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Abstract 

 

With the growing interest in the field of proteomics, the amount of publicly available 

proteome resources has also increased dramatically. This means that there are many 

useful resources available for almost all aspects of a proteomics experiment. 

However, it remains vital to use the right resource, for the right purpose, at the right 

time. This review is therefore meant to aid the reader in obtaining an overview of the 

available resources and their application, thus providing the necessary background to 

choose the appropriate resources for the experiment at hand. Many of the resources 

are also taking advantage of so-called crowdsourcing to maximize the potential of the 

resource. What this means and how this can improve future experiments will also be 

discussed. The text roughly follows the steps involved in a proteomics experiment, 

starting with the planning of the experiment, via the processing of the data and the 

analysis of the results, to the community-wide sharing of the produced data. 
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Main Text 

 

Background 

The process of crowdsourcing refers to the outsourcing of tasks to a distributed group 

of people or communities, but unlike ordinary outsourcing the task or problem is here 

outsourced to an undefined public rather than to a specific group of people. 

Crowdsourcing is not a novel concept and has been employed in numerous types of 

situations, with perhaps the best known example being Wikipedia. The approach has 

become increasingly common with the global spread of the internet. While 

crowdsourcing may not be a commonly used term in the proteomics community, 

significant parts of key proteomics resources have already been crowdsourced from 

the scientific community for a long time. This review will highlight the best examples 

and show how the use of public resources can lead to better experiments. 

 

The most commonly employed technique in proteomics today is mass spectrometry 

(MS). Usually, MS based proteomics is carried out according the bottom-up strategy, 

where the proteins to be analyzed are first proteolytically cleaved in vitro into smaller 

pieces called peptides, that are further fragmented by the MS instrument into fragment 

ions, resulting in MS/MS spectra (Aebersold and Mann 2003). There are two general 

flavors of this type of MS based proteomics experiment: i) discovery-oriented 

experiments that try to identify (and increasingly, try to quantify) all the proteins in a 

sample, and ii) targeted experiments that focus on the analysis of specific signature 

peptides for a limited number of proteins of interest in a sample. 
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Despite the overall similarity in methods employed between these two flavors of 

bottom-up proteomics, it is important to keep in mind that their properties are very 

different, thus requiring unique experimental workflows and bioinformatics pipelines 

for each. Fortunately, a vast amount of publicly available resources exist that can 

guide the user on his/her way. In this review we will cover the most important 

relevant resources and show when and how they ought to be applied in order to 

maximize the potential of the analysis, see Figure 1.  

 

Note that we have decided to focus on resources that help the user with specific tasks 

required during an experiment. Software packages aiming at providing a complete 

pipeline are outside the scope of this review and will thus not be covered. The same is 

true for the long list of possible proteomics search engines. Finally, where possible, 

we will focus on the resources employing crowdsourcing, highlighting how these 

resources are especially important to get the most out of the large amount of 

proteomics data being produced every year. 

 

From Ideas to Experiments 

Perhaps the most important part of a proteomics experiment (or indeed any 

experiment) is the planning of the experiment. This step, which can also be referred to 

as experimental design, is paramount to obtaining a useful outcome. Shortcomings at 

this stage are very difficult, if not impossible, to correct downstream in the workflow, 

further emphasizing the critical relevance of this stage. Even though this simple truth 

ought to be obvious, it is not uncommon to encounter experiments where small 

changes in the design could have significantly increased the value of the experiment. 

In some cases a planning-phase analysis may even save one the trouble of doing 
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experiments, if it becomes clear a priori that they will have a very low probability of 

success, for instance if too few replicates are available to obtain a reasonable 

likelihood of achieving significant results. It is therefore essential to plan an 

experiment in advance, and it can be very helpful to consult relevant resources in this 

initial phase. 

 

Besides the obvious caveats connected to statistical considerations, such as power 

analysis (Levin 2011), replicate types and numbers (Oberg and Vitek 2009), and 

sample pooling (Karp and Lilley 2009) that affect discovery-oriented and targeted 

approaches alike, there are also more specific issues that relate predominantly to the 

planning of targeted proteomics experiments. These latter issues are the main focus of 

this section, since they can most readily be addressed through the judicious use of 

public resources. Examples include the determination of suitable peptides and 

transitions for a selected reaction monitoring (SRM) experiment, or the focused 

analysis of membrane proteins. 

