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Abstract

Jasper, a specific type of hematitic chert, is often interpreted as an an-

cient analogue to modern seafloor hydrothermal deposits. Modern low-

temperature seafloor hydrothermal Fe-deposits are mainly produced by Fe(II)-

oxidising chemolithoautotrophs, which produce characteristic filamentous mi-

crostructures. Hematitic cherts from the SW Norwegian ophiolithic terrain

exposed on the islands Stord and Bømlo have not been examined within

the scope of this potential formation process. In this study, 10 hematitic

chert samples were investigated to clarify the processes leading to their for-

mation and if they all formed analogously to modern seafloor hydrothermal

Fe-deposits. Additionally it was examined how the presence of hematitic

cherts within the ophiolitic terrain can help to improve the understanding

of the areas’ geological history. Geochemical, textural, and mineralogical

analyses were conducted by applying inductively coupled plasma optical

emission spectrometry, inductively coupled plasma mass spectrometry, op-

tical microscopy, scanning electron microscopy, and Raman spectroscopy.

Pronounced geochemical and textural di↵erences were found, and four sub-

types of hematitic chert were defined. Bedded hematitic radiolarian cherts

(Lower/Middle Ordovician, Langev̊ag on Bømlo and Sagv̊ag on Stord) con-

sist of SiO2 (⇠ 77 - 87wt%), Al2O3 (⇠ 6 - 10wt%), and Fe2O3 (⇠ 3 - 6wt%),

and they have relatively high trace and rare earth element (REE) concen-

trations (

P
REE ⇠ 30 - 66 ppm). Radiolarian shell remnants and distinct
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layering are present. A sampled hematitic radiolarian chert band (late Cam-

brian, Geitung by Bømlo) closely resembles the bedded cherts, but exhibits

a much lower Al2O3 content, and significantly lower trace element contents

and REE sum (2.8 ppm). Jasper (late Cambrian) di↵ers vastly, no layering is

present and Fe2O3 and SiO2 (⇠ 3 - 23wt% and ⇠ 75 - 92wt%, respectively)

dominate, while Al2O3 is negligibly low. Trace element and REE concentra-

tions are very low (

P
REE ⇠ 1.1 - 3.0 ppm). Two types of jasper can be

distinguished. Abiogenic jasper (Geitung by Bømlo) is characterised by the

absence of filaments, but contains hematite crystals occurring in concentrated

clusters of polygonal patches, indicating a gel precursor undergoing syneresis.

Microbially induced jasper (Finn̊as on Bømlo) contains a high abundance of

hematite crystals comprising filamentous structures interpreted to be of mi-

crobial origin. This study demonstrates that the hematitic cherts on Stord

and Bømlo have di↵erent formation processes. The hematitic radiolarian

cherts are interpreted to have formed mainly from radiolarian ooze and ter-

rigenous/volcaniclastic input. They clearly cannot be seen as analogues to

modern Fe-deposits in seafloor hydrothermal systems. The abiogenic and

microbially induced jaspers very likely originate from low-temperature hy-

drothermal fluids, emanating from the seafloor. The abiogenic jasper forma-

tion can be explained by di↵usely venting fluids forming Fe-Si-oxyhydroxide

gels, in which abiogenic precipitation took place. Temperatures were poten-

tially too high for Fe(II)-oxidising chemolithoautotrophs to thrive, explaining

the absence of filamentous structures. The microbially induced jasper is in-

terpreted as having formed by di↵use venting leading to mound formation in

which redox conditions and temperatures were favourable for Fe(II)-oxidisers,

causing filament formation. This can potentially serve as an ancient analogue

to modern hydrothermal Fe-deposits found in the Jan Mayen Vent Fields and

several other vent fields. The bedded hematitic radiolarian cherts formed

during the Lower/Middle Ordovician within a widening back-arc basin with
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suboxic seafloor conditions. Landmasses nearby provided terrigenous volcani-

clastic input. The jaspers, both abiogenic and microbially induced, formed

in the deep sea during the early stages of an immature island arc in the late

Cambrian. The late Cambrian radiolarian chert band formed coevally, but

during a quiescent phase and was potentially una↵ected by hydrothermal

fluids.
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1 Introduction

On the islands Bømlo and Stord in southwestern Norway, di↵erent types of

hematitic cherts are present in the rock record. The generic term “hematitic

chert” is used here to describe both radiolarian chert containing hematite and

a special subtype rich in iron commonly known as jasper. In general, chert

can form in various environments, but hematitic chert is typically believed

to be tied to hydrothermal activity on the seafloor in vicinity of volcanogenic

massive sulphide deposit formation (e.g. Grenne and Slack, 2003a). The

investigation of samples from Bømlo and Stord is motivated by the aspiration

to better understand the formation processes leading to the deposition of the

hematitic cherts and to what extent this improves the understanding of the

regional geology.

The samples are of late Cambrian and Lower/Middle Ordovician age, and

the lithostratigraphical units they belong to are part of the ophiolitic terrain

within the Scandinavian Caledonides in SW Norway (Furnes et al., 1983,

Brekke et al., 1984, Sivertsen, 1992, Pedersen and Dunning, 1997).

Hematitic chert, and jaspers in particular, are regarded as an ancient ana-

logue of modern hydrothermal deposits consisting of Fe-oxyhydroxides (e.g.

Little and Thorseth, 2002, Little et al., 2004). Microbial activity is involved

in the formation of these modern deposits: Fe(II)-oxidising chemolithoau-

totrophs are responsible for the production of distinct structures like fil-

aments and tubes consisting of iron oxides. These structures, if present

1



2 Chapter 1. Introduction

within jasper samples, are considered biosignatures, constituting the base

of the ancient analogue theory (e.g. Little et al., 2004). Geochemistry, and

Rare Earth Element (REE) concentrations in particular, can be used to trace

hydrothermal processes and to distinguish between redox conditions (Johan-

nessen et al., 2017), supported by microscopical investigations.

Examination of mineralogy, structures, and textures of the samples is

conducted by employing optical microscopy, scanning electron microscopy,

and Raman spectroscopy. Inductively Coupled Plasma Optical Emission

Spectrometry (ICP-OES) and Inductively Coupled Plasma Mass Spectrom-

etry (ICP-MS) are used to study the geochemistry with a focus on trace

element and REE concentrations. Results are compared to both modern Fe-

oxyhydroxide hydrothermal deposits, and ancient hematitic chert deposits

interpreted to have formed in seafloor hydrothermal settings.

This study aims to find answers to the following questions:

1. What are the conditions and processes leading to the formation of the

di↵erent types of hematitic cherts?

2. Can they be used as ancient analogue to modern Fe-deposits formed in

seafloor hydrothermal systems?

3. Do these findings help improve the understanding of the geological

history of the ophiolitic terrain in SW Norway?



3 Chapter 1. Introduction

1.1 Geobiological background

1.1.1 Modern seafloor hydrothermal systems and as-

sociated deposits

In the early 1970s, the first hydrothermal deposits were discovered on the

sea floor (Corliss, 1971). Hydrothermal plumes – modified seawater being

discharged from cracks within newly formed oceanic crust – were identified

and chemically analysed for the first time several years later by Weiss et al.

(1977). And shortly after that, in 1977, active fields of hydrothermal springs

at the Galápagos rift were identified and explored (Corliss, 1979). Commu-

nities of animals and bacteria were not expected to be found there, but were

nevertheless observed, thriving in this environment, due to chemosynthesis

conducted by H2S-oxidising bacteria (Corliss, 1979). One year later, massive

sulphide deposits were located along the East Pacific Rise in the Gulf of Cal-

ifornia (CYAMEX Scientific Team, 1979), indicating that high-temperature

hydrothermal discharge must occur on the sea floor (Lowell et al., 1995).

Supporting this claim, hydrothermal vent chimneys exhaling metalliferous

sulphide particles within the hydrothermal fluids were found in the vicinity of

these massive sulphide deposits, and they were termed “black smokers”. The

temperatures of these hydrothermal fluids reached 350 to 400 °C (Macdonald

et al., 1980, Spiess et al., 1980). Decades of extensive research on hydrother-

mal vent fields followed, and new vent fields have been discovered along both

fast and slow spreading mid-oceanic spreading ridges, arc volcanoes, back-

arc spreading centres and intra-plate hotspot volcanoes (InterRidge, 2017).

This ongoing research improves the understanding of processes leading to the

formation of seafloor hydrothermal systems and their characteristics (Figure

1.1).
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Figure 1.1: Model of seafloor hydrothermal system based on the theories by

Alt (1988) and Cooper et al. (2000)

Hydrothermal vents occur in tectonic settings, where upwelling magma

underneath the oceanic crust enables seawater to penetrate the oceanic crust

downwards through fissures due to percolation (Fisher, 1998). Caused by

high temperatures and pressures, the seawater heats up, which leads to re-

cycling through the oceanic crust back to the surface, with the total ocean

mass circulating through sea floor hydrothermal systems once every one mil-

lion years (Wolery and Sleep, 1976). Both on its way down and up again, the

heating seawater alters the oceanic crust chemically and leaches certain ele-

ments, leading to their dissolution in the seawater. Buoyancy-induced trans-

port upwards causes various hydrothermal deposits to form in the vicinity
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of the discharge location (Lowell et al., 1995). The occurring reactions when

seawater enters oceanic crust are the following (Alt, 1995, Tivey, 2007):

1. Mg is removed from the fluid, whereas Ca

2+
, H

+
, and Na

+
become

enriched in the fluid, due to smectite and chlorite precipitation.

2. Ca

2+
and SO

2�
4 precipitate from the fluid at temperatures above 150 °C,

and form anhydrite.

3. During albitisation occurring deeper in the oceanic crust, Na

+
and Si

are removed from the fluid, in exchange for Ca

2+
from the anorthite.

The hydrothermal fluid at this point is acidic, anoxic, rich in alkalis

and depleted in Mg compared to seawater.

4. Leaching of S and metals (Cu, Fe, Mn, Zn, etc.) from the crust by the

fluid takes place.

5. Volatiles (

3
He, CO2, CH4, H2) stemming from the magma below the

ridge potentially join the fluid as well (Alt, 1995, Tivey, 2007).

When the hydrothermal fluids discharge through cracks in the sea floor, a

rapid temperature loss occurs through mixing with cold seawater, leading to

mineral precipitation around the discharge location (Tivey, 2007). Thus, the

oceanic crust composition is modified, the chemistry of the ocean is influ-

enced, and – depending on the fluid composition and temperature, oceanic

crust composition and structure, and tectonic geometry – di↵erent types of

hydrothermal deposits are formed (Tivey, 2007).

A very common type of hydrothermal vent is a black smoker chimney.

These chimneys exhale high temperature hydrothermal fluids containing dis-

solved sulphide, leading to the formation of massive sulphide deposits very

close to the vents (e.g. CYAMEX Scientific Team, 1979, Macdonald et al.,

1980, Spiess et al., 1980). Chimneys exhaling white instead of black clouds

of mineral precipitates, show lower temperatures of 100 to 350 °C (Macdon-

ald et al., 1980) and are termed “white smokers” due to white precipitates
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(mainly barite and silica) constituting the chimney and nearby mineral de-

posits (Macdonald et al., 1980, Spiess et al., 1980). Even though chimney

structures with focused hydrothermal fluid flow and their related deposits

dominate the sea floor hydrothermal systems, other fluid paths and associ-

ated deposits have been discovered since the 1970’s. Alt (1988) describes

a process of high temperature hydrothermal fluids moving upwards inside

the oceanic crust and subsequently mixing with seawater in the subsurface,

leading to low-temperature hydrothermal fluids enriched in Si, Mn, and Fe,

leading to Fe- and Mn-oxide deposition. This is the classical formation pro-

cess thought to lead to low-temperature hydrothermal fluid formation. A

di↵erent formation process for low-temperature hydrothermal fluids has been

suggested since (e.g. Cooper et al., 2000). Chemical analyses of di↵use hy-

drothermal fluids presented by Cooper et al. (2000) provide evidence for sea-

water entering brecciated oceanic crust material covered with white smoker

mineral precipitates along cracks (Langmuir et al., 1997). The cold seawater

is penetrating the oceanic crust shallowly and does not get directly heated by

the magma chamber at depth, but only conductively by the high-temperature

fluids from underneath (Cooper et al., 2000). Very localised mixing of both

conductively heated di↵use hydrothermal fluid and high-temperature fluid

from below can occur, but is not necessary (Cooper et al., 2000). This type of

system exhibits temperatures between <0.2 °C to 100 °C (Bemis et al., 2012),

hence the term “low-temperature hydrothermal system”. Low-temperature

hydrothermal systems can produce Fe(III)-oxyhydroxide deposits contain-

ing layers of Mn-oxides and amorphous silica directly precipitated from the

hydrothermal fluids discharged (Alt, 1988). The deposition of Fe- and Mn-

deposits depends on the ratio between Fe and H2S in the hydrothermal fluid

before mixing with seawater after discharge: Fe/H2S<1 �! sulphides form

and Mn-rich deposits are formed; Fe/H2S>1 �! sulphides form and Fe is

still present after all H2S is used up, leading to Fe- and Fe-Mn-deposits forma-
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tion on the sea floor (Alt, 1988). The low-temperature hydrothermal fluids

usually display a ratio of Fe/H2S greater than 1, leading to Fe-oxyhydroxide

and Mn-precipitate deposition (Karl et al., 1988). Research has been ongo-

ing over the decades (e.g. Hekinian et al., 1993, Boyd and Scott, 2001, Sun

et al., 2015, Johannessen et al., 2017), improving the understanding of these

deposits.

The importance of microbial activity

Not only abiotic precipitation from the hydrothermal fluids leads to the for-

mation of hydrothermal deposits, as biological processes take part in it as

well (e.g. Boyd and Scott, 2001). Corliss (1979) noted the surprising presence

of H2S-oxidising bacteria conducting chemolithoautotrophy for energy pro-

duction. This is in accordance with the fact that life in seafloor hydrother-

mal systems cannot be based on photosynthesis for gaining energy due to

the total absence of light. More types of chemolithoautotrophic microbes

present in hydrothermal systems have been discovered since, such as aerobic

methanotrophs, H2S-oxidisers, and Fe(II)-oxidisers (Konhauser, 2007a). Ox-

idation of inorganic components is conducted by these organisms, leading to

the release of chemical energy, which is used for carbon fixation by reducing

inorganic carbon to organic matter, providing the basis for life in seafloor

hydrothermal systems (Falkowski, 2012, Wallmann and Aloisi, 2012). Which

process is prevailing over the others is determined by several factors, mainly

the hydrothermal fluid composition. Low-temperature hydrothermal fluids

usually show a ratio of Fe/H2S>1, leading to Fe(II)-oxidation dominating, in

contrast to high-temperature hydrothermal fluids with ratios of Fe/H2S<1,

where H2S- and CH4-oxidation predominate (Emerson and Moyer, 2002).

Based on morphology, typical representatives of the microaerophilic Fe(II)-

oxidising bacteria found at low-temperature hydrothermal vents during early

studies are Gallionella ferruginea (e.g. Alt, 1988, Juniper and Fouquet, 1988,
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Hallbeck and Pedersen, 1991, Emerson and Moyer, 2002) and Leptothrix

ochracea (e.g. Emerson and Revsbech, 1994, Emerson and Moyer, 2002).

Mariprofundus ferrooxydans (e.g. Emerson and Moyer, 2002, Emerson et al.,

2007, Singer et al., 2011) was later found by 16S rRNA sequencing. By

conducting chemosynthesis for energy gain, these organisms generate Fe-

oxyhydroxides (Fe(OH)3) as by-product in the carbon fixation process, see

Equation 1.1 (Bekker et al., 2010):

6 Fe(II) + 0.5O2 + CO2 + 16H2O ��! [CH2O] + 6Fe(OH)3 + 12H

+
(1.1)

Thus, biomineralisation of Fe-oxyhydroxides can be performed under low oxy-

gen conditions where abiotic precipitation iron oxidation og Fe-oxyhydroxides

is 50 times slower than microbial oxidation (e.g. Bekker et al., 2010, Søgaard

et al., 2000). These Fe-oxyhydroxides undergo chemical changes during dia-

genesis (Chan et al., 2011), but keep their specific morphologies, dependent

on the Fe-oxidiser: The freshwater genus L. ochracea mainly forms rod-like

sheaths and tubes (e.g. Emerson and Revsbech, 1994, Emerson and Moyer,

2002, Sun et al., 2012). G. ferruginea, also a freshwater genus, produces

ribbon-like twisted stalks and branching tubes (e.g. Boyd and Scott, 2001,

Emerson and Moyer, 2002, Li et al., 2012). M. ferrooxydans, a marine occur-

ring genus belonging to the Zetaproteobacteria, shows very similar twisted

stalk and branching morphologies (e.g. Sun et al., 2015, Johannessen et al.,

2017) and have actually proven to be much more prevalent in seafloor hy-

drothermal systems than the freshwater genera G. ferruginea and L. ochracea

(Emerson and Moyer, 2002, Emerson et al., 2007). The morphology of stalks

and filaments produced by Fe-oxidising bacteria is caused by its function.

Stalks are interpreted to hold the bacterium in place between gradients of

O2 and Fe(II), which are favourable for the cells’ needs, and also to allow the

bacterium to escape encrustation by abiotic precipitates (Chan et al., 2011,

2016). Furthermore, the stalk serves as a mineralisation site for the deposi-
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tion of products of the bacterium’s metabolism (Chan et al., 2011). These

specific morphologies of the Fe-oxyhydroxide deposits produced by biomin-

eralisation can be used to better understand the formation processes and

prevailing conditions during formation (e.g. Johannessen et al., 2017). Johan-

nessen et al. (2017) investigated Fe-mound deposits from the Jan Mayen Vent

Fields located at the Mohns Ridge spreading zone between the Greenland

Sea and Norwegian Sea. Their findings imply a low-temperature hydrother-

mal source fluid instead of high-temperature venting fluids, and substantial

contribution of microbial Fe-oxidation to the formation of the deposits. Fil-

aments, fibres, and stalks, encrusted with Fe-precipitates very much resem-

bling the extracellular stalks produced by Fe-oxidising bacteria were found,

constituting most of the deposit material. Performed gene sequence analyses

prove the abundance of Mariprofundus ferroxidans and possibly members of

the Gallionella genus within the deposits, who are thus responsible for the

majority of Fe precipitation, besides abiotic precipitation.

1.1.2 Ancient seafloor hydrothermal system deposits

The Fe-oxyhydroxide deposits can not only be used to investigate formation

processes and the ambient conditions in modern seafloor hydrothermal sys-

tems. They can also serve as biosignatures in the investigation of ancient

hydrothermal deposits such as banded iron formations and jaspers in order

to examine the early evolution of life, along with formation processes and en-

vironmental constraints for Fe-oxyhydroxide deposition (Johannessen et al.,

2017). Comparing structures within jasper deposits with the morphologies of

modern hydrothermal Fe-oxyhydroxide deposits has showed strong similari-

ties, indicating that the same microbial communities were actively contribut-

ing to the jasper formation (e.g. Juniper and Fouquet, 1988, Duhig, Davidson

and Stolz, 1992, Hofmann and Farmer, 2000, Little and Thorseth, 2002, Little
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et al., 2004). Fe-oxyhydroxides are relatively unstable phases that undergo

change during diagenesis (Konhauser, 2007b); dehydration and internal rear-

rangement of Fe–O–Fe bonds lead to hematite formation (e.g. Schwertmann

and Fitzpatrick, 1992, Banfield et al., 2000). These internal rearrangements

are believed to not a↵ect the distinct morphologies, as the original structures

are preserved as hematite microfossils (Picard et al., 2015), enabling the com-

parison of modern and ancient hydrothermal vent deposits (e.g. Little et al.,

2004). Using morphology as evidence for alikeness can turn out to be prob-

lematic, as seen in the intensely discussed article by Dodd et al. (2017): It

is claimed that the oldest evidence for early life on Earth are preserved in

hydrothermal vent precipitates older than 3.77Gyr, due to – amongst other

reasons – the morphological similarities between the precipitates, Ordovi-

cian jasper from the Løkken ohpiolite (Norway) (Grenne and Slack, 2003a),

and modern Fe-oxyhydroxide microbial precipitates. Their biogenicity is dis-

putable, it cannot be proven that the investigated structures (hematite tubes

and filaments) were exclusively formed by biogenic processes, and evidence

from carbon isotopes signatures is not a strong enough indicator to rule out

an abiogenic formation. Other lines of evidence are not fully compelling

either, leading to their claims being problematic.

