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Outline and motivation

In this work, we will take a detailed look at some internal wave models, both linear and

nonlinear, where the waves propagate on a fluid interface and are subjected to capillar-

ity. After presenting the prerequisites, a detailed derivation of the evolution equations is

given. A model equation restricted to unidirectional wave propagation between seawater

and carbon dioxide (CO2) will then be studied numerically in its own independent article.

The work is partly motivated by previously conducted deep ocean experiments studying

the stability of the interface between seawater and a submerged pool of CO2 [9]. Numerical

bifurcation analysis is used to study the response of the system to various imposed shear

flows. The thesis is structured as follows.

In the introductory Chapter 1 we review some fundamental concepts and laws of fluid

mechanics, and put forward the assumptions about the fluids and flow fields that are em-

ployed throughout the paper.

In Chapter 2 we describe the fluid interface problem with imposed shear flow. The

treatment is kept at a general level with all spatial dimensions included, and the obtained

formulation serves as a basis for the subsequent derivations of model equations under more

restrictive suppositions. Further, we take a look at the linear dispersion relation. The

chapter closes with a derivation of solitary wave solutions of the Korteweg-de Vries equation.

In Chapter 3 an overview of some mathematical ingredients that are employed subse-

quently in the paper are given. Of notable importance is the so-called Hilbert transform

and some of its properties, and how it is used in solving an upper half-plane Neumann

problem arising in our later derivations. The chapter is not meant to be a comprehensive

treatise on the results presented, but rather to serve as a preamble for what is to come.

In Chapter 4 the general derivation of the nonlinear evolution equations is given, em-

ploying nondimensionalization and formal asymptotic expansions to arrive at the desired

results. The theory of Chapter 3 is used extensively. Finally, we connect the linearized

model equations with the dispersion relations from Chapter 2.

In Chapter 5 our independent article is presented in its entirety, which encompasses

the numerical analysis of a nonlinear model equation. The derivation of the equation is

essentially a specialization of that presented in Chapter 4, restricting wave propagation to

one spatial dimension.
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Chapter 1

Introduction

1.1 Fluid mechanics

A satisfactory and comprehensive description of fluid flow phenomena involves several con-

servation laws and equations of state. As noted in [16, pp. 355-357], one can end up with

over twenty equations in equally many variables. The goal here is obviously not to go

through all such developments that are found in books on continuum and fluid mechanics.

We will only cover what we believe is necessary to make the current paper complete, our

treatment being tailored to suit the needs of later chapters. In this section we will present

some terminology and assumptions that are made about the fluids and the flow field.

Viscosity

Viscosity is a measure of the ”internal friction” or resistance to shear stress in the fluid,

and is present in nearly all real fluids [14, p. 562]. The viscosity is usually a function

of the thermodynamic state, and for most fluids it displays a significant dependence on

temperature. An informal characterization of viscosity is the ”thickness” of the fluid; blood

has higher viscosity than water1. Throughout this paper, we will assume that viscous effects

in fluids are negligible. This is generally a reasonable assumption far from solid boundaries,

where thin viscous boundary layers are usually present [4, p. 104].

Incompressible fluids and irrotational flow

A fluid in which the density ρ is a function of pressure p only is said to be barotropic. In

the special case when ρ is a constant function of pressure, the fluid is called incompressible

[4, p. 118]. A fluid flow is termed irrotational if the vorticity vector ω vanishes throughout

1In accordance with the proverb.
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Chapter 1. Introduction 2

the flow domain. That is,

(1.1) ω := ∇× u = 0,

where u denotes the velocity field. The vorticity measures the local rotation of fluid ele-

ments, and is precisely equal to twice the angular velocity of such rotation. If the flow is

irrotational, it is not difficult to demonstrate that the velocity field u can be written in

terms of a potential function φ, that is,

(1.2) u = ∇φ.

As will be seen later, this is quite convenient, one reason being that it is easier to work with

the scalar potential φ rather than the velocity field u itself.

A quantity related to the vorticity is the circulation in a fluid, defined by [4, p. 63-64]

(1.3) Γ =

∮
C
u · ds =

∮
A

(∇× u) · dA =

∮
A

ω · dA,

the second equality being due to Stokes’ theorem, and the final equality from using the

definition of ω. A fundamental result regarding the circulation Γ which we will make use

of later is Kelvin’s circulation theorem. This states that the circulation around a material

contour moving with the fluid remains constant with time, under the assumption that the

flow be barotropic and inviscid, with only conservative body forces (like gravity) acting on

the fluid. This can be stated mathematically as [4, p. 144-145]

(1.4)
DΓ

Dt
= 0,

where D
Dt

is the material time derivative (see Section 1.3). A corollary of this theorem is

the fact that under the restrictions posed, irrotational flows remain irrotational [4, p. 148].

Dimensionless quantities

As is most likely familiar from our everyday experience, fluid flow phenomena can be

complex: the waves and whirls in the ocean, or the air flowing over a moving vehicle.

Consequently, attempting to describe such behavior mathematically can be a challenging

endeavor.

In certain cases, a qualitative description can be achieved with the use of certain dimen-

sionless parameters. Among the many that are used in fluid mechanics, perhaps the most

prominent is the Reynolds number

(1.5) Re :=
UL

ν

where U and L are characteristic velocity and length scales, respectively, and ν is the

kinematic viscosity. Dimensionless quantities like the Reynolds number often occur when



Chapter 1. Introduction 3

the equations of interest are put in nondimensional form [4, pp. 279-284]. From a more

practical standpoint, the Reynolds number can elucidate the dynamic similarities between

flows that occur on different length scales, like the model aircraft in a wind tunnel compared

to the real life version.

In this work, we will not work explicitly with the Reynolds number, but we will be

interested in a different dimensionless parameter, the so-called Bond number, defined as [4,

p. 289]

(1.6) Bo :=
ρgL2

τ
,

where g is the acceleration of gravity, and τ is the surface tension parameter (see the next

section). The Bond number is important when one wants to consider how surface tension

effects balance those of gravity.

1.2 Surface tension and capillarity

The interface between two immiscible fluids, for instance the free surface between air and

water, acts as if it were under tension, similar to that of a stretched membrane [4, p. 8],

[14, p. 455]. The nature and origin of this surface tension is explained on the molecular

levels. For the sake of simplicity and familiarity, assume the fluids are water and air.

Molecules that comprise the interface will be pulled unequally due to the different fluids.

The water molecules in this case will be pulling more on the interface, and it therefore tends

to curve. Surface tension effects explain why water droplets and bubbles in water tend to

be of spherical shape [4, p. 8].

To be more precise, surface tension, denoted here and subsequently with the variable τ ,

can be defined as the amount of tensile force per unit length, with SI units N/m [4, pp. 8-9].

We now desire to derive a relationship between surface tension and the pressure difference

across a curved interface.

Consider an arc element ds of the fluid interface denoted by η between two immiscible

fluids, with pressures measured close to the interface denoted by p1 and p2 (see Figure 1.1).

The interface arc element is assumed to be extended a unit of one meter in the transverse

direction, i.e. into the paper. Forces due to surface tension act on the endpoints of the

arc, and their total contribution in the direction orthogonal to the arc is of interest. The

contribution from the surface tension forces is shown schematically in Figure 1.2. The force

Fτ,n is the contribution of Fτ = τ · 1 in the direction normal to the interface, and is given

by

(1.7) Fτ,n = Fτ · sin
(
dθ

2

)
= τ · sin

(
dθ

2

)
≈ τ · dθ

2
,
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dθ

x

r Fτ

Fτ

p1ds

p2ds

η

Figure 1.1: Force contribution of pressure and surface tension on a fluid surface arc element ds.

where the approximate equality holds for small angles dθ
2

. A force balance in the direction

orthogonal to the interface η yields

(1.8) p1ds+ 2Fτ,n − p2ds = p1ds+ τdθ − p2ds = 0.

This may be rewritten as

(1.9) τ
dθ

ds
= p2 − p1

Now, from elementary differential geometry, the curvature κ of the arc is given by

(1.10) κ :=
1

r
=
dθ

ds
=

ηxx

{1 + η2x}
3/2
≈ ηxx,

where we have assumed that the slope ηx is small, in order to arrive at the final result. We

thereby get

(1.11) p2 − p1 = τηxx.

When surface tension has notable influence on fluid behavior, the term capillarity is

often used in relation to the phenomena being described. In this work, we will be looking

at internal water waves subject to both capillarity and gravity, and such waves are then

naturally termed capillary-gravity waves. However, we shall not be too much concerned

with the interface between air and water, but rather between two arbitrary fluids with

differing but constant densities.

We will then later look at the case where the two fluids involved are seawater and carbon

dioxide (CO2). For this reason, we will use the more appropriate terminology interfacial

tension rather than surface tension in later chapters, to emphasize that the situation under

study involves a more general fluid interface, and not necessarily a free surface like that

between water and air.
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Fτ

Fτ

dθ
Fτ,n

dθ
2

dθ
2

x

Figure 1.2: Decomposition of surface tension force contributions. The angle dθ is assumed to be

small.

1.3 Bernoulli equation

From a cornerstone conservation law of fluid mechanics, the Navier-Stokes momentum equa-

tion, one may derive various simplified models under certain assumptions on the fluid and

the flow field. The derivation presented is based on that given in [4, pp. 118-121].

We are especially interested in the case where the fluid is barotropic, that is, when

density is a function of pressure only, ρ = ρ(p), and the flow is inviscid, incompressible and

irrotational. When viscosity is negligible, the incompressible Navier-Stokes equation

(1.12) ρ
Du

Dt
= −∇p+ ρg + µ∇2u

reduces to the Euler equation

(1.13) ρ
Du

Dt
= −∇p+ ρg,

where we assume that gravity is the only body force acting on the fluid. The differential

operator D
Dt

:= ∂
∂t

+ u · ∇ denotes the material time derivative. That is, the time derivative

following a material fluid particle expressed in Eulerian variables. In component form,

equation (1.13) becomes

(1.14)
∂ui
∂t

+ uj
∂ui
∂xj

= − ∂

∂xi
(gx3)−

1

ρ

∂p

∂xi
.

where terms with repeated indices enforce the summation convention. The second term on

the left of (1.14) may be rewritten as

uj
∂ui
∂xj

= uj

(
∂ui
∂xj
− ∂uj
∂xi

)
+ uj

∂uj
∂xi

= ujrij +
∂

∂xi

(
1

2
u2j

)
= −ujεijkωk +

∂

∂xi

(
1

2
u2j

)
= −(u× ω)i +

∂

∂xi

(
1

2
u2j

)
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where Rij are the components of the rotation tensor2. The relationship ujRij = −ujεijkωk
follows once it is recognized that the rotation tensor Rij and the vorticity vector ω =

(ω1, ω2, ω3) are related through

R =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


Now, since the flow is assumed to be barotropic, we have that [4, p. 118]

1

ρ

∂p

∂xi
=

∂

∂xi

∫
dp

ρ
.

The Euler equation (1.14) becomes

(1.15)
∂ui
∂t

+
∂

∂xi

(
1

2
u2j +

∫
dp

ρ
+ gx3

)
= (u× ω)i.

When the flow is irrotational, the vorticity ω vanishes, and we can write the velocity field

u in terms of a potential function φ: u = ∇φ. This leads to

(1.16) ∇
(
φt +

1

2
u2j +

∫
dp

ρ
+ gx3

)
= 0,

which implies that

(1.17) φt +
1

2
u2j +

∫
dp

ρ
+ gx3 = F (t).

The function F (t) may be incorporated into the function φt by a suitable transformation,

e.g.

