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Abstract

The focus of this thesis is wave motion in shallow water. In particular, we investi-

gate some properties of flows underneath long waves in shallow water and present

the results in two parts. The first part contains a systematic derivation of four bal-

ance equations, namely mass, momentum, energy and tangent velocity at the free

surface. The asymptotic derivation of the conservation laws is obtained due to

the surface motion of long, fully nonlinear water waves. We use the Serre-Green-

Naghdi system, which is an asymptotic, fully nonlinear, weakly dispersive wave

model to describe the considered waves. It is found that the derived conservation

equations are satisfied exactly by the solution of the Serre-Green-Naghdi system

when the bottom is flat.

In the case of varying depth, mass and momentum conservation equations

are satisfied exactly and the energy conservation is satisfied in an approximate

sense. Moreover, they all reduce correctly to the equivalent derivations in both the

Boussinesq and the shallow water scalings.

In the case of flat bottom, we find what appears to be a new conservation law

in the full Euler system. This conservation laws involves the tangential velocity,

and reduces to the well known fourth conservation law in the Serre-Green-Naghdi

system.

We also describe particle trajectories in the Serre-Green-Naghdi approxima-

tion, and we find that the particles associated with the Serre-Green-Naghdi equa-

tions experience a backward drift which is in conflict with the Stokes drift.

In the second part, we apply balance laws associated with the Korteweg-de

Vries equation to study the evolution of a shoaling wave. The employed nonlin-

ear expression for energy flux eliminates the discontinuity of wave height which

normally appears in such studies. The results show an increase in wave height due

to the decrease in water depth and they are in good agreement with the numerical

results based on full Euler computations.
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Introduction





Chapter 1

General Background

Among the most impressive phenomena in nature are surface waves in the ocean.

These waves range from the chaotic motions in a violent hurricane to calm and

gentle swell on a tropical beach. These natural occurrences are of great interest to

scientists and engineers. Scientists are interested in the dynamics and kinematics

of the waves and explore how they are generated by the wind, why they break and

how they interact with currents and sea bottom. Predicting wave heights and the

occurrences of breaking waves along the shoreline are important for an engineer

who has to design, operate or manage structures.

The propagation of gravity waves on the surface of an incompressible, invis-

cid and homogeneous fluid is widely studied and described by the Euler equa-

tions coupled with nonlinear boundary conditions at the free surface and at the

bottom. This problem is extremely difficult to solve both theoretically and nu-

merically. The complexity of this problem prompted scientists to derive simpler

type of systems to model specific physical regimes. The linear theory of surface

gravity waves has been the basic theory for water waves and is based on mass bal-

ance equation, momentum balance equation and three simple boundary conditions

which describe certain kinematic and dynamic aspects of the waves. However, as

waves travel into shallow water the steepness of these waves increase and the

waves profiles become nonlinear hence, the linear wave theory is no longer valid.

The aim of this thesis is to extend some properties of the linear theory to the

weakly nonlinear and fully nonlinear theory. Studies of long wave phenomena

such as undular bores (a transition between two uniform flows of different depth)

have been studied by researchers for decades. One comprehensive study was con-

ducted by Favre [22] who classified bores into different types depending on the

strength of the bore. In particular, if the difference in flow depths is less than 0.28

times the undisturbed depth, then the bore will feature a laminar flow.

One of the aspects of bores that has inspired some researchers is the well

known energy loss, first discovered by Rayleigh [44]. Indeed it can be shown that
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since mass and momentum are conserved through the bore, the classical shallow-

water theory leads to a finite energy loss. In undular bores, this energy is thought

to be radiated by the increasing number of oscillations created at the bore front.

Lemoine [38] used the linear theory to investigate the rate of energy radiation,

but his findings were not in good agreement with the experiments conducted by

Favre [22]. Benjamin and Lighthill [7] matched a cnoidal solution of the KdV

equation with a uniform stream, and found that energy is not conserved, which led

them to conclude that an additional dissipation mechanism is needed. Sturtevant

[50] employed a cnoidal wave approximation and Favre’s experiments and argued

that both momentum and energy are not preserved due to the existence of a bottom

boundary layer beneath the bore.

Recently, Ali and Kalisch [2, 3] argued that the energy loss predicted by shal-

low water theory is not due to a dissipation mechanism. They have shown that the

energy loss is entirely due to surface oscillations if a higher-order approximation

of the energy functional is employed. However, the energy density and flux used

in these works does not quite match the expressions obtained in [4] using a more

fundamental approach.

One of the main objectives of this thesis has been to extend the method intro-

duced in [4] to the fully nonlinear Serre-Green-Naghdi (SGN) system. In partic-

ular, using the SGN framework gives a completely satisfactory explanation that

no additional dissipation mechanism is needed to explain the energy loss in an

undular bore in the shallow-water theory. As shown in paper B, in contrast to

most Boussinesq-type systems, the SGN system features exact energy conserva-

tion since the differential energy balance is a direct consequence of the evolution

equations. Therefore, the energy loss in weak bores is completely due to the

development of surface oscillations, since the energy in the SGN system with a

horizontal bottom is exactly conserved.

In addition, in paper B, we extend the method of [4] to the case of non-constant

bathymetries and in paper C we also include some work on a balance law in the

two-dimensional SGN system. Using the method first proposed in [11], we study

numerical simulation of particle trajectories associated with the passage of soli-

tary and periodic solutions of the SGN system. An interesting result here is that

periodic waves feature a negative drift apparently in conflict with the well known

Stokes drift seen in the linear approximation.

Water waves propagating from deep water into shallower water experience sig-

nificant changes in height, speed and direction which lead to considerable changes

in free surface profiles. Therefore, the wave profile is no longer sinus like. Wave

shoaling is the process that starts at the time when the waves feel the effect of the

bottom and proceed until they break. If the depth-induced changes in amplitude

and direction are sufficiently small, then the linear wave theory with a horizontal

bottom can be used locally. However, sometimes the variations in amplitude are
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not small and the linear theory requires to be expanded. A great deal of research

attempts to predict the waveheight change of shoaling waves considering the lin-

ear approximation of energy density and flux in the nonlinear situation. Svendsen

and Brink-Kjær [52] found that the variation of the cnoidal wave height is con-

nected to deep water data by assuming the energy flux is the same for the waves

described by the linear theory and the cnoidal theory at the matching point be-

tween these two theories, which gives a discontinuity in wave height. A part of

this thesis has been devoted to compute waveheight of a cnoidal wave solution

of the Korteweg-de Vries (KdV) equation and in this study, a nonlinear energy

conservation is used and the discontinuity in wave height is eliminated.

The disposition of this thesis is as follows. In this chapter, a kinematic con-

servation law in the context of the full Euler equations is described. In the next

chapter, a brief resume of the linear wave theory and some important features

of this theory are given. In the third chapter, the nonlinear waves including the

derivation of the Serre-Green-Naghdi equations and the Korteweg-de Vries equa-

tion are reviewed. In addition, a study of particle trajectories associated with the

propagation of periodic wave solutions of the SGN equations is given. Next, the

derivation of balance laws in the asymptotic order of the SGN equations is put

forward. Then, the energy loss in undular bores is discussed. Finally, a shoaling

theory based on the energy flux corresponding to the Korteweg-de Vries equation

is presented.

1.1 Euler equations

It was Leonhard Euler who first formulated the general equations describing the

motion of a perfect fluid. The general compressible Euler equations first appeared

in published form in 1757 [21]. However, he presented the equations of motion in

the incompressible case to the Berlin Academy in 1752 [17]. The incompressible

Euler equations consist of conservation of mass and momentum combined with

the assumption that the density of the fluid is constant. In this section, we review

the derivation of the Euler equations and drive a kinematic conservation law asso-

ciated with the Euler equations. Firstly, we recall the Reynolds’ transport theorem

which is needed to derive the Euler equations.

Reynolds’ transport theorem

Let F be a function of (x, t) and Vt be a material volume whose bounding surface

moves with the fluid and u be the velocity field. The Reynolds’ transport theorem

states that
D
Dt

∫
Vt

F(x, t)dV =
∫

Vt

{∂F
∂t

+∇ · (Fu)
}

dV , (1.1)
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where D
Dt =

∂
∂t +u ·∇ is the material derivative.

Mass balance

The mass conservation of fluid passing through an element is stated as follows:

the rate of mass accumulation within element =
transport rate of mass in - transport rate of mass out .

We consider a fluid of density ρ(x, t). The mass contained in a material

volume V (t) is given by ∫
Vt

ρdV .

We assume that the mass of the material volume does not change with time, thus

D
Dt

∫
Vt

ρdV = 0.

Using (1.1) the conservation of mass can be written in local form as

∂ρ
∂t

+∇ · (ρu) = 0,

which is called the continuity equation.

Using the product rule ∇ · (ϕF) = (∇ϕ) ·F+ϕ(∇ ·F), the continuity equation

becomes
1

ρ
Dρ
Dt

+∇ ·u = 0.

If the fluid density does not change with pressure, then the fluid is called incom-

pressible and in this case the continuity equation reduces to

∇ ·u = 0.

Momentum balance

Wave momentum is a vector property which is the product of the mass and the

wave induced velocity of the water particles. Per unit volume, the momentum of

a fluid is defined to be ρu. The total momentum of a material volume V (t)is
∫

Vt

ρudV .

The conservation of momentum states that:



1.2 Kinematic balance law 7

rate of momentum accumulation = rate of momentum in -
rate of momentum out + sum of forces acting on the system .

Let us assume that the only forces acting on the material volume are the

surface force P and the gravity force ρg. Therefore, the momentum equation is

given by

ut +(u ·∇)u =−1

ρ
∇P−g.

Hence, the incompressible Euler equations consist of momentum equations and

the continuity equation:

ut +(u ·∇)u =−1

ρ
∇P−g,

∇ ·u = 0.

(1.2)

The linearized momentum balance equations for the x−, y− and z−directions are

∂u
∂t

=−1

ρ
∂p
∂x

,

∂w
∂t

=−1

ρ
∂p
∂y

,

∂v
∂t

=−1

ρ
∂p
∂z

−g.

1.2 Kinematic balance law

The governing equations of a homogeneous, inviscid and incompressible fluid

with a free surface over a flat bottom are the incompressible Euler equations with

appropriate boundary conditions. In this section, we present a kinematic balance

law for the two-dimensional Euler equations (1.2). To begin with, we review some

tools to drive this balance law.

Vorticity and circulation

The vorticity ω is defined as the curl of the velocity field

ω = ∇×u,

and the flow is irrotational when ω = ∇×u = 0.

The circulation around a closed contour C is defined as the line integral of the
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velocity along that contour

Γ =
∮

C
u ·dr.

Kelvin-Stokes Theorem ∫
S

∇×F ·dS =
∮

δr
F ·dr. (1.3)

This theorem states that the surface integral of the curl of a vector field over a

surface S is related to the line integral of the vector field over the boundary of S,

called δr.

Applying this theorem to the circulation Γ, we see that

Γ =
∮

C
u ·dr =

∫
S

∇×u ·dS =
∫

S
ω ·dS =

∫
S

ω · n̂dS, (1.4)

where n̂ is the unit vector normal to the surface S. Thus, we see that the circulation

is an integral measure of the vorticity of the flow.

Kelvin’s Circulation Theorem

Kelvin’s circulation theorem states that under certain circumstances, the fluid is

barotropic (i.e. P = P(ρ)) and the forces acting on the flow are conservative, the

circulation around a material fluid parcel is conserved. To prove this theorem, we

calculate the material derivative of the circulation

DΓ
Dt

=
D
Dt

∮
u ·dr =

∮ (Du
Dt

·dr+u · D(dr)
Dt

)
=

∮ (Du
Dt

·dr+u ·du
)

{using Euler equations}=
∮ (

(−∇P
ρ

−∇Φ) ·dr+
1

2
du2

)
=

∮
(−∇P

ρ
) ·dr

{using Kelvin-Stokes theorem}=
∫

S

∇ρ×∇P
ρ2

· n̂dS,

where ∇Φ and 1
2du2 vanish because they are exact differentials integrated around

a closed loop. For a barotropic fluid the gradient of P is always parallel to the

gradient of ρ. Thus, we obtain

DΓ
Dt

=
D
Dt

∮
u ·dr = 0.
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Derivation of a kinematic balance law

We apply the proof of Kelvin’s circulation theorem to derive a kinematic balance

law for the Euler equations along an open curve which is embedded in the free

surface. At the time of this work we have not found a derivation of the kinematic

balance law along an open curve, and to the best of our knowledge the derivation

presented here is new. We consider the two-dimensional Euler equations (1.2) in

the domain

{(x,z)|x ∈ R, 0 < z < h0 +η(x, t)},
where η(x, t) is the surface elevation and h0 is the undisturbed fluid depth. Let us

consider Lt as a material arc lying entirely in the free surface with ending points

A(t) = (xA(t),zA(t)) and B(t) = (xB(t),zB(t)). Let us parametrize the initial arc

L0 by the parameter s (sA ≤ s ≤ sB). Then we obtain the description of the arc Lt
in the form

x = φ(t,s) = (φx(t,s),φz(t,s)), sA ≤ s ≤ sB,

where
dx
dt

= u(t,x). We define the total drift γ along Lt in the form

γ =
∫

Lt

u ·dx.

Now the time evolution of γ along Lt is obtained by applying the proof of Kelvin’s

circulation theorem on a contour which is not necessarily closed, Lt , by using

the Euler equations (1.2) and the Reynolds’ transport theorem (1.1). At the free

surface, z = h(t,x), the pressure vanishes and we get the conservation law

d
dt

∫

Lt

u·dx =
( |u|2

2
−gh

)∣∣∣∣∣
B(t)

A(t)

.

Using the relation ∫
Lt

u ·dx =
∫

L0

u · ∂φ
∂s

ds,

the above conservation law can be written in local form in the Lagrangian coordi-

nate as

∂(u · ∂φ
∂s )

∂t
+

∂
∂s

(
gh− |u|2

2

)
= 0.

Introducing K(t,x) defined along Lt by

u(t,s) · ∂φ
∂s

(t,s) = K(t,x)
∂φx

∂s
(t,s),
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we obtain the following conservation law in the Eulerian coordinate (t,x)

∂K
∂t

+
∂
∂x

(
uK +gh− 1

2
(u2 +w2)

)
= 0, (1.5)

which is an exact conservation law for representing the evolution of the tangent

velocity K along the free surface. This conservation law holds also for the three-

dimensional water wave problem, but in this case, the derived expression is not a

pure conservation law. For more details, the reader is referred to [23].



Chapter 2

Linear wave theory

For about 170 years, the linear wave theory also referred to as Airy wave theory

[1] has been the fundamental theory for ocean waves. The essential requirement

for the linear theory is that the amplitude of the wave is small compared with the

wave length and water depth. To develop the linear theory for surface gravity

waves, the water is assumed to be incompressible with a constant density and no

viscosity. Also, water particles may neither leave the surface nor penetrate the

bottom. The particle velocities and wave-induced pressure in the water are pre-

sented by a mathematical concept which is known as velocity potential function.

To employ this function, the motion of the water particles needs to be irrotational.

By using the expressions of particle velocities and wave-induced pressure, one can

find expressions for other wave characteristics and phenomena such as shoaling

and set-down. The linear theory is based on mass balance equation and momen-

tum balance equation, which can be expressed in terms of the velocity potential

function.

2.1 Modeling linear waves

In what follows, we will deal with waves that are two-dimensional, (x,z), where

the x-axis is the direction of wave propagation and the z-axis points vertically

upwards. let u = (u(x,z, t),v(x,z, t)) be the velocity field of the flow over the

flat bottom z = 0 and η(x, t) denote the free surface of the water and h represent

the water depth. Since the motion is irrotational, ∇×u = 0, a velocity potential

φ(x,z, t) can be found such that u =
∂φ
∂x

and v =
∂φ
∂z

. Substitution into the con-

tinuity equation gives an elliptic partial differential equation which is known as
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Laplace’s equation and is written as

∂2φ
∂x2

+
∂2φ
∂z2

= 0, for x ∈ R, −h < z < η(x, t).

From the linearized momentum balance equation we get the linearized Bernoulli

equation
∂φ
∂t

+
P
ρ
+gz = 0,

where ρ is the water density and P is the pressure. Related to the motions of the

water particles and forces acting on the water particles there are three boundary

conditions. At the free surface, the kinematic boundary condition is that particles

may not leave the surface. In the linearized approach, this is given by

v =
∂η
∂t

at z = 0.

At the bottom, the kinematic boundary condition is that particles may not pene-

trate the bottom

v = 0 at z =−h.

The dynamic condition states that the atmospheric pressure at the water surface is

zero since the wave is only subject to gravity

P = 0 at z = η.

Taking the linearized Bernoulli equation at the surface z = η with P = 0 gives

∂φ
∂t

+gη = 0 at z = η.

In the linear approximation, the term
∂φ
∂t

can be evaluated at z = 0 rather than

z = η so that
∂φ
∂t

=−gη at z = 0.

2.2 Solution of the problem

One of the analytical solutions of the Laplace equation with the kinematic bound-

ary condition is a harmonic wave with wavenumber k and frequency ω propagat-

ing in the positive x-direction

η(x, t) = acos(kx−ωt), (2.1)
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with the following velocity potential function

φ =
aω
k

coshk(z+h)
sinhkh

sin(kx−ωt),

from which the velocity components are found as

u = aω
coshk(z+h)

sinhkh
cos(kx−ωt),

v = aω
sinhk(z+h)

sinhkh
sin(kx−ωt).

(2.2)

The analytical expression for the pressure is readily obtained, by substituting

the velocity potential expression into the Bernoulli equation, as

P =−ρgz︸ ︷︷ ︸
Ph

+ρgz
coshk(z+h)

coskh
cos(kx−ωt)︸ ︷︷ ︸

Pwave

. (2.3)

The first term on the right-hand side is the hydrostatic pressure, denoted by Ph,

and the second term is due to the wave and is called the wave-induced pressure,

denoted by Pwave.

To find a relation between k and ω the dynamic free surface condition is ap-

plied. Substitution of the free surface equation and velocity potential function into

the dynamic surface condition gives

ω =
√

gk tanhkh, (2.4)

which is called a dispersion relation. The phase velocity is simply derived by

substituting the dispersion relation into c =
ω
k

which is

c =
√

g
k

tanhkh at arbitrary depth.

In deep water, where kh → ∞, this expression becomes

c0 =

√
g
k0

or c0 =
g
ω
,

and in shallow water, where kh → 0, is

c =
√

gh,

which shows the waves are non-dispersive under shallow water conditions.
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Consider the superposition of two harmonic waves of equal amplitude but

slightly different frequencies. Then, the combination propagates at a speed of

cg =
dω
dk

,

which is called the group velocity. For surface gravity waves whose dispersion

relation is (2.4), the group velocity is

cg =
c
2

[
1+

2kh
sinh2kh

]
.

In deep water, the group velocity is half of the phase speed and in very shallow

water the group velocity is equal to the phase speed.

2.3 Some features of the linear waves

Particle paths

The path of a water particle is generally obtained by integrating the velocity of

the particle in time. Consider (x0 +ξ(t),z0 +ζ(t)) as the coordinates of a particle

whose rest position is (x0,z0). For the harmonic surface wave in equation (2.1),

the integration in time of (2.2) yields

ξ =−a
coshk(z0 +d)

sinhkd
sin(kx0 −ωt),

ζ = a
sinhk(z0 +d)

sinhkd
cos(kx0 −ωt).

Elimination of (kx0 −ωt) shows that each particle goes through an ellipse

ξ2[
a

coshk(z0 +d)
sinhkd

]2
+

ζ2[
a

sinhk(z0 +d)
sinhkd

]2
= 1.

In deep water, as kd → ∞, the particles move through circles r = aekz and in very

shallow water, as kd → 0, the particles move in ellipse growing flatter towards the

bottom.

However, a numerical computation of a particle path shows that the pathline

for one period is not a closed loop.
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Stokes drift

By following a specific fluid particle during the time interval we may obtain the

Stokes drift which is the difference in end positions. The Stokes drift velocity or

mass transport velocity is the average velocity when following a specific particle

as it travels with the fluid flow. For arbitrary water depth, it is given by

uL = a2ωk
cosh2k(z0 +d)

2sinh2(kd)
.

Wave energy

The change of position of water particles from their rest state to some other po-

sition requires work done against gravitation which is known as potential energy,

Ep. Moreover, the wave particles motion represents kinetic energy, Ek. Therefore

the total energy in a wave is

E =
ρ
2l

∫ l

0

∫ 0

−h
(u2 + v2)dzdx︸ ︷︷ ︸

Ek

+
ρg
l

∫ l

0

∫ η

0
zdzdx︸ ︷︷ ︸

Ep

,

where l is the wavelength. For a harmonic wave with amplitude a, the total energy

is given by

E =
1

2
ρga2, (2.5)

which is a second-order property of the wave. The energy transport or energy flux

per unit time and per unit crest length is

F = Ecg,

which implies that cg is the speed of energy propagation.