Not all fossil hydrothermal systems show evidence for direct microbial ac-

tivity associated with low-temperature hydrothermal venting, contributing to

the Fe-oxyhydroxide precipitation. Some are believed to be regional fallout

of Si-Fe-colloids from non-buoyant plumes produced by high-temperature

hydrothermal venting (Grenne and Slack, 2003b, Slack et al., 2007). Evi-

dence for Fe-oxidation conducted by microbes within hydrothermal plumes

today has not been found (Sylvan et al., 2012, Dick et al., 2013), making it

necessary to define in which manner Fe-oxyhydroxides constituting ancient

Fe-deposits formed. Along with the di�culties morphological comparisons

bring along, other methods are necessary to carefully identify the setting and
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conditions for Fe-oxyhydroxide formation within seafloor hydrothermal sys-

tems (Johannessen et al., 2017). The use of REE patterns and trace element

concentration characteristics are robust methods that are on hand and are

used in this study. They have proven to be e↵ective over a long period of time

and have continually improved (e.g. German et al., 1990, Duhig, Davidson

and Stolz, 1992, Duhig, Stolz, Davidson and Large, 1992, Hekinian et al.,

1993, Murray, 1994, Leistel et al., 1998, Davidson et al., 2001, Bolhar et al.,

2005, Grenne and Slack, 2005, Slack et al., 2007, Johannessen et al., 2017).

1.2 Geological background

1.2.1 Regional geology: The Scandinavian Caledonides

As part of the North Atlantic Caledonides, the Scandinavian Caledonides are

the predominant orogen in Northern Europe (Gee, 1975). In western Scandi-

navia, the orogen is exposed over a length of approximately 1500 km (Corfu

et al., 2014) with a general N-S-orientation and a width of up to 300 km

(Roberts and Gee, 1985). Stord and Bømlo as regions of interest are located

within the southernmost end of the Scandinavian Caledonides. A generalised

and, according to Corfu et al. (2014), oversimplified model of the formation

of the Scandinavian Caledonides has been introduced by Gee (1975), who

pursued an old theory by Törnebohm (1888). During the so-called Caledo-

nian orogenesis, thrust nappes of di↵erent origin were emplaced on top of

the Baltoscandian/Fennoscandian Precambrian crystalline basement, due to

collisional forces in west to east orientation (Gee, 1975, Roberts and Gee,

1985).

The evolution of this thrust nappe-dominated orogen began during the

Ediacaran Period at the end of the Neoproterozoic, with a developing sea-

floor spreading zone between the palaeo-continents Laurentia and Baltica
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(Gee, 1975, Roberts and Gee, 1985). As a result, the Iapetus Ocean formed

and it continued to widen during the Cambrian (Gee, 1975). During the Or-

dovician, a reversal of tectonic processes occurred, and Laurentia and Baltica

started converging, leading to the gradual closing of the Iapetus Ocean (Gee,

1975). Other, exotic terranes and outboard oceanic domains (e.g. ophiolite

complexes and island arc complexes) are presumed to have been involved

(Roberts and Gee, 1985, Corfu et al., 2007), leading to a complication of

the relatively simple model presented by Gee (1975). During the Silurian,

oblique convergence between Laurentia and Baltica continued, and ophiolite

complexes and island arc complexes that formed in the Iapetus Ocean either

close to the Baltic margin, as suggested by Brekke et al. (1984) and Roberts

et al. (1985), or in vicinity to the Laurentian margin (Pedersen et al., 1992,

Pedersen and Dunning, 1997), were accreted to either of the margins prior

to the collision of the palaeo-continents. Towards the end of the Silurian, the

Scandian collisional phase began and endured until the early Devonian (Gee,

1975, Stephens and Gee, 1985, Roberts, 2003). In this phase, the continen-

tal margin of Baltica became partly subducted beneath Laurentia (Stephens

and Gee, 1985, 1989, Roberts, 2003) and parts of the Caldeonian rocks were

exposed to high/ultra-high pressures (Hacker and Gans, 2005). Later on dur-

ing the collision, material from both Laurentia and the subducted margin of

Baltica were thrust onto the Precambrian crystalline basement of Baltica

and formed an orogenic wedge of thrust nappes (Gee, 1975, Stephens and

Gee, 1989). The displacement of the nappes was enabled by a layer of phyl-

lites within the sediments on top of the Precambrian crystalline basement

of Baltica (Fossen, 1992). Within the phyllites, a basal detachment fault

developed and the forming thrust nappes were able to glide along this plane

on top of the Baltoscandian/Fennoscandian shield (Fossen, 1992).

The tectonostratigraphic division of the Caledonian belt suggested by

Roberts et al. (1985) separates the thrust nappes in four units, respective to
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Figure 1.2: Overview of the Scandinavian Caledonides after the scheme in-

troduced by Roberts and Gee (1985), map from Roberts (2003). Roberts

(2003) grouped the Lower and Middle Allochthon together for better visibil-

ity and due to the fact that both the Lower and Middle Allochthon have the

same origin. Region of interest marked in red.

origin: the Lower, the Middle, the Upper, and the Uppermost Allochthon.

Figure 1.2 shows a sketch of these units and their location in Scandinavia.

The Lower Allochthon is constituted of sediments from the late Proterozoic

up to the early Paleozoic that were strongly a↵ected by tectonic activity

(Roberts and Gee, 1985). They were identified to stem from the margin of

Baltica prior to the Caledonian orogenesis (Stephens and Gee, 1985).

The Middle Allochthon partly overlies the latter, and Precambrian crys-

talline rocks (mainly highly deformed gneisses) and late Precambrian fossil-

free sediments are established as one thrust nappe unit (Roberts and Gee,
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1985). It also derives from the margin of Baltica (Stephens and Gee, 1989).

The Upper Allochthon includes a more heterogeneous unit that is re-

garded as not being endemic to Baltica (Bingen and Solli, 2009). Oceanic

volcanosedimentary successions with di↵erent origins are grouped together

as outboard, exotic terranes, that are presumed to have formed within or in

close vicinity to the Iapetus Ocean (Roberts and Gee, 1985, Stephens and

Gee, 1989). Part of these outboard terranes are ophiolite complexes that

have been obducted, fragmented, and deformed during the late Cambrian

and Lower Ordovician, up until the Scandian collisional phase (Roberts and

Gee, 1985).

The Uppermost Allochthon consists of several metamorphic rock types,

only present in the northernmost exposed part of the Scandinavian Cale-

donides (Roberts and Gee, 1985). It is interpreted to display the remains of

the continental margin of Laurentia (Stephens and Gee, 1985, 1989).

Subsequent to the Scandian collisional phase, the Scandinavian Cale-

donides were shaped by extensional processes during the Lower and Mid-

dle Devonian (Fossen, 2010). The consistent southeast-oriented collision was

followed by a material transport in the opposite direction, to the west and

northwest, mainly visible in SW Norway (Fossen, 2010). This back-sliding of

the orogenic wedge occurred along the basal detachment fault zone respon-

sible for the thrusting of the nappe units onto the Precambrian shield, due

to the reverse reactivation of these thrusts (Fossen, 1992). The reason for

this is thought to be crustal extension processes, later also having lead to the

formation of extensional shear zones dipping west- and northwest, cutting

through the thrust nappes and continuing into the Precambrian basement

(Fossen, 1992). In southwestern Norway, the Hardangerfjord Shear Zone is a

prominent example with a length of up to 500 km, showing evidence for even

reaching into the lower crust of the Precambrian basement, also a↵ecting

Stord and Bømlo (Fossen and Hurich, 2005).



15 Chapter 1. Introduction

1.2.2 Region of interest: Bømlo and Stord

The islands Bømlo and Stord (to the east of Bømlo) consist of rocks at-

tributed to the Upper Allochthon and Brekke et al. (1984) interpreted the

ophiolitic terrain and remnants of island arc complexes to have formed near

the continental margin of Baltica. A di↵erent formation origin is supported

by Pedersen et al. (1992) and Pedersen and Dunning (1997). Ordovician

faunal data found in remnants of the outboard and exotic terranes resemble

the Ordovician Laurentian fauna more than the fauna found within Baltica

(Pedersen et al., 1992) More evidence for a formation in the proximity of

the Laurentian margin are zircons of Archean age with Laurentia as very

likely source since Baltica’s Precambrian shield does not contain rocks that

old (Pedersen and Dunning, 1997). Also, the Baltic margin is believed to

mainly having been passive until the Scandian collision (McKerrow et al.,

1991, Scotese and McKerrow, 1991, Roberts, 2003). In contrast, the Lau-

rentian margin is found to have been more active, having had accretional

processes occurring between the late Cambrian until the Middle Ordovician

(Zagorevski et al., 2006). Andersen and Andresen (1994) endorse the theory

of the outboard terranes having formed closer to the Laurentian margin. The

material has then later been thrust onto the Baltic shield during the Scan-

dian collision (Andersen and Andresen, 1994, Roberts, 2003), constituting

the Upper Allochthon.

Bømlo Brekke et al. (1984) and Nord̊as et al. (1985) investigated the south-

ern and central part of Bømlo. The North is dominated by rocks from the

Sunnhordland Batholith (Andersen and Andresen, 1994) that intruded af-

ter formation of the Caledonian rocks on Bømlo and is not of interest here.

In Figure 1.3, a geological map of Bømlo and Stord is shown. Figure 1.4

presents the stratigraphy of major units on Bømlo.
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Figure 1.3: Simplified geological map of southern Bømlo and southern Stord

modified after Brekke et al. (1984), Færseth (1982), Andersen and Andresen

(1994), and Sivertsen (1992). Sampling locations are indicated with blue

numbered dots. The chronological order of lithostratigraphic units is dis-

cussed in the text.

The oldest rock unit present on southern and central Bømlo is the Lyk-

ling Ophiolite (Brekke et al., 1984). Its absolute age is still undefined, but

structural evidence strengthens the theory of it being older than the other

units in the area (Brekke et al., 1984). It is presumed that it was formed by

sea floor spreading above a subduction zone (Pedersen and Dunning, 1997).

Unconformably overlying the Lykling Ophiolite, the Geitung Unit con-
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Figure 1.4: Overview of relevant lithostratigraphical units on Bømlo after

Brekke et al. (1984), Færseth (1982), Pedersen and Dunning (1997), and

Stubseid (2017)

sists of extrusive volcanics and sedimentary rocks (Brekke et al., 1984, Nord̊as

et al., 1985). Trace element patterns of metabasalts indicate strong similar-

ities with ensimatic, immature tholeiitic island arc basalts, leading to the

assumption that the Geitung Unit was formed during an early stage of an

island arc developing (Brekke et al., 1984, Pedersen and Dunning, 1997).

Dating the unit, Furnes et al. (1983) determined a Rb/Sr whole rock age of

535 ± 46 Myr for the Geitung Unit. Later U-Pb dating of zircons within

basaltic-andesites gave a crystallisation age of 494 ± 2 Myr (Pedersen and

Dunning, 1997), placing its formation in the Furongian (late Cambrian). Zir-

cons from a siltstone yield the same age, strengthening the formation theory

of the Geitung Unit during the late Cambrian, and indicating that the im-
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mature island arc itself was the source for the siltstones (Viken, 2017).

Both the Lykling Ophiolite and the Geitung Unit underwent folding and

erosion prior to the deposition of the next unit unconformably overlying

them, the Siggjo Complex (Pedersen and Dunning, 1997). The Siggjo Com-

plex consists of subaerial volcanics and sedimentary rocks (Brekke et al.,

1984, Nord̊as et al., 1985). Their geochemistry identifies the unit as a calc-

alkaline, mature island arc sequence (Brekke et al., 1984, Furnes et al., 1986,

Pedersen and Dunning, 1997). Pedersen and Dunning (1997) dated zircons

from this unit, using U-Pb dating, to be 473 ± 2 Myr old, defining the for-

mation period to be Lower to Middle Ordovician and giving the unit a more

exact age than Brekke et al. (1984).

The Siggjo Complex is unconformably overlain by the Vikafjord Group

unit (Brekke et al., 1984). This unit mainly consists of sedimentary rocks

and mafic volcanic rocks (Figure 1.4), which are interpreted to have been

shaped by alluvial and shallow-marine depositional processes, followed by

marine transgressions and later by subaerial, mafic volcanism (Brekke et al.,

1984). Stubseid (2017) correlates the Vikafjord Group with the Mundheim

Group (present northeast of Stord), which has been radiometrically dated at

approximately 445 Ma (Rb-Sr).

The Dyvikv̊agen Group/Utslettefjell Formation unconformably overlies

the Vikafjord Group and is assumed to be of Lower Silurian age and thus

younger than the Vikafjord Group (Færseth, 1982).

The last main unit defined by Brekke et al. (1984) is the Langev̊ag Group,

which has been interpreted in several ways. Volcanics and marine sediments,

including radiolarian cherts, characterise it and are interpreted to depict the

formation and deepening of a marine basin (Brekke et al., 1984). Færseth

(1982) understands this group as a part of the Hardangerfjord Group be-

lieved to contain the oldest rocks of Caledonian age in the area. Brekke

et al. (1984) on the other hand interpreted the Langev̊ag Group to be the
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youngest unit in the area. In Sivertsen (1992), a di↵erent view is presented:

The Langev̊ag Group correlates to a member of the Velle Formation belong-

ing to the Torvastad Group associated with the Karmøy Ophiolite Complex

(south of Bømlo). According to this, the Langev̊ag Group is assumed to have

developed in a widening back-arc basin setting (Sivertsen, 1992), during the

Lower to Middle Ordovician, approximately 470Ma (Pedersen and Dunning,

1997, Viken, 2017). This interpretation of the Langev̊ag Group is adopted in

this study. The Langev̊ag Group exhibits a tectonic contact with the Siggjo

Complex (R.B. Pedersen, personal communication, November 2017). Sivert-

sen (1992) also presumes the mature island arc responsible for the Siggjo

Complex to be the source of the volcanicastic material deposited within the

back-arc basin, leading to the deposition of volcaniclastic formations within

the Langev̊ag Group.

Stord The lithostratigraphy on Stord is similar to Bømlo (Figure 1.3).

Several studies on the region have been conducted with a focus on the lithos-

tratigraphy, of which the most recent one is Andersen and Andresen (1994).

According to their findings, the oldest rocks on Stord originate from ophio-

lites and island arcs, probably from the same geological setting as the Lykling

Ophiolite and Geitung Unit on Bømlo, and are 495 to 470Myr old. They are

found in the centre and the north of Stord.

The subsequently younger unit, according to Andersen and Andresen

(1994), is the Kattnakken Volcanics, which is believed to be of the same age

and formation evolution as the Siggjo Complex on Bømlo, approximately

476 to 473Myr. They are found on central Stord, southeast to the ophio-

lite/island arc rocks.

The southern and southwestern areas of Stord are dominated by deep-

marine and volcanic metasediments (Andersen and Jansen, 1987, Andersen

and Andresen, 1994). Andersen and Jansen (1987) deemed this unit to be
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the same as the Langev̊ag Group after Brekke et al. (1984) on Bømlo.

Just to the north of it, there is a conglomerate-dominated unit, the

Dyvikv̊agen Group (Andersen and Jansen, 1987). It is believed to have

formed at the end of the Upper Ordovician and the beginning of the Sil-

urian (Færseth, 1982, Andersen and Jansen, 1987, Andersen and Andresen,

1994).

The geological unit dominating the north on Stord is the Sunnhordland

Batholith (Andersen and Andresen, 1994). It intruded Caledonian rocks

during the Middle/Upper Ordovician-early Silurian, prior to the Scandian

collisional period due to ocean-continent convergence (Andersen and Jansen,

1987).

Lithostratigraphical units important in this study: Samples were

taken from the Geitung Unit, with an age of 494 ± 2 Myr (Pedersen and

Dunning, 1997), and thus having formed during the late Cambrian, and

the younger Langev̊ag Group, being approximately 470 Myr old (Pedersen

and Dunning, 1997) from the Lower to Middle Ordovician. The geological

settings responsible for their formation are an immature island arc (Brekke

et al., 1984, Pedersen and Dunning, 1997), and a widening back-arc basin

(Sivertsen, 1992, Pedersen and Dunning, 1997), respectively.
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2.1 Sampling locations

2.1.1 Bømlo

Three locations on the island group of Bømlo were sampled on 15.10.2016.

GPS coordinates for all sampling locations are provided in Table A.1 in the

appendix, as well as additional photographs.

Location 1: Langev̊ag On southern Bømlo, by the village of Langev̊ag,

three samples were obtained (Figure 2.1). The outcrop sampled is roughly

100m long and consists of bedded radiolarian chert. Figure 2.2 shows the

location where sample B-L-3 was taken. The interlayering of marine, for-

merly clay-rich sediments (grey) and radiolarian chert (purple-red) is easily

visible. Grey layers have average thicknesses of 2 cm, and red layers are

approximately 5 cm thick. Internal layering within the red layers can be

observed macroscopically, distinguishable by slight colour variations. Sec-

ondary quartz veins cross-cut the ribbon chert layers, and wavy deformation

of the chert can be observed. Only parts of the red layers were sampled. The

lithostratigraphical unit the sampling location is part of, is deemed to be the

Langev̊ag Group.

21
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Figure 2.1: Sampling location 1: Langev̊ag on southern Bømlo

Figure 2.2: Bedded radiolarian chert, location of B-L-3
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Location 2: Geitung 11 km northwest of Langev̊ag, six samples were

taken at the small island Geitung (Figure 2.3). One sample stems from a

hematitic chert band (Figure 2.4a), whereas four samples were taken from

jasper clasts embedded in volcaniclastic breccia (Figure 2.4b, sampling loca-

tion of B-G-3a shown). The hematitic chert band is about one meter long

and has a maximum thickness of 6 cm, thinning out towards the sides. Its

purple-red colour distinguishes it from the surrounding greyish metasand-

stone. Similarly to the samples from Location 1, colour variations can be

seen within, indicating some sort of layering. The jasper clasts sampled, on

the other hand, show di↵erent traits macroscopically. The clasts have vari-

able diameters of 15 cm to 40 cm and exhibit spheroidal shapes. The colour

is more red instead of purple-red, and no layering is visible. Zones of more

intensive red colours are embedded in less red material. The rocks sampled

at Location 2 belong to the Geitung Unit.

Figure 2.3: Sampling location 2: Geitung at the western coast of Bømlo
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(a) Hematitic chert band, B-G-1

(b) Jasper clast, B-G-3a

Figure 2.4: Images of selected sampling locations on Geitung
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Location 3: Finn̊as Approximately 9 km northeast of Geitung, in the

Finn̊as area, one sample was obtained. The location is indicated on the map

in Figure 2.5. The sample stems from a dark red jasper clast embedded

within basal conglomerate, overlain by brecciated pillow lavas of the Geitung

Unit, and underlain by volcanics of the Siggjo Complex. Photographs of the

sampled clast are shown in Figure 2.6. Several clasts were present, but only

one was sampled due to complicated sampling conditions right by the coast

and extreme hardness of the material. The appearance of the jasper clast

resembles the clasts sampled at Location 2, except for the more intense red

colour. No distinct layering is observed and the deep red colour is macro-

scopically fairly homogeneous. The geological map by Brekke et al. (1984)

(Figure 1.3) indicates that this sample is also part of the Geitung Unit.

Figure 2.5: Sampling location 3: Finn̊as in the central area of Bømlo
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(a) Jasper clasts, only the smaller one has

been sampled

(b) A closer look at the smaller clast,

sample B-F-1 was taken here

(c) Jasper clast embedded in basal conglomerate

Figure 2.6: Images of the sampling location for B-F-1
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2.1.2 Stord

Two locations on Stord were sampled prior to 15.10.2016, during field work

for a di↵erent project. Both are in the vicinity of the village of Sagv̊ag.

Location 4: Sagv̊ag gruve Adjacent to the abandoned pyrite mine by

Litlabø (Sagv̊ag), one sample was obtained (Figure 2.7). It was taken from

a layer/lens of slightly deformed chert, exhibiting a light grey-purple colour

and leached white layers that were not sampled (figure 2.8). It is embedded in

altered basaltic greenschist, tu↵, and lava (Norges Geologiske Undersøkelse,

2017) and appears as several “lenses” (100 to 1500m length, 40 m average

width) over an area of a few square kilometres. The lithostratigraphical unit

the chert layer belongs to, shares similarities with both the Torvastad Group

on Karmøy (Sivertsen, 1992) and the Langev̊ag Group on Bømlo (Brekke

et al., 1984) and is believed to have formed at the same time, under the same

conditions (Andersen and Jansen, 1987).

