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Chapter 1

Introduction

The Standard Model of elementary particle physics (SM) has been experimentally con-
firmed to a very high degree of accuracy [1]. There are nevertheless still some sectors of
it that have not been confirmed through experiments, and among these is the origin of
electroweak symmetry breaking. In the Standard Electroweak Theory by Glashow, Salam
and Weinberg [2, 3], the SU(2), x U(1),, symmetry is broken down to the electromagnetic
U(1)gan, and at the same time the weak gauge bosons W+ and Z acquire masses, while
the photon remains massless.

Electroweak symmetry is broken through spontaneous symmetry breaking. This is
caused by a scalar field with nonzero vacuum expectation value. The scalar field is a
complex SU(2) doublet which couples to electroweak gauge bosons and to fermions. The
field has got four degrees of freedom. Three of these, representing so-called Goldstone
bosons, are transformed into longitudinal components of the vector bosons W* and Z,
and the vector bosons thereby acquire masses. Goldstone bosons are unphysical massless
spin-zero bosons that are created by spontaneous symmetry breaking. The fourth degree
of freedom is a real scalar field that represents a neutral spin-zero particle called the Higgs
boson.

The SM Higgs boson has got the quantum numbers J¥¢ = 07+, Here J is the total
intrinsic spin of the particle, and C' and P denote the transformation properties under
charge conjugation, C, and space inversion or parity, P. Under a C transformation, all
particles are exchanged with their antiparticles, and under a P transformation all vectors
x are exchanged with —x. We say that the SM Higgs is a scalar particle, or a CP-even
particle, because it does not change sign under a combined C'P transformation.

Electroweak theory does not conserve C' and P separately when fermion terms are
included in the Lagrangian density. This means that the Lagrangian changes form, under
a C or P transformation. Under a combined C'P transformation, on the other hand, the
Lagrangian density is almost unchanged. We say that C P is weakly broken in the Standard
Electroweak Theory. I will get back to C'P violation in the next chapter.

The only free parameter of the SM Higgs sector is the mass my, of the Higgs boson. If
the mass of the Higgs boson is known, all its other properties are fixed. An upper limit on
the Higgs mass can be deduced from the energy range A up to which the theory is valid
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[4]. Beyond this energy, the perturbative expansion of the theory breaks down. If the mass
of the Higgs boson is less than approximately 200 GeV the SM could be valid up to the
energy A ~ 10'® GeV, which is called the grand unified theory scale (GUT).

In addition, the LEP Electroweak working group has quoted an upper limit on the
Higgs mass from a global SM fit to electroweak precision data as a function of the Higgs
mass: my < 196 GeV at 95% confidence level (CL) [5]. The experimental lower limit on
the SM Higgs mass is at the moment m,, > 114.1 GeV at 95% CL [5].

The Higgs sector of the SM is only the simplest example of a model for electroweak
symmetry breaking. In extended models there can exist more than one Higgs boson [4], and
in some models there is no fundamental Higgs boson at all, but composite Higgs particles.
One group of extended models are the Two-Higgs-Doublet Models (2HDM). Here there
are two complex scalar SU(2) doublets. The eight degrees of freedom give rise to three
Goldstone bosons, two neutral Higgs bosons with JF¢ = 07+, h and H, one neutral Higgs
bosons with JF¢ = 07—, A, and two charged Higgs bosons H¥, all spin-zero particles
[4]. The boson A is also denoted a pseudoscalar, or a CP-odd particle, because its wave
function changes sign under a C'P transformation. With a certain choice of the parameters
of a 2HDM, the three neutral Higgs bosons will not be eigenstates of CP, but mixtures of
CP-even and CP-odd states [6]. The Minimal Supersymmetric extension of the Standard
Model (MSSM), which is the simplest example of a realistic supersymmetric theory, is an
example of a 2HDM model.

One of the main goals of the next generation of accelerators is to investigate the Higgs
sector. If a Higgs boson is discovered, it is important to examine its properties in addition
to mass: production and decay rates, charge, spin, CP-properties, couplings to gauge
bosons and fermions, and self couplings.

Several methods have been suggested in order to measure the CP-properties of a dis-
covered Higgs boson. Depending on what model is assumed and the range of Higgs masses
that is studied, different strategies have to be used.

CP-even and CP-odd Higgs bosons couple differently to vector bosons and fermions.
Each CP-state leads to distinct polarisation and spin states for the decay products. The
distributions of decay angles for secondary decay products also depend on the CP of the
Higgs boson. This is similar to the classical method to determine the CP of the 7% meson
[7].

Angular distributions in the decay channel

H—-VV® - fifofsfa, (L.1)

for VV = WW, ZZ, and in decays to fermions, H — 777~ — n7om v and H — tt —
(bW*) + (bW ™), have been suggested in order to measure the CP-state of a discovered
Higgs boson [9-14]. Which decay mode is optimal depends on the Higgs mass and on
the background. Hadron colliders have larger QCD backgrounds than ete™ colliders. The
decay to weak vector bosons have a small rate for Higgs masses below the threshold for
production of real vector bosons, m; ~ 160 GeV.

The production process vy — H with polarised photon beams, and the Bjorken process



ete™ — HZ have also been suggested as suitable for determining the CP-property of a
Higgs boson [13, 14].

In this thesis T have studied angular correlations in the decay (1.1) of a Higgs boson
H, that can be either CP-even or CP-odd. This decay mode can be used to determine the
CP-properties of a Higgs boson with mass larger than approximately 2my,, where myy is
the mass of the W boson, my = 80.4 GeV.

The upper limit on the Higgs mass quoted by the LEP Electroweak working group,
shows that experimental data makes a Higgs boson lighter than 200 GeV most probable.
On the other hand, a Higgs boson with mass larger than 200 GeV is not experimentally
excluded. Until this is the case, it is still interesting to investigate how to study the
properties also of a heavier Higgs boson.

Unfortunately, the decay mode (1.1) can not be used to determine the CP-state of a
CP-odd Higgs boson in a model that conserves CP, due to the fact that the AV;V, coupling
does not exist at tree level but is induced only through a fermion loop. The decay rate for
A — V1 V5 is thus very small in a CP-conserving theory.

In a theory with CP violation, on the other hand, it is possible to have Higgs bosons
which are strongly mixed states of CP-even and CP-odd states [6]. The rate for a CP-odd
decay of a mixed state might therefore be larger in such a model. As a first approximation
to the study of a model with CP violation, I have performed background studies for the
hadron collider LHC, for a simple model with CP conservation, where the decay rate for
the decay A — V114 is comparable to the decay rate for a CP-even Higgs boson.

Other background studies have been performed for the possibility of measuring the
CP-properties of a Higgs boson, both for the LHC [15] as well as for an eTe™ collider
[10, 16, 17, 18]. At LHC the QCD background is very large, and this makes studies of
many angular distributions difficult. An ete™ collider seems to be a better tool to measure
the CP-properties of a Higgs boson.

Next, I give an overview of the following chapters in this thesis:

e Theoretical Background: The chapter starts with an introduction to the Standard
Model. It goes on with describing gauge theories (short) and the Higgs mechanism.
The chapter ends with an introduction to CP transformations.

e The Higgs Decay: The chapter contains the calculation of the decay rate dI"/d¢, for
a CP-even and a CP-odd Higgs boson. The calculation involves numerical integration.
At the end of the chapter, dI'/d¢ is plotted for several values of the Higgs mass.

e Monte Carlo Studies: The chapter contains Monte Carlo analyses for the possi-
bility of measuring the CP-property of a Higgs boson at the LHC, assuming a simple
model. The Monte Carlo studies are performed using the Monte Carlo program
PYTHIA. Plots of several angular distributions for the decay H — ZZ — 4l are
shown, in addition to the results of the statistical analysis. Most of the plots are
placed in an appendix though, due to the large number of them.

e Conclusion: The results obtained in the thesis are summarised.
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e Appendix A: The first appendix contains plots of the correlations for several angular
observables.

e Appendix B: This appendix contains plots of the results from the statistical anal-
ysis.

e Appendix C: The third appendix contains the source code of a fortran program
which was used for the statistical analysis.



Chapter 2

Theoretical Background

What is the Higgs boson, and why do particle physicists so desperately want to find it?
In this section I will give the reader an introduction to the so-called Standard Model of
elementary particle physics, and try to explain the point of introducing a Higgs boson.
But we will have to start with the beginning. So let us start with answering the question,
what are elementary particles?

We believe today that the fundamental building blocks of nature are particles. There
are two kinds, the matter particles fermions, and the force carrying particles bosons. Let us
start with the matter particles. The best known example of a fermion is the electron, e.
The electron is believed to be a point particle, which means that it can not be divided into
smaller parts and that it has got zero diameter. It belongs to a group of fermions called
leptons. There are six leptons in total. The electron neutrino, v,, an electrically neutral
very light particle, is the other lepton most closely related to the electron. The other four
leptons are copies of the electron and the electron neutrino respectively, only that they
are heavier. They are called muon, p, muon neutrino, v,, tau, 7, and tau neutrino, v;.
The electron, muon and tau are electrically charged, with charge equal to —1.6 x 1071¢ C,
and the three neutrinos are all electrically neutral and have small masses compared to the
other leptons.

The other group of fundamental fermions are the quarks. Quarks are the kind of
particles that build up the protons and neutrons in an atomic nucleus. What separates
quarks from leptons is the fact that quarks interact strongly. This means that the strong
force, one of the four fundamental forces in nature, affects the quarks but not the leptons. I
will get back to the strong force later in this section. There are six distinct quarks like there
are six leptons, but in addition quarks have got a property called colour charge (which has
nothing to do with the colours we can see). Each of the six quarks come in three different
colours, which are often denoted by green, blue and red. Counting the different colours
there is actually eighteen types of quarks, six by three. The six different quark types which
we call flavour, have got the names down, up, strange, charm, bottom and top. For short
we just say d, u, s, ¢, b and t quarks. Here the d and u quarks are the ones that make
up protons and neutrons, and therefore all ordinary matter. The other four quarks are
heavier, just as with the leptons. The heaviest quark, the top, has got a mass of about 170
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times the mass of the hydrogen atom.

Quarks also have another property which makes them different from the leptons. They
are confined. This means that a quark can never exist on its own, but must always
be bound with other quarks (or antiquarks) in larger particles which are called hadrons.
Protons and neutrons are examples of hadrons. In addition there exist a large number of
more rare hadrons, which for instance are produced in particle accelerators or when cosmic
radiation hits the earth atmosphere. These are sometimes referred to as the “hadronic
z00”. It is the colour charge that makes the quarks confined. One red, one green and one
blue quark together give a colour-neutral bound state, and can therefore exist on its own.

Next I introduce the antiparticles. We believe today that all fundamental particles
must have a mirror-image antiparticle. There are some particles, though, that are their
own antiparticles, for instance the photon. The antiparticle has the same mass as the
particle, and it has positive energy, but all its different charges have the opposite sign. The
antiparticle of the electron is the positron, e*. The electron has negative electric charge
—e, where e is the elementary charge, e = 1.6 x 1071 Coulomb. The positron, on the other
hand, has the electric charge +e. In the same manner there exist antiquarks for all quarks,
for instance anti-u and anti-d. Antiparticles are often denoted by the name of the particle,
but with a bar over it, like 4. The antiquarks can have the colours anti-red, anti-blue and
anti-green. A green quark and an anti-green antiquark together give a colourless object,
and can therefore exist on its own.

Having introduced the fermions, it is time to say something about the bosons, the force
carriers. I will list what is believed to be the four fundamental forces in nature, and name
the bosons which are mediating them.

The gravitational force is the most familiar one from daily life. It is described by The
General Theory of Relativity, by Albert Einstein. The gravitational force is responsible
for us having weight, and for the Earth circling around the Sun. It is the weakest of
the four fundamental forces, and the only one which has so far not been described by a
quantum field theory. Quantum field theories are the theories we use today to describe the
elementary particles and the way they interact with each other via forces. We believe that
the gravitational force is mediated by the graviton. This is a boson with spin 2, which has
so far never been observed in experiments.

Before we go on I will shortly mention that particle spin is an intrinsic quality of the
elementary particles, like for instance charge or mass. But to some degree it gives the
particle the same properties as if it were rotating around its own axis, and therefore the
name spin. All fermions have half-integer spin, the quarks and leptons have spin 1/2, and
all bosons have integer spin.

Next I will say something about the electromagnetic force. The electromagnetic force
is responsible for all electric and magnetic phenomena, like for instance electric current,
the magnetic field of the earth, which is responsible for the way compasses works, or
the forces that keep atoms together. This force is described by the theory Quantum
Electrodynamics, short QED, which is a quantum field theory. I will say more about the
properties of quantum field theories later in this chapter. For now I will mention that
the electromagnetic force acts on all particles with electric charge, which is all quarks, the



charged leptons, and their antiparticles, and some of the bosons which will be introduced
later. This force is mediated by photons, the particles which make up light and other
electromagnetic waves like radio-waves. The theory QED has been tested to a very high
level of precision in experiments, and we believe that it gives a very accurate description
of electric and magnetic phenomena.

I will now introduce the strong force, which only affects quarks, as mentioned earlier.
Actually, the strong force works on all particles with colour charge. The strong force binds
quarks together in colourless hadrons, and it also binds protons and neutrons together in
the atomic nuclei. The force is mediated by eight distinct bosons called gluons, which carry
combinations of colour and anti-colour. This means of course, that the strong force also
affects the gluons. That is, the gluons interact with each other. This is different from QED,
where the photon neither carries electric charge nor interacts directly with other photons.
The gluons are massless spin 1 bosons. The strong force is described by the quantum field
theory Quantum Chromodynamics, short QCD. Chromo here stands for colour.