Wave shoaling

As waves travel from deep water into shallower water, the speed of wave prop-

agation decreases. Therefore, kinetic energy which is the energy of motion will

decrease. According to the linear wave theory, the total amount of energy in a

wave is equally partitioned between kinetic energy and potential energy. Since

the total energy is conserved, the decrease in kinetic energy causes an increase in

potential energy which is directly proportional to the waveheight. Therefore, the

waveheight is increased. This process is called wave shoaling. The change in the

waveheight can be calculated by assuming that the energy flux remains constant

during wave propagation. Consider two different locations denoted by A and B,
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so (Ecg)B = (Ecg)A. Substituting the expression for E in (2.5) where a = 1
2H in

this equation, the result will be

HB =
(cgA

cgB

) 1
2
HA. (2.6)

If we compute the waveheight , H, in shallow water from the waveheight, H0, in

deep water, the equation (2.6) can be simplified to

H =
( c0

2c

) 1
2
H0.

Radiation Stress

The radiation stress is defined as the excess momentum flux due to the presence

of the waves. To estimate the total amount of momentum beneath a wave per

unit horizontal area, consider a long-crested wave propagating in the positive x-

direction and a column of water beneath that wave, from the bottom to the sea

surface. The amount of x-momentum per unit surface area and wave period is

Qx =
∫ η

−h
ρudz,

where the over-bar denotes averaging over one wave period. Substituting the ex-

pression for u in (2.2), the result of the above integration is

Qx =
ρa2

2 tanhkh
ω.

For this wave, the wave-induced y-momentum which is directed along the crest is

zero, because the orbital velocity in the y-direction is zero.

The transport of wave-induced momentum is equivalent to a stress and it

is called radiation stress. Firstly, we consider the horizontal transport of x-

momentum in the wave direction. The transport Sxx through the entire vertical

plane, per unit width and averaged over time becomes

Sxx =
∫ η

−h
(ρu2 +Pwave)dz.

Using the data from the linear wave theory yields

Sxx =
ρga2kh
sinh2kh

+
1

4
ρga2 = (2n− 1

2
)E,

where n =
1

2
(1+

2kh
sinh2kh

).
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The transport of y-momentum in the y-direction Syy can be expressed as

Syy =−
∫ 0

−h
ρu2

z dz+
1

4
ρga2 = E

( kh
sinh2kh

)
= (n− 1

2
)E.

In addition to Sxx and Syy, there are also a transport of x-momentum in the

y-direction, Sxy, and y-momentum in the x-direction, Syx. The particle motion in

the y-direction is zero, thus

Sxy = 0 = Syx.

In deep water, when kh → ∞, the ratio
2kh

sinh2kh
tends to zero and so

Sxx =
1

2
E, Syy = 0.

In shallow water, when kh → 0, the ratio
2kh

sinh2kh
tends to 1, therefore,

Sxx =
3

2
E, Syy =

1

2
E.

Wave set-down

Wave set-down is the change in mean water level which occurs when water waves

encounter a sloping beach. Consider now the balance of momentum between two

fixed vertical planes x = x0 and x = x0 +dx. The flux of momentum across these

planes are

S = Sxx +
∫ η̄

−h
ρg(η̄− z)dz = Sxx +

1

2
ρg(η̄+h)2 and S+

∂S
∂x

dx,

respectively. There is an additional force due to the bottom pressure, since the

bottom is not horizontal, Phdl, where dl is the distance between the two planes,

measured along the bottom. The horizontal component of this force is

Ph
dh
dl

dl = Ph
dh
dx

dx.

By integrating the equation of vertical motion

−1

ρ
∂P
∂z

= g+
∂v
∂t

+(u
∂v
∂x

+ v
∂v
∂z

),

over the range −h < z < η, we have

Ph = ρg(h+ η̄),
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of the second order approximation [39]. Therefore, the momentum balance gives

dSxx

dx
+ρg(η̄+h)

dη̄
dx

= 0.

Since η̄ � h
dη̄
dx

=− 1

ρgh
dSxx

dx
. (2.7)

This shows the gradient of the surface level η̄ when a constant, small horizontal

force −dSxx

dx
is applied. To find the exact integral of equation (2.7), we assume that

no energy is lost by wave breaking and bottom friction and the reflexion of energy

is negligible. Then, the wave amplitude may be determined by consideration that

the flux of energy F towards the shore is a constant , F = Ecg = const.. As the

depth h changes, cg changes and so E and Sxx will also change. For the linear

theory

η̄ =
−a2k

2sinh2kh
.

This implies that the mean water level η̄ depends on the local parameters: water

depth h, wave number k and wave amplitude a. The minus sign in this expression

shows that a set-down occurs. In shallow water, kh � 1, the mean surface level is

given by η̄ =
−a2

4h
.

It is also possible to express η̄ as a function of the constant wave number k0

and wave amplitude a0 together with the local depth h. Using the assumptions

that the energy flux towards the shore is a constant and that the radial frequency is

conserved, give

η̄ =−a2
0k

coth2 kh
2(2kh+ sinh2kh)

. (2.8)

In shallow water, kh � 1, the mean surface level is given by

η̄ =
−a2

0k0

8
(k0h)−3/2 =

−a2
0g1/2

8ωh3/2
.

The above formulas apply so long as the linear theory is valid and there is no

appreciable lose of energy.

Detailed descriptions of the basic equations for the linear wave theory are

available in [19, 29, 35, 56].

Although the linear wave theory is only valid for waves which are infinitesi-

mally small and their motion is small, it provides some insight for finite-amplitude

periodic waves which are called nonlinear waves.



Chapter 3

Nonlinear Waves

When waves become too steep or propagate towards shore into shallow water,

the linear wave theory is no longer valid. Therefore, high-order wave theories

are required to describe the wave phenomena. There are a number of theories

that can be applied to approximately predict the properties of nonlinear waves.

Perhaps the theory of Gerstner [24] is the earliest of these theories and is referred

to as the trochoidal theory. The flow field associated with this wave is rotational.

In 1847, Stokes [49] introduced an irrotational expansion theory based on the

assumption that the wave properties can be presented by perturbation series and

it has a large validity range, extending to the breaking wave limit in deep water.

When waves approach the shallower water, the particle motions become more

and more horizontally oriented and finally, in the very shallow water all vertical

acceleration might be ignored and therefore, the wave can be described by the

shallow water equations. These equations are derived from the continuity equation

and the Euler equations under the assumption that the pressure is hydrostatic and

do not incorporate any dispersive effects. The shallow water equations are often

written as
ηt +

(
(η+h0)u

)
x = 0 ,

ut +gηx +uux = 0,
(3.1)

where h0 is the undisturbed water depth.

However, before this stage, the wave motion is not horizontal and so the shal-

low water system is not valid; also the linear theory does not apply. To describe the

wave motion in the transition region, between deep water and very shallow water,

the theory of Boussinesq are employed. This theory is an approximation valid for

weakly nonlinear and fairly long waves. The main idea in the Boussinesq approx-

imation is that the vertical coordinate is omitted from the flow equations. This

idea was first employed by Joseph Boussinesq in 1871 [13] in response to John

Scott Russell’s observation of the solitary wave in 1834 [45]. Boussinesq derived

a system for a one-dimensional situation with an even bottom. Later in 1967,
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Peregrine extended the system to two-dimensional propagation over an uneven

bottom by using depth-averaged velocity as a dependent variable [43]. Madsen

and Sørensen in 1992 extended the applicability of the Boussinesq equations to

deep water [40]. There are various types of the Boussinesq equations and the dif-

ference between them is due to different possibilities in the choice of the velocity

variable. In most cases one chooses either the velocity at an arbitrary water level

or the depth-averaged velocity vector.

For a horizontal bottom, the Boussinesq systems in general form [10] are given

by

ηt +h0uθ
x +(ηuθ)x +

h3
0

2
λ
(

θ2 − 1

3

)
uθ

xxx −
h2

0

2
(1−λ)

(
θ2 − 1

3

)
ηxxt = 0 ,

uθ
t +gηx +uθuθ

x +
h2

0

2
(1−θ2)μgηxxx −

h2
0

2

(
1−θ2

)
(1−μ)uθ

xxt = 0,

(3.2)

where uθ(x, t) represents the horizontal fluid velocity at a height 0 < θh0 < h0 and

η(x, t) describes the surface displacement from the rest position.

The Korteweg-de Vries (KdV) equation can be derived in the case of unidi-

rectional waves from Euler equations and is a classic nonlinear model for small

amplitude and fairly long waves in shallow water [34]. The stability of all KdV

cnoidal waves regardless of either their amplitude or steepness was proved by

Bottman and Deconinck [12] and Benjamin [6] found that the solitary wave solu-

tion of the KdV equation is stable irrespective of amplitude.

Since the Boussines equations are derived under the assumption of small am-

plitude, the Boussinesq equations may have some restrictions if applied to real

world wave propagation problems. Therefore, in the following, we will study a

fully nonlinear system.

3.1 The Serre-Green-Naghdi system

Serre in 1953 [47, 48] made a breakthrough in the theory of nonlinearity as he

derived a one-dimensional fully nonlinear weakly dispersive system for a hori-

zontal bottom. Several years later, Su and Gardner rederived the same system

[51]. In 1976, a two-dimensional fully nonlinear and weakly dispersive system

for an uneven bottom was derived by Green and Naghdi [25]. The full nonlin-

earity makes the Serre-Green-Naghdi system an appropriate model to describe

nonlinear shallow water wave propagation and wave oscillations at the shoreline.

This system admits a three-parameter family of cnoidal wave solutions. Carter

and Cienfuegos [15] found that in describing the kinematics of strongly nonlinear

waves propagating, the solitary and cnoidal solutions of the Serre-Green-Naghdi

equations perform much better than the solutions of the KdV equation. They also
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established that these solutions are stable for waves of small amplitude but not for

sufficiently large amplitude.

However, the SGN system is no more valid in deeper water and a fully disper-

sive model must be used [37].

3.1.1 Derivation and solution

The derivation of the SGN equations as a model for surface waves is recalled here

since details from this derivation are used in papers A, B and C. We consider an

inviscid and incompressible fluid, and assume that the fluid flow is irrotational and

two-dimensional. Supposing that l represents a dominant wavelength, a0 denotes

a typical wave amplitude, b0 a typical water depth and c0 =
√

gb0 is the limiting

long-wave speed, the non-dimensional variables are defined by

x̃ =
x
l
, z̃ =

z
b0

, t̃ =
c0t
l
, η̃ =

η
a0

, b̃ =− b
b0

,

ũ =
u

αc0
, ṽ =

v√
βαc0

, p̃ =
p

ρgb0
,

(3.3)

where α = a0
b0

and β =
b2

0

l2 . In non-dimensional variables, the free-surface problem

is written as follows [56]:

The momentum equations are

αũt̃ +α2(ũ2)x̃ +α2(ũṽ)z̃ =− p̃x̃ , (3.4a)

αβṽt̃ +α2βũṽx̃ +α2βṽṽz̃ =− p̃z̃ −1 . (3.4b)

The equation of continuity and the irrotationality are expressed by

ũx̃ + ṽz̃ = 0 , (3.5a)

ũz̃ −βṽx̃ = 0 . (3.5b)

The boundary conditions at the free surface and at the bottom are given by

ṽ = η̃t̃ +αũη̃x̃, at z̃ = αη̃(x̃) , (3.6a)

p̃ = 0, at z̃ = αη̃(x̃) , (3.6b)

ṽ = b̃x̃ũ, at z̃ = b̃(x̃) . (3.6c)

Integrating the continuity equation over depth gives

η̃t̃ +[h̃ ¯̃u]x̃ = 0, (3.7)

where

¯̃u =
1

h̃

∫ αη̃

b̃
ũ dz̃,
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is the depth-averaged horizontal velocity. Using the boundary conditions (3.6a)-

(3.6c), the continuity equation (3.7) and the depth-averaged momentum equation

(3.4a) yield

αh̃ ¯̃ut̃ +α2h̃ ¯̃u ¯̃ux̃ +α2 ∂
∂x̃

∫ αη̃

b̃

(
ũ2 − ( ¯̃u)2

)
dz̃ =−

∫ αη̃

b̃
p̃x̃ dz̃ . (3.8)

Applying the Leibniz rule to the right-hand side of equation (3.8) leads to

∫ αη̃

b̃
p̃x̃ dz̃ =

∂
∂x̃

(
h̃ ¯̃p

)
−αηx̃ p̃|z̃=αη̃ + b̃x̃ p̃|z̃=b̃

=
∂
∂x̃

(
h̃ ¯̃p

)
+ b̃x̃ p̃|z̃=b̃ .

The momentum equation (3.4b) is rewritten as

αβΓ(x̃, z̃, t̃) =−1− p̃z̃ , (3.9)

where

Γ(x̃, z̃, t̃) = ṽt̃ +αũṽx̃ +αṽṽz̃ .

Integrating equation (3.9) from z̃ to αη̃ yields

p̃(x̃, z̃, t̃) = (αη̃− z̃)+αβ
∫ αη̃

z̃
Γ(x̃,ζ, t̃)dζ , (3.10)

and taking the mean value gives

h̃ ¯̃p =
1

2
h̃2 +αβ

∫ αη̃

b̃

∫ αη̃

z̃
Γ(x̃,ζ, t̃)dζ dz̃ .

Therefore, equation (3.8) can be written as

¯̃ut̃ +α ¯̃u ¯̃ux̃ + η̃x̃ +
β
h̃

∂
∂x̃

∫ αη̃

b̃
(z̃− b̃)Γ(x̃, z̃, t̃)dz̃

+
β
h̃

b̃x̃

∫ αη̃

b̃
Γ(x̃, z̃, t̃)dz̃ =

−α
h̃

∂
∂x̃

∫ αη̃

b̃

(
ũ2 − ( ¯̃u)2

)
dz̃ .

The non-dimensional velocity components are given (cf. [18]) to first order by

ũ(x̃, z̃, t̃) = ¯̃u(x̃, t̃)+O(β) ,

and

ṽ(x̃, z̃, t̃) =−
(
z̃− b̃(x̃)

)∂ ¯̃u
∂x̃

+ ¯̃u
∂b̃
∂x̃

+O(β) .
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As it was shown in [18], we can expand the velocity components using Tay-

lor series in the vertical coordinate around the bottom. Denoting by ũb and ṽb,

respectively, the horizontal and vertical velocities at the bottom, the bottom kine-

matic condition (3.6c) is ṽb = b̃x̃ũb. In order to determine which terms should be

kept to obtain an approximation for the velocity field, the incompressibility con-

dition (3.5a) must hold to the same order in β as the evolution equations. If the

non-dimensional velocity components are given by

ũ(x̃, z̃, t̃) = ũb(x̃, t̃)+β(z̃− b̃)
(

b̃x̃ũb
x̃ +(b̃x̃ũb)x̃

)
− β

2
(z̃− b̃)2ũb

x̃x̃ +O(β2) , (3.11)

ṽ(x̃, z̃, t̃) = b̃x̃ũb +(z̃− b̃)
(
−ũb

x̃ +β(b̃x̃(ũbb̃x̃)x̃ + ũb
x̃ b̃2

x̃)
)

− β
2
(z̃− b̃)2

(
b̃x̃ũb

x̃x̃ +(b̃x̃ũb
x̃ +(b̃x̃ũb)x̃)x̃

)
+

β
3!
(z̃− b̃)3ũb

x̃x̃x̃ +O(β2) ,

then the incompressibility condition (3.5a) holds to O(β2). Depth averaging (3.11)

gives

ũb = ¯̃u− β
2

h̃
(
b̃x̃ ¯̃ux̃ +(b̃x̃ ¯̃u)x̃

)
+

β
6

h̃2 ¯̃ux̃x̃ +O(β2,αβ2) .

Thus, the horizontal velocity is

ũ(x̃, z̃, t̃) = ¯̃u−β
(
b̃x̃ ¯̃ux̃ +(b̃x̃ ¯̃u)x̃

)( h̃
2
− (z̃− b̃)

)

+β
(

h̃2

6
− 1

2
(z̃− b̃)2

)
¯̃ux̃x̃ +O(β2,αβ2) . (3.12)

Taking squares of equation ( 3.12)

ũ2(x̃, z̃, t̃) = ¯̃u2 −β
(
b̃x̃ ¯̃ux̃ ¯̃u+(b̃x̃ ¯̃u)x̃ ¯̃u

)(
h̃−2(z̃− b̃)

)
+

β
(

h̃2

2
− (z̃− b̃)2

)
¯̃u ¯̃ux̃x̃ +O(β2,αβ2) . (3.13)

Integrating equation (3.13) from b̃ to αη̃, and after some simplifications, it follows

that ∫ αη̃

b̃

(
ũ2 − ( ¯̃u)2

)
dz̃ = O(β2,αβ2) ,
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and that

Γ(x̃, z̃, t̃) = (z̃− b̃)
[
α ¯̃u2

x̃ − ¯̃ux̃t̃ −α ¯̃u ¯̃ux̃x̃
]
+

+ b̃x̃( ¯̃ut̃ +α ¯̃u ¯̃ux̃)+αb̃x̃x̃ ¯̃u2 +O(β,αβ) . (3.14)

Evaluating the integrals
∫ αη̃

b̃
Γdz̃ and

∫ αη̃
b̃

(z̃− b̃)Γdz̃ yields

∫ αη̃

b̃
Γdz̃ =

1

2
h̃P̃ + h̃Q̃ ,

and ∫ αη̃

b̃
(z̃− b̃)Γdz̃ =

1

3
h̃2P̃ +

1

2
h̃2Q̃ ,

where

P̃ = h̃
[
α ¯̃u2

x̃ − ¯̃ux̃t̃ −α ¯̃u ¯̃ux̃x̃
]
,

and

Q̃ = b̃x̃ ( ¯̃ut̃ +α ¯̃u ¯̃ux̃)+ b̃x̃x̃ ¯̃u2 .

Finally we find the second equation of the system as

¯̃ut̃ +α ¯̃u ¯̃ux̃ + η̃x̃ +
β
h̃

∂
∂x̃

{(
1
3 P̃ + 1

2Q̃
)

h̃2
}
+ βb̃x̃

(
1
2 P̃ + Q̃

)
= O(αβ2) . (3.15)

In the case of horizontal bottom, the system becomes

η̃t̃ +[h ¯̃u]x̃ = 0 , (3.16a)

¯̃ut̃ +α ¯̃u ¯̃ux̃ + η̃x̃ −
β
3h

∂
∂x̃

(
h3( ¯̃ux̃t̃ +α ¯̃u ¯̃ux̃x̃ −α( ¯̃ux̃)

2)
)
= O(β2,αβ2) . (3.16b)

By setting the right-hand side of (3.15) equal to zero, and writing the variables

in dimensional form the SGN system with uneven bottom reads

ηt +[hū]x = 0 , (3.17a)

ūt + ūūx +gηx +
1

h

[
h2
(

1
3P + 1

2Q
)]

x −bx
(

1
2P +Q

)
= 0 , (3.17b)

where P = h
[
ū2

x − ūxt − ūūxx
]

and Q =−bx(ūt + ūūx)−bxxū2.
The dimensional form of the water particle velocities at any location (x,z) in

the vertical plane becomes

u = ū+
(

h2

6
− z2

2

)
ūxx , (3.18a)

v =−zūx . (3.18b)
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An asymptotic expression for the pressure p̃(x̃, z̃, t̃) can be obtained by sub-

stituting formula (3.14) into (3.10). Such a formula was derived in [42] in the

form

p̃(x̃, z̃, t̃) = αη̃− z̃++
αβ
2

[
− ¯̃ux̃t̃ −α ¯̃u ¯̃ux̃x̃ +α ¯̃u2

x̃
](

h̃2 − (z̃− b̃)2
)

+αβ
(
αb̃x̃x̃ ¯̃u2 +αb̃x̃ ¯̃u ¯̃ux̃ + b̃x̃ ¯̃ut̃

)
(αη̃− z̃)+O(αβ2) . (3.19)

The SGN system with a horizontal bottom

The SGN system (3.16) has the following dimensional form

ηt +[hū]x = 0,

ūt + ūūx +ghx −
1

3h
∂
∂x

(
h3(ūxt + ūūxx − (ūx)

2)
)
= 0 .

(3.20)

The shallow water system

System (3.16) reduces to the shallow water system when β → 0,

η̃t̃ +[(1+αη̃) ¯̃u]x̃ = 0 ,

¯̃ut̃ +α ¯̃u ¯̃ux̃ + η̃x̃ = O(α2) ,

and in dimensional variables is given by (3.1).

The classical Boussinesq system

Considering long waves of small amplitude, β ∼ α, the SGN system could be

simplified as

η̃t̃ +[(1+αη̃) ¯̃u]x̃ = 0 , (3.21a)

¯̃ut̃ +α ¯̃u ¯̃ux̃ + η̃x̃ −
β
3

ũx̃x̃t̃ = O(αβ,β2) , (3.21b)

and in dimensional form, we have

ηt +[hū]x = 0 ,

ū+gηx + ūūx −
1

3
ūxxt = 0 ,

where h = h0+η. This is the classical Boussinesq system. If a horizontal velocity

uθ is used instead of the average velocity ū, then this system may be generalized

to

ηt +(ηuθ)x − h2
0

2 (θ
2 − 1

3)ηxxt = 0 ,

uθ
t +gηx +uθuθ

x −
h2

0
2 (1−θ2)uθ

xxt = 0 .
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Actually, this system is a restriction of (3.2) to the case where λ = 0 and μ = 0.