 

In targeted proteomics, as the name implies, a set of proteins of interest is typically 

known a priori, often as a result of a preceding discovery-oriented analysis (Gallien et 

al. 2011). But even if the protein set is known in advance it can still be very useful to 

perform a thorough pre-analysis. The simplest form of investigation in this case 

would be to perform an in silico digest of the given protein, i.e., to theoretically cleave 

the protein into peptides using the cleavage pattern and specifics of the desired 

proteolytic enzyme, and list the detectable peptides as limited by one or more 

appropriate parameters such as sequence length or mass, sequence composition, 

number of missed cleavages, or theoretical iso-electric point (pI). Such in silico 
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digestion and in-line peptide filtering is readily offered by several freely available 

database processing tools and proteomics software libraries (Martens et al. 2005; 

Reisinger and Martens 2009; Colinge et al. 2006; Barsnes et al. 2011). This 

straightforward analysis yields indications of the detectable areas of the protein 

sequence, and the expected number of peptides that can be successfully targeted. Of 

course, if the objective of the study is the detection of a specific post-translational 

modification or in vivo cleavage, it can be immediately verified whether the sequence 

region of interest yields any detectable peptides, see Figure 2. If the chosen protease 

should not yield the desired peptide(s), it is then an exceedingly simple exercise to try 

another protease and evaluate the outcome. If multiple targets are considered, perhaps 

a combination of proteases (albeit employed in parallel) could even be considered 

(Swaney et al. 2010). Performing in silico digests is however not an exact science. 

First of all, cleavage may not always occur where expected (Hamady et al. 2005; 

Thiede et al. 2000; Yen et al. 2006), and may even occur where it is not expected 

(Rodriguez et al. 2008). Improved prediction of proteolytic behavior could therefore 

still benefit bottom-up proteomics approaches (Siepen et al. 2007). It should also be 

underlined that the detectability of a peptide is specific to the mass spectrometry 

protocol, and that the results are therefore not directly transferable between protocols. 

 

Such an in silico digest can then be complemented by resources that provide so-called 

proteotypic peptides (Craig et al. 2005), such as PeptideAtlas (Desiere et al. 2006) or 

GPMDB (Craig et al. 2004), although the actual overlap in proteotypic peptides 

between these resources is incomplete. Computational methods have been proposed to 

predict prototypic peptides, e.g., (Mallick et al. 2007), but they have been shown to 

function quite poorly outside of their (typically limited) initial training conditions 
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(Mueller et al. 2008), indicating that caution should be used in relying only on purely 

predicted entries.  

 

It is not just a predefined set of peptides that is selected for in targeted proteomics 

however, but rather a combination of fragment ion masses and peptide precursor mass 

for each targeted peptide. Such a precursor and fragment ion pair is commonly 

referred to as a transition, and such transitions form the core of the increasingly 

popular selected reaction monitoring (SRM) approach in targeted proteomics (Lange 

et al. 2008b). In this technique, targeting the correct transitions is of equal importance 

as targeting the right peptides. Various resources for predicting good transitions have 

been created, and these represent either predicted optimally detectable transitions 

(MacLean et al. 2010; Abbatiello et al. 2010; Brusniak et al. 2011), or unique 

transitions (Helsens et al. 2012), i.e., transitions that are unlikely to be contaminated 

by overlapping signals from other, non-targeted peptides (Sherman et al. 2009). 