The last of the four fundamental forces, the weak force, is mediated by very heavy spin
1 bosons, called W, W~ and Z°. As might be understood from the superscripts, the W
bosons are electrically charged, and the Z boson is electrically neutral. The electromagnetic
force and the weak force have been unified into the Standard Electroweak Theory, by
Glashow, Salam and Weinberg [2]. This unification shows that the massless photon and
the very massive W* and Z bosons are in some way related, and that electromagnetic
interactions and weak interactions are only different aspects of the same fundamental force.
There exists a symmetry between the heavy vector bosons W= and Z and the photon v in
the theory, but this symmetry is broken by the fact that the mass of the photon (which is
equal to zero) is so different from the masses of the three other bosons. In order to make
a theory for the electroweak interactions where the bosons W and Z are allowed to be
massive, one must make use of a mechanism which is called the Higgs mechanism.

The Higgs mechanism makes use of a trick called spontaneous symmetry breaking,
which allows one to introduce boson and fermion masses. But the trick also introduces
a new boson, the Higgs boson, which has got spin 0. Spin 0 particles are called scalars.
The Higgs boson has not been experimentally observed yet, so we do not know whether
this is the right solution to the problem with the particle masses. It is believed though,
that either a Higgs boson exists, or the theory we have today, The Standard Model, is not
the complete theory, but there exists some “new physics” (phenomena in particle physics
which are not described by The Standard Model). We will probably know which answer is
right when the next generation of particle accelerators (the Large Hadron Collider (LHC)
at CERN and Tesla at DESY) have been running for some years.

It is important to explore the properties of different proposed models for the Higgs
mechanism, as a preparation for the planned experiments at the new accelerators. The
Standard Model is only the simplest of many theories for the interactions described above.
One important group of theories are the so-called supersymmetric theories, denoted so
because they contain a higher degree of symmetry, which does not exist in the Standard
Model. In supersymmetric theories there exist not only antiparticles for all particles, but
also bosonic partners for all fermions, and fermionic partners for the bosons. In one specific
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supersymmetric theory, The Minimal Supersymmetric extension of the Standard Model,
short MSSM, there is not only one Higgs boson, but five distinct ones [4].

2.1 Relativistic Notation and Natural Units

In his Special Theory of Relativity, Albert Einstein introduced the idea that time is just
another dimension of the universe, and that it should be treated similarly to the other three
(space) dimensions. Working with objects that reach relativistic energies, like elementary
particles, it is conventional to use four-vector notation [3]:

= (ct,x), p©=0,1,2,3. (2.1)

Here the zeroth component contains the time dimension ¢, and the other three components
contain the three space dimensions x. The symbol ¢ stands for the speed of light in vacuum.
The vector z* with upper index, is called a contravariant vector. The covariant vector is
defined by

3
',L.N = Z g,LLI/:L‘V = gl“ij‘V . (2.2)
v=0
Here we have used the summation convention, which states that an index that appears
both as upper and lower index should be summed over. The metric tensor is defined by:

g = diag(1,-1,—-1,-1). (2.3)
It has the following properties:
9" gur = gx = 8%, (2.4)
and
guu = Guv - (25)

The scalar product of two four-vectors a and b is given by
ab = a"b, = a,b" = g,,a"b" =a’t® —a-b. (2.6)

The scalar product of any two four-vectors is invariant under a Lorentz transformation.
Specifically, the energy-momentum four-vector is equal to:

Pt =(E/c¢,p). (2.7)

When it contains the energy and momentum of a particle with mass m, we have the

following relation:
p® =pupt = E*/* — p* = m?c*. (2.8)

The four-dimensional generalisation of the gradient V is defined by:

0 10
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with 5
1 2
In high-energy physics it is conventional to work in the system of Natural Units, also
called “God-given” units [19]. In this system the speed of light ¢, and the reduced Planck
constant 7 = h/2m are chosen as the units of speed and action/angular momentum, re-

spectively. This is the same as setting their values equal to one:
h=c=1. (2.11)

The result of this choice of units is that there only exists one dimension. It is common to
choose this dimension as energy, or mass. With the relations below, any time or length
can be expressed in units of mass or energy and vice versa

[length] = [time] = [energy]™" = [mass]™". (2.12)

For the rest of this thesis, I have worked in natural units unless otherwise stated.

2.2 Gauge Theories

The quantum field theory QED is the simplest example of a gauge theory. A quantum field
theory is described by its Lagrangian density. The simplest form of a quantum field theory
is a so-called free-field theory, where the fields (which represent different particle types)
do not interact with each other at all. For one type of fermions, the free-field Lagrangian
density has the following form:

Lo(z) = ¢(x) ("0, — m)y(z) . (2.13)

Here m is the mass of the fermion, 1(z) is the fermion field (a column “matrix” with 4
elements, also called a spinor field) and v* is a 4 x 4 matrix. The field ¢(z) = ¥T(2)7° is
the Hermitian conjugate of 1(z) times a 4 x 4 matrix ~°.

In order to derive the interaction of the (electrically charged) fermion field ¢ (z) with
photons, as in QED, we might demand that the Lagrangian density be invariant under a
local U(1) phase transformation:

P(z) = P (z) P(z)e /@
U(x) =Y (x) = P(a)e@. (2.14)

This is called a local phase transformation because the phase ¢ f(z) depends on the variable
x, and therefore might have a different value at each point in space-time. It is a U(1) phase
transformation because €’/(*) is a 1 x 1 unitary matrix.

The Lagrangian density in the form (2.13) is not invariant under this local U(1) phase
transformation, but if we replace the derivative 0, with a so-called covariant derivative:

Dyip(x) = [0, +iqAu(2)]¥ (@), (2.15)
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and define the transformation of the gauge field A, (x) under a local phase transformation

A(x) = Ay (1) = Au(x) + 9,/ (a), (2.16)

where f(z) can be any differentiable function of z, then one can show that the Lagrangian
density

L(z) = ¢(z)((n" Dy — m)i(x) (2.17)
is invariant under the simultaneous transformations (2.14) and (2.16).

From the requirement that the free-field Lagrangian density Ly should be invariant
under the local U(1) phase transformation (2.14), we have now obtained a Lagrangian
density with an interaction term L£;, which creates an interaction between the fermion
field ¢ (z) and the gauge field A,:

L(z) = Lo(x) = qd(@)y"1h () Au(@) = Lo(z) + Li(2). (2.18)

Here £;(x) is the interaction term in the Lagrangian density, and ¢ is the electric charge of
the fermion represented by the field ¢(z). If we in addition added the free-field Lagrangian
density of the field A,(z) to the Lagrangian in (2.17), we would have the QED Lagrangian
for one type of fermion ¢(z). The gauge field A,(x) would then represent photons.

This is not the way QED was historically developed, but it has turned out that the
above prescription is a fruitful way of constructing new theories. The transformations
(2.14) and (2.16) are U(1) gauge transformations, and a theory which is invariant under
a set of gauge transformation is called a gauge theory. All the quantum field theories
mentioned in the introduction of this chapter, QED, QCD and the Standard Electroweak
Theory, are gauge theories.

2.3 The Higgs Mechanism

The Higgs mechanism is exploited in the Standard Electroweak Theory, in order to allow
fermions and the heavy vector bosons W= and Z to have masses. Without a mechanism
such as the Higgs mechanism, it is not possible to add mass terms to the Lagrangian
density of electroweak theory and still retain the gauge invariance. In this section, except
for the part about Two-Higgs-Doublet Models, I follow the presentation and notation of
ref. [3].

I will start by explaining the mechanism of spontaneous symmetry breaking. As I have
already mentioned, a quantum field theory is defined by its Lagrangian density. If the
Lagrangian density is invariant under some transformation, like for instance a rotation in
space or a gauge transformation, we say that this transformation is a symmetry of the
Lagrangian.

In quantum mechanics one talks about eigenstates and energy levels. An eigenstate is
simply some possible state of the system, and its energy level is the corresponding energy of
the eigenstate. The eigenstates and energy levels of a system are given by the equation(s)
of motion of the system together with initial conditions. The equation(s) of motion are
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again given by the Lagrangian density. If there is more than one eigenstate which share
the same energy level, we say that this energy level is degenerate.

When the Lagrangian density has got some symmetry transformation, the eigenstates of
a degenerate energy level are not invariant under this symmetry transformation. Instead
they transform into some linear combination of this group of eigenstates. If the lowest
energy level is degenerate, the ground state, the state of lowest energy, is not unique, and
we can choose any of the eigenstates of the lowest energy as the ground state.

The degeneracy of the lowest energy level thus gives a ground state of the system which
is not invariant under a symmetry transformation of the Lagrangian density. This is the
mechanism of spontaneous symmetry breaking.

One classic example of spontaneous symmetry breaking is ferromagnetic material. It
is the direction of the spins of the electrons in the material which determines its magnetic
properties. The electromagnetic forces which work on the spins are invariant under space
rotations. Therefore rotations are symmetry transformations of the Lagrangian. When the
ferromagnetic material is cooled down below the critical temperature however, it reaches
its ground state where all electron spins point in the same direction. The choice of this
direction is arbitrary, and the ground state is clearly not invariant under rotations.

In quantum field theory, a degenerate lowest energy level is equivalent to the fact that
the vacuum is degenerate. The vacuum, the state where no particles exist, is the lowest
energy level of a quantum field theory.

2.3.1 The Goldstone Model

The vacuum can only be degenerate if there is some quantity which is not equal to zero
for the vacuum state. This quantity can be the vacuum expectation value of a scalar field
¢(z):

<0lp(x)|0>=c#0. (2.19)

A scalar field ¢(z) represents a spin 0 boson, which we call a scalar particle. The fact that
the vacuum expectation value of ¢(x) is a constant, means that no scalar particle exists
in vacuum. The vacuum expectation values of spinor fields ¢ (z) (representing spin 1/2
fermions) and vector fields A, (z) (representing spin 1 bosons) must be equal to zero if we
want the ground state to be invariant under Lorentz boosts and rotations

<0ly(z)|0>=0, <0|A,(z)]0>=0. (2.20)

The Goldstone model is the simplest example of a field theory with spontaneous sym-
metry breaking. Its Lagrangian density is given by

L(z) = [0"¢"(2)][0u0(2)] — p|B(2)[* = No(2)|*, (2.21)
where
1 .
o(z) = E[% () +iga(z)] (2:22)

is a complex scalar field, and p? and \ are real parameters.
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The Hamiltonian density of the Goldstone model is given by
H(z) = [0°0" (2)][00¢(2)] + [V (2)] - [VS(2)] + p?[d()[” + A b)) " (2.23)

Here the first two terms are the kinetic energy terms, and the last two terms represent
the potential energy. We see that A must be positive if there should exist a state with
lowest energy, a ground state. If u? is positive the potential energy will have its minimum
value for ¢(z) = 0. The value of ¢(z) which gives the minimum of the potential energy
corresponds to the vacuum expectation value of ¢(z) in the quantised theory. We can see
that for positive p? there is no spontaneous symmetry breaking.

If 12 is negative the potential energy will have a minimum value for

2\ V2
B(x) = g = (%) et 0<6<2r. (2.24)
This is a whole circle of points in the ¢;¢@s-plane.
The Lagrangian density of the Goldstone model is invariant under a so-called global
U(1) phase transformation

¢(x) = ¢'(x) = g(@)e’®,  ¢*(x) = ¢"(x) = ¢"(x)e . (2.25)

This is a U(1) transformation because e * is a unitary 1 x 1 matrix. It is a global
transformation because a does not depend on .

From the circle of points in (2.24), we can choose any value of ¢(x) as the ground state.
It is practical to choose the real value

2\ 1/2
oo = (%) = (2.26)

of ¢(x). When we choose a certain value for ¢(z) as the ground state, it is no longer
invariant under the transformation (2.25), and we therefore have spontaneous symmetry
breaking.

We can choose a new basis for ¢(x) around the value of the ground state (2.26):

1 .
é(z) = E[U +o(x) +in(z)]. (2.27)

Here o(z) and n(z) are two real-valued scalar fields. The Lagrangian density expressed in
terms of the new basis is given by

L) = S0"0@)Bu0()] — 5200 (@) + S0 n@)[0um()
Moo (@) [0 (2) + 7 @)] = o) + @] (2.28)

where a constant term is omitted. The three first terms are the free-field terms of the fields
o(z) and n(z) whereas the two last terms are of order three or higher in the fields and
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therefore represent interactions. From the free-field terms one can see that for negative y?
the Goldstone model gives rise to the neutral scalar bosons o and 7. The bosons o have
got mass with the value m, = v/2Av? whereas the bosons 7 are massless. The bosons 7n
are referred to as Goldstone bosons. Goldstone bosons do not exist in nature, but they
still play an important role in the Standard Electroweak Theory, as will be shown in the
following.

2.3.2 The Higgs Model

The Goldstone model is a simple example of spontaneous symmetry breaking in a quantum
field theory. We want to exploit this mechanism in order to give masses to the gauge
bosons W and Z in the electroweak theory. The Higgs model is a simple example of how
the mechanism of spontaneous symmetry breaking can give rise to massive gauge bosons
without destroying the gauge invariance of the gauge theory.

We want to make the Lagrangian density of the Goldstone model (2.21) invariant under
the U(1) gauge transformation

d(z) = ¢'(z) = @(x)e @
o*(z) = ¢ (x) = ¢ (x)e @
Aulo) > A,(@) = Aula) /(). (2.29)

From the previous section we know that this is possible if we replace the derivative 9, by
a covariant derivative

Dyd(x) = [0, + igAu(x)]o(z) (2.30)
The Lagrangian density of the Higgs model can now be written as

L(z) = [D"¢(@)]"[Dus()] — 1*|6()|* — Ap(z)|*

1 4
— 1 Fw (@) P (), (2.31)
where we have added a free-field term of the gauge field A, (x), and where
Fu(z) =0,A.(x) — 0,A,(2) (2.32)

is the field tensor of the gauge field.