It is interesting to note that the original Boussinesq system is equivalent to the

above system if θ2 = 1
3 , and this is also the case when the dispersion relation is

the closest approximation of the full dispersion relation

ω2 = gk tanh(kh0) .

However as noted in [8], from a numerical point of view, the values 1
3 < θ2 < 1

are most convenient since both equations in the system are then of the same type,

boundary conditions may be imposed in a straightforward way, and the resulting

system can be integrated numerically with great efficiency. For example, a spectral

scheme has been employed in [9].

3.1.2 Particle trajectories

In this section, we consider the SGN system (3.20). Following [20], the SGN

system admits the following family of solutions

h(x, t) = a0 +a1dn2(θ,m),

ū = c
(

1− h0

h(x, t)

)
,

κ =

√
3a1

4a0(a0 +a1)(a0 +(1−m2)a1)
,

c =
1

h0

√
ga0(a0 +a1)(a0 +(1−m2)a1) ,

(3.22)

where θ = κ(x−ct), a1 and a2 are real positive parameters, and d(.,m) is a Jacobi

elliptic function with elliptic modulus m ∈ (0,1). Also the mean water depth is

h0 = a0 +a1
E(m)

K(m)
in which K(m) and E(m) are the complete elliptic integrals of

the first and the second kinds, respectively. As m → 1−, these solutions limit to

the solitary wave solutions

h(x, t) = a0 +a1sech2(θ),

ū = c
(

1− a0

h(x, t)

)
,

κ =

√
3a1

4a0(a0 +a1)
,

c =
√

g(a0 +a1) .

(3.23)
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In paper A, the focus is on numerical simulation of particle trajectories associated

with the periodic solutions of the SGN system. The velocity field (3.18) has been

used to simulate particle paths. Let (ξ(t),ζ(t)) be the location of a particle whose

rest position is (ξ0,ζ0). Then the particle motion is described by the differential

equations

∂ξ(t)
∂t

= u(ξ(t),ζ(t), t),

∂ζ(t)
∂t

= v(ξ(t),ζ(t), t) .
(3.24)

To find the particle trajectories, the system (3.24) is solved numerically using

a fourth-order Runge-Kutta method. For the solitary wave solution (3.23), the

Figure 3.1: The solitary wave profile with amplitude a1 = 0.2 is shown at t = 0 (light-

gray), t = 1 (dark-gray) and t = 2 (black). The wave crest initially located at x = 0.

The paths of particles initially located at (−0.5,0.4), (1.75,0.4), (4,0.4), (1.75,0.05) and

(1.75,0.85). The light-gray dot indicates the particle location at time t = 0. The dark-gray

dot indicates the particle location at time t = 1 and the black dot indicates the particle

location at time t = 2. The particles located on the left of the crest move to the right

and downwards and the particles located on the right of the crest move to the right and

upwards. The vertical excursion is less than its horizontal displacement and diminishes

rapidly with the depth of the path beneath the free surface.
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velocity field at a time t, at an arbitrary point (x,z) in the fluid is given by

u = ū+
(−2a1a0cκ2

h2

)(h2

6
− z2

2

)[
−2sech2(θ)tanh2(θ)+ sech4(θ)

]
,

v =
(2a0a1czκ

h2

)
sech2(θ)tanh(θ) .

The surface profile and the particle paths beneath the solitary waves are shown in

Figure (3.1). The particle motion due to the propagation of the periodic solution

(3.22) at the surface is described by the system (3.24) where the velocity field is

given by

u = ū+
(−2a1h0cm2κ2

h2

)(h2

6
− z2

2

)[
dn2(θ)(−3sn2(θ)+2)+ sn2(θ)−1

]
,

v =
(2h0a1czm2κ

h2

)
cn(θ)sn(θ)dn(θ) .

The surface profile and the particle trajectories below a periodic dnoidal wave with

a0 = 0.3, a1 = 0.1 and m = 0.99 are shown in Figure (3.2). In paper A, we have

shown that the particles display a forward drift due to the passage of the solitary

waves, however, for the dnoidal waves the particle paths are nearly elliptic but not

completely closed. In fact, the particles experience a forward drift near the surface

but, as the depth decreases the drift becomes negative. This can be explained by

Figure 3.2: The surface profile with wavelength 4.945 is shown. The crest of the wave is

centered at x = 0 and the particles are initially located beneath the trough and the crest.
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the fact that the mean velocity,
∫ T

0 ūdt, over one wave period is negative which

causes a negative horizontal displacement for particles. More details can be found

in [32].

3.1.3 Mechanical balance laws

The modeling of surface gravity waves relies heavily on the concept of conserva-

tion of mass, momentum and energy, the main focus of this section is on deriving

the mechanical balance for the SGN system. Smooth solutions of system (3.20)

satisfy the following conservation laws:

(h)t +(hū)x = 0, (3.25)

(hū)t +

(
1

2
gh2 +hū2 − 1

3
h3ūxt +

1

3
h3ū2

x −
1

3
h3ūūxx

)
x
= 0, (3.26)(

1

2
h
(
gh+ ū2 + 1

3h2ū2
x
))

t
+
(

hū
(
gh+ 1

2 ū2 + 1
2h2ū2

x − 1
3h2(ūxt + ūūxx)

))
x
= 0,

(3.27)(
ū−hhxūx −

1

3
h2ūxx

)
t
+

(
gh+

1

2
ū2 −hhxūūx − 1

2h2ū2
x − 1

3h2ūūxx

)
x
= 0.

(3.28)

We will show that the conservation law (3.25) describes the mass conservation

and (3.26) illustrates the momentum conservation and (3.27) represents the energy

conservation in the SGN approximation. In paper B, the focus is on deriving the

mass, momentum and energy densities and fluxes associated with the SGN system

(3.17) and the procedure of finding these quantities follows a similar scheme as the

derivations in [4] for a class of Boussinesq system and [5] for the KdV equation.

In paper C, the focus is on giving a precise physical meaning to the quantities

appearing in the equation (3.28). All the balance laws consist of terms of the

same asymptotic order as in the SGN system.

Mass balance

In this section we consider the SGN system (3.17). The total mass of the fluid

contained in a control volume (Figure 3.3) of unit width, bounded by the lateral

sides of the interval [x1,x2], and by the free surface and the bottom is given by

M =
∫ x2

x1

∫ η

−b
ρdzdx .

According to the principle of mass conservation, the rate of change in the total

mass is equal to the mass net flux, and the fact that there is no mass flux through



30 Nonlinear Waves

Figure 3.3: Schematic picture describing control volume.

the bottom or the free surface, the mass conservation can be formulated as

d
dt

∫ x2

x1

∫ η

−b
ρdzdx =

[∫ η

−b
ρu(x,z, t)dz

]x1

x2

.

In non-dimensional form, this equation becomes

d
dt̃

∫ x̃2

x̃1

∫ αη̃

b̃
dz̃dx̃ = α

[∫ αη̃

b̃
ũ(x̃, z̃, t̃)dz̃

]x̃1

x̃2

.

Let us substitute the expression (3.12) for ũ and integrate the equation with respect

to z̃. Then using the Leibnitz rule and differentiating with respect to x̃ we obtain

the mass balance equation

(αη̃− b̃)t̃ +(α ¯̃u(αη̃− b̃))x̃ = O(αβ) .

Denoting the non-dimensional mass density by M̃ = αη̃ − b̃ and the non-

dimensional mass flux by q̃M = α ¯̃u(αη̃− b̃), the mass balance is

∂M̃
∂t̃

+
∂q̃M

∂x̃
= O(αβ) .

Using the scalings M = ρh0M̃ and qM = ρh0c0q̃M, the dimensional forms of mass

density and mass flux are

M = ρ(η−b) ,

and

qM = ρū(η−b) ,

respectively. The relation
∂M
∂t

+
∂qM

∂x
= 0 ,
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is exactly the first equation in the SGN system (3.17). In the case of horizontal

bottom b =−h0, the mass density and flux become

M = ρ(η+h0) ,

qM = ρū(η+h0) ,

respectively. Denoting h = η+h0, we obtain the relation (3.25).

Momentum balance

The total horizontal momentum of a fluid of constant density ρ contained in the

control volume is given by

I =
∫ x2

x1

∫ η

−b
ρudzdx .

According to the principle of momentum balance, the rate of change of I is equal

to the net influx of momentum through the boundaries plus the net work done on

the boundary of the control volume, the momentum conservation can be expressed

as
d
dt

∫ x2

x1

∫ η

−b
ρudzdx =

[∫ η

−b
ρu2(x,z)dz+

∫ η

−b
pdz

]x1

x2

−
∫ x2

x1

pbx dx .

Non-dimensionalization of this expression leads to

α
d
dt̃

∫ x̃2

x̃1

∫ αη̃

b̃
ũ dz̃dx̃ =

[
α2

∫ αη̃

b̃
ũ2 dz̃+

∫ αη̃

b̃
p̃ dz̃

]x̃1

x̃2

−
∫ x̃2

x̃1

P̃bb̃x̃ dx .

We substitute the values for ũ and p̃ in equations (3.12) and (3.19) in the latter

equation and integrate the resulting equation with respect to z̃. Then we differen-

tiate the result with respect to x̃ to obtain the balance equation:

(
α ¯̃u(αη̃− b̃)

)
t̃ +(

α2 ¯̃u2(αη̃− b̃)+
(αη̃− b̃)2

2
− αβ

3
(αη̃− b̃)3( ¯̃ux̃t̃ +α ¯̃u ¯̃ux̃x̃ −α( ¯̃ux̃)

2)

)
x̃
+(

αβ
2
(αb̃x̃x̃ ¯̃u2 + b̃x̃

(
α ¯̃u ¯̃ux̃ + ¯̃ut̃)

)
(αη̃− b̃)2

)
x̃
=−P̃bb̃x̃ +O(αβ2) .

The non-dimensional momentum density is defined as

Ĩ = α ¯̃u(αη̃− b̃) ,
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whiles the momentum flux is

q̃I = α2 ¯̃u2(αη̃− b̃)+
(αη̃− b̃)2

2
− αβ

3
(αη̃− b̃)3

(
¯̃ux̃t̃ +α ¯̃u ¯̃ux̃x̃ −α( ¯̃ux̃)

2
)
+

αβ
2

(
αb̃x̃x̃ ¯̃u2 + b̃x̃(α ¯̃u ¯̃ux̃ + ¯̃ut̃)

)
(αη̃− b̃)2 .

Using the scalings I = ρc0h0Ĩ and qI = ρc2
0h0q̃I , the dimensional forms of the

momentum density and momentum flux per unit span are given by

I = ρū(η−b) ,

and

qI = ρū2(η−b)+
ρg
2
(η−b)2 − ρ

3
(ūxt + ūūxx − ū2

x)(η−b)3−
ρ
2
(bxxū2 +bx(ūūx + ūt))(η−b)2 ,

respectively. It appears that momentum conservation is also exactly satisfied and

can be written in the form
∂I
∂t

+
∂qI

∂x
= bx p .

For a horizontal bottom b = h0, the dimensional forms of the momentum density

and momentum flux per unit span are given by

I = ρū(h0 +η) ,

and

qI = ρū2(h0 +η)+
ρg
2
(h0 +η)2 − ρ

3
(h0 +η)3(ūxt + ūūxx − ū2

x) ,

respectively, and by denoting h = η+h0, the momentum balance equation can be

written as:

∂
∂t

(
ūh

)
+

∂
∂x

(
ū2h+

g
2

h2 − 1

3
h3(ūxt + ūūxx − ū2

x)
)
= 0 ,

which is the same as equation (3.26).

Energy balance

The total mechanical energy inside a control volume can be written as

E =
∫ x2

x1

∫ η

−b

{ρ
2
(u2 + v2)+ρgz

}
dzdx .
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Then, the conservation of total mechanical energy can be expressed as

d
dt

∫ x2

x1

∫ η

−b

{ρ
2
(u2+v2)+ρgz

}
dzdx=

[∫ η

−b

{(ρ
2
(u2 + v2)+ρgz

)
u+uP

}
dz
]x1

x2

,

and in non-dimensional variables as:

d
dt̃

∫ x̃2

x̃1

∫ αη̃

b̃

{α2

2
(ũ2 +βṽ2)+ z̃

}
dz̃dx̃ =

α
[∫ αη̃

b̃

{α2

2
(ũ3 +βṽ2ũ)+ z̃ũ+ p̃ũ

}
dz̃
]x̃1

x̃2

.

By substituting the expressions for ũ, ṽ and p̃, the differential form of the energy

balance equation is given by(
α2

2
( ¯̃u2 +βb̃2

x̃ ¯̃u2)h̃− α2β
2

b̃x̃h̃2 ¯̃u ¯̃ux̃ +
α2β

6
h̃3 ¯̃u2

x̃ +
h̃2

2
+ b̃h̃

)
t̃
+(

α3

2
¯̃u3h̃+α ¯̃uh̃2 − α2β

3
h̃3 ¯̃u( ¯̃ux̃t̃ +α ¯̃u ¯̃ux̃x̃ −

3

2
α ¯̃u2

x̃)−
α3β

2
b̃x̃ ¯̃ux̃ ¯̃u2h̃2

)
x̃

−
(

α2β
2

(
αb̃x̃x̃ ¯̃u2 +αb̃x̃( ¯̃u ¯̃ux̃ + ¯̃ut̃)

)
h̃2

)
x̃
= O(αβ2) .

We find that the non-dimensional energy density is

Ẽ =
α2

2
( ¯̃u2 +βb̃2

x̃ ¯̃u2)h̃− α2β
2

b̃x̃h̃2 ¯̃u ¯̃ux̃ +
α2β

6
h̃3 ¯̃u2

x̃ +
h̃2

2
+ b̃h̃ ,

whiles the non-dimensional energy flux is written as

q̃E =
α3

2
¯̃u3h̃+α ¯̃uh̃2 +

α3β
2

b̃2
x̃ ¯̃u3 +α ¯̃ub̃h̃− α2β

3
h̃3 ¯̃u( ¯̃ux̃t̃ +α ¯̃u ¯̃ux̃x̃−

3

2
α ¯̃u2

x̃)−
α3β

2
b̃x̃ ¯̃ux̃ ¯̃u2h̃2 − α2β

2

(
αb̃x̃x̃ ¯̃u2 + b̃x̃(ᾱũ ¯̃ux̃ + ¯̃ut̃)

)
¯̃uh̃2.

Therefore, the energy balance is

∂Ẽ
∂t̃

+
∂q̃E

∂x̃
= O(αβ2) .

Using the scaling E = ρc2
0h0Ẽ and qE = ρc3

0h0q̃E , the dimensional form of energy

density is given as the sum of the kinetic energy and the potential energy by

E =
ρ
2

ū2(1+b2
x)h+

ρ
2

ūūxbxh2 +
ρ
6

ū2
xh3︸ ︷︷ ︸

Ek

+
ρg
2

h2 −ρgbh︸ ︷︷ ︸
Ep

,
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and the dimensional form of energy flux per unit span is given by

qE = ρgū(h2 −bh)+
ρ
2

ū3h(1+bx)−
ρ
3

h3ū(ūxt + ūūxx −
3

2
ū2

x)+

ρ
2

ū2ūxbxh2 +
ρ
2

ūh2(bxxū2 +bx
(
ūūx + ūt)

)
.

The energy balance is also valid to the same asymptotic order as the SGN system.

For a horizontal bottom the dimensional form of energy density and energy flux

per unit span are given by

E =
ρg
2
(2h0η+η2)+

ρ
2
(h0 +η)ū2 +

ρ
6
(h0 +η)3ū2

x ,

and

qE = ρgū(h0 +η)2 +
ρ
2

ū3(h0 +η)− ρ
3
(h0 +η)3ū(ūxt + ūūxx −

3

2
ū2

x) , (3.29)

respectively. Assuming h = η+h0, the equation (3.27) can be obtained.

A kinematic balance law

Let us consider the tangent velocity K along the free surface given by

K = u+whx, z = h(t,x) .

Using the non-dimensional variables (3.3) for the case of horizontal bottom, the

quantity K in non-dimensional form is written as

K̃ = ũ+βw̃h̃h̃x̃ . (3.30)

Substituting ũ and w̃ in the following equations

ũ = ˜̄u+β
( h̃2

6
− z̃2

2

)
˜̄ux̃x̃ +O(β2) ,

w̃ =−z̃ ˜̄ux̃ +β ,

into (3.30) and evaluating at the free surface yields

K̃ = ˜̄u− β
3

h̃2 ˜̄ux̃x̃ −βh̃h̃x̃ ˜̄ux̃ .

The conservation law (1.5) turns into(
˜̄u− β

3
h̃2 ˜̄ux̃x̃ −βh̃h̃x̃ ˜̄ux̃

)
t̃
+

(
1

2
˜̄u2 − β

3
h̃2 ˜̄u ˜̄ux̃x̃ −βh̃h̃x̃ ˜̄u ˜̄ux̃ + h̃− β

2
h̃2 ˜̄u2

x̃

)
x̃
= O(β2) .
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We define the non-dimensional quantities K̃ and q̃K by

K̃ = ˜̄u− β
3

h̃2 ˜̄ux̃x̃ −βh̃h̃x̃ ˜̄ux̃ ,

and

q̃K =
1

2
˜̄u2 − β

3
h̃2 ˜̄u ˜̄ux̃x̃ −βh̃h̃x̃ ˜̄u ˜̄ux̃ + h̃− β

2
h̃2 ˜̄u2

x̃ .

Converting to the dimensional form by using the scalings K = c0K̃ and qK =
c2

0q̃K , we obtain

K = ū− 1

3
h2ūxx −hhxūx ,

qK = gh+
1

2
ū2 − 1

3
h2ūūxx −hhxūūx −

1

2
h2ū2

x ,

and therefore,
∂K
∂t

+
∂qK
∂x

= 0 ,

which is the same as equation (3.28). This equation is an exact balance law for

solutions of the SGN system (3.20). The details for the derivation of the same

conservation law for the three-dimensional SGN system has been given in [23].

3.1.4 Energy conservation in undular bores

When a long wave propagates into shallow water in some cases, it steepens and

forms a bore. More generally, a bore is a transition between two uniform free-

surface flows with different flow depths. For sufficiently large transitions, the

front of the bores are often turbulent however, transitions of moderate amplitude

are accompanied by wave trains without breaking and are called undular bores

[6]. The bore shape and characteristics evolve rapidly with time in response to

change in bathymetry. Well-known examples are the bores on the River Severen

in England and the River Dordogne in France. The classical bore theory, Lamb

[36], applied a well developed bore advancing at constant velocity and calculated

the fluxes of mass, momentum and energy across the bore in a frame of reference

moving with the bore velocity. It is shown that if the mass and momentum are

conserved, energy must be necessarily lost. Benjamin and Lighthill [7] employed

this approach within the approximation of the KdV equation and showed that if

mass, momentum and energy are conserved the wave is a solitary wave and if

energy is lost the wave is a cnoidal wave. Experimental measurements by Favre

[22] show that undular bores form when the ratio of the change in level to the

initial depth of water, α which is called the strength of the bore, is less than 0.28. If

(0.28<α< 0.78), then there are still undulation but one or a few waves behind the
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bore front are starting to break. For (0.78 < α), bore front breaks and a so-called

turbulent occurs. The wave Froude number Fr =
√

[(2h1/h0 +1)2 −1]/8 can also

determine the bore strength. Specifically, when Fr � 1.4, the bore consists of a

steep front while undulations are growing at the bore front in the near-critical state

Fr ≈ 1 [16].

In paper B, the energy loss in the undular bore provided by the SGN system

have been studied. Byatt-Smith [14] claimed that viscous action absorbs some of

the energy at the bore which is not accounted for by the classical theory of the

bore. However, using a dispersive model to study the energy loss in the undular

bore shows that the energy loss is absorbed by the increasing number of oscilla-

tions following the bore front [2].

In our numerical analysis of the energy balance of undular bores, we have used

h(x,0) = h0 +
1

2
(h1 −h0)tanh(

x
2
),

as an initial surface condition that operates the generation of the undular bore. We

have also considered an initial flow given by the following velocity profile

u(x,0) =
δ
h1

√
g

2h0

(
2h2

0 +3(δh)h0 +(δh)2
)(

1− tanh(
x
2
)
)
,

where δh = h1 − h0. A Galerkin method with cubic spline has been applied for

solving the initial boundary value problem consist of the SGN system (3.17) sub-

jec to reflective boundary conditions [31]. Taking h0 = 1 and
h1

h0
= 1.1,1.2, ..,1.7,

we monitored the energy flux and work rate due to the pressure force, given by

qE(x1)−qE(x2) as defined in (3.29). We also monitored the gain in energy in the

control interval which is given by E(t) =
∫ x2

x1
E dx. Results are shown in Table 3.1

which shows that the energy balance laws is satisfied with accuracy 10−8 and con-

firms our previous finding that the energy is exactly conserved in the SGN model.

Table 3.1: Rate of change in energy for T = 30.

h1/h0 Fr qE(x1)−qE(x2)
dE
dt

1.1 1.07 3.6481059 3.6481059

1.2 1.15 8.6017456 8.6017456

1.3 1.22 15.100378 15.100378

1.4 1.30 23.394470 23.394470

1.5 1.37 33.746103 33.746103

1.6 1.44 46.429376 46.429376

1.7 1.51 61.730669 61.730669
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Thus the energy lost in the shallow-water model is fed into oscillations behind the

bore front.

