticeable effect on the produced images. As the alterations made to the

background velocity are a clear improvement in accuracy, the implication is that

any alterations to the produced images results in an improvement in the accuracy

of the produced images. We may thus assume that any general changes to the

generated images observed for a 2D case, is an improvement compared to the 1D

case. The reliability depends on the region of interest, and as the region of interest

put forward in the research questions were related to the areas of disturbance, the

focus of interpretation will be large, general trends, with little confidence placed on

minor features.
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The general shift of features is in agreement with expected changes, and as such

deemed an improvement on the images produced. We expect a general shift of fea-

tures as we introduce areas of higher and lower velocities to the reference model.

This will alter the travel times, and the signals observed are attributed to a more

correct position. As the reference medium is similar for nearby points, the shift of

data is similar as well. The minor structures near, and in, the mantle wedge are

circumstantial due to the possibility of artefacts, and will not be discussed in terms

of improvement.

In order to evaluate if the general shift has had an effect on the interpretation of the

images, we look at the interpretations made by Rondenay et al. (2008), as these are

the latest and most accurate interpretations to date. The evaluation was conducted

by retracing the interpretations made in 2008 and setting the resulting outline as an

overlay over the images produced by the new method. The position of the overlay

was checked against the images produced by the new method using a 1D model. In

figure 6.6, bottom row, we observe the images generated using a moderate mantle

wedge and a multi layered crust, with a scaling set to approximate the scaling of the

figures created in 2008. A set with (left), and without (right), the interpretations

made, is displayed. The solid lines represent the interpretations made by Rondenay

in 2008 and the dashed lines indicate two alternate interpretations, based on the

new images. Interpretation (a) indicates a continuous dipping oceanic crust with

no kink present. Interpretation (b) indicates a kink, but with a lesser change of dip

and later occurrence. With interpretation (b) the oceanic plate would not change

direction until reaching a depth of 55 km. With interpretation (a) the oceanic plate

would continue with no change of direction. Both interpretations alter the current

temperature-pressure conditions placed upon the plate at depths > 45km. The kink

at 45 km depth has previously been interpreted to be the onset of eclogitization

(Bostock et al., 2002). As we still observe a transition to weaker perturbations in

terms of S-velocities in the same location as in the images of 2002 and 2008, we may

still interpret the onset of eclogitization at 45 km depth.

A further discussion on the consequence of the new temperature and pressure con-

ditions will not be conducted, as a petrological interpretation of the new images is

not within the scope of this thesis. The focus will rather be on the relative accuracy

of the interpretations made in 2008, and in this thesis.
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Figure 7.1: Interpretation made by Rondenay in 2008 overlaid on images generated
by the new method with a 1D multilayered crust, and new method with a 2D
multilayered crust and moderate mantle wedge. New alternate interpretations, a
and b, included.

7.1.3 Research questions

In terms of our research questions, a general consensus could be that the imple-

mentation of a 2D background velocity model does indeed provide a significant

improvement in accuracy. This implementation positions the structures below the

continental crust more accurately, and results in a correction of the dipping oceanic

crust. This correction is perhaps big enough to disprove the kink proposed by Ron-

denay et al. (2001). The previous identification of the kink was likely produced

by the simplifying assumptions made in 2001, specifically the assumption of a 1D

reference model when imaging 2D perturbations. The mantle wedge is, however,

not more discernible through the new method. The mantle wedge is located just

beneath the crust and it is identified through an alteration of the signature of the

Moho. As the Moho was already included in the original reference model, no major
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Figure 7.2: Interpretations by Rondenay et al. (2008)

changes were put in place, apart from the alteration of the properties of the mantle

wedge. This alteration had a greater effect on the underlying structure than the

crust-mantle discontinuity. The mantle wedge is therefore currently not better con-

strained by utilizing a 2D reference model.