Figure 2.7: Sampling location 4: Sagv̊ag gruve
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Figure 2.8: Hematitic chert by Sagv̊ag gruve, photo courtesy of Rolf B.

Pedersen

Location 5: Sagv̊ag, on the coast Three kilometres to the southwest of

Location 4, another layer/lens of chert was sampled, on the coast of Stord

(Figure 2.9). Only one sample was collected at this location from a slightly

bleached light grey-red chert layer exhibiting similar layering between clay-

rich sediments (grey) and chert units (purple-red, Figure 2.10). The lithos-

tratigraphical setting is identical with Location 4, and macroscopically the

sample resembles the one taken at Location 4, with the only di↵erence that

it exhibits stronger deformation structures.
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Figure 2.9: Sampling location 5: Sagv̊ag, on the coast

Figure 2.10: Hematitic chert on the coast of Stord near Sagv̊ag, photo cour-

tesy of Ingunn H. Thorseth
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2.2 Sample preparation & applied analytical

methods

11 samples were obtained with hammer and chisel in the field, of which not

all underwent the same treatment. Table C.1 in the appendix provides an

overview of sample preparation and analytical methods used. One sample,

B-G-2, was omitted from the analysis and wholly unused due to a insu�cient

sample size. For the remaining 10 samples, thin sections were produced for

optical microscopy, scanning electron microscopy, and Raman spectroscopy.

9 out of the 10 samples undergoing mineralogical and textural analysis were

also additionally prepared for bulk geochemistry analysis with the application

of ICP-OES and ICP-MS.

2.2.1 Microscopy

Thin section preparation In order to investigate both mineralogy and

textures of the jasper and chert samples, 10 polished, petrographic thin sec-

tions with a thickness of 30 µm were produced. To enable working with

both the Optical and the Scanning Electron Microscope (SEM), and the Ra-

man spectrometer, the samples were not covered with a thin glass plate.

For SEM work the thin sections were coated with carbon. An Agar Turbo

carbon coater was used to minimise charging of the sample when acquiring

images and implementing Energy-Dispersive X-ray Spectroscopy (EDS) for

point geochemistry measurements.

Optical microscopy A Nikon Eclipse LV100POL microscope was used for

conducting optical microscopy, including a DS-F1 Nikon digital sight camera

and NIS-Elements imaging software for image acquisition. A magnification

factor of up to 50 can be obtained with this type of microscope, without



31 Chapter 2. Materials & Methods

making use of the oil lenses. For most of the mineralogical and textural

analyses this was su�cient, but for several features the SEM was a helpful

addition, enabling much higher magnification factors.

Scanning electron microscopy Images of textures on very small scales

were acquired with a Zeiss Supra 55VP field emission SEM. To strengthen the

insight into mineralogy gained with optical microscopy, indicative chemical

point analyses were conducted by utilising an EDS system of the type Thermo

NORAN System Six connected to the SEM. The operation parameters were

a voltage of 15.0 kV and an average working distance of 9mm, and Back-

Scattered Electron (BSE) and Secondary Electron (SE) detectors were used

for both imaging of textures and chemical analysis.

Raman spectroscopy A Raman spectrometer (type: Horiba Jobin Yvon

LabRAM HR), using a 514 nm laser wavelength, was additionally applied to

di↵erentiate between specific mineral phases that are usually hard to distin-

guish by optical microscopy alone.

2.2.2 Bulk geochemistry

Sample preparation 9 samples were chosen for bulk geochemistry anal-

ysis, excluding sample S-S-G. The preparation of the samples for bulk geo-

chemistry contained several steps. In order to only obtain rock material that

has not been a↵ected by weathering, samples of su�cient size were cut, using

a rock saw with a diamond blade. A piece from the centre with no weathering

surfaces was taken for each sample and was prepared further. This was only

possible for three samples. The majority of the samples were too small, so

they had to be pre-crushed using a hammer and then sorted for further crush-

ing. For the jasper samples, only the rock fragments with the brightest red

colour and without weathering surfaces were picked to maximise the amount
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of iron phases for the analyses. For both the sawed and hand-sorted samples

the procedure was the same: a hammer and a steel plate on a crushing block

were used to crush the rock fragments to a grain size of <1mm. The sample

material was carefully wrapped in plastic foil, and paper around it was addi-

tionally used to minimise material loss and contamination. The hardness of

the rocks made the crushing process quite di�cult, but careful and very slow

work made it possible to crush a su�cient amount. After crushing the sam-

ples, they were each washed three times with ethanol whilst standing in an

ultrasonic bath. This was done to remove any fine metallic splinters or dust

from the steel hammer and plate that could have contaminated the sample.

In order to further prepare the sample material, it was dried for 24 hours

in a drying cabinet at 50 °C to expedite ethanol evaporation. After drying,

the sample material was milled using a Retsch MM 200 vibratory mill. 2 g

of milled material per sample were desired, but unfortunately some of the

samples were too small and weathered to reach that amount (Table C.1 on

page 142 in the appendix). 0.35 g were used for further sample preparation

for ICP-OES and ICP-MS. Exactly 0.1 g of the milled sample material was

weighed out and solubilised in 3ml concentrated hydrofluoric acid at 135 °C
for 48 hours. After evaporation of the HF supernatant, nitrate salts were cre-

ated by adding a weak solution of HNO3 while keeping the samples heated.

The residue was dissolved with 2ml 2N HNO3 in volumetric flasks and then

diluted with 2% HNO3, filled up to 50ml.

Inductively Coupled Plasma Optical Emission Spectrometry ICP-

OES was implemented in order to detect major and trace elements, making

use of the element-specific emission of electromagnetic radiation to identify

their concentrations even on ppm level by igniting the dissolved sample ma-

terial and ionizing elements. Due to dissolution with hydrofluoric acid, Si

cannot be analysed with ICP-OES and the Si concentrations needed to be



33 Chapter 2. Materials & Methods

calculated with the aid of the concentrations of detected major elements.

A Thermo Scientific – iCAP ICP optical emission spectrometer was used.

The implemented standard for quality control was BCR-2, a USGS-certified

reference standard. Scandium was added as an internal standard. The ac-

curacy achieved was better than 4.7 % for the major elements and better

than 6.2 % for trace elements, with the exception of Cr and Ni (17.1 % and

10.3 %, respectively). Several ICP-OES trace element data either had larger

accuracies than the ICP-MS data counterparts or were very close to/below

the respective detection limits, resulting in the preference of ICP-MS data

in such cases. BCR-2 measurements gave precisions better than 5.9 % for

ICP-OES data used.

Inductively Coupled Plasma Mass Spectrometry The detection and

quantification of trace elements and REEs at lower concentrations requires

the application of ICP-MS. The quantification of elements is acquired by ion

separation dependent on their mass-to-charge ratio. A higher precision can be

obtained, even down to parts per quadrillion (ppq) levels for some elements.

A Thermo Finnigan Element 2 high-resolution ICP mass spectrometer was

used. For both trace element and REE measurements, BCR-2 was used as

standard and was measured repeatedly as quality control. The obtained

accuracy was better than 9.8 % for trace elements, with the exception of Cu

(18.9 %). For the REEs, an accuracy better than 5.2 % was attained. The

analytical precisions achieved by repeated measurements on BCR-2 for trace

elements and REEs were better than 2.4 %.



3 Results

A�liation to two distinct lithostratigraphical units – Langev̊ag Group and

Geitung Unit – and macroscopic similarities allow grouping of the sampling

locations into Group A (Location 1, 4, 5), bedded radiolarian chert, and

Group B (Location 2, 3), jasper. Table 3.1 (page 57) gives an overview of

sample traits.

3.1 Mineralogy and textures

3.1.1 Group A

The samples from Location 1 (Langev̊ag), 4 (Sagv̊ag, by the mine), and 5

(Sagv̊ag, on the coast) do not only belong to the same lithostratigraphical

unit, but also show very similar traits regarding mineralogy and associated

textures. Samples of Group A all consist of mostly microcrystalline quartz,

whereas hematite, mica, and carbonate comprise minor mineral phases. Par-

allel layering can be observed both macroscopically and microscopically, al-

though deformation led to folding of the layers, to a greater or lesser extent

in di↵erent samples (Figure 3.1). Quartz veins cross-cut the layering. This

is very obvious in Figures 3.1c and 3.1d. Reddish-grey layers of chert are

interbedded with thinner, grey layers of sediments in the outcrop, but only

the red chert layers were the focus in this study.

34
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(a) B-L-1 (b) B-L-2

(c) B-L-3 (d) S-S-G

(e) S-S-S

Figure 3.1: Scans of thin sections of samples belonging to Group A, using

reflected light
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Microcrystalline quartz constitutes the groundmass of the rock (Figure

3.2). Varying hematite crystal abundance is evident and occurs both grad-

ually and abruptly. These concentration di↵erences indicate the layering

within the chert, with a variable layer thickness within samples.

(a) Transmitted light, B-L-2 (b) Polarised light, B-L-2

Figure 3.2: Layered microcrystalline quartz groundmass with cross-cutting

quartz vein showing bigger quartz crystals than groundmass, Group A

Hematite occurs both as xenomorphic round and angular crystals. They

show a reddish-brown colour in transmitted light and darker reddish-brown

colour in cross-polarised light (Figure 3.3). In layers mostly consisting of mi-

crocrystalline quartz, mainly round, small hematite crystals (<1 µm to 3 µm)

are present and are evenly spread, not creating any specific patterns, except

for occasional wavy layers several hematite crystals thick (Figures 3.3a and

3.3b). This is also true for the quartz veins. They contain only a very small

fraction of the hematite present in the samples. Layers comprising medium to

high amounts of hematite show a slightly bigger crystal size of 1µm to 5 µm
(Figure 3.3c). In zones or layers with a very high abundance of hematite,

a spotty, cloudy appearance of the latter can be observed, likely caused by

the varying size of the hematite crystals (<1 µm to 10µm) surrounded by

microcrystalline quartz (Figure 3.3d). Within these layers, or zones, certain



37 Chapter 3. Results

(a) Hematite-poor, B-L-2 (b) Wavy hematite layers, B-L-1

(c) Hematite-rich, B-L-2 (d) Very hematite-rich, B-L-1

Figure 3.3: Di↵erent types of hematite abundances in Group A samples

structures are rare, but present. They exhibit both wavy and straight ap-

pearances and have an average length of up to 350µm and a thickness of

5 µm to 20µm (Figures 3.4a and 3.4b). In most cases they follow the general

layering, implicating that they constitute the layering itself as single crys-

tals. But some can be seen in B-L-3, appearing to be angled in regard to

the layering; they resemble filaments. Using optical microscopy, the small

crystal size makes it di�cult to see whether crystals constituting these struc-

tures are connected or separated from each other. The SEM was employed

to investigate these structures further. Using BSE and SE detectors, single



38 Chapter 3. Results

(a) Transmitted light, “filament zone” 1 (b) Transmitted light, “filament zone” 2

(c) BSE detector, “filament zone” 1 (d) BSE detector, “filament zone” 2

Figure 3.4: Filament-resembling structures in B-L-3

crystals loosely following wavy lines were found, exhibiting a higher density

along these lines than around (Figures 3.4c and 3.4d).

Thin sections of Group A all contain small, needle-like mica crystals of

3 µm to 15µm length and 0.5 µm to 2µm thickness (Figures 3.5a and 3.5b).

Under transmitted light, they appear transparent to slightly greenish. They

are evenly distributed within the quartz-rich layers, less present but also

evenly distributed within more hematite-rich layers, and non-existent in the

quartz veins (Figure 3.5b). Their orientation only loosely follows the layer-

ing, and sometimes does not at all. Based on optical properties, the mica
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is assumed to be of muscovite composition. Mica also appears as bigger

crystals in the thin sections, a good example being S-S-G (Figures 3.5c and

3.5d). Here, mica comprises a slightly folded layer within the microcrys-

talline quartz groundmass. Perfectly following the layering, a crack filled

with dark brown iron oxides can be observed. Di↵erent shades of transpar-

ent to brown colours of the mica crystals are present, interpreted to having

been caused by subsequent precipitation of iron oxides. Raman spectroscopy

showed that the mica present in S-S-G is muscovite, supported by SEM/EDS

analysis, providing information about incorporated traces of Mg and Fe as

well. Locally in B-L-1, Na-rich mica crystals lacking K were identified with

SEM/EDS analysis.

An important trait samples of Group A share, is the presence of quartz

in round to elongated spheres, present in distinct layers and visible with the

bare eye within the thin sections (Figure 3.1). They have diameters of 100 µm
to 300µm and are embedded in microcrystalline quartz layers with hematite

crystals (Figures 3.6a to 3.6d). Occasionally they occur in mica-rich lay-

ers, where the mica crystals wrap around them, also indicating a secondary

crystallisation of the mica (Figures 3.6e and 3.6f). The spheres contain very

few hematite crystals with sizes of <1 µm, and significantly less mica needles

than the surrounding microcrystalline quartz. The size of the quartz crys-

tals comprising these spheres is bigger than of the microcrystalline quartz

around, between 5 and 30 µm, compared to 1µm to 5µm (Figure 3.6d). In

some samples, the spheres are elongated, likely reflecting the degree of de-

formation the samples were exposed to (compare Figures 3.6a and 3.6b).

According to Brekke et al. (1984), samples from Location 1 (Langev̊ag) are

bedded radiolarian chert. These quartz spheres are interpreted to stem from

radiolaria, a silica-shell-producing organism present in the oceans since the

Cambrian. They thrive under certain conditions and when dying en masse,

lead to the deposition of a radiolarian “ooze”, which during diagenesis crys-
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(a) Mica needles within microcrystalline

quartz, evenly spread

(b) Mica needles within quartz (left),

mica-free quartz vein (right)

(c) Mica crystals (d) Mica crystals under polarised light

Figure 3.5: Mica in S-S-G, Group A

tallises from biogenic opal to quartz. Their spherical shells generally have

diameters of 100 to 200µm (Smalley, 1963), which corresponds with the sizes

of the quartz spheres found in the samples. Samples from Location 4 and

5 (Sagv̊ag) are associated with the Langev̊ag Group and their mineralogical

and textural appearance strongly resembles the Location 1 samples, leading

to the assumption that all samples of Group A are bedded radiolarian chert,

due to the omnipresent occurrence of the quartz spheres interpreted to be

radiolarian shell remnants.
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(a) Round spheres, S-S-G (b) Elongated spheres, S-S-S

(c) Close-up, S-S-G (d) Close-up, polarised light

(e) Spheres and mica, B-L-3 (f) Spheres and mica, polarised light

Figure 3.6: Quartz sphere abundances in various samples of Group A
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Carbonate crystals with mostly idiomorphic shapes and sizes of 20 µm to

200 µm are present within the microcrystalline quartz groundmass in sam-

ples of Group A. They are not evenly spread within the samples (Figure

3.8a). The amount of carbonate between samples di↵ers as well. In discor-

dant quartz veins, xenomorphic and very small (2µm to 10µm) idiomorphic

carbonate crystals are present, but not abundant (Figure 3.8b). All crys-

tals show degrees of mineral replacement reactions taking place, to a lesser

or greater extent in separate samples. Idiomorphic carbonate crystals in all

samples, except for B-L-2, exhibit a slight, partial replacement of carbonate

with quartz (Figures 3.8c and 3.8d) as well as Fe oxide precipitates in the

vicinity of cracks. In contrast, B-L-2 shows idiomorphic carbonate habits

featuring both holes within, rimmed with Fe oxide precipitates (Figures 3.8e

and 3.8f), and crystals almost completely replaced with Fe oxides. Using

EDS connected to the SEM, point analyses revealed that not only quartz

and Fe oxides are present as replacement products, but also Mn oxides and

fluorapatites with crystal sizes <1 µm.

One last notable finding (in B-L-1) is a quartz grain, embedded in micro-

crystalline quartz (Figure 3.7), interpreted to be terrigenous detritus.

(a) Quartz grain, polarised light (b) Polarised light, di↵erent angle

Figure 3.7: Quartz grain in B-L-1, Group A
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(a) Idiomorphic carbonate, B-L-1 (b) Xenomorphic carbonate, B-L-3

(c) Carbonate with quartz centre, B-L-1 (d) Carbonate, reflected light

(e) Partial Fe-oxide filling, B-L-2 (f) Partial filling, reflected light

Figure 3.8: Carbonate crystals in various samples of Group A
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3.1.2 Group B

The samples from Location 2 (Geitung) and 3 (Finn̊as) both belong to the

Geitung Unit, and – with one exception from Location 2 – exhibit identical

traits regarding mineralogy and textures, see Figure 3.9. This exception is

B-G-1 (Figure 3.9a), taken from a hematitic chert band. Due to similarities

in mineralogy and a�liation with the same lithostratigraphical unit, B-G-1

is included here, but described separately.

Generally, samples from Group B consist mainly of microcrystalline quartz

with sizes of 10 µm to 30µm and locally bigger grains up to 100 µm; mag-

netite, hematite, and carbonate (± chlorite, ± mica) are the minor mineral

phases present. No folding or clearly defined layering can be observed (Fig-

ures 3.9b to 3.9d), except for in B-G-1 (Figure 3.9a) and B-F-1 (Figure 3.9d).

The layering in B-G-1 resembles Group A, whereas it is thicker in B-F-1.

Magnetite in Group B samples is present as idiomorphic to hypidiomor-

phic crystals with sizes of mainly between 10 µm to 50µm. A few crystals

are smaller and a small number of magnetites reaches sizes of up to 300 µm
(Figure 3.10a). When using reflected light, it becomes obvious that some

of the magnetite crystals contain quartz inclusions and nearly all are partly

fractured internally (Figure 3.10b). Some magnetites close to fractures in the

rock exhibit a recrystallisation from magnetite to another Fe oxide (Figure

3.10c), possibly due to fluids percolating into the rocks long after deposition

and diagenesis. The distribution of magnetite throughout the thin sections is

related to the abundance of hematite. Magnetite is present in the microcrys-

talline quartz-rich areas, containing nearly no hematite, and hematite is con-

centrated in zones containing next to no magnetite crystals (Figure 3.10d).

Patches of magnetite-poor/hematite-rich and magnetite-rich/hematite-poor

zones show both gradual and very abrupt boundaries, not exhibiting general

symmetry in their occurrence.
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(a) B-G-1 (b) B-G-3a

(c) B-G-3b (d) B-G-4

(e) B-F-1

Figure 3.9: Scans of thin sections of samples belonging to Group B, using

reflected light
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(a) Idiomorphic crystal in between mi-

crocrystalline quartz

(b) Quartz inclusion and fractures, re-

flected light

(c) Recrystallised Fe oxide close to Fe-

oxide filled crack

(d) Magnetite-poor (top), Magnetite-

rich (bottom), reflected light

Figure 3.10: Magnetite crystals in various samples of Group B

Hematite shows several di↵erent shapes in Group B samples (Figures 3.11

and 3.12). It is mainly present as round inclusions of sizes <1 µm, leading

to a type of hematite occurrence called “hematite microspherules” or “dusty

hematite”, see Figures 3.11a and 3.11b. The microspherules are not evenly

spread, but form clusters of polygonal patches creating a mosaic texture

(Figures 3.11c and 3.11d). These polygonal patches consist of hematite mi-
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crospherules embedded in quartz and have sizes of roughly 10µm to 80µm,

with nearly hematite-free quartz rims surrounding them, showing a thick-

ness of 5 µm to 20µm. The internal texture of single clusters of polygonal

patches varies with concentration of hematite, which seems to be related to

the external shape of the cluster. Round and oval zones are present, ex-

hibiting a near-concentric decrease from the hematite-rich outer areas to the

hematite-poor inner areas (Figure 3.11c). Other shapes include angular clus-

ters with an unidirectional change in hematite content (Figure 3.11d). Not

all clusters featuring the polygonal texture display a directional variation in

hematite microspherule abundance. Some show no clear pattern and vary

in hematite abundance seemingly randomly, creating patches of high and

low concentrations within clearly defined zones. In B-F-1, these clusters are

present, but not nearly as distinctly expressed as in the other samples. An-

other form that the hematites display are round and angular crystals with

sizes of 10 µm to 40µm, occurring independently from the hematite micro-

spherules and less frequently (Figure 3.11e). Generally, where single, bigger

hematites are present, microspherules do not occur directly next to it, but

appear within a little distance. Sometimes a zone of pure quartz as a “ring”

is present around it, varying with the size of the hematite in the centre (Fig-

ure 3.11f). In other areas, the bigger hematites appear grouped together,

independent of the microspherules.