3.2 The KDV equation

The SGN system describes the two-way propagation of water waves and it is used

to model highly nonlinear weakly dispersive waves propagating at the surface of a

shallow water. However, the KdV equation describes water waves traveling in one

direction and it can model weakly nonlinear and dispersive waves at the surface

of a shallow water. The KdV equation along with its cnoidal solution has been

used to examine the waveheight change in surface waves with a sufficiently slow

variation in depth in paper D.

3.2.1 Derivation and solution

From the equations (3.21a) and (3.21b) we have η̃t̃ + ¯̃ux̃ = O(α) and ¯̃ut̃ + η̃x̃ =
O(α,β) respectively. Therefore, the wave equation follows as η̃t̃ t̃ + η̃x̃x̃ =
O(α,β2). Consider a solution of the wave equation which satisfies η̃t̃ + η̃x̃ =
O(α,β) . Then the wave travels to the right and we choose

¯̃u = η̃+αA+βB+O(α2,β2), (3.31)

where A and B are functions of η̃ and its derivatives with respect to x̃ and can

be found by substituting the expression (3.31) for ¯̃u into system (3.21) and using

the low order approximations At̃ +Ax̃ = O(α,β) and Bt̃ +Bx̃ = O(α,β). So we

obtain A =−1
4 η̃2 and B = 1

6 η̃x̃x̃. Therefore, ¯̃u = η̃− α
4 η̃2 + β

6 η̃x̃x̃ +O(α2,β2). By

substituting the expression (3.31) for ¯̃u into equation (3.21a), the non-dimensional

KdV equation is

η̃t̃ + η̃x̃ +
3

2
αη̃η̃x̃ +

1

6
βη̃x̃x̃x̃ = O(α2,β2). (3.32)

By neglecting terms of second order in α and β, the dimensional form of the KdV

equation can be obtained as

ηt + c0ηx +
3c0

2h0
ηηx +

c0h2
0

6
ηxxx = 0 , (3.33)

and the velocity becomes

u =
c0

h0
η− c0

4h2
0

η2 +
c0h0

6
ηxx.
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The linearized form of this equation gives the dispersion relation

ω = c0k− 1

6
c0h2

0k3 ,

which shows the KdV equation incorporates dispersive effects in the shallow wa-

ter theory.

Cnoidal wave solution

Equation (3.33) has stationary solution in the form of

η = f2 +( f1 − f2)cn2
(√3( f1 − f3)

4h3
0

(x−Ct);m
)
, (3.34)

where cn is the Jacobian elliptic function with modulus m =
f1 − f2

f1 − f3
such that

0 < m < 1. These solutions show the long flat troughs and narrow crests charac-

teristics of waves in shallow water. The wave speed is

C = c0

(
1+

f1 + f2 + f3

2h0

)
, (3.35)

and the wavelength is defined by

L = K(m)

√
16h3

0

3( f1 − f3)
, (3.36)

where K(m) =
∫ π

2
0

1√
1−msin2 θ

dθ is the complete elliptic integral of the first kind.

These solutions depend on three parameters f1, f2 and f3 which can be taken in

the form f1 > f2 > f3. The parameters f1 and f2 denote the wave crest and trough,

respectively, while f3 is a parameter that only affects the shape of the wave. Any

cnoidal wave is completely determined as long as these three parameters are fixed.

Let us consider

f (ζ) = f2 +( f1 − f2)cn2
( ζ

σ
;m

)
,

such that f (ζ1) = f1 and f (ζ2) = f2. Then the mean value of the surface displace-

ment over one wavelength must be equal to

η̄ =
2

L

∫ ζ2

ζ1

f (ζ)dζ

=
2σ
L

(
( f1 − f3)E(m)+ f3K(m)

)
,
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where σ =
√

4
3( f1− f3)

and E(m) =
∫ π

2
0

√
1−msin2 θdθ is the complete elliptic

integral of the second kind. Therefore, the expressions for f1, f2 and f3 in terms

of waveheight, H = f1 − f2, and modulus m may be written as

f1 = f3 +
H
m
,

f2 = f1 −H,

f3 =

√
3mHLη̄−4HE(m)

4mK(m)
.

(3.37)

In the limit as m → 1−, the solutions correspond to the infinitely long solitary

waves. In the limit when m → 0+, the cnoidal theory generates a linear wave.

3.2.2 Mechanical balance laws

In paper D, we have examined the evolution of a cnoidal wave solution of the

KdV equation by using conservation of momentum and energy in the context of

the KdV equation. A brief review of the derivation of balance law is given in

the following sections. More details about derivation of conservation laws for the

KdV equation will be found in [5].

Mass balance

Mass conservation can be written as

d
dt

∫ x2

x1

∫ η

−h0

dzdx =
[∫ η

−h0

φx(x,z, t)dz
]x1

x2

.

In non-dimensional form this relation becomes

d
dt̃

∫ x̃2

x̃1

∫ 1+αη̃

0
dz̃dx̃ = α

[∫ 1+αη̃

0
φ̃x̃(x̃, z̃, t̃) dz̃

]x̃1

x̃2

.

Substituting the expression for φ̃x̃ ,in terms of η̃, given by

φ̃x̃ = η̃+
1

4
αη̃2 +β(

1

3
− z̃2

2
)η̃x̃x̃ +O(α2,αβ,β2) , (3.38)

and integrating with respect to z̃ leads to the approximation

d
dt̃

∫ x̃2

x̃1

(1+αη̃)dx̃ = α
[
η̃+

3

4
αη̃2 +

1

6
βη̃x̃x̃ +O(αβ,β2)

]x̃1

x̃2

.
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One may divide by the length of the interval and taking the limit as x̃2 → x̃1 to find

η̃t̃ + η̃x̃ +
3

2
αη̃η̃x̃ +

1

6
βη̃x̃x̃x̃ = O(αβ,β2) . (3.39)

Therefore, if we denote the non-dimensional mass density by

M̃ = 1+αη̃ ,

and the non-dimensional mass flux by

˜qM = αη̃+
3

4
α2η̃2 +

1

6
αβη̃x̃x̃ ,

the non-dimensional mass balance is

∂
∂t̃

M̃+
∂
∂x̃

q̃M = O(αβ,β2) .

Using the scalings M = h0M̃ and qM = h0c0q̃M, give the dimensional forms of the

balance equation
∂
∂x

M+
∂
∂t

qM = 0 ,

where

M = h0 +η ,

and

qM = c0

(
η+

3

4h0
η2 +

h2
0

6
ηxx

)
.

One can see from equation (3.39) that the KdV equation is a mass balance equa-

tion.

Momentum balance

A relation for momentum conservation can be expressed by

d
dt

∫ x2

x1

∫ η

−h0

φx dzdx =
[∫ η

−h0

(φ2
x +P)dz

]x1

x2

.

In non-dimensional variables, it is of the form

α
d
dt̃

∫ x̃2

x̃1

∫ 1+αη̃

0
φ̃x̃ dz̃dx̃ =

[∫ 1+αη̃

0

(
α2φ̃2

x̃ +αP̃′ − (z̃−1)
)

dz̃
]x̃1

x̃2

.

Substituting the expression (3.38) for φ̃x̃ and using the relation

P̃′ = η̃− 1

2
β(z̃2 −1)η̃x̃x̃ +O(αβ,β2) ,
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yield

α
d
dt̃

∫ x̃2

x̃1

{
η̃+

3

4
αη̃2 +

1

6
βη̃x̃x̃

}
dx̃ =

[
α2η̃2 +

(1+αη̃)2

2
+

αβ
3

η̃x̃x̃

]x̃1

x̃2

+O(α3,α2β,αβ2) .

Differentiating with respect to x̃ gives the balance equation

(
η̃+

3

4
αη̃2 +

1

6
βη̃x̃x̃

)
t̃
+
(

η̃+
3

2
αη̃2 +

1

3
βη̃x̃x̃

)
x̃
= O(α2,αβ,β2) .

By considering the non-dimensional momentum density as

Ĩ = αη̃+
3

4
α2η̃2 +

1

6
αβη̃x̃x̃ ,

and the non-dimensional momentum flux as

q̃I =
1

2
+αη̃+

3

2
α2η̃2 +

1

3
αβη̃x̃x̃ ,

the momentum balance may be written in the following form

∂
∂t̃

Ĩ +
∂
∂x̃

q̃I = O(α2,αβ,β2) .

Using the scalings I = c0h0Ĩ and qI = c2
0h0q̃I , the dimensional of the momentum

density and momentum flux are given by

I = c0(η+
3

4h0
η2 +

h2
0

6
ηxx) ,

and

qI = c2
0(

h0

2
+η+

3

2h0
η2 +

h2
0

3
ηxx) . (3.40)

Energy balance

Conservation of the total mechanical energy can be written as

∂
∂t

∫ x2

x1

∫ η

−h0

{1

2
|∇φ|2 +gz

}
dzdx =

[∫ η

−h0

{1

2
|∇φ|2 +gz

}
φx dz+

∫ η

−h0

φxPdz
]x1

x2

.
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Converting to non-dimensional variables gives

∂
∂t̃

∫ x̃2

x̃1

∫ 1+αη̃

0

{α2

2

(
φ̃2

x̃ +
1

β
φ̃2

z̃
)
+(z̃−1)

}
dz̃dx̃

= α
[∫ 1+αη̃

0

{α2

2

(
φ̃3

x̃ +
1

β
φ̃2

x̃ φ̃x̃
)
+(z̃−1)φ̃x̃

}
dz̃

+α
∫ 1+αη̃

0
P̃′φ̃x̃dz̃+

∫ 1+αη̃

0
(1− z̃)φ̃x̃ dz̃

]x̃1

x̃2

.

Substituting (3.38) for φ̃x̃ and φ̃z̃ = βz̃η̃x̃ +O(αβ,β2) and integrating with respect

to z̃ will give

d
dt̃

∫ x̃2

x̃1

{
α2η̃2 +

α3

4
η̃3 +

α2β
6

η̃η̃x̃x̃ +
α2β

6
η̃2

x̃

}
dx̃ =

[
α2η̃2 +

5

4
α3η̃3 +

α2β
2

η̃η̃x̃x̃

]x̃1

x̃2

+O(α4,α3β,α2β2) .

Therefore, the differential form of the energy balance equation can be written as

(
η̃2 +

α
4

η̃3 +
β
6

η̃η̃x̃x̃ +
β
6

η̃2
x̃

)
t̃
+
(

η̃2 +
5

4
αη̃3 +

1

2
βη̃η̃x̃x̃

)
x̃
= O(α2,αβ,β2) .

Thus the non-dimensional energy density is

Ẽ = α2η̃2 +
α3

4
η̃3 +

α2β
6

η̃η̃x̃x̃ +
α2β

6
η̃2

x̃ ,

and the energy flux is given by

q̃E = α2η̃2 +
5

4
α3η̃3 +

1

2
α2βη̃η̃x̃x̃ .

Using the scalings E = c2
0h0Ẽ and qE = c3

0h0q̃E the dimensional form of energy

density and energy flux are given by

E = c2
0

( 1

h0
η2 +

1

4h2
0

η3 +
h0

6
ηηxx +

h0

6
η2

x

)
,

and

qE = c3
0

( 1

h0
η2 +

5

4h2
0

η3 +
h0

2
ηηxx

)
. (3.41)
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3.2.3 Wave shoaling

The waves propagation from deep water to shallow water is affected by the reduc-

ing depth h(x), due to the sloping bottom. The depth reduction causes significant

changes in the wave shape, height H, length L, and phase velocity c, while the

wave period T remains constant. The momentous function of engineers is to pre-

dict these changes before the waves become unstable and break. These changes

in water wave which is known as wave shoaling have been studied significantly

in both theoretical and experimental areas and the existing literature is extensive.

Many interesting results can be found in [26, 28, 30, 33, 41, 46]. Green’s law,

a classical linear theory, describes the evolution of the wave height of periodic

waves on plane beaches. It predicts that the maximum height of the wave is pro-

portional to h
−1
4 , where h is the local undisturbed water depth. The Boussinesq’s

law incorporates both dispersion and nonlinearity and states that the waveheight

of a shoaling solitary wave can be predicted by h−1. The different zones of evolu-

tion of solitary waves are discussed by Synolakis and Skjelbreia [55]. The linear

shoaling theory applies to predict the waveheight of a periodic wave of arbitrary

wavelength with small wave steepness and it is based on conservation of the wave

frequency and the energy flux. In this theory, the waveheight can be described

by H
H0

=
√

Cg,0
Cg

, where H0 is the waveheight in deep water, Cg,0 is the deep-water

group velocity, H is the waveheight in the local depth and Cg is the local group ve-

locity. A number of studies [41, 46, 52, 53, 54] employed a time-periodic solution

of the KdV equation to represent the behavior of the periodic long waves due to

sloping bottom. Paper D is concerned with the slow transformation of a long wave

over a gently sloping bottom slope in the context of the KdV equation (3.32). In

[46, 52, 53] the conservation of energy flux was based on the formula originating

from linear water wave theory. In paper D, we present a new study in which the

energy flux is evaluated strictly in the framework of the KdV approximation. The

expression (3.41) for energy flux has been used in our study. The variation of the

height of shoaling can now be computed in a straightforward manner by imposing

constant time period and conservation of mass in addition to conservation of en-

ergy. Assuming incident periodic waves of wavelength LA at water depth hA, we

can find the waveheight at water depth h by using the following equations:

cA

LA =
c
L
,

∫ T

0
qA

E dt =
∫ T

0
qEdt ,

∫ L

0
ηAdx =

∫ L

0
ηdx .
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Using the exact solution of the KdV equation (3.34) with wave speed (3.35) and

wavelength (3.36) and the expression (3.41) for energy flux qE , these three equa-

tions can be converted into a system of three nonlinear equations for the param-

eters f1, f2 and f3. This system of equations can be solved numerically and the

parameters for a wave at water depth h will be obtained. In order to study the

shoaling of solitary waves, the parameters for the incident waves are chosen such

that the wave is very long and its trough is situated at the undisturbed depth hA.

Comparing with previous work, note that the authors of [52] represented the

variation of the cnoidal wave height to deep water data by matching the energy

flux at a cut-off point h
L0

= 0.10, while the authors of [53] imposed continuity

in wave height at the matching point but in this case, energy was not conserved.

These two methods of treating the cut-off points give rather difference results. It

can be shown that the use of the expression qE eliminates the difference between

the two methods. Figure (3.4) illustrates a comparison between the result of paper

D and the result of Svendsen and Brink-kjær [52] for a specific wave profile.
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Figure 3.4: The shoaling curves for a periodic wave profile with H0

L0
= 0.001 and L0

h0
=

13.8. The red curve, KK, is the shoaling curve based on the paper D. The blue dashed

curve, SBK, is the shoaling curve after Svendsen and Brink-Kjær. The curve SBK, which

was obtained by matching the calculated energy flux values of the cnoidal theory and the

linear theory at h
L0

= 0.1, has a discontinuity in waveheight. The curve KK, which was

obtained by using the nonlinear energy flux in the context of the KdV equation, eliminates

the discontinuity in the wave height.

Also, the method is applied to the shoaling of solitary waves, and the shoaling
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curves of the paper D are compared with the numerical results of [27]. In this

work, the authors used an advanced two-dimensional fully nonlinear numerical

wave model based on potential flow theory to compute solitary wave variation

over plane slopes. The results of the comparison are displayed in the paper D.

3.2.4 Further work

Attempts should be made to modify our result by using the effects of the radiation

stress. As it was mentioned before, the principal component, Sxx, of the radiation

stress is

Sxx =
∫ η

−h
(P+ρu2)dz−

∫ 0

−h
ρgzdz,

where the first integral on the right-hand side is the mean value of the flux of

horizontal momentum across a plane x = constant. Following [5], an expression

for the momentum flux in the context of KdV equation is (3.40). Therefore, an

expression for the x-component of the radiation stress in the KdV model can be

obtained in the following form

Sxx = qI −
∫ 0

−h0

ρgzdz = ρgh0

((h0 +η)2

2h0
+

h2
0

3
ηxx +

η2

h0

)
− 1

2
ρgh2

0

= ρg
(

h0η+
3

2
η2 +

h3
0

3
ηxx

)
.

Let us consider the momentum balance equation which is given by

dSxx

dx
+ρg(η̄+h)

dη̄
dx

= 0. (3.42)

Now we integrate the equation (3.42) over the interval [X ,X +dX ]

∫ X+dX

X

dSxx

dx
dx+

∫ X+dX

X
ρgη̄

dη̄
dx

dx+
∫ X+dX

X
ρgh

dη̄
dx

dx = 0 .

Let us denote F |(x=X) = FA and F |(x=X+dX) = FB, we obtain

SB
xx −SA

xx =
ρg
2

(
(η̄A)2 − (η̄B)2

)
+ρg(hAη̄A −hBη̄B)+

ρg
2

dX(hB
x η̄B +hA

x η̄A) ,

where hB
x = hA

x = hB−hA

dX , thus

SB
xx −SA

xx =
ρg
2

(
(η̄A)2 − (η̄B)2

)
+

ρg
2
(hA +hB)(η̄A − η̄B)

=
ρg
2
(η̄A − η̄B)(η̄A +hA + η̄B +hB) .

(3.43)
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As the shoaling phenomenon lowers the mean surface level, in this study, we

include set-down (2.8) in our calculation at the transition point, transition between

the linear theory and the cnoidal theory, and replace the equation

∫ L

0
ηAdx =

∫ L

0
ηdx

by equation (3.43).

By assuming that the motion at a certain water depth hA is given, the motion

at a new water depth is determined by solving numerically the following system

and using (3.37) to get the initial values for parameters f1, f2 and f3 hence,

cA

LA =
c
L
,

∫ T

0
qA

Edt =
∫ T

0
qE dt,

∫ T

0
SA

xx dt =
∫ T

0

(
Sxx +

ρg
2
(hA + η̄A +h+ η̄)(η̄− η̄A)

)
dt .

We have done some preliminary work on the numerical solution but no definite

results have been obtained yet.
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We present a numerical study of particle paths in an irrotational free surface flow over a
flat bottom where the Serre equations are considered as the governing equations. For sol-
itary surface waves, we obtain that the particle paths are parabolic with a large forward
drift. Periodic solutions of the Serre equations feature nearly closed particle trajectories
with a slight backward drift depending on the initial depth of the particles. This backward
drift appears to be due to negative mean horizontal velocity in the periodic solutions.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The evolution of gravity waves on the surface of a body of fluid is widely studied. The fundamental model for inviscid fluid
motion are the Euler equations. When coupled with free surface boundary conditions these are very difficult to study both
numerically and theoretically. For many applications, there are a variety of approximate model equations. The Korteweg–de
Vries (KdV) equation is a model equation describing long waves with small amplitude. A great deal of research has been in-
vested in the study of the analytical and numerical solutions for different types of the KdV equation [1–4]. The Serre equa-
tions are obtained by depth-averaging the Euler system and can model highly nonlinear waves with finite amplitude. These
equations are named after François Serre, who derived this model for the first time in 1953 [5]. Several years later, these
equations were independently rediscovered by Su and Gardner [6], and Green, Laws and Naghdi [7] with different methods.
The extension of Serre equations for general uneven bathymetries was derived by Seabra-Santos et al. [8]. For some gener-
alizations and to find an extended set of the Serre equations we refer to studies by Dias and Milewski [9], Barthélemy [10],
and Carter and Cienfuegos [12]. It is also possible to find exact solutions of these equations describing solitary and periodic
water waves. The relevance of the Serre solitary and cnoidal solutions were investigated by Carter and Cienfuegos [12]. A
variety of numerical methods have been applied to the Serre equations [11,13,14]. Comparison of numerical simulations
with physical experiments indicates the accuracy of the Serre equations in describing strongly nonlinear shallow water
waves.

In the present study, the focus is on numerical simulation of particle trajectories associated with certain wave patterns at
the surface of the fluid. Let us briefly introduce the model system to be used here. We consider a two-dimensional irrota-
tional flow of an inviscid incompressible fluid. Let a0 be a typical wave amplitude, l the wavelength and h0 the mean water
depth. There are two important parameters associated with long waves. One is the relative amplitude of the waves,
a ¼ a0=h0, and the other one is the ratio of undisturbed depth square to typical wave length square, b ¼ h2

0=l
2. In non-dimen-

sional variables, the Serre system takes the form

~g~t þ ½h�~u�~x ¼ 0;
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�~u~t þ a�~u�~u~x þ ~g~x � b
3h

@

@~x
ðh3ð�~u~x~t þ a�~u�~u~x~x � að�~u~xÞ2ÞÞ ¼ Oðb2;ab2Þ:

Here ~g is the non-dimensional excursion of the free surface, and �~u represents the non-dimensional depth-averaged horizon-
tal velocity. Keeping all terms implies that the amplitude of the waves may not be small, thus a � Oð1Þ. We refer the reader
to Barthélemy [10] for details. Following the method introduced by Ali and Kalisch [25], in order to determine which terms
should be kept to obtain an approximation for the velocity field, the incompressibility ~u~x þ ~v~z ¼ 0 must hold to the same
order in b as the evolution equations. Therefore the non-dimensional velocity components are given by:

~uð~x;~z;~tÞ ¼ �~uþ 1
6
bh2 @

2�~u
@~x2

� 1
2
b~z2

@2�~u
@~x2

þOðb2;ab2Þ;

~vð~x;~z;~tÞ ¼ �~z @
�~u

@~x
þOðbÞ:

By ignoring the quadratic terms, in dimensional form the system reads

gt þ ½h�u�x ¼ 0;

�ut þ �u�ux þ ggx �
1
3h

@

@x
h3ð�uxt þ �u�uxx � ð�uxÞ2Þ
� �

¼ 0;

where �u is the depth averaged horizontal velocity of the fluid, h is the total water depth, and g is the acceleration due to
gravity. The dimensional form of the velocity field at any location ðx; zÞ in the vertical plane becomes

u ¼ �uþ h2

6
� z2

2

 !
�uxx;

v ¼ �z�ux:

We will use the velocity field in the fluid associated with a periodic traveling solution of the Serre equations to simulate par-
ticle paths.

