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Abstract 

Vaults are highly conserved ribonucleoprotein complexes of unknown 
function. They have so far been found to be present in high numbers 
among higher eukaryotes including mammals, amphibians, and avians, 
as well as lower eukaryotes including deuterostomes and the slime mold 
(Dictyostelium discoideum). The aim of this thesis is to design a pipeline 
for vault associated RNA detection from RNA-sequences. And especially 
try to detect vtRNA in the Salmon Louse. The genome of the atlantic 
salmon louse, a major parasite of salmonids, affecting the global 
aquaculture industry. 
 The thesis presents three methods of detecting vtRNA, one way is 
to find the peaks in the alignment of reads and search for the high 
coverage sequences in Rfam to check the existence of vtRNA. Another 
way is by predicting the secondary structures of the high coverage 
sequences, drawing a dendrogram with hierarchical clusters according 
to the dissimilarity matrix of RNA secondary structures, and then 
analysing key features of secondary structures of the known vtRNA in 
order to filter the candidates. At last, the third method is by detecting 
motifs, such as A-Box and B-Box, in candidate sequences with the 
MEME Suite. 
 The result of this thesis is a pipeline that can effectively detect 
vtRNA, and a set of novel candidate sequences which can probably act 
as vtRNA in the salmon louse genome. 
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1 Introduction 

1.1. Vaults and their structure 

Vaults, first described in 1986, are large cytoplasmic ribonucleoprotein 
(RNP) particles found in nearly all eukaryotic cells. The vault complex is 
mainly comprised of four major components in multiple copies: major 
vault protein (MVP), two minor vault proteins (VPARP and TEP1), and a 
small untranslated RNA ranging between 80 and 150 nucleotides[1]. The 
particle is abundant in all cells of many higher eukaryotes and highly 
conserved throughout evolution; the high conservation of Vault protein 
sequences implies some kind of functional importance. Vaults may be 
able to open and close and Vault ribonucleoprotein particles open into 
flower-like structures, with octagonal symmetry[2]. vtRNA comprises less 
than 5% of the total mass of a vault particle and stoichiometric 
calculations on data from rat liver vaults suggest that each vtRNA is 
present in approximately 16 copies per particle[3]. This would therefore 
suggest that one RNA is associated with each petal. Vaults have been 
implicated in a broad range of cellular functions including nuclear-
cytoplasmic transport, mRNA localization, drug resistance, cell signaling, 
nuclear pore assembly, and innate immunity[34]. It is also found that 
vaults (especially the MVP) were over-expressed in cancer patients who 
were diagnosed with multidrug resistance, that is the resistance against 
many chemotherapy treatments[8]. Although this does not prove that 
increased number of vaults led to drug resistance, it does hint at some 
sort of involvement. This has potential in discovering the mechanisms 
behind drug-resistance in tumor cells and improving anticancer drugs[9] 

Fig.1 Structure of the Vault    
complex from rat liver. 
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1.2. vtRNA, secondary structure and functions 

VtRNA, close to the end caps of Vaults, has a species-specific length, 
ranging between 86 and 141 bases[4]. vtRNA has been found in human, 
rat, mouse and bullfrog. In rats there is a single gene that encodes the 
rat vtRNA, whereas in humans there are four separate genes (hvg1–4) 
that encode highly related vtRNAs[4]. Hvg1 encodes a 98 nt RNA while 
hvg2 and hvg3 encode similar 88 nt RNAs. All these three are found on 
Chromosome 5 and show little sequence conservation between species 
except for their A and B boxes, which are internal polymerase III 
elements. However hvg4, which is found on the X chromosome, does 
not appear to be expressed[5]. Even though it varies in length, the 
vtRNA can be folded into similar secondary stem-loop and unusual 
symmetries structure. The current belief is that the vtRNA do not have a 
structural role in the vault protein, but rather play some kind of functional 
role[6]. 

Since the function of vtRNA remains unknown, so does the mechanism 
of action. It is hypothesized that at least in species with multiple vtRNAs 
such as humans, the ratio of what vtRNA species are associated with 
vaults may have a functional implication on drug resistance[7]. vtRNAs 
from different species are all predicted to form a stem-loop structure. 
The role of the stem-loop in vtRNA is still unknown; however, it is 
possible that the loop regions may be involved in mechanism via 
interaction with other RNAs or proteins. Regulation of vtRNA, is 
hypothesized to be controlled by the two closely spaced B boxes along 
with the 5’ flanking sequence[2]. 
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According to recent studies, vtRNA is thought to have some implications 
in stress response, drug resistance and cancer. A study, using cryo-
electron microscopy, has determined that vtRNAs are found close to the 
end caps of vaults. This positioning of the RNA indicates that they could 
interact with both the interior and exterior of the vault 
particle[32]. Overall, the current belief is that the vtRNAs do not have a 
structural role in the vault protein, but rather play some kind of functional 
role.[33]  
 

Fig.2 vtRNA with the stem-loop 
structure 
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1.3. Relevance of research on vtRNA in the Atlantic salmon louse 

The notion that vaults might play a role in drug resistance was 
suggested by the molecular identification of the lung resistance-related 
(LRP) protein as the human MVP[10]. MVP/LRP was found to be 
overexpressed in many chemoresistant cancer cell lines and primary 
tumor samples of different histogenetic origin. Several, but not all, 
clinico-pathological studies showed that MVP expression at diagnosis 
was an independent adverse prognostic factor for response to 
chemotherapy[10]. The hollow barrel-shaped structure of the vault 
complex and its subcellular localization indicate a function in intracellular 
transport. It was therefore postulated that vaults contributed to drug 
resistance by transporting drugs away from their intracellular targets 
and/or the sequestration of drugs. However, even though there has been 
an expanding body of research on vtRNA, there has yet to be a solid 
conclusion on the exact function. To take a closer look into vtRNA at the 
genomic level could unravel more secrets.  