This is a trait B-F-1 exhibits the strongest; generally more hematite crys-

tals with sizes of 2 µm to 5µm are present in high concentrations and with

less easily distinguishable shapes. This sample displays a higher amount of

hematite than the other samples of both Group A and B, macroscopically

seen. The appearance of zones containing hematite resembles the zones of

high hematite abundance in Group A samples, creating a spotty, cloudy

presence in the macroscopically dark red zones. It is di�cult to distinguish

grain boundaries between single hematite crystals. They appear intertwined
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(a) Microspherules under transmitted

light, B-G-3b

(b) Microspherules under reflected light,

B-G-3b

(c) Polygonal clusters, hematite concen-

tration decreases inwards, B-G-3a

(d) Polygonal clusters, hematite concen-

tration varies unidirectionally, B-G-3b

(e) Large, single round and angular crys-

tals, B-G-3a

(f) Larger crystals surrounded by micro-

spherules, B-G-3a

Figure 3.11: Hematite occurrence in various samples of Group B
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and and fuzzy. SEM imagery provides insight here and shows that for all

Group B samples, the hematite grains show the same crystal habit. Within

the intertwined, mesh-like crystal aggregates, certain structures can be found

throughout the dark red zones in B-F-1 (Figure 3.12). They resemble the

filament-like structures seen in a hematite-rich zone within B-L-3 (Group

A). Their look is mainly straight, a weak undulating pattern can occasion-

ally be observed (Figures 3.12a to 3.12c), although single structures with a

stronger undulating appearance were detected (Figure 3.12d). The average

length is 30µm to 100µm and the thickness varies between 5 µm to 10µm.

In some zones, slightly smaller and thinner strands can be seen, with lengths

of 10 µm to 20 µm and thicknesses of 2 µm to 4µm (Figure 3.12c, darker ar-

rows). The SEM showed no connected, filament-representing structures, only

single hematite crystals clustered together, and generally seemingly follow-

ing a “line” (Figures 3.12e and 3.12f). This can be interpreted to depict the

structures observed with optical microscopy (Figures 3.12a to 3.12d).

To distinguish between magnetite and hematite can be complicated in

general, but due to the two very distinct mineral habits displayed in the

samples of both Group A and B, the di↵erentiation between magnetite and

hematite is based on optical properties, including colour and crystal shape.

Reinforcement for this distinction is provided by Raman spectroscopy. Dif-

ferent magnetite crystals and hematite crystals have been investigated and

the Raman spectra are unabmiguous: The black, anisotropic, hexoctahedral

crystals present in Group B line up with the database entry for magnetite

(Figure 3.13a), whereas the brown-reddish, xenomorphic crystals present in

both Group A and B match the Raman spectrum for hematite in the database

(Figure 3.13b).

Carbonate crystals only comprise a minor component in Group B samples.

They occur as idiomorphic to hypidiomorphic crystals with varying sizes and

degrees of mineral replacement with quartz (Figure 3.14). SEM/EDS hints
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(a) Straight filamentous structures, po-

sition indicated with arrows

(b) Filamentous structures from (a)

closer up

(c) Various thicknesses (d) Undulating filamentous structures

(e) BSE image, hematite-rich zone (f) BSE image, hematite-rich zone

Figure 3.12: Filament-shaped structures of hematite in B-F-1, Group B
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(a) Measured representative magnetite (top) and the match-

ing database entry for magnetite (bottom)

(b) Measured representative hematite (top) and the matching

database entry for hematite (bottom)

Figure 3.13: Raman spectra of representative magnetite and hematite crys-

tals in B-G-3a, compared to database entries for magnetite and hematite,

Database library: minlabv5.lib
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(a) Intact, idiomorphic carbonate, po-

larised light, B-G-4

(b) Holes and replacement by quartz,

SEM, B-G-4

(c) Extensive replacement by quartz, id-

iomorphic shape preserved, B-G-3a

(d) Extensive replacement by quartz,

polarised light, B-G-3b

Figure 3.14: Carbonate crystals in various samples of Group B

towards carbonates in Group B mainly being calcite, containing Mn traces.

Within the jasper clast samples from Location 2, hypidiomorphic to

xenomorphic chlorite crystals occur (Figure 3.15). Sizes vary significantly

(Figures 3.15a to 3.15d). They all show a very light green colour, occasion-

ally pleochroism to light brown in transmitted light, and grey interference

colours under polarised light. Implementing Raman spectroscopy to iden-

tify the chemistry yielded a weak match with clinochlore (Mg-rich chlorite),
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(a) Inclusions within quartz, B-G-4 (b) Hypidiomorphic crystals, B-G-3a

(c) Xenomorphic crystals, B-G-3b (d) Largest crystal detected, B-G-3a

Figure 3.15: Chlorite in various samples of Group B

and a better match with chamosite (Fe

2+
-rich chlorite, Figure 3.16). This

is supported by SEM-EDS analyses. The chlorite crystals contain both Fe

and traces of Mg, leading to the assumption that they are a solid solution

between chamosite–clinochlore.

Mica needles, present in Group A, are absent in the Group B samples,

with the exception of B-F-1, which contains only very small amounts. How-

ever, bigger mica crystals, while observed in Group A, are wholly absent

within Group B.
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(a) Measured representative chlorite (top) and the matching

database entry for clinochlore (bottom)

(b) For comparison: RRUFF database entry for chamosite

(R070728)

Figure 3.16: Raman spectrum of chlorite in B-G-3a, compared to database

entries for clinochlore and chamosite, Database library: minlabv5.lib, and

RRUFF (http://rruff.info/Chamosite/R070728)

B-G-1

Both macroscopically and microscopically, B-G-1 more resembles the bedded

radiolarian cherts comprising Group A, than it resembles Group B samples.

However, the presence of magnetite distinguishes it from samples of Group

http://rruff.info/Chamosite/R070728
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A, in addition to the a�liation with the same lithostratigraphical unit as the

other samples of Group B. The magnetite in B-G-1 shows the same crystal

habit as in other Group B samples with slightly smaller crystal sizes, be-

tween 2 µm to 30µm (Figure 3.17a). Its appearance in the thin section, in

relation to hematite abundance, corresponds with Group B, as magnetite is

more abundant in hematite-poor zones. B-G-1 contains varying concentra-

tions of round, xenomorphic hematite crystals (<1 µm to 10 µm) embedded

in a microcrystalline quartz groundmass. Neither distinct polygonal mosaic

patterns, nor filament structures can be found in the sample (Figure 3.17b).

The hematite abundance resembles Group A in regard to varying concen-

trations constituting more or less distinct layering (Figure 3.17c). In B-G-1,

however, the layering is related to both hematite and magnetite abundance.

Where the concentration of magnetite is high, the concentration of hematite

is low and vice versa. Macroscopically, the di↵erence between these layers

can be seen, the hematite-rich layers exhibit a red to purple colour, while the

magnetite-rich layers are more grey. Whereas Group B samples generally do

not exhibit mica, small needle-like mica crystals with a length of 3µm to

5 µm and thickness of 0.5 µm to 1µm are present in B-G-1 (Figure 3.17a),

not following any orientation and resembling the mica needles in Group A

samples. However, their abundance is significantly lower. Carbonate crys-

tals in B-G-1 exhibit xenomorphic shapes and mainly act vein-filling (Figure

3.17d). The thickness of “carbonate accompanied by quartz”-veins lies be-

tween 25 µm to 100µm and they are discordant to the general layering of the

sample. Quartz-carbonate-filled veins are parallel to each other, implying one

stage of vein filling. Carbonate crystals also occur within the rock outside

the veins, possibly with an originally idiomorphic shape, but strong mineral

replacement with quartz complicates validating this assumption. Some mag-

netite crystals are a�liated with those veins, exhibiting sizes of up to 50µm,

bigger than within the surrounding quartz groundmass. Besides the layering,
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the most important characteristic B-G-1 shares with Group A are round to

elongated quartz spheres found in distinct layers, with diameters and quartz

grain sizes very much resembling features in Group A, interpreted to be ra-

diolarian shell remnants.

Resemblance with both groups is given, texturally with Group A (layering

and radiolarian shell remnants) and mineralogically and lithostratigraphi-

cally with Group B (magnetite abundance and Geitung Unit a�liation).

(a) Idiomorphic magnetite and mica nee-

dles

(b) Hematite grains constituting a

darker layer

(c) Quartz spheres in distinct layers,

varying hematite concentration in layers

(d) Cross-cutting carbonate vein associ-

ated with larger magnetite crystals

Figure 3.17: Various minerals and textures in B-G-1, Group B
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Table 3.1: Mineralogical and textural traits of Group A and Group B samples

B-L-1 B-L-2 B-L-3 S-S-G S-S-S B-G-1 B-G-3a B-G-3b B-G-4 B-F-1

Microcrystalline quartz,

⇠10 µm 10 - 30 µm
grain size

Hematite,

1 - 10 µm <1 µm to 10µm 10 - 40 µm, sparse

2 -5 µm
xenomorphic, round high concentrations

Hematite microspherules/

No No <1 µm <1 µm
dusty hematite

Mica needles

Present mainly in quartz-rich layers, Low

No

Very low

high abundance abundance abundance

Muscovite Sparse

Very

Sparse No

abundant

Na-rich mica

Locally,

No No

very sparse

Carbonate crystals

High concentrations

Few crystals

Xenomorphic 50 - 200 µm, bigger crystals Most intact, 50 - 200 µm,

in certain zones vein filling up to 1000µm 50 - 200 µm up to 400µm
Idiomorphic carbonates, Quartz and Holes and Quartz and Strong replacement Least Strong replacement

partially replaced Fe oxides Fe oxides Fe oxides (Quartz) replacement (Quartz)

Idiomorphic magnetite No 2 - 30 µm 10 to 50 µm Up to 600 µm

Xenomorphic chlorite No No

<1 µm inclusions, and

No

20 - 1000 µm crystals

Clusters of polygonal patches No No Typical hematite abundance Very sparse

Hematite-rich layers Defined Clearly defined No Disrupted Defined No

Hematite “filaments” No

Layering-discordant,

No No

Very abundant,

10 µm thickness, 5 - 10 µm thickness,

up to 350µm length 30 - 100 µm length

E↵ect of folding

Medium High Low High Low

and deformation

Layering a�liated with Hematite abundance

Hematite and

No

magnetite abundance

Radiolarian shell remnants, Slightly Round to Most Most Slightly

No

diameters of 100 to 300µm elongated elongated round elongated elongated
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3.2 Bulk geochemistry

3.2.1 Group A

Major elements

The major element analysis by ICP-OES does not include the measurement

of Si, which makes it necessary to calculate the SiO2 in wt% from the values

given for the measured elements. Results of the calculations are depicted in

Table 3.4 on page 69. In Group A, the oxides display similar values for all

samples. The concentration of SiO2 ranges between 77.52 to 86.75wt%. The

other relevant oxides are Al2O3, ranging between 6.05 and 10.23wt%, and

Fe2O3 with concentrations of 3.42 to 5.78wt%. NaO2, MgO, and K2O only

comprise ⇠1wt% each. Other oxides are present in concentrations lower than

1wt%. Loss of ignition (LOI) values are very low in all samples, between 0.54

to 1.33wt%.

Trace elements

Table 3.5 on page 70 provides an overview of the trace element concentra-

tions. The alkali trace elements Li, Rb, and Cs show generally low, but

variable concentrations of <40 ppm for Li and Rb, and ⇠1 ppm for Cs. S

concentrations are below the detection limit (130 ppm for a dilution factor of

130). The alkaline earth metal trace elements Sr and Ba are also present with

low concentrations (<40 ppm and <150 ppm, respectively). The transition

metals show a great variation. Ti can be considered both a trace element

and a minor element due to di↵erences in concentrations between samples

(<1300 ppm). Other transition metal trace elements are detected with con-

centrations <40 ppm, such as V, Cr, Co, Ni, Zn, and Zr. Sc, Y, Nb, and

Cu have concentrations below 10 ppm. Hf and Ta exhibit concentrations of
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<1 ppm. The post-transition metal Pb displays low concentrations below

10 ppm.

Correlations between element concentrations (major and trace elements)

provide important information to infer geochemical traits of samples. Al

correlates strongly with Ti (Figure 3.18a), and Ti correlates very well with

both Zr and Sc (Figures 3.18b and 3.18c). Mn and Co do not correlate very

nicely (Figure 3.18d).

(a) Al and Ti (b) Ti and Zr

(c) Ti and Sc (d) Mn and Co

Figure 3.18: Correlations between various major and trace elements for

Group A samples
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Rare earth elements

Group A samples range in

P
REE between 30.13 to 66.04 ppm (Table 3.6

on page 71). Three normalisations have been applied to enable comparisons

with di↵erent sources and to discuss their applicability (see Chapter 4). Cal-

culated (La/Yb)

N

ratios, Ce anomalies, and Eu anomalies for Group A are

presented in Table 3.2. The normalisation to chondrite is depicted in Fig-

ure 3.19a. The REE patterns are all nearly perfectly parallel to each other,

indicating homogeneity in their bulk geochemistry, though the concentra-

tions vary slightly between samples. The (La/Yb)

N

ratio is a measure of

Light Rare Earth Element (LREE) over Heavy Rare Earth Element (HREE)

abundance and represents the grade of chemical fractionation between LREE

and HREE. It is intermediate to high for all samples, varying between 7.4

and 10.4, which can be observed as a slight LREE-enrichment and a sub-

sequent HREE-depletion. Visually, a very small positive Ce anomaly can

be observed, backed up by calculated Ce/Ce* values. The Eu anomaly is

more pronounced in the REE-pattern, and calculations exhibit the negative

character of it, very uniform at 0.72 - 0.73.

Normalising the REE concentrations to North American Shale Composite

(NASC) gives a distinctly di↵erent distribution pattern, presented in Figure

3.19b. Regarding homogeneity, the samples all exhibit REE patterns with a

high degree of parallelism. (La/Yb)

N

ratios are low and vary in a very narrow

range, showing no depletion or enrichment from LREEs to HREEs. Both the

Ce and Eu anomalies are only barely visible, backed up by anomaly calcu-

lations. Thus, small positive Ce and Eu anomalies are present, Ce/Ce* not

di↵ering vastly from the chondrite normalisation, while the Eu/Eu* anomaly

changes from negative to positive.

The normalisation to Post-Archean Average Shale (PAAS) is displayed in

Figure 3.19c and exhibits similar traits as the NASC-normalisation. (La/Yb)

N
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ratios are very low, no depletion from LREEs to HREEs is present, and Ce

and Eu anomalies are slightly positive for all samples.

Table 3.2: (La/Yb)

N

ratios, Ce/Ce*, and Eu/Eu* Group A

(La/Yb)

N

Ce/Ce* Eu/Eu*

Sample ID

Chondrite NASC PAAS Chondrite NASC PAAS Chondrite NASC PAAS

B-L-1 8.1 1.2 0.9 1.15 1.12 1.10 0.73 1.10 1.13

B-L-2 7.5 1.1 0.8 1.13 1.10 1.09 0.72 1.07 1.11

B-L-3 10.4 1.5 1.1 1.15 1.12 1.10 0.73 1.09 1.12

S-S-S 7.4 1.1 0.8 1.22 1.18 1.17 0.73 1.09 1.12

Ce/Ce*=CeN/(LaN*PrN )0.5, and Eu/Eu*=EuN/(SmN*GdN )0.5, Taylor and McLennan

(1985)
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(a) Chondrite-normalisation (b) NASC-normalisation (c) PAAS-normalisation

Figure 3.19: Di↵erent REE-normalisations of Group A samples
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3.2.2 Group B

Major elements

Group B samples feature slightly di↵erent and generally lower oxide concen-

trations compared to Group A (except for SiO2), but are generally homoge-

neous for each oxide (Table 3.4 on page 69). The SiO2 content varies between

75.12 and 93.16wt%, by far the most abundant oxide in the samples. It is

followed by Fe2O3, present in concentrations between 3.49 and 23.38wt%.

B-F-1, the sample exhibiting the most intense red colour (see Section 3.1.2),

surprisingly does not have the highest Fe2O3 content, but rather B-G-4 does.

B-F-1 contains only 14.27wt%, for comparison. All other oxides, including

Al2O3, show concentrations under 1wt%, with some even below the element-

specific detection limits of the ICP-OES. The LOI is very low, between 0.26

and 1.34wt%.

Trace elements

Generally, the concentration of trace elements is lower in Group B than

Group A (Table 3.5 on page 70). Homogeneity in concentrations exists mostly

between the samples from Location 2, Geitung, with the exception of B-G-1

exhibiting slightly deviating concentrations, along with B-F-1 from Finn̊as.

The alkali trace elements vary somewhat: Cs is only present in concentrations

below 0.1 ppm, and Li and Rb have concentrations under 1 ppm with B-G-1

being marginally enriched in both. S concentrations are below the detection

limit (130 ppm for a dilution factor of 130). Sr has concentrations of⇠10 ppm,

similar to Ba, with the exception that Ba shows a light enrichment in B-G-

1. Transition metal trace elements show a similar divergence as Group A

samples regarding concentrations. Sc, Zr, Nb, Hf, and Ta show very low

concentrations (<0.1 ppm, all slightly elevated in B-G-1). Y and Co show

somewhat higher concentrations of <1 ppm, B-F-1 having higher values of
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both. Ti, V, Cr, Ni, Cu, and Zn are more enriched in Group B samples

(<10 ppm, marginally higher in B-F-1, Ti most enriched in B-G-1 at 85 ppm).

The post transition metal Pb is present in lower concentrations than in Group

A, with the ICP-MS data being more reliable than the ICP-OES values due

to the very low concentrations and discrepancy between the methods. Al,

another post-transition metal, is considered a major element in Group A

samples, but in Group B the concentrations are considerably lower: B-G-1 is

highest with just below 2000 ppm, whereas the rest of the samples contains

less than 1000 ppm. The actinides Th and U have concentrations below

0.1 ppm and 0.3 ppm, respectively, with the exception of B-G-1 exhibiting

the highest value for U across all samples of Group A and B with 1.53 ppm.

Correlations between major and trace elements show similar behaviour

for Group B compared to Group A. Al and Ti correlate strongly (Figure

3.20a). Ti and Zr show a moderate correlation (Figure 3.20b) influenced by

B-G-4 exhibiting a slightly higher Zr concentration in regards to Ti than the

rest of the samples. And Ti and Sc show a strong correlation (Figure 3.20c).

Mn and Co display no correlation (Figure 3.20d), similar to Group A. This is

caused by very low concentrations for Co in Group B samples in comparison

to Group A samples. Plotting concentrations for Groups A and B together

(Figure 3.21) provides a di↵erent view: Mn and Co are strongly correlated in

all samples, only B-G-1 shows a significant deviation from the trend due to

Mn values correlating with Group A samples, but Co values correlating with

Group B samples. In the appendix on page 143, correlations for the three

remaining element pairs combining Group A and B samples are presented in

Figure D.1, displaying strong correlations.
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(a) Al and Ti (b) Ti and Zr

(c) Ti and Sc (d) Mn and Co

Figure 3.20: Correlations between various major and trace elements for

Group B samples; Al, Mn: ICP-OES data; Ti, Zr, Sc, Co: ICP-MS data
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Figure 3.21: Mn and Co correlated for Group A and B samples combined

Rare earth elements

The range of

P
REE is significantly lower than in Group A samples and

is between 1.12 to 3.01 ppm (Table 3.6 on page 71). Figure 3.22 shows the

three di↵erently normalised diagrams for Group B samples. (La/Yb)

N

ratios,

Ce anomalies, and Eu anomalies for Group B are presented in Table 3.3.

Generally, Group B samples show REE distribution trends less homogeneous

than Group A, but the concentrations are within a narrow range.

In Figure 3.22a, the chondrite normalisation is displayed. (La/Yb)

N

ra-

tios are 0.6 - 4.5, a slight LREE enrichment and HREE depletion is visible

for samples B-G-1 and B-G-3b, whereas B-G-4 exhibits the opposite. The Ce

anomalies vary between samples: B-F-1 exhibits a negative anomaly, B-G-1

is only slightly negative, and the rest of Group B is positive. This is di↵er-

ent for the Eu anomaly. All samples display a negative character. Another

anomaly is visible in Figure 3.22a. The Pr concentration for B-G-4 is sig-

nificantly lower than expected and yields a negative anomaly, a↵ecting the

positivity of the Ce anomaly for B-G-4.

