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Abstract. Mesh smoothing (or r-refinement) are used in computer aided
design, interpolation, numerical solution of partial differential equations,
etc. We derive a new smoothing called parallelogram smoothing. The
new smoothing tries to fit a given domain by the parallelograms. We
present several numerical examples and compare our results against the
traditional Laplacian smoothing. Presented numerical work shows that
the new approach is superior to the Laplacian smoothing.

1 Introduction

Mesh smoothing such as the Laplacian smoothing [13] and the Winslow smooth-
ing [14] has many applications. For example, computer graphics [7–9, and ref-
erences therein], interpolation [10, and references therein], numerical solution of
partial differential equations [11–14, 17, and references therein], Arbitrary La-
grangian Eulerian Methods [1] and mesh generation [3–5]. It is known (see [2,
13, 17]) that mesh smoothing improves accuracy of the solution and also reduces
the overall computational effort. Smoothing is effective in improving distorted
and inverted elements in automatically generated meshes [13]. Mesh smoothing
adjusts the positions of the interior vertices in the mesh while preserving its
topology [13, 17]. Due to simplicity and computationally efficiency, the Laplace
smoothing is the most popular method for improving mesh quality. It repositions
the vertices of the mesh by moving each interior node to the geometric center
of its neighbours [13]. However, the Laplacian smoothing can produce inverted
elements (See the Section 3) and such meshes cannot be used in applications. We
present a new mesh smoothing algorithm called the parallelogram smoothing.
Numerical work shows that the new smoothing is performing better than the
Laplacian smoothing. Parallelogram smoothing tries to fit a given domain with
parallelograms in 2D and parallelopipeds in 3D.

Let us mention advantages of the parallelogram smoothing. The error of
the Streamline Methods on parallelogram and parallelopiped mesh is minimum
(see the Figures 7, 11 and 15 in [15]). Many discretization methods such as
the Multi Point Flux Approximation (MPFA) results in a symmetric discrete
system on a parallelogram or parallelopiped mesh [16]. So, efficient solvers such
as the Conjugate Gradient can be used. Quadrilateral and hexahedral elements
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are expressed by bi-linear and tri-linear mappings from a reference square and
cube respectively. These mappings are widely used with discretization techniques
such as Finite Element Methods, Finite Volume Methods [16] and Streamline
Methods [15]. One of the major problem in numerical computations is ensuring
the invertibility of the bi-linear and tri-linear mappings. Since these mappings
are not linear, the positivity of the Jacobian at the vertices does not ensure the
global invertibility of the mappings (or ensuring the invertibility of the mapping
is computationally intensive). One encouraging fact is that for parallelograms
and parallelepipeds elements these mappings become linear.

An outline of the article is as follows. In the Section 2, a measure of par-
allelogram property of quadrilateral and hexahedral elements, and a quadratic
parallelogram functional for quadrilateral and hexahedral meshes are presented.
Optimization of the functional leads to a new smoothing algorithm. Section 3
presents numerical work and comparison with the Laplacian smoothing. Finally
Section 4 concludes the article.

2 Measure of Parallelogramness and Parallelogram

Functional
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Fig. 1. Quadrilateral and Hexahedral Elements.

Figure 1(a) shows a quadrilateral element with vertices v1, v2, v3 and v4.
The midpoints of the diagonals v1v3 and v2v4 are d1 and d2 respectively. Lets
call this quadrilateral element k. Euclidean distance between the midpoints d1

and d2 is

Q(k) =
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∥
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Here k means that we are referring to the quadrilateral element named k. Since
the mid points of two diagonals of a parallelogram co-incide; i.e., v1 + v3 = v2

+ v4. If Q(k) approaches zero than the element k approaches a parallelogram
and for Q(k) equal to zero the element k will be a parallelogram. Q(k) will be
called a measure of the parallelogramness of the quadrilateral element k.

Figure 1(b) shows a planar hexahedral element (a hexahedra with planar
surfaces) with vertices v1, v2, v3, v4, v5, v6, v7 and v8. Lets call this hexa-
hedra k. Let us further denote quadrilateral surfaces of the hexahedra k by si

where i = 1 . . . 6. The surface si will be a parallelogram if Q(si) is equal to zero.
Parallelogramness of the hexahedral element k can be expressed as a sum of
parallelogramness of the six quadrilateral faces

Q(k) =
6

∑

i=1

‖Q(si)‖L2
. (2)

A hexahedral element is a parallelogram if the six surfaces are parallelograms.
Thus the hexahedral element k will be a parallelogram if Q(k) is equal to zero.
Figure 2 shows a structured 2 × 2 quadrilateral mesh. The mesh shown in the
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Fig. 2. A 2 × 2 structured quadrilateral mesh.