The Atlantic salmon louse (Lepeophtheirus salmonis) is a and a serious 
threat to global and in particular Norwegian aquaculture. It is an 
ectoparasitic copepod (Arthropoda;Crustacea) primarily found on 
salmonid fishes where it feeds on the hosts skin, blood and mucus and 
can cause lesions that result in osmotic imbalance and stress. Salmon 
lice affect host physiology, suppress host immune responses and are 
suspected as vectors for other pathogen. If not kept under control, it 
represents a potentially severe burden for farmed and wild salmons[27]. 
The costs for salmon louse treatment are estimated to exceed 5 billion 
per year in Norway alone (Frank Nilsen, personal communication). In 
this study, we use the Atlantic salmon louse genome as a reference and 
aim to design a pipeline to detect vtRNA in salmon lice. 
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Consequently research has been conducted towards better 
understanding of the molecular fundament facilitating the success of the 
salmon louse. By 2012 the salmon louse 600 Mbp genome has been 
sequenced to significant coverage (<300X) using Sanger, 454 and 
Illumina sequencing (both shotgun and PE libraries)[28]. Several 
assembly strategies have been pursued and a pipeline for comparing 
assemblies has been established. It is sequenced by Illumina to 
generate the whole genes of Leopeophtheirus salmonis in order to the 
following data analyse and the implentation of the pipeline. 

1.4. Problem description 

The arrival of high-throughput sequencing technology has provided 
researchers with an opportunity to systematically identify most, if not all, 
of the vtRNA. Thus, determining expression of known and novel vtRNA 
from small RNA sequencing data is an important issue in the era of next 
generation sequencing[48]. 

While the function of vtRNAs is still unknown, due to their unique semi-
conserved variable structure, these molecules have become useful in 
developing new research methods. One example of this is seen in the 
fact that vtRNAs are now used to benchmark the performance of the 
recently created research query tool, fragrep2[23]. 

Query tools are used to find regions of similar biological sequences 
amongst species. However, one problem that these tools (e.g. most 
famously, “Blast”) have is that they struggle to identify sequences that 
contain insertions and deletions. These highly variable structural 
changes cause problem in detecting homology in weakly conserved 
sequences, such as vtRNA and other non-coding RNA (ncRNA). 

Fragrep2 seeks to solve this problem by using a pattern-based algorithm 
that can match or approximately match exact sequences of motifs within 
the desired molecule[23]. In order to help build fragrep2, the scientists 
needed a test molecule, and found vtRNAs to be perfect since vtRNAs 
generally have two very well-conserved sequences, surrounded by 
regions of high variability. 
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While quite successful in detecting novel ncRNA, tools such as fragrep2 
do not take secondary structures of RNA other specific features of 
ncRNA such as U tails or other signal sequences into account. 

1.5  Goals and Research Questions 

In the following, I describe the construction of a novel pipeline, called 
vaulteR which can de-novo detect from RNA-seq data, using the known 
characteristics of vtRNA described before. I will first give an overview of 
tools in the pipeline, and then introduce the three main methods of 
detecting vtRNA. Finally, I will summarise the results from running the 
pipeline on simulated data and real data from the Atlantic salmon louse. I 
will attempt to answer the following research questions. 

Question 1: Is Blast, as the traditional way of detecting RNA, suitable for 
detecting vtRNA? 

Question 2: How can we make use of the secondary structure and other 
key feathers in detecting vtRNA? 

Question 3: How can sequence motifs be used in detecting vtRNA ? 

Goals: The pipeline aims to integrate the most reliable tools and make 
them applicable for RNA de-novo detection, especially with semi-
conserved and highly variable structures. 
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2. Construction of the vtRNA detecting pipeline  

2.1. Introduction on tools used by vaultR 

A pipeline consists of a chain of data-processing elements, arranged so 
that the output of each element is the input of the next. For the 
construction of the vtRNA detecting pipeline, effective bioinformatics 
software tools are necessary for analysing and processing the results. 
The pipeline integrates the tools together in order to get the final output, 
which is to detect if there is vtRNA in the dataset.  

A. Simulation of Illumina single-end reads: ART 

ART is a set of simulation tools to generate synthetic next-generation 
sequencing reads[12]. ART simulates sequencing reads by mimicking 
real sequencing process with empirical error models or quality profiles 
summarized from large recalibrated sequencing data. ART can also 
simulate reads using user own read error model or quality profiles. ART 
supports simulation of single-end, paired-end/mate-pair reads of three 
major commercial next-generation sequencing platforms: Illumina's 
Solexa, Roche's 454 and Applied Biosystems' SOLiD. Here the pipeline 
uses ART illumine to generate single-end reads. ART can also be used 
to test or benchmark a variety of method or tools for next-generation 
sequencing data analysis, including read alignment, de novo assembly, 
SNP and structure variation discovery. ART outputs reads in the FASTQ 
format, and alignments in the ALN format. ART can also generate 
alignments in the SAM alignment or UCSC BED file format. 