The processing time has been mentioned on occasion throughout this thesis. The

improvements to the images generated is significant enough that the computational

demand of the method is less of a concern. It may still be noted that the processing

time from preprocessed data to finished images was ∼1000 seconds with the original

method, while with the new method, it is ∼6000 seconds for the synthetic 2D case,

∼7500 seconds for the Cascadia 2D case with a homogeneous crust and ∼11500

seconds for the Cascadia 2D case with a multilayered crust. All cases were run

on the servers made available through the department. This server had a total of

516822 MB RAM divided over 64 CPUs. The new method has unfortunately not

been designed for parallel loops. These processing times are significant, but still

reasonable. It is therefore concluded that improvement of image-quality justifies the

increase in computational demand.
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7.2 Problems and challenges

The main source of problems and challenges were related to the introduction of dip-

ping interfaces, low velocity layers and challenging scatterer-station-combinations.

The spatial positions of the scatterers and stations are such that not all combina-

tions are possible with a natural, upwards travelling ray path. The restriction of an

upwards travelling ray path is due to the transformation from a ray path in a 2D

velocity model to one in 1D. A ray path that propagates through the same depth

segment on multiple occurrences is hard to translate, as the same depth segment

might be associated with different properties. Downwards propagating rays, includ-

ing critically refracted and reflected rays are therefore omitted from the process.

The spatial positions of the stations/receivers in relation to the scatterer meant that

even when ray tracing outwards in a range of [−π/2 : π/2], reaching the station was

not a guarantee, especially for shallow scattering points. A natural step would be to

include extrapolation, when determining the exact ray paths. Although the inter-

faces were linear, and as such easy to predict, the end of interfaces, or introduction

of new interfaces, caused the extrapolation to produce sub-par, and on some occa-

sions entirely wrong, ray paths. The most extreme ray path possible, the ray path

generated with a take off angle of ∼ ±π/2, was determined to be a better approx-

imation and was such used for all stations the ray path could not reach, given the

constraints of the ray tracer. Using the most extreme ray paths omitted the need

for extrapolation.

A recurring issue throughout the implementation was the occurrence of complex

numbers. The complex numbers were encountered in the calculations of the scat-

tered wave table. The interpolation table was created for a range of ray parameters

to account for the incoming plane wave for each unique ray path. This occasion-

ally led to scenarios where the ray parameter provided by the range, was less than

the horizontal slowness. This resulted in an obliquity corrected velocity that, com-

bined with the scattering angle, produced complex values through the expression√
(1− p2a2). This expression is a frequent part of the key calculations in inverse

GRT. In this expression, p is the horizontal slowness denoting the scattering angle

and a is the obliquity corrected P-velocity. Whenever p2a2 > 1, a complex value is

generated. This was not a random occurrence, but arose when the scattering point

was just/directly beneath a dipping interface. The sections where this expression is

included is always a summation over layers. As complex values are only generated

for either one or two layers, I circumvented the problem with complex numbers by
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adjusting the horizontal slowness to a more moderate value. Using the expression

p2 = 1/a2 − 0.000001 insured a value as close to the one provided as possible, while

still within the acceptable range. The complex numbers were most likely caused by

low velocity layers and dipping interfaces. This combination causes ray paths that,

translated into 1D velocity models, have a high degree of variance in terms of layer

thickness, see figure 7.3. Some layers are close to non-existent along one ray while

being a dominating feature in another.

Figure 7.3: Illustration of ray paths, and resulting 1D velocity models, associated
with scatterer directly beneath interface.

The near vertical nature of the landward end of the mantle wedge was also a chal-

lenge in the ray tracing. The ray originating from scatterers inside the mantle wedge

was often reflected rather than transmitted, as illustrated by figure 7.4. The inclu-

sion of these rays influenced the interpolation later in the process. Rays hitting this

interface were therefore ignored in the later stages. This is most likely the cause of

the protrusion of this upper corner in the Cascadia images.

As the discrepancies in the models, in the form of odd coloured data points, only

occur for the Cascadia dataset, it is likely that the noise occurs due to out-of-plane

events. The synthetic dataset was created with in-plane source and no obliquity
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Figure 7.4: Illustration of ray paths originating within the mantle wedge. Top figure
displays the final scenario. Bottom figure displays the scenario where no restrictions
related to the mantle wedge are applied.

corrections were necessary. As the noise in the models only occur for the 2D case,

the odd coloured data points are likely due to the combination of dipping interfaces

and out-of-plane events, as the effect is present regardless of the seismic properties

of the wedge.