(1.18) φ 7→ φ−
∫ t

t0

F (ν)dν,

and applying the fundamental theorem of calculus. Reminding ourselves that the flow is

assumed to be incompressible, ρ will be a constant function of pressure, and from equations

(1.17) and (1.18), we finally obtain our desired form of a Bernoulli equation:

(1.19) φt +
1

2
u2j +

p

ρ
+ gx3 = 0.

2The velocity gradient tensor ∇u can be written as a sum of symmetric and antisymmetric tensors; the

antisymmetric part corresponds to the rotation tensor Rij (cf. [4, pp. 40-41]).



Chapter 2

Water wave theory

In this outset analysis, we formulate the fluid interface problem with imposed uniform shear

flow, which is well known for exhibiting Kelvin-Helmholtz instability. One goal is to arrive

at a linear formulation of the field equations and boundary conditions, and proceed to

derive a linear dispersion relation. We will then revisit some of these dispersion relations

in Chapter 4, in connection with the nonlinear model equations.

2.1 Fluid interface waves

Our problem of study involves a system of two fluids, separated by a sharp density interface

denoted by z = η(x, y, t). As suggested from the notation, we will keep the initial treatment

general and include all spatial dimensions x, y and z in a standard Cartesian coordinate

system1. The variable t denotes time. See Figure 2.1 for a depiction. The subsequent

developments are similar to those found in [4, pp. 493-496].

The total flow in each layer is regarded as a superposition of the imposed uniform

background flow and the perturbed flow arising from the interface disturbance (cf. [6, pp.

]). Before the interface is disturbed, the flow is solely steady and uniform, and consequently

irrotational. Kelvin’s circulation theorem (see eq. (1.4)) guarantees that it remains so. We

can then write the total flow in each layer in terms of the potentials φ′ and ψ′:

φ′ = U1x+ φ,(2.1)

ψ′ = U2x+ ψ,(2.2)

where φ and ψ denote the velocity potentials of the perturbed flow. It follows from the

1Although the problem is three-dimensional, we will refer to the wave propagation and corresponding

model equations as either one-dimensional (in the spatial variable x) or two-dimensional (in the spatial

variables x, y). It is to be understood that the vertical coordinate z and time t are always included.

7
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x

z

η(x, t)

h0ρ1

ρ2

U1

U2

Figure 2.1: Geometry of the fluid interface problem. The upper layer (index 2) is assumed to be

infinitely deep, while the lower layer (index 1) has a finite depth h0 measured from the undisturbed

interface located at z = 0. The variables ρ1 and ρ2 denote the densities of the lower and upper

layers, respectively. In both layers there is an imposed uniform shear flow, U1 and U2, in the x

direction. We further assume that ρ2 < ρ1.

incompressible continuity equation2 that φ′ and ψ′ must satisfy Laplace’s equation in the

respective layers. It is then immediate that φ and ψ, which are the primary unknowns,

must also each satisfy Laplace’s equation. Thus, the governing field equations are

4φ = 0, −h0 < z < η,(2.3)

4ψ = 0, η < z <∞,(2.4)

with boundary conditions

φx = 0, φy = 0, φz = 0, at z = −h0,(2.5)

ψx → U2, ψy → 0, ψz → 0 as z → +∞,(2.6)

and

(2.7)
n · ∇φ′ = n · ∇(U1x+ φ) = n · us,

n · ∇ψ′ = n · ∇(U2x+ ψ) = n · us,

p2 − p1 = τηxx,

 at z = η.(2.8)

(2.9)

In the last expressions, n is the local unit normal at the interface, us is the velocity of the

interface, p1 and p2 are the pressures in each layer, and τ is a positive parameter known as

the interfacial surface tension. The conditions in equation (2.5) are the no-slip and no-flow-

through boundary conditions. The expressions in equation (2.6) states that the velocity field

2The incompressible continuity equation, ∇ · u = 0, concerns the principle of mass conservation, and is

necessary alongside the momentum equation to give an adequate description of fluid flows.
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should remain uniform far from the fluid interface. Equations (2.7) and (2.8) are kinematic

conditions stating that the velocities in each layer at the interface must match the velocity

of the interface itself. The final dynamic condition (2.9) relates the pressure difference to

the interfacial tension (see Section 1.2). Letting f(x, y, z, t) = z−η(x, y, t), we can calculate

n as

n =
∇f
|∇f |

=

(
−ηxex − ηyey + ez

){
1 + η2x + η2y

}1/2
, z = η.

Assuming pure vertical interface velocity us = ηtez, we have from eqs. (2.7) and (2.8) that

n · ∇φ′ = −(U1 + φx)ηx − φyηy + φz{
1 + η2x + η2y

}1/2
=

ηt{
1 + η2x + η2y

}1/2
, z = η,

n · ∇ψ′ = −(U2 + ψx)ηx − ψyηy + ψz{
1 + η2x + η2y

}1/2
=

ηt{
1 + η2x + η2y

}1/2
, z = η,

or

(2.10) − (U1 + φx) ηx − φyηy + φz = ηt = − (U2 + ψx) ηx − ψyηy + ψz, z = η.

For pressure, we have the following Bernoulli equations (see eq. (1.19)):

φ′t +
1

2

∣∣∇φ′∣∣2 +
p1
ρ1

+ gz = C1, z = η.(2.11)

ψ′t +
1

2

∣∣∇ψ′∣∣2 +
p2
ρ2

+ gz = C2, z = η.(2.12)

Applying eqs. (2.11), (2.12) to the dynamic condition (2.8), keeping in mind the expressions

(2.1) and (2.2), we get

p2 − p1 = ρ2

(
C2 − ψ′t −

1

2

∣∣∇ψ′∣∣2 − gη)− ρ1(C1 − φ′t −
1

2

∣∣∇φ′∣∣2 − gη)
= ρ2

(
C2 − ψt −

1

2
U2
2 − U2ψx −

1

2
|∇ψ|2 − gη

)
− ρ1

(
C1 − φt −

1

2
U2
1 − U1φx −

1

2
|∇φ|2 − gη

)
= ρ1

(
φt + U1φx +

1

2
|∇φ|2 + gη

)
− ρ2

(
ψt + U2ψx +

1

2
|∇ψ|2 + gη

)
= τηxx,(2.13)

at z = η. The second to last equality arises from the fact that in the undisturbed state,

with φ = ψ = 0 and η = 0 the pressure must be continuous, so we require that [4, p. 495]

(p1)undisturbed = ρ1

(
C1 −

1

2
U2
1

)
= ρ2

(
C2 −

1

2
U2
2

)
= (p2)undisturbed .
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Linearization

Condition (2.10) can be linearized by neglecting higher order terms, and evaluating deriva-

tives at z = 0 instead of at z = η using a Taylor expansion [4, pp. 220-221]. We thereby

obtain

(2.14) −U1ηx + φz = ηt = −U2ηx + ψz, z = 0.

Similarly, the dynamic condition (2.13) can be linearized about z = 0 to give

(2.15) ρ1 (φt + U1φx + gη)− ρ2 (ψt + U2ψx + gη) = τηxx, z = 0.

2.2 Dispersion relation

To solve the Laplace problems (2.3), (2.4) subject to the conditions (2.5), (2.6), (2.14) and

(2.15), we apply the method of normal modes [4, pp. 469-470] and assume a sinusoidal

waveform in each layer when the interface is disturbed:

φ(x, z, t) = A1(z)eik(x−ct), ψ(x, z, t) = A2(z)eik(x−ct).

Substitution into the Laplace equations and dividing out the exponential factor results in

the two ODEs
dA1

dz
− k2A1 = 0,

dA2

dz
− k2A2 = 0,

whose general solutions are found to be

A1(z) = a1e
|k|z + b1e

−|k|z, A2(z) = a2e
|k|z + b2e

−|k|z.

With the conditions given in (2.5) and (2.6), we require that a2 = 0 and b1 = a1e
−2|k|h0 .

Now apply the linearized kinematic condition (2.14) to determine a1 and b2. We assume

an interfacial shape of the form η(x, t) = η0e
ik(x−ct), and thereby obtain

−U1ikη0e
ik(x−ct) + a1|k|(e|k|z − e−|k|z−2|k|h0)eik(x−ct) = −η0ikceik(x−ct)

= −U2ikη0e
ik(x−ct) − b2|k|eik(x−ct)−|k|z,

or

−U1ikη0 + a1|k|(e|k|z − e−|k|z−2|k|h0) = −ikcη0 = −U2ikη0 − b2|k|e−|k|z,

which, at z = 0, simplifies to

−U1ikη0 + a1|k|(1− e−2|k|h0) = −ikcη0 = −U2ikη0 − b2|k|.

Hence

a1 = i η0
U1 − c

1− e−2kh0
sgn(k), b2 = i η0(c− U2)sgn(k).
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Now substitute the expressions for φ, ψ and η into the linearized dynamic condition (2.15)

to obtain, after some algebraic manipulations, a quadratic equation in the wave speed c:{
ρ1k coth(kh0) + ρ2|k|

}
c2 −

{
2ρ1kU1 coth(kh0) + 2ρ2U2|k|

}
c(2.16)

+
{
ρ1U

2
1k coth(kh0) + ρ2U

2
2 |k|+ (ρ2 − ρ1)g − τk2

}
= 0.

Solving this equation for c, we extract the following linear dispersion relation:

c(k) =
ρ1U1kθ + ρ2U2|k|
ρ1kθ + ρ2|k|

± 1

ρ1kθ + ρ2|k|
(2.17)

·
{
τk2(ρ1kθ + ρ2|k|)− ρ1ρ2(U1 − U2)

2k|k|θ + (ρ1 − ρ2)(ρ1kθ + ρ2|k|)g
}1/2

,

where θ = coth(kh0).

Long-wave and short-wave approximations

One can obtain a long-wave or shallow water approximation of the above dispersion relation

(2.16). In this case, k will be small3, and from the expansion of the hyperbolic function in

its argument, we find that

(2.18) (kh0) coth(kh0) = 1 +
(kh0)

2

3
+O

(
(kh0)

3
)
≈ 1,

where the approximate equality holds for small kh0. So the long-wave approximation to the

dispersion relation (2.16) is{
ρ1 + ρ2h0|k|

}
c2 −

{
2ρ1U1 + 2ρ2h0U2|k|

}
c(2.19)

+
{
ρ1U

2
1 + ρ2h0U

2
2 |k|+ (ρ2 − ρ1)h0g − h0τk2

}
= 0.

For the opposite scenario, the short-wave or deep water approximation, the wave number

k is large. In a similar argument to that given in (2.18), the hyperbolic function coth(kh0)

may be replaced by unity to give{
ρ1k + ρ2|k|

}
c2 −

{
2ρ1U1k + 2ρ2U2|k|

}
c(2.20)

+
{
ρ1U

2
1k + ρ2U

2
2 |k|+ (ρ2 − ρ1)g − τk2

}
= 0,

which is the short-wave approximation to (2.16). The corresponding wave speed solutions

for the two cases can be extracted from (2.17) by applying the appropriate approximations

just described.

3In shallow water, h0 is small. Throughout this study, we are assuming that the undisturbed lower layer

depth h0 is fixed.
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2.3 Exact solution of a KdV-type equation

From our discussion of linear wave theory, we take a leap to look briefly at a nonlinear model

equation, which is taken up again later chapters. The Korteweg-de Vries (KdV) equation,

commonly written in the dimensionless form

(2.21) ut + 6uux + uxxx = 0

is well known for being an exactly solvable model equation describing the evolution of

unidirectional long-crested waves on a shallow water surface [5, pp. 1-16]. As we will see

in Chapter 5, the derived model equation for long waves on a density interface reduces to a

KdV-type equation when the upper layer shear velocity attains a certain value.