Now we proceed in the same way as for the Goldstone model. For u? negative the
vacuum is degenerate. The vacuum expectation value of A,(x) must be equal to zero, and
minima of the potential energy are given by the circle (2.24). If we choose the ground
state @¢(z) = @o, where ¢y is given by (2.26), and expand ¢(z) according to (2.27), the
Lagrangian density of the Higgs model can be written as

1

L) = S o@lBuo@)] — 5 N0 () — 1 Fule) P (2)

1
1 2 1

+ 5 (qv) A, (2) A% () + 5[0"n(2)][0un(2)] + quA*(2)dun (@)

+ ‘higher order terms’. (2.33)
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Here ‘higher order terms’ are terms which are of third order or higher in the fields, and
therefore are interaction terms.

There is a problem with this expression for the Lagrangian density. In fact, the term
quA*(z)0d,n(z) contains both of the fields 7(z) and A,(z), but it is only of order two so it
is no interaction term. This means that the fields n(z) and A,(z) are not independent of
each other.

This problem can be solved by noting that the field n(x) can be transformed away by
a U(1) gauge transformation (2.29), so that the field ¢(z) can be written in the following
form:

1
¢(z) = v+ o) (2.34)

This represents a choice of gauge, which means that the above expression for ¢(z) is not
invariant under U(1) gauge transformations. The chosen gauge is called the unitary gauge.
In this gauge the free-field part of the Lagrangian density has the form

Lo(w) = S[00(@)]Bu0(2)] - 5(2X?)0%(@)
— LF(n) PP (@) + 5 (o) Au(2) A (). (2.35)

In addition the total Lagrangian density contains interaction terms.

The above free-field Lagrangian density represents a massive scalar field o(z), which
creates scalar particles with mass m, = v2Av?, and a massive vector field A,(z), which
creates vector bosons with mass m4 = |qv|. Notice that the Goldstone boson 7 has
disappeared, while the gauge field A,(z) has acquired a mass. We say that the extra
degree of freedom of the Goldstone boson gives mass to the gauge boson. In some way the
Goldstone boson and the massless gauge boson together give a massive gauge boson.

We have now demonstrated that the mechanism of spontaneous symmetry breaking
can give masses to gauge bosons without ruining the gauge invariance of the theory. This
is called the Higgs mechanism.

2.3.3 Standard Electroweak Theory

In the Standard Electroweak Theory, by Glashow, Salam and Weinberg [2], the Higgs
mechanism must create masses for three gauge bosons, W+, W~ and Z. Tt is therefore
not enough with spontaneous breaking of the symmetry under U(1) gauge transforma-
tions. The symmetry under SU(2) gauge transformations has to be broken. The Standard
Electroweak Theory is a SU(2), x U(1),- gauge theory, which means that its Lagrangian
density is invariant under both SU(2), and U(1), gauge transformations. Here L and YV
stand for the kind of charges the gauge fields interact with (similar to electric charge ¢ for
QED). The SU(2) matrices are 2 X 2 unitary matrices which have unit determinants.

Instead of a complex scalar field ¢(z), the field of the Lagrangian density (2.31) must
be an SU(2); doublet:

B(z) = < ﬁbgg ) . (2.36)
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Here the fields ¢,(z) and ¢,(z) are complex scalar fields. An SU(2) doublet has special
transformation properties under SU(2) gauge transformations.

A Lagrangian density for ®(z) which is invariant under SU(2), x U(1), gauge trans-
formations can be written as

Li(z) = [D"0(2)]'[Dy®(2)] — 1* P! (2)B(z) — A[® (2)D(x)]*. (2.37)

Here
Dt (z) = [0" 4 igr; W} (x)/2 + ig'Y B*(z)]®(x), (2.38)

where W/'(z) for j = 1,2,3, and B*(z) are the SU(2) and U(1) gauge fields. Linear
combinations of these fields give rise to the four electroweak vector bosons W+, W~ Z
and the photon 7. In addition 7; for j = 1,2,3 are the SU(2) generators. They are
2 x 2 matrices which are the basis of all SU(2) transformations. The quantities g, ¢’ and
Y are coupling constants and hypercharge respectively. The coupling constants give the
strengths of interactions between particles and the hypercharge is a charge similar to the
electric charge.

As was the case for the simple Higgs model, the potential energy has a minimum value
for a circle of points in the ¢,(z)@y(z)-plane:

2 U2

—
®i2o = [dal® + 04" = o - =+ (2:39)

We can choose any of these points as the value of ®(x) in the ground state, so we choose

By = ( ) /(3/5 ) . (2.40)

The doublet ®(x) can be transformed to a different basis

_ 1 [ m(z) + ()
(z) = NG ( v+ o(z) + in3(x) ) ' (2.41)

Here o(z) and n;(x) for i = 1,2,3, are real scalar fields. It turns out that the n; fields
are not independent of the gauge fields Wf'(z) and B*(z). They can be transformed away
through an SU(2) gauge transformation. We are then left with three massive gauge fields,
which represent the vector bosons W+, W~ and Z, a massless gauge field which represents
the photon v, and a massive scalar field o(x), which represents a massive neutral spin 0
boson. This boson is the famous Higgs boson. The Standard Electroweak Theory predicts
its existence, but the mass of the Higgs boson can not be predicted from the theory (though
upper and lower limits have been deduced [4]).

2.3.4 Two-Higgs-Doublet Models, 2HDM

The SU(2) Higgs doublet in the Standard Electroweak Theory is the simplest mechanism
for breaking of SU(2); x U(1), symmetry into U(1),,. We do not have any experimental
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evidence that this is the correct model for electroweak symmetry breaking though. More
complex models have therefore been suggested. One group of extended models are the so-
called Two-Higgs-Doublet Models, 2HDM [4, 6]. Here there are two SU(2) Higgs doublets,
as the name suggests

B o1 (2)
(o) = ( (01 + 1() + 01 (=) ) ’ (2.42)

and
_ 3 (z)
(z) = ( (03 + a(w) +ias(x)) ) : (2.43)

Here, v,/ V2 and v/ V2 are the vacuum expectation values of the fields. By a suitable
rotation they can both be taken to be real.

Instead of one scalar Higgs boson as in the Standard Electroweak Theory, five spin
0 bosons are predicted in a 2HDM. There are two charged bosons H* and H~, which
are linear combinations of the complex fields ¢ and ¢5. There are two neutral CP-even
bosons, a lighter A and a heavier H. These are linear combinations of the real fields ¢,
and ¢o. Last but not least, there is one neutral CP-odd Higgs boson A, which is a linear
combination of the real fields a; and as.

2.4 The CP-Transformation

The transformations P, T and C are examples of discrete transformations, which means
that they, unlike the continuous Lorentz transformations, can not be made arbitrarily small
[19]. Continuous Lorentz transformations consist of rotations and boosts in space-time. A
boost is a transformation to a different frame of reference, which is moving with a constant
speed relative to the original frame.

Parity, denoted by P, exchanges (¢,x) by (¢, —x), as mentioned in the Introduction.
Time reversal, T, exchanges (¢,x) by (—t,x), and thereby the past and the future are
interchanged. These are both space-time transformations. In addition, C' is connected
to P and T, even though it is not a space-time transformation. Charge conjugation, C,
interchanges particles and antiparticles.

The different fields or products of fields in a Lagrangian density can be classified as
scalars, pseudoscalars, vectors, pseudovectors and tensors, depending on how they trans-
form under continuous Lorentz transformations and P.

Scalars and pseudoscalars are both invariant under continuous Lorentz transformations,
but a scalar is invariant under P, whereas a pseudoscalar changes sign. Similarly, vectors
and pseudovectors transform in the same way under continuous Lorentz transformations,
but vectors transform according to (V°(z), V(z)) — (V°(z), =V (z)) under P, whereas
pseudovectors transform according to (A%(z), A(z)) — (—A%(z), A(z)).

In a theory which conserves C', P or T, the Lagrangian density must be invariant under
the corresponding transformation. It is possible to construct theories which violate any
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of these three discrete symmetries, by adding a new term to the Lagrangian density that
is not invariant. But we demand that all theories must be invariant under continuous
Lorentz transformations. The laws of physics must be the same independent of which
frame of reference we are in. This is the famous principle of relativity, which is the basis
of the Special Theory of Relativity by A. Einstein.

Therefore we can not add terms to a Lagrangian density which are not Lorentz scalars
(are not invariant under continuous Lorentz transformations). From this one can show
that all quantum field theories must be invariant under the simultaneous transformation
CPT. This is called the C'PT-theorem.

The gauge theories QED and QCD are both invariant under C' and P, separately. The
Standard Electroweak Theory violates P, but it is almost invariant under C'P. From the
fact that much more matter than antimatter exists in the universe, one can deduce that
CP must be violated. We do not know yet, though, what the origin of all of this C'P-
violation is. One part of the C'P violation comes from the mixing of quarks of different
types. A d quark can decay into a u quark and the other way around. This mixing is
described by the so-called CKM-matrix, from Cabibbo-Kobayashi-Maskawa [20]. This can
not explain all the difference we observe between matter an antimatter though. Therefore
the origin of C'P violation is still a mystery, and much effort is made to find the solution
to this problem.
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Chapter 3

The Higgs Decay

In this chapter I have studied distributions in the decay

H — ViV = fifafsfs, (3.1)

where H is either a CP-even h, or a CP-odd A, Higgs boson. Here, V;V; are a pair of
heavy vector bosons, WtW = or ZZ, and fi fofsfs are two fermion-antifermion pairs. The
fermion pair f; f» is the decay product of V; and the pair f;fs is the decay product of Va.

The CP-state of the Higgs boson will here determine the polarisations of the two vector
bosons, and the polarisations will in turn determine the distributions of the decay angles
in the decays of the two vector bosons to fermions. Therefore the momenta of the four
fermions contain information about the CP-state of the Higgs boson.

One of the interesting distributions is the observable ¢, which is defined as follows [8-
14]: The momenta of V;, f; and f, for (4,7, k) = (1,1,2),(2,3,4), all lie in the same plane
(from momentum conservation in the decay), and this plane we might denote as the decay
plane of the decay V; — f; fx. The angle ¢ is the angle between the decay planes of V; and
Vo
(a1 X q2)-(q3 X q4)

a1 X q2f|qs X qu|
Here q; is the momentum of the final state fermion or antifermion f;.

This chapter contains the calculations of the differential decay rate dI"/d¢ for the above
decay. The calculations confirm earlier obtained results [10]. As is the case in [10], the
decay rate is calculated with finite widths for the vector bosons, so that the correlations
also can be studied for Higgs masses below the threshold, 2m,, .

cos ¢ = (3.2)

3.1 The Differential Higgs Decay Rate

In this section I am going to calculate an expression for the squared matrix element and
the fully differential decay rate dI" for a CP-even Higgs boson h and a CP-odd Higgs boson
A, in terms of products of the fermion momenta. See figure 3.1 for a Feynman diagram for
the decay, with the notation used.

19
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Figure 3.1: Decay of a CP-even or CP-odd Higgs boson into two fermion-antifermion pairs

The first part of this section contains the calculations for a CP-even Higgs boson h,
and the second part contains the corresponding calculations for a CP-odd Higgs boson A.
The differential decay rate of a particle at rest into a final state of four particles is given

by [19]:
45(4 24 1 2 (17 d’a

The momentum of the Higgs particle is equal to p = (m, 0) in its own rest frame.

3.1.1 Decay of a CP-even Higgs Boson h

For the CP-even Higgs boson the matrix element of the process can be written as:
—1
M = a —— | v* g1 (cos x1 — sin v
(q1) <2\/§> 7 g1 (cos X1 X1 7s) v(g2)

x(gs) (2:—/9 7" ga (cos X — sin x275) v(qa)

o (Gop + Gatu/miy) U=gsy + 44,/ M)
s1 —mZ +imyly sy —m2 +imyly

xi(2-2Y*)/Gpmi g . (3.4)

This can be seen from the Feynman diagram in figure 3.1 and from the Feynman rules
[3]. Here s; and s, are the squared invariant masses of the vector bosons, defined by
s1=¢*=(q1 +¢)? and sy = ¢'? = (g3 + q4)?, and my and 'y are the mass and width of
the vector bosons.
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The coupling of the standard-model Higgs to vector bosons is given by

i(2-2Y4)\/Gpm? g (3.5)

where G is the Fermi constant. The couplings between the vector bosons and the fermion-
antifermion pairs can be written as

(g — g ys) =12 3.6
2\/57(% ga' 75) 2. (3.6)

I will use the following parametrisation for the vector and axial couplings:

9 =gicosxi, g% =gisinyg, i=12. (3.7)

The angles x; and x» only appear in the expression sin2y; in the decay rate. Relevant
values of sin 2y; and the coupling constants g; can be found in table 3.1 [21].

Vil f sin 2; 9;
W | leptons 1 V2g
W | quarks 1 V2Viag
Z v 1 g
cos Oy
2(1 — 4 sin? Ow) g .2 211
Z |e u, : =0.1498 —=[1+4 (1 —4sin’# /2
ST 1+(1—4Sln20w)2 ﬂcosew[ ( W)]

2(1 — 8/3 sin? Oyy) g 9 ol
7 ¢ =0.6687 | ————[1+(1—8/3 0 /2
" 1+ (1 — 8/3 sin? Oy)2 V2 cos HW[ * /3 st fw )]
2(1 — 4/3 sin” Oyy) g .2 211/2
7 |d, s b =0.9358 | ——=—[1+(1—4/3 0 /
y S, 1+ (1 — 4/3 sin2 HW)Q \/§COS HW[ + ( / sin W) ]

Table 3.1: sin 2y and g; for the different V f f couplings

I am now going to simplify the expression (3.4) for the matrix element. In the vector
boson propagators the terms g,q,/m? and 959,/ m?, can be discarded in the approximation
that the fermions are massless. This can be seen from the Dirac equation,

u(p)p =u(p)m, pv(p)=-mu(p),



22 CHAPTER 3. THE HIGGS DECAY

and from a part of the matrix element

) . q
u(q1)d(cos x1 — sin x175)v(g2) —5
my
) . q
= u(q1)(dh + ¢2)(cos x1 — sin x1 75)v(g2) m—(;
1%
= (qy)mi (cos x1 — sin x1 75)0(gs) ~=-
my
— u(g1)(cos x1 + sin x1 75) Mm2v(go) ni—i : (3.8)
%

We see that the terms can be discarded because they are proportional to m;/my and
mz/mv.