7.3 Validity and limitations

The method images the medium using the forward and backscattered wavefield as

it originates from perturbations in a 2D plane. The plane is chosen in the prepro-

cessing, and all events and receivers are projected onto this plane. This limitation

is lessened by a dense network of seismic receivers and multiple events, preferably

inline with the 2D plane.

In this project I assume sharp transitions between media, as a constraint to improve

77



the computational time of the ray tracer. This is an obvious simplification of the

real world. This is especially detrimental to the landward end of the mantle wedge,

which is a smooth transition over a large horizontal area, and any sharp transition

location would be dubious. This feature would more accurately be represented by a

smooth transition. A sharp boundary was still determined for the sake of simplicity

and consistency. Strictly linear interfaces were chosen for the same reasons. This

simplification allowed for mathematical simplifications in the ray tracer that greatly

improved the processing time and reduced the possibility of errors. The Earth is of

course not planar, but as a reference model it still provided a significant improve-

ment to the previously strictly horizontally layered reference model. The ray tracer

also assumes the medium to be isotropic and homogeneous within the respective

boundaries. This is a simplification of the elastic isotropic case, and necessary to

lessen the mathematical and computational demand of the method.

The method as of now is developed for a 2D background velocity model, that may,

with minor tweaks, be expanded to accommodate a 3D background velocity model,

so as to even better approximate real cases. Even though the nature of a subduction

zone has a great deal of variance perpendicular to the strike of the subduction zone,

this does not negate that many subduction zones, for instance the Hellenic subduc-

tion zone, have a significant 3D variance as well, as the strike along the subduction

zone is far from consistent and the subduction zone itself is curved.

In this project we started by assuming two possible cases of serpentinization. We

assumed a fast mantle wedge with seismic properties equivalent to no serpentiniza-

tion and a slow mantle wedge with seismic properties equivalent to extreme degrees

of serpentinization, approximately 80% serpentinization, higher than ever assumed

to occur in nature (Hyndman and Peacock, 2003). These two were chosen as two

extreme edge cases in order to evaluate the contribution of each reference model. A

more moderate case, with a serpentinization of 50%, determined from the graph cre-

ated by Hyndman and Peacock (2003), was put forward to explore a more probable,

realistic case and generate a model suitable for comparing to the interpretations of

Rondenay et al. (2008). A uniform serpentinization of the entire forearc mantle is,

of course, also a simplification.

Even with the limitations put in place to implement the 2D reference model, we

still observe encouraging results. We observe a distinct shift of features offering a

more accurate model that may be interpreted with simpler explanations. The trends

observed with the new implementation are exciting enough that the application to

other subduction zones would be of great interest.
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7.4 Further work

The primary goal from here is to further develop the current tools to remove the

artefacts observed. As part of this step it would be natural to remove some of the

constraints set by the method and allow for a more complex 2D geometry. Imple-

menting an option of smooth transitions would be a major step that might help

to image the mantle wedge with higher accuracy and reliability, as adjusting the

method to allow for a smooth mantle wedge edge would perhaps better discern the

extent of the serpentinization. The option of a more complex 2D geometry would

make the method more generally applicable, and would be a great step towards

applying the new method to other subduction zones.

As an extension of a more complex 2D background velocity model, a 3D background

velocity model could be considered. This could further relocate the features observed

to even more accurate positions. It is, however, assumed that the step from a 1D to

a 2D reference model has provided a larger improvement than the step from 2D to

3D reference model would. This is based on the belief that the assumption of a 1D

case compared to a 2D case is a more extensive assumption than the assumption of

a 2D case compared to a 3D case. This assumption is naturally entirely dependent

on the complexity and symmetric nature of the subduction zone.