Since dispersion can be important in shallow water, it is worthwhile to examine the linear dispersion relation for the
Serre equations. Considering long waves of small amplitude, we obtain the classical Boussinesq system [15]:

gt þ h0�ux ¼ 0;

�ut þ ghx �
1
3
h2
0�uxxt ¼ 0:

Thus according to the work of Bjørkavåg and Kalisch [16] the linear dispersion relation for the Serre system is

x2 ¼ 3gh0k
2

3þ k2h2
0

and it is much closer than the linear dispersion relation for the KdV equation to the dispersion relation for the full water-
wave problem.

The classical description of the water particle motion in the fluid is obtained by using the linear water wave theory and
the water particles are predicted in closed orbits [17,18]. However, it is well known that no particle trajectory is actually
closed [19,20], and this result is known as the Stokes drift. Particle paths associated with solitary wave solutions of the water
wave problem were analyzed by Constantin and Escher [21]. They used maximum principles for elliptic operators to prove
qualitative results about the particle trajectories and velocities. Ionescu–Kruse [22] investigated the particle trajectories in
an irrotational shallowwater flow over a flat bottom as periodic waves propagate on the water’s free surface. Using the linear
theory they showed these trajectories are not closed. Hsu et al. [23] provided experiments in a wave tank to investigate the
particle trajectories beneath a solitary water wave and obtained the particle orbits do not comprise any backward motions.
In [24], Borluk and Kalisch investigated numerically particle paths associated with exact solutions of the KdV equation. They
considered solitary waves, periodic traveling waves and the two-soliton solutions, and found that the approximate particle
paths are nearly closed for periodic traveling waves.

The current work is structured as follows: In Section 2, we study particle paths associated with surface solitary waves.
Section 3 features a study of particle paths associated with the propagation of a periodic wave. We close with some conclud-
ing remarks in Section 4.
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2. Particle paths in solitary waves

In this section, our goal is to describe the particle paths in the fluid due to the passage of a solitary wave at the surface.
The Serre equations have a solitary wave solution [26], given by

hðx; tÞ ¼ a0 þ a1sech
2ð#Þ; ð1Þ

�u ¼ c 1� a0
hðx; tÞ

� �
; ð2Þ

where

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a1
4a20ða0 þ a1Þ

s
ð3Þ

and

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gða0 þ a1Þ

p
ð4Þ

is the phase velocity. Here the argument is # ¼ jðx� ctÞ, and a0 and a1 are positive real parameters. For the solitary wave
solution of the Serre equations, the velocity components at a time t and at an arbitrary point ðx; zÞ in the fluid are given by

u ¼ �uþ�2a1a0cj2

h2

h2

6
� z2

2

 !
½�2sech2ð#Þtanh2ð#Þ þ sech4ð#Þ�;

v ¼ 2a1a0cjz
h2 sech2ð#Þtanhð#Þ:

Taking ðnðtÞ; fðtÞÞ to describe a particle’s location as a function of time which originally located at the point ðn0; f0Þ, the par-
ticle motion is described by the differential equations

@n
@t

¼ uðnðtÞ; fðtÞ; tÞ; @f
@t

¼ wðnðtÞ; fðtÞ; tÞ: ð5Þ

These equations can be solved numerically. Discretization of these equations can be efficiently effected by using a high-order
time-stepping methods, such as a fourth-order Runge–Kutta method.

The surface profile and the particle motions beneath the solitary waves are shown in Figs. 1–3. In these Figures, sample
particle paths are shown during the propagation of a solitary wave with amplitude a1 ¼ 0:2. In Figs. 1 and 2 the wave profile
is shown at t ¼ 0 (light-gray), t ¼ 1 (dark-gray) and t ¼ 2 (black). The particle location at the three instances where the wave
profile is shown, are color coded: the light-gray dot indicates the particle position at time t ¼ 0, the dark-gray dot indicates
the particle position at time t ¼ 1 and the black dot indicates the particle position at time t ¼ 2. Fig. 1 presents the trajectory
for a surface particle located to the right of the crest. It can be seen that the particle moves to the right and upwards. In Fig. 2,
fluid particles move to the right and upwards if they are located to the right of the crest. Particles located on the left of the
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Fig. 1. The wave profile is shown at t ¼ 0 (light-gray), t ¼ 1 (dark-gray) and t ¼ 2 (black). The wave crest is initially located at x ¼ 0. The path of particle
initially located in the surface at ð7;1:005Þ is shown by dashed curve.
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crest move to the right and downwards. Fig. 3 illustrates the particle paths during one complete wave cycle. We can see the
vertical excursion is less than its horizontal displacement and decreases rapidly with the depth of the trajectory below the
free surface. Therefore, the particles closer to the bottom have smaller amplitude and at the bottom, the trajectory becomes a
straight line because the vertical movement of the particle is zero, and only a horizontal displacement exists. Our results are
in agreement with the findings of Borluk and Kalisch [24].

3. Particle paths in periodic waves

Attention will now be turned to particle paths in the fluid flow due to the propagation of periodic traveling waves at the
surface. The Serre equations admit the following solution [27]:
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x

t=0 t=2t=1

Fig. 2. The wave profile is shown at t ¼ 0 (light-gray), t ¼ 1 (dark-gray) and t ¼ 2 (black). The wave crest is initially located at x ¼ 0. The paths of fluid
particles initially located at (�0.75,0.6), (1.7,0.6), and (4.15,0.6). The light-gray dot indicates the particle position at time t ¼ 0, the dark-gray dot indicates
the particle position at time t ¼ 1 and the black dot indicates the particle position at time t ¼ 2. The particles located on the left of the crest move to the
right and downwards and the particles located on the right of the crest move to the right and upwards.
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Fig. 3. The wave profile is shown at t ¼ 0, t ¼ 1; t ¼ 2, and t ¼ 3. The paths of fluid particles are initially located at (4,0.02), (4,0.32), (4,0.62), and (4,0.92)
are shown. The paths resemble the particle paths taken during the full passage of a solitary wave. The vertical excursion is less than its horizontal
displacement and diminishes rapidly with the depth of the trajectory below the free surface. At the bottom, the trajectory becomes a straight line and only a
horizontal displacement exits. The net forward horizontal displacement during one complete wave cycle is largest at the free surface and decreases at
deeper levels.
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hðx; tÞ ¼ a0 þ a1dn
2ð#;mÞ; ð6Þ

�u ¼ c 1� h0

hðx; tÞ
� �

; ð7Þ

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a1
4a0ða0 þ a1Þða0 þ ð1�m2Þa1Þ

s
; ð8Þ

c ¼ 1
h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ga0ða0 þ a1Þða0 þ ð1�m2Þa1Þ

q
; ð9Þ

where the argument is # ¼ jðx� ctÞ; a0 and a1 are real positive parameters, and dnð�;mÞ is a Jacobi elliptic function with
elliptic modulus m 2 ð0;1Þ. The mean water depth h0 is computed by averaging the water depth over one wavelength
k ¼ 2KðmÞ=j, resulting in

h0 ¼ 1
k

Z k

0
hðx; tÞdx ¼ a0 þ a1

EðmÞ
KðmÞ ;

where KðmÞ and EðmÞ are the complete elliptic integrals of the first and second kind, respectively.
The particle motion is described by the differential Eqs. (5). The velocity field may be written in terms of the Jacobian

elliptic functions cn, sn and dn as follows:

u ¼ �uþ h2

6
� z2

2

 !
�2a1h0cm2j2

h2

� �
� ½dn2ð#Þð�3sn2ð#Þ þ 2Þ þ sn2ð#Þ � 1�;

v ¼ 2a1h0cm2j
h2

� �
zcnð#Þsnð#Þdnð#Þ:

A solution of the Serre equations can be specified by fixing the values for the parameters a0; a1 and m. Fig. 4 presents some
particle paths below a periodic dnoidal wave with a0 ¼ 0:3; a1 ¼ 0:1 andm ¼ 0:99. The crest of the wave is centered at x ¼ 0,
and the particles are initially located below the trough and the crest. Fig. 5 illustrates a close-up of particle paths and we can
see that they are nearly elliptic but not completely closed. Indeed, there is a forward drift of particles near the surface during
one period. Then, as depth increases the drift becomes negative and backward. While this finding might be interpreted to be
in conflict with the Stokes drift which is approximately valid for small amplitude waves, it can be explained by the fact that
the periodic solution, (6)–(9), incorporates a mean negative horizontal velocity in the flow underneath the surface. To ex-
plain this in more detail, recall that in the linear theory, fluid particles move in closed orbits but if a second-order approx-
imation is used, then is found that the particles experience a forward drift, i.e., a drift in the same direction as the wave
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Fig. 4. The wave with wavelength 4.945 is shown. The paths of fluid particles are located at ðx; zÞ where initial x-coordinates are x ¼ 2:5 and x ¼ 4:945 and
initial z-coordinates are z ¼ 0:09, z ¼ 0:19, and z ¼ 0:29.
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motion. This forward drift is known as the Stokes drift, and the drift velocity can be estimated using a Taylor expansion to be

us ¼ a2xk
coshð2kzÞ
2sinh2ðkh0Þ

;

where k and x are wavenumber and circular frequency, respectively.
One might expect that the forward particle drift due to the dnoidal solution, (6)–(9), is similar to the Stokes drift if the

wave amplitude is small. However, as can be shown, the mean horizontal velocity over one wave period,
R T
0
�udt, is negative.

Therefore, on average the forward particle drift is canceled by the negative mean velocity. Indeed, it can be shown that the
sum of the Stokes drift and the negative mean velocity is nearly equal to the particle drift computed in the dnoidal solution of
the Serre equations.

Let LSerreðzÞ be the horizontal displacement of a particle originally located at a height z in the fluid column predicted by
the dnoidal solutions of the Serre system. In Table 1, the Stokes displacement Tus is tabulated, along with the mean coun-
tercurrent

R T
0
�udt for a number of amplitudes and wavelengths. The results are averaged over the depth. Then in the fifth col-

umn, the sum

S ¼ 1
h

Z h

0
Tusdzþ

Z T

0
�udt ð10Þ

2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7
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Fig. 5. A close up of particle path starting below the trough of the surface wave is shown in the upper panel and a close up of particle path starting below
the crest is shown in the lower panel.

Table 1
The first column of this table shows the amplitude and the second column shows the wavelength of a dnoidal wave and a linear wave. The third column shows
the Stokes displacement of the particle path due to the passage of the linear wave and the fourth column shows the mean countercurrent by using

R T
0
�udt. The

fifth column presents the sum, S, and the sixth column shows the Serre displacement of the particle path due to the propagation of the dnoidal wave.

Amplitude Wavelength Stokes disp. Countercurrent Sum Serre disp.
a k 1

h

R h
0 Tusdz

R T
0
�udt S 1

h

R h
0 LSerreðzÞdz

0.009 3.33 1:03� 10�3 �1:15� 10�3 �1:18� 10�4 �5:32� 10�4

0.017 2.69 2:18� 10�3 �2:69� 10�3 �5:09� 10�4 �9:20� 10�4

0.026 2.41 3:32� 10�3 �4:60� 10�3 �1:28� 10�3 �1:87� 10�3

0.035 2.29 4:19� 10�3 �6:51� 10�3 �2:32� 10�3 �2:96� 10�3
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is tabulated and compared to the average of LSerreðzÞwhich is tabulated in the sixth column. As can be seen, the sum is of the
same order as the Serre displacement, which confirms that the countercurrent inherent in the dnoidal solution of the Serre
system is responsible for reducing the forward drift experienced by the particle paths during one wave cycle.

A graphical comparison is in Fig. 6. In the left panel of Fig. 6, we see a dnoidal wave profile and a linear wave profile of the
same wavelength and amplitude. We note that the wave profiles are very similar. The right panel of Fig. 6 illustrates a par-
ticle initially located below the crest at ð0;0:2Þ. The path of the particle during the propagation of the dnoidal wave over one
period presented in the left panel is shown by light-gray curve and the particle path due to the passage of the linear wave is
shown by black curve. Comparison of two particle paths shows a forward drift due to the linear wave and a short negative
drift associated with the dnoidal wave (see Fig. 7).

4. Conclusion

In this study, the Serre equations have been used to describe the motion of particles in the fluid column below the surface
wave. The particle motion is described by two coupled ordinary differential equations which are found in terms of the veloc-
ity field associated with a surface wave. These differential equations have been solved numerically by using a fourth-order
Runge–Kutta method. The evolution of particles in the fluid was investigated due to the passage of a solitary wave and a
periodic traveling wave at the surface. For solitary waves the particles display a forward drift, however, for dnoidal waves
the fact that the mean velocity is negative implies a negative horizontal displacement for particles.
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Fig. 6. The left panel shows a dnoidal wave profile (light-gray) and a linear wave profile (black) of the same wavelength 3:33 and amplitude 0:009. The right
panel shows the paths of a particle initially located below the crest at ð0;0:2Þ associated with both wave profiles with similar color-coding used in the left
panel.
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Fig. 7. A close up of particle paths starting at ð0;0:2Þ is shown. The particle path shown by the light-gray curve is due to the propagation of a dnoidal wave
and the particle trajectory shown by the black curve is associated with the passage of a linear wave over one period. The light-gray dot indicates the particle
position at time t ¼ 0 and the dark-gray dots indicate the particle position at t ¼ wave period.
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a b s t r a c t

The Serre–Green–Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations

which approximates the full water wave problem. The system is known to describe accurately the wave

motion at the surface of an incompressible inviscid fluid in the case when the fluid flow is irrotational

and two-dimensional. The system is an extension of the well known shallow-water system to the

situation where the waves are long, but not so long that dispersive effects can be neglected. In the

current work, the focus is on deriving mass, momentum and energy densities and fluxes associated

with the Serre–Green–Naghdi system. These quantities arise from imposing balance equations of the

same asymptotic order as the evolution equations. In the case of an even bed, the conservation

equations are satisfied exactly by the solutions of the Serre–Green–Naghdi system. The case of variable

bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy

conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the

corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence of

the present analysis is that the energy loss appearing in the shallow-water theory of undular bores is fully

compensated by the emergence of oscillations behind the bore front. The situation is analyzed numerically

by approximating solutions of the Serre–Green–Naghdi equations using a finite-element discretization

coupled with an adaptive Runge–Kutta time integration scheme, and it is found that the energy is indeed

conserved nearly to machine precision. As a second application, the shoaling of solitary waves on a plane

beach is analyzed. It appears that the Serre–Green–Naghdi equations are capable of predicting both the

shape of the free surface and the evolution of kinetic and potential energy with good accuracy in the early

stages of shoaling.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study mechanical balance laws for fully
nonlinear and dispersive shallow-water waves. In particular, the

∗ Corresponding author. Tel.: +64 44636739; fax: +64 44635045.

E-mail address: dimitrios.mitsotakis@vuw.ac.nz (D. Mitsotakis).

URL: https://sites.google.com/site/dmitsot/ (D. Mitsotakis).

Serre–Green–Naghdi (SGN) system of equations with variable
bathymetry is considered. This system was originally derived for
one-dimensional waves over a horizontal bottom in 1953 by F.
Serre [1,2]. Several years later, the same system was rederived
by Su and Gardner [3]. In 1976, Green and Naghdi [4] derived a
two-dimensional fully nonlinear and weakly dispersive system for
an uneven bottom which was integrated in one spatial dimension
by Seabra-Santos et al. [5] and El et al. [6]. Lannes and Bonneton
derived several other systems including the SGN equations using

http://dx.doi.org/10.1016/j.physd.2016.03.001

0167-2789/© 2016 Elsevier B.V. All rights reserved.
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a new formulation of the water wave problem, [7]. For more
information and generalizations of the SGN equations we refer to
Lannes [8] and the references therein, while we refer to the paper
by Barthélemy [9] for an extensive review.

The Serre–Green–Naghdi (SGN) system and several variants
of it are extensively used in coastal modeling [10–12,8]. In the
present contribution, the focus is on the derivation and use
of associated mechanical balance equations, and in particular a
differential energy balance equation. While it is known that the
equations admit local conservation equations corresponding to
mass, momentum and energy conservation if the bed is even [13],
it appears that the connection to the mechanical balance laws
of the original Euler equations has not been firmly established
so far. One possible method for establishing the link between
the conservation laws and the requisite physical quantities is
outlined in the work of Miles and Salmon [14]. In this work, the
Serre–Green–Naghdi (SGN) equations are shown to follow from
Hamilton’s principle of least action in the sameway as the full free-
surface water wave problem does if it is assumed that the fluid
moves in vertical columns, or in other words that the horizontal
displacement of fluid particles is uniform throughout the fluid
column. This approximation preserves several of the symmetries
of the full water-wave problem [15], and in particular gives rise to
corresponding conservation laws formass, momentum and energy
through the use of Noether’s theorem.

We follow a different route in that we make the same
approximation in both the evolution equations (Euler equations)
and in the corresponding mechanical balance laws directly. Using
this approach,we show that the first three conservation laws of the
Serre–Green–Naghdi (SGN) equations arise as approximations of
mechanical balance laws in the context of the Euler equations, both
in the case of even beds, and in the case of nontrivial bathymetry.
While one may have doubts about the link between the resulting
approximate balance laws at a mathematical level, it can be
established (see [13]) that these balance equations also arise as
exact consequences of the Serre–Green–Naghdi (SGN) equations.

As it was shown in [16], the Serre–Green–Naghdi (SGN)
equations also admit a fourth conservation law which may be
interpreted as conservation of potential vorticity, and arises from a
certain relabeling symmetry of the Lagrangian density used in [14].
This fourth conservation law can also be shown to be related to a
kinematic identity similar to Kelvin’s circulation theorem [17].

Let us first review some modeling issues regarding the
Serre–Green–Naghdi (SGN) system. Suppose a denotes a typical
amplitude, and l a typical wavelength of a wavefield under study.
Suppose also that b0 represents the average water depth. In order
to be a valid description of such a situation, the SGN equations
require the shallow water condition, β

.= b20/l
2 � 1. In contrast,

the range of validity of theweakly nonlinear andweakly dispersive
Boussinesq equations is limited to waves with small amplitude
and large wavelength, i.e. α

.= a/b0 � 1 and β � 1. In this
scaling regime, one also finds theweakly nonlinear, fully dispersive
Whitham equation [8,18,19].

The SGN equations can be derived by depth-averaging the Euler
equations and truncating the resulting set of equations at O(β2)
without making any assumptions on the order of α, other than
α ≤ O(1).

In their dimensionless and scaled form the SGN equations can
be written as

ηt + [hū]x = 0, (1a)

ūt + ūūx + gηx + 1

h

[
h2
(1
3

P + 1

2
Q
)]

x

− bx
(1
2

P + Q
) = 0,

(1b)

with P = h
[
ū2
x − ūxt − ūūxx

]
and Q = −bx(ūt + ūūx) − bxxū

2,
x ∈ R, t > 0, along with the initial conditions h(x, 0) = h0(x),

ū(x, 0) = ū0(x). Here, η = η(x, t) is the free surface displacement,
while

h
.= η + b, (2)

denotes the total fluid depth. The unknown ū = ū(x, t) is the
depth-averaged horizontal velocity, and η0, ū0 are given real func-
tions, such that η0 + b > 0 for all x ∈ R. In these variables, the
location of the horizontal bottom is given by z = −b (cf. Fig. A.1).
For a review of the derivation and the basic properties of this sys-
tem we also refer to [9,20].

Fig. A.1. The geometry of the problem.

In the case of small-amplitude waves, i.e. if β ∼ α, the SGN
equations reduce to Peregrine’s system [21]. On the other hand,
in the case of very long waves, i.e. β → 0, the dispersive terms
disappear, and the system reduces to the nondispersive shallow
water equations.

The SGN system for waves over a flat bottom possesses solitary
and cnoidal wave solutions given in closed form. For example, the
solitary wave with speed cs can be written as

hs(ξ)
.= hs(x, t) = a0 + a1 sech

2(Ks ξ), (3a)

us(ξ)
.= us(x, t) = cs

(
1 − a0

hs(ξ)

)
, (3b)

where ξ = x − cst, Ks =
√
3a1/4a

2
0c

2
s , cs = √

a0 + a1, and a0 > 0

and a1 > 0. For more information about the solitary and cnoidal
waves and their dynamical properties we refer to [9,22–26].