In the approximation of massless fermions the matrix element can therefore be written
as:

. 2
g.
M = 521/4 Gpm? (H i )

o1 85— my + imy Ty

X T(q1)y*(cos x1 — sin x1 v5)v(gz)
X U(qs)yu(cos x2 — sin xa2 v5)v(qa) - (3.9)

I am now going to calculate the square of the matrix element. The expression we find
is:

M

V3G o ( : 2N, )

24 Jl;[l (s; — mV) +m2T%

X u(q1)y*(cos x1 — sin x1 v5)v(g2)v(g2)¥” (cos x1 — sin x1 vs5)u(qg1)
X (g3)vu(cos x2 — sin o 75)v(q4)0(qa) . (cos x2 — sin x2 5)u(gs) (3.10)

Here, N; is equal to 1 if V; couples to leptons, and equal to 3 if V; couples to quarks. The
extra factor 3 for quarks represents a sum over the colour degrees of freedom.

This is the squared matrix element for specific momentum and spin states of the final
state fermions. We are not interested in the spin states of the fermions, and therefore sum
the squared matrix element over all fermion spin states. This is called the spin sum. In
the approximation of massless fermions we now get:

ST IMP = fGFmV (f[ % Nj)
m om bmo \ ;5 (s —mi)* +miIy

xTr[dﬂ/“ (cos x1 — sin x17s5)d2y” (cos x1 — sin x175)]

X Tr[¢f3y,(cos x2 — sin x275)dav,(cos x2 — sin x275)] - (3.11)

Here I have used the following normalisation for the spin sums of the fermions [19]:

Zur =p+m, (3.12)
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and
Zl vr(p)or(p) = p—m. (3.13)

In order to evaluate the traces of Dirac y-matrices, we will need some results concerning
these matrices [19]. The matrix 5 is the product of four “normal” y-matrices:

. 7; vpo
% =001 = = e (3.14)

It anticommutes with the other y-matrices, and the square of it is equal to one:

[V 75ls =0, ()2 =1. (3.15)

The results concerning traces that are relevant for these calculations are:

Te(v*"y"°) = 4(9*%9"° — g*79” + 9*°¢"")
Tr(vs7%yPy79°) = 44e®P? . (3.16)

Here the completely antisymmetric tensor €7 is equal to +1 for (o, 3,7,6) an even
permutation of (0,1,2,3), equal to —1 for an odd permutation, and vanishes if two or
more indices are the same. Contractions of the tensor can be simplified according to the
following formulae:

P e g = —24 (3.17)
Pre s, = —66" (3.18)

and
€M enpor = —2(gk g’ — ggy) - (3.19)

The metric tensor g, is diagonal, see (2.3):
g = diag(1,-1,-1,-1) . (3.20)
It can also be contracted over repeated indices, see (2.4):
99w = g, =0, (3.21)

By use of the above results, we are now able to simplify the traces:

Tr[g1y" (cos x1 — sin x175)d27” (cos x1 — sinx175)] = Tr[fy" gy’ (1 — sin(2x1) 75)]
= 4q1aQ2,8 331a”’3U ,
Tr(gsy,(cos x2 — sin x2 v5)da7(cos x2 — sin x275)] = Trlfsyuday, (1 — sin(2x2) 75)]
= 4(1?/,)(12 T2 puov » (3-22)
where

21 = (79" — g*P g + g g — isin(2) ). (3.23)
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One can see that z,"" A and T9 puov €ach consists of one part which is symmetric under

interchange of u and v, and one part which is antisymmetric. Therefore, the product of
xf‘“ﬂ “ and %3 pu0 only contains the product of the symmetric parts, and the product of
the antisymmetric parts, but no mixed terms. This enables us to calculate the product:
27 25 gy = 209595 + 9597 + sin(2x1) sin(2xz) (9590 — 9597)] - (3.24)
With the above expression for the product of the traces, we can now write down the
squared matrix element, in terms of the momenta of the final state fermions:

\/_GFmV ( 2 ZNJ- )

—ZIMI2

spm

I —my vy

X {(Ch 33)(q2-q4) + (91-94)(q2-43)
+sin(2x1) sin(2x2) [(q1-¢3)(92-94) — (q1-q4)(g2-g3)]} - (3.25)

With this expression for the matrix element, it is easy to write down the desired expression
for the fully differential decay rate for the decay of the CP-even Higgs boson. The result
in [10] is confirmed:

— omyts® (S g o) (TT T

dr = (2r)% (;qf p) (I:[ (2@32@)
rmy [ 7N,

1)

o (85— mi)? +mi T,

x {(q1-93)(q2-q4) + (q1-94)(g2-g3)
+sin(2x1) sin(2x2) [(q1°93)(92-94) — (q1°q4)(g2-93)]} - (3.26)

3.1.2 Decay of a CP-odd Higgs Boson A

The only new Feynman rule needed in order to calculate the matrix element for the decay
of a CP-odd Higgs boson, is the coupling of a CP-odd Higgs boson to vector bosons V1 V5.
Here V1V; denote, as before, WTW ™ or ZZ. The coupling comes from the Lagrangian
density term [10, 12, 13]:

1
Lavy = 1776'“/’)0 ViwVos A . (3.27)

Here V), is the field tensor of the vector boson V, defined by V,,, = 9,V,, — 9,V,, and A is
the CP-odd Higgs field. In a renormalisable quantum field theory this coupling can only
be induced at the loop level. This can be seen from the fact that n will have dimension
[mass| ! for this term [19] (page 80). A term with a coupling constant with a negative
mass dimension ruins the renormalisability of the theory if it occurs at tree level [19]. In
a realistic CP-conserving theory, 7 is expected to be small, since the associated mass scale
is assumed to be high.
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This Lagrangian density term gives the coupling
e’ g, (3.28)

where ¢ and ¢' are the momenta of the vector bosons V; and V5, respectively.
With this Feynman rule for the coupling, it is now possible to write down the matrix
element for the decay from the Feynman diagram in figure 3.1:

2377 H (s] —m2 + szFV>

X U(C]1)7 (cos x1 — sin x175)v(g2)
X @(q3)7y" (cos x2 — sin x27v5)v(qa)
X Gangpr€ " oy (3.29)

compare to (3.9) for the CP-even case. Here I have used the result from the calculation
of the CP-even matrix element (3.8), that allows me to discard the terms g¢,q,/m? and
454, /m?, in the numerator of the boson propagators, in the approximation that the fermions
are massless.

The matrix element squared then equals:

2
9iNj
MP? = 2 o
M= 50 T (s
X ?1(111)’)/ (COS X1 — sin X1’Y5) (Q )?7((12)7“((305 X1 — sin X1’Y5)U(Q1)

x u(qs)y” (COS Xa — sin X275)v(q4)(qa)7" (cos x2 — sin xo75)u(gs)
X €ap76q"q" e,wp,,q q°. (3.30)

We take the spin sum, and similar to (3.11) we get:

SiMP = ol T (o)

spin j=1 \\8;j — mi,)? +mi %,
x Trlg1v*(cos x1 — sin x175)d2y" (cos x1 — sin x175)]
x Tr[gs7® (cos x2 — sin x275 )day” (cos x2 — sin x2v5)]
X €060 0 € upoq”q . (3.31)

The traces over y-matrices are, except for the Lorentz indices, identical to the traces
we evaluated for the CP-even case. It is therefore easy to see from (3.22) that the traces
are equal to

Tr[l] = Tr[gy*(cos x1 — sin x175)d2y*(cos x1 — sin x17s5)]
e, T

= 4qiqo, (9™ — g g™ + gHg*T — isin 2x,€7H)
4‘]16‘]27'x6 TN: (332)
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and
Tr2] = Tr[ﬁgyﬁ (cos x2 — sin x275)day” (€Os X2 — sin xays)]
= 4Q3¢Q40(9¢ﬂgau — g%¢% + g% g% — isin 2x,€?P%)
= 4Q3¢Q40$g)ﬂ0u . (3.33)

With the above traces, we can write the squared matrix element in a more compact form:
1 2 g7
S = i1 :
spin 2 j=1 (Sj - m%/)Q + m%/F%/

X Q1eQ2TCI3¢CI4935§
X eaﬂydq’yqlﬁeuupoqpqla . (334)

on'/.ta:g)ﬂﬂu

This is not the final expression for the squared matrix element, though. We want to
write it in terms of products of the fermion momenta, as we did for the CP-even case. We
have to find a way to simplify the above expression. This can be done by noting that it
consists of some parts which are symmetric under interchange of certain indices, and some
parts which are antisymmetric. Symbolically this can be written as

) 1 5 9;
2 IME = ol H((sj—m%>2+m2vr2v)

spin j=1
X (M + A (S5 + A5 ) Nogu » (3.35)
where
St =qtgh — (q1 - 2) g™ + ¢l's (3.36)
and
S = gfgy — (g5~ a)9” + ¢4} (3.37)

are symmetric under interchange of the indices,

ATH = —isin 2x1€““"*q1cqar (3.38)
and
AP = —jsin 2X26¢’69VC]3¢(]49 (3.39)
are antisymmetric, whereas
Na/)’ul/ = eaﬂyéeuupaqvqldqpqm = N,uua,é’ (340)

is symmetric under the simultaneous interchanges o <+ p and § <+ v. We can now show
that some of the terms in (3.35) must be equal to zero:

SHAL Ny = SP*AYP Noas

= —SM™AL Nosu
=0, (3.41)
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and
SPAM N = SEPAECN,,05
- ZﬁVA?“Na,BuV
= 0. (3.42)

This enables us to get rid of two terms, and the matrix element can now be written in
the following form:

2 2
S = P (s )
spin j=1 (Sj - mV) + mVFV
X (ST"S5" Naguw + AT AS Nog) - (3.43)

We still have to calculate products involving two or four antisymmetric tensors e
though. It would be possible to contract two antisymmetric tensors over one common
index. This gives six terms with three Kronecker delta each. Two antisymmetric tensors
with no indices in common give twenty four terms with Kronecker deltas. The expressions
become very long, and it would be quite a job to calculate it all by hand.

I have used the algebraic programming system REDUCE [22] to calculate these prod-
ucts. I obtained the following results:

S8 Nagw = 2( = 2[(q1 - @) (g5 - 00)]?
—2[(q1 - 43)(q2 - 44) — (¢1 - @) (g2 - @)
+ (91 ¢2) (g3 - qu)
< {l(q1-as) + (@2 )]’ +[(1-a) + (2 - @)]’}) . (3:44)

and

AT AY Nogy = 28in 2y sin2x2(q1 - ¢2) (g3 - aa)
X {[(q1-g3) = (227 9)]* = [(1 - @u) — (g2 - g5)]°}
= 2sin 2x; sin 2x2(q1 - ¢2) (g3 - ¢4)
X [(q1 — g2) - (g3 + go)][(q1 + @2) - (g3 — q4)]. (3.45)
Now we are finally able to write down an expression for the matrix element squared,

summed over all spin states of final state fermions, in terms of the momenta of the final
state fermions:

1 2 g;N;
IM|? = =|n|? ( J [X 4 + sin2xq sin 2x, V24|, (3.46)
L L\ e

where

Xa = —2((q1- @) @)
—2[(q1 - 45)(a2 - 9) — (a1 - 42) (a2 - @3)]?
+ (g1 q2)(g3 - q4)
x {[(q1 - g3) + (g2 - @)” + [(q1 - ga) + (g2 - 3)I°} (3.47)
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and

Yi = (1-92)(g3-@){[(q1-g3) — (g2 614)]2 —[(q1-qa) — (ga- %)]2}
= (¢1- @) (g5 aw)(a — @) - (g3 + @)][(qr + @) - (g5 — @) - (3.48)

With the expression (3.3) for the differential decay rate, it is now easy to write down
the fully differential decay rate for decay of a CP-odd Higgs boson, and the result in [10]
is confirmed:

= m)is® - _ - dSqf
dr (2m)%5 (;CH p) (H (27r)32Ef)

f=1
o (F N
Am \ ;= (sj —mi)” + mi Ly,
X [ X4 + sin2x; sin 2x2Yy] . (3.49)

3.2 The Phase Space Factor

The next thing to do is to transform the differential to variables which are more practical
to work with, one of which should be the observable ¢. I want to keep the dependence of
dI’ on ¢, but integrate over all other kinematic variables.

In this section I will rewrite the phase space to a form which will make the integrations
easier [23]. In the form of (3.3), the phase space contains the differentials of the fermion
momenta, q; for © = 1,2,3,4, and a delta function which enforces overall momentum
conservation for the decay. In addition, momentum conservation at each vertex is implied.

As will be shown below, from momentum conservation at each vertex, it is possible to
introduce new differentials and delta functions into the phase space factor. At the end of
this section I will explain why this makes it easier to perform the integrations over the
phase space.