A different, but equally interesting step would be to observe if other techniques

than ray tracing might generate similar or better results. Techniques such as the

fast marching method (Popovici and Sethian, 1997) might provide a faster way of ob-

taining the same information, and might be easier to implement for a more complex

2D or 3D geometry. A petrological evaluation of the new results, both from this and

potential future improvements to the method, in terms of the new temperature/pres-

sure conditions following the uplift of features, would be an interesting study as well.
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Chapter 8

Conclusion

In this project I have implemented a 2D background velocity model in the migration

technique inverse Generalized Radon Transform. I have improved upon a limitation

of the original method of Rondenay et al. (2001) by developing the tools and tech-

niques needed, and demonstrated the importance of an accurate background velocity

model through the application of the new method to both synthetic data and real

data from the Cascadia subduction zone (Rondenay et al., 2001).

Throughout this thesis I have detailed the role of a subduction zone, its individual

components and the importance of imaging subduction zones with a high level of

detail. I have described some theoretical background on the topic of seismic propaga-

tion, the concept of inversion vs. forward modeling, and some migration techniques

and the inverse GRT more in depth. I have presented a case study of the Cascadia

subduction zone as it has been interpreted up until this point. I have described the

process of implementation of the new method and detailed key steps, such as the de-

velopment of a ray tracer and 2D model. I have presented and discussed the images

generated by the application of the new method. I have discussed some limitations

of the new method, as well as the challenges encountered in the development of this

project. I will now reiterate some of the conclusions drawn from the application and

evaluation of this new improved method.

The new method allows us to image the subduction zone with higher accuracy in

terms of placement of the structures. Two interpretations were made based on the

new image: The first being that the subducting slab may not have the kink dis-

covered in previous studies, the second being that the kink is located deeper and

with a shallower dip. Of these, the most basic interpretation offers a simpler viable

description to the subducting system, and is as such an improvement from the pre-

vious interpretations.
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It would be advantageous to further refine the method developed, as well as remove

some of the constraints and expanding the scope of the method. It would also be

of great interest to observe the results of this method applied to other subduction

zones or geological settings in general. A petrological evaluation of the results of

this project would be beneficial as some of the temperature and pressure conditions

may have been altered as an effect of the upwards shift of features.

This project has been a great experience, as I have gained knowledge on migration

techniques and the inner workings of subduction zones as well as an increased un-

derstanding of wave propagation. I feel content with the outcome of the project. I

consider the improved accuracy of the images generated as a token of success. Al-

though I would have liked to present images with no obvious artefacts present, I am

satisfied in the conclusion that the Cascadia subduction zone has now been mapped

in greater detail, and may no longer be considered kinky.
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83



of the cascadia subduction zone from cruise so108—orwell. Tectonophysics, 293

(1):69–84, 1998.

C. Fowler. The Solid Earth: An Introduction to Global Geophysics.

Cambridge University Press, 2005. ISBN 9780521584098. URL

https://books.google.no/books?id=PifkAotvTroC.

J. Gazdag and P. Sguazzero. Migration of seismic data. Proceedings of the IEEE,

72(10):1302–1315, 1984.

R. Hyndman and K. Wang. Thermal constraints on the zone of major thrust earth-

quake failure: The cascadia subduction zone. Journal of Geophysical Research:

Solid Earth, 98(B2):2039–2060, 1993.

R. D. Hyndman and S. M. Peacock. Serpentinization of the forearc mantle. Earth

and Planetary Science Letters, 212(3):417–432, 2003.

D. Komatitsch and J.-P. Vilotte. The spectral element method: An efficient tool to

simulate the seismic response of 2d and 3d geological structures. Bulletin of the

seismological society of America, 88(2):368–392, 1998.

C. A. Langston. Evidence for the subducting lithosphere under southern vancou-

ver island and western oregon from teleseismic p wave conversions. Journal of

Geophysical Research: Solid Earth, 86(B5):3857–3866, 1981.

X.-q. Li. Deconvolving orbital surface waves for the source duration of large earth-

quakes and modeling the receiver functions for the earth structure beneath a broad-

band seismometer array in the Cascadia subduction zone. PhD thesis, 1996.

D. Miller, M. Oristaglio, and G. Beylkin. A new slant on seismic imaging: Migration

and integral geometry. Geophysics, 52(7):943–964, 1987.

X. Nabelek et al. A high-resolution image of the cascadia subduction zone from

teleseismic converted phases recorded by a broadband seismic array: Eos trans.,

1993.

t. Pacific Network. Cascadia subduction zone, 2017. URL

https://pnsn.org/outreach/earthquakesources/csz.