It is important to note that the SGN system has a Hamiltonian
structure, even in the case of two-dimensional waves over an
uneven bed cf. [24,27–29]. Specifically, any solution (h, ū) of (1)
conserves the Hamiltonian functional

H(t) = 1

2

∫ ∞

−∞
gη2 + hū2 − h

[
hxbx + 1

2
hbxx − b2x

]
ū2

− 1

3

[
h3ūx

]
x
ū dx, (4)

in the sense that dH(t)/dt = 0. Note however that (1a), (1b) are
recovered only if a non-canonical symplectic structure matrix is
used.While inmany simplifiedmodels equations, the Hamiltonian
functions does not represent the mechanical energy of the wave
system [30], in the case of SGN, the Hamiltonian does represent
the approximate total energy of the wave system. Thus the Hamil-
tonian can be written in the form

H(t) =
∫ ∞

−∞
E(x, t) dx,

where the integrand

E = 1

2

(
gη2 + hū2 − h

[
hxbx + 1

2
hbxx − b2x

]
ū2 − 1

3

[
h3ūx

]
x
ū

)
is the depth-integrated energy density. In the present paper, we
also identify a local depth-integrated energy flux qE , such that an
equation of the form

∂E

∂t
+ ∂qE

∂x
= 0, (5)
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is satisfied approximately. The procedure of finding the quantities

E and qE follows a similar outline as the derivations in [31] for a

class of Boussinesq systems and [32] for the KdV equation. It is

noted that some other estimates for energy functionals for Boussi-

nesq systems can be found in [33].

The analytical results are put to use in the study of undular

bores. It is well known that the shallow-water theory for bores

predicts an energy loss [34]. In an undular bore, the energy is

thought to be disseminated through an increasing number of

oscillations behind the bore, and the traditional point of view is

that dissipation must also have an effect here [35,36]. However,

recent studies [37] have shown that if dispersion is included

into the model equations, then the energy loss experienced by

an undular bore can be accounted for without making appeal to

dissipative mechanisms.

Indeed, it was argued in [37,38] that the energy loss in an un-

dular bore could be explained wholly within the realm of conser-

vative dynamics by investigating a higher-order dispersive system,

and monitoring the associated energy functional. However, there

was a technical problem in the analysis in these works, as the en-

ergy functional was not the same as the one required by the more

in-depth analysis in [31]. On the other hand, the energy functional

found in [31] did not reduce to the shallow-water theory in the cor-

rect way. In the current contribution, it is our purpose to remedy

this situation by using the SGN system which reduces in the cor-

rect way to the shallow-water equations, and also features exact

energy conservation in the case of a flat bed.

The numerical method to be used is a standard Galerkin/Finite

Element Method (FEM) for the SGN equations with reflective

boundary conditions extending the numerical method presented

in [39]. For the sake of completeness we mention that there are

several numerical methods applied to boundary value problems

of the SGN equations. For example finite volume [40–42], finite

differences [20,43,44], spectral [45,41] and Galerkin methods

[39,46].

The paper is organized as follows: A review of the derivation of

the SGN equations based on [9,20] is presented in Section 2. The

derivation of the mass, momentum and energy balance laws in the

asymptotic order of the SGN equations is presented in Section 3.

Applications to undular bores and solitary waves are discussed

in Section 4. The numerical method to be used in this paper is

presented briefly in the Appendix.

2. The SGN equations over a variable bed

Before introducing the balance laws for the SGN equations, we

briefly review the derivation of the SGN equations from the Eu-

ler equations following the work [9], but in the case of a general

bathymetry. This well known derivation is included here to set the

stage for the development of the approximate mechanical balance

laws in the next section. We consider an inviscid and incompress-

ible fluid, and assume that the fluid flow is irrotational and two-

dimensional. Let a0 be a typical amplitude, l a typical wavelength

and b0 a typical water depth. We perform the change of variables

x̃ = x/l, z̃ = z/b0, t̃ = c0t/l, which yields non-dimensional inde-

pendent variables identified by tildes, where x represents the hori-

zontal and z the vertical coordinate. The limiting long-wave speed

is defined by c0 = √
gb0, and g denotes the acceleration due to

gravity. The non-dimensional velocity components are defined by

ũ = u/αc0, ṽ = v/
√

βαc0, where α = a0/b0 and β = b20/l
2. Fi-

nally, the free surface deflection, bottom topography and pressure

are non-dimensionalized by taking η̃ = η/a0, b̃ = −b/b0, and

p̃ = p/ρgb0.

In non-dimensional variables, the free-surface problem is
written as follows [47]: The momentum equations are

αũt̃ + α2(ũ2)x̃ + α2(ũṽ)z̃ = −p̃x̃, (6a)

αβṽt̃ + α2βũṽx̃ + α2βṽṽz̃ = −p̃z̃ − 1. (6b)

The equation of continuity and the irrotationality are expressed by

ũx̃ + ṽz̃ = 0, (7a)

ũz̃ − βṽx̃ = 0. (7b)

The boundary conditions at the free surface and at the bottom are
given by

ṽ = η̃t̃ + αũη̃x̃, at z̃ = αη̃(x̃), (8a)

p̃ = 0, at z̃ = αη̃(x̃), (8b)

ṽ = b̃x̃ũ, at z̃ = b̃(x̃). (8c)

The first equation in the system (1) is obtained by integrating
the equation of continuity over the total depth. The result iswritten
in terms of the depth-averaged horizontal velocity

¯̃u = 1

h̃

∫ αη̃

b̃

ũ dz, (9)

in the form

η̃t̃ + [h̃ ¯̃u]x̃ = 0. (10)

Using the boundary conditions (8a)–(8c), the continuity equation
(10) and the depth-averaged momentum equation (6a) yields

αh̃ ¯̃ut̃ + α2h̃ ¯̃u ¯̃ux̃ + α2 ∂

∂ x̃

∫ αη̃

b̃

(
ũ2 − ( ¯̃u)2

)
dz̃

= −
∫ αη̃

b̃

p̃x̃ dz̃. (11)

Applying the Leibniz rule to the right-hand side of Eq. (11) yields∫ αη̃

b̃

p̃x̃ dz̃ = ∂

∂ x̃

(
h̃ ¯̃p) − αηx̃p̃|z̃=αη̃ + b̃x̃p̃|z̃=b̃

= ∂

∂ x̃

(
h̃ ¯̃p) + b̃x̃p̃|z̃=b̃. (12)

The momentum equation (6b) is rewritten as

αβΓ (x̃, z̃, t̃) = −1 − p̃z̃, (13)

where

Γ (x̃, z̃, t̃) = ṽt̃ + αũṽx̃ + αṽṽz̃ . (14)

Integrating Eq. (13) from z̃ to αη̃ yields

p̃(x̃, z̃, t̃) = (αη̃ − z̃) + αβ

∫ αη̃

z̃

Γ (x̃, ζ , t̃) dζ , (15)

and taking the mean value gives

h̃ ¯̃p = 1

2
h̃2 + αβ

∫ αη̃

b̃

∫ αη̃

z̃

Γ (x̃, ζ , t̃) dζ dz̃. (16)

Therefore, Eq. (11) can be written as

¯̃ut̃ + α ¯̃u ¯̃ux̃ + η̃x̃ + β

h̃

∂

∂ x̃

∫ αη̃

b̃

(z̃ − b̃)Γ (x̃, z̃, t̃) dz̃

+ β

h̃
b̃x̃

∫ αη̃

b̃

Γ (x̃, z̃, t̃) dz̃ = −α

h̃

∂

∂ x̃

∫ αη̃

b̃

(
ũ2 − ( ¯̃u)2

)
dz̃.

The non-dimensional velocity components are given (cf. [20]) to
first order by

ũ(x̃, z̃, t̃) = ¯̃u(x̃, t̃) + O(β), (17)
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and

ṽ(x̃, z̃, t̃) = −(
z̃ − b̃(x̃)

)∂ ¯̃u
∂ x̃

+ ¯̃u∂ b̃

∂ x̃
+ O(β). (18)

As itwas shown in [20],we can expand the velocity components
using Taylor series in the vertical coordinate around the bottom.
Denoting by ũb and ṽb, respectively, the horizontal and vertical
velocities at the bottom, the bottom kinematic condition (8c)

imposes that ṽb = b̃x̃ũ
b. In order to determine which terms

should be kept to obtain an approximation for the velocity field,
the incompressibility condition (7a) must hold to the same order
in β as the evolution equations. If the non-dimensional velocity
components are given by

ũ(x̃, z̃, t̃) = ũb(x̃, t̃) + β(z̃ − b̃)
(
b̃x̃ũ

b
x̃ + (b̃x̃ũ

b)x̃

)
− β

2
(z̃ − b̃)2ũb

x̃x̃ + O(β2), (19)

ṽ(x̃, z̃, t̃) = b̃x̃ũ
b + (z̃ − b̃)

(
−ũb

x̃ + β(b̃x̃(ũ
bb̃x̃)x̃ + ũb

x̃ b̃
2
x̃)
)

− β

2
(z̃ − b̃)2

(
b̃x̃ũ

b
x̃x̃ + (b̃x̃ũ

b
x̃ + (b̃x̃ũ

b)x̃)x̃

)
+ β

3! (z̃ − b̃)3ũb
x̃x̃x̃ + O(β2),

then the incompressibility condition (7a) holds to O(β2). Depth
averaging (19) gives

ũb = ¯̃u − β

2
h̃

(
b̃x̃ ¯̃ux̃ + (b̃x̃ ¯̃u)x̃

)
+ β

6
h̃2 ¯̃ux̃x̃ + O(β2, αβ2).

Thus the horizontal velocity is

ũ(x̃, z̃, t̃) = ¯̃u − β
(
b̃x̃ ¯̃ux̃ + (b̃x̃ ¯̃u)x̃

)(
h̃

2
− (z̃ − b̃)

)

+ β

(
h̃2

6
− 1

2
(z̃ − b̃)2

)
¯̃ux̃x̃ + O(β2, αβ2). (20)

Taking squares in Eq. (20)

ũ2(x̃, z̃, t̃) = ¯̃u2 − β
(
b̃x̃ ¯̃ux̃

¯̃u + (b̃x̃ ¯̃u)x̃ ¯̃u
) (

h̃ − 2(z̃ − b̃)
)

+ β

(
h̃2

2
− (z̃ − b̃)2

)
¯̃u ¯̃ux̃x̃ + O(β2, αβ2). (21)

Integrating Eq. (21) from b̃ to αη̃ and after some simplifications it
follows that∫ αη̃

b̃

(
ũ2 − ( ¯̃u)2

)
dz̃ = O(β2, αβ2),

and that

Γ (x̃, z̃, t̃) = (z̃ − b̃)
[
α ¯̃u2

x̃ − ¯̃ux̃t̃ − α ¯̃u ¯̃ux̃x̃

]
+ + b̃x̃( ¯̃ut̃ + α ¯̃u ¯̃ux̃) + αb̃x̃x̃ ¯̃u2 + O(β, αβ). (22)

Evaluating the integrals
∫ αη̃

b̃
Γ dz̃ and

∫ αη̃

b̃
(z̃ − b̃)Γ dz̃ yields∫ αη̃

b̃

Γ dz̃ = 1

2
h̃P̃ + h̃Q̃,

and∫ αη̃

b̃

(z̃ − b̃)Γ dz̃ = 1

3
h̃2P̃ + 1

2
h̃2Q̃,

where

P̃ = h̃

[
α ¯̃u2

x̃ − ¯̃ux̃t̃ − α ¯̃u ¯̃ux̃x̃

]
, (23)

and

Q̃ = b̃x̃

( ¯̃ut̃ + α ¯̃u ¯̃ux̃

)
+ b̃x̃x̃ ¯̃u2

. (24)

Finally we find the second equation of the system as

¯̃ut̃ + α ¯̃u ¯̃ux̃ + η̃x̃ + β

h̃

∂

∂ x̃

{(1

3
P̃ + 1

2
Q̃
)
h̃2

}
+ + βb̃x̃

(1

2
P̃ + Q̃

)
= O(αβ2).

By setting the right-hand side equal to zero, and writing the

variables in dimensional form the system reads

ηt + [hū]x = 0, (25a)

ūt + ūūx + gηx + 1

h

[
h2
(1
3

P + 1

2
Q
)]

x

− bx
(1
2

P + Q
) = 0,

(25b)

where P = h
[
ū2
x − ūxt − ūūxx

]
and Q = −bx(ūt + ūūx) − bxxū

2.

In order to determinewhich terms should be kept for the veloc-

ity field at a certain order of approximation, the incompressibility

condition (7a) can be used. Then, the dimensional formof thewater

particle velocities at any location (x, z) in the vertical plane become

u = ū +
(
h2

6
− z2

2

)
ūxx, (26a)

v = −zūx. (26b)

As it was mentioned before, system (1a) and (1b) reduces to the

shallowwater systemwhen β → 0 and to the classical Boussinesq

system when β ∼ α.

An asymptotic expression for the pressure p̃(x̃, z̃, t̃) can be
obtained by substituting formula (22) into (15). Such a formulawas
derived in [48] in the form

p̃(x̃, z̃, t̃) = αη̃ − z̃

+ αβ

2

[
−¯̃ux̃t̃ − α ¯̃u ¯̃ux̃x̃ + α ¯̃u2

x̃

] (
h̃2 − (z̃ − b̃)2

)
+ αβ

(
αb̃x̃x̃ ¯̃u2 + αb̃x̃ ¯̃u ¯̃ux̃ + b̃x̃ ¯̃ut̃

)
(αη̃ − z̃)

+ O(αβ2). (27)

3. Mechanical balance laws for the SGN equations

In this section, we derive the mechanical balance laws such

as the mass, momentum and energy conservation for the SGN

equations extending the results related to some Boussinesq

systems found in [31]. The balance laws consist of terms of the

same asymptotic order as in the SGN equations. We start with the

conservation of mass.

3.1. Mass balance

We investigate the mass conservation properties of Eqs. (25a)
and (25b). Our starting point is the totalmass of the fluid contained
in a control volume of unit width, bounded by the lateral sides of
the interval [x1, x2], and by the free surface and the bottom. This
mass is given by

M =
∫ x2

x1

∫ η

−b

ρ dz dx.

According to the principle of mass conservation and the fact that
there is no mass flux through the bottom or the free surface, mass
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conservation can be considered in terms of the flow variables as
follows:

d

dt

∫ x2

x1

∫ η

−b

ρ dz dx =
[∫ η

−b

ρu(x, z, t) dz

]x1

x2

.

In non-dimensional form this equation becomes

d

dt̃

∫ x̃2

x̃1

∫ αη̃

b̃

dz̃ dx̃ = α

[∫ αη̃

b̃

ũ(x̃, z̃, t̃) dz̃

]x̃1

x̃2

.

Substituting the expression (20) for ũ and integrating with respect
to z̃ yields

d

dt̃

∫ x̃2

x̃1

h̃dx̃ = α
[ ¯̃uh̃

]x̃1
x̃2

+ O(αβ2), (28)

where h̃ = αη̃ − b̃ denotes the nondimensional total depth.
Dividing (28) by x̃2 − x̃1 and taking x̃2 − x̃1 → 0 then the mass
balance equation is written as

h̃t̃ + (α ¯̃uh̃)x̃ = O(αβ2). (29)

Denoting the non-dimensional mass density by M̃ = h̃ and the

non-dimensional mass flux by q̃M = α ¯̃uh̃, then the mass balance is

∂M̃

∂ t̃
+ ∂ q̃M

∂ x̃
= O(αβ2).

Using the scaling M = ρb0M̃ and qM = ρb0c0q̃M the dimensional
forms of mass density and mass flux are M = ρh and qM =
ρūh respectively. Then the dimensional form of the mass balance
is obtained by discarding the right-hand side of the scaled mass
balance equation and using the unscaled quantities:

∂M

∂t
+ ∂qM

∂x
= 0. (30)

It is noted that themass balance is satisfied exactly by the solutions

of the SGN system, in fact (30) is the same equation as (25a).

The expressions for mass density and the mass flux do not

depend on the shape of the bottom topography, and in particular,

they have the same form for both even and uneven beds. The

dimensional form of (29) coincides with analogous formulas of the

shallow-water wave system and the classical Boussinesq system

[31]. While this may be expected, it should be pointed out that

in the case of other asymptotically equivalent systems, mass

conservation may be satisfied only to the same order as the order

of the equations, [31].

3.2. Momentum balance

The total horizontal momentum of a fluid of constant density ρ
contained in a control volume of the same type as in the previous
section is

I =
∫ x2

x1

∫ η

−b

ρu dz dx.

Conservation of momentum implies that the rate of change of I is
equal to the net influx of momentum through the boundaries plus
the net force at the boundary of the control volume. Therefore, the
conservation of momentum is written

d

dt

∫ x2

x1

∫ η

−b

ρu dz dx =
∫ x2

x1

pbx dx

+
[∫ η

−b

ρu2(x, z) dz +
∫ η

−b

pdz

]x1

x2

.

Non-dimensionalization of this expression leads to

α
d

dt̃

∫ x̃2

x̃1

∫ αη̃

b̃

ũ dz̃ dx̃ = −
∫ x̃2

x̃1

P̃bb̃x̃ dx̃

+
[
α2

∫ αη̃

b̃

ũ2 dz̃ +
∫ αη̃

b̃

p̃ dz̃

]x̃1

x̃2

,

where P̃b denotes the pressure at the bottom P̃b = h̃ + αβ

2
[−¯̃ux̃t̃ −

α ¯̃u ¯̃ux̃x̃ + α ¯̃u2

x̃ ]h̃2 + αβ(αb̃x̃x̃ ¯̃u2 + αb̃x̃ ¯̃u ¯̃ux̃ + b̃x̃ ¯̃ut̃)h̃. Substituting the
values of ũ and p̃ from Eqs. (20) and (15) and integrating with
respect to z̃ yields

α
d

dt̃

∫ x̃2

x̃1

¯̃uh̃dx̃ = −
∫ x̃2

x̃1

P̃bb̃x̃ dx̃

+
[
α2 ¯̃u2

h̃ + h̃2

2
− αβ

3
h̃3
( ¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ − α( ¯̃ux̃)

2
)]x̃1

x̃2

+
[

αβ

2
h̃2
(
αb̃x̃x̃ ¯̃u2 + b̃x̃(α ¯̃u ¯̃ux̃ + ¯̃ut̃)

)]x̃1

x̃2

+ O(αβ2).

Applying similar techniques used for the derivation of the mass
balance equation we obtain the momentum balance equation in
the form(

α ¯̃uh̃
)
t̃
+

(
α2 ¯̃u2

h̃ + h̃2

2
− αβ

3
h̃3
( ¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ − α( ¯̃ux̃)

2
))

x̃

+
(

αβ

2
h̃2
(
αb̃x̃x̃ ¯̃u2 + b̃x̃(α ¯̃u ¯̃ux̃ + ¯̃ut̃)

))
x̃

= −P̃bb̃x̃ + O(αβ2). (31)

If the non-dimensional momentum density is defined by

Ĩ = α ¯̃uh̃
and the momentum flux plus pressure force is defined by

q̃I = α2 ¯̃u2
h̃ + h̃2

2
− αβ

3
h̃3( ¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ − α( ¯̃ux̃)

2)

+ αβ

2
h̃2(αb̃x̃x̃ ¯̃u2 + b̃x̃(α ¯̃u ¯̃ux̃ + ¯̃ut̃))

then the momentum balance equation can be written as

∂ Ĩ

∂ t̃
+ ∂ q̃I

∂ x̃
= −P̃bb̃x̃ + O(αβ2).

Using the scaling I = ρc0b0 Ĩ and qI = ρc20b0q̃I , the dimensional
forms of themomentumdensity andmomentum flux per unit span
are given by

I = ρūh, (32)

and

qI = ρū2h + ρg

2
h2 − ρ

3
(ūxt + ūūxx − ū2

x)h
3

− ρ

2

(
bxxū

2 + bx(ūūx + ūt)
)
h2, (33)

respectively.
It turns out that the momentum conservation law is also an

exact consequence of the SGN system (25a)–(25b). Indeed, if the
momentum density is defined by (32), the momentum flux plus
pressure force is defined by (33), and the pressure is defined by
(27), then solutions of the SGN system also satisfy exactly the
equation

∂ I

∂t
+ ∂qI

∂x
= bxp.



248 H. Kalisch et al. / Physica D 333 (2016) 243–253

Note that if the bottom z = −b = −b0 is horizontal, then the last

equation is homogeneous and does not depend on the pressure p.

Taking β → 0 in the momentum balance equations (31), and
using dimensional variables and horizontal bottom b = b0, the
momentum density is unchanged, but the flux reduces to

qswI = ρū2h + ρg

2
h2. (34)

Thus it is plain that both the momentum density I and flux qI
reduce correctly to the nonlinear shallow water approximation. In

the caseβ ∼ α and a flat bottom, the quantities for themomentum

balance law are I = ρū(b0 + η) and qI = ρb0ū
2 + ρg

2
h2 − ρ

3
b30ūxt ,

which agree with the corresponding quantities of the classical

Boussinesq system.

3.3. Energy balance

The total mechanical energy inside a control volume can be
written as the sum of the kinetic and potential energy as

E =
∫ x2

x1

∫ η

−b

{ρ

2
(u2 + v2) + ρgz

}
dz dx.