I introduce four new differentials, and two new delta functions to the phase space. Let
us start with definitions of some new notation [23]:

4 d3q
. _ 4 ¢(4 f
d2E(m* 1, 42, 03, 01) = 2m)* M (0 — 1 — @2 — @5 — 1) (fl:[l Gry2E; | (3.50)
and
5 4 d3q
12 — /
= B’ S 51
d'%¢(q1, 42, g3, 44) (fl;[l @r ) 2F, (3.51)

It can therefore be seen that

d2¢(m?; q1, o, g3, q4) = (27T)45(4) P—q—q— g5 — qa) 3125(611; 92,93, 44) - (3.52)
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Following this pattern, we also define

A% (g1, ) = (ﬁ ﬂ) . (3.53)
=1 (2m)32E;
Now, for s; = ¢* we get
d°¢(s1; 1, q2) = (27T)45(4) (— a1 — @) (~16§(q1, ) - (3.54)
Because of conservation of energy and momentum at the Vi fi fo vertex, we can write
/d4q Mg—q—q)=1 (3.55)

We can use this to introduce the differential d*q and the delta function 6 (¢ — ¢ — ¢2) to
the phase space. The definition of the new phase space differential is:
A’ qu, 2 050) = 2m)' 0 (0 —q— - q)
xd'q 6™ (g — g1 — g2) 401, 42, 43, ) - (3.56)
Similarly, from s; = ¢2, we see that

/ dsi6(s1—g?) = 1. (3.57)
This allows us to define:

d17§(m2; q1,92,93,q4) = (27)4 5 (— a1 —q) auf(qh 02,93, q4)
X 5(4)(10 —q—q3—q)d’q
x (51 — ¢*) ds;
= d6§(51; q1,G2) aﬁf(%, qa) s (P—q—q3—qu)
x 6(s1 — ¢*) dg® d®qds; . (3.58)

Now, we want to get rid of the differential d¢® again, so we perform the integral

/dq0 §(s1 —¢*) = /dq0 5[(°)* = (@ + s1)] = (3.59)

2¢°’

@ =\/q?+s;. (3.60)

The expression for the differential phase space we end up with contains one new delta
function and two new differentials:

d¢(m% g1, @2, g3 qa) = d°€(s13 1, ¢2) d°E (g3, qu)
3

d’q
x8W(p—q—qs—qu) = ds
( 3 4)2(10 1

where

1
= —d" :
o 5(51,%;@2)

X (27)4 5™ P—q—a— )
X d9€(q’ g3, q4) d81

1
= 5 d%¢(s1;q1, g2) A°E(m?; q, g3, q4) ds1 - (3.61)
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So far, we have introduced into the phase space the differentials d*q and ds;, and the
delta function 5 (¢ — ¢1 — g2)- In the following, we will do the same trick with the V5 fs fy
vertex. We use the relations

¢'=q3+qs and s, =g¢q'?, (3.62)

and get the expression for the phase space which we want:

1
d?6(m? q1, q2, 3, 41) = @ d®¢(s1; a1, g2) d° (52 g3, 4a)

x d%¢(m?;q,q") ds; ds,, (3.63)

¢’ =/q?+s,. (3.64)

From (3.50), we can write out the explicit expression for the phase space:

where

L 0y 4o, 45 0) = s (21) 6D (g — @1 — o) da;  dqy
y Y1, 42, 43, Y4 (27‘()2 1 2 (27T)32E1 (27T)3 2E2
d3q3 d3q4
4 ¢(4
% (210900’ ~ 02~ 0) Gy GrE,
d3q d3ql

x (2m)46@W(p—q—q) ds; dss .(3.65)

(2m)%2¢° (2m)> 2¢"°

We are now ready to explain why this new form of the phase space factor (3.65) is better
than the form (3.50) which we started with. The factor (3.65) can be divided into four
Lorentz invariant parts, one for the decay of each of the three particles H, V; and V3, and
one extra factor ds;dsy which is the differential of the squared invariant masses of the two
vector bosons. Because the factors for the three decays are separately Lorentz invariant,
the integral over the phase space of each decay can be performed in its own rest frame.
The rest frame of a decay is the natural frame in which to study it. This can be seen from
the fact that the polar and azimuthal decay angles will be isotropically distributed in this
frame if the matrix element is constant. In this frame, any deviation from flat distributions
must come from the matrix element. This is not the case for a boosted frame.

I am in the following calculations not going to evaluate each part of the phase space
factor in its own frame, but in the rest frame of the Higgs boson. The form (3.65) of the
phase space factor is still very practical to work with. This can be seen from the fact
that there is one delta function for the decay of each vector boson, compared to one delta
function for both decays in (3.50).

The price to pay for the extra delta functions is the new differentials ds;, ds,, d®q and
d3q’. The integrals over the momenta of the vector bosons are easy to perform, because
the matrix element is independent of the decay angles in the Higgs decay, in the rest frame
of the decay. This can be seen from the fact that the Higgs boson is a scalar particle, and
has not got any preferred direction in space.
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It is an advantage to keep the squared invariant masses of the vector bosons s; and s
fixed until the integrals over the other variables have been performed. In this way we can
postpone integrating over the Breit-Wigner distributions in the vector boson propagators.
These integrals can then be performed numerically at the end of the calculations.

3.3 Integrals Involving the Delta Functions

I will now exploit the three four-dimensional delta functions to perform the integrals over
certain variables. The integrations themselves are trivial, but in addition we have to
express all variables which have been integrated over, in terms of the remaining variables,
according to the values they got from the delta functions. At the end of this section I will
then express the momentum products in the matrix elements in terms of the remaining
variables, which will be Ey, Ej3, s, s and ¢.

Combining the expression for the phase space from the previous section, with the decay
rates (3.26) and (3.49) from the first section, we can write the decay rate as:

. d3q d*q’
r - 2m) 6 (p—q—¢
d (27r)2( m) 6 (p—q—1q) (273240 (27)22°
d’q d’q
% (271')4 54 (¢g—q1 — q2) (271_)321]_:)1 (27T)322E2 ds;
d3q3 d3q4

4 ¢(4
x @ — s = 01) o e,

2 2-N'
% CZ (H g] J )

(55 — ) + 3 T%

7j=1
X [X; + sin(2x1) sin(2x2) Vi, (3.66)
where 7 = h, A. The constants C; are equal to
2G 4 2
Cy = m and Cy = ﬂ, (3.67)
m im
and the momentum products X; and Y; are given by:
Xn=(01-03)(02°0) + (01-04) (g2 3) , (3.68)
Vi = (q1°33)(q2 @) — (01°01)(q2-a3) (3.69)
Xa = —2[(q1-¢)(gs- )
- 2[(Q1 : Q3)(CI2 : (J4) - ((h : Q4)(Q2 : Q3)]2
+ (g1 - q2)(g3 - q4)
X {[(q1 - g3) + (g2 - g)” + (a1 - ¢0) + (g2 - 3)]°}, (3.70)

and

Yy = (fh : 112)(413 : (]4){[(€Il : (Z3) - ((ZQ : CI4)]2 - [((]1 : (J4) - (QQ : (]3)]2}- (3-71)
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3.3.1 Performing the Integrals

We shall start by performing the integral over '. Here we use the three-momentum part
of the following delta function, remembering that in the Higgs rest frame p = (m, 0):

0 p—q—4q)=06m—-¢"—¢°) 6 a+d), (3.72)
From the delta function in the integral,
[ @ 8 (a+d) ¥ IMP, (3.73)

spin
where Y, M| is the squared matrix element, we get the obvious relation
qd=—q. (3.74)

Now I will use the remaining part of the delta function to perform the integral over |q|.
We write the differential d®q in polar coordinates:

d’q = |a[d|q| d2, . (3.75)
The integral we want to perform is
dlal |q/”
/ TP §(m —¢° —q¢"°) Z M. (3.76)
spin

In order to perform the integral we are going to need the following property of the delta
function [19] (page 22):
1
0(f(x) — f(xg)) = 0(x — zp) - 3.77
(f (@) = f(z0)) o) (z — o) (3.77)

We must in addition use the relations from (3.60) and (3.64) in the previous section:

Q'=\/q’2+82:\/q2+32, (3.78)

¢ =/ +s. (3.79)

and

From these equations we see that

0 0 0 1 1 ¢° +¢°
_ — =_lq = —|q = = — , 3.80
5gm = 2'a) ~ ¢"(al)) = ~lal 5 ~ lal 5 = ~lal "2 (380)
and this enables us to perform the integral:
d|Q||Q|25 _0_ 10 MQ—@ M2 381
g 0m—a’ —¢") X M= 2 (M : (3.81)
qa’q spin m spin ®+¢%=m
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Having performed the integrals, q, ¢° and ¢° must be expressed in terms of the remain-

ing variables. From the delta function §(m — ¢° — ¢'°) we get the equation

m—\/q2+81—\/q2+8120, (382)

which can be solved to give

)‘(mZa 51, 82)

lq| = 5

Here
A(m?, 51, 89) = m* + 52 + 52 — 2(m®s; + m?sy + 5189) , (3.84)

is known as the Killen function. Having found the value of |q|, we can use (3.78), (3.79)
and (3.83) to find ¢° and ¢:

1/2
qO = —)\ + 51
4m?

1
= —[m*+ 52+ 52— 2(m?s; + m%sy + 5155) + 4mZs1]V/?

2m
1
= %[m4 + 52 + 52 + 2m%s; — 2m>sy — 25,592
1
] (3.85)

and

A 1/2
n
¢ = (m*)

1
= 2—[m4 + 52 + 52 — 2(m?sy + m2sy + 5155) + 4m?s,] /2
m

1
= %[m4 + 52 + 52 — 2m?2s; 4 2m?sy — 25,5512
1
= —2m [m2 — 81 + 82] . (386)

From (3.83), we see that the integral in (3.81) has the value

(3.87)

d q||q 2 1 A(7n27 SlaSQ)
[ om0 — ) 3 = Ve g

0,70
q°q spin m

spin q0—|—q’0 =m

We have now performed the integrals over |q| and q'. Some of the phase space has been
integrated over, and the differential decay rate can be written in the form:

1 VA

dr S
(27)8 26 2m?

o,
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d*q; d’qy
W (g —q — d
x8Y(q—q — q) E. B 81
d3qsz d?
x 6 (¢ — a3 — q4) E(313 E(:4 dsy
2 2-N'
x G H gj 2 - 2 12
ot (85— mi )2+ mp Ly
x [X; + sin(2x1) sin(2x2) V7], (3.88)
Next, we are going to perform the integral over qs:
/d3Q2 5(3)((1 —q1 — q2) Z IM|?. (3.89)

spin
The delta function gives us the relation for conservation of momentum at the V; f; f, vertex:
d2=9—q. (3.90)

This, together with (3.83) shows us that

la2” = o’ + |a* — 2/ql|a| cosu
A A
= a2 + E? — % E; cosu, (3.91)

in the massless fermion approximation where
E1 = |q1|, EQ = |q2| . (392)

Here u is the angle between q and q, see figure 3.2.

The next thing I will do, is to integrate over cosu. As can be seen in figure 3.2, I have
chosen the direction of the axes in the Higgs rest frame so that the vector q points in the
direction of the positive z-axis, and so that q3 and q4 lie in the zz-plane. We will later see
that the decay rate is independent of the absolute direction in which q and q3 point, and
only depends on the relative angle ¢, see (3.2).

In order to perform the integral over cos u we write the q; differential in polar coordi-
nates:

d*q; = |qi|*d|aqi| d(cosu) dv = Ef dE; d(cosu) dv . (3.93)

The angles v and v in the differential are defined in figure 3.2. For the following integral:

/ d(cosu) (¢ — By — By) 3" M2 (3.94)
spin
we must calculate 5 OF
[° — B, — By = — 2 (3.95)

d(cos u) O(cosu)’
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z-axis
q q2
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Figure 3.2: Definitions of the angles u, v and a. The momentum vector q' points in the
negative z-direction. The vectors qs and qq lie in the xz-plane. The projection of q; into
the zy-plane is shown as a dashed line.

where we consider F; fixed. One can see from (3.91) and (3.92) that

0 9 VA
— = ——F 3.96
d(cosu) ° m (3.96)
since A and FE; are fixed, and therefore
oE, 1 0 9
d(cosu)  2E, O(cosu) 2
ANE
_ VAR . (3.97)
2m E2

We use the above equations and find that the integration over cosu gives:

E? 2m
/d(cosu) 5" — By — By) —— 3" M2 = 2257 | MP . (3.98)
El E2 spin \/X spin °=F1+E>
Having performed the integral over coswu, we have to express the angle in terms of
variables which remain to integrate over. From the delta function in the integral we get
the relation

¢ —FE -E=0, (3.99)
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which leads to

E; = (")’ + E? — 2¢°E, . (3.100)
This equation, together with (3.85) and (3.91), leads to
A ., VA A , 2B, ,
4—WII2+E1—EE1(ZOSU:4—W+S1+E1—%( +81—82). (3101)

Solving the above equation, we find the expression for cosu, which we wanted:

cosu = [E1(m? + 51 — s3) — msi]. (3.102)

1
VAE,

We are now going to perform the integrals over q4 and cosa, where we will use the
remaining delta function. These integrations are very similar to the integrations over q
and cos u, and I will therefore only state the results. The integral

/d3q4 N — a3 —as) > M|, (3.103)
spin
gives the relations
Q=9 —as, (3.104)
and
asl® = |d'[*+[as]® — 2/d| |as| cos
A VA
= W—FE??— FE;),cosoz, (3.105)

in the massless fermion approximation where
Bz =|qs|, Eiy=|q. (3.106)

Here « is the angle between ' and qs. See figure 3.2.
The differential d®qs must be written in polar coordinates

d*q3 = |q3/>d|qs| d(cos @) dB = E: dFE3d(cos o) d3, (3.107)

in order to perform the integral over cos

/ d(cos @) 6(¢° — B — E) S IMP2. (3.108)

spin

Integration over the angle S in the differential corresponds to rotating the coordinate
system in figure 3.2 around the z-axis. If we compare (3.91) and (3.105) we can see that

0
0(cos )

OE; VA E;

IO_E —EJ]=— —_ Y =
la s = B d(cosa) 2m Ey’

(3.109)



3.3. INTEGRALS INVOLVING THE DELTA FUNCTIONS 37

and similar to the cosu integrations we find

E3
E3 E4

/d(cos a)d(q° — B3 — E)) S IMPP = 2\/—7; Z IM|? . (3.110)

spin q°=E3+E;4

Again, similar to cos u, cos & must be expressed in terms of s1, s and F5. From the relation
¢° - E;—E, =0, (3.111)

and from (3.86) and (3.105) we can find an expression for cos o

1
VA E;

We have performed the integrals where we could use delta functions. The decay rate
(3.88) can now be written in the form:

cosa = [E3(m® — s + 82) — msa)]. (3.112)

ar — m dE; dv d By dB dQ, ds, ds,

2
% C ﬁ ngj
j=1 (s; —mi)? +mi Y

X [X; +sin(2x1) sin(2x2) Vi, (3.113)