B. Mapping of short reads to the reference genome: BWA 

BWA (Burrows-Wheeler Alignment Tool) is a software package for 
mapping low-divergent sequences against a large reference 
genome[13], such as the human genome. It consists of three algorithms: 
BWA-backtrack, BWA-SW and BWA-MEM. The first algorithm is 
designed for Illumina sequence reads up to 100bp, while the rest two for 
longer sequences ranged from 70bp to 1Mbp. BWA-MEM and BWA-SW 
share similar features such as long-read support and split alignment, but 
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BWA-MEM, which is the latest, is generally recommended for high-
quality queries as it is faster and more accurate.  
BWA-MEM also has better performance than BWA-backtrack for 
70-100bp Illumina reads. Since the length of vtRNA is between 80bp and 
150bp, the pipeline uses BWA-MEM for mapping. The BWA-MEM 
algorithm performs local alignment and output SAM file. 

C. Samtools 

SAM (Sequence Alignment/Map) format is a generic format for storing 
large nucleotide sequence alignments[35]. Samtools provide various 
utilities for manipulating alignments in the SAM format, BAM (Binary 
Alignment/Map) and CRAM formats, including sorting, merging, indexing 
and generating alignments in a per-position format[14]. 

Samtools is a suite of programs for interacting with high-throughput 
sequencing data .It consists of three separate repositories: Samtools, 
BCFtools and HTSlib[15]. In the pipeline, Samtools is used for reading, 
writing, editing, indexing and viewing SAM/BAM/CRAM format files, 
which are the result of read mapping by BWA. 

D. IGV 

The Integrative Genomics Viewer (IGV) is a lightweight visualization tool 
that enables intuitive real-time exploration of diverse, large-scale 
genomic datasets on standard desktop computers. It supports flexible 
integration of a wide range of genomic data types including aligned 
sequence reads, mutations, copy number, RNAi screens, gene 
expression, methylation, and genomic annotations[16]. IGV makes use 
of efficient, multi-resolution file formats to enable real-time exploration of 
arbitrarily large datasets over all resolution scales, while consuming 
minimal resources on the client computer[17]. 
With the help of IGV, the indexed and sorted BAM file on IGV can be 
visualised in order to see the aligned regions. 
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E. Quality control: FastQC 

FastQC aims at providing a simple way to perform quality control checks 
on raw sequence data coming from high throughput sequencing 
pipelines. It provides a modular set of analyses which you can use to 
give a quick impression of whether your data has any problems of which 
you should be aware before doing any further analysis and statistic 
summery[18]. 

The main functions of FastQC are: 

 • Import of data from BAM, SAM or FastQ files (any variant) 
 • Providing a quick overview to tell you in which areas there may be 

problems 
 • Summary graphs and tables to quickly assess your data 
 • Export of results to an HTML based permanent report 
 • Offline operation to allow automated generation of reports without 

running the interactive application 

FastQC aims to analyse and assess the quality of raw read data and 
remove low quality reads for more accurate alignment. 

F. Cmscan 

Infernal ("INFERence of RNA ALignment") is for searching DNA 
sequence databases for RNA structure and sequence similarities. It is an 
implementation of a special case of profile stochastic context-free 
grammars called covariance models (CMs). A CM is like a sequence 
profile, but it scores a combination of sequence consensus and RNA 
secondary structure consensus, so in many cases, it is more capable of 
identifying RNA homologs that conserve their secondary structure more 
than their primary sequence which means Infernal cmscan is used to 
search the CM-format Rfam database[19]. 
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The Rfam database is a collection of multiple sequence alignments and 
covariance models representing non-coding RNA families, each 
represented by multiple sequence alignments, consensus secondary 
structures and covariance models (CMs)[20]. 
The candidate sequences are written in FASTA format and are searched 
with Cmscan to find the similarities between the candidate sequences 
and RNA database. 

G. VienneRNA Package/RNA-fold 

The ViennaRNA Package consists of a C code library and several stand-
alone programs for the prediction and comparison of RNA secondary 
structures[21]. 
RNA secondary structure prediction through energy minimization is the 
most used function in the package. There are three kinds of dynamic 
programming algorithms for structure prediction: the minimum free 
energy algorithm which yields a single optimal structure, the partition 
function algorithm which calculates base pair probabilities in the 
thermodynamic ensemble, and the suboptimal folding algorithm which 
generates all suboptimal structures within a given energy range of the 
optimal energy[21]. 
Here, the pipeline uses RNAfold, which is one of the core programs of 
the Vienna RNA package. It can be used to predict the minimum free 
energy (MFE) secondary structure of single sequences using the 
dynamic programming algorithm originally proposed by Zuker and 
Stiegler. 
The input is a single RNA or DNA sequence in plain text or FASTA 
format, and the output contains the predicted MFE secondary structure 
in the usual dot-bracket notation, together with a detailed 
thermodynamic description according to the loop-based energy model 
and 2D graph[21]. 
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H. MEME 

MEME (Multiple EM for Motif Elicitation) is a tool for discovering 
novel, ungapped motifs (recurring, fixed-length patterns) motifs in a 
group of related DNA or protein sequences. MEME takes as input a 
group of DNA or protein sequences and outputs as many motifs as 
requested up to a user-specified statistical confidence threshold. MEME 
uses statistical modeling techniques to automatically choose the best 
width, number of occurrences, and description for each motif[22]. 

A motif is a sequence pattern that occurs repeatedly in a group of related 
sequences[36]. MEME represents motifs as position-dependent letter-
probability matrices which describe the probability of each possible letter 
at each position in the pattern. Individual MEME motifs do not contain 
gaps. Patterns with variable-length gaps are split by MEME into two or 
more separate motifs.  