In light of this, we desire the exact solution, which is used to test the numerical imple-

mentation carried out later on. The subsequent derivation of solitary wave solutions of the

KdV equation is based on the material presented in [5, pp. 20-22].

When U = c0v0 in eq. (??), we obtain (writing u in place of η)

(2.22) ut + ux +
3

2
uux − γuxxx = 0,

with

γ =
1

2

τ

(ρ1 − ρ2)gh20
> 0.

We seek traveling wave solutions of (2.22), i.e. solutions in the form

u(x, t) = w(z), z = x− ct.

Substitution into (2.22) produces the ODE

−cdw
dz

+
dw

dz
+

3

2
w
dw

dz
− γ d

3w

dz3
= −cdw

dz
+
dw

dz
+

3

4

d

dz

(
w2
)
− γ d

3w

dz3
= 0.

This can be integrated once to give

(1− c)w +
3

4
w2 − γ d

2w

dz2
= E1,

where E1 is a constant of integration. We can now use w′ as an integrating factor. Then,

from a second integration we get

1

2
(1− c)w2 +

1

4
w3 − 1

2
γ

(
dw

dz

)2

= E1w + E2,

or

(2.23) γ

(
dw

dz

)2

=
1

2
w3 + (1− c)w2 − 2(E1w + E2).
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We require our solutions to be real and bounded, so we must have that

f(w) :=
1

2
w3 + (1− c)w2 − 2(E1w + E2) ≥ 0.

Posing the asymptotic conditions w, dw
dz
, d

2w
dz2
→ 0 as z → ±∞, leads to E1 = E2 = 0 and

f(w) = w2

(
1

2
w + (1− c)

)
≥ 0.

Equation (2.23) can be written as

dw

w
(
1
2
w + (1− c)

)1/2 = ±
√

1

γ
dz.

Assuming 0 < c < 1, and using the substitution w = 2(c− 1) sech2θ, results in

−2√
1− c

∫
dθ = ±

√
1

γ

∫
dz.

Consequently, our traveling wave solution takes the form

(2.24) u(x, t) = w(x− ct) = 2(c− 1) sech2

(
1

2

√
1− c
γ

(x− ct− x0)

)
,

where x0 is an arbitrary constant corresponding to a phase shift. A plot of the solution

(2.24) with c = 0.5 is given below.

−15 −10 −5 0 5 10 15
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Figure 2.2: Solitary wave solution of the KdV equation with c = 1
2 . We see that in our case the

profile is a wave of depression, for any admissible value of c between 0 and 1.





Chapter 3

Mathematical theory

The intention in this chapter is to review some mathematical concepts that is used through-

out the rest of the paper. It is by no means meant to be a comprehensive treatment of the

respective subjects, but rather to serve as an overview and a place for reference.

3.1 The Fourier and Hilbert transforms

An integral transform known as the Hilbert transform will be central to our upcoming study

in later chapters. It is related to the celebrated Fourier transform, which we will also use

extensively. Before defining these transforms and looking at a few of their properties, we

need the following definition.

Definition 3.1. The space Lp(Rn) is set of all complex-valued functions on Rn that are

p-th power integrable. That is, all functions f : Rn → C for which∫
Rn
|f |p dx <∞.

In general, the Lp spaces are defined in a measure theoretic framework (cf. [3, p. 409]),

where the integral is to be understood as a Lebesgue integral. Such a theory ultimately

becomes indispensable, but since it is not a requisite for deriving the desired results in

this paper, we will not belabor our discussion with this generalization. For our purposes,

the integral can be thought of as the traditional Riemann integral, and we will mostly be

concerned with the case where p = 1, 2 and n = 1, 2.

There are several conventions for defining the Fourier transform, and little conformity

in the literature. We have here chosen the definition convention from [3, p. 288].

Definition 3.2 (Fourier transform on L1). Let f ∈ L1(Rn). The Fourier transform of f ,

denoted by F [f ] (and sometimes by f̂), is given by

F [f ](y) = f̂(y) :=

∫
Rn
f(x)e−2πixy dx, y ∈ Rn,

15
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where xy = x1y1 + · · ·xnyn.

Defining the Fourier transform in this way is preferred here, because the factor 2π is

kept in the exponent and does not appear as a multiplicative factor outside the integrals,

giving the upcoming inversion formula and convolution theorem a tidier look. Moving on,

we have that if f, f̂ ∈ L1(Rn), then (cf. [3, p. 303])

(3.1) f(x) = F−1[f̂ ](x) =

∫
Rn
f̂(y)e2πixy dy,

which is occasionally referred to as the Fourier inversion formula. Due to linearity of

integration, F and F−1 are both linear operators. One can also demonstrate other basic

properties of the Fourier transform, e.g. how the Fourier transform works together with

differentiation. We summarize some of these results below.

Proposition 3.1. Let f , g ∈ L1(Rn), h ∈ L1(R). Then

(a) F [f ∗ g](y) = F [f ](y) · F [g](y)

(b) F
[
dn

dxn
h
]

(y) = (2πiy)nF [h](y)

(c) F
[

1
x2+a2

]
(y) = π

a
e−2πa|y|, a > 0

Equation (a) is the convolution theorem. We recall the definition of a convolution as

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y) dy =

∫
Rn
f(y)g(x− y) dy,

where the final equality follows from a change of variables.

Proof. We omit the proofs of the fairly standard results (a) and (b). A more general proof of

(b) involving partial derivatives can be found in [17, p. 33-34], where the domain of h need

not be restricted to the real line1. The sought Fourier transform in (c) can be computed

directly using contour integration. However, we have that

F−1
[
π

a
e−2πa|y|

]
(x) =

∫ ∞
−∞

π

a
e−2πa|y|e2πixy dy =

π

a

∫ 0

−∞
e2π(a+ix)y dy +

π

a

∫ ∞
0

e2π(−a+ix)y dy

=
π

a
lim
R→∞

[
1

2π(a+ ix)

(
1− e−2π(a+ix)R

)
+

1

2π(−a+ ix)

(
e2π(−a+ix)R − 1

)]
=

1

2a

[
1

a+ ix
− 1

−a+ ix

]
=

1

x2 + a2
.

Now apply the Fourier inversion formula (3.1) to get the desired result.

1However, the function is assumed to belong to a space of rapidly decreasing functions; the Schwartz

class S.
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We now turn to the Hilbert transform, for which we restrict our attention to functions

defined on R.

Definition 3.3 (Hilbert transform on R). Let f ∈ L1(R). The Hilbert transform of f ,

denoted by H[f ], is defined as

H[f ](x) := p.v.
1

π

∫
R

f(y)

x− y
dy = p.v.

1

π

∫
R

f(x− y)

y
dy = f ∗ 1

πx
,

where p.v. denotes the Cauchy principal value.

Recall that the Cauchy principal value is a way of coping with singularities in the interval

of integration. Assigning a value to such an integral is achieved through a limiting process

[12, p. 14]:

p.v.

∫ b

a

f(x) dx = lim
ε→0

(∫ t−ε

a

f(x) dx+

∫ b

t+ε

f(x) dx

)
,

where the function f has a singularity at x = t. We then proceed with a short lemma for

use in a proof later on.

Lemma 3.1. If f(x) = c, c ∈ R, then H[f ](x) = 0.

Proof. The calculation is straightforward from the definition:

H[f ](x) := p.v.
1

π

∫ ∞
−∞

c

x− y
dy =

c

π
lim
R→∞

lim
ε→0

(∫ x−ε

−R

1

x− y
dy +

∫ R

x+ε

1

x− y
dy

)

=
c

π
lim
R→∞

lim
ε→0

log

(
x+R

x−R

)
= 0.

Theorem 3.1 (Fourier and Hilbert transform). [12, p. 253] The Fourier and Hilbert trans-

forms are related by

F{H[f ]}(ξ) = −i sgn(ξ)F [f ](ξ).

To close this section, we want to establish a final result regarding the Hilbert transform,

which will be needed later in our derivation of the nonlinear evolution equations (see Chap-

ters 4 and 5). We will state it here as a theorem, although it might not be general enough

to deserve such a label. Its proof given here relies on several familiar results from complex

analysis, which have been put in Appendix A to avoid what we would consider a lengthier

digression.

Theorem 3.2. Let f(x) = eikx. Then

(3.2) H[f ](x) = −i sgn(k)eikx

for any k ∈ R.



Chapter 3. Mathematical theory 18

Proof. By definition, we want to evaluate2

H[f ](x) =
1

π

∫ ∞
−∞

eikt

x− t
dt.

Now, the singularity at t = x poses a difficulty. To circumvent this issue, we can integrate

along an indented path, as shown in Figure A.1.

For k > 0, let

F (z) =
1

π

1

z0 − z
eikz, z = x+ iy ∈ C,

and let CR, Cρ, L1 and L2 be as described in Definition A.1. Since F (z) is holomorphic on

and inside the contour C = CR ∪ L1 ∪ Cρ ∪ L2, we have by the Cauchy-Goursat theorem

(Theorem A.1) that ∫
C

F (z)dz = 0,

which can be rewritten to give∫
L1

F (z)dz +

∫
L2

F (z)dz = −
∫
CR

F (z)dz −
∫
Cρ

F (z)dz.

In the limits R→∞ and ρ→ 0, the first integral on the right vanishes by Jordan’s lemma3,

and the two integrals on the left formally become

1

π

∫ ∞
−∞

1

x0 − x
eikxdx.

Thus
1

π

∫ ∞
−∞

1

x0 − x
eikxdx = − lim

ρ→0
R→∞

∫
Cρ

F (z)dz = iπRes
z=z0

F (z),

where the final equality follows from Theorem A.2. The residue of F (z) can be evaluated

using its Laurent series representation:

F (z) = − 1

π
eikz0

1

z − z0
− 1

π
ikeikz0 +

1

2

1

π
k2eikz0(z − z0) + · · ·

from which we conclude that Res
z=z0

F (z) = − 1
π
eikz0 . Consequently,

1

π

∫ ∞
−∞

1

x0 − x
eikxdx = −ieikx0 , for k > 0.

For k < 0, the proof is similar, but in this case the paths CR and Cρ are in the lower

half-plane. One will find that (cf. [13, pp. 12-13])

1

π

∫ ∞
−∞

1

x0 − x
eikxdx = ieikx0

2We have changed the integration variable y to t, to avoid confusion with the complex number z = x+iy.
3f(z) = 1

π
1

z0−z in this application of Jordan’s lemma.
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For k = 0, F (z) is a constant function, and by Lemma 3.1 the Hilbert transform of a

constant function is zero. We finally conclude that

1

π

∫ ∞
−∞

1

x0 − x
eikxdx = −i sgn(k)eikx0 , for any k ∈ R.

which is the desired result after relabeling the symbols. This completes the proof.

3.2 Solving the half-plane Neumann problem

Let R2
+ denote the upper half-plane in R2, with boundary ∂R2

+. That is,

R2
+ = {(x, y) ∈ R2 : y > 0}, ∂R2

+ = {(x, y) ∈ R2 : y = 0}.

Here we will look at how one can use a Fourier transform method [8, pp. 182-190] to solve

the upper half-plane Neumann problem

(3.3)

4u(x, y) = 0, (x, y) ∈ R2
+,

uy = g(x), (x, y) ∈ ∂R2
+.

This boundary value problem will appear in our derivation of the nonlinear model equa-

tions in Chapters 4 and 5, and its solution is given here for the sake of completing the

discussion. To solve problem (3.3), we begin by taking the Fourier transform in the variable

x on both sides of the Laplace equation and using that ∂̂xu(ξ) = 2πiξû(ξ) (cf. Proposition

3.1), resulting in

F
[
uxx + uyy

]
(ξ, y) = −4π2 û(ξ, y) + ûyy(ξ, y) = 0,

or

ûyy(ξ, y) = 4π2 û(ξ, y).