Databases of known, experimentally observed transitions are also available (Domon 

and Aebersold 2006; Lange et al. 2008a; Deutsch et al. 2008; Craig et al. 2004), and 

are likely to become increasingly important over time as more of these analyses are 

ran. Importantly, work on standardizing an exchange format for transitions has also 

progressed(Deutsch et al. 2011), and an international initiative to find transitions for 

all human proteins has been initiated as a part of the Human Proteome Organization - 

Human Proteome Project (HUPO-HPP) (The call of the human proteome  2010; 

Nilsson et al. 2010). Interestingly, a rather complete library of synthetic peptides has 

already been completed for yeast (Picotti et al. 2010). It is important to consider that 

good transitions are often specific to an instrument and the experimental settings used, 

i.e., a good transition for one experimental setup might not be a good transition when 



 

 8 

using a different experimental setup. To some extent this can be related to the 

observed instrument dependent peptide fragmentation (Barsnes et al. 2010; Sherwood 

et al. 2009), although it has been reported that top-ranking peaks are more readily 

transferable (Sherwood et al. 2009).  

 

In order to efficiently reuse experimental data it is important to filter the data 

according to requirements (Foster et al. 2011), and to understand the experimental 

setup in sufficient detail. This is not always straightforward however, since even the 

protocol descriptions in the metadata-rich PRIDE database (Vizcaíno et al. 2010) are 

often lacking in detail. Furthermore, data quality is not necessarily correlated with 

annotation quality. This situation highlights the importance of adhering to minimum 

information guidelines such as MIAPE (Taylor 2006), one of the main goals of both 

the ProDaC project (Eisenacher et al. 2009) and the HUPO-PSI (Martens et al. 2007; 

Vizcaino et al. 2007). 

 

It is of course always possible that a particular protein of interest turns out to be very 

hard to target, despite the best efforts at finding suitable candidate peptides and 

transitions. If the study objective is not the specific characterization of a cleavage or 

post-translational modification on that particular protein, a possible alternative may be 

to find related proteins and target these instead. This can be achieved by searching for 

interaction partners in IntAct (Kerrien et al. 2012), STRING (Szklarczyk et al. 2011) 

or DAVID (Huang da et al. 2009), or by looking for proteins in the same pathway in 

Reactome (Matthews et al. 2009) or KEGG (Kanehisa et al. 2012).  

 

From Acquired Data to Processed Results 
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Once the experiment has been performed, the data needs to be processed into peptide 

identifications (and quantifications). Since the actual output of an MS experiment is a 

set of MS/MS spectra, the first step typically consists of identifying the origin of these 

spectra, i.e., match spectra to peptides. While various options exist for this goal 

(including de novo sequencing (Frank et al. 2007; Ma and Johnson 2012) and tag-

based approaches (Tabb et al. 2008; Tabb et al. 2003)), database searching is by far 

the most common spectrum identification method. Here, acquired spectra are matched 

to a set of known spectra to find the best match and thereby transitively assign 

identification. There are two types of databases that can be used for this purpose: 

protein sequence databases and spectral databases. The former are used to derive 

relatively unsophisticated in silico theoretical fragmentation spectra (Cottrell 1994; 

Eng et al. 1994; Yates et al. 1995; Geer et al. 2004; Fenyo and Beavis 2003), while 

the latter contain previously identified experimental MS/MS spectra (Lam 

2011)(NIST: http://peptide.nist.gov) and have been shown to outperform sequence 

database searching under optimal conditions (Zhang et al. 2011). One can also 

generate a realistic spectral library from a sequence database using detailed MS/MS 

spectrum prediction (Zhang 2004, 2005; Yen et al. 2011; Yen et al. 2009), but this is a 

more complicated process.  

 

When searching a database, it is of course exceedingly important to use the right 

database. Selecting a database that does not contain the protein in question will result 

in the protein going undetected, while choosing a database that contains too much 

data can result in a large amount of false positives (Colaert et al. 2011; Everett et al. 

2010; Na et al. 2012; Bern and Kil 2011), similar to the effect encountered when 

using error-tolerant searches (Creasy and Cottrell 2002). Numerous sequence 
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databases are available, ranging from small home-grown databases to the centralized 

and well-annotated species-wide databases like UniProt (UniProt Consortium 2010), 

Ensembl (Flicek et al. 2011) and NCBI nr (Pruitt et al. 2007). 