2.2. Simulation of short-read and Real data from atlantic salmon louse 

2.2.1. Generating simulated data for testing 

As a first step, the sequences of the known vtRNAs are retrieved from 
Ensembl Biomart[37], which is an easy-to-use web-based tool that 
allows extraction of data. The present known vtRNA in human genome 
38 are vtRNA 1-1, vtRNA 1-2, vtRNA 1-3 and vtRNA 2-1 in Chromosome 
5, vtRNA 2-2 in Chromosome 2 and vtRNA 3-1in Chromosome X. The 
vtRNAs retrieved from Ensembl Biomart are given in Table 1. 

      Table 1. Known vtRNAs in human genome 38 from Ensembl Biomart 

!16

https://web.archive.org/web/20061111190642/http://meme.nbcr.net/meme/meme-intro.html


The simulated data has to contain all these six known vtRNA in order to 
make sure it can generate enough vtRNA reads. Then, these vtRNA are 
mixed with other non-coding RNA (ncRNA) families, since vtRNA is a 
non-coding RNA and is likely to occur in a mixture with other nvRNA’s in 
real data as well. 

As the next step, the sequences are stored in FASTA file format, filtered 
by length, and only those sequences with a length ranging from 80 to 
150 bases are kept, to imitate the size-selection that will be performed in 
real data since all known vtRNA fall into this range.                                            

2.2.2. Real data from the Atlantic salmon louse 

Next-generation sequencing (NGS)[38], also known as high-throughput 
sequencing, is the catch-all term used to describe a number of different 
modern sequencing technologies including: Illumina (Solexa) 
sequencing, Roche 454 sequencing, Ion torrent: Proton / PGM 
sequencing and SOLiD sequencing. 

These technologies allow us to sequence DNA and RNA much more 
quickly and cheaply than the previously used Sanger sequencing, and 
as such have revolutionised the study of genomics and molecular 
biology. And currently, there are ten high-throughput sequencing 
platforms and the Illumina platforms is the leading platform for high-
throughput sequencing[24]. 

RNA-sequencing, uses next-generation sequencing (NGS) to reveal the 
presence and quantity of RNA in a biological sample at a given moment 
in time, RNA-Seq can look at different populations of RNA to include 
total RNA, small RNA, such as miRNA, tRNA, vtRNA and ribosomal 
profiling[25]. 

For small-RNA and non-coding RNA sequencing, library preparation is 
modified. The cellular RNA is selected based on the desired size range. 
For small RNA targets, such as vtRNA, the RNA is isolated through size 
selection. This can be performed with a size exclusion gel, through size 
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selection magnetic beads, or with a commercially developed kit. Once 
isolated, linkers are added to the 3' and 5' end then purified. The final 
step is cDNA generation through reverse transcription[26]. 

Single-read sequencing involves sequencing DNA from only one end, 
and is the simplest way to utilize Illumina sequencing. By leveraging 
proprietary reversible terminator chemistry and a novel polymerase, this 
solution delivers large volumes of high-quality data, rapidly and 
economically. 

While Paired-end sequencing allows users to sequence both ends of a 
fragment and generate high-quality, alignable sequence data. Paired-
end sequencing facilitates detection of genomic rearrangements and 
repetitive sequence elements, as well as gene fusions and novel 
transcripts. Since paired-end reads are more likely to align to a 
reference, the quality of the entire data set improves. All Illumina next-
generation sequencing (NGS) systems are capable of paired-end 
sequencing. Paired-end reads, which means that for each DNA 
fragment, we have sequence data from both ends. The sequences are 
therefore stored in two separate files (one for the data from each end). 

In the study, total RNA from a mixture of all lif-cycle stages of the Atlantic 
salmon louse was generated by Christiane Eichner at the Sea Lice 
Research Centre, Bergen, Norway. Library preparation and sequencing 
was done by the Norwegian sequencing centre, Oslo, using the Illumina 
Sequencing Protocol and the NextSeq 500 platform. Sequencing was 
done for a size selected fraction (80-150 bases) of the total RNA, and 
resulted in approximate 50 million single-end reads of 76bp in length. 
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2.3. The vtRNA detecting pipeline 

 

 

 
 
 

 
 
 
 
 
 

 
 

 

 

Fig.4 Overview of vaultR - the vtRNA detecting pipeline workflow 
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The workflow of the pipeline for detecting vtRNA (vaultR) is depicted in 
Fig.5. In the beginning, it generates a dataset in FASTA format and filters 
by length between 80 to 150 since known vtRNA has such length range. 
Then vaultR uses ART to generate sufficiently large single-end reads 
from the filtered dataset and checks the quality of the reads with 
FastQC. Then, with the help of BWA, vaultR maps the reads back to the 
reference genome and generates a SAM file. samtools is used to 
transfer the format from SAM to BAM and sort the BAM file. The high 
coverage sequences on reference genome by IGV. Then it comes to the 
peak extraction which is to extract the high coverage sequences with 
depth over 10 and width between 80 and 150. The sequences of high 
coverage are annotated with Cmscan using the Rfam database and a 
report about whether there is vtRNA in the dataset is generated. If not, 
go to the next step: vaultR mixes the high-coverage sequences with 
known vtRNAs and generates the secondary structures by ViennaRNA.  
From that the dissimilarity matrix between the sequences by their 
secondary structures is computed and a cluster dendrogram is 
generated. By looking at the sequences in each cluster, especially those 
cluster together with the known vtRNAs, novel candidates are found. 
Then by MEME, motifs are generated for each cluster, the vaultR checks 
the existence of Box A and Box B motifs and attempts to finally rank the 
candidate vtRNA sequences. 
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3. Methodologies to detect vtRNA 

 3.1. Peak extraction and high coverage sequences searching 

 

 

 
 

 
 

 
 

 
 

Fig.5 Workflow for searching high coverage sequences 

The input data is prepared in FASTA format, and filtered to contain 
sequences of length 80-150bp. Generally, vtRNA has a length that 
ranges between 86 and 141 bases, depending on the species. Then, the 
pipeline generates single-end reads by ART. ART simulates both single-
end and paired-end sequencing reads of the three main commercial 
next-generation sequencing platforms: 454, Illumina and SOLiD. The 
built-in read length and read error profiles were derived from large sets 
of actual real sequencing data. ART supports all three types of common 
sequencing errors: base substitutions, insertions and deletions. 
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After preparation of data, the pipeline generates FASTQ, SAM and ALN 
files by ART and maps the reads in the FASTQ file back to human 
genome 38, or other reference genome. 