For fixed ξ, this is an ODE in the variable y, with general solution

û(ξ, y) = A(ξ)e−2π|ξ|y +B(ξ)e2π|ξ|y.

We require û to be bounded as y →∞, therefore B(ξ) ≡ 0. Furthermore, because uy(x, 0) =

g(x), we have that

ûy(ξ, 0) = ĝ(ξ) = −2πA(ξ)|ξ|,

which gives

û(ξ, y) =
−ĝ(ξ)

2π|ξ|
e−2π|ξ|y = −i sgn(ξ)

ĝ(ξ)e−2π|ξ|y

2πiξ
.

So, according to Theorem 3.1

(3.4) u(x, y) = H

F−1
[
ĝ(ξ)e−2π|ξ|y

2πiξ

]
(x, y)

 ,
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where the Hilbert transform H is taken in the variable x. For the expression inside the

curly braces in eq. (3.4), we apply the convolution theorem:

u(x, y) = H

{
F−1

[
ĝ(ξ)

2πiξ

]
∗ F−1

[
e−2π|ξ|y

]
(x, y)

}
.

From eq. (c) in Proposition 3.1, we now get

(3.5) u(x, y) = H

{
F−1

[
ĝ(ξ)

2πiξ

]
∗
[

1

π

y

x2 + y2

]
(x, y)

}
.

Using that F
[
∂−1x h

]
(ξ) = ĥ(ξ)

2πiξ
, where the notation ∂−1x signifies an inverse differentiation

operator4, eq. (3.5) becomes

(3.6) u(x, y) = H

{[
∂−1x g

]
∗
[

1

π

y

x2 + y2

]
(x, y)

}
= H

{
∂−1x Py[g](x, y)

}
,

where we have applied the notation

Py[g](x, y) =

∫ ∞
−∞

y

(x− s)2 + y2
g(s)ds

for the Poisson integral operator (cf. [12, pp. 375]). Now,

u(x, 0) = H
{
∂−1x P0[g]

}
= H

{
∂−1x g

}
.

In the special case when the boundary function g(x) is given as a derivative, say g(x) =

G′(x), we have that

(3.7) u(x, y) = H
{
Py[G](x, y)

}
, u(x, 0) = H{G} .

This can be realized from eq. 3.5 by noting that

F−1
{
∂̂xG(ξ)

2πiξ

}
= F−1

{
2πiξĜ(ξ)

2πiξ

}
= G(x),

Alternatively, as pointed out earlier, one can view ∂x and ∂−1x as inverse operators in eq.

(3.6).

3.3 Discrete cosine transform

A discrete cosine transform (DCT) of a sequence of real numbers can be derived by applying

the discrete Fourier transform (DFT) to an even extension of that sequence. Different even

extensions of the sequence are possible, yielding different definitions of the DCT [15, p. 28].

4The usage of this notation in later developments are in formal arguments. It can also be found in [10].
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We will here choose an extension leading to a DCT that conforms with the developments

in [7] and [11], where the spectral collocation scheme is discussed (see Chapter 5), and where

the DCT is needed to compute the Fourier cosine coefficients. The subsequent derivation of

the DCT is based on that given in [15, pp. 27-29], but we will slightly modify the approach

to arrive at a final expression not containing complex exponential functions as in the cited

literature.

Let x(n), n = 0, 1, ..., N − 1, be a sequence of real numbers, and let y(n) be a 2N -point

even extension of x(n). That is,

(3.8) y(n) =

x(n), n = 0, ..., N − 1,

x(2N − 1− n), n = N, ..., 2N − 1.

The derivation of the DCT in [15] is based on (3.8). We will, with a similar approach, derive

a more ”direct” expression.

Let z(n) be the 4N -point sequence which is zero at even indices, and have the values of

y(n) (in order) at odd indices. More precisely, let

(3.9) z(n) =

y(n−1
2

), n = 2m+ 1,

0, n = 2m,
m = 0, 1..., 2N − 1.

By definition, the DFT of z(n) is given by

(3.10) Z(k) =
4N−1∑
n=0

z(n)wnk, w = e
−iπ
2N .

Applying the DFT to eq. (3.9), we get

Z(k) =
2N−1∑
m=0

z(2m+ 1)w(2m+1)k =
2N−1∑
m=0

y(m)w(2m+1)k,

where the first equality is due to fact that z(n) vanishes at even indices. We may further

use the definition of y(n) to write

Z(k) =
N−1∑
m=0

x(m)w(2m+1)k +
2N−1∑
m=N

x(2N − 1−m)w(2m+1)k(3.11)

=
N−1∑
m=0

x(m)
[
w(2m+1)k + w(−2m−1)k

]
= 2

N−1∑
m=0

x(m) cos

(
π

2N
(2m+ 1)k

)
,

where the second equality follows from a change of summation index and because w4Nk = 1

for integer k, and the last equality is due to Euler’s formula. From eq. (3.11) we define the

DCT of the sequence x(n).
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Definition 3.4 (Discrete cosine transform). Let x(n) be an N-point sequence of real num-

bers. The discrete cosine transform (DCT) of x(n) is given by

(3.12) C(k) =
N−1∑
n=0

x(n) cos

(
π

2N
(2n+ 1)k

)
, k = 0, ..., N − 1.

As pointed out, the discrete cosine transform will come up in Chapter 5 when we discuss

the numerical method and its spectral collocation scheme.



Chapter 4

Nonlinear model equations

This chapter presents a derivation of some two-dimensional nonlinear model equations of

waves primarily propagating in the x direction, with a weak transverse variation. Later we

will restrict our model to waves propagating in one direction; the direction of increasing

values of x. We close the chapter with a connection between the obtained model equation

and the dispersion relation derived in Chapter 2. Despite not having the numerical ma-

chinery at our disposal to analyze the two-dimensional equations arising, we present the

general derivation here partly to pave the way for future developments. Numerical methods

employed on a one-dimensional model is given in the next chapter.

4.1 Preliminaries

We begin by recalling the field equations and boundary conditions from Chapter 2. There

we argued that the velocity potentials for each fluid layer must satisfy a Laplace equation.

The velocity potentials φ, ψ and the interface deflection η are related and constrained under

kinematic and dynamic boundary conditions. To summarize our findings from earlier work,

we will like to study the problems

4φ = 0, −h0 < z < η,(4.1)

4ψ = 0, η < z <∞,(4.2)

subject to the boundary conditions

(4.3) −(U1 + φx)ηx − φyηy + φz = ηt,

−(U2 + ψx)ηx − ψyηy + ψz = ηt,

ρ1
(
φt + U1φx + 1

2
|∇φ|2 + gη

)
− ρ2

(
ψt + U2ψx + 1

2
|∇ψ|2 + gη

)
= τηxx,

(4.4)

(4.5)

which are evaluated at the interface z = η.

23



Chapter 4. Nonlinear model equations 24

Nondimensionalization

It is advantageous to recast the field equations (4.1)-(4.2) and boundary conditions (4.3)-

(4.5) in dimensionless form. Besides aiding the subsequent computations, a proper nondi-

mensional formulation of the equations helps reflecting the problem geometry and bring to

light the relative importance of terms by the size of appearing coefficients. To this end, we

apply the following scalings, where original variables appear with a prime [1, pp. 105-106],

[10]:

z′ = λZ, η′ < z′ <∞,
z′ = h0z, −h0 < z′ < η′.

As can be seen, the variables are normalized differently in each layer, reflecting the asym-

metry in length scales in the vertical direction. For the remaining variables, we let

x′ = λx, y′ = Λy, t′ =
λ

c0v0
t,

and

η′ = aη, φ′ =
agλv0
c0

φ, ψ′ =
agλv0
c0

ψ.

In these latter expressions, c0 =
√
gh0 is the limiting long-wave speed, and v20 = 1− ρ2

ρ1
. It

is helpful to introduce the dimensionless parameters

(4.6) ε =
h0
λ
, δ =

λ

Λ
, σ =

a

h0
, µ =

τ

(ρ1 − ρ2)gλ2
.

Throughout this study we will assume that the typical longitudinal wavelength λ is large

compared with the undisturbed depth h0, that λ is small compared to Λ, and that the wave

amplitude a is small compared to the depth h0. This will imply that the dimensionless

quantities ε, δ2, σ and µ are small, and they are further assumed to be of the same order.

Applying these scalings and the chain rule of differentiation, the kinematic conditions

(4.3)-(4.4) are readily converted to

ac0v0
λ

ηt +
a

λ

(
U1 +

agv0
c0

φx

)
ηx +

a2gλv0
c0Λ2

φyηy =
agλv0
c0h0

φz, z = ση,

ac0v0
λ

ηt +
a

λ

(
U2 +

agv0
c0

ψx

)
ηx +

a2gλv0
c0Λ2

ψyηy =
agv0
c0

ψZ , Z = εση,

or, upon diving out common factors and applying the expressions in (4.6),

ηt +

(
U1

c0v0
+ σφx

)
ηx + σδ2φyηy =

1

ε2
φz, z = ση,(4.7)

ηt +

(
U2

c0v0
+ σψx

)
ηx + σδ2ψyηy =

1

ε
ψZ , Z = εση.(4.8)
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In a similar manner, the dynamic condition (4.5) is converted to

η + φt +
U1

c0v0
φx +

1

2
σ

(
φ2
x + δ2φ2

y +
1

ε2
φ2
z

)
− ρ2
ρ1

[
ψt +

U2

c0v0
ψx +

1

2
σ
(
ψ2
x + δ2ψ2

y + ψ2
Z

)]
= µηxx, z = ση, Z = εση.(4.9)

Subtracting (4.7) from (4.8) yields

U2 − U1

c0v0
ηx + σ (ψx − φx) ηx + σδ2

(
ψy − φy

)
ηy =

1

ε
ψZ −

1

ε2
φz,

or

(4.10) ψZ =
1

ε
φz + ε

U2 − U1

c0v0
ηx + εσ (ψx − φx) ηx + εδ2σ

(
ψy − φy

)
ηy, z = ση, Z = εση,

after multiplying through by ε and rearranging. Lastly, we need the normalized version of

the Laplace equation (4.1),

4′φ′ = φ′x′x′ + φ′y′y′ + φ′z′z′ = 0,

which becomes

(4.11) 4φ = ε2φxx + ε2δ2φyy + φzz = 0, −1 < z < ση,

where 4 = ε2∂xx + ε2δ2∂yy + ∂zz is the normalized Laplace operator.

4.2 System of nonlinear equations

Formal asymptotic expansion

Similar to the treatment of shallow water surface gravity waves in [18, pp. 464-466], we

wish to solve (4.11) by expanding the velocity potential in a formal series about z = −1:

φ =
∞∑
n=0

(z + 1)nfn(x, y, t).

Substituting this expression into the normalized Laplace equation (4.11) yields(
4̃f0 + 2 · 1f2

)
+
(
4̃f1 + 3 · 2f3

)
(z + 1) +

(
4̃f2 + 4 · 3f4

)
(z + 1)2 + · · · = 0,

where 4̃ = ε2∂xx + ε2δ2∂yy. We thereby get

f2 =− 1

2!
4̃f0,

f3 =− 1

3 · 2
4̃f1 = − 1

3!
4̃f1,

f4 =− 1

4 · 3
4̃f2 =

1

4!
4̃2

f0,

f5 =− 1

5 · 4
4̃f3 =

1

5!
4̃2

f1,

...
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Applying the fluid bottom boundary condition φz(z = −1) = 0 (see eq. (2.5)), we obtain

φz(x, y,−1, t) =
∞∑
n=1

n(z + 1)n−1fn(x, y, t)
∣∣∣
z=−1

= f1(x, y, t) = 0.