A. M. Popovici and J. Sethian. Three dimensional traveltime computation using

the fast marching method. In SEG Technical Program Expanded Abstracts 1997,

pages 1778–1781. Society of Exploration Geophysicists, 1997.

S. Rondenay. Upper mantle imaging with array recordings of converted and scattered

teleseismic waves. Surveys in geophysics, 30(4-5):377–405, 2009.

84



S. Rondenay, M. Bostock, and J. Shragge. Multiparameter two-dimensional inversion

of scattered teleseismic body waves 3. application to the cascadia 1993 data set.

Journal of Geophysical Research: Solid Earth, 106(B12):30795–30807, 2001.

S. Rondenay, M. G. Bostock, and K. M. Fischer. Multichannel inversion of scattered

teleseismic body waves: practical considerations and applicability. Seismic Earth:

array analysis of broadband seismograms, pages 187–203, 2005.

S. Rondenay, G. A. Abers, and P. E. Van Keken. Seismic imaging of subduction

zone metamorphism. Geology, 36(4):275–278, 2008.

J. Shragge, M. Bostock, and S. Rondenay. Multiparameter two-dimensional inversion

of scattered teleseismic body waves 2. numerical examples. Journal of Geophysical

Research: Solid Earth, 106(B12):30783–30793, 2001.

S. Stein and M. Wysession. An introduction to seismology, earthquakes, and earth

structure. John Wiley & Sons, 2009.
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Appendix A

Appendix

A.1 All produced images

In this section all the images produced by the method, as applied to the synthetic

and real Cascadia data set, is displayed. For each application 7 plots, containing

9 images in total, are produced, corresponding to the different mode contributions

as described in section 6.2. These images are fitted to one page, resulting in one

page for each case, 16 cases in total; 6 associated with the synthetic case and 10

associated with the Cascadia case.

Figure A.1: Overview of compilation figures.
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A.1.1 Synthetic data set

Synthetic data set - fast forearc mantle

original method - 1D
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Figure A.2: Images generated using the Synthetic data set with a fast forearc mantle,
original method 1D.
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Synthetic data set - fast forearc mantle

new method - 1D

Figure A.3: Images generated using the Synthetic data set with a fast forearc mantle,
new method 1D.
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Synthetic data set - fast forearc mantle

new method - 2D

Figure A.4: Images generated using the Synthetic data set with a fast forearc mantle,
new method 2D.
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Synthetic data set - slow forearc mantle

original method - 1D

Figure A.5: Images generated using the Synthetic data set with a slow forearc
mantle, original method 1D.
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Synthetic data set - slow forearc mantle

new method - 1D

Figure A.6: Images generated using the Synthetic data set with a slow forearc
mantle, new method 1D.
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Synthetic data set - slow forearc mantle

new method - 2D

Figure A.7: Images generated using the Synthetic data set with a slow forearc
mantle, new method 2D.
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A.1.2 Cascadia data set - Homogeneous crust

Cascadia data set - original method

1D - homogeneous crust

Figure A.8: Images generated using the Cascadia data set, original method 1D,
homogeneous crust
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Cascadia data set - new method

1D - homogeneous crust

Figure A.9: Images generated using the Cascadia data set, new method 1D, homo-
geneous crust
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Cascadia data set - new method

2D fast mantle wedge - homogeneous crust

Figure A.10: Images generated using the Cascadia data set, new method 2D; fast
mantle wedge, homogeneous crust
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Cascadia data set - new method

2D slow mantle wedge - homogeneous crust

Figure A.11: Images generated using the Cascadia data set, new method 2D; slow
mantle wedge, homogeneous crust
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Cascadia data set - new method

2D moderate mantle wedge - homogeneous crust

Figure A.12: Images generated using the Cascadia data set, new method 2D; mod-
erate mantle wedge, homogeneous crust
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A.1.3 Cascadia data set - Multi layered crust

Cascadia data set - original method

1D - multi layered crust

Figure A.13: Images generated using the Cascadia data set, original method 1D,
multi layered crust
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Cascadia data set - new method