Then, as the third step, quality control of the generated reads is 
performed. Quality control and filtering of sequencing reads is one of the 
most important steps in the pre-processing of sequencing reads. 
However, it is not always trivial to figure out which reads needs 
adjustment and which can be left untouched. And here to assess the 
quality of the source data. The most convenient tool for this task is 
FastQC. 

Sequencing reads can be assembled de-novo into a full genome or 
mapped to an already-assembled reference genome of a related 
organism. However, no sequencing technology is perfect and raw reads 
inevitably contain mistakes: sequencing errors. The probability of an 
error for each nucleotide of each read is always written in a FASTQ file. 
Therefore, the very first step of fragment analysis is quality control and 
filtering on the FASTQ file. This step aims to remove low quality reads. 

Mapping by BWA: 

The BWA tool uses the Ferragina and Manzini matching algorithm to find 
exact matches, similar to Bowtie[29]. For all the algorithms, BWA first 
needs to construct the FM-index for the reference genome 
(the index command). And alignment algorithms are invoked with 
different sub-commands: aln/samse/sampe for BWA-
backtrack, bwasw for BWA-SW and mem for the BWA-MEM algorithm. 

For longer sequences ranged from 70bp to 1Mbp, BWA-MEM performs 
better. BWA-MEM is a new alignment algorithm for aligning sequence 
reads or long query sequences against a large reference genome such 
as human. It automatically chooses between local and end-to-end 
alignments. The algorithm is robust to sequencing errors and applicable 
to a wide range of sequence lengths from 70bp to a few megabases. For 
mapping 100bp sequences, BWA-MEM shows better performance than 
several state-of-art read aligners to date[29]. 
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There are two steps, Indexing and mapping: 
The first step of using BWA is to make an index of the reference genome 
in FASTA format. Then using bwa-mem for mapping, it generates a SAM 
file, which is technically human-readable. 

When configuring to the BWA application, one of the most important 
parameters is how many mismatches you will allow between a read and 
a potential mapping location for that location to be considered a match. It 
sets as the default (4% of the read length)[29]. And for the single-end 
reads, use “bwa samse” as command. 

Processing the output with Samtools:  
Like BWA, Samtools also go through several steps before data are in 
usable form. First, it generates its own index of the reference genome 
with Samtools, and the reference genome should always be the same. 
Next, a SAM file is converted into a BAM file. (A BAM file is just a binary 
version of a SAM file.) Then sort and index the BAM file. 

Then, aligned reads can be viewed by using the Integrative Genomics 
Viewer (IGV), BAM form is preferred than SAM form, which is the 
recommended format for IGV. IGV requires that both SAM and BAM files 
be sorted by position and indexed, and that the index files follow a 
specific naming convention. Specifically, a BAM index file should be 
named by appending .BAI to the bam file name. A SAM index filename is 
created by appending .SAI.     
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Peak Extraction： 

Peak calling is a computational method used to identify areas in 
a genome that have been enriched with aligned reads as a consequence 
of performing sequencing[31]. A peak is called where either the number 
of reads exceeds a pre-determined threshold value or where there is a 
minimum enrichment compared to background signal, often in a sliding 
window across the genome. The parameters for identifying peaks can be 
adjusted, sometimes leading to very different numbers of peaks being 
called. 
For extracting the peak regions, first read genomic alignments from the 
BAM file into a GappedReads object in R[39]. A GappedReads object 
contains all the information contained in a GAlignments object plus the 
sequences of the queries. Then vaultR counts the number of reads at 
each position on the reference genome, which is represented in a set of 
ranges. After that, it extracts and keeps those regions with a coverage 
depth over 10, and a width between 80 and 150 and notes the positions. 
Then it finds the positions back in the reference genome and get the 
coverage sequences, writes these coverage sequences into a FASTA 
file and runs cmscan on all regions with high coverage sequences, 
finally it searches Rfam using the FASTA file and check if vtRNA exists. 
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3.2. Secondary structures, prediction and analysis 

Biomolecules exhibit a close interplay between structure and 
function. While prediction of tertiary structure is usually infeasible, the 
area of RNA secondary structures is an example where computational 
methods have been highly successful. The prediction of RNA structure 
has received increasing attention over the last decade as the number of 
known functional RNA sequences, called non-coding RNA (ncRNA), has 
increased. And the conserved structures are of particular interest, since 
conservation of structure in spite of sequence variation implies that the 
structure must be functionally important. VtRNA, as the highly conserved 
noncoding RNA, can be known better through the secondary 
structures[49]. 