The REE patterns are very di↵erent when normalised to NASC, see Fig-

ure 3.22b. The ratios of (La/Yb)

N

are very low, presented as general trends
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exhibiting HREE enrichment over LREE. Here, the trends for B-G-1 and

B-G-3b also di↵er, due to slightly higher ratios, displaying no significant en-

richment or depletion of LREE or HREE. The Ce anomalies exhibit very

similar values as the chondrite-normalised values. The Eu anomalies on the

other hand, di↵er vastly from the chondrite normalisation. Normalised to

NASC, only three out of five samples exhibit a negative Eu anomaly (B-G-

3a, B-G-3b, B-G-4), whereas B-G-1 and B-F-1 show positive Eu anomalies.

The Pr anomaly in B-G-4 is negative and for the other samples less pro-

nounced to non-existent.

The PAAS-normalisation yields similar results as the normalisation to

NASC. (La/Yb)

N

ratios are low, a trend showing enrichment of HREE over

LREE is present for three out of five samples, and B-G-1 and B-G-3b exhibit

no significant enrichment or depletion trend again. The Ce anomalies are

comparable as well, the most negative being evident in B-F-1. Eu displays

negative anomalies for B-G-3a, B-G-3b, and B-G-4, but positive anomalies

for B-F-1 and B-G-1. This is in accordance with the NASC normalised values.

Also, the Pr anomaly resembles the NASC normalisation strongly.

Table 3.3: (La/Yb)

N

ratios, Ce/Ce*, and Eu/Eu* Group B

(La/Yb)

N

Ce/Ce* Eu/Eu*

Sample ID

Chondrite NASC PAAS Chondrite NASC PAAS Chondrite NASC PAAS

B-G-1 4.2 0.6 0.5 0.98 0.95 0.94 0.76 1.14 1.17

B-G-3a 1.2 0.2 0.1 1.14 1.10 1.09 0.49 0.73 0.75

B-G-3b 4.5 0.7 0.5 1.04 1.02 1.00 0.46 0.68 0.70

B-G-4 0.6 0.1 0.1 1.26 1.22 1.21 0.46 0.68 0.70

B-F-1 2.1 0.3 0.2 0.75 0.73 0.72 0.68 1.02 1.04

Ce/Ce*=CeN/(LaN*PrN )0.5, and Eu/Eu*=EuN/(SmN*GdN )0.5, Taylor and McLennan

(1985)
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(a) Chondrite-normalisation (b) NASC-normalisation (c) PAAS-normalisation

Figure 3.22: Di↵erent REE-normalisations of Group B samples
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Table 3.4: Major element concentrations (in wt%), measured with ICP-OES

B-L-1 B-L-2 B-L-3 S-S-S B-G-1 B-G-3a B-G-3b B-G-4 B-F-1

LOI % 1.33 0.79 1.33 0.54 1.31 1.34 0.26 0.77 0.27

NaO2 1.14 1.56 1.92 1.09 bdl bdl bdl bdl bdl

MgO 1.12 0.78 1.02 0.52 bdl bdl bdl bdl 0.07

Al2O3 6.92 8.39 10.23 6.05 0.72 0.11 0.17 0.20 0.23

P2O5 0.04 0.06 0.07 0.04 0.01 0.01 0.03 0.01 0.12

K2O 0.98 1.44 1.68 1.19 0.25 bdl bdl 0.05 bdl

CaO 0.16 0.17 0.14 0.20 0.91 1.05 0.38 0.46 0.44

TiO

†
2 0.12 0.19 0.22 0.11 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Fe2O3 3.89 4.99 5.78 3.42 3.49 9.72 6.92 23.38 14.27

MnO 0.14 0.12 0.10 0.09 0.14 0.02 0.01 0.02 0.01
P

15.85 18.48 22.46 13.25 6.84 12.24 7.77 24.88 15.40

Calculated SiO2 84.15 81.51 77.52 86.75 93.16 87.76 92.23 75.12 84.60

bdl = below detection limit, † = ICP-MS data used
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Table 3.5: Trace element concentrations of Group A and Group B samples

(in ppm), measured with both ICP-OES and ICP-MS

B-L-1 B-L-2 B-L-3 S-S-S B-G-1 B-G-3a B-G-3b B-G-4 B-F-1

Li* 24.33 19.73 25.45 9.60 1.08 0.47 0.39 0.39 0.87

B* 7.02 10.52 13.06 bdl bdl bdl bdl bdl 8.12

S* bdl bdl bdl bdl bdl bdl bdl bdl bdl

Sc

†
4.15 5.47 5.98 3.49 0.302 0.044 0.031 0.099 0.117

Ti

†
748.7 1160 1302 675.0 84.72 5.78 4.61 6.56 18.58

V

†
16.74 20.80 25.85 9.09 8.36 8.20 4.45 2.91 13.32

Cr* 20.99 25.66 27.25 15.07 4.98 9.26 6.01 1.32 1.99

Co

†
11.75 10.72 13.85 6.42 0.282 0.200 0.133 0.216 1.41

Ni* 19.87 19.59 23.44 9.29 2.26 4.75 3.32 1.35 10.07

Cu

†
2.92 2.32 2.02 1.85 1.29 2.33 1.19 3.04 4.10

Zn

†
35.89 28.33 31.22 18.41 2.36 2.83 3.55 2.41 5.28

Rb

†
19.64 29.61 34.10 24.20 3.32 0.158 0.070 0.566 0.349

Sr* 21.92 25.81 27.57 36.76 15.1 11.53 4.43 4.99 6.41

Y* 4.36 6.38 6.81 4.72 0.75 0.55 0.54 0.69 1.39

Zr* 18.39 27.49 35.27 19.01 2.58 1.09 0.75 4.05 2.18

Nb

†
2.31 3.41 4.01 1.99 0.272 0.037 0.030 0.078 0.065

Cs

†
0.756 1.06 1.25 0.616 0.077 0.011 0.005 0.027 0.038

Ba* 84.28 128.24 142.73 127.64 68.77 1.75 1.12 4.18 1.44

Hf

†
0.487 0.777 0.935 0.500 0.050 < 0.004 < 0.004 0.030 0.013

Ta

†
0.159 0.235 0.268 0.147 0.018 < 0.004 < 0.004 < 0.004 0.005

Pb

†
4.99 6.48 6.61 6.16 1.64 0.826 0.726 2.63 2.50

Th

†
1.70 2.53 3.04 1.75 0.239 0.011 0.014 0.013 0.056

U

†
0.325 0.504 0.543 0.499 1.53 0.038 0.035 0.239 0.145

* = ICP-OES data, † = ICP-MS data, bdl = below detection limit
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Table 3.6: REE concentrations (in ppm), measured with ICP-MS

B-L-1 B-L-2 B-L-3 S-S-S B-G-1 B-G-3a B-G-3b B-G-4 B-F-1

La 5.60 7.80 12.68 5.54 0.493 0.168 0.409 0.119 0.449

Ce 13.36 18.06 30.01 14.08 0.997 0.424 1.05 0.268 0.628

Pr 1.39 1.89 3.11 1.40 0.122 0.048 0.143 0.022 0.091

Nd 5.30 7.19 11.63 5.36 0.523 0.271 0.725 0.154 0.432

Sm 1.03 1.41 2.17 1.06 0.121 0.077 0.181 0.047 0.097

Eu 0.236 0.319 0.481 0.243 0.031 0.013 0.026 0.009 0.025

Gd 0.941 1.31 1.87 0.978 0.129 0.086 0.167 0.077 0.131

Tb 0.145 0.208 0.277 0.157 0.022 0.014 0.023 0.014 0.021

Dy 0.860 1.23 1.56 0.918 0.142 0.095 0.129 0.112 0.159

Ho 0.168 0.244 0.297 0.183 0.027 0.018 0.020 0.025 0.036

Er 0.492 0.723 0.874 0.543 0.083 0.065 0.057 0.088 0.128

Tm 0.072 0.105 0.127 0.077 0.011 0.011 0.007 0.016 0.020

Yb 0.466 0.698 0.825 0.502 0.080 0.098 0.061 0.141 0.146

Lu 0.069 0.105 0.124 0.075 0.011 0.016 0.008 0.025 0.021
P

30.13 41.29 66.04 31.12 2.79 1.40 3.01 1.12 2.38



4 Discussion

4.1 Bulk geochemistry - element relationships

and their implications

The bedded radiolarian chert and jasper samples are clearly marine sed-

iments, but the di↵erent processes leading to their formation need to be

evaluated, along with their depositional environments.

4.1.1 Purely hydrothermal origin?

The hypothesis of the cherts and jaspers being of purely hydrothermal ori-

gin, serving as analogues for modern Fe-deposits in seafloor hydrothermal

systems, can be tested with strategies complementing each other, making

use of geochemical, mineralogical, and textural analyses. A commonly used

approach is the examination of major and trace element relationships.

Major and trace element relationships

(Ni+Co+Cu)*10-Fe-Mn diagram One ternary diagram to infer infor-

mation on the formation process of seafloor deposits uses Fe, Mn, Co, Ni,

and Cu concentrations, and was developed by Bonatti et al. (1972) and mod-

ified by Hein et al. (1992, 1994). Figure 4.1 shows Group A and B samples

72
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plotted. Their concentrations are all very similar, placing them in the Fe-rich

apex, leading to the assumption that the formation process was hydrother-

mal. This is in accordance with findings from modern Fe-deposits from the

Jan Mayen vent fields; Haukelidsæter (2017) reports their samples having a

very similar position in this diagram. Late Cretaceous ironstones from the

central Pacific region show a similar placement (Hein et al., 1994). The fact

that this type of diagram has been in use to investigate more recent seafloor

deposits, and not ancient hematitic chert could indicate that it is not as

compelling for ancient deposits compared to modern deposits.

Figure 4.1: (Ni+Co+Cu)*10-Fe-Mn diagram after Bonatti et al. (1972)

Co/Zn ratios A di↵erent way to tackle the hydrothermal origin question

is to use cobalt/zinc ratios. The transition metals cobalt and zinc can be

used to gain information on whether hydrothermal mineralisation took place

or whether minerals precipitated hydrogenetically from oxygenated sea water

(Toth, 1980, Hein et al., 1994). In hydrothermal deposits, Co is depleted,
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while Zn is enriched, resulting in low Co/Zn values. This is because Co

is primarily derived from seawater, whereas Zn is present in hydrothermal

fluids and readily gets incorporated into deposits (Toth, 1980). Absence of

hydrothermal fluids thus leads to significantly higher Co/Zn ratios, indicat-

ing a hydrogenous source for the deposits. Typical values for hydrothermal

deposits range from 0.07 to 0.15 (Hein et al., 1994), or around the mean of

0.15 (Toth, 1980), whereas hydrogenous deposits have a mean ratio of 2.5

(Toth, 1980). Co/Zn ratios for all samples are displayed in Table F.1 in the

appendix on page 146. Group A samples range between 0.33 and 0.44, thus

slightly above the mean of 0.15, while Group B samples exhibit values of 0.04

to 0.12, with B-F-1 at 0.27. Group B samples, with the exception of B-F-1,

are within the range for hydrothermal deposits defined by Hein et al. (1994),

Toth (1980), and the remaining samples, showing only slightly higher ratios,

can be interpreted to be significantly closer to the mean for hydrothermal

deposits than to the mean of hydrogenous deposits. This supports the hy-

pothesis of a hydrothermal component for all samples, but it can be inferred

that Group A samples are not likely to purely be of hydrothermal origin, so

other factors strongly influenced their formation.

Al/(Al+Fe+Mn) ratios Another element ratio strengthens this idea. Di-

viding Al by (Al+Fe+Mn) is a measure of the hydrothermal input to the

sediments, low ratios indicate dominating hydrothermal input, whereas high

ratios hint towards a low hydrothermal contribution to the sediments during

deposition (Yamamoto, 1987). Al is generally not enriched in hydrothermal

deposits, since it is not contained within hydrothermal fluids, whereas Fe

and Mn (in varying concentrations) are enriched in hydrothermal fluids and

thus are present in hydrothermal deposits, leading to the di↵erences in ratios

described by Yamamoto (1987). Values described in literature for hydrother-

mal precipitates are around 0.01 (East Pacific Rise, Boström and Pederson,
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1969), and bedded cherts exhibit ratios around 0.60 (Mine Terrane, Japan,

Sugisaki et al., 1982, Yamamoto, 1983). Ratios for the samples are provided

in Table F.1 in the appendix on page 146. Group A samples have ratios of

0.55 – 0.56, and Group B shows ratios of 0.01 – 0.02, with the exception of

B-G-1 (0.13). The values of Group A are significantly higher than Group

B, supporting the idea that Group B samples have a purely hydrothermal

origin, and Group A samples were influenced by di↵erent processes besides

hydrothermal activity.

Al-Fe-Mn diagram A di↵erent way to utilise and investigate Al, Fe, and

Mn concentrations is another ternary diagram. Two fields within it have

been identified by Adachi et al. (1986) and Yamamoto (1987), separating

hydrothermal cherts from non-hydrothermal cherts. Group A samples plot

within the non-hydrothermal field, whereas Group B samples plot within the

hydrothermal field (Figure 4.2). Group B samples all plot in the Fe apex of

the diagram, due to very low Al and Mn concentrations, but B-G-1 deviates

slightly. Similar to the Al/(Al+Fe+Mn) ratios, Group B is clearly defined

as a hydrothermal deposit here. But Group A consists of non-hydrothermal

deposits, according to the diagram.

The discrepancy between di↵erent diagrams inferring either a hydrother-

mal or a non-hydrothermal origin for Group A samples is interesting and is

investigated further through additional measures.

Relationship SiO2 content and
P

REEs Both Group A and Group B

samples exhibit di↵erent trends when correlating SiO2 content with the sum

of REEs (Figure 4.3). The content of SiO2 in Group A is strongly anti-

correlated with the sum of REEs present (R

2
= 0.88), with increasing SiO2

content, the sum of REEs decreases linearly. Sample B-G-1 correlates well

with Group A in this regard, including it gives an even stronger correlation
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Figure 4.2: Al-Fe-Mn diagram after Adachi et al. (1986)

(R

2
= 0.95, Figure 4.3 upper right). The same trend cannot be observed for

all Group B samples. The sums of REEs are at much lower concentrations

in Group B, but they show a positive correlation (R

2
= 0.64) with increasing

SiO2 content (Figure 4.3 lower right). The very low concentrations within

Group B lead to single samples having a strong impact on the correlation.

The strong anti-correlation within Group A (both including and excluding

B-G-1) indicates that REEs in the radiolarian cherts have a di↵erent source

than the SiO2, a dilution by SiO2 input can be inferred from a source not

providing significant REE input. The positive correlation within Group B

(in- and excluding B-G-1) on the other hand can be taken as indication for

SiO2 and REEs originating from the same source in the jaspers. It has to be

noted though, that with such low concentrations for REEs, a correlation can

be problematic and is not as significant as for higher concentrations (such

as seen in Group A). The fact that B-G-1 correlates well with both groups

indicates it could have been a↵ected by both processes leading to chert and
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jasper formation. These processes can potentially be linked to mineralogical

and textural features and will be discussed later in Section 4.2.

Figure 4.3: Correlation of SiO2 content and
P

REE for both Group A and B

Relationship Fe and
P

REEs Fe and REE content are correlated to

a di↵erent extent for both groups (Figure 4.4). Group A shows a strong

positive correlation (R

2
= 0.85) without including B-G-1, and a less strong,
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but still significant correlation with B-G-1 included (R

2
= 0.76, Figure 4.4

upper right). With increasing Fe content, the sum of REEs increases. Group

B samples anti-correlate (R

2
= 0.56) when including B-G-1, and a little less

when excluding it (R

2
= 0.46, Figure 4.4 lower right).

Figure 4.4: Correlation of Fe content and REE sum for both Group A and B

For Group A it can be inferred that both Fe and REEs have the same

source. It is likely that this source is mainly terrigenous material and to a
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lesser extent seawater and/or a hydrothermal component. The even stronger

correlation when excluding B-G-1 indicates that B-G-1 has an additional

source for Fe, increasing the Fe content slightly without increasing the REEs.

This is very likely a hydrothermal component, stronger in B-G-1 than in

Group A radiolarian cherts. The anti-correlation exhibited by Group B sam-

ples hints towards two di↵erent sources for Fe and REEs. Again, this need

to be taken with care, since the REEs are present in such low concentrations.

The anti-correlation is not very significant, and combined with the fact that

the sum of REEs are so low, it can be assumed that the trend is not rep-

resentative. It can also indicate that the Fe and REEs potentially have the

same source (hydrothermal fluid), but an additional component contributes

to the REE content, possibly seawater.

REE patterns

An additional approach of great importance to investigate a possible hy-

drothermal origin of chert samples is the analysis of concentrations and rel-

ative abundances of rare earth elements. They remain immobile during di-

agenesis (Murray, 1994), and thus preserve initial concentrations, providing

a helpful tool for determining processes involved in the formation of cherts.

Especially (La/Yb)

N

ratios, Ce/Ce* anomalies, and Eu/Eu* anomalies con-

tribute crucially to the analysis.

Group A and B samples display distinctly di↵erent REE patterns, leading

to the assumption that they each have been formed by di↵erent processes.

The comparison between both groups is depicted in Figure 4.6. Group A

exhibits much higher concentrations than Group B. The di↵erences in LREE

and HREE concentrations between the groups are visible, although depend-

ing on the normalisation values, they show di↵erent behaviour.
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Resemblances between REE patterns In all three diagrams, Group A

samples all show a very good correlation with each other, while Group B

samples show slightly less coherent behaviour. Sample B-G-1, though it has

the same concentration levels as Group B samples, correlates much better

with Group A samples, when looking both at the REE patterns, and at the

correlation coe�cients in Tables E.1 to E.3 in the appendix on pages 144 to

145. The best correlation is present in the chondrite-normalised REE pat-

terns. This evident correlation is very likely connected to the fact that B-G-1

resembles Group A samples more than Group B samples in both mineralogy

and texture, except for the abundance of magnetite crystals.

Di↵erences between applied normalisations Normalising the REE

patterns to di↵erent values, chondrite, NASC, and PAAS, results in di↵erent

(La/Yb)

N

ratios, Ce/Ce*, and Eu/Eu* anomalies, as described earlier (Ta-

bles 3.2 and 3.3). The three used normalisations stem from various sources.

Chondrite-normalised values after Boynton (1984) are taken from an average

over CI chondritic meteorites, which are interpreted to represent the initial

solar nebula composition best, being relatively unfractionated (Rollinson,

1993). NASC after Gromet et al. (1984) describes an average marine sedi-

ment, produced by recurrent erosion recycling, using North American shales

for averaging (Rollinson, 1993). And PAAS, a di↵erent shale normalisation

after McLennan (1989), has the same background, but the average is based

on Australian shales deposited after the Archean. (Rollinson, 1993). The

concentrations of REEs vary extensively between the normalisations. A vi-

sual representation of this is depicted in Figure 4.5. Both NASC and PAAS

are roughly 100 x enriched in LREEs and approximately 10 x enriched in

HREEs, compared to chondrite. PAAS is slightly more enriched in LREEs

than NASC, whereas NASC contains more HREEs. Thus, (La/Yb)

N

ratios

are relatively high (6.74 and 9.13, respectively). Values for Ce/Ce* are very
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close to 1, so no obvious Ce anomaly exists for NASC and PAAS normalised

to chondrite. Both normalisations show a strong negative Eu anomaly (0.67

for NASC, 0.65 for PAAS) compared to chondrite, thus they are both de-

pleted in Eu. This has implications for the interpretation of REE patterns

in Figure 4.6.

Figure 4.5: Normalisation of NASC and PAAS over chondrite
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Figure 4.6: Di↵erent REE-normalisations of Group A and Group B samples
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Fe-oxyhydroxide particles as REE-scavengers According to German

et al. (1990) and Sherrell et al. (1999), Fe-oxyhydroxides are excellent scav-

engers of REEs present in the fluid they formed in. Thus, they are able

to mirror the REE pattern of their source fluid (Johannessen et al., 2017).