The conservation energy can be expressed as

d

dt

∫ x2

x1

∫ η

−b

{ρ

2
(u2 + v2) + ρgz

}
dz dx

==
[∫ η

−b

{(ρ

2
(u2 + v2) + ρgz

)
u + uP

}
dz

]x1

x2

, (35)

and in non-dimensional variables as

d

dt̃

∫ x̃2

x̃1

∫ αη̃

b̃

{
α2

2
(ũ2 + βṽ2) + z̃

}
dz̃ dx̃

= α

[∫ αη̃

b̃

{
α2

2
(ũ3 + βṽ2ũ) + z̃ũ + p̃ũ

}
dz̃

]x̃1

x̃2

. (36)

By substituting the expressions (17), (18) and (27) for ũ, ṽ and p̃
respectively, the energy balance equation takes the form

d

dt̃

∫ x̃2

x̃1

(
α2

2

( ¯̃u2 + βb̃2x̃
¯̃u2
)
h̃ − α2β

2
b̃x̃h̃

2 ¯̃u ¯̃ux̃

+ α2β

6
h̃3 ¯̃u2

x̃ + h̃2

2
+ b̃h̃

)
dx̃

=
[

α3

2
¯̃u3
(
1 + βb̃2x̃

)
h̃ + α

2
h̃2 ¯̃u

+ αb̃ ¯̃uh̃ − α3β

2
b̃x̃ ¯̃ux̃

¯̃u2
h̃2 + α3β

6
¯̃u ¯̃u2

x̃ h̃
3

]x̃1

x̃2

+
[

α

2
¯̃uh̃2 − α2β

3
h̃3 ¯̃u

( ¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ − α ¯̃u2

x̃

)
− α2β

2

(
αb̃x̃x̃ ¯̃u2 + αb̃x̃( ¯̃u ¯̃ux̃ + ¯̃ut̃)

)
h̃2

]x̃1

x̃2

+ O(αβ2). (37)

The differential form of the energy balance equation is given by(
α2

2

( ¯̃u2 + βb̃2x̃
¯̃u2
)
h̃ − α2β

2
b̃x̃h̃

2 ¯̃u ¯̃ux̃ + α2β

6
h̃3 ¯̃u2

x̃ + h̃2

2
+ b̃h̃

)
t̃

+
(

α3

2
¯̃u3
h̃ + α3β

3
b̃2x̃

¯̃u3 + α ¯̃uh̃2 + αb̃ ¯̃uh̃ − α2β

3
h̃3 ¯̃u

×
( ¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ − 3

2
α ¯̃u2

x̃

)
− α3β

2
b̃x̃ ¯̃ux̃

¯̃u2
h̃2

)
x̃

−
(

α2β

2
h̃2
(
αb̃x̃x̃ ¯̃u2 + b̃x̃(α ¯̃u ¯̃ux̃ + ¯̃ut̃)

))
x̃

= O(αβ2).

Considering the appropriate terms in the energy density and flux
in (36) which are of order zero or one in the differential energy
balance (37), we find that the non-dimensional energy density is

Ẽ = α2

2
( ¯̃u2 + βb̃2x̃

¯̃u2
)h̃ − α2β

2
b̃x̃h̃

2 ¯̃u ¯̃ux̃

+ α2β

6
h̃3 ¯̃u2

x̃ + h̃2

2
+ b̃h̃,

while the non-dimensional energy flux plus the work rate due to
pressure forces is written as

q̃E = α3

2
¯̃u3
h̃ + α3β

2
b̃2x̃

¯̃u3 + αb̃ ¯̃uh̃ + α ¯̃uh̃2

− α2β

3
h̃3 ¯̃u

( ¯̃ux̃t̃ + α ¯̃u ¯̃ux̃x̃ − 3

2
α ¯̃u2

x̃

)
− α3β

2
b̃x̃ ¯̃ux̃

¯̃u2
h̃2

− α2β

2
h̃2 ¯̃u

(
αb̃x̃x̃ ¯̃u2 + b̃x̃(α ¯̃u ¯̃ux̃ + ¯̃ut̃)

)
.

With these definitions, the energy balance is

∂ Ẽ

∂ t̃
+ ∂ q̃E

∂ x̃
= O(αβ2). (38)

Using the scaling E = ρc20b0Ẽ and qE = ρc30b0q̃E , the dimensional
form of energy density per unit span in the transverse direction is
given as the sum of the kinetic and the potential energy by

E = ρ

2
ū2(1 + b2x)h + ρ

2
ūūxbxh

2 + ρ

6
ū2
xh

3︸ ︷︷ ︸
Ek

+ ρg

2
h2 − ρgbh︸ ︷︷ ︸

Ep

, (39)

and the dimensional form of energy flux plus work rate due to the
pressure force is given by

qE = ρgū(h2 − bh) + ρ

2
ū3h(1 + b2x)

− ρ

3
h3ū

(
ūxt + ūūxx − 3

2
ū2
x

)
+ ρ

2
ū2ūxbxh

2 − ρ

2
ūh2

(
bxxū

2 + bx(ūūx + ūt)
)
.

For a horizontal bed, it is more convenient to normalize the
potential energy of a fluid particle to be zero at the bottom. If this
is done, then the dimensional forms of energy density and energy
flux plus work rate due to pressure forces are given by

E = ρg

2
h2 + ρ

2
hū2 + ρ

6
h3ū2

x , (40)

and

qE = ρgūh2 + ρ

2
ū3h − ρ

3
h3ū

(
ūxt + ūūxx − 3

2
ū2
x

)
, (41)

respectively. Note that as β → 0 in Eq. (37), the energy balance
reduces to the shallow-water energy conservation with

Esw = ρg

2

(
b20 + 2b0η + η2

)
+ ρ

2
hū2 (42)
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and

qswE = ρgh2ū + ρ

2
hū3. (43)

In addition, in the caseα ∼ β , the energy balance reduces correctly
to the case of the classical Boussinesq system, with E = ρg

2
(b20 +

2b0η + η2) + ρ

2
b0ū

2 and qE = ρg(b20 + 2ηb0)ū.
It is worth noting that the conservation of the asymptotic

approximation to the total energy with nontrivial bathymetry in
the fully nonlinear regime is satisfied by the solutions of the
SGN equations exactly. This can be seen by performing lengthy
computations using formal integrations by parts, or by recognizing
that potential energy is generally only defined up to a constant, and
E = ∫

E dx differs from the Hamiltonian (4) by the constant term
g

2

∫
b2 dx.

4. Applications

4.1. Evolution of undular bores

In free surface flow, the transition between two states of
different flow depth is called a hydraulic jump if the transition
region is stationary, and a bore if it is moving. Bores are routinely
generated by tidal forces in several rivers around the world, and
may also be generated in wavetank experiments [49,50].

The experimental studies of [49] show that when the ratio
between the difference in flow depths to the undisturbed water
depth is smaller than 0.28, then the bore will feature oscillations
in the downstream part. If this ratio is greater than approximately
0.75, then a so-called turbulent bore ensues. If the ratio is between
0.28 and 0.75, the bore will be partially turbulent, but will also
feature some oscillations. The bore strength can also be expressed

in terms of the Froude number Fr = √[(2h1/h0 + 1)2 − 1]/8, and
more recent studies, such as [50] have found that when Fr ≥ 1.4
approximately, the bore consists of a steep front,while undulations
are growing at the bore front only in the near-critical state Fr ≈ 1.
The different shapes and a transition from the subcritical to the
supercritical regime is described in [51], and in [52] an empirical
critical value Frcrit = 1.3 is suggested in order to determine the
breaking of an undular bore. However the exact characterization
of the transition between these states still remains unclear.

Some of the divergence in the results on the critical bore
strength might be explained by the observation that one single
nondimensional number may not be sufficient to classify all bores.
For example, in [53], a hyperbolic shear-flow model is suggested
which allows the classification of bores with an additional
parameter depending on the strength of the developing shear flow
near the bore front.

The connection between the initial bore strength and the
ensuing highest undulation is fairly well understood. Using
Whithammodulation theory [54], it can be shown that if viscosity
is neglected, the amplitude of the leading wave behind the bore
front is exactly twice the initial ratio of flow depths [47,55]. This
result agrees well with experimental findings. For example, the
amplitude of the leading wave found experimentally in [49] was
2.06 times the initial amplitude ratio.

In this section, we present a numerical study of the energy
balance of undular bores for the SGN equations. The classical
theory of bores relies on an inviscid shallow-water theory and
the examination of exact weak solutions of the shallow-water
equations [34]. It is well known that due to the simplifications
inherent in long-wave shallow-water models, a sharp transition in
both flow depth and flow velocity which respects conservation of
both mass and momentum necessitates a loss of energy across the
front.

Given these assumptions, it is natural to explain the energy loss
across the bore front by pointing to the physical effects neglected in
the shallow-water theory, such as viscosity, frequency dispersion,
and turbulent flow. Indeed, in strong bores, turbulent dissipation
accounts for the lion’s share of energy dissipation, and a long-wave
model can only give a first approximation of the dynamics. Most
of the work investigating the energy loss has focused on weak
undular bores, where long-wave models can be expected to yield
an accurate description of the flow. The loss of energy in weak
bores has been explained by the creation of oscillations in the free
surface behind the front, but it was noted in [35] that an additional
dissipation mechanism is needed. In [36], the bottom boundary
layer was invoked to explain this required additional energy loss,
but itwas noted in [37,38] that invoking frictional effects to explain
the energy loss experienced by a conservative system was not
consistent.

However, as already mentioned, there was a slight technical
problem in the analysis of [38], since the energy functional

EBous = 1

2

∫ x̃2

x̃1

[
α2w̃2h̃ + α2β

3

(
w̃w̃x̃x̃ + w̃2

x̃

) + h̃2

]
dx̃, (44)

used in that work could not be obtained in the framework of the
asymptotically correct mechanical balance laws derived in [31].
Indeed, the expressions for the energy and energy flux associated
to the Boussinesq system which were derived in [31] are

Ẽ = 1

2
+ αη̃ + α2

2
η̃2 + α2

2
w̃2 = α

2
h̃2 + α2

2
w̃2,

and the non-dimensional energy flux (corrected for the work rate
due to pressure forces) as

q̃E = αw̃ + 2α2w̃η̃ + αβ

2

(
θ2 − 1

3

)
w̃x̃x̃

= αw̃ + 2α2w̃η̃ + αβ

6
w̃x̃x̃,

where w̃ is the nondimensional horizontal velocity component
at height θ = b0

√
2/3 in the water column. It is apparent that

as β → 0, these expressions do not reduce correctly to the
corresponding expressions of the shallow-water theory. However,
since the expressions (40) and (41) do reduce to the correct
shallow-water equivalents, the analysis of the energy loss in the
undular bore can bemade precise in the context of the SGN system.
Nevertheless, the SGN system is an approximation, and ideally, a
study of undular bores should include short-wave effects, bottom
friction and vorticity.

The numerical method that was used to perform the numerical
simulations in this paper is detailed in the Appendix. It is also
noted that for simplicity’s sake we consider the water density ρ =
1 kg/m3. The numerical experiments require initial data. An initial
surface condition that triggers the generation of undular bores is

h(x, 0) = h0 + 1

2
(h1 − h0) tanh(κx),

where κ is the parameter that determines the steepness of the
undular bore. Here we take κ = 1/2. In order to generate a simple
undular bore, i.e. a wave that propagates mainly in one direction,
we consider an initial flow given by the following velocity profile:

u(x, 0) = δh

h1

(
g

2h0

(
2h2

0 + 3(δh)h0 + (δh)2
))1/2

× (1 − tanh(κx)) ,

where δh = h1 − h0. One may envision other numerical methods
to create an undular bore, such as the addition of a line source in
the upstream part, such as used in [56]. Nevertheless, the initial
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Table 1
Energy conservation.

h1/h0 Fr qE(x1) − qE(x2) dE/dt

1.1 1.07 3.6481059 3.6481059

1.2 1.15 8.6017456 8.6017456

1.3 1.22 15.100378 15.100378

1.4 1.30 23.394470 23.394470

1.5 1.37 33.746103 33.746103

1.6 1.44 46.429376 46.429376

1.7 1.51 61.730669 61.730669

Table 2
Momentum conservation.

h1/h0 Fr qI (x1) − qI (x2) dI/dt

1.1 1.07 1.1330550 1.1330549

1.2 1.15 2.5898340 2.5898399

1.3 1.22 4.3997850 4.3997849

1.4 1.30 6.5923199 6.5923198

1.5 1.37 9.1968749 9.1968748

1.6 1.44 12.242880 12.242879

1.7 1.51 15.759764 15.759764

conditions described above were sufficient for our purposes. First

we present the computation of the energy budget in an undular

bore for various bore strengths. We consider the control volume

[x1, x2], where x1 is far to the left of the bore front, and x2 is far to

the right. In Table 1 the bore strength is shown in the first column,

and the corresponding Froude number is shown in the second

column. Taking h0 = 1 and h1 between 1.1 and 1.7 we monitor

the energy flux and work rate due to the pressure force, given by

qE(x1) − qE(x2) as defined in (41), and these values are shown in

the third column of the table. We also monitor the gain in energy

in the control interval as given by E(t) = ∫ x2
x1

E dx. These values

are shown in the fourth column. The particular figures shown in

the table are for T = 30, but the values are nearly constant over

time. It is apparent from the table that energy conservation holds

to at least eight digits, even for large bore strengths. These numbers

confirm our previous finding that the energy is exactly conserved

in the SGN model, and also validates the implementation of the

numericalmethod. In addition, these results confirmour claim that

no dissipation mechanism is necessary to explain the energy loss

in an undular bore.

Fig. A.2. The momentum and the energy of the undular bore for Fr = 1.07, 1.30

and 1.51.

As noted in the previous section, the expression (41) for the
energy flux and work rate due to pressure forces reduces to the

Fig. A.3. Undular bores profiles for various Fr values.

corresponding formula for the shallow-water theory in the case
of very long waves. Since x1 and x2 are relatively far from the
bore front, shallow-water theory should be valid at these points.
Therefore, the usual formula for the energy loss in an undular bore
in the shallow-water theory is valid:

dEsw

dt
+ qswE (x2, t) − qswE (x1, t)

= −ρ

4
(h1 − h0)

3

√
1

2
g3

(
1

h0

+ 1

h1

)
. (45)

Since there is no energy loss in a dispersive system, one may
conclude that the excess energy is fed into oscillations of the free
surface, and the formula (45) furnishes an estimate of the amount
of energy which is residing in the oscillatory motion.

A similar study can be performed on the momentum balance.
Momentum gain in the control interval is given by the momentum
flux through the lateral boundaries and the pressure force as
qI(x1) − qI(x2), with qI given in (33) up to T = 30. Table 2
presents the momentum rates. As in the case of the energy, the
corresponding values agree to about eight digits. In Fig. A.2, we
present the normalized values I(t)/I(0) of the momentum and
E(t)/E(0) of the total energy for the values of the Froude number
Fr = 1.07, 1.30 and 1.51. The slopes of the lines can be found in
Tables 1 and 2.

Fig. A.3 shows the profiles of the undular bores generatedwhen
h1/h0 = 1.3, 1.5 and 1.7. From these figures, we observe that as
the Froude number Fr increases, the peak amplitude of the leading
wave becomes larger, and the shape of the wave envelope is
changing. For example the shape of thewave envelope of Fig. A.3(a)
can be described by a linear function while the shape of the wave
envelope of Fig. A.3(c) can be described by a square-root function.
For the various shapes of the undular bores we refer to [57].

4.2. Shoaling of solitary waves

In this section, we study the conservation of energy in the
case of a nonuniform bathymetry. Specifically, we consider the
experiments proposed in [58,59] related to the shoaling of solitary
waves on a beach of slope 1:35. The shoaling of solitary waves has
been studied theoretically and experimentally inmanyworks, such
as in [58–61]. Next, we study the shoaling of solitary waves with
normalized amplitude A = 0.1, 0.15, 0.2 and 0.25 in the domain
[−100, 34]. In the numerical experiments we take Δx = 0.05
whilewe translate the solitarywaves such that the peak amplitude
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Table 3
Conserved values of energy (in Joules) and Hamiltonian for shoaling of solitary

waves on a plane beach of slope 1:35.

A E H

0.10 62.4704607870 0.05202930490

0.15 62.7102258381 0.09856973753

0.20 62.9401348199 0.15627417412

0.25 63.1680884219 0.22460417742

is achieved at x = −20.1171 while the bottom is described by the
function

b(x) =
{
1, x ≤ 0
1 − x/35, x > 0,

but modified appropriately around x = 0 so as to be smooth
enough and to satisfy the regularity requirements of the model.

A comparison between the experimental results on shoaling
waves from [58], and the shoaling solitary waves computed with
numerical approximation of (1) and (A.1) is presented in Fig. A.4.
Overall, we observe a very good agreement between the numerical
results and the experimental data.

Fig. A.4. Comparison of the numerical solution and the experimental data onwave

gauges of [59]. —-: Numerical solution; − · −: Experimental data.

Fig. A.5. Normalized kinetic and potential energy for shoaling of solitary waves on

a plane beach of slope 1:35.

Table 3 presents the conserved values of the total energy E and
of the Hamiltonian H for t ∈ [0, 45] for the computations shown
in Fig. A.4.We observe that the energy is conservedwithmore than
ten decimal digits. Due to the small values of Δx and Δt no energy
dissipation can be observed verifying the efficacy of the numerical
method.

Although the total energy is conserved the kinetic and the
potential energy are not constant with time. Fig. A.5 presents the
normalized kinetic energy Ek(t)/Ek(0) and normalized potential
energy Ep(t)/Ep(0) evaluated in the spatial interval [−100, 34].

As can be seen in Fig. A.5 the kinetic energy is decreasing at the

early stages of shoaling due to the slight decrease in the wave

speed while the potential energy is initially increasing due to

the increase of the wave height. At later stages of the shoaling,

the kinetic energy increases again, due to the increase in particle

velocities, and the potential energy decreases again, due to the

rising bottom, and narrowing wave peak. Nevertheless, the total

energy is constant over time.

5. Summary and conclusions

We have detailed the derivation of mechanical balance laws

for the SGN equations in the case of a horizontal bed and also

in the case of varying bathymetry. The mechanical balance laws

derived here, including the mass, momentum and energy balance

laws, are valid to the same asymptotic order as the SGN system,

providing a firm link between conservation laws associated to the

governing SGN equations, and the above mechanical quantities.

Finally, applications to the energy budget of undular bores and the

development of potential and kinetic energy in shoaling solitary

waves have been presented. In particular, it has been shown

that the energy loss in undular bores is fully compensated for

by the development of surface oscillations, since the energy in

the SGN with a flat bottom is exactly conserved. Indeed, exact

conservation of energy to near machine precision was observed in

our numerical computations, and this gave an additional check on

the implementation of the numerical algorithm.
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Appendix. The numerical method

In this appendix, we consider the initial–boundary value
problem (IBVP) comprised of system (25a)–(25b) subject to
reflective boundary conditions. Rewriting the system in terms of
(h, u), and dropping the bar over the symbol of the horizontal
velocity, yields the IBVP

ht + (hu)x = 0,
hut + huux + gh(h − b)x

+
[
h2
(1

3
P + 1

2
Q
)]

x

− hbx

(1

2
P + Q

)
= 0,

u(A, t) = u(B, t) = 0,
h(x, 0) = h0(x),
u(x, 0) = u0(x),

(A.1)

where P = h
[
u2
x − uxt − uuxx

]
, Q = −bx(ut + uux) − bxxu

2, x ∈
[A, B] ⊂ R and t ∈ [0, T ]. Considering a spatial grid xi = A+ i Δx,
for i = 0, 1, . . . ,N , where Δx is the spatial mesh-length, such that
Δx = (B − A)/N,N ∈ N. We define the space of cubic splines

S =
{
φ ∈ C2[A, B]

∣∣∣φ|[xi,xi+1] ∈ P
3, 0 ≤ i ≤ N − 1

}
,
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where Pk is the space of polynomials of degree k. We also consider
the space

S0 = S ∩
{
φ ∈ C([A, B])

∣∣∣φ(A) = φ(B) = 0

}
.

The basis functions of the space S and S0 consist of the usual B-
splines described in [63].

The semi-discrete scheme is reduced in finding ĥ ∈ S and û ∈ S0
such that

(ĥt , φ) +
(
(ĥû)x, φ

)
= 0,

B(ût , ψ; ĥ) +
(
ĥûûx + gĥ(ĥ − b)x, ψ

)
+

(
ĥ2
(1
3

P̂ + 1

2
Q̂
)
, ψx

)
−

(
ĥbx(

1

2
P̂ + Q̂), ψ

)
= 0,

(A.2)

for φ ∈ S, and ψ ∈ S0, and P̂ = ĥ
[
û2
x − ûûxx

]
and Q̂ = −bxûûx

− bxxû
2. B is defined as the bilinear form that for fixed ĥ is given

by

B(ψ, χ; ĥ) =
(
ĥ

[
1 − ĥxbx − 1

2
ĥbxx + b2x

]
ψ, χ

)
+ 1

3

(
ĥ3ψx, χx

)
for ψ, χ ∈ S0. (A.3)

The system of Eqs. (A.2) is accompanied by the initial conditions

ĥ(x, 0) = P {h0(x)}, û(x, 0) = P0{u0(x)}, (A.4)

where P and P0 are the L2-projections onto S and S0 respectively,
satisfying (Pv, φ) = (v, φ) for all φ ∈ S and (P0v, ψ) =
(v, ψ) for all ψ ∈ S0. Upon choosing basis functions φj and ψj

for the spaces S and S0, (A.2) is reduced to a system of ordinary
differential equations (ODEs). For the integration in time of this
system we employ the Dormand–Prince adaptive time-stepping
methods, [64,62]. One may apply the same numerical method
to solve the IBVP with non-homogeneous Dirichlet boundary
conditions. For example ifu(A, t) = uA then the change of variables
u(x, t) = w(x, t)+u0(x) reduces the non-homogeneous system to
a homogeneous IBVP system for the variablew. In all the numerical
experimentswe tookΔx = 0.1, while the tolerance for the relative
error of the adaptive Runge–Kutta scheme was taken 5 · 10−14. For
the computations of the integrals, the Gauss–Legendre quadrature
rule with 8 nodes was employed.