To understand the mechanism of action of a RNA, the structure must be 
known. RNA secondary structure prediction, using thermodynamics, can 
be used to develop hypotheses about the structure of an RNA sequence. 
Secondary structure prediction is a set of techniques 
in bioinformatics that aim to predict the secondary 
structures of proteins and nucleic acidsequences based only on 
knowledge of their primary structure. For nucleic acids it means 
predicting the formation of nucleic acid structures like helixes and stem-
loopstructures through base pairing and base stacking interactions.  
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Fig.6 Workflow for vtRNA detection by secondary structure prediction 
and analyse 

1. First is to mix the high coverage candidate sequences with the known 
vtRNAs. Predict the secondary structure of all the candidate sequences 
and the known vtRNA with ViennaRNA[21] secondary structure 
prediction. It generates two kinds of secondary structures: MFE 
secondary structure by minimum free energy and centroid secondary 
structure by thermodynamic ensemble prediction. Here use Minimum 
Free Energy Structure for further analyse. 

Minimum Free Energy Structure(MFE)[40]: The minimum free energy 
structure of a sequence is the secondary structure that is calculated to 
have the lowest value of free energy. It is synonymous with natural-
mode structure, but it is not necessarily the structure that forms in 
nature. The MFE structure of an RNA sequence is the secondary 
structure that contributes a minimum of free energy. This structure is 
predicted using a loop-based energy model and the dynamic 
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programming algorithm introduced by Zuker et al. As an RNA secondary 
structure can be uniquely decomposed into loops and external bases the 
loop-based energy model treats the free energy F(s) of an RNA 
secondary structures as the sum of the contributing free energies FL of 
the loops Lcontained in s. According to the chosen energy parameter set 
and a given temperature (defaults to 37 °C) the secondary 
structure s that minimizes F(s) is computed[40]. 

The lower the free energy, the more likely the structure will form, which 
means that the lower the thermodynamic energy of the structure, the 
more stable it generally is. However, this is calculated using Zuker's 
algorithm[40] which is accurate for secondary structure predictions. If 
working with specific family or group of RNAs then attempt to correlate 
the secondary structural motifs such as stem loops - bulges or junctions 
in the RNA structure with the free energy value.  

Fig.7 shows the MFE prediction of secondary structure for vtRNA 1-3 by 
ViennaRNA, which is expressed by dot-bracket notation. 
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2. According to the MFE secondary structures of the candidate 
sequences. Calculate dissimilarities between RNA secondary structures 
with RNAdistance[41][42][43][44][45]. 

Read RNA secondary structures and calculates one or more measures 
for their dissimilarity, based on tree or string editing (alignment). In 
addition it calculates a "base pair distance" given by the number of base 
pairs present in one structure, but not the other. For structures of 
different length base pair distance is not recommended. 
RNAdistance accepts structures in bracket format, where matching 
brackets symbolize base pairs and unpaired bases are represented by a 
dot “.”, which is the dot bracket form of the secondary structure. 

Then take the structures of the known vtRNA as references and 
compare the distances between all the candidate sequences and then 
make a dissimilarity matrix. The lower result is, the more similar between 
the two structures are. 

3. The next step is hierarchical cluster analysis on a set of dissimilarities 
in order to generate cluster dendrogram. A dendrogram[46] is 
a tree diagram frequently used to illustrate the arrangement of the 
clusters produced by hierarchical clustering. Dendrograms are often 
used in computational biology to illustrate the clustering of genes or 
samples, sometimes on top of heatmaps. The dendrogram is a visual 
representation of the compound correlation data. The individual 
compounds are arranged along the bottom of the dendrogram and 
referred to as leaf nodes. Compound clusters are formed by joining 
individual compounds or existing compound clusters with the join point 
referred to as a node. At each dendrogram node there is a right and left 
sub-branch of clustered compounds.  

4. Analyse the candidate sequences which cluster the same with known 
vtRNAs. Check the secondary structures and structural features. And the 
pipeline goes to the next step, de novo detection of motifs. 
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3.3. De novo detection of motifs in vtRNA candidates 

 
 

Fig.8 Workflow for detecting motifs in candidate sequences  by MEME 

Motifs[36]: Sequence motifs are short, recurring patterns in DNA that are 
presumed to have a biological function. Often they indicate sequence-
specific binding sites for proteins such as nucleases and transcription 
factors (TF). Others are involved in important processes at the RNA 
level, including ribosome binding, mRNA processing (splicing, editing, 
polyadenylation) and transcription termination. Nowadays, computational 
methods are generating a flood of putative regulatory sequence motifs 
by searching for overrepresented (and/or conserved) DNA patterns 
upstream of functionally related genes (for example, genes with similar 
expression patterns or similar functional annotation)[36]. 

VtRNA genes have been cloned from several vertebrates including rat, 
mouse, and humans. Their copy numbers vary, as does the length of the 
encoded RNA. By comparing the upstream regions of the vertebrate 
vRNA genes, a 25 bp conserved sequence and a TATA box can be 
identified. Furthermore, the unique arrangement of the internal promoter 
boxes is conserved in the expressed human vRNA genes even though a 
new RNA polymerase III termination sequence has evolved between the 
two B boxes[47]. 
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The vRNA contains two B-box elements and one A-box element (type-2 
promoter elements). A and B boxes are binding sites for TFIIIC which 
positions TFIIIB immediately upstream of the gene. Subsequently, TFIIIB 
directs binding of RNA polymerase III, which initiates transcription. The 
vRNA contains a TATA box sequence at position -25 and an assumed 
proximal sequence element at position -70 (with respect to transcription 
initiation site). Additionally, viable 5’ flanking sequence is required for 
transcription. Also, at high transcription factor concentrations, the 
presence of the two B boxes inhibits vRNA transcription. It is postulated 
that the two closely spaced B boxes along with the 5’ flanking sequence 
provide a mechanism for the regulation of vRNA gene activity. 

According to the conserved structure of the vtRNA with two B-box 
elements and one A-box element, we aim to detect the motifs with 
MEME Suite and check if there is sequences with such A-B-Box 
structures. 