The REE composition of Fe-oxyhydroxides is not believed to change during

metamorphism, making them a useful tool when comparing di↵erent poten-

tial source fluids with the samples themselves (e.g. Grenne and Slack, 2003b).

Figure 4.7 displays this comparison, with samples and fluids being normalised

to chondrite. Reference high-temperature hydrothermal fluids exhibit a high

(La/Yb)

N

ratio, a slightly negative Ce anomaly, and a very distinct positive

Eu anomaly. Whereas reference low-temperature hydrothermal fluids show

a very low (La/Yb)

N

ratio, also a slightly negative Ce anomaly, and a not

insignificant negative Eu anomaly (Johannessen et al., 2017). Reference oxic

deep sea water remotely resembles the low-temperature hydrothermal fluid

REE pattern, with a very low (La/Yb)

N

ratio, but a significantly stronger

negative Ce anomaly and a slight negative Eu anomaly (Johannessen et al.,

2017). As mentioned before, (La/Yb)

N

ratios, Ce anomalies, and Eu anoma-

lies are useful for analysis and are investigated in the following paragraphs

for the samples, and in comparison with the potential source fluids.

(La/Yb)
N

ratios The significant di↵erence in (La/Yb)

N

ratios between

chondrite normalisation and shale normalisations mentioned earlier compli-

cates comparisons to literature for LREE/HREE values for interpreting for-

mation processes, which is why it is important to keep in mind which nor-

malisation is used. The use of shale normalisations can potentially overprint

crucial information that the normalisation to chondrite would emphasize. In

this study, for chondrite-normalised values, Group A exhibits intermediate

to high ratios, and Group B low ratios, but for shale-normalised values, very

low ratios are observed for both groups. Comparing the chondrite-normalised
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Figure 4.7: Comparison of REE patterns of samples and potential source

fluids: high-temperature hydrothermal fluids, low-temperature hydrothermal

fluids, and oxic deep sea water, sample colours are consistent with those used

in Figure 4.6

REE patterns of the samples to the chondrite-normalised possible source flu-

ids in Figure 4.7, shows that Group A samples match neither of the fluids

REE patterns. Group B samples REE patterns, on the other hand, best

match the low-temperature hydrothermal fluid REE pattern.

Investigation of the NASC-normalisation of Group A samples in Figure

4.6b shows an interesting trend. The REE patterns are very flat, and the

REE concentrations normalised to NASC range around 0.2 and 0.4, indi-

cating that their behaviour generally resembles NASC-REE behaviour, but
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have lower concentrations. This is an indication for a terrigenous detrital

component involved in the formation of Group A samples, which will be in-

vestigated further in Section 4.1.2. Comparing Fe oxide concentrations of

Group A samples (Fe2O3 ca. 4 to 6wt%) to the concentration of Fe oxides in

NASC (FeO 5.66 wt%, Gromet et al., 1984), while keeping the REE depletion

of Group A samples in mind, gives a surprising result: Group A samples are

approximately 4x enriched compared to NASC. This significant enrichment

in Fe cannot be explained by only detrital input resembling the NASC com-

position alone, there must be another source for the high Fe contents, which

could potentially be hydrothermal. A di↵erent explanation could be Fe-rich

terrigenous input, e.g. from volcanic material.

Ce anomalies Due to the fact that both shale normalisations compared to

chondrite (Figure 4.5) do not exhibit strong positive or negative Ce anoma-

lies, all normalisations are feasible for their investigation. The Ce anomalies

for Group A and B samples are slightly positive to non-existent (B-F-1 being

an exception with a moderately negative Ce anomaly), independent of the

normalisation scheme used (Tables 3.2 and 3.3). Shale-normalised Ce anoma-

lies are insignificantly lower than chondrite-normalised Ce anomalies. The

comparison of Ce anomalies in samples to oxic seawater and hydrothermal

fluids infers the following: Neither the high-temperature hydrothermal flu-

ids, nor the low-temperature hydrothermal fluids exhibit positive Ce anoma-

lies and thus cannot be the main REE-source fluid for the samples exhibit-

ing slightly positive Ce anomalies. The pronounced negative Ce anomaly

of oxygenated deep sea water is not representative of the Ce anomalies in

the samples, and thus it cannot have been the source fluid either. Missing

strongly negative Ce anomalies can be an indicator for reducing conditions

in the source fluids. In oxic seawater, dissolved Ce(III) becomes oxidised to

Ce(IV), which is insoluble and thus gets removed from the seawater (Elder-
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field, 1988), resulting in the prominent negative Ce anomaly (Figure 4.7).

This behaviour is only observed for Ce, the rest of the REEs are strictly

trivalent (Eu being an exception) and cannot be oxidised (German and El-

derfield, 1990). Suboxic seawater on the other hand, shows less negative

to positive Ce anomalies, due to the fact that under low O2 conditions, less

Ce(III) oxidation to Ce(IV) can occur (German and Elderfield, 1990). Under

anoxic conditions, Ce is reduced (German and Elderfield, 1990) and results

in more positive Ce anomalies in seawater that are reflected in sediments

deposited under such conditions (Wilde et al., 1996).

The very slight positive Ce anomalies within the samples of Group A can

be inferred to have been caused by deposition under suboxic conditions, and

thus obtaining of REEs from the suboxic seawater, besides from terrigenous

input, investigated in 4.1.2. This assumption is based on the weakly positive

Ce anomalies observed, and low Mn concentrations support this claim. Mn

oxide particles have the ability to capture Ce on their surfaces along with

other REEs, but only under conditions favourable for Mn oxidation (Ger-

man et al., 1991), and the low concentrations of Mn within all samples argue

against this mechanism to have caused the slightly positive Ce anomalies.

Also, all samples containing hematite contradicts anoxic conditions during

the deposition, as pyrite could have formed instead of hematite from pre-

cursor material, depending on the supply of H2S (Slack et al., 2007). Thus,

suboxic conditions are concluded to have been present during the formation

of Group A samples.

For Group B samples, the hydrothermal component contributing to the

deposition of the samples is interpreted to be much stronger than for Group

A, as discussed before. Thus, when investigating the Ce anomaly of Group

B samples, the assumption can be made that seawater, whether it is oxic,

suboxic, or anoxic, is not the main source for the REEs, since a hydrogenous

source has been ruled out for Group B samples by very low Co/Zn ratios.
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The very slightly positive Ce anomalies, except for B-F-1 which exhibits a

moderate negative Ce anomaly, can neither be explained only by high-, nor

by low-temperature fluids supplying the REEs. B-G-1, resembling Group

A samples best, might have formed very similarly to them, thus the small

positive Ce anomaly can be explained by suboxic seawater being present

during formation, along with hydrothermal fluids. B-F-1 di↵ers from B-G-

3a, -3b, and -4 in texture, as it contains copious amounts of filamentous

structures indicating microbial participation in Fe-oxyhydroxide precipita-

tion. With rapid microbially induced Fe-oxyhydroxide precipitation, the ki-

netically slow Ce(III)-oxidation (Bau and Dulski, 1996) from hydrothermal

fluids is inhibited, resulting in a negative Ce anomaly. Abiogenic precipita-

tion of Fe-oxyhydroxides is much slower than biological precipitation. The

absence of filamentous structures in B-G-3a, -3b, and -4 indicates this process

as the main process of Fe-oxyhydroxide formation in these samples. Thus, the

slower precipitation of Fe-oxyhydroxides by abiogenic processes can lead to

more Ce(III)-oxidation of Ce from hydrothermal fluids, resulting in slightly

positive Ce anomalies. With seawater not substantially contributing REEs

to Group B samples (except for B-G-1 to a slight extent), it is di�cult to

infer whether ambient seawater was oxic or suboxic. A certain level of O2

within the seawater must have been present though, so that both Ce(III)-

and Fe(II)-oxidation could have taken place. The O2 concentrations might

have potentially been lower than today, though.

The Ce anomaly does not contribute to solving the question of low- or

high-temperature hydrothermal fluids having been involved, but the investi-

gation of the Eu anomaly is a crucial means for this.

Eu anomalies Eu anomalies are used to get an approximation of the tem-

perature of the hydrothermal source fluid, and thus information about de-

positional constraints (Michard et al., 1993). A very apparent discrepancy
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can be seen for the Eu anomalies between the di↵erently normalised REE

patterns (Figure 4.6, Tables 3.2 and 3.3). Using a set of normalisation values

already depleted in Eu leads to apparently higher values, potentially turn-

ing negative Eu anomalies into positive Eu anomalies. This is visible in the

results of this study, as all samples normalised to chondrite exhibit negative

Eu anomalies, whereas the normalisation to NASC and PAAS yields positive

values for all Group A samples and two Group B samples (B-G-1 and B-F-1),

indicating slightly positive Eu anomalies. Thus, to investigate Eu anomalies

in hematitic chert cautiously, the normalisation to chondrite is the superior

choice, as already stated by Johannessen et al. (2017). Suboxic seawater as

main source fluid is inferred from the Ce anomaly for Group A samples, and

hydrothermal fluids only played a minor role in their formation. Group B

samples on the other hand are presumed to mainly stem from hydrother-

mal fluids. Figure 4.7 shows the strongly di↵ering REE patterns for both.

Eu(II) is considered unstable at temperatures below 250 – 200 °C in a re-

ducing regime (Sverjensky, 1984, Wood, 1990), but Eu(III) is stable, though

much more immobile (Michard et al., 1993). This leads to the hypothesis of

Eu(III) being immobile at low temperatures and reducing conditions, so less

Eu will be leached out of the subsurface the hydrothermal fluids circulate

through (Johannessen et al., 2017). This is the cause of the prevalent neg-

ative Eu anomaly in low-temperature hydrothermal fluids. It also explains

the strong positive Eu anomaly high-temperature hydrothermal fluids ex-

hibit: high temperatures lead to the stabilisation of Eu(II) and subsequently

more Eu is leached out of the subsurface and enters the fluid, causing the pos-

itive Eu anomaly within high-temperature hydrothermal fluids. Both Group

A and Group B samples exhibit negative Eu anomalies, hinting towards low-

temperature hydrothermal fluids being present during their deposition. The

di↵erence in magnitude of the Eu anomaly between Group A and Group B

is evident, with Group B samples displaying stronger negative Eu anomalies
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than Group A. Thus, the REEs in Group B are assumed to stem mainly from

low-temperature hydrothermal fluids, whereas Group A samples must have

undergone di↵erent processes. This di↵erence can be explained by Group B-

REEs having been mainly derived from hydrothermal fluids, whereas Group

A-REEs are mainly derived from a di↵erent source than hydrothermal fluids.

Slack et al. (2007) describe a similar setting of jaspers and ironstones believed

to have formed from hydrothermal plume fallout under suboxic conditions

and a large seawater-derived component, but their samples all exhibit positive

Eu anomalies. Their samples were normalised to PAAS. The normalisation of

Group A Eu anomalies to PAAS actually yields slightly positive values, due

to the depletion of Eu in the PAAS material itself, visible when normalised

to chondrite (Figure 4.5). As mentioned, shale normalisations depleted in

Eu are problematic when investigating hydrothermal processes. Normalising

the REE values of Slack et al. (2007) to chondrite instead of PAAS, 8 out of

10 Eu anomalies actually turn out to be negative (0.77 - 0.99, average 0.85).

This a↵ects their claim of high-temperature hydrothermal fluids having been

involved in the formation of jasper and ironstones, the newly normalised Eu

anomalies indicate low-temperature hydrothermal fluids as source instead.

Thus, their findings are here interpreted to be problematic in regard to the

source fluid. The chondrite-normalised Eu anomalies match the chondrite-

normalised values for Group A much better, and this supports the hypothesis

that low-temperature hydrothermal fluids could have played a minor role in

the formation, next to suboxic sea water.

Summed up, what does this indicate?

A purely hydrothermal origin can be interpreted for Group B samples, Fe-

oxyhydroxides produced by low-temperature hydrothermal fluids have scav-

enged REEs from these rather than from high-temperature fluids or ambient

sea water. Strong evidence has been provided and the determination of the
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depositional environment in the following section can help better understand

the settings in which the formation of Group B occurred. An exception in

Group B is sample B-G-1, showing a stronger correlation with Group A than

the rest of Group B, while the REE concentrations more closely resemble

Group B samples. This discrepancy will be investigated further.

Group A samples have a di↵erent and less straightforward formation his-

tory. Evidence from the Ce anomalies points towards formation under sub-

oxic conditions and scavenging of REEs from suboxic seawater and/or terrige-

nous detritus REE contributions. Enriched Fe contents either hint towards

a hydrothermal contribution, or towards reducing conditions, or a combi-

nation of both. If a contribution from a hydrothermal source took place,

a low-temperature hydrothermal fluid is more likely than high-temperature

hydrothermal fluids, based on the prevailing negative Eu anomalies. De-

termining the depositional environment Group A samples have formed in is

crucial to shed light on the role of detrital input and for fully understanding

the processes leading to their formation.

4.1.2 Depositional environment

Deposition of marine sediments occurs in several, very di↵erent environments.

Continental margins are influenced by terrigenous input from landmasses

and exhibit shallow depths, under this term back-arc basins, marginal seas,

epicontinental seas, and open continental shelves are grouped together (e.g.

Murray, 1994). The deep ocean bottom as depositional environment, on the

other hand, is more dominated by pelagic clay deposition (e.g. Murray, 1994).

Proximal to spreading ridges, marine sediments are generally dominated by

higher Fe oxide concentrations due to hydrothermal activity and a lack in

significant terrigenous input and pelagic deposition (e.g. Murray, 1994).

Understanding the diverse depositional environments the di↵erent types
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of hematitic chert were deposited in is possible by investigating major and

trace element relationships, as well as REE behaviour.

MnO/TiO2 ratios One approach proposed by Sugisaki et al. (1982) is the

use of MnO/TiO2 ratios. High concentrations in MnO are generally related

to pelagic sediments, whereas high concentrations in TiO2 imply terrigenous

components being present due to the immobility of Ti and presence in alumi-

nosilicate phases (Murray, 1994). More than twice as much TiO2 than MnO

is typical in continental margin settings (ratio of < 0.5), whereas higher

MnO and/or lower TiO2 concentrations (ratio of > 0.5) are connected to

more pelagic dominated sediment deposition on the deep ocean floor (Sug-

isaki et al., 1982). Group A samples exhibit low ratios with an average of

0.8, whereas Group B samples have much higher ratios with an average of

11.6 (B-F-1 only showing 1.72, see Table F.1 in the appendix on page 146).

Strictly seen, this indicates a deep ocean floor deposition for all samples, but

the average value for Group A samples is very close to the dividing value of

0.5. This can be interpreted to indicate a setting where deposition of ter-

rigenous material and pelagic clay sediments overlaps, but the terrigenous

input dominates. The very high ratios for Group B indicate a depositional

environment far away from landmasses supplying terrigenous material rich

in TiO2, thus the deep ocean floor. Using this method can be problematic

for Group B samples due to the hydrothermal origin resulting in elevated Mn

input from hydrothermal fluids, though. These interpretations are consistent

with what the Al-Ti correlations and respective concentrations indicate.

The use of MnO for depositional environment distinction is debated, Mur-

ray (1994) claims Mn is mobile during diagenetic processes a↵ecting chert,

and thus MnO concentrations in cherts potentially do not adequately rep-

resent the MnO concentrations present in the sediments during deposition.

Several authors deem the diagenetically induced mobility of Mn as insignif-
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icant due to consistency of their results with other measures of depositional

environments (e.g. Shimizu et al., 2001, Udchachon et al., 2011). Never-

theless, the MnO/TiO2 ratio interpretations should be taken with care and

cannot be used as sole indicators for depositional environment discrimination,

which is why other approaches are necessary.

Al-Ti correlation Al, Ti, Fe, and the REEs are elements considered to

withstand diagenetic e↵ects (Murray, 1994), which is why a focus on these

elements is favoured to determine depositional environments. A di↵erent

approach thus makes use of the relationship of Al and Ti. Al and Ti are

both treated as immobile in seawater and hydrothermal fluids, and thus are

taken as indicators for the presence of a detrital component (MacLean and

Kranidiotis, 1987), because they are generally contained in aluminosilicate

phases (Murray, 1994). Both are commonly associated with terrigenous ma-

terial. Their strong correlation for Groups A and B (Figures 3.18a and 3.20a)

supports the assumption of both elements being immobile. Generally signif-

icantly higher concentrations of Al and Ti in Group A than in Group B can

be taken as a signal for Group A having been a↵ected much stronger by ter-

rigenous detrital input than Group B. The elevated values of both Al and Ti

for B-G-1 in regard to the remaining Group B samples are remarkable, but

still significantly lower than Group A samples (Figure D.1a in the appendix

on page 143). This implies that Group A sample sediments formed in the

vicinity of landmasses responsible for terrigenous material deposited within

Group A samples. The small concentrations in Group B, yet correlated,

suggest that terrigenous input is negligible, providing evidence for a depo-

sitional environment virtually una↵ected by terrigenous material. B-G-1 is

very likely to contain a small component of terrigenous material, due to the

generally higher values than the rest of Group B.
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Al2O3/(Al2O3+Fe2O3)-(La/Ce)
N

diagram Murray (1994) developed a

diagram to determine the depositional environment of cherts based on an

extensive database comprised of geochemical data of 49 chert sequences

(early Paleozoic to Neogene). The three depositional zones “ridge-proximal”,

“pelagic”, and “continental margin” were defined (Figure 4.8). The La/Ce

ratio (normalised to NASC) is indicative by itself for these environments.

Figure 4.8: Al2O3/(Al2O3+Fe2O3)-(La/Ce)N diagram after Murray (1994)

Low (La/Ce) values (⇠ 1) are typical in cherts deposited along the conti-

nental margin due to the influence of terrigenous detritus, which itself is

characterised by values ⇠ 1. Adsorption of REEs in marginal, oxygen-poor

waters not depleted in Ce can cause a similar La/Ce ratio in marine sediments

(Murray et al., 1991, Murray, 1994). Intermediate values (1 - 2.5) are indica-
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tive of deposition in a pelagic environment due to the increased incorporation

of Ce to marine sediments una↵ected by hydrothermal, metalliferous input,

and terrigenous detritus (Murray et al., 1991, Murray, 1994). Higher values,

around 3.5, hint towards a deposition close to ridges with high hydrothermal

activity, where a pronounced depletion of Ce in oxic seawater occurs. The

REE scavenging occurring in metalliferous plumes from the seawater is be-

lieved to be the main process responsible for REE patterns in ridge-proximal

cherts, leading to high La/Ce ratios due to the present Ce depletion in seawa-

ter (Murray et al., 1991, Murray, 1994). Al2O3/(Al2O3+Fe2O3) is taken as

indicator for hydrothermal activity and terrigenous input. High values (0.6

- 0.9) are caused by minimal presence of Fe and high concentrations of Al,

typical for deposition far away from hydrothermal activity, thus continental

margins. Values between 0.4 and 0.7 are characteristic for pelagic deposition,

pelagic sediments exhibit this range in composition. Low values (0.1 - 0.4)

are typical for Al-poor and Fe-rich environments, thus proximal to ridges,

where the hydrothermal activity produces Fe-rich deposits.

Group A samples plot very closely to each other within the continen-

tal margin field, due to relatively high Al2O3/(Al2O3+Fe2O3) values and

La/Ce ratios typical for terrigenous input (Figure 4.8). Group B samples

exhibit a di↵erent behaviour. La/Ce ratios are ⇠ 1 (B-F-1 1.5), but their

Al2O3/(Al2O3+Fe2O3) ratios vary distinctly; they are much lower than in

Group A samples. B-G-1 has the highest ratio of approximately 0.2, whereas

the other samples are at 0.01 to 0.02, induced by their extremely low Al con-

centrations. A ridge-proximal deposition seems likely for Group B samples

due to their high Fe contents and REE patterns, but the fact that they do

not fall into the ridge-proximal field defined by Murray (1994) is intriguing.

The La/Ce ratios are defined for cherts deposited from metalliferous plumes

scavenging REEs from the ambient seawater (hydrogenetic formation, Mur-

ray, 1994), but the low ratios for Group B samples indicate that this process
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does not define their deposition, supported by their Co/Zn ratios, indicating

a strictly hydrothermal origin for Group B samples. Thus, the formation of

plume-derived jaspers suggested by Grenne and Slack (2003a,b, 2005), Slack

et al. (2007) as analogues for Group B samples is ruled out here. It is more

likely that low-temperature hydrothermal fluids were the main source for the

REEs in Group B, as discussed before. The location of Group B samples

in Figure 4.8 can either be explained by the lack of a distinct negative Ce

anomaly in the source fluid or, more likely, by uptake of Ce(III) oxides from

hydrothermal fluids during abiogenic Fe-oxyhydroxide precipitation in B-G-

3a, -3b, and -4. B-F-1 is the only sample with a defined negative Ce anomaly

(less uptake of Ce(III) oxides due to microbially induced Fe-oxyhydroxide

precipitation being faster than the abiogenic pathway) and thus exhibits a

slightly higher La/Ce ratio than the rest of Group B.