From the expressions we found above:

f2m =
(−1)m

(2m)!
4̃2m

f0(x, y, t),

f2m+1 = 0, m = 0, 1, 2, . . . ,

and we arrive at

φ(x, y, z, t) =
∞∑
m=0

(−1)m

(2m)!
(z + 1)2m4̃2m

f0(x, y, t).

Relabeling f0 to f , and writing out the first few terms of the expansion gives

φ = f − ε2

2

(
fxx + δ2fyy

)
(z + 1)2 +

ε4

24

(
fxxxx + δ2fxxyy + δ4fyyyy

)
(z + 1)4 + · · · .

So

φz = −ε2
(
fxx + δ2fyy

)
(z + 1) +O(ε4),

which when substituted into equation (4.10) gives

(4.12) ψZ = −ε
(
fxx + δ2fyy

)
(1 + ση) +

U2 − U1

c0v0
ηx +O(ε2, εσ), Z = εση.

Elliptic PDE and its solution

The following derivation is based on that given in [10]. The second Laplace equation (4.2)

and the merged boundary condition (4.12) now yield the following upper half-plane Neu-

mann problem:

(4.13)

4ψ = 0, Z > εση,

ψZ = −ε(1 + ση)(fxx + δ2fyy) + εU2−U1

c0v0
ηx +O(ε2, εσ), Z = εση,

where 4 = ∂xx + δ2∂yy + ∂ZZ . The problem (4.13) may be shifted to the more tractable

half-plane problem

(4.14)

4ψ = 0, Z > 0,

ψZ = −ε(fxx + δ2fyy) + εU2−U1

c0v0
ηx, Z = 0,

achieved by expanding the boundary function ψZ in a Taylor series about Z = 0, and

dropping higher order terms. This type of Neumann problem was discussed in Chapter 3.
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Applying that theory here, we take the Fourier transform in x and y on both sides of the

normalized Laplace equation for ψ:

Fx,y
[
ψxx + δ2ψyy + ψZZ

]
(ξ, ν, Z) = −ξ2ψ̂ − δ2ν2ψ̂ + ψ̂ZZ = 0,

which for fixed ξ and ν is an ODE in Z. The (bounded) solution is

ψ̂ = C(ξ, ν) exp
{
−
√
ξ2 + δ2ν2Z

}
= C(ξ, ν) exp

{
−|ξ|

√
1 + δ2ν2/ξ2Z

}
.(4.15)

In (4.15), we have already neglected the unbounded part of the general solution, corre-

sponding to a positive exponent. From the boundary condition in (4.14), we have

ψ̂Z

∣∣∣
Z=0

= −C(ξ, ν)|ξ|
√

1 + δ2ν2/ξ2 = −ε
(
fxx + δ2fyy

)
+ ε

U2 − U1

c0v0
ηx,

giving

C(ξ, ν) =
1

|ξ|
√

1 + θ2
ε

(
f̂xx + δ2f̂yy +

U1 − U2

c0v0
η̂x

)
=

1

|ξ|
ε

(
1− 1

2
θ2 +

3

8
θ4 +O

(
θ5
))(

f̂xx + δ2f̂yy +
U1 − U2

c0v0
η̂x

)
, θ =

δν

ξ
,

where we have expanded the reciprocal square root in a Taylor series about θ = 0. Neglecting

higher order terms, we obtain

C(ξ, ν) =
1

|ξ|
ε

(
f̂xx +

U1 − U2

c0v0
η̂x

)
=

1

|ξ|
ε

(
iξf̂x + iξ

U1 − U2

c0v0
η̂

)
= i sgn(ξ)ε

(
f̂x +

U1 − U2

c0v0
η̂

)
and thus

(4.16) ψ̂ = i sgn(ξ)ε

(
f̂x +

U1 − U2

c0v0
η̂

)
exp

{
−|ξ|
√

1 + θ2Z
}
.

Similarly to the previous treatment, the exponential function may be expanded in powers

of θ:

exp
{
−|ξ|
√

1 + θ2Z
}

= exp
{
−|ξ|Z

}
exp

{
|ξ|
(

1−
√

1 + θ2
)
Z

}
= exp

{
−|ξ|Z

}(
1− 1

2
|ξ|Zθ2 +O

(
θ3
))

.

Substitution into eq. (4.16) and disregarding higher order terms in ε and δ2, gives

ψ̂(ξ, ν, Z, t) = −i sgn(ξ)ε

(
−f̂x −

U1 − U2

c0v0
η̂

)
exp

{
−|ξ|Z

}
,(4.17)
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where we have added a minus sign in front of the expression for convenience regarding what

follows. Applying Theorem 3.1, we get

ψ(x, y, Z, t) = H

{[
−εfx − ε

U1 − U2

c0v0
η

]
∗
[
F−1ξ

(
e|ξ|Z

)]}

= εH

{
PZ

[
U2 − U1

c0v0
η − fx

]}
,

where the Hilbert transform H is taken in the variable x. Recall that PZ is a Poisson

integral operator for the upper half-plane (see Chapter 3). We thereby get,

ψ(x, y, 0, t) = εH
[
U2 − U1

c0v0
η − fx

]
.

Consequently, to first order, we have

φt = ft, φx = fx, φy = fy, ψt = εH
[
U2 − U1

c0v0
ηt − fxt

]
,

ψx = εH
[
U2 − U1

c0v0
ηx − fxx

]
, ψy = εH

[
U2 − U1

c0v0
ηy − fxy

]
.

In addition, to higher order1,

φz = −ε2(fxx + δ2fyy)(1 + ση), ψZ = −ε(1 + ση)
(
fxx + δ2fyy

)
+
U2 − U1

c0v0
ηx.

Substitution of these expressions into the normalized dynamic condition (4.9) gives

η + ft +
U1

c0v0
fx +

1

2
σf 2

x(4.18)

− ερ2
ρ1
H
[
U2(U2 − U1)

c20v
2
0

ηx +
U2 − U1

c0v0
ηt −

U2

c0v0
fxx − fxt

]
− µηxx = O(ε2σ, σ2, σδ2).

We proceed by differentiating eq. (4.18) with respect to x, writing w = fx and neglecting

terms of higher order:

ηx + wt +
U1

c0v0
wx + σwwx(4.19)

− ερ2
ρ1
H
[
U2(U2 − U1)

c20v
2
0

ηxx +
U2 − U1

c0v0
ηxt −

U2

c0v0
wxx − wxt

]
− µηxxx = 0.

From eq. (4.19) it is clear that

(4.20) ηx + wt +
U1

c0v0
wx = O(ε, σ, µ).

1It will be clear later why we must retain these terms to higher order.
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Under the assumption that differentiation and the application of the Hilbert transform does

not alter this order relation (cf. [10, p. 172]), we get

(4.21) Hwxt = −Hηxx −
U1

c0v0
Hwxx +O(ε, σ, µ).

Furthermore, from the kinematic condition (4.7),

ηt +

(
U1

c0v0
+ σfx

)
ηx + δ2σfyηy = − 1

ε2
ε2
(
fxx + δ2fyy

)
(1 + ση).

This gives

(4.22) ηt +
U1

c0v0
ηx + wx = O(σ, δ2),

and under the same assumptions leading to eq. (4.21),

(4.23) Hηxt = − U1

c0v0
Hηxx −Hwxx +O(σ, δ2).

Upon substituting eqs. (4.21) and (4.23) into eq. (4.19) and neglecting higher order terms,

we obtain the first model equation for our nonlinear system:

ηx + wt +
U1

c0v0
wx + σwwx

− ερ2
ρ1
H

[
2
U1 − U2

c0v0
wxx +

(U1 − U2)
2

c20v
2
0

ηxx + ηxx

]
− µηxxx = 0.(4.24)

The second model equation in our system is eq. (4.7) rewritten with the obtained expressions

for φ and its derivatives (the notation ∂−1x is explained in Chapter 3):

(4.25) ηt +
U1

c0v0
ηx + wx + σ (wη)x + δ2

(
∂−1x w

)
yy

= 0.

Equations (4.24) and (4.25) constitute our system of nonlinear evolution equations.

4.3 Wave propagation in one direction

We now focus our attention on waves propagating primarily in the positive x direction.

As we will see, the system consisting of eqs. (4.24) and (4.25) reduces to a single model

equation (cf. [10, p. 173]). As in the literature just cited, we wish to obtain a model

equation correct to first order in the parameters ε, σ, µ and δ2 (recall that they are all

assumed to be of the same order). Therefore, we employ the ansatz

(4.26) w = η + εA+ σB + µC + δ2D,
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where A, B, C and D are functions of η and its derivatives. Substitution of eq. (4.26) into

eq. (4.24), again after neglecting higher order terms, yields

ηt +

(
1 +

U1

c0v0

)
ηx + ε

[
At +

U1

c0v0
Ax −

ρ2
ρ1

(
U2 − U1

c0v0
− 1

)2

Hηxx

]
+ σ

[
Bt +

U1

c0v0
Bx + ηηx

]
+µ

[
Ct +

U1

c0v0
Cx − ηxxx

]
+ δ2

[
Dt +

U1

c0v0
Dx

]
= 0.(4.27)

Similarly, eq. (4.25) becomes

ηt +

(
1 +

U1

c0v0

)
ηx + ε [Ax] + σ [Bx + 2ηηx] + µ [Cx] + δ2

[
Dx + ∂−1x ηyy

]
= 0.(4.28)

Since w is a function of η and its derivatives, and because

ηt = −
(

1 +
U1

c0v0

)
ηx +O(ε, σ, µ, δ2),

we may replace At by −Ax in (4.27), and similarly for B, C and D. This substitution is

correct to second order (cf. [10, p. 173] and [18, p. 466]). Now, for eqs. (4.27) and (4.28)

to be consistent with each other, we require that

Ax =

(
U1

c0v0
− 1

)
Ax −

ρ2
ρ1

(
U2 − U1

c0v0
− 1

)2

Hηxx,

Bx + 2ηηx =

(
U1

c0v0
− 1

)
Bx + ηηx,

Cx =

(
U1

c0v0
− 1

)
Cx − ηxxx,

Dx + ∂−1x ηyy =

(
U1

c0v0
− 1

)
Dx.

After rearranging and integrating with respect to x, we obtain

A = −ρ2
ρ1

(
2− U1

c0v0

)−1(
U2 − U1

c0v0
− 1

)2

Hηx, B = −1

2

(
2− U1

c0v0

)−1
η2,

C = −
(

2− U1

c0v0

)−1
ηxx, D = −

(
2− U1

c0v0

)−1
∂−1x ∂−1x ηyy.

Recalling eq. (4.26) and substituting this into the second model equation (4.25), we finally

obtain the unidirectional model equation

ηt +

(
1 +

U1

c0v0

)
ηx + σ

[
2−

(
2− U1

c0v0

)−1]
ηηx − ε

(
2− U1

c0v0

)−1(
U2 − U1

c0v0
− 1

)2
ρ2
ρ1
Hηxx

− µ
(

2− U1

c0v0

)−1
ηxxx + δ2

[
1−

(
2− U1

c0v0

)−1]
∂−1x ηyy = 0.(4.29)
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Special cases

In the case when there is no imposed shear flow, U1 = U2 = 0, eq. (4.29) reduces to

(4.30) ηt + ηx +
3

2
σηηx −

1

2
µηxxx +

1

2
δ2∂−1x ηyy = 0.

Upon differentiating both sides of (4.30) with respect to x, we obtain a form of the

Kadomtsev-Petviashvili (KP) equation

(4.31)

(
ηt + ηx +

3

2
σηηx −

1

2
µηxxx

)
x

+
1

2
δ2ηyy = 0,

which can be seen as a two-dimensional generalization of the KdV equation [5, p. 38].