Fig.9 
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Fig.9 Comparison of consensus secondary structures and sequence 
logos derived from separate alignments of the deuterostome vtRNAs.  
vtRNAs form a conserved panhandle-like secondary structure with a 
well-conserved extended stem-loop structure connecting 5′ end and 
3′end of the molecule. This structure also involves the box A sequence. 
The box B, on the other hand, does not take part in conserved structural 
features, albeit in vertebrates, the stem-loop structure overlaps the last 1 
or two nt of the box B. In the basal lineages, box B and the 3′ side of the 
stem-loop structure are separated by at least 10 nt of intervening 
sequence. The base pairing of box A likely contributes to the sequence 
conservation in the 3′ region of the vtRNAs. 
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4. Results and summary 

4.1. Results from simulated data 

For simulated data: 

Statistic results from FASTQC for quantity control. 

 

Fig.10 Basic statistics 
of the reads 
sequences from the 
simulated data 

 

Fig.11 Per base 
sequence quality of 
reads sequences from 
the simulated data 
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Fig.12 Per sequence 
GC content of reads 
sequences from the 
simulated data 

As quality control, for the “per sequence quality scores”, the quality of 
the simulated reads is quite good and the curve is very smooth, so there 
is no need to cut any reads in the dataset. The only one problem is “Per 
sequence GC content”, In a normal random library it is expected to see a 
roughly normal distribution of GC content where the central peak 
corresponds to the overall GC content of the underlying genome. Since 
it is not known that the GC content of the genome the modal GC content 
is calculated from the observed data and used to build a reference 
distribution. An unusually shaped distribution could indicate a 
contaminated library or some other kinds of biased subset. A normal 
distribution which is shifted indicates some systematic bias which is 
independent of base position. If there is a systematic bias which creates 
a shifted normal distribution then this won't be flagged as an error by the 
module since it does not know what your genome's GC content should 
be. If the secondary peak is very sharp it's probably a specific 
contaminant - often something which is found by the overrepresented 
sequences module.while the “Per sequence GC content” does not affect 
the results so much,  so the process can go further for reads mapping 
after quality control. 
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The quality of simulation reads are fine. As the simulated data is mixed 
with known vtRNAs, put back the mapped SAM file to the Hg 38 as 
reference genome, check if there are high coverage sequences at where 
the positions vtRNAs locate. 

Fig.13 high coverage sequence at 
the position of vtRNA 1-1 at Hg 38 

 

Fig.14 high coverage sequences at 
the position of vtRNA 1-2 at Hg 38 

 

                 

Fig.15 high coverage sequences at 
the position of vtRNA 1-3 at Hg 38
        

 

Fig.16 high coverage sequences at 
the position of vtRNA 2-1 at Hg 38 
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High coverage sequences at the positions where Vaults locate are found 
in the reference genome. So the method is feasible for simulated data, 
which is obviously seen at IGV. Then extract the high coverage 
sequences and write them in FASTA file, search the sequences with 
Cmscan, here is the result: 

Fig.17 searching results from simulated data by Cmscan 

As the graph shows, vtRNAs are found after searching in the Rfam. In 
the thesis, we generate a whole pipeline with three different methods to 
detect vtRNA. For the first method, we take use of the high coverage 
sequences and search for them in the Rfam with cmscan and it works 
for the simulated data.The advantage is that result is quite intuitive for 
the users, while it is ineffective for identifying vtRNA sequences which 
are very highly conserved at the nucleotide level. And even though it 
does find vtRNAs in the simulated data, let us see the results from 
salmon louse. 
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4.2. Results from atlantic salmon louse data 

For the real data from salmon louse, first check the reads quality by 
FASTQC 

Fig.18 Basic statistics 
of the reads 
sequences from the 
salmon louse 

 

Fig.19 Per base 
sequence quality of 
reads sequences from 
the salmon louse 
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Fig.20 Per base 
sequence content 
of reads 
sequences from 
the salmon louse 

For the real data from salmon louse, it generates 55 million reads with 
length 76 bases, the per base sequence quality on Fig.18 are relative 
smooth. The next problem is unusual per-base sequence content on Fig.
20. We expect to see flat lines that represent the percentages of A, C, T, 
and G in the genome. However, there are often biases (particularly at 
the start of reads). And it is clearly seen that the biased sequence along 
the run. While this does not affect the following results. Just keep going 
to the next step for peek extraction and searching for high coverage 
sequences. 
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1. Read genomic alignments from the BAM file into a 
GappedReads object.       

Fig.21 high coverage sequences with start position, end position and 
width 

2. Count the number of coverages at each position, which is represented 
in a set of ranges. 

Fig.22 Sequences with number of coverages at each position on 
reference genome. 

3. Extract and keep those coverages with depth over 10, and width 
between 80 and 150 and note the positions. 

Fig.23 Sequences after Peak extraction with number of coverages at 
each position, followed with start position, end position and width. 

5. Find the positions back in the reference genome and get the coverage 
sequences and write these coverage sequences in FASTA file and run 
Cmscan to check if vtRNA exists. 
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Fig. 24 Results for the salmon louse data after searching the high 
coverage sequences with Cmscan 

Results:  

Blast is commonly used for sequence similarity searches which finds 
regions of similarity between biological sequences, however, blast-based 
searches beyond mammals have not been successful. And it is 
ineffective for identifying vtRNA sequences which are very highly 
conserved at the nucleotide level. Through searching the high coverage 
candidate sequences in Rfam by Cmscan, the pipeline unfortunately 
cannot find the vtRNA in the salmon louse gene. 
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So we need to consider the secondary structures of vtRNA and make 
the cluster dendrogram by the dissimilarity matrix. Take the structures of 
the known vtRNA as references and compare the distances between all 
the candidate sequences and then make a dissimilarity matrix . The 
lower result is, the more similar between the two structures are.  