The next task will be to change integration variable from v into ¢. The angle ¢ is
defined in (3.2) as:
(a1 X q2)- (g3 X q4)

cos ¢ = . 3.114
a1 X daf[az X q ( )
From figure 3.2 and (3.114), we can see that the relation
v=m—¢ (3.115)
holds, and therefore
COSU = —COS Q. (3.116)

I now want to change integration variables so that I integrate over the angle ¢ instead of
the angle v. Using (3.115), we get

T fleoss) = [ (=1)dp fleos)
- /_:d¢>f(cosgb) (3.117)

We see that d¢ can simply replace dv in the expression (3.113) for the decay rate. In
this form for the decay rate we still have to express the momentum products X; and Y; in
terms of the variables which remain to be integrated over, that is Fy, Fs3, ¢, s; and ss.
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3.3.2 Momentum Products

Now I will express the products of fermion momenta in terms of the variables s, s9, F1,
E5 and ¢. Using ¢ = ¢ — q1, g2 = ¢’ — ¢3 and ' = —q we see that

(1-3) = FEi1E3—qi-q3,
(¢2201) = (¢ —E1)(¢° — Es) — (@ — a1)-(—q — q3)
= ¢"¢" - ¢"Bs—¢"E,+ B\ B3+ a4’ +q-qs —q-q1 — q1-q3,
(qiqs) = Ei(¢° — E3) —qi-(—q — q3)
= ¢"E1 - EiE3+q-q1 + q1-q3,
(g2q3) = (¢°— E1)Es— (q—q1)-q3
= ¢"E;— E1E3; —q-q3 + q1°q3. (3.118)

For massless fermions we also have:

1 1
(q1°q2) = 5((]1 + Q2)2 =551 (3.119)
and
1 5 1
(g3-q4) = 5((13 + @) = 552 (3.120)

We can find expressions for the three-momenta q, q; and qs from figure 3.2 and from
(3.83):

VA
= —(0,0,1
q 2m ( ’ bl )’
a1 = FEi(sinu cosv,sinu sinv, cosu),
q; = FE;(sine,0,—cosa). (3.121)

Here, the angles u and « are given by (3.102) and (3.112):

1
cosu = Ei(m? + 51 — 55) — ms1], 3.122
\/XEl[ 1 ( 1 — S2) 1] ( )

and )
cosa = ——=—/[FEs3(m? — 51 + 53) — msy] . (3.123)

VAE;

These expressions allow us to find the products of the three-momenta. At the same

time we can use (3.116), cosv = — cos @, to replace v by ¢:
q1-q3 = —F1 E5(sin u sin a cos ¢ + cos u cos o) , (3.124)
VA
q-q3 = ——Fj3cosa
2m
—F, 1
= 2(m? — 51+ 83) + =52, (3.125)

2m 2
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A
q-q = £El cos u

2m
FE 1
= ﬁ( 2 -+ S1 — 82) — 581 y (3126)
and
q’= A (3.127)
Am? ’

We also have to express the products sin u sin o and cos u cos « in terms of the variables
1, 8o, F1 and Ej3. From (3.122) and (3.123), and the fact that

sinusina = \/(1 —cosu?)(1 — cos a?) (3.128)

one can see that:
m

sin u sin o =

VR (3.129)

AN Es ’
where
R = 16m’s,s,ELF;
— 8ms159(m?® — 51 + 59)ELF3 — 8msyso(m? 4 51 — s9) 1 Es
+4m?s,s5E7 + 4m®s s, F;
+ 48189[m* — (51 — 52)*| B E3
— 2ms;s5(m” + 51 — 89)Ey — 2ms2sy(m® — 51 + 53) Fy
+m?s?ss (3.130)
and that
cosucosa = ! [(m* — (s1 — 82)*) ELE
\E.E; 1— 82 113
—msy(m?® + 51 — 59)E1 — msi(m?® — 51 + 53) B3
+m?s15y) . (3.131)

The expressions we found for ¢° and ¢'°, (3.85) and (3.86), were

1
P %(m2 + 51 — $9), (3.132)

and |
q° = %(mZ — 51+ 89) . (3.133)

These equations can be combined to give

1
qO qIO _ ( m4

= 2 — 52 — 52 4+ 25159). (3.134)
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From (3.118) and the following results, we can now write down the momentum products:

(Q1‘Q3)
(QQ‘Q4)

(CII'CM)

(QQ'Q3)

E1E3(1 4 sinusin acos ¢ + cosu cos @) ,

E1FE3(1 4+ sinusinacos ¢ + cosucosa) — Eym — Esm + §m2 ,
1
Eim — 351~ E,E3(1 + sinusin a.cos ¢ + cos u cos @) ,

1
Esm — 352~ E; E3(1 + sin u sin v cos ¢ + cos u cos ) (3.135)

Here I have not expressed cosucosa and sinusin« in terms of other variables, because
this would make the expressions very long and difficult to read.

The CP-even case: X; and Y},

In order to get the momentum products X, and Y}, we must multiply out the products in
(3.135). X}, and Y}, can be written as

where

and

From (3.135) we see that

and

Xp=Xo+Xp, Yp=X,—Xp, (3.136)
Xo = (0133)(q2 ) (3.137)
Xy = (q1°94)(q2-43) - (3.138)
X, = E?E2(1+sinusinacos ¢+ cosucos a)’

1
+ E1E3m (im - E1 - E3>

X (1 + sinu sin a cos ¢ + cos u cos «) (3.139)

X, = E?EZ(1+ sinusinacos ¢ + cos u cos a)?

1
+ E1E3 5(81 + 82) - m(E1 + Eg)
X (1 + sin u sin cos ¢ + €cos u cos «)

1 1 1
+ E1E3m2 — §E1m52 - §E3m81 + 18182 . (3140)
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We are now ready to write down the final expressions for the products X, and Y} in
terms of the variables F, Ej3, s1, s and ¢:

X, = 2FE?E2(1 +sinusinacos ¢ + cosucos a)?
1
+ E1Es |- (m? + s1 + s2) — 2m(E + Ej)

2
X (1 4 sinusin a cos ¢ + cos u cos @)

1 1 1
+ E1E3m2 - §E1m82 — §E3m81 + 18182, (3141)
and
1, o
Y, = §(m — 81 — 89)E1 E3(1 + sin u sin arcos ¢ + ¢os u cos )
, 1 1 1
— E1E3m + §E1m82 + §E3m31 — 18182 . (3142)

Remember that cosu cos a and sin u sin « here are functions of the variables F, Fs, s; and
So, see (3.122) and (3.123).

The CP-odd case: X4 and Yy

The products X4 and Y, in the matrix element for decay of a CP-odd Higgs boson can
be calculated from the expressions (3.70) and (3.71). We need the momentum products
(3.119), (3.120) and (3.135). T have used REDUCE [22] to perform these calculations:

X4 = E1E;3(cosucosa—+ sinusin acos @)
x {E1Es[m* — (51 — 52)%] — Eymsy[m? + 51 — s9]

— E3ymsi[m? — s1 + so] + m?s185}
1

- §AE%E§ (cosu cos o + sin u sin a cos ¢)*
1

+ 1—6{—8EfE§[)\ +4m?(s1 + 52)]

+ 4E1ms, (4E5 — s9)(m® + 81 — 83) + 4E3msy(4E7 — 51)(m* — s, + 83)
+ 8E?m?sy(s1 — s2) + 8Eam?®si(sy — s1)

+ s1859[m* + (51 — 89)%]}, (3.143)
and
1
Y, = E3152[16E1E3m2 —4Eim(m? — s; + s3)

— 4E3m(m?® + 81 — s3) +m* — (s1 — s2)?]. (3.144)
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3.4 Integrals over Energy and Angle Variables

We start this section with an expression for the decay rate after the integrals over the delta
functions have been performed:

2 2
Q'Nj ) '
ar = G X; +sin(2x1) sin(2x2) Y;
(H (s —m})? +m2vr2V> [Xi +sin(2x1) sin(2x) V]
1
X W dE1 dE3 dﬁ qu d51 dSQ dQS, 7, = h,A, (3145)
where ) 2
2G
Cn = ma Ca= M’ (3.146)
m 4dm

and Xp, Y, X4 and Yy are given by (3.141), (3.142), (3.143) and (3.144) in the previous
section.

From these expressions, one can see that the decay rate is independent of all angular
integration variables, except ¢. We can therefore perform the integrations over 5 and €,
quite easily:

| 4BAQuf(Br, By, 51,52, 0) = 85°F (Br, o, 51, 52,6) (3.147)

These integrations result in a factor 872 in the decay rate.

The next task of this section is to integrate the expression (3.145) over E; and Ej5. But
before we start with this I will find expressions for the limits of integration, which should
depend only on the variables s1, so and ¢. From (3.122) and (3.123) we see that cosu
and cos « are functions of E; and FEj, respectively. The integration limits of E; and FEj
must be given by cosu = *+1 and cosa = £1. The value cosu = 1 is equivalent to the
situation where the first fermion f; decays in the direction of the Z boson from which it
came. This is the direction of the positive z-axis in figure 3.2. It can be shown that this
decay configuration is consistent with conservation of momentum and energy, for massless
fermions. So are the other three limits for cosu and cos a.

Solving the equations cosu = 1 and cosa = +£1 for E; and Ej gives the maximum
and minimum values for each variable:

m? + s; — so + VA
4m
m2+51—82—\/x
4m
m? — s1 4 59 + VA
dm

2 _ VA
E3min = m 814—;:2 \/_ (3148)

E3 max

Remember that m is the value of the Higgs boson mass.
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For the integrals over E; and FEj3, the following simplifications will be useful:

11 2
a—b a+b  a2—0?
1 B 1 B 4ab
(@a—0b)2 (a+b)?2  (a%—b2)?
I 60’ +2b°
(a—b)3 (a+b)3 (a2 —02)3
(m?+ 51 —59)° =\ = 4m?s,
(m? —s1+5)>— X = 4m?s,. (3.149)
Below, I have listed the integrals of the different powers in F; and Fjs:
F1 max
/ 1 dE1 - Q
E1 min 2m
F3 max \
/ ’ dE3 == £
E3 min 2m
Elmax ]_
/ dE1 E1 = —\/X(mQ + 81 — 82)
E1 min 8m?
E max ]_
/ ’ dEs By = ——=VA(m? —s; + s9)
E3mi11 8m2
El max 2
E1 min 24m3
E3 max VAN + 3m?s,)
EsE = : 1
/E a5 o (3.150)
We are also going to need the following integration formulae [24]: For
R=a+br+cx®, A=dac—"b>, (3.151)
we have
(2cz+b)VR A ; dx
Rdx = —+— | —=
/\/_ ¢ 4c + 8J VR
VR (2 A
/x\/ﬁdx _ VR _ (Zex+b)b R—b dz
3c 8¢? 16¢2) /R
e _ VE b pds
VR c 2¢c) VR
r?dx x 3b 3 a dx
Il E b= R e 3.152
VR (26 402> VE+ (802 2c> VR ( )
In addition, for ¢ < 0 and A < 0 we also have [24]:
d -1 2 b
i arcsin Tt (3.153)

VR V=¢ VA
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I have used REDUCE [22] to perform the integrals over F; and FEj, and for parts of
the other long calculations in this section. The features of REDUCE which have been
most useful to me, are solving of equations up to fourth order, finding the coefficients of
polynomials and simplification of expressions.

3.4.1 Integrating the CP-even Matrix Element

We are now going to integrate the decay rate in (3.145) over F; and Fj for the case of a
CP-even Higgs boson. For fixed values of s; and s5, X} and Y}, are the only parts of the
integrand that depend on E) and Ej5. Using (3.129), (3.131), (3.141) and (3.142) we can
find the full dependence of X} and Y, on E; and F5. This shows us that X}, and Y} both
consist of two terms, where one is a polynomial in E; and FEj3, and the other is the square
root of a second-degree polynomial in F; and E3 multiplied by a polynomial in E; and Ej.
We have

Xh = X1+X2
Y, = Y1+Y;, (3.154)

where X, and Y; are the pure polynomial parts, and X; and Y; contain square roots.
From the formulae (3.150) we find that the integrals of X, and Y5 result in:

E1max E3max A
/El min & /E3min dBs X = 288 m?2 (A + 125189 + 25182 cos 29)
El max ESmax
Jyoon 2B f, B = 0. (3.155)
E1 min E3min

The remaining integrals of X; and Y; are a bit more complicated, because the integrands
contain square roots. Let us first write down the expressions for X; and Y;:

X, = Pxy/Ri

Yi = Oy R, (3.156)
where R; = R, as given by (3.130), and

Px = m;;\)sd){lﬁElE;),mQ(m2 — 81 — S9)
—4Eym(m* — 2m?*s; + 57 — s3)
— 4Esm(m* — 2m?sy — 5% + 52)
+m2[m* — m?(sy + 82) — (51 — 52)?]