If we on the other hand restrict our model (4.29) to one dimension, i.e. neglecting the

y derivative term, and assume only U1 = 0, we get (writing U = U2)

(4.32) ηt + ηx +
3

2
σηηx − ε

1

2

ρ2
ρ1

(
U

c0v0
− 1

)2

Hηxx − µ
1

2
ηxxx = 0,

which is the model equation we will study numerically in Chapter 5 after applying an

additional normalization.

4.4 Linearized model equation and dispersion relation

The model system consisting of eqs. (4.24) and (4.25) may be linearized to obtain a single

linear evolution equation. First, let us put the system back in dimensional form:

gv20ηx + wt + U1wx + wwx −
ρ2
ρ1
H
[
2(U1 − U2)h0wxx + (U1 − U2)

2ηxx + c20v
2
0ηxx

]
(4.33)

− τ

ρ1
ηxxx = 0,

ηt + U1ηx + h0wx + (wη)x = 0.(4.34)

Eq. (4.34) may be rewritten like

wx = − 1

h0
(ηt + U1ηx) + quadratic terms,

where by quadratic terms we mean quadratic terms in η, w and their derivatives. Upon

neglecting these we obtain

wxt = − 1

h0
(ηtt + U1ηxt), wxx = − 1

h0
(ηxt + U1ηxx), wxxx = − 1

h0
(ηxxt + U1ηxxx).

Substituting these expressions into eq. (4.33), we arrive at the linearized model equation

ηtt + (U2
1 − c20v20)ηxx + 2U1ηxt + h0

ρ2
ρ1
H
[
2(U2 − U1)ηxxt + (U2

2 − U2
1 + c20v

2
0)ηxxx

]
(4.35)

−h0τ
ρ1

ηxxxx = 0.
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Now, if we assume simple sinusoidal waveforms (cf. Chapter 2)

(4.36) η = eik(x−ct),

eq. (4.35) gives the dispersion relation

ω2+2
{
h0R(U1 − U2)k|k| − U1k

}
ω(4.37)

+

{(
U2
1 − C2

0

)
k2 + h0R

(
C0 + U2

2 − U2
1

)
k2|k| − h0

τ

ρ1
k4
}

= 0,

where we have put C0 = c0v0 and R = ρ2
ρ1

.

To make matters simpler, and to conform with what is done in Chapter 5, we will in the

remainder of this section assume that U1 = 0, and write U2 = U . Applying this to (4.37)

and completing the square yields the solutions

(4.38) ω = ck = h0RU |k|k ±
{
C2

0k
2 − h0R(C2

0 + U2
2 )|k|k2 + h0

τ

ρ1
k4
}1/2

.

We see from the expression (4.38) that the solutions are stable only for U in the vicinity of

C0, as the sinusoidal waveforms (4.36) will feature exponential growth for imaginary values

of c.

However, we can arrive at a different dispersion relation, one that conforms with the

developments of Chapter (2). Recalling eq. (4.22) (this time with U1 = 0), we can replace

the system consisting of eqs. (4.33) and (4.34) with

gv20ηx + wt + wwx +RH
[
h0wxt + 2Uwxx − U2ηxx

]
− h0

τ

ρ1
ηxxx = 0,(4.39)

ηt + h0wx + (wη)x = 0.(4.40)

With similar arguments like those leading to eq. (4.37), the dispersion relation for the

system consisting of eqs. (4.39) and (4.40) is

(4.41)
{

1 + h0R|k|
}
ω2 − 2

{
h0RU |k|k

}
ω +

{
h0RU2|k|k2 − C2

0k
2 − h0

τ

ρ1
k4
}

= 0,

which is the long-wave dispersion relation, eq. (2.19).



Chapter 5

Long wave dynamics for a liquid CO2

lake in the deep ocean

This chapter presents our article to be submitted, in its complete form.
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Long wave dynamics for a liquid CO2 lake in the deep ocean

Krister J. Trandal* and Henrik Kalisch�

Abstract

A long-wave model for the evolution of long waves at the interface of a deep and a shallow fluid
is put forward. The model allows for a uniform stream in one of the layers, and the existence
of interfacial tension. The model can be used to study the dynamics of the interface between
liquid CO2 and seawater in the deep ocean, including the evolution of the hydrate layer.

If restricted to unidirectional waves the model has the form of a Benjamin-type equation
found by Benjamin [1]. Steady periodic solutions of the Benjamin equation are found using
a numerical bifurcation code based on a pseudo-spectral projection. The bifurcation patterns
are complex, with some branches featuring turning points and secondary bifurcations.

Keywords: interfacial waves, Kelvin-Helmholtz instability, liquid carbon-dioxide, deep ocean experi-

ments

1 Introduction

In this paper, we study the motion of a free interface between two inviscid fluid layers in the
presence of interfacial tension in the case when one of the fluids features a uniform flow parallel
to the interface.

The motivation for this problem comes from recent suggestions that it might be possible to
capture CO2 from combustion processes, and sequester the CO2 in the form of an underwater lake
in the deep ocean [6, 12]. Given predominant oceanic temperatures, CO2 condenses to the liquid
phase at a pressure of about 4100 kPa, corresponding to a depth of about 400m [3, 10]. CO2 in
liquid form is still slightly compressible, and if it is located at about 3000m depth in the ocean,
its density will be greater than that of seawater, and there is a possibility for stable storage in a
large underwater depression (see Figure 1).

Since the density of the CO2 is not much greater than that of seawater, the stability of the
interface is a critical issue. Any large-scale perturbation of the interface might lead to bubbling
up of CO2 and over decades to eventual depletion of the underwater storage site.

As it turns out, CO2 combines with H2O to form an icelike solid known as hydrate, and
the hydrate layer at the interface actually contributes to the stability of the interface. While it
is sometimes modeled by including capillarity at the interface, recent experiments have shown
that this approach to modeling the hydrate layer may not be appropriate as the hydrate layer is
often broken into several pieces by strong wave motion. Nevertheless, significant efforts have been
expended to evaluate the interfacial tension due to the hydrate layer. For example [14] reports on
laboratory experiments under high pressure while [3] reports on wavetank experiments at 4000m
depth designed to uncover the nature of the hydrate layer at large depth, and [7] investigates the
strength of the capillarity in the deep-sea experiments.

*Department of Mathematics, University of Bergen, 5020 Bergen, Norway, krister.trandal@gmail.com
�Department of Mathematics, University of Bergen, 5020 Bergen, Norway, henrik.kalisch@uib.no
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CO2 h0

Sea water (SW)

Air

Figure 1: A lake of liquid CO2 in a depression on the sea floor.

In the current work, we put forward a simple model equation which describes the wave motion
at an interface between a shallow and a deep fluid. For the sake of being explicit, it is assumed
that the upper layer is infinite, and features a background current.

We study the case of interfacial waves which are long when compared to the depth of the
lower fluid. In this case, the problem is readily reduced to relatively simple model equations of
Boussinesq type. The equations feature a non-local term which arises due to the large depth of the
upper fluid. This dispersive term is in competition with the third-order term which originates from
the inclusion of capillarity. In addition, there is a term which is due to the nonzero background
stream of the upper fluid which is motivated by the modeling of bottom currents in the ocean.

Since the uniform stream in the upper layer drives waves predominantly in a single direction,
it is natural to restrict the system to a unidirectional model. If this is done, a single model
equation appears. The equation has the form

ηt + ηx +
3

2
ηηx − βHηxx − γ ηxxx = 0,

for certain values of β and γ which will be obtained in the body of the paper. As it turns out,
this equation is similar to an equation found by Benjamin [1, 8], but the presence of the uniform
flow in the upper fluid features prominently in one of the coeffifients. In order to solve this
equation, we resort to a recently published open-source Python solver called SpecTraVVave [9].
In particular, we analyze the bifurcation diagram for steady solutions of the equation, and show
that it features a number of interesting features such as turning points, secondary bifurcations
and interconnected branches.

2 Problem formulation

The situation of study in this work will be a two-fluid system, separated by a sharp density
interface located in the undisturbed state at z = 0 in a two-dimensional Cartesian xz-coordinate
system. The fluids are assumed to have constant but possibly different densities, and the flow to
be inviscid and irrotational in each layer. Furthermore, the velocity of the basic flow1 is assumed

1We adopt the terminology from [4]. The term basic flow refers to the background flow that is present indepen-
dent of interface deflection. The term disturbed flow then describes the flow that arise due to interface deflection.
These two flows are superposed to give a total flow field. The potentials ψ and φ that appear represent the unknown
disturbed flow field.
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to be zero in the lower layer, while horizontal and uniform in the upper layer. See Figure 2 for a
depiction along with a further description of the variables involved.

x

z

η(x, t)

h0ρ1

ρ2
U

Figure 2: A schematic of the two-fluid interface problem. In the upper layer, with density ρ2, there is an
imposed horizontal shear velocity U . The upper layer is assumed to be infinitely deep while the lower layer,
with density ρ1, has finite, constant depth h0. The function z = η(x, t) represents the interface deflection
at position x and time t. For visual clarity the wave amplitude is greatly exaggerated.

From the incompressible continuity equation and the assumption of irrotational flow, one will
find that the velocity potential for each layer must satisfy Laplace’s equation. That is,

4ψ = 0 in η < z <∞,(1)

4φ = 0 in − h0 < z < η,(2)

together with the requirements that

ψx → U, ψz → 0 if z →∞,(3)

φx = 0, φz = 0 at z = −h0,(4)

for the problem at hand. Conditions (3) state that the flow field should remain uniform far
from the interface, while the conditions in eq. (4) are the no-slip and no flow-through boundary
conditions, respectively. We assume that the variation in the transverse y-direction is negligible.

At the fluid interface, the following kinematic and dynamic boundary conditions are employed:

(5) ηt + (ψx + U)ηx = ψz,

ηt + φxηx = φz,

p1 − p2 = −τηxx,

 at z = η,(6)

(7)

where p1 and p2 are the pressures in the fluid layers, measured close to the interface. The variable
τ is the interfacial tension parameter. The dynamic boundary condition (7) may be rewritten
with the help of a Bernoulli equation as

(8) ρ1

(
gη + φt + 1

2φ
2
x + 1

2φ
2
z

)
− ρ2

(
gη + ψt + 1

2ψ
2
x + Uψx + 1

2ψ
2
z

)
= τ ηxx.

3 Derivation of the model equations

We now desire to derive a model system describing long-crested waves on fairly shallow water,
and further restrict our attention to waves propagating in one direction on the interface between

3



two immiscible fluids. The subsequent derivation of the nonlinear equations is similar to the
treatment given in [8] and [13, pp. 464-466].

3.1 Nondimensionalization

In order to make the assumptions on the geometry of the domain and the waves visible, and be
able to deduce the relative order and importance of terms, we perform the following scaling on
the variables:

z′ = λZ in η′ < z′ <∞,
z′ = h0z in −h0 < z′ < η′,

where original variables appear primed. Notice the different scaling used in the two fluid layers.
Furthermore, we let

(9) x′ = λx, t′ =
λ

c0v0
t,

and

(10) η′ = aη, φ′ =
agλv0
c0

φ, ψ′ =
agλv0
c0

ψ,

where c0 =
√
gh0 is the limiting shallow water wave speed, and v20 = 1 − ρ2

ρ1
. We also introduce

the parameters

ε =
h0
λ
, σ =

a

h0
, µ =

τ

(ρ1 − ρ2)gλ2
,

where ε, σ, µ are assumed to be small and of the same order. The parameter µ is similar to
that of a reciprocal Bond number, and displays the relative importance of capillary effects versus
gravity effects2.