1D - multi layered crust

Figure A.14: Images generated using the Cascadia data set, new method 1D, multi
layered crust
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Cascadia data set - new method

2D fast mantle wedge - multi layered crust

Figure A.15: Images generated using the Cascadia data set, new method 2D; fast
mantle wedge, multi layered crust
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Cascadia data set - new method

2D slow mantle wedge - multi layered crust

Figure A.16: Images generated using the Cascadia data set, new method 2D; slow
mantle wedge, multi layered crust
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Cascadia data set - new method

2D moderate mantle wedge - multi layered crust

Figure A.17: Images generated using the Cascadia data set, new method 2D; mod-
erate mantle wedge, multi layered crust
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A.2 Scripts

In this appendix I have included the algorithms of the main scripts associated with

this project. It is divded into two sections. Section one contains the algorithms of

the original scripts, while section two contains the algorithms of the new method.

The objective of each algorithm is included as a preface. In the algorithms describing

the new method, a brief summary of the alterations is included at the end of each

algorithm.

A.2.1 Overview original

Objective: Image the subsurface using inverse GRT with a 1D reference model.

PREPROCESSING

Set up coordinate system: Find projection line and project the

stations onto the projection line. The projection line is

found by setting the projection angle , counterclockwise from

north , manually , or to find the best fitting line , resulting

in the least shifting of stations.

Read data from individual events and pick the arrival of the

incident P-wave to determine the time window to be used for

deconvolution.

Align the traces and decompose the wavefield to the source

estimate for each event.

Deconvolve the estimated source wavelet from the scattered

wavefields

Reconstitute the data in preparation for migration. Cutting time

windows , transforming the data back to a R-T-Z system and

rotating it to u1-u2-u3.

Create interpolation table {PREP_TABLE.m}

MAIN

Load station file containing the projection angle and station

position and enumeration along the projection line.

Define events and weighting of the different scattering modes.

Read the data corresponding to the events

Create the interpolation table associated with the plane

incident waves {PLANE_WAVE.m}

Load table containing scattered waves

Normalize the amplitudes by dividing the time signal by the

square root of the P-wave impedance. This is required to

retrieve the true velocity perturbations.

Migrate the data {MIGRATE.m}

REPRODUCE

Compute the alpha and beta perturbations

Plot the results
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Original prep table.m

Objective: Calculate pp, ps, tp ,ts , Jp and Js.

Load velocity model and calculate velocity dependent parameters

Create parameter arrays of 51 length corresponding to depth , p-

velocity , s-velocity density and layer number as a function of

depth.

Define slowness range for event interpolation and scatter range for

station interpolation.

Loop over slowness

Loop over depth

Define scattering angle range , theta , which is dependent on

the depth and scatter range.

Calculate the obliquity corrected velocities

Loop over theta/scattering angle

Loop over layers

Calculate pa, pb, ta, tb, Ja, Jb, xa,xb

End loop over layers

End loop over scattering angle

Interpolate xb for scatter range to obtain correct pp, ps, tp

,ts ,Jp , Js

End loop over depth

End loop over slowness

Original plane wave.m

Objective: Calculate ti, tip,tis (travel time of direct and P/S reverberated inci-

dent wave.

Load velocity model and calculate velocity dependent parameters

Create parameter arrays of 51 length corresponding to depth , p-

velocity , s-velocity density and layer number as a function of

depth.

Set up event parameters

Define horizontal range for interpolation

Loop over event

Loop over horizontal slowness

Loop over depth array

Loop over horizontal range

If the horizontal slowness <= total slowness

Loop over layer

Calculate ti, tip , tis

End loop over layer

End if

End loop over horizontal range

End loop over depth

End loop over horizontal slowness
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If total slowness is negative , flip traveltimes along spatial

points. Event incoming from clockwise direction. End if.

End loop over event

Original migrate.m

Objective: Migrate the traces.