+ (514 52) (51 — 52)%} (3.157)

and

Cy = m;is‘b [m? — 51 — s5]. (3.158)




3.4. INTEGRALS OVER ENERGY AND ANGLE VARIABLES 45

As can be seen, Py is a first-degree polynomial in F; and Fj3, and Cy is a constant in the
energy integration variables. To perform the integrals we will need the value of R; as a
function of E; for Ey = E| max and for By = E| pin. The result is:

Rl (El min) - Rl (El max) =0. (3159)

This makes the integration a bit simpler. Using (3.152) we find:

Elmax
/ dE.X, = 0

E1 min
E1 max $189 COS qﬁ Eimax dFy
deEyYY, = ————
E1 min 16 Eimin  V Rl

X [—4Eim(m?® — s; — s3)
+ 2E3(m* — 2m?*s; + 57 — s3)
— msy(m* — 81 — 83)]. (3.160)

We can see from (3.153) that we must know the signs of ¢ and A in order to perform
the integral

Elmax E
/ b (3.161)

E1 min V Rl ‘

Here the quantities ¢ and A are defined by
R, =a+bE, + cE}, (3.162)
see (3.151). The coefficients a, b and ¢ have the following values:

= msisy[dmE; — 2E3(m? — 51 + 83) + msy)
b = 2si5{—4E2m(m?® + 51 — s9)
+ 2E3[m* — (51 — 59)?]
—msy(m?® + 51 — 59)}
c = 4ms;sy[4Eim — 2E3m® + 2E3s; — 2E355 + mso] . (3.163)

Notice that a, b and ¢ depend on Ej5, but not on Ej.
To find the sign of ¢ I solve the second-degree equation c¢(E3) = 0. The roots of this

equation are:
B — m2—81+82+\/X m2—81+82—\/X
5 4m ’ 4dm '

(3.164)

Actually, these solutions are equal to E3.x and E3 i, respectively. Because the coefficient
of EZ in ¢, 16m?s; sq, is positive, the second-degree polynomial ¢ (as a function of E3) must
be negative between its zeros. That is, ¢ is negative between Ej3.;, and Ej,... Next, I
study the sign of A between Fs i, and Ejpax. From (3.151) and (3.163), one can see that
A must be a fourth-degree polynomial in Ej5. I solve the equation A(E3) = 0. It has got
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the same roots as ¢(E3) = 0, and both of the roots have multiplicity two. This shows that
A must contain a factor ¢2. And indeed we find that

-\

4dm

A= , (3.165)
independent of the value of Fjs.

From (3.83) one can see that a negative A would lead to imaginary momentum for
the vector bosons. We therefore know that A must be positive, and thus that A must
be negative for all F5. Having found that both ¢ and A are negative between Ej3.;, and
Ej3 2%, which is the region of interest, we are now ready to perform the integral, using
(3.153):

Eimax dEy  — arcsin{sign[4E3m — 2E3(m® — 51 + s2) + mss]} (3.166)
El min V Rl V R3 ’ .
where
Ry = —ms155[4Eam — 2E3(m? — 51 + s3) + msy] . (3.167)

Here, sign() is the function which returns the sign of its argument. We solve the equation
AEsm — 2E3(m® — 51+ 83) + msy = 0, (3.168)

and find that also this equation has got the roots in (3.164). This means that the expression
(3.168) must be negative between Ej3pnin and Ejspay, because the coefficient of E§ in this
expression is positive. We now see that

E1 max dEl . v
Elmin VRI _2\/R3

When we use the result from (3.169) in (3.160) we finally get:

(3.169)

E1 max TS189 COS @ 2 2
dE.Y; = 2 "7 [_ARE — 81—
/Elmin t By | )

+ 2E3(m* — 2m?s; + 5% — s2) — msy(m? — 51 — s)] . (3.170)

What now remains of this section contains the integration of this expression over Ejs.
We use the integration formulae in (3.152) and find:

E3max E1max )\7'('81 So E3max dE3
dE / dB, Y, = 2 _ g — 5 3an
‘/E3 min i FA1 min H 256m (m o 82) oos ¢ E3 min \/R_?) ( )

Here I have also used the fact that
R3(E3min) = R3(E3max) =0. (3172)

As for the Ej integration, we must determine the signs of ¢ and A, see (3.151), in order to

perform the integral
E3max dE3

, 3.173
o VI (3.173)
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Here a, b and c are the coefficients of F3 in R3. From (3.167) we can see that c is negative.
We also find that

A = —4m?s?s2), (3.174)
and this shows that A is negative. The integral can now be performed. It has the value:
E3 max
- jb;_?; - 2\/5—327;@ . (3.175)
The final expression for the integral of Y; becomes:
/Esmax dE; /Elmax dE, Y, = L <§ 7r)2 /5189 (M? — 81 — 89) cos . (3.176)
E3min B min 288m? \4

To conclude this part, we write down the decay rate for a CP-even Higgs boson from
(3.145), (3.155), (3.160) and (3.176):

2 2 A(m?, s, s
ﬁ N fGFm Hl ( - m%/;]; Fmi T ) ((87r)67r1L3 2
x [A(m?, 51, 82) + 125155
+ (2 7r)2 /5182 (m?® — 81 — 89) sin 2x; sin 22 cos ¢
+ 25189 c0s 29)] . (3.177)

We thus confirm the differential decay rate given in [10].

3.4.2 Integrating the CP-odd Matrix Element

We are now going to perform the integrals of X4 and Y4 over E; and Ej, see (3.143) and
(3.144). As was the case for the CP-even matrix element, X 4 and Y, consist of polynomials
in E; and Es, but unlike the CP-even case the factor sin u sin o which contains the square
root (3.130) turns out to have zero coefficient, so that X4 and Y, are pure polynomials. T
have used REDUCE [22] and the formulae (3.150) to show that:

E max
/1 YadE =0, (3.178)

El min

/EEII.nax XadE, = 81:2\/_{771 cos 2¢[4E2m — 2E3(m? — s, + s3) + msy]
o + A+ 8Eim? — 4Esm(m® — 51 + s3) + 2m?sy}, (3.179)
and B e Nosis,
[Elmm /Egmm XadBydBy = 2222 (4 — cos 29). (3.180)
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Using the expression (3.145) for the decay rate, we can write down the differential decay
rate for a CP-odd Higgs boson as a function of s;, s, and ¢:

_dar P 13[ 2N,
d¢ds;dsy 9(8m)6m3 \ % (s; —md )2+ mil?%
x [A(m?, s1, 82)]3/23152(4 — c0s29) . (3.181)

This confirms the result in [10].

3.5 Numerical Integration and Distributions

In this section I will perform the integrals over s; and sy numerically, and plot and discuss
the resulting distributions dI'/d¢.

Let us first study the integration limits of s; and s,. From conservation of momentum
and energy at the HV;V;-vertex, we see that

Vit /S <m= sy < (m—/51)%, (3.182)

where m is the Higgs mass, as usual. We now get

m? (m—y/51)? dr
= _— 3.183
/0 dSl/(; d82 dgb d81d82 ( )

Since we are not interested in the normalisation of the distributions dI'/d¢, but only
in their shape, we calculate the normalised distributions:

2\ dI’
(F—:> d—¢h = 1+ a(m)sin2y; sin 2)x; cos ¢
+ (m) cos2¢, (3.184)
and
21\ dI'4 1
)y =2 _1_Z 2 N
<FA> a0 7 €08 o, (3.185)

Here the coefficients a(m) and B(m) are the ratios of integrals:

a(m) = (2%) % (3.186)
and
B(m) = 2B1) (3.187)
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with the integrals F'(m), A(m) and B(m) defined by

F(m) . /1 d.fCl
o (e = p)? 4y
(1-va1)? A1, 21, z2)
X/ i)
0

(zg — p)? + py
X [A(1, z1, 22) + 122124], (3.188)

A(m) = /01( o

T — p)? + pry
/(1—x/ﬂ)2 4 VZ2\/A(L, 21, 22)
X X
0 (@ — )2+ py

and

B(m) = /01( do 1y

T — p)? + py
(1-y@1)? 2o/ A1, 21,2

></ U gy TVA — 2) (3.190)
0 (22 — )2 + wy

Here i and 7y are defined by

= (ﬂ)Q = (F_V>2 , (3.191)

m m

and we have changed integration variables to z1 = s;/m? and zo = s5/m?.

The coefficients a(m) and §(m) can be seen in figures 3.3 and 3.4, both for Higgs decay
to WW and for decay to ZZ. These plots confirm the shapes of «(m) and g(m) from [10].

The normalised distributions (27/I',)(dl'y,/d¢) are shown in figure 3.5. Also these
confirm the results in [10].

Notice that the CP-odd distribution is independent of the Higgs mass, whereas the
CP-even distribution is most strongly correlated for large values of a(m). From figure 3.3,
we see that a(m) reaches its maximum value for m = 200 GeV.

Notice also that the distribution is more correlated in the case of Higgs decay to a pair
of W bosons, than for decay to a pair of Z bosons. This is due to the fact that the factor
sin 2, sin 25 is equal to unity for the case of a W-pair, but is smaller than unity for the
case of a Z-pair, see table 3.1. The smallest value for sin 2y sin 2 is reached when both
Z bosons decay to charged leptons.

For large Higgs masses, both a(m) and 3(m) get very small, and therefore the distri-
butions for a CP-even Higgs become uncorrelated in this limit.
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Figure 3.3: The ratio a(m) between the integrals A(m) and F'(m). Decay to WW and to
ZZ. See also (3.184).
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Figure 3.4: The ratio 5(m) between the integrals B(m) and F(m). Decay to WW and to
ZZ. See also (3.184).
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Figure 3.5: The distribution (27/I")d['/d¢ for CP-even or CP-odd Higgs. In the CP-even
case, decay to WW or ZZ, for different values of the Higgs mass m. The ZZ pair decays
to [T17bb. See similar plot in [10].



Chapter 4

Monte Carlo Studies

The main purpose of this chapter will be to assess the integrated luminosity required in
order to measure the CP-property of a Higgs boson at the LHC, through angular distri-
butions like dI"/d¢, see (3.184) and (3.185), and distributions of other angular variables in
the decay

H—=WViVoa— fifafsfs. (4.1)
Here V,Vj; are either the vector bosons W*W ™ or ZZ. The Monte Carlo program PYTHIA
[26, 27] has been modified in order to allow the Higgs boson to decay as a CP-odd particle,
or as a CP-even particle, in the decay channel (4.1).

I am assuming a simple model, where there are several Higgs bosons, at least one
of which is CP-odd, hereafter denoted A, and one CP-even, denoted h, and where the
coupling of the CP-odd Higgs boson to the vector bosons WTW ™ and ZZ is of the same
order of magnitude as the coupling of the CP-even Higgs boson to the same vector bosons.
The Higgs particles are assumed to be eigenstates of CP-parity. The general Higgs boson,
either CP-even or CP-odd, is denoted by H.

This is not, of course, a realistic physical model, because in a renormalisable quantum
field theory which conserves CP in the Higgs sector, the AV} V5, coupling is only induced at
the one-loop level, and must therefore be smaller than the AV, V5 coupling which exists at
tree-level.

On the other hand, in a model with CP-violation, it is possible to have Higgs bosons
which are not eigenstates under CP [6], but are strongly mixed states of CP-even and
CP-o0dd states.

The following Monte Carlo analyses for the simple CP-conserving model described
above can be seen as a first approach to Monte Carlo analyses for a CP-violating theory
with mixing of the states.

To simplify the Monte Carlo simulations, I will take the Standard Model as a starting
point, and assume that both A and A have the production and decay rates of the Standard
Model Higgs boson. The only deviation from the Minimal Standard Model is therefore
that there exists a CP-odd Higgs boson which has a significant decay rate for the channel
A — ViV5, and that it in this channel decays according to the matrix element for a CP-odd
scalar (3.46), but with the rate of the Standard Model Higgs.

93
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This is of course unrealistic, as there is only one Higgs boson in the Minimal Standard
Model, and this is a CP-even scalar. But it is still a starting point for background analyses,
and might give some rough idea of the possibility of measuring the CP-property of a Higgs
boson in a more complicated, and more realistic model.

I want to estimate whether the distributions of the observable ¢ defined by (3.2) in
the previous chapter, and other angular observables to be defined in the following, can be
used to determine the CP-properties of a Higgs boson at the LHC. In order to avoid an
ambiguous definition of the angular observables, we must be able to distinguish between
the fermion and the antifermion in the decay of the vector bosons:

Vi— fife. (4.2)

Here (i,j,k) = (1,1,2) or (2, 3,4).
The relevant decay channels where the Standard Model Higgs boson will be searched
for in the ATLAS experiment [29] (page 675), are

e H— 77" — 4l

o H—Z7Z — 4l

o H—ZZ —lljj

e H-WW — lvjj.

Here [ stands for either an electron or a positron e, or a muon p. The particle v is a
neutrino of either type, and j is a jet of hadrons. The notation ZZ* means that one Z
boson has an invariant mass lower than the nominal Z boson mass (is off the mass shell).

With charged leptons it is easy to separate the fermion from the antifermion, but with
quarks this is not so trivial, because of the hadronisation. The exception is the b-quark,
where it is possible to determine (with some efficiency) whether a jet comes from a b-quark
or a b-antiquark through the method called b-tagging [28].

Of the channels listed above I have chosen to study the second one:

H— 77— 4, (4.3)

also called “The Gold-Plated Channel”. This is a very clean channel at the LHC. The
background is actually smaller than the signal, after a cut on the invariant mass of the
Higgs boson [29]. Of the the channels mentioned above it is the one best suited for my
purposes.

The most important background-channel for this decay at LHC is continuum ZZ pro-
duction through quark-antiquark fusion [29, 30, 31]:

Q@ — ZZ — 4. (4.4)
In addition, continuum ZZ production through gluon-gluon fusion:

g9 — 27 — 4l (4.5)
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contributes significantly to the background. The matrix element of this channel is not
included in PYTHIA though, and I have therefore not been able to simulate it.

I have studied the distribution of several angular observables in the decay (4.3). In
the simulation of the background distributions I have only used the channel (4.4), and the
question is how much the channel (4.5) would change the distributions, if included in the
simulations. The angular distributions of the leptons in the decay (4.3) is determined by
the spin polarisations of the two Z bosons.For quark-antiquark fusion with massless quarks
the Z bosons will be produced with complete transverse polarisations, while they for the
gluon-gluon fusion will be mainly transversely polarised' [30, 31]. There is therefore reason
to believe that the angular distributions of the leptons are similar in the two cases, as long
as the fraction of longitudinally polarised Z boson is small for the gluon-gluon fusion.

The cross section of (4.5) has been calculated, and compared to the cross section of
(4.4) [30]. I have used these results when estimating the total background cross section.