In normalized variables, the two kinematic boundary conditions (5), (6) are converted to

ηt +

(
σψx +

U

c0v0

)
ηx =

1

ε
ψZ ,(11)

ηt + σφxηx =
1

ε2
φz.(12)

The dynamic condition (8), after collecting terms and dividing out common factors, becomes

(13) η + φt +
1

2
σφ2x +

1

2

σ

ε2
φ2z −

ρ2
ρ1

{
ψt +

1

2
σψ2

x +
1

2
σψ2

Z +
U

c0v0
ψx

}
− µηxx = 0.

3.2 Nonlinear system of equations

Subtracting eq. (12) from eq. (11) and rearranging, we get

(14) ψZ =
1

ε
φz + ε

U

c0v0
ηx +O(εσ ), Z = εση.

2The Bond number Bo = (ρ1−ρ2)gL2

τ
, with L being a typical length scale, is not directly applicable here because

the top layer has infinite depth (cf. [8, p. 171]).
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In conjunction with the developments given in [13, pp. 460-466], we now desire to write a formal
expansion for φ in powers of the vertical coordinate z, in our case about z = −1:

φ =

∞∑
n=0

(z + 1)nfn(x, t).

Substitution into the normalized Laplace equation ε2φxx + φzz = 0 and the boundary condition
φz(z = −1) = 0 at the bottom of the lower layer give3

φ =
∞∑
n=0

(−1)n
ε2n

(2n)!
(z + 1)2n

∂2n

∂x2n
f(x, t) = f − 1

2
ε2(z + 1)2fxx +O(ε4),

where f0 is now labeled f . This expression for φ gives

(15) φz = −ε2(z + 1)fxx +O(ε4).

Hence, from (14) we get

(16) ψZ = −ε(1 + ση)fxx + ε
U

c0v0
ηx +O(ε2, εσ ), Z = εση.

We are then left with the Laplace equation for ψ. With the condition (16), the following elliptic
problem appears

(17)

{
4ψ = 0, Z > εση,

ψZ = −ε(1 + ση)fxx + ε U
c0v0

ηx +O(ε2, εσ), Z = εση,

Expanding the boundary condition function ψZ in a Taylor series about Z = 0 allows the problem
(17) to be shifted to the more tractable half-plane problem

(18)

{
4ψ = 0, Z > 0,

ψZ = −εfxx + ε U
c0v0

ηx +O(ε2, εσ), Z = 0.

The solution of this upper half-plane Neumann problem is given by

ψ = −εH

(
∂−1x P (Z)

[
fxx −

U

c0v0
ηx

])
+O(ε2, εσ),

where H is the Hilbert transform, which is defined by

H[f ](x) = p.v.
1

π

∫ ∞
−∞

f(x− y)

y
dy,

with p.v. denoting the Cauchy principal value. Throughout this paper, the Hilbert transform is
taken in the spatial variable x ∈ R. The notation P (·) signifies a Poisson integral operator for
the upper half-plane. Furthermore, we obtain

ψ(Z = 0) = −εH
(
fx −

U

c0v0
η

)
+O(ε2, εσ),

3All the terms of odd power vanish by virtue of the bottom layer boundary condition.
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and

ψx(Z = 0) = −εH
(
fxx −

U

c0v0
ηx

)
+O(ε2, εσ).

To briefly summarize, we have that, at the interface

φt = ft +O(ε2), φx = fx +O(ε2), φz = −ε2(1 + ση)fxx,

ψt = −εH
(
fxt −

U

c0v0
ηt

)
+O(ε2, εσ), ψx = −εH

(
fxx −

U

c0v0
ηx

)
+O(ε2, εσ), ψZ = O(ε).

Substitution of these expressions into the normalized dynamic condition (13) gives

η + ft +
1

2
σf2x + ε

ρ2
ρ1
H

(
fxt −

U

c0v0
ηt +

U

c0v0
fxx −

U2

c20v
2
0

ηx

)
− µηxx = O(ε2, εσ, σ2, ...).

Differentiating with respect to x and writing w = fx yields

(19) ηx+wt+σwwx+ ε
ρ2
ρ1
H

(
wxt −

U

c0v0
ηxt +

U

c0v0
wxx −

U2

c20v
2
0

ηxx

)
−µηxxx = O(ε2, εσ, σ2, ...).

From this, it is evident that ηx+wt = O(ε, µ, σ). Assuming that differentiation and the application
of H does not alter this order relation (cf. [8, p. 172]), we have

(20) Hwxt = −Hηxx +O(ε, µ, σ).

Also, from the kinematic condition (12),

ηt + σ(w +O(ε2))ηx + (1 + ση)wx +O(ε2) = 0.

This gives ηt + wx = O(ε2, σ) and, under the same assumptions leading to (20),

(21) Hηxt = −Hwxx +O(ε2, σ).

Substitution of (20) and (21) into (19) results in

ηx + wt + σwwx + ε
ρ2
ρ1
H

(
2
U

c0v0
wxx − ηxx −

U2

c20v
2
0

ηxx

)
− µηxxx = O(ε2, εσ, σ2, ...)

Neglecting terms of quadratic and higher order in ε, σ and µ, we obtain the system

(22)

ηx + wt + σwwx + ερ2ρ1

(
2U
c0v0
Hwxx −Hηxx − U2

c20v
2
0
Hηxx

)
− µηxxx = 0,

ηt + wx + σ(ηw)x = 0.

Changing back to dimensional variables, the model system (22) becomes

(23)

gv20ηx + wt + wwx + ρ2
ρ1

(
2Uh0Hwxx − c20v20Hηxx − U2Hηxx

)
− τ

ρ1
ηxxx = 0,

ηt + h0wx + (ηw)x = 0.
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3.3 Unidirectional wave propagation

As mentioned our desire is to derive a model for waves propagating in one direction, so let us
restrict our attention to waves propagating to the right. The nondimensional system (22) will
serve as the outset for our development. To find solutions to first order in ε, σ and µ we propose
the ansatz (cf. [8, p. 173])

w = η + εA+ σB + µC

where A, B and C are functions of η and its derivatives. Substituting this expression into the
nondimensional system (22) and disregarding higher order terms, we get

(24)

ηt + ηx + ε

[
At − ρ2

ρ1

(
U
c0v0
− 1
)2
Hηxx

]
+ σ (Bt + ηηx) + µ (Ct − ηxxx) = 0,

ηt + ηx + εAx + σ (Bx + 2ηηx) + µCx = 0.

Because A = A(η, ηt, ηx....), we may replace At by −Ax to quadratic order in ε, and similarly for
B and C. Doing so, the system (24) becomes

(25)

ηt + ηx + ε

[
−Ax − ρ2

ρ1

(
U
c0v0
− 1
)2
Hηxx

]
+ σ (−Bx + ηηx) + µ (−Cx − ηxxx) = 0,

ηt + ηx + εAx + σ (Bx + 2ηηx) + µCx = 0,

after higher order terms have been neglected. For consistency between the equations in (25), we
require

Ax = −Ax −
ρ2
ρ1

(
U

c0v0
− 1

)2

Hηxx,

Bx + 2ηηx = −Bx + ηηx,

Cx = −Cx − ηxxx,

which after rearrangement and integration gives

A = −1

2

ρ2
ρ1

(
U

c0v0
− 1

)2

Hηx, B = −1

4
η2, C = −1

2
ηxx.

Consequently,

w = η − ε1

2

ρ2
ρ1

(
U

c0v0
− 1

)2

Hηx −
1

4
ση2 − 1

2
µηxx.

Substituting this expression for w into the second equation in (22) and dropping quadratic terms,
we obtain the model equation

(26) ηt + ηx + σ
3

2
ηηx − ε

1

2

ρ2
ρ1

(
U

c0v0
− 1

)2

Hηxx − µ
1

2
ηxxx = 0.

In equation (26), the quantities ε, σ and µ are unknown (they contain the unknown wave param-
eters a and λ). To circumvent this issue for the purpose of studying the equation numerically, we
will subsequently return to dimensional variables and from there apply a second normalization.
The model equation (26) in dimensional variables takes the form

(27)
1

c0v0
ηt + ηx +

1

h0

3

2
ηηx − h0

1

2

ρ2
ρ1

(
U

c0v0
− 1

)2

Hηxx −
1

2

τ

(ρ1 − ρ2)g
ηxxx = 0.
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We now apply a normalization similar to that given in [2]. As before, original variables appear
with a prime.

x′ = h0x, z′ = h0z, η′ = h0η, t′ =
h0
c0v0

t.

Substituting these expressions into (27) and applying the chain rule of differentiation, we finally
arrive at the model equation

(28) ηt + ηx +
3

2
ηηx − βHηxx − γ ηxxx = 0,

where

(29) β =
1

2

ρ2
ρ1

(
U

c0v0
− 1

)2

, γ =
1

2

τ

(ρ1 − ρ2)gh20
.

4 Numerical method

In this section, the numerical procedure for approximating traveling wave solutions of eq. (28)
is presented. The scheme is a spectral collocation method combined with a numerical continu-
ation procedure for solving the nonlinear algebraic system that arise, and is implemented in a
Python-based solver called SpecTraVVave. We will here elucidate the main features of the nu-
merical method used in the package, briefly repeating what is presented in [9] to make the current
discussion comprehensive. More details on workflow and class descriptions can be found in the
source just cited and in the online repository [11].

4.1 Preamble

The package SpecTraVVave is written to tackle nonlinear dispersive equations of the general form

(30) ut +
[
f(u)

]
x

+ L[ux] = 0,

where L is a linear, self-adjoint operator, and f : R → R satisfies f(0) = f ′(0) = 0, in addition
to some growth conditions [9, p. 3]. Furthermore, we regard L as a Fourier multiplier operator.
That is,

(31) L̂[u](ξ) = α(ξ)û(ξ).

Our model equation (28) falls into this category, with

(32) f(u) =
3

4
u2, L = 1− βH ∂x − γ ∂2x,

where β and γ are as defined in (29). The so-called flux function f and the multiplier function (or

symbol) α are needed to run the solver. Using that ∂̂xu(ξ) = iξû(ξ), and Ĥu(ξ) = −i sgn(ξ)û(ξ)
(cf. [9, p. 2]), it is not difficult to derive that

(33) α(ξ) = 1− β|ξ|+ γξ2

for the model equation (28).
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4.2 Spectral collocation

The material presented here is analogous to that found in [9] and in [5]. As mentioned in the
latter citation, since L is a Fourier multiplier operator, it is ideal to use a Fourier basis in the
spectral method. The cited literature cover models like the Whitham equation, the Benjamin-Ono
equation and the Benjamin equation. Our model equation is a type of Benjamin equation [1].

We are interested in computing traveling wave solutions of (30), i.e. solutions in the form

(34) u(x, t) = φ(w), w = x− ct.

Substitution into (30) and applying the chain rule gives

(35) −c dφ
dw

+
d

dw

[
f(φ)

]
+ L dφ

dw
= 0.

Integrating once with respect to w yields

(36) −cφ+ f(φ) + Lφ = B,

where B is a constant of integration.
We will further restrict our attention to even periodic solutions of (30). As pointed out in [9,

p. 3] this allows us to use a cosine collocation instead of a collocation founded on a more general
Fourier basis. Also, because our solutions are even, the method will only need to compute half a
solution profile, with the other half constructed by virtue of symmetry.

To be specific regarding the spectral projection, we desire to find approximate solutions in the
space

(37) SN = spanR

{
cos(κlx) : κl = 2π

L l, 0 < l < N − 1
}
⊂ L2(0, L).

The domain is discretized with the collocation points

(38) xn =
L

2

2n− 1

2N
, 1 ≤ n ≤ N.