Set up model grid , initialize matrices and load tables

Event dependent calculations

Trapezoidal integration over horizontal slowness

Compute the scalar amplitude and reflection coefficients

Loop over vertical scatter position z

Velocity model dependent calculations

Calculate Model parameters a,b,and rho as a function of depth

Calculate W11 , bona ,A0, A0s , psign dtxs ,n0p and n0s

Loop over horizontal scatter position x

Loop over event

Station dependent calculations

Scatter point dependent calculations

Estimate total traveltime gradient

Gather points along diffraction hyperbola

Estimate angle between incident wave and backprojected

diffracted wave

Calculate scattering matrix

Calculate Beylkin determinant

Calculate spectra coefficients

Apply station weights

End of event loop

Apply station weights (continued)

Estimate psi , normalization factor [Hessian], (dip resolution

)

Estimate k, normalization factor [Hessian] (volume resolution

)

Calculate individual components of Hessian

Calculate individual components of Gradient (spatial gradient

of total traveltime function ?)

End loop over x

End loop over z

Original reproduce.m

Objective: Calculate the alpha and beta perturbations and plot the results.

Load event file produced by migration

Define weights applied to each scattering mode

Loop over vertical scatter position z
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Loop over horizontal scatter position x

Compute square root of Hessian

Compute gradient function for each individual mode

Generalized inversion

End horizontal image point

End vertical image point

dcrep.m plots the image points

A.2.2 Overview new

Objective: Image the subsurface using inverse GRT with a new 2D reference

model.

PREPROCESSING: No changes

PREP_TABLE:Create interpolation table containing the traveltime ,

slowness and Jacobian for P and S phases for the scattered waves

.

MAIN

Load station file containing the projection angle and station

position and enumeration along the projection line.

Define events and weighting of the different scattering modes.

Load model grid

Load table containing scattered waves

read the data corresponding to the events

Normalize the amplitudes by dividing the time signal by the

square root of the P-wave impedance. This is required to

retrieve the true velocity perturbations.

Migrate the data.

Reproduce

Changes : plane wave is moved to within migrate, scatter grid is loaded in main, not

in migrate.

New prep table.m

Objective: calculate pp, ps, tp ,ts , Jp and Js.

Load velocity model

Load scatter grid

Load station information

Define scattering angle range [-pi/2:pi/2] length: 201

Calculate unique 1D velocity models and scattering angle using ray

tracer function. See alternate flowchart.

Define slowness range for event interpolation , [0:0.008] , length

51

Loop over vertical scatter position z

Loop over horizontal scatter position x
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Extract scattering angle associated with scatter point

Loop over scattering angle

Extract 1D velocity model associated with scattering angle

Loop over slowness range

Check validity of scattering angle

Loop over layers

Find obliquity corrected velocity

Calculate pp, ps, tp ,ts ,Jp, Js

Check for complex numbers

End loop over layers

End loop over slowness

Store slowness , traveltime and Jacobian

End scattering angle

End horizontal scatter position

End vertical scatter position

Changes : Ray tracing added, Change of loop structure, variables calculated directly.

New plane wave.m

Objective: Calculate ti, tip,tis (travel time of direct and P/S reverberated inci-

dent wave. Plane wave new [function] Ray parameter of event used as take-off-angle

as part of backscattering

Loop over stations

Find velocity model using ray tracing algorithm

If current slowness <= abs(total slowness)

Loop over layers

Compute ti ,tip ,tis using same equations as original

End loop over layers

End if

End loop over stations

Changes : since the plane wave is now a function and located within the migration

script it is already a loop over event and scatter-point. This eliminate the loop over

event and depth array from the original plane-wave. The loop over horizontal range

has been replaced by a loop over station-position. The plane-wave is as a result

placed within in one additional loop, compared to the original script, a loop over

horizontal scatter position x.

New migrate.m

Objective: Migrate traces

Initialize matrices

Event dependent calculations

Loop over vertical scatter position z
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Loop over horizontal scatter position x

Loop over event

Station dependent calculations

Velocity model dependent calculations

Scatter point dependent calculations

total travel time gradient

Plane wave calculations

Gather point along diffraction hyperbola

RESUME AS ORIGINAL ...

Changes : The velocity model dependent calculations are moved to within the loop,

the plane wave calculations are moved from main to within the loop-structure. The

interpolations associated with the scattered wave are changed from an interpolation

over event, scatter point and station to an interpolation over event. The interpola-

tions associated with the plane wave are made completely redundant.
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