In summation, the diagram introduced by Murray (1994) places Group

A samples in a terrigenous-dominated continental margin depositional envi-

ronment, while Group B does not fall into a predefined field. Group B nev-

ertheless can be explained by not having formed from metalliferous plume

fallout in a ridge-proximal environment, but more likely directly from low-

temperature hydrothermal fluids without much seawater-interference, in an

area of high hydrothermal activity.

High Field Strength Elements (HFSE) The immobile behaviour of Ti

is caused by its high ionic charge and low ionic radius; a similar behaviour can

be observed for other HFSE. They are generally unable to enter aqueous fluid

phases, so hydrothermal fluids cannot become enriched in HFSE by leaching

rocks containing them, leading to hydrothermal deposits not being enriched

either. This means HFSE are stable in seafloor hydrothermal systems and

even under low- to medium-grade metamorphic conditions (Rollinson, 1993).

Thus, HFSE are a reliable tool to discriminate between marine sediments
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a↵ected and una↵ected by detrital input containing significant amounts of

HFSE.

Higher concentrations of HFSE are evident in Group A samples when

compared to Group B samples. Except for Ti (around 1000 ppm), all HFSE

in Group A are below 40 ppm, while Group B samples are lower than 2 ppm

(Ti: <100 ppm, average <25 ppm). Strong correlations between Ti-Zr and

Ti-Sc can be taken as analogous to how well Ti and other HFSE correlate.

The positive correlations between Al, Ti, and additional HFSE and generally

higher concentrations in Group A demonstrate a significantly higher amount

of detrital input than in Group B. Thus, the e↵ect of detrital input containing

HFSE is negligible for Group B, while Group A is strongly a↵ected. Sample

B-G-1 is an exception, as HFSE concentrations are generally higher than the

average, indicating a small influence on the chemistry of the sample from

detrital sources. The insignificant detrital component in the rest of Group B

implies that the REE patterns of Group B samples confidently illustrate the

hydrothermal fluid composition without interference from detrital input.

Chalcophile elements The chalcophile elements Cu, Zn, and Pb only ex-

hibit very low concentrations in all samples, with their average sum being be-

low 40 ppm for Group A samples, and below 10 ppm for Group B samples. A

high amount of chalcophile elements indicates a detrital component inferred

from hydrothermal sulphide particle fallout. The fact that concentrations

in all samples are very low argues against a significant input of detrital sul-

phidic material from high-temperature hydrothermal venting for all samples.

This indicates either distal deposition from high-temperature hydrothermal

venting or deposition from low-temperature hydrothermal venting.

V/100-Sc/10-Th diagram The relationship between concentrations in

V, Sc, and Th can be used to infer knowledge about the geochemistry of
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marine sedimentary deposits and their formation processes. V is enriched

in seawater and contains nearly no Sc and Th, similar to Fe-oxyhydroxides.

Fe-oxyhydroxides are generally a little lower in V and can exhibit a range of

concentrations. Terrigenous sediment and pelagic clay, on the other hand,

are most enriched in Th in comparison to V and Sc. Fields of ranges in

concentration are depicted in Figure 4.9, along with Group A and B samples

being plotted. The di↵erence between both is very distinct. Samples of

Group B plot in vicinity of the “Fe-oxyhydroxides”-field, with one exception,

B-G-1. B-G-1 plots closer to Group A samples, which are located within the

“terrigenous sediment and pelagic clay”-field.

This diagram strengthens the theory of Group A having strongly been

a↵ected by terrigenous sedimentary input, since all samples plot very closely

to the average concentration of NASC. Group B samples on the other hand,

with concentrations of Th, V, and Sc typical for Fe-oxyhydroxides, are yet

again proven to not substantially been a↵ected by detrital input. B-G-1

showing a closer resemblance in concentrations within Figure 4.9 indicates

that terrigenous detritus a↵ected the composition of it much more strongly

than the rest of Group B.

Summed up, what does this indicate? Group A samples were strongly

influenced by terrigenous detrital input; landmasses nearby must have been

the source. This can be explained by several types of settings grouped to-

gether under the term continental margin (back-arc basin, marginal sea, epi-

continental sea, open continental shelf, Murray, 1994). A minor hydrother-

mal component might have contributed to the formation of the samples, but

this cannot be said with certainty.

Group B samples were not significantly influenced by detrital material,

neither from terrigenous sources or pelagic sediments, nor from sulphide par-

ticle fallout from hydrothermal plumes, indicating that REE patterns are not
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Figure 4.9: Th-V/100-Sc/10 diagram after Grenne and Slack (2005)

a↵ected. The theory of low-temperature hydrothermal fluids acting as main

REE-source is supported by negligible detritus. Once again, B-G-1 is an ex-

ception, as it shows signs for detrital terrigenous input, yet to a much lesser

extent than Group A samples. Submarine deposition must have taken place

distal to landmasses and not significantly influenced by high-temperature

hydrothermal venting. The relationship between regional geology and inter-

preted depositional environments will be discussed in Section 4.4.
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4.2 Mineralogy and texture contributions

4.2.1 Group-specific traits and their implications

Both groups show specific traits in mineralogy and textures not present in the

other. These can be used to better understand and distinguish the di↵erences

in depositional processes and formation settings.

Group A - bedded radiolarian cherts

Presence of radiolarians A variety of radiolarian skeletons have been

found in cherts of various ages (Jones and Murchey, 1986). The oldest evi-

dence for fossilised radiolarians stems from the early Cambrian (Braun et al.,

2007). Radiolarians are protozoa, marine organisms creating silica shells of

sizes generally around 100 µm to 200µm (Smalley, 1963), but their size can

range from 30 µm to 2mm (De Wever et al., 2001). Skeleton shapes vary:

spherical and conical structures are known, while spines may or may not be

present (Campbell, 1952). The shells, when produced, consist of biogenic

opal (SiO2*nH2O), which is chemically unstable (Jones and Murchey, 1986).

The dissolution and re-precipitation as opal-CT and finally as quartz leads

to the preservation of the original shape within the marine host rock (Jones

and Segnet, 1972, Kastner et al., 1977, Hein et al., 1978, Jones and Murchey,

1986). According to Jones and Murchey (1986), 98% of the unstable biogenic

opal shells are dissolved within the water column and on the seafloor before

they can undergo burial. Thus, it is assumed that radiolarians in marine

sedimentary rocks are only present in cases of mass-production and death

of large groups of radiolarians, leading to formation of siliceous/radiolarian

ooze on the seafloor, burial, and preservation, linked with silica diagenesis

(Jones and Murchey, 1986).

The spherical structures, consisting of quartz crystals bigger than the mi-
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crocrystalline matrix in Group A samples, are very likely radiolarian shell

remnants. A striking similarity between radiolarian shell remnants found

in Group A radiolarian cherts and radiolarian cherts described in the liter-

ature (e.g. Leistel et al., 1998) is present. Both size and shape, as well as

the composition of larger xenomorphic quartz crystals than the surrounding

microcrystalline quartz matrix, are indicative of this interpretation.

According to Jones and Murchey (1986), the presence of radiolarians can

aid in understanding the depositional environment. Commonly, radiolarians

are characteristic for great depths, near or below the calcite compensation

depth, which has been shallower prior to the Mesozoic than it is today (Jones

and Murchey, 1986). Nevertheless, Leistel et al. (1998) state that their pres-

ence cannot always be taken as an indicator for great depths due to the

fact that they can also be abundant in shallow water enriched in silica, for

example in outer shelf environments. Yet, their presence does pinpoint the

formation of Group A samples within a marine environment enriched in silica.

The very high SiO2 content in all Group A samples can be associated with

the presence of radiolarian shell remnants, thus the precursor of quartz in

the sample must have been biogenic opal, recrystallised to quartz over time.

A small amount of the quartz can possibly be attributed to terrigenous de-

tritus as well. Additionally, in the event that low-temperature hydrothermal

fluids participated in the formation process, a fraction of the SiO2 present

could have formed hydrothermally from fluids rich in Si. Distinction of how

much each of these possible sources contributed, is not possible due to re-

crystallisation. But it is a fair assumption that biogenic opal was the main

contributor.

The anti-correlation of SiO2 and the sum of REEs (Figure 4.3) in Group

A and B-G-1 supports this assumption. Radiolarians and associated biogenic

opal are the main source for SiO2, while terrigenous detritus and hydrother-

mal fluids as potential contributors are nearly insignificant. The main source
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for SiO2 thus does not carry significant amounts of REEs. They must stem

from a di↵erent source. The REE pattern nearly perfectly matching shale

(NASC and PAAS) hints towards terrigenous detritus as main source for the

REEs instead of hydrothermal fluids.

Presence of mica “needles” Radiolarian ooze does not only contain ra-

diolarian shells, but also significant amounts of pelagic clay minerals, and

can contain terrigenous material, which can sometimes even be dominating

(Fütterer, 2006). Clay minerals are hydrous aluminium phyllosilicates, and

thus are a major carrier of Al within radiolarian ooze. The outcrops at all

locations of Group A samples exhibited distinct layering of chert units and

shale units, and even though only the chert units were sampled, the presence

of clay minerals during deposition of the chert units is highly probable –

albeit to a lesser extent. Clay minerals containing significant amounts of Al

and other elements being present during the formation definitely influences

the geochemistry of Group A samples significantly. The relatively high con-

centration of mica crystals in Group A samples can be linked to clay minerals

having been present during deposition.

Hematite crystals and related layering Group A samples all exhibit,

more or less distinct, parallel layering of hematite, with both gradual and

abrupt changes in concentration. The presence of hematite indicates the

presence of a Fe-rich component during deposition. The variation in hematite

concentration within the layering can be caused either by changes in input

concentration containing Fe, or by diagenetic processes. A definite answer

has not been found for the samples thus far.
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Group B - jasper

Presence of magnetite Magnetite is inferred to not have formed shortly

after deposition of Fe-oxyhydroxides, but during a later process. Hematite is

interpreted to be the primary Fe component in Group B, having crystallised

from the Fe-oxyhydroxides. The magnetite crystals, mostly exhibiting id-

iomorphic crystal habits, likely formed during low-grade metamorphism, sim-

ilar to early Cambrian exhalative ironstones investigated by Duhig, Stolz,

Davidson and Large (1992). This assumption is based on the distribution of

hematite and magnetite: where one component is dominating, the other is

in the minority. Thus, reduction of hematite to magnetite took place, and

magnetite formed at the expense of hematite. This reaction could have either

been bu↵ered by organic carbon as a reducing agent (Duhig, Stolz, David-

son and Large, 1992), or potentially even without a reducing agent present

(Frost, 1979). Calcite veins, particularly described for B-G-1 (Figure 3.17d,

page 56), associated with bigger magnetite crystal sizes, could potentially

provide a reducing agent. Magnetite being present in all Group B samples

can thus be taken as an indicator of low-grade metamorphism having a↵ected

the samples.

Clusters of “polygonal patches” The polygonal patches of hematite

microspherules forming clusters, present in B-G-3a, -3b, and -4 (considerably

less abundant in B-F-1), have been described before (e.g. Duhig, Davidson

and Stolz, 1992, Duhig, Stolz, Davidson and Large, 1992, Rasmussen et al.,

2014). Duhig, Davidson and Stolz (1992) found them in massive ferruginous

chert, nearly pure chemical sediment, belonging to the Cambrian-Ordovician

Mount Windsor volcanic belt (N Australia). Their formation is interpreted

to be related to Si-Fe-oxyhydroxide gel deposition from hydrothermal fluids.

These gels subsequently matured and crystallised, and along with this, the

gel experienced syneresis, drying out and shrinking (Duhig, Davidson and
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Stolz, 1992). This drying and shrinking is believed to be the cause for the

clusters of polygonal patches; syneresis cracks silicified during diagenesis and

left behind distinct textures (Figures 3.11c and 3.11d, page 48).

Duhig, Stolz, Davidson and Large (1992), investigating the same samples

as Duhig, Davidson and Stolz (1992), found another possible explanation for

the formation of these textures. Low-grade metamorphism could have led to

recrystallisation of both silica and hematite, producing the clusters of polyg-

onal patches. A connection is drawn between the formation of idiomorphic

magnetite crystals and these patches: with increasing metamorphic grade,

the magnetite crystals increase in size (Duhig, Stolz, Davidson and Large,

1992). Also, the absence of filamentous textures is explained by increasing

metamorphic grade leading to the destruction of these textures, and recrys-

tallisation of small hematite crystals present in the polygonal patches (Duhig,

Stolz, Davidson and Large, 1992).

This explanation is incoherent with the findings of this study. B-F-1 is the

only sample containing copious amounts of filamentous structures and also

exhibits the largest idiomorphic magnetite crystals. Thus, low-grade meta-

morphism leading to magnetite formation is not believed to cause hematite

filament destruction. According to this, filaments were not likely present in

the samples exhibiting extensive abundances of clusters of polygonal patches.

These textures can potentially better be explained as having formed from the

syneresis of a gel precursor.

4.2.2 Group-overlapping traits and their implications

Presence of carbonate minerals The fact that idiomorphic to xenomor-

phic calcite crystals are present within all samples indicates that both Group

A and Group B have been deposited above the carbonate compensation

depth. This is in accordance with Group A samples having been deposited
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in a widening back-arc basin setting, indicating that it was relatively shallow

at the time of deposition. It also agrees with Group B having formed in a

hydrothermal setting related to the formation of an immature island arc.

Filamentous structures In total, two samples contain filamentous struc-

tures: B-L-3, a radiolarian chert from Group A, and B-F-1, a jasper from

Group B. The amount of filaments vary between both the samples, along

with the size. B-L-3 only exhibits one small zone containing very few fila-

mentous structures of lengths up to 350µm and widths of 5 - 20µm. B-F-1

has uncountable filament structures abundant in the hematite-rich zones, of

average lengths of 30 - 100 µm and widths of 5 - 10µm, though some are

smaller (10 - 20 µm length, 2 - 4 µm width). Average lengths and widths

of filaments produced by Fe(II)-oxidising bacteria described in literature are

10 - 100 µm and 1 - 5µm, respectively (Little et al., 2004, and references

therein). Slightly thicker filaments can be caused by subsequent precipita-

tion of Fe oxides on the filaments, as described for modern hydrothermal

deposits (Krepski et al., 2013, Chan et al., 2016, Lyngtveit, 2017).

Filamentous structures in B-L-3 are significantly longer than bacterial-

derived filaments detected to date. This fact, the scarce abundance within

the sample, and the fact that they have only been found in one out of five

Group A samples, leads to the assumption that they might either potentially

not be of biogenic origin, or bacterial activity was extremely restricted and

scarce during formation. Nevertheless, there is still a possibility that filamen-

tous textures have not been preserved through deformation and metamorphic

alteration.

B-F-1 shows more similarities with filaments described for both mod-

ern hydrothermal deposits and ancient analogues. The crystallisation from

Fe-oxyhydroxides to more crystalline phases and finally hematite, poten-

tially overprinted by subsequent recrystallisation of hematite, causes issues in
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recognising potential branching or other distinct features like twisted stalks

that could be taken as a sound indicator for bacterial mediation. Neverthe-

less, the filamentous structures may have formed by Fe(II)-oxidising bacteria.

4.3 Formation models

Based on the geochemical and textural results and interpretations, the follow-

ing models are assumed to represent the deposition of four di↵erent sample

types:

• Bedded radiolarian chert (Group A)

• Radiolarian chert band (B-G-1, Group B)

• Abiogenic jasper (B-G-3a, -3b, and -4, Group B)

• Microbially induced jasper (B-F-1, Group B).

4.3.1 Bedded radiolarian chert (Group A)

The depositional regime of the radiolarian cherts comprising Group A in-

ferred from geochemistry is interpreted to be a suboxic marginal back-arc

basin, where terrigenous input was deposited among vast amounts of radio-

larian shell remnants, with a small component providing pelagic clay mineral

deposition (Figure 4.10). Rhythmic sediment input variations are potentially

responsible for the macroscopically observed layering between formerly clay-

rich units and chert-rich units in the outcrops. They can also be the cause for

the gradual and abrupt changes in hematite concentrations within the chert

layers. The terrigenous input provided stems from a landmass in vicinity to

the basin, likely volcanic, explaining high Fe contents in the sediments. This

terrigenous source is also the main contributor of REEs, due to the posi-

tive correlation of Fe and REEs (Figure 4.4, page 78). The main source for

silica are radiolarian shell remnants, originally having consisted of biogenic
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opal, which crystallised over time to SiO2. Pelagic clay might have played

a minor role in the formation process, but it cannot be said with certainty.

Positive Ce anomalies are the result of a minor uptake of REEs from the

seawater, which is interpreted as suboxic. Whether a hydrothermal compo-

nent provided to the formation of the radiolarian cherts is unclear, but if

it did, the e↵ect might have been negligibly small. Significant recrystallisa-

tion must have taken place, since no clear textural evidence can be found

for terrigenous detritus, except for one quartz grain found in B-L-1 (Figure

3.7, page 42). Additionally the REE patterns, Al, Ti, and a range of other

elements support the theory of terrigenous detritus being present. Next to

the radiolarian shell remnants having been a↵ected by thermal maturation,

hematite crystals are assumed to have formed during recrystallisation. The

samples have not been exposed to high-grade metamorphism and the layering

is believed to stem from varying sediment input rates.

The bedded radiolarian cherts cannot be taken as a good analogue for

modern submarine hydrothermal Fe-Si-deposits, due to the uncertainty re-

garding a hydrothermal component.

4.3.2 Radiolarian chert band (B-G-1, Group B)

Strong similarities in mineralogy, geochemistry, and texture shared with

Group A (bedded radiolarian cherts) indicates that B-G-1 has a similar for-

mation history with minimal di↵erences (Figure 4.11). Terrigenous input,

likely volcanic, is derived from a nearby landmass, and provides mainly Fe

and REEs to the system, while the silica is mainly derived from radiolar-

ian shell remnants and their biogenic opal. A minimal input of pelagic clay

minerals is possible. Low-temperature hydrothermal fluids contributing to

Fe, Si, and REE input are possible, but this cannot be said with certainty.

Oxygen concentrations are interpreted to have been low during deposition,
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Figure 4.10: Formation model for bedded radiolarian cherts (Group A)

leading to minimal Ce(III) oxidation. An additional source of Fe is likely,

as compared to Group A radiolarian cherts, which only show one main Fe

source. Low-grade metamorphism is believed to have caused reduction of

hematite to magnetite, while keeping the layering within the sample intact.

Only one thin layer of hematitic chert developed, unlike the radiolarian cherts

of Group A, which are pervasively bedded.

The uncertainty about a hydrothermal component contributing to the

formation of the radiolarian chert band complicates the samples’ ability to

serve as analogues to modern submarine hydrothermal Fe-Si-deposits.

4.3.3 Abiogenic jasper (B-G-3a, -3b, and -4, Group B)

B-G-3a, -3b, and B-G-4 all have very similar textural traits, most notably

the polygonal patches interpreted to be syneresis cracks indicating a gel pre-

cursor. A possible explanation for their formation is low-temperature hy-

drothermal fluids, having formed due to conductive heating of downwards

percolating seawater below the seafloor surface, leading to their production
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Figure 4.11: Formation model for radiolarian chert band (B-G-1)

(Cooper et al., 2000). Buoyancy led to their emanation from the seafloor,

where they subsequently only slowly mixed with seawater (Figure 4.12). Hy-

drothermal fluids are denser than seawater (Sato, 1972), and thus, if ema-

nating di↵usely from the seafloor, they do not spread far, but likely form

a Fe-Si-oxyhydroxide gel layer on the seafloor. Vast subseafloor formation

is unlikely due to the O2 concentration rapidly decreasing with increasing

depth. The absence of biomarkers such as microbial filamentous structures

seen in B-F-1 indicates either their later destruction by metamorphosis or

the absence of bacteria during the formation process. Idiomorphic magnetite

signals metamorphism having a↵ected the samples, but B-F-1 contains both

idiomorphic magnetite and filamentous structures. This leads to the assump-

tion that B-G-3a, -3b, and -4 likely did not contain microbial filaments in the

first place. The absence of bacteria producing filamentous structures might

be explained with temperatures of the low-temperature hydrothermal fluids

having been too high to host Fe(II)-oxidising bacteria. For Mariprofundus

ferrooxydans, experimentally determined optimal growth temperatures range
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between 10 - 30 °C (Emerson et al., 2007), while low-temperature hydrother-

mal fluid temperatures reach temperatures up to 100 °C (e.g. Bemis et al.,

2012). Other Fe(II)-oxidisers likely have similar growth temperature ranges.