Figure 2 consists of four quadrilateral elements lets call them ki, i = 1 . . . 4.
For the 2 × 2 mesh shown in the Figure, 2 r14, r1, r12, r2, r23, r3, r34, r4 are
the boundary nodes and these nodes are fixed during smoothing process. Let the
coordinates of the node ri be (xi,yi). The Laplacian smoothing moves grid points
to the geometric center of incident vertices. The Laplacian smoothed position of
the node r0 = (x0, y0) is

r0 =
r1 + r2 + r3 + r4

4.0
. (3)

For deriving an alternative smoothing, let us first define a functional f for a
mesh shown in the Figure 2 as

f(x0, y0) =

4
∑

i=1

Q(ki)
2 . (4)
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Here, index i is for the four surrounding quadrilaterals around the node 0 and
Q(ki) is the measurement of the parallelogramness of the quadrilateral element
named ki in the mesh. Similar functional can also be defined for unstructured
quadrilateral meshes. It should be noted that f(x0, y0) will be zero if (x0, y0)
is situated such that the four surrounding quadrilaterals are parallelograms.
Functional f is quadratic in nature and it can be easily shown that it is convex;
i.e., the Hessian of the functional f is positive definite. Figure 3(a) shows the
elliptic contours of this functional for a quadrilateral mesh and Figure 3(b) shows
the surface plot of the functional f. Since functional f is convex so it has a unique
minimum. The minimization of this functional f will provide the proper nodal
position for the node r0 and the newly formed surrounding cells around this
node will be the best parallelogram fit (if squares or rectangles can be fit, the
minimization will provide the nodal position for squares or rectangles fit since
square and rectangle are a special kind of parallelograms). It can be shown that
the independent variables x0 and y0 (r0) that minimizes the functional f given
by the equation (4) are

r0 =
r14 + r12 + r23 + r34

4.0
−

r1 + r2 + r3 + r4

2.0
. (5)

Our new smoothing approach for a structured quadrilateral mesh is given by
the equation (5). Thus, our new approach will move internal nodes according to
the equation (5). In the next Section several interesting numerical examples are
explored for verifying the robustness of the new smoothing given by equation (5)
compared to the Laplacian smoothing given by equations (3). Similar smoothing
can be derived for structured or unstructured hexahedral meshes. Figure 4 shows
a structured 2× 2× 2 hexahedral mesh. The mesh 4 consists of eight hexahedral
elements lets call them ki with i = 1, . . . , 8. For the mesh 4, 14 is the internal
node while 1, . . . , 13 and 15, . . . , 27 are the boundary nodes. Boundary nodes
are kept fixed during smoothing process. Let the coordinate of a node i is given
as ri = (xi , yi). The Laplacian smoothing moves grid points to the geometric
center of the incident vertices. The Laplacian smoothed position of the node 14
is given as

r14 =
r11 + r15 + r17 + r13 + r5 + r23

6.0
, (6)

For deriving an alternative smoothed position for the node 14 shown in Figure
4, we define a functional f as follows

f(x14, y14, z14) =
8

∑

i=1

Q(ki) . (7)

Here index i runs over eight surrounding hexahedral elements around the node 14
and Q(ki) is measurement of the parallelogramness of the ith hexahedra defined
by equation (2). Similar functional can also be defined for unstructured hexa-
hedral meshes. It can be seen that f(x14,y14,z14) will be zero if the coordinates
(x14,y14,z14) of the node 14 are situated such that the surrounding hexahedrals
are parallelepiped. Again the functional f is quadratic and convex with a positive
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(b) Surface plot the functional f.

Fig. 3. Convex nature of the functional f.
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Fig. 4. A 2 × 2 × 2 structured hexahedral mesh.
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definite Hessian. It can be shown that independent variables (x14,y14,z14) that
minimizes (7) are given as (solution of the equations ∂f/∂x14 = 0, ∂f/∂y14 = 0
and ∂f/∂z14 = 0)

r14 =
r11 + r15 + r17 + r13 + r5 + r23

3.0
−

r10 + r12 + r18 + r16

24.0
−

r24 + r26 + r2 + r6 + r8 + r4

48.0
. (8)

Equation (8) forms a new smoothing algorithm for structured hexahedral mesh.
Similar formulas can be derived for unstructured hexahedral meshes.

3 Numerical Experiments

(a) Folded Mesh by the Lapla-
cian Smoothing.

(b) Unfolded Mesh by the New
Method.

Fig. 5. Comparison of Laplacian and New Method.

We are using both the new approach and the Laplacian method for quadri-
lateral mesh smoothing. Figures 7 and 5 report outcome of our numerical ex-
periments. Initial grids are generated by Transfinite Interpolation. It is clear
from the Figures that for 2-D geometries the Laplacian smoothing can generate
folded grids and the resulting mesh can not be used in numerical simulations.
It can be seen in the Figures 7 and 5 that the Laplacian smoothing move nodes
outside the boundary and it results in inverted elements. Numerical experiments
demonstrate robust nature of the new approach.

4 Conclusions

A simple alternative to the traditional Laplacian smoothing is presented. Re-
ported numerical work shows that the new approach is superior to the Lapla-
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(a) Folded Mesh by the Lapla-
cian Smoothing.

(b) Unfolded Mesh by the New
Method.

Fig. 6. Comparison of Laplacian and New Method.

(a) Folded Mesh by the Lapla-
cian Smoothing.

(b) Unfolded Mesh by the New
Method.

(c) Folded Mesh by the Lapla-
cian Smoothing.

(d) Unfolded Mesh by the New
Method.

Fig. 7. Comparison of Laplacian and New Method.
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cian smoothing. This method is simple to understand and can be implemented
in an existing mesh generation package. Smoothing is derived for the structured
quadrilaterals and hexahedral meshes. The real use of this approach can be in
the area of hexahedral mesh generation where many meshing algorithms are
capable of generating inverted elements.
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