The convergence properties of the standard Galerkin method
for the SGN system are very similar to those of the classical
Boussinesq system studied in detail in [65,66]. In order to
compute the convergence rates in various norms, we consider
the nonhomogeneous SGN system with flat bottom admitting the
exact solution h(x, t) = 1 + e2t(cos(πx) + x + 2) and u(x, t) =
e−txx sin(πx) for 0 ≤ x ≤ 1, and for t ∈ (0, T ] with T = 1. We
compute the normalized errors

Es[F ] .= ‖F(x, T ; Δx) − Fexact(x, T )‖s

‖Fexact(x, T )‖s

, (A.5)

where F = F(·; Δx) is the computed solution, i.e., either H ≈
h(x, T ) or U ≈ u(x, T ), Fexact is the corresponding exact solution
and s = 0, 1, 2, ∞ correspond to the L2,H1,H2 and L∞ norms,
respectively. The analogous rates of convergence are defined as

rate for Es[F ] .= ln(Es[F(·; Δxk−1)]/Es[F(·; Δxk)])
ln(Δxk−1/Δxk)

, (A.6)

whereΔxk is the grid size listed in row k in Table A.4. To ensure that
the errors incurred by the temporal integration do not affect the
rates of convergence we use Δt � Δxwhile we take Δx = 1/N .

Table A.4 presents the spatial convergence rates in the L2 norm.
We observe that the convergence is optimal for the u variable but

Table A.4
Spatial errors and rates of convergence in the L2 norm.

N E0[H] Rate for

E0[H]
E0[U] Rate for

E0[U]
300 0.1211 × 10−8 – 0.6127 × 10−11 –

320 0.9674 × 10−9 3.4793 0.4733 × 10−11 3.9983

340 0.7836 × 10−9 3.4772 0.3714 × 10−11 3.9999

360 0.6422 × 10−9 3.4797 0.2955 × 10−11 3.9977

380 0.5322 × 10−9 3.4754 0.2382 × 10−11 3.9885

400 0.4452 × 10−9 3.4793 0.1939 × 10−11 4.0099

suboptimal for the h variable. Specifically, it appears that ‖h − ĥ‖
∼ Δx3.5, while ‖u− û‖ ∼ Δx4. More precisely, as in the case of the
classical Boussinesq system [65], and because the rate of conver-
gence in h appears to be less that 3.5 yields that the error should
be of O(Δx3.5

√
ln(1/Δx)). Similar results obtained for the conver-

gence in theH1,H2 and L∞ norms. Specifically it was observed nu-

merically that‖h−ĥ‖s ∼ Δx3.5−s, ‖u−û‖1 ∼ Δx4−s, for s = 0, 1, 2

and ‖h − ĥ‖∞ ∼ Δx3, while ‖u − û‖∞ ∼ Δx4 approximately.
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ON THE SHOALING OF SOLITARY WAVES IN THE KDV EQUATION

Zahra Khorsand1, Henrik Kalisch2

The evolution of the form of surface waves with a sufficiently slow variation in depth is examined. This study is made

of the development of cnoidal Korteweg-de Vries wave on a shoal region. Reconstructing a system based on the wave

height and water depth by using the preservation of energy flux, mass and constant period.

Keywords: Solitary wave propagation; wave shoaling; long wave theory; KdV equation

INTRODUCTION
Depending on the magnitude of the forces acting on the water and different speeds of impact, waves

occur in different sizes and forms. The study of long waves is of importance to the engineer in the design of

harbors and in studying estuaries and lagoons. The literature on long waves shows a considerable number

of experimental and numerical investigations of the slow deformation of waves over a sloping bottom.

Although, the classical shoaling solution was first considered for linear waves on an intuitive physical

basis by Rayleigh (1911), the theory of cnoidal wave shoaling has been described by several authors. Os-

trovskiy and Pelinovskiy (1970) considered a stationary cnoidal Korteweg-de Vries wave (KdV) to evaluate

surface-wave deformation with a sufficiently slow variation in depth. As indicated in Ostrovskiy and Peli-

novskiy, a sinusoidal wave height, when the modulus of elliptic function m remains small, increases as h
−1
4

(Green’s law). Then m grows rapidly and the wave profile changes from sinusoidal to soliton. For a solitary

wave, the wave height increases as h−1 (Boussinesq’s law).

Svendsen and Brink-Kjær (1972) represented that the variation of the cnoidal wave height are con-

nected to deep water data by the assumption that the energy flux determined by the linear theory and the

cnoidal theory is the same at the matching point of h
L0
= 0.10, where this point is a deep water limit for

cnoidal waves, which gives a discontinuity in wave height. Svendsen and Hansen (1977) considered con-

tinuity in wave height thus the calculated relative height values were increased significantly. Sakai and

Battjes (1980) applied Cokelet’s numerical nonlinear theory to investigate shoaling process and compared

their result with existing shoaling curves calculated from different finite amplitude waves theories. They

found the shoaling curves calculated from Cokelet’s theory predict higher wave height than other curves.

Svendsen and Hansen (1978) employed a time-periodic solution of the KdV equation of the second-order

approximation to represent the deformation of periodic long waves due to the sloping bottom. In that case

the wave deformation at any point of the slope would be determined by the local water depth and bottom

slope. To confirm the resulting waves comparison was done with experimental results.

The propagation of a solitary wave in a shoal area has also been investigated by several authors. Nu-

merical solutions to the solitary wave problem have been developed by Hibberd and Peregrine (1979), and

analytic solutions were obtained by Synolakis (1987). The evolution of solitary waves over gentle slop

depth have been studied by Grimshaw (1971) where he observed that for small values of initial waveheight,

the shoaling rates are not exactly given by Boussinesq’s law. He found that the shoaling rates approach

Boussinesq’s law in the limit of zero waveheight. Recently, Kalisch and Senthilkumar (2013) have ana-

lyzed shoaling of solitary waves by using conservation of energy in the Boussinesq scaling and their result

recover Boussinesq’s law.

The propagation of a solitary wave in experiments for gentle slops has also been observed by Ippen

and Kulin (1954), and Camfield and Street (1969). Grilli et al. (1994) employed two-dimensional fully

nonlinear wave models based on potential flow theory (FNPM) to calculate shoaling of solitary waves over

a 1:35 slope. Their results show that exact shoaling rates significantly differ from prediction of both Green’s

and Boussinesq’s laws. An advanced version of this model was used to compute solitary wave variation in

over plane slopes by Grilli et al. (1997). Their experiments show that, wave height initially decreases and

the rate is lower than predicted by Green’s law, and then increases.

In this study we consider the evolution of a cnoidal KdV which agrees well with observations about

shoal conditions. The KdV equation was derived in 1895 by Korteweg and de Vries (1895), in dimensional

variables is given by

ηt + c0ηx +
3

2

c0

h0

ηηx +
c0h2

0

6
ηxxx = 0, (1)

1Department of Mathematics, University of Bergen, Norway
2Department of Mathematics, University of Bergen, Norway
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where η(x, t) stands for the excursion of the free surface, h0 denotes the undisturbed water depth, g is the

gravitational acceleration and c0 =
√

gh0 is taken as the limiting long-wave speed. In the classical long-

wave assumptions this equation reveals that β =
h2

0

l2 and α = a
h0

are small parameters and α
β
= O(1), where l

represents a typical wave length and a a typical wave amplitude. Equation (1) has stationary solutions, the

cnoidal waves

η = f2 + ( f1 − f2)cn2

⎛⎜⎜⎜⎜⎜⎜⎝
√

3( f1 − f3)

4h3
0

; m

⎞⎟⎟⎟⎟⎟⎟⎠ , (2)

are given in terms of the Jacobian elliptic function cn with modulus m = f1− f2
f1− f3

and span the range from

sinusoidal wave in deep water to solitary wave in shallow water. These solutions depend on three parameters

f1, f2 and f3 which can choose to be ordered as f3 < f2 < f1. The wave speed C and the wavelength L are

given by

C = c0

(
1 +

f1 + f2 + f3
2h0

)
, L = K(m)

√
16h3

0

3( f1 − f3)

where K(m) is the complete elliptic integral of the first kind. In this setup, f1 and f2 represent the wave crest

and the wave trough, respectively and f3 appears in both the wave length and wave speed. The aim of the

present investigation has been to develop a system related to the wave amplitude at two points of interest

as wave shoals by using the energy flux for the KdV equation introduced by Ali and Kalisch (2014). The

variation of the height of shoaling can be computed in a straightforward manner.

The paper is made up as follows. First, a brief resume is given of the energy balance for the KdV

equation. In the third section, an outline is given of our method and calculations. In the forth section, the

calculated waveheight variation is compared with linear theory, Svendsen and Brink-Kjær (1972), Svendsen

and Hansen (1977), and Sakai and Battjes (1980) for the case of cnoidal wave and with Grilli et al. (1997)

for the solitary wave. Finally, the conclusion is given.

ENERGY BALANCE
For the convenience of the reader, a brief review of the energy balance in the fluid is given here and we

refer the reader to Ali and Kalisch (2014) for details.

Consider an inviscid, incompressible fluid of unit density. With Cartesian coordinates (x, z) chosen so

that the horizontal x−axis is in the direction of wave propagation and with the z−axis pointing vertically

upwards, the equation of the free surface is z = η(x, t), and the fluid domain at time t ≥ 0 is {(x, z) ∈ R2 | x ∈
R, −h0 < z < η(x, z)}. Let u = (u(x, z, t),w(x, z, t)) be the velocity field and P(x, z, t) represents the pressure.

The surface water-wave problem is generally given by the Euler equations

ut + (u· ∇)u + ∇P = g, (3)

∇·u = 0, (4)

with no-flow conditions at the bottom and kinematic and dynamic boundary conditions at the free surface.

From the incompressibility of the fluid and assuming irrotational flow, the problem can be written in terms

of the Laplace equation for a velocity potential φ. Therefore, the complete problem is given by

ηt + φxηx − φz = 0, on z = η(x, t), (5)

φt +
1

2
(φ2

x + φ
2
z ) + gη = 0, on z = η(x, t). (6)

We perform the following change of variables

x̃ =
x
l
, z̃ =

z + h0

h0

, η̃ =
η

a
, t̃ =

c0t
l
, φ̃ =

c0

gal
φ

yielding the non-dimensionalization of the problem. Following the method explained in Bona and Saut

(2002) and Whitham (1974), the non-dimensional KdV equation is

η̃t̃ + η̃x̃ +
3

2
αη̃η̃x̃ +

1

6
βη̃x̃x̃x̃ = O(α2, αβ, β2)
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and the non-dimensional velocity field (φ̃x̃, φ̃z̃) is given by

φ̃x̃(x̃, z̃, t̃) = η̃ +
1

4
αη̃2 + β(

1

3
− z2

2
)η̃x̃x̃ + O(α2, αβ, β2), (7)

φ̃z̃(x̃, z̃, t̃) = βz̃η̃x̃ + O(αβ, β2). (8)

The dynamic pressure P′, which measures the deviation from hydrostatic pressure, is given by

P′ = P − Patm + ρgz = −ρφt − ρ
2
|∇φ|2.

Using the scaling ρgaP̃′ = P′, the dynamic pressure becomes

P̃′ = η̃ +
1

2
β(z̃2 − 1)w̃x̃t̃ + O(αβ, β2).

Now, we examine energy balance of the KdV equation. If it is assumed that the potential energy of a particle

is zero at the undisturbed free surface, further the potential energy is zero when there is no wave motion,

then the energy balance can be fined by the equation

∂

∂t

{∫ η
−h0

1

2
|∇φ|2dz +

∫ η
0

gzdz
}
+
∂

∂x

∫ η
−h0

{1
2
|∇φ|2 + gz + P}φxdz = 0.

Using non-dimensional variables and performing an integration with respect to z̃, the equation becomes

∂

∂t̃

(
α2η̃2 +

α3

4
η̃3 +

α2β

6
η̃η̃x̃x̃ +

α2β

6
η̃2

x̃

)
+
∂

∂x̃

(
±α2η̃2

±5

4
α3η̃3 ± α

2β

2
η̃η̃x̃x̃

)
= O(α4, α3β, α2β2).

Consequently, the energy density could be written as

Ẽ∗ = α2η̃2 +
α3

4
η̃3 +

α2β

6
η̃η̃x̃x̃ +

α2β

6
η̃2

x̃,

and the energy flux becomes

q̃
∗
E = ±α2η̃2 ± 5

4
α3η̃3 ± α

2β

2
η̃η̃x̃x̃.

The dimensional forms are given by

E
∗
= c2

0

⎛⎜⎜⎜⎜⎝ 1

h0

η2 +
1

4h2
0

η3 +
h0

6
ηηxx +

h0

6
η2

x

⎞⎟⎟⎟⎟⎠ ,
and

q∗E = ±c3
0

⎛⎜⎜⎜⎜⎝ 1

h0

η2 +
5

4h2
0

η3 +
h0

2
ηηxx

⎞⎟⎟⎟⎟⎠ . (9)
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DETERMINATION OF WAVE HEIGHT H
We can follow the variation in wave parameters by considering a constant period and preservation of

the energy flux and mass. We assume that the wave motion at water depth hA is given, then we will find the

wave height and other parameters at water depth h by using the following equations:

CA

LA
=

C
L
, (10)

∫ T

0

q∗EA
dt =

∫ T

0

q∗Edt, (11)

∫ L

0

ηAdx =
∫ L

0

ηdx. (12)

Using the expression (9) for q∗E and introducing for η Equation (2) and noting that

∫
cn2(u)du = u − u

m2
+

E(am(u),m2)

m2
,

∫
cn4(u)du =

1

3m4
[(2 − 3m2)(1 − m2)u + 2(2m2 − 1)E(u)

+m2sn(u)cn(u)dn(u)],∫
cn6(u)du =

1

5m2
[4(2m2 − 1)

∫
cn4(u)du + 3(1 − m2)

∫
cn2(u)du

+cn3(u)sn(u)dn(u)],

we arrive at the three nonlinear equations. As mentioned before, the wave motion parameters at water depth

hA are given, therefore the expressions in the left-hand side of equations (10),(11) and (12) are known. We

consider

A0 =

∫ T

0

q∗EA
dt, A1 =

CA

LA
, A2 =

∫ L

0

ηAdx,

thus the equation (10) becomes

A1 =
c0

(
1 +

f1+ f2+ f3
2h0

)
K(m)

√
16h3

0

3( f1− f3)

,

and the equation (11) becomes

A0 = c3
0[T (B0 +

(m2 − 1)

m2
B2 +

B4

3m4
(2 − 3m2)(1 − m2) + B6(

−3

5m2
(m2 − 1)2 +

4

15m6
(2m2 − 1)(2 − 3m2)(1 − m2))) − (B2 +

3

5m2
(1 − m2) +

2B4

3m2
(2m2 − 1)

+
8B6

15m2
(2m2 − 1)2)

E
√

4h3

c0m2
(
1 +

f1+ f2+ f3
2h0

) √
3( f1 − f3)

],

also the equation (12) reads

A2 = K(m)

√
16h3

0

3( f1 − f3)

⎛⎜⎜⎜⎜⎜⎝ f2 + (m2 − 1)( f1 − f2)

m2
+

( f1 − f2)E1

√
4h3

m2
√

3( f1 − f3)

⎞⎟⎟⎟⎟⎟⎠ ,
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where

B0 =
f1
h
+

5 f 3
2

4h2
+

3 f2
4h2

(1 − m2)( f1 − f2)( f1 − f3),

B2 =
2 f2
h

( f1 − f2) +
15 f 2

2

4h2
( f1 − f2) +

3

4h2
( f1 − f2)

( f1 − f3)(2 f2(2m2 − 1) + (1 − m2)( f1 − f2)),

B4 =
( f1 − f2)2

h
+

15 f2
4h2

( f1 − f2)2 +
3

4h2
( f1 − f2)

( f1 − f3)(2(2m2 − 1)( f1 − f2) − 3m2 f2),

B6 =
( f1 − f2)2

4h2
(5( f1 − f2) − 9m2( f1 − f3)),

also E and E1 denote the incomplete elliptic integrals of the second kind over one period and one wave

length, respectively. This system of equations has been solved numerically and the parameters for the

incident wave at arbitrary water depth h will be obtained. If the depth varies slowly enough, we expect that

the wave height H will be a function of depth h. In order to find the variation of wave height, we start with

initial data for the cnoidal wave which satisfies the system of equations introduced above and to find the

variation of solitary wave height, initial data are chosen in such a way m approaches to one.

RESULTS

The calculation were performed for different values of the deep-water steepness H0

L0
. The curve for

H0

L0
= 0 is corresponds to the linear wave theory. The initial data have been chosen in such a way to compare

the work done by Svendsen and Brink-Kjær (1972), Svendsen and Hansen (1977), and Sakai and Battjes

(1980).

Figure 1 shows three profiles and the corresponding shoaling curves for which H
L is 0.004, 0.002 and

0.001. The parameter L
h is also given for each profile. It may be seen that the wavelength is more than 10

times the water depth, which means that in all cases we are in cnoidal region. As we see in the shoaling

panels, the curves presented by Svendsen and Brink-Kjær, which were obtained by matching the calculated

energy flux values of the cnoidal theory and linear theory at h
L0
= 0.1, have a discontinuity in wave height.

We can see variation in wave height given by Svendsen and Brink-Kjær is almost the same as those of the

present paper. These panels also show the comparison with curves given by Svendsen and Buhr Hansen,

and Sakai and Battjes. Svendsen and Buhr Hansen considered that the wave heights of the cnoidal theory

and the linear theory are matched at h
L0
= 0.1, therefore the calculated relative wave height values increased

significantly and these values are higher than those of the present shoaling curves and the other two curves.

The shoaling curves calculated from Cokelet’s theory by Sakai and Battjes show the largest growth for all

initial steepness and relative depth except for the curves obtained by Svendsen and Buhr Hansen. However,

the approach presented in the present paper is much more logical and straightforward.

In Figure 2, we can see a wave profile close to solitary wave for which the initial wave height H0 is 0.2.

Comparison between the present shoaling result and the numerical result obtained by Grilli et al. (1997) and

also Boussinesq’s law, H ∝ h−1, and Green’s law, H ∝ h−1/4 is shown in the right panel. As we can see the

wave height rate starts lower than both Green’s law and the numerical result and then starts diverging from

them. In Figure 3, we consider higher wave, H0 = 0.4, and as we see in the right panel close agreement is

obtained between the present result and the numerical result. Finally in Figure 4, we consider a wave with

the initial height H0 = 0.6 and the corresponding shoaling cure of the present work which is illustrated in

the right panel, is in good agreement with the numerical result.

CONCLUSION
The cnoidal wave theory was used to calculate changes in wave height owing to the shoaling of waves.

It was shown that there is an increase in wave height according to the decrease in water depth and the

variation in wave height for a long wave with small initial amplitude starts diverging from the Green’s law

curve. The calculation were performed for different values of the deep water steepness H
L0

. The calculated

values of H
H0

were plotted versus h
L0

for the case of cnoidal theory and h
h0

for the solitary waves. The
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Figure 1: Wave profile and the corresponding shoaling curves.
(a)

H0

L0
= 0.004, L0

h0
= 10.84. (b)

H0

L0
= 0.002, L0

h0
= 11.9. (c)

H0

L0
= 0.001, L0

h0
= 13.8. In the upper right panel

H0

L0
= 0.004, in the lower left panel H0

L0
= 0.002, and in the lower right panel H0

L0
= 0.001 . The black solid

curve, KK, is shoaling curve based on the present paper. The light solid curve, SBC, is shoaling curve
after Sakai and Battjes calculated from Cokelet’s theory. The light dashed curve, SBK, is shoaling curve
after Svendsen and Brink-Kjær. The dashed-datted curve, SBH, is shoaling curve after Svendsen and Buhr
Hansen.

result have been compared with three kinds of previous results which calculated by using different finite-

amplitude wave theories: Svendsen and Brink-Kjær (1972), Svendsen and Hansen (1977), and Sakai and

Battjes (1980). It was shown the wave height ratio H
H0

of the present curves increases slower than those of

the other three kinds of curves. However, the differences were small with curves given by Svendsen and

Brink-Kjær (1972) without any discontinuity in wave height.

The shoaling curves of the present paper in the limit of solitary wave were compared with the numerical

results obtained by Grilli et al. (1997) and the agreement with the numerical results is good for larger initial

wave height.
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