 

In choosing a database, a choice has therefore to be made between completeness, 

reliability and redundancy of the information contained in these systems. It is 

however possible to compare search databases on this basis using a very simple set of 

metrics: define the number of identifiable tryptic peptides with one allowed missed 

cleavage in each database as the database size, define the number of unique such 

peptides as the database information, and then calculate the information ratio as the 

ratio of database information over database size. The results are given for several 

popular human sequence databases in Figure 3. Note that bigger databases typically 

have larger information content, but that the information ratio does not scale very 

well. This indicates that smaller databases tend to be more compact and efficient, and 

that larger databases are more redundant. This is expected, since the larger databases 

(for human sequences at least) achieve their size growth by including splice isoforms 

that share a substantial part of their sequence, and therefore many of their tryptic 

peptides. 

 

It is of note that the International Protein Index (IPI) (Kersey et al. 2004), one of the 

most popular proteomics sequence databases, has been discontinued in September 

2011. The effect that this has to the proteomics community has been examined in 

some detail in two recent papers (Griss et al. 2011a; Griss et al. 2011b) where it was 

also shown that UniProt now provides directly comparable alternatives, an 
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observation that is also evident for human sequences from Figure 3, where both 

UniProt and Ensembl are seen to closely resemble IPI. 

 

The information in a sequence database need not necessarily be taken as is, however. 

Indeed, further processing can dramatically extend the reach of a sequence database 

and correspondingly increase the number of relevant identifications, by performing 

serial differential enzymatic digestion (Van Damme et al. 2005), amino- or carboxy-

terminal ragging (Gevaert et al. 2003), sequence-based subset selection (Gevaert et al. 

2004; Gevaert et al. 2002), or to create and add decoy sequences (Vaudel et al. 2011). 

Various tools exist that greatly facilitate such operations (Martens et al. 2005; 

Reisinger and Martens 2009; Reidegeld et al. 2008). 

 

As mentioned above however, the use of arbitrarily large databases (or simulating 

them, through second-pass, error-tolerant, or multi-stage searches (Tharakan et al. 

2010)) is wrought with peril. It becomes relatively easy to severely underestimate 

false positive rates (Creasy and Cottrell 2002; Everett et al. 2010; Colaert et al. 2011) 

and it can strongly complicate the assignment of peptides to proteins (Martens and 

Hermjakob 2007; Nesvizhskii and Aebersold 2005). The best possible database 

should therefore be both comprehensive as well as compact, and should be in silico 

adapted to the specifics of the protocol. 

 

From Proteins to Knowledge 

Once a set of peptides is identified, and a set of proteins is successfully inferred from 

these, it is often useful to obtain as much information as possible about these proteins. 

This transition from results to knowledge is of course extensively reliant on the large 
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amount of available annotation resources. These include, but are not limited to, gene 

ontology annotations (Binns et al. 2009), pathways (Matthews et al. 2009), 

interactions (Szklarczyk et al. 2011), functional annotations (Huang da et al. 2009), 

3D structures (Villaveces et al. 2011; Prlic et al. 2005; Berman et al. 2000) and 

protein domain signatures (Hunter et al. 2012). A comprehensive overview of 

available resources for the annotation of protein sets is provided in (Vizcaino et al. 

2009). 

 

In order to use most of these resources however, one first has to be able to provide a 

protein identifier or accession number that the resource in question can understand. 

Note that this means that using home-made databases for peptide identification of 

protein inference may severely limit the downstream annotation options. Such 

problems are largely circumvented when a well-annotated database like UniProt is 

used. Incidentally, UniProt itself serves as a powerful information hub that links each 

protein to a plethora of external databases that span the whole spectrum of the life 

sciences. In those cases where the available protein identifiers are different from the 

ones requested by a given resource, the Protein Identifier Cross-Reference Service 

(PICR) can be used to perform a seamless accession number conversion (Côté et al. 

2007). PICR provides protein identifier mappings based on 100% sequence identity to 

proteins from a large number of popular databases. The mappings can be limited by 

database, taxonomy and activity status in the databases.  