The next step is hierarchical cluster analysis on a set of dissimilarities 
and generate cluster dendrogram. A dendrogram is a tree diagram 
frequently used to illustrate the arrangement of the clusters produced 
by hierarchical clustering. Dendrograms are often used in computational 
biology to illustrate the clustering of genes or samples, sometimes on 
top of heatmaps. The dendrogram is a visual representation of the 
compound correlation data. The individual compounds are arranged 
along the bottom of the dendrogram and referred to as leaf nodes. 
Compound clusters are formed by joining individual compounds or 
existing compound clusters with the join point referred to as a node. At 
each dendrogram node we have a right and left sub-branch of clustered 
compounds.  
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Fig.25 part of the cluster dengrogram of high coverage sequences from 
salmon louse data 

According to cluster dendrogram, most of the known vtRNA are 
assigned into the same cluster, which means that they have low 
dissimilarities. It is noticed that the secondary structures in the same 
clusters, especially those which are closed to the known vtRNA, have 
the similar structures. This implies that these structures can probably be 
the vtRNA and the pipeline can take those as candidate sequences for 
further research. But it can only reduce the number of candidate 
sequences by this method since the specific secondary structures of 
vtRNA are not certain.  
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De novo motifs detection: The vtRNA contains two B-box elements and 
one A-box element, if there are  sequences with such structures, they 
can probably be vtRNA. Use the MEME for finding the motifs in the 
clusters and highlight the motifs at the secondary structures. 

Having generated the cluster dendrogram according to the dissimilarity 
matrix from the last step with the sequence names and corresponding 
secondary structures. In total there are 8 clusters and most of the known 
vtRNA clustered in the “BLUE” cluster (Fig.25) with kind of similar 

secondary structures, which means that these candidate sequences are  
in the same cluster with the known vtRNAs and can probably be the 
vtRNA. Detect the motifs of the sequences in the cluster with MEME 
Suite. 
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In the “BLUE” cluster and other clusters, first remove the known vtRNA 
since the known vtRNA here act as a reference, while they shouldn't be 
counted into detecting. 

Fig.26 Motifs generated from candidate sequences from the “BLUE” 
cluster (Fig.25) 

By default MEME, it finds 3 motifs. It tries to find the best motifs first but due to 
the enormous search space it is impossible to guarantee that they will always 
be listed best to worst. Always check the P-value of the motifs found by MEME 
as sometimes the motifs found will not be statistically significant. Generally if a 
motif has an P-value larger than 0.05 it is not significant. 

Map the motifs back to the sequences and pick those sequences with at 
least 2 motifs in the same sequence. 

1. Highlight the sequences with motifs in the secondary structures in all 
of the clusters. While not all of the sequences in different clusters 
have motifs.  

2. Find the sequences with 3 motifs in different cluster since we know 
vtRNA has one box A and two box B elements. Those sequences can 
with motifs can be the potential vtRNA for further research. 

Fig.26 candidate sequence with two motifs  

!44



Final candidate:  

The pipeline finds only one sequence with two motifs which could be box 
A and Box B,  the secondary structure of LSalAt2s175.1 is depicted in 
Fig. 27 

Fig.27 MFE secondary structure of LSalAt2s175.1 

This sequence is a good candidate for a vtRNA, but for further validating 
the result, it should be verified by a laboratory experiment, such as 
purification of the whole vault and sequencing of all bound RNA. The 
result can only be checked by the help of further laboratory work. 
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5. Discussion and Further work 

In my thesis, I have described the development and application of a 
vaultR, a pipeline for de-novo detection of vault-RNA from RNA-
sequencing data. I have tested vaultR on two data sets, simulated data 
and real data from Atlantic salmon louse, an important fish parasite. The 
pipeline successfully detects vtRNA in the simulated data using Rfam 
and cmscan, while it fails to find vtRNA in real data from the Atlantic 
salmon louse that way. Thus, the pipeline goes further to secondary 
structure prediction and cluster analysis, and then to de novo detection 
of motifs in vtRNA candidates for real data. As a final result, there are 
some good candidate sequences which match the structural features of 
vtRNA. 

However, the main obstacle is that we do not know the true specific 
structure of vtRNA, and there is little relevant research on that topic. The 
available structures are conserved only in the small stem portion of the 
vtRNA,  and amount of validated vtRNA  is relatively small. By now there 
are only 6 from human, 2 from chicken, 1 from mouse, 1 from rat and 4 
from zebrafish. Machine learning algorithms like decision trees could be 
a good way to predict the result if there are large enough training data in 
the future. 
For the candidate sequences, all the bioinformatic work is finished here. 
The pipeline is able to find the potential vtRNA and reduce the number of 
candidate sequences. With these in hand, we need to come back to 
laboratory to get a validated vtRNA sequence and compare the potential 
vtRNA candidates which are generated by the pipeline with the results of 
the experiment. 
There are also some more structural features which can be used for 
identifying vtRNA, for example, termination signal poly U-tail at 3’ end, 
and at least 2 U are unpaired, and the poly U-tail are not far away from 
initial pair. Most of the vtRNA has also opening stems/bulges. This can 
also be as the factor to identify vtRNA. More research needs to be done 
on these sequence features and other ncRNA motifs to develop better 
algorithms for vtRNA detection in the future. 
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Fig.28 vtRNA generated from Rfam 
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