We then look for a function φN ∈ SN satisfying the equation

(39) −c φN (xn) + f(φN )(xn) + LN [φN ](xn) = 0

at each collocation point xn, yielding a nonlinear algebraic system of N equations in N unknowns,

(40) F (φN , c) = 0, F : RN+1 → RN ,

which can be solved using Newton’s method. As φN is a linear combination of cosines, i.e.

(41) φN (x) =

N−1∑
l=0

ζl cos(κlx),

its coefficients ζl can be computed using the discrete cosine transform (DCT), yielding

(42) ζ0 =
1

N
C0, ζl =

2

N
Cl, l = 1, ..., N − 1,

where the DCT {Cl}N−1l=0 consists of

Cl :=
N−1∑
n=0

φN (xn+1) cos

(
π

2N
(2n+ 1)l

)
=

N∑
n=1

φN (xn) cos(κlxn), l = 0, ..., N − 1.

9



In (39), LN is a discrete version of the operator L. Because L is linear, and because eq. (39)
is enforced at the N collocation points, we can evaluate the terms LN [φN ](xn) using matrix
multiplication. More specifically, we have that

(43) LN [φN ](xi) =

N∑
j=1

LN (i, j)φN (xj),

where LN (i, j) is the matrix defined by

(44) LN (i, j) =
1

N
α(0) +

2

N

N−1∑
l=1

α(κl) cos(κlxi) cos(κlxj).

In (44), α(·) is the Fourier multiplier function of the operator L, as defined in eq. (31).

4.3 Numerical continuation and bifurcation branch navigation

SpecTraVVave employs a continuation procedure to compute the next solutions of the system
(46) and navigate the bifurcation branches. To deal with turning points on the bifurcation curve,
both the phase speed and the wave amplitude are assumed to be depending on some parameter,
say

(45) a = a(θ), c = c(θ).

The parameter θ is unknown and is to be computed from the extended nonlinear system

(46) F



φN (x1)
φN (x2)

...
φN (xN )

B
θ


=



−c φN (x1) + f(φN )(x1) + LN [φN ](x1)−B
−c φN (x2) + f(φN )(x2) + LN [φN ](x2)−B

...
−c φN (xN ) + f(φN )(xN ) + LN [φN ](xN )−B

Ω (φN , a, c, B)
φN (x1)− φN (xN )− a


=



0
0
...
0
0
0


In the system (46), Ω(φN , a, c, B) is the boundary condition, and the SpecTraVVave package

offers several choices that can be employed. For our study, we will employ the so-called Mean()

boundary condition. That is, the condition that the mean of a solution be zero over the region
of interest. This choice has roots in the physics of the problem: The mean of a solution profile
over, say, a wavelength will have to be zero due to mass conservation (no fluid leaving the lower
region, and interface is initially at rest). The numerical continuation works in a predictor-corrector
fashion. From two successive points on the bifurcation curve,

P1 = (c1, a1), P2 = (c2, a2),

i.e. two solutions of (46), we compute the direction vector

(47) d = (c2 − c1, a2 − a1) = (dc, da).

We proceed to an initial guess P3 for the next solution by moving a small increment s from P2 in
the direction d:

(48) P3 = P2 + s · d = (c2 + s · dc, a2 + s · da).

This is the prediction step. Further, we require the solution P∗ to lay on the line orthogonal to
the one spanned by d:

(49) P∗ = P3 + θ · d⊥ =
(
c3 + θ · dc⊥, a3 + θ · da⊥

)
, dc⊥ = −da, da⊥ = dc.
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5 Results and concluding remarks

In the special case when U = c0v0, our derived model equation (28) reduces to the KdV-type
equation

(50) ut + ux +
3

2
uux − γuxxx = 0,

which is well-known for being an exactly integrable equation, with solitary wave solutions

(51) u(x, t) = 2(c− 1) sech2

(
1

2

√
1− c
γ

(x− ct− x0)

)
.

Having an exact solution at our disposal, it is desirable to test the accuracy of the numerical
routine. Table 1 summarizes our findings. As can be seen the convergence is rather quick, in fact

grid size log10(||uexact − u||)L2 log10(||uexact − u||)L∞ Ratio of successive L2 errors

32 -2.30473 -1.55271

64 -3.39842 -2.50547 12.407

128 -6.98265 -6.06670 3839.085

Table 1: Errors for the KdV equation.

exponential, with increasing grid size.
We then did multiple runs of different values for the shear velocity U , with a wide range of

admissible wave numbers (corresponding for the most part to positive speed c). A plot like that
in Figure 3(a) was not uncommon, showing three terminating and connecting bifurcation brances,
and the wave profiles at the points of connection. As can be seen, the profiles overlap, giving
evidence to secondary bifurcations. The KdV case U = c0v0 did not display such behavior, but
values close to the critical value of c0v0 did show terminating branches.

It was then natural to pose the question of whether this is unique behavior for the KdV-
type equation, i.e. that the non-termination of branches is a closed condition to the KdV case.
Investigating this issue further, our numerical findings point to a conclusion of a closed condition,
but we believe that this should be substantiated further, with more runs closer to the critical
value. One issue is then numerical accuracy regarding the computation of the constant β. Figure
4 shows the case U = c0v0 + 0.1.

A Evaluation of the surface tension parameter

A quantification of the surface tension parameter τ will now be given. To get an initial approx-
imation, we assume that instabilities are mainly due to short waves. The short wave dispersion
relation can be shown to be

(52) c =
ρ2U

ρ1 + ρ2
± 1

(ρ1 + ρ2)k

{
(ρ1 + ρ2)τk

3 − ρ1ρ2U2k2 + (ρ21 − ρ22)gk
} 1

2

Recalling that the interface Fourier modes are assumed to be of the form η = η0e
i(kx−ωt) =

η0e
ik(x−ct), it is clear that imaginary values of c yield solutions with exponential growth. To avoid

this, we require that the discriminant from the approximate expression (52) satisfies

(53) Dapprox(k) := (ρ1 + ρ2)τk
2 − ρ1ρ2U2k + (ρ21 − ρ22)g > 0.
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(a) Three points of bifurcation branch termination.
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(b) Wave profiles at the connection point A, for wave num-
bers k3 = 1.85 (dashed) and k∗3 = 14.79997 (solid).
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(c) Wave profiles at the connection point B, for wave num-
bers k2 = 1.30 (dashed) and k∗2 = 15.60001 (solid). This
plot is zoomed in, to give an enhanced view of the over-
lapping profiles.
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(d) Wave profiles at the connection point C, for wave num-
bers k1 = 0.95 (dashed) and k∗1 = 16.15004 (solid).

Figure 3: Multiple connecting bifurcation curves for shear velocity U = 2c0v0, with wave profile at each
point of connection. The branches connect at the points A = (0.2918, 1.271), B = (0.6102, 2.126) and
C = (0.8471, 2.795)
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(a) Two curves can be seen turning, on their way to a
termination point.
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(b) A close-up on one of the turning branches in panel
(a). Point A on the branch has approximate coordinates
(0.963, 0.250), and B has approximate coordinates (0.957,
0.227).
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(c) Solution profile at the point A.
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(d) Solution profile at the point B. One can see on the
rather uniform profile that a termination point is being
approached.

Figure 4: Bifurcation branches and selected solution profiles for the case U = c0v0 + 0.1, with wave
numbers running from 0.05 to 1.00.
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(a) Typical bifurcation branch plot for the KdV case
U = c0v0, with wave numbers ranging from 0.05 to
1.00.
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(b) Typical KdV solution at the end of the branch corre-
sponding to k = 0.5.

Figure 5: Bifurcation branches and solution profiles for the KdV-type equation. No turning or terminating
curves are present.

Differentiating Dapprox(k) with respect to k, we find that (53) holds true if

(54) τ =
ρ21ρ

2
2U

4

4(ρ1 + ρ2)(ρ21 − ρ22)g
.

An investigation of a deep ocean experiment with a CO2 pool lowered to about 4000 m was
carried out in [7]. From a conducted thruster experiment the authors studied the dynamics of
the CO2-seawater interface, specifically how it responded to various shear flow velocities. It was
found that at a thruster setting yielding a critical shear velocity Uc = 17.6 cm/s, the interface
became turbulent.

Using the critical velocity U = Uc, in addition to the values from Table 2, we find from eq.
(54) that τ ≈ 0.21. This approximate value for τ may be used further in the full dispersion
relation to obtain a more accurate approximation to the interfacial surface tension. This time,
instead of differentiating the discriminant in the dispersion relation, denoted by D(k), we wrote
a Python program to find a value for τ that makes minkD(k) positive and close to zero. Our
finding is that

τ ≈ 0.22003

Parameter Value Units Description

g 9.81 m/s2 acceleration of gravity
h0 0.11 m lower layer depth (cf. [7])
ρ1 1077.0 kg/m3 lower layer density (cf. [7])
ρ2 1045.7 kg/m3 upper layer density (cf. [3])
Uc 0.176 m/s critical shear velocity (cf. [7])

Table 2: Physical parameters and their values.
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Appendix A

Selected results from complex

analysis

Here we list some well-known key results from complex analysis. The results are presented

without proofs; the reader may consult [2] for such details. The cited literature is the

source from which the results have been drawn. Before presenting the results, let us set the

problem geometry in its own definition.

Definition A.1 (Geometry). Let z = x+ iy ∈ C, and

C0 = {z : z = R0e
iθ, 0 ≤ θ ≤ 2π, R0 > 0},

CR = {z : z = Reiφ, 0 ≤ φ ≤ π, R > 0},
Cρ = {z : z = x0 + ρeiα, 0 ≤ α ≤ π, x0 ∈ R},
L1 = (−R, x0 − ρ) ⊂ R,

L2 = (x0 + ρ,R) ⊂ R,

where R0 < R, and ρ is such that Cρ is interior to CR. All contours except Cρ are assumed

to be oriented counter-clockwise.

See Figure A.1 for a depiction of these curves in the complex plane.

Theorem A.1 (Cauchy-Goursat theorem1). Let f(z) be a holomorphic function on and

interior to a simple closed contour C. Then we have that∫
C
f(z)dz = 0.

1An alternative name is Cauchy’s integral theorem (not to be confused with Cauchy’s integral formula,

which is a different result, and hence a reason we are sticking to our title).
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Lemma A.1 (Jordan’s lemma). Let f(z) be a holomorphic function in the upper half-plane

y ≥ 0 exterior to C0. Further, assume that there is a constant MR such that∣∣f(z)
∣∣ ≤MR and lim

R→∞
MR = 0,

for all points z on CR. Then

lim
R→∞

∫
CR
f(z)eiazdz = 0,

for every a > 0.

Theorem A.2 (Indented paths). [2, p. 277] Assume that f(z) has a Laurent series repre-

sentation in a neighborhood of the simple pole z = x0 ∈ R, except possibly at x0, and assume

Cρ (as given in Definition A.1) is contained in this neighborhood. Then

lim
ρ→0

∫
Cρ
f(z)dz = −Res

z=z0
f(z)πi.

x0 x

y

Cρ

CR

C0

L1 L2

RR0

ρ

Figure A.1: Geometry from Definition A.1.



Appendix B

Source code

Main part of the Python code for computing the interfacial tension tau (see Chapter 5):

step = 0.0001

tolerance = 0.00001

last_distance = float("inf")

while True:

tau += step

discr = (tau*(rho1 *1/np.tanh(h0*k) + rho2 )*(k**3)

- rho1*rho2*(U**2)*1/ np.tanh(h0*k)*k**2

+ (rho1 - rho2 )*( rho1 *1/np.tanh(h0*k) + rho2)*g*k)

distance = abs(discr.min ())

if distance < tolerance:

break

if distance > last_distance:

tau -= step

step = -step * 0.5

last_distance = distance
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