 

Using a single resource to annotate your data set can be very valuable, but the real 

value comes from combining information from different data resources. In the past, 

this could often be a time consuming and laborious task, but recent developments 



 

 13 

have made this task much easier. Perhaps the most powerful tool in this context is 

provided by BioMart (Guberman et al. 2011; Haider et al. 2009; Kasprzyk 2011; 

Smedley et al. 2009; Woollard 2010), a distributed system that includes a large 

amount of databases and resources in the same, easily accessible framework. With the 

ability to perform queries spanning two repositories, it becomes straightforward to 

combine data from multiple, unrelated databases. Thanks to the inclusion in BioMart 

of hub databases such as UniProt and Ensembl that provide extensive cross-

references, and in the case of Ensembl even span multiple levels of biological 

information from genome over transcriptome to proteome, BioMart queries can be 

extremely powerful ways to collate detailed knowledge about thousands of proteins in 

a few mouse clicks, see Figure 4. 

 

From Private Local Data to Public Online Data 

At this stage, the workflow ought to have resulted in well-annotated protein 

identifications and new knowledge. The next and final step is then to make this 

information available to the proteomics community at large. With an increased focus 

on the benefits of data sharing (Editors 2007, 2008), the development of standardized 

data formats such as mzML (Martens et al. 2011) and mzIdentML (Eisenacher 2011), 

and the development of easy to use conversion tools like PRIDE Converter (Barsnes 

et al. 2009), the sharing of proteomics data has become common practice. Meanwhile, 

the field continues to develop towards even more efficient data sharing. Notably, the 

ProteomeXchange consortium (Martens 2011; Orchard et al. 2011) was founded with 

the specific aim of providing a single point of submission for MS-based proteomics 

data, and the objective to distribute these data across all current repositories for 

optimal re-use and dissemination. Indeed, depositing data into a public repository is 
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not enough; the data has to be easy to retrieve, to search, to evaluate, and to view. The 

PRIDE team for instance, developed the PRIDE Inspector application (Wang et al. 

2012) specifically for this purpose. A desktop application for visualizing and 

performing quality assessment on mass spectrometry data contained in the PRIDE 

database, PRIDE Inspector greatly improves on the old, web-based interaction with 

the PRIDE database, making it much more straightforward to work with the data in 

the repository. 

 

The remaining challenge for the field is to provide high-quality, well-annotated data 

to the repositories, allowing today’s proteomics experiments to become part of a 

priceless resource for the planning of future experiments. Interestingly, there is thus a 

strong link back to the start of this review article, where the design and planning of 

experiments was discussed; the public availability of quality controlled and well-

annotated proteomics data will result in ever better planned experiments, in turn 

leading to improved insight and knowledge from these experiments. This self-

enhancing feedback loop will allow data itself to become proteomics’ biggest 

resource, and will allow the field to become a center-stage participant in the broader 

life sciences. 
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Figure legends 

Figure 1: A proteomics experiment can roughly be divided into four parts: (1) From 

Ideas to Experiments, (2) From Acquired Data to Processed Results, (3) From 

Proteins to Knowledge, and (4) From Private Local Data to Public Online Data. Each 

with its distinct set of publicly available proteomics resources. Ideally there should 

also be a feedback loop from (4) back to (1). See main text for details. 

 

Figure 2: Performing a pre-experiment in silico digest can provide valuable insight 

into the theoretically coverable areas of a given protein sequence. a) In this simple 

example the goal is to detect the two phosphorylations indicated. b) Performing an in 

silico digest tells us that, assuming the given enzyme properties, some areas of the 

protein sequence most likely can be detected (green), while others cannot (orange). 

From this we can infer that performing an experiment targeting the second 

modification will (most likely) be of little value using the selected protease. 

 

Figure 3: Plot illustrating the database content and database information (points, left 

axis) and derived information ratio (bars, right axis) for six popular databases in the 

field of proteomics. Note that IPI has been discontinued on 27 September 2011. See 

main text for details. 

 

Figure 4: BioMart makes it straightforward to combine data from multiple, unrelated 

databases. Here an example using the Ensembl BioMart is shown, where UniProt 

protein accession numbers are provided as input, and via just a few mouse clicks the 

proteins can be annotated with information from a long list of diverse resources. 
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