This supports the theory of temperatures having been too high for micro-

bial activity to contribute to the formation of the abiogenic jasper. Slightly

positive Ce anomalies and negative Eu anomalies (chondrite-normalised) in-

dicate uptake of REEs mainly from low-temperature hydrothermal fluids

by Fe-oxyhydroxides having precipitated abiogenically and not mediated by

bacterial activity. During thermal maturation of the gel, syneresis cracks

formed, creating the characteristic clusters of polygonal patches. Later on,

silica filled these cracks. Magnetite formed from hematite during low-grade

metamorphism.

Abiogenic jasper can potentially serve as an analogue to modern subma-

rine hydrothermal Fe-Si-deposits, but no comparable samples within modern

seafloor hydrothermal systems have yet been described.

Figure 4.12: Formation model for abiogenic jasper (B-G-3a, -3b, -4)
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4.3.4 Microbially induced jasper (B-F-1, Group B)

B-F-1 di↵ers in texture from the rest of Group B, and thus must have a di↵er-

ent formation (Figure 4.13). The sample exhibits a high amount of filaments,

leading to the assumption that microbial activity is the driving force for the

precipitation of Fe-oxyhydroxides, the hematite precursor. The combination

of negative Ce and Eu anomalies (normalised to chondrite) is only found

within this one sample. This is typical for modern Fe-oxyhydroxide deposits

found within the Jan Mayen hydrothermal vent field (Johannessen et al.,

2017, Haukelidsæter, 2017, Lyngtveit, 2017), which are attributed to di↵use

low-temperature hydrothermal venting. These deposits are dominated by

filaments produced by bacteria, texturally resembling the filaments found in

B-F-1. The similarities in geochemistry and texture indicate that these mod-

ern hydrothermal deposits can be seen as an analogue to sample B-F-1. Sea-

water is interpreted to have percolated seafloor sediments only shallowly and

was conductively heated by a heat source below, leading to low-temperature

hydrothermal fluids (Johannessen et al., 2017). These fluids were then driven

upwards and when di↵usely venting from the seafloor sediments, Fe-oxidising

bacteria were able to use the redox-potential for their metabolism. This

can be inferred to have led to the formation of filaments comprised of Fe-

oxyhydroxides, in a similar manner as in modern Fe-oxyhydroxide deposits

from the Jan Mayen Vent Field, forming mounds and creating Fe and O2

gradients between inside and outside (Johannessen et al., 2017). Silica also

precipitated from the hydrothermal fluids. Layering can be observed in the

thin section scan of B-F-1 (Figure 3.9e, page 45), potentially created by

cycles of high hydrothermal fluid input vs. low input, resulting in phases

of intense microbially induced Fe-oxyhydroxide precipitation and quiescent

phases. The fact that not all hematite crystals present today exhibit fila-

mentous structures can be explained by additional abiogenic precipitation of
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Fe-oxyhydroxides. The unstable Fe-oxyhydroxides crystallised to hematite

during diagenesis, while their original shape was mostly maintained. During

low-grade metamorphism, magnetite formed from hematite.

Microbially induced jasper formed as interpreted here (Figure 4.13) can

likely serve as ancient analogue to findings in the modern Fe-deposits from the

low-temperature dominated Jan Mayen Vent field described by Johannessen

et al. (2017), Haukelidsæter (2017), and Lyngtveit (2017).

Figure 4.13: Formation model for microbially induced jasper (B-F-1)

4.4 Contributions of findings to the regional

geology

Group B samples belonging to the Geitung Unit

The geochemistry of abiogenic and microbially induced jasper indicates an

origin in a seafloor hydrothermal system hosting low-temperature hydrother-

mal fluids. No evidence can be found for terrigenous detritus a↵ecting the
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jaspers, thus they are interpreted to have formed in a marine setting distal to

continental margins. Their presence as clasts within volcanic basement rock

breccia (on Geitung) and basal conglomerate consisting of volcanic rocks

(by Finn̊as) indicates rearrangement of the initially horizontally deposited

jaspers. This rearrangement caused the formation of talus deposits from

debris flows of fault scarps along the seafloor.

The radiolarian chert band deposited within metasandstone (on Geitung)

can be interpreted to have formed during a quiescent phase una↵ected by

debris flows on the seafloor. Radiolarian shell remnants deposited within this

chert band support this assumption. Volcaniclastic material is interpreted to

vastly have contributed to the samples’ REE and Fe composition. Presence

of hydrothermal activity is uncertain but cannot be excluded as additional

factor.

The Geitung Unit is interpreted as an immature island arc having formed

during the late Cambrian, ca. 494 Ma (Brekke et al., 1984, Pedersen and

Dunning, 1997). Mineral deposits within the Geitung Unit (e.g. sulphides

and copper, R.B. Pedersen, personal communication, November 2017) indi-

cate hydrothermal activity, and the presence of jaspers exhibiting geochemi-

cal traits typical for low-temperature hydrothermal deposits is in accordance

with this. Detrital zircons from a sedimentary sequence (Viken, 2017) ex-

hibit the same age as basaltic-andesites investigated by Pedersen and Dun-

ning (1997), indicating no terrigenous sources contributing detrital material,

only adjacent, coeval volcanics. Thus, the Geitung Unit developed far away

from continental margins (Viken, 2017). Both the lack of terrigenous detri-

tus a↵ecting the geochemistry of the jaspers, and only volcaniclastic material

contributing to the geochemistry of the radiolarian chert band can be taken

as sound indicators for the immature island arc having developed una↵ected

by sediments from continental margins.
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Group A samples belonging to the Langev̊ag Group

The bedded radiolarian cherts do not display geochemical or textural traits

typical for hydrothermal deposits. Texturally, the presence of radiolarian

shell remnants indicate the main silica source originally having been bio-

genic opal. The cherts’ geochemistry exhibits remarkable similarities with

terrigenous material rich in Fe, thus leading to the assumption that volcani-

clastic material contributed strongly to the formation. Recrystallisation hid

potential textural traces of the volcaniclastic material, but the geochemical

evidence is distinct. Suboxic conditions are inferred to have been present in

the depositional environment.

The Langev̊ag Group has been indirectly dated at ca. 470 Myr (Pedersen

and Dunning, 1997), and it has been interpreted that the sediments were

deposited within a widening and subsequently deepening marginal back-arc

basin (Brekke et al., 1984, Sivertsen, 1992, Pedersen et al., 1992, Pedersen

and Dunning, 1997). The inferred suboxic conditions present during bedded

radiolarian chert formation are in accordance with this interpretation. Sivert-

sen (1992) presents evidence for volcaniclastic material deposited within this

basin to originate from the Siggjo Complex, a mature island arc which evolved

from the Geitung Unit immature island arc complex and was dated at ca.

743 Myr (Pedersen and Dunning, 1997). The geochemical evidence of vol-

caniclastic material contributing to the formation of the bedded radiolarian

cherts is in agreement with interpretations of Sivertsen (1992).
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After thorough investigation of the hematitic chert samples from Bømlo and

Stord, the aims of the study have been addressed in a detailed manner and

conclusions can be made.

Conditions and processes leading to di↵erent hematitic chert types

Using the geochemical, mineralogical, and textural evidence presented and

discussed in this study, four di↵erent types of hematitic chert from Bømlo

and Stord (SW Norway) have been defined. These are interpreted to have

formed in four di↵erent processes under varying conditions.

Bedded radiolarian chert All samples from Stord and from Langevag

(Bømlo) exhibit the same traits and are interpreted to have formed in a

widening back-arc basin populated by radiolarians, with adjacent (likely vol-

canic) landmasses. Radiolarian shell remnants provide biogenic opal, whereas

terrigenous detritus is the main source for REEs and most of the remaining el-

ements. Suboxic seawater contributes, to a minor extent, to the REE concen-

trations. Pelagic clay plays a minor role, and a low-temperature hydrother-

mal component is possible, but cannot be defined with certainty. Thermally

induced crystallisation of biogenic opal to quartz goes along with recrystalli-

sation of detrital input, and variable concentrations of di↵erent input sources

lead to the observed layering. The same processes occurring over a long pe-

riod of time are interpreted to have formed the extensive bedded chert units.
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Radiolarian chert band One sample from Geitung (Bømlo, B-G-1)

shows remarkable resemblance with the bedded radiolarian cherts, but ex-

hibits much lower concentrations in REEs. Additionally, it comprises a band

only a few cm thick, not a several dozens of metres thick bedded chert unit.

Processes leading to its formation are believed to be similar, with the excep-

tion that they are interpreted to have occurred in a slightly di↵erent setting.

A setting such as that found at the base of a volcanic landmass, with low-

temperature hydrothermal fluids potentially providing additional input, is

assumed. The occurrence as a thin radiolarian chert band can be interpreted

to having been caused by processes not stable for a long time, as for the

bedded radiolarian cherts.

Abiogenic jasper Three samples from Geitung (Bømlo; B-G-3a, -3b, -4)

look very much alike. They are interpreted to have formed on the seafloor,

distal to landmasses and thus virtually una↵ected by terrigenous detritus.

Low-temperature hydrothermal fluids di↵usely emanating from the seafloor

likely formed a gel precursor, with temperatures too high to sustain Fe(II)-

oxidising bacteria due to the absence of textures indicating microbial partic-

ipation. Here, it is interpreted that abiogenic Fe-Si-oxyhydroxide formation

took place without major oxic to suboxic seawater contributions. Later re-

arrangement of the sediments led to the formation of clasts found today in

volcanic breccia.

Microbially induced jasper The sample from Finn̊as (Bømlo, B-F-1)

shows macroscopic resemblance with the abiogenic jasper from Geitung, but

di↵ers texturally and geochemically. A similar formation environment is

interpreted: low-temperature hydrothermal fluids di↵usely emanated from

the seafloor, and dome-shaped structures were formed, surrounded by oxic

to suboxic seawater. Temperatures here are interpreted to have been more

appropriate for Fe(II)-oxidisers. Microbially induced growth of filaments (be-

coming encrusted in Fe-Si-oxyhydroxides within the dome-shaped structures
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due to O2- and Fe(II)-gradients favourable for Fe(II)-oxidisers) is assumed

to be responsible for the formation of this type of jasper. Similar to the

abiogenic jasper clasts, the microbially induced jasper must have been frag-

mented and redeposited after formation, leading to its’ presence as clasts

within basal conglomerate.

Ancient analogue to modern Fe-deposits in hydrothermal systems?

The radiolarian cherts (Group A, and B-G-1 from Group B) are not ancient

analogues to modern Fe-deposits in seafloor hydrothermal systems. Abio-

genic jasper (B-G-3a, -3b, and -4, Group B) can theoretically serve as an

analogue, but no comparable modern seafloor hydrothermal Fe-deposits have

been detected to date. Microbially induced jasper (B-F-1, Group B), on the

other hand, can likely serve as ancient analogue to modern Fe-deposits formed

in low-temperature hydrothermal vent settings as within the Jan Mayen vent

fields (Johannessen et al., 2017, Haukelidsæter, 2017, Lyngtveit, 2017).

Contributions to a better understanding of the regional geology

The Geitung Unit jasper proves the existence of seafloor hydrothermal sys-

tems present during the formation of a late Cambrian immature island arc.

Geochemical evidence supports the findings of Viken (2017), implying the arc

formation occurred distal to continental margins. The Langev̊ag Group bed-

ded radiolarian cherts exhibit geochemical evidence for volcaniclastic mate-

rial substantially having contributed to their formation. According to Sivert-

sen (1992), volcaniclastic material deposited in the widening back-arc basin

(Lower/Middle Ordovician) originated from the adjacent Siggjo Complex

volcanics. While no supplemental evidence can be added to this theory, a

volcaniclastic source for the terrigenous material is highly likely. Thus, the

results of this study are in accordance with the findings of Sivertsen (1992).
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Outlook

Several questions arose during research, to which detailed answers could not

be found within the scope of this thesis. The role hydrothermal fluids played

in the formation of the late Cambrian radiolarian chert band was not unani-

mously resolved. Further research to determine a hydrothermal contribution

is necessary to provide a more profound understanding of marine sediments

deposited during the Geitung Unit immature island arc formation. Mod-

ern abiogenic Fe-deposits can be investigated, with regard to the suggested

formation model for the jasper interpreted to have formed via abiogenic pre-

cipitation. Other processes leading to this type of jasper can potentially be

detected in future studies. Additionally, following the suggestion by Johan-

nessen et al. (2017) to implement chondrite-normalised values for jasper REE

analyses, it became obvious during this study that using shale normalisations

can yield positive Eu anomalies in some cases, while chondrite-normalised Eu

anomalies are negative. The shale-normalised positive Eu anomalies easily

lead to questionable assumptions regarding the temperature of hydrothermal

source fluids. For future work conducted on jasper samples, chondrite nor-

malisation for evaluating hydrothermal processes is recommended, and pre-

vious geochemical analyses could potentially be re-evaluated with respect to

this. The “depositional environment”-classification diagram for cherts (Fig-

ure 4.8) developed by Murray (1994) can probably be enhanced by adding

a new field for jaspers having formed from low-temperature hydrothermal

fluids in seafloor hydrothermal systems distal to continental margins. Fur-

ther research and evaluation of more jaspers is necessary to reinforce the

enhancement of the classification diagram.
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Appendix A

GPS coordinates for sampling locations

Table A.1: GPS coordinates for sampling locations

Location Sample ID Rock type GPS coordinates

1: Langev̊ag, Bømlo B-L-1 Bedded radiolarian chert 59°36’26.9”N 5°13’28.7”E
1: Langev̊ag, Bømlo B-L-2 Bedded radiolarian chert 59°36’27.1”N 5°13’29.2”E
1: Langev̊ag, Bømlo B-L-3 Bedded radiolarian chert 59°36’26.6”N 5°13’27.8”E

2: Geitung, Bømlo B-G-1 Hematitic chert band in metasandstone 59°41’35.7”N 5°07’29.9”E
2: Geitung, Bømlo B-G-2 Jasper clast in volcanic breccia 59°41’35.2”N 5°07’31.3”E
2: Geitung, Bømlo B-G-3a Jasper clast in volcanic breccia 59°41’35.2”N 5°07’31.5”E
2: Geitung, Bømlo B-G-3b Jasper clast in volcanic breccia 59°41’35.2”N 5°07’31.5”E
2: Geitung, Bømlo B-G-4 Jasper clast in volcanic breccia 59°41’35.1”N 5°07’31.6”E

3: Finn̊as, Bømlo B-F-1 Jasper clast within basal conglomerate 59°44’34.7”N 5°15’26.2”E

4: Sagv̊ag gruve, Stord S-S-G Hematitic chert 59°47’19.5”N 5°25’05.5”E

5: Sagv̊ag coast, Stord S-S-S Hematitic chert 59°45’57.4”N 5°23’20.1”E
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Appendix B

Additional sampling location photographs

Figure B.1: Location 1: Langev̊ag, Overview of the outcrop for B-L-1 to

B-L-3
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139 Appendix B. Sampling location photographs

Figure B.2: Location 1: Langev̊ag, Close-up of bedded radiolarian chert,

B-L-3

Figure B.3: Location 2: Geitung, Close-up of hematitic radiolarian chert

band, B-G-1



140 Appendix B. Sampling location photographs

Figure B.4: Location 2: Geitung, Jasper clast, B-G-4



141 Appendix B. Sampling location photographs

Figure B.5: Location 5: Sagv̊ag, on the coast of Stord, hematitic chert, S-S-S,

photo courtesy of Ingunn H. Thorseth



Appendix C

Overview of samples and analytical methods

Table C.1: Sample list and used analytical methods

Sample ID Thin section Amount milled ICP-OES & ICP-MS

B-L-1 2.5 g

B-L-2 3.9 g

B-L-3 3.0 g

B-G-1 2.2 g

B-G-2 No* - No*

B-G-3a 1.8 g

B-G-3b 1.1 g

B-G-4 1.2 g

B-F-1 1.8 g

S-S-G - No*

S-S-S 3.5 g

* Omitted from analysis

142



Appendix D

Correlations of major and trace elements

Groups A and B

(a) Al and Ti (b) Ti and Zr (c) Ti and Sc

Figure D.1: Correlations between various major and trace elements, Groups

A and B
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Appendix E

Correlation tables of REE patterns between

samples

Table E.1: Correlations of REE patterns between samples, Chondrite nor-

malisation

Sample ID B-L-1 B-L-2 B-L-3 S-S-S B-G-1 B-G-3a B-G-3b B-G-4 B-F-1

B-L-1 1

B-L-2 0.999 68 1

B-L-3 0.999 96 0.999 61 1

S-S-S 0.999 17 0.998 29 0.998 93 1

B-G-1 0.989 84 0.991 68 0.989 97 0.9841 1

B-G-3a 0.643 03 0.649 63 0.6415 0.6443 0.9841 1

B-G-3b 0.911 71 0.906 02 0.912 22 0.909 24 0.9841 0.6443 1

B-G-4 �0.281 22 �0.266 75 �0.283 67 �0.278 22 �0.291 58 0.452 29 �0.452 78 1

B-F-1 0.779 35 0.793 55 0.778 91 0.763 64 0.820 86 0.748 39 0.600 46 0.193 79 1
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145 Appendix E. Correlation REE patterns

Table E.2: Correlations of REE patterns between samples, NASC normali-

sation

Sample ID B-L-1 B-L-2 B-L-3 S-S-S B-G-1 B-G-3a B-G-3b B-G-4 B-F-1

B-L-1 1

B-L-2 0.952 62 1

B-L-3 0.9589 0.875 11 1

S-S-S 0.943 38 0.956 59 0.830 32 1

B-G-1 �0.612 47 �0.498 58 �0.794 82 �0.419 76 1

B-G-3a �0.8044 �0.636 94 �0.849 52 �0.662 31 0.684 55 1

B-G-3b 0.092 41 0.008 75 0.026 05 0.101 03 0.283 82 �0.042 64 1

B-G-4 �0.808 98 �0.627 77 �0.842 64 �0.668 59 0.623 81 0.9845 �0.206 76 1

B-F-1 �0.882 18 �0.730 33 �0.936 48 �0.735 63 0.747 75 0.942 72 �0.193 43 0.955 66 1

Table E.3: Correlations of REE patterns between samples, PAAS normali-

sation

Sample ID B-L-1 B-L-2 B-L-3 S-S-S B-G-1 B-G-3a B-G-3b B-G-4 B-F-1

B-L-1 1

B-L-2 0.933 81 1

B-L-3 0.704 47 0.416 19 1

S-S-S 0.9628 0.980 95 0.513 09 1

B-G-1 0.611 63 0.838 83 �0.116 09 0.761 92 1

B-G-3a 0.064 36 0.395 59 �0.5708 0.258 39 0.719 08 1

B-G-3b 0.702 42 0.694 85 0.430 98 0.688 61 0.565 77 0.186 38 1

B-G-4 �0.088 21 0.2543 �0.686 16 0.116 42 0.620 54 0.980 01 �0.004 28 1

B-F-1 0.087 76 0.423 44 �0.611 39 0.294 72 0.782 34 0.950 34 0.100 42 0.947 49 1



Appendix F

Element and oxide ratios

Table F.1: Element and oxide ratios

Sample ID Co/Zn Al/(Al+Fe+Mn) Mn/Fe MnO/TiO2

B-L-1 0.33 0.55 0.082 1.15

B-L-2 0.38 0.55 0.054 0.63

B-L-3 0.44 0.56 0.039 0.47

S-S-S 0.35 0.56 0.061 0.84

B-G-1 0.12 0.13 0.088 9.85

B-G-3a 0.07 0.01 0.005 21.15

B-G-3b 0.04 0.02 0.003 11.05

B-G-4 0.09 0.01 0.001 14.05

B-F-1 0.27 0.01 0.001 1.72
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