4.1 Monte Carlo Event Generation

For the Monte Carlo analyses I have used the PYTHIA event generator [26, 27] version
6.204. In this section I am going to give an introduction to Monte Carlo event generation
based on the PYTHIA program.

With the development of quantum mechanics in the beginning of the previous century
came the introduction of randomness and probability in physical processes. Monte Carlo
simulation is useful because it allows us to estimate the probabilities of many processes
that it would take much longer, or indeed be impossible, to find by analytical calculations.
All Monte Carlo simulation builds on the principle of a random number generator, that is
a piece of program code which returns numbers between 0 and 1, in an almost completely
random way. Random numbers can be used to select a value of a random variable according
to a probability distribution.

In high energy physics, Monte Carlo event generators simulate the interactions which
take part in collisions between and decay of particles. All properties of an event are chosen
according to the corresponding probability distributions.

We have good theoretical descriptions for parts of these interactions, the so-called hard
processes. The hard process is the part of the interaction which takes place at high energy,
and decides the main characteristics of the interaction. The cross sections for the hard
processes, which are a measure of the probability that the process will take place, can be
calculated in perturbative quantum field theories.

On the other hand, there are parts of the interactions, among these the hadronisation
of quarks and gluons, for which we do not have any fundamental theoretical understanding
or description.

A good high energy physics event generator must nevertheless include all parts of the
interaction between particles. The generation of an event can be divided into several stages:

I'E. W. N. Glover was friendly to answer a question concerning the polarisation of the Z bosons in
continuum production through gluon-gluon and quark-antiquark fusion
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e Incoming particles. The beam particles, for instance two protons, are described

by their parton-distribution functions (pdf’s), which contain information about the
flavour content of the beam particles, and how the partons share the total momentum
of the beam particle. For a proton, the partons are mainly quarks and gluons. The
total cross section o for a process ij — k can thus be expressed as:

oij = k) = [ doy [ das (1) F3(22) 50 = B) (4:6)

Here 6 is the cross section for the hard process, and the f{(z) are the pdf’s, describing
the probability of finding a parton ¢ inside the beam particle a, with momentum
fraction x of the total beam particle momentum.

Initial and Final State Showers. Radiation of gluons and/or photons from the
initial and final state particles of the hard process constitutes an important part of
the interactions. There are two ways of modelling this radiation. Either the full
matrix elements can be calculated to each order, or one might use the model of
parton showers. The disadvantage with the matrix element method is that the ex-
pressions soon become very complicated, sometimes already for one-loop corrections.
The parton shower model on the other hand uses approximations of the full matrix
elements. In this model a combination of branchings where one parton splits into
two, produces the radiation. The parton shower model has no limit on the number of
emitted gluons or photons, but is unfortunately not so exact, and can not be used for
all kinds of analyses. Depending on the area of application, one of these models, or
a combination of both can be used. In PYTHIA the parton shower model is default,
and the matrix element method is only available for the eTe™ — ¢ process.

The Hard Process. This is the part of the process which can be calculated from
first principles in quantum field theory. The differential cross section of the hard
process is used as a probability distribution. The events are generated in different
parts of the phase space according to the differential cross section. In PYTHIA the
hard process also includes decays of resonances, like the heavy vector bosons Z and
W, and the Higgs boson, in the mass range where its width is not too large.

Hadronisation of Quarks and Gluons. Particles with colour charge are confined.
At low energies they can not exist as free particles, but will always be bound together
in colour neutral hadrons. Fragmentation, or hadronisation of particles with colour
charge takes place when the kinetic energy of the particles gets so low that the per-
turbative expansion of QCD breaks down. In this part of the interaction quarks and
gluons get bound together in colour neutral composite particles, hadrons. Because
the perturbative treatment breaks down in this energy range, fragmentation can
not be calculated from first principles in QCD. Phenomenological models have been
developed though. There are three main schools, called string fragmentation, inde-
pendent fragmentation and cluster fragmentation, respectively. String fragmentation
is the default in PYTHIA. In this model it is assumed that the potential energy in
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the colour field between two objects with opposite colour charge grows linearly with
distance. This colour field can be pictured as a string, which will break and produce
a new quark-antiquark pair when the potential energy is large enough. Thus a single
quark-antiquark pair might produce several hadrons, depending on their kinetic en-
ergy before the fragmentation starts. As a part of the hadronisation process unstable
hadrons, when produced, decay into stable particles. Unstable leptons also decay.

4.2 PYTHIA: Modifications and Settings

In this section I describe the modifications I have done to PYTHIA in order to allow the
Higgs boson to decay as a CP-odd scalar particle in the decay

H—ViVa = fifafafs. (4.7)

I also give the values I have used for the PYTHIA parameters and switches in my analysis.

The change I have made in PYTHIA, is to include the (squared) matrix element (3.46)
for the decay (4.8) of the CP-odd Higgs boson A, in the angular weight for this decay
channel:

A=V, — f1f2f3f_4- (4.8)

Here V,V, are two heavy vector bosons, either WTW ™~ or ZZ.

In a Two-Higgs-Doublet Model (2HDM) which conserves CP-parity in the Higgs sector,
there are five physical Higgs bosons, three of which are neutral. Of the neutral Higgs
bosons, two are CP-even, and one is CP-odd. The CP-odd Higgs boson is often denoted
by A. In a renormalisable model, the coupling AV V; is only induced at the one loop level,
and in fact the decay rate of the channel

A ViV, (4.9)

is set to zero in PYTHIA.

As part of the modifications, a new switch was introduced in PYTHIA. A switch is
some variable that can take on integer values, and which determines the choice between
different scenarios in the event generation. This new switch has the name MSTP(25). It is
used to determine the decay scheme of the Higgs bosons in the decay (4.7), either according
to the matrix element for a CP-even Higgs boson, or according to the matrix element for
a CP-odd Higgs boson. MSTP(25) can have the following values:

e MSTP(25)=0: This is the default value. Both CP-even and CP-odd Higgs bosons
would decay according to the correct matrix elements, but the CP-odd decay (4.8)
does not take place, because its decay rate is equal to zero by default in PYTHIA.

e MSTP(25)=1: All neutral Higgs bosons in a 2HDM and in the Standard Model decay
according to the CP-even matrix element.
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e MSTP(25)=2: All neutral Higgs bosons in a 2HDM and in the Standard Model decay
according to the CP-odd matrix element.

Below I have included the piece of code that gives the angular weight in the decay (4.7).
First I have listed the original version of the code. In this version all Higgs bosons decay
according to the CP-even matrix element:

ELSEIF (IREF(IP,7).EQ.25.0R.IREF(IP,7) .EQ.35.0R.
& IREF(IP,7).EQ.36) THEN
C...Angular weight for hO -> Z0 + Z0 or W+ + W- -> 4 quarks/leptons.
IF(IP.EQ.1) WTMAX=SH*%2
IF(IP.GE.2) WTMAX=P(IREF(IP,8),5)*x4
KFA=IABS (K(IREF(IP,1),2))
IF(KFA.EQ.23) THEN
KFLF1A=IABS(KFL1(1))
EF1=KCHG (KFLF1A, 1) /3D0
AF1=SIGN(1D0,EF1+0.1D0)
VF1=AF1-4DO*EF1*XWV
KFLF2A=IABS(KFL1(2))
EF2=KCHG (KFLF2A,1)/3D0
AF2=SIGN(1D0,EF2+0.1D0)
VF2=AF2-4DO*EF2*XWV
VA12AS=4D0*VF1*AF1*VF2*%AF2/ ((VF1%*2+AF1%*2) x (VF2x*2+AF2%*2) )
WT=8D0* (1DO+VA12AS) *PKK (3,5) *PKK (4,6) +
& 8D0* (1D0-VA12AS) *PKK (3,6) *PKK (4,5)
ELSEIF (KFA.EQ.24) THEN
WT=16D0*PKK (3,5) *PKK (4,6)
ELSE
WT=WTMAX
ENDIF

Next follows my modified version, where the value of the switch MSTP(25) determines
which angular weights are chosen:

ELSEIF (IREF(IP,7) .EQ.25.0R.IREF(IP,7) .EQ.35.0R.
& IREF(IP,7).EQ.36) THEN
C...Angular weight for h0/A0 -> Z0 + Z0 or W+ + W- -> 4 quarks/leptons.
IF(IP.EQ.1) WTMAX=SH*%2
IF(IP.GE.2) WTMAX=P(IREF(IP,8),5)*x4
KFA=IABS (K(IREF(IP,1),2))
IF(KFA.EQ.23) THEN
KFLF1A=IABS(KFL1(1))
EF1=KCHG (KFLF1A,1) /3D0
AF1=SIGN(1DO,EF1+0.1D0)
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VF1=AF1-4DO*EF1*XWV

KFLF2A=IABS(KFL1(2))

EF2=KCHG (KFLF2A,1)/3D0
AF2=SIGN(1D0,EF2+0.1D0)

VF2=AF2-4DO*EF2*XWV
VA12AS=4D0*VF1*AF1*VF2*AF2/ ((VF1**2+AF1%%2)

& * (VF2x%2+AF2%%2))
IF((MSTP(25) .EQ.0.AND.IREF(IP,7).NE.36) .0R.MSTP(25) .EQ.1)
& THEN

C...CP-even decay
WT=8DO0* (1D0+VA12AS) *PKK (3,5) *PKK (4,6) +
& 8D0* (1D0-VA12AS) *PKK (3,6) *PKK (4,5)
ELSE
C...CP-odd decay
WT=((PKK(3,5)+PKK(4,6)) **x2 +(PKK(3,6)+PKK(4,5))**2
-2*PKK (3,4)*PKK (5,6)
-2% (PKK (3,5) *PKK (4 ,6) -PKK (3,6) *PKK (4,5) ) *x2/
(PKK(3,4)*PKK(5,6))
+VA12AS* (PKK (3,5)+PKK(3,6) -PKK (4,5)-PKK (4,6) ) *
(PKK(3,5)+PKK (4,5)-PKK(3,6)-PKK(4,6)) )/ (1+VA12AS)
ENDIF
ELSEIF(KFA.EQ.24) THEN
IF ((MSTP(25) .EQ.0.AND.IREF(IP,7) .NE.36) .0R.MSTP(25) .EQ.1)
& THEN
C...CP-even decay
WT=16D0*PKK (3,5) *PKK (4,6)
ELSE
C...CP-odd decay
WT=0.5D0* ((PKK(3,5) +PKK(4,6) ) **2 +(PKK(3,6)+PKK(4,5))**2

rrreew

& -2xPKK (3,4) *PKK (5, 6)
& -2% (PKK (3,5) *PKK (4 ,6) -PKK (3,6) *PKK (4,5) ) *x2/
& (PKK(3,4)*PKK(5,6))
& +(PKK(3,5)+PKK(3,6)-PKK(4,5)-PKK(4,6) ) *
& (PKK(3,5)+PKK (4,5)-PKK(3,6)-PKK(4,6)))
ENDIF
ELSE
WT=WTMAX
ENDIF

Some explanations are needed now. First, this part of the code is taken from the
subroutine PYRESD, which simulates the decay of resonances. The part which I have quoted
is only a small part of this subroutine. It gives the angular weight specifically for the decay
(4.7) with the Higgs boson either the Standard Model Higgs boson or one of the three
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neutral Higgs bosons in a 2HDM. The angular weight simply gives the correct shape of the
probability distribution for the momenta of the four fermions. The normalisation of this
angular weight, or probability distribution, is not important, because the normalisation to
the correct decay rate is performed in some other part of the program.

I will explain the most relevant of the variables used. IREF(IP,7) gives the KF particle
code of the mother of the two resonances in the decay. That is, this variable gives the
particle code of the Higgs boson in the decay (4.7). IREF(IP,1) gives the KF particle code
for the first of the two vector bosons in the decay (4.7), that is it tells if the Higgs bosons
decayed into two Z bosons or into two W bosons.

The KF particle code is the Particle Data Group [21] particle code, with some lo-
cal PYTHIA extensions. For each distinct particle (either discovered in an experiment
or theoretically predicted), there exists a corresponding distinct signed integer number.
Particle-antiparticle pairs have KF code with the same absolute value but opposite signs.
The relevant KF codes for the above pieces of code are:

e KF = 23: The Z boson
e KF = 24: The W™ boson. The W~ boson has KF = —24.

e KF = 25: The Standard-Model Higgs boson, or the lightest of the two neutral, CP-
even Higgs bosons in a 2HDM.

e KF = 35: The heavy neutral, CP-even Higgs boson in a 2HDM.
e KF = 36: The neutral, CP-odd Higgs boson in a 2HDM.

The variables AFi and VFi are the vector or axial parts respectively of the coupling
Vififx, where (i,7,k) = (1,1,2), (2, 3,4). The expression

ADO*VF1%AF1xVF2%AF2/ ((VF1%%x2+AF1%%2) % (VF2%x*2+AF2%*2))

therefore corresponds to (sin2y; sin2y2) in the theoretical calculation of the matrix ele-
ments in the previous chapter of this thesis.

The arrays PKK(i,j) are vector products between the four-momenta of particle i and
particle j, with an extra factor 2:

PKK(i,j) = Q(pz 'p]‘) . (410)

The particle numbering here, i and j, needs explanation. In PYRESD there is an internal
numbering of the particles in the decay (4.7). The two vector bosons are numbered 1 and
2. The four fermions and anti-fermions are numbered from 3 to 6. Thus PKK(3,5) is equal
to the four-product of the momenta of fermions 1 and 3 in (4.7), and so on.

This concludes the description of the changes I have made to PYTHIA. The last part of
this section concerns the PYTHIA settings I used in the event simulations. Except when
explicitly otherwise stated I have used the default settings of PYTHIA, version 6.204, with
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the modification I have explained above. For more details about the default settings and
the parameters and switches I describe, see [26].

I wanted to simulate Higgs boson production at LHC, and therefore I initialised PYTHIA
for a p on p collider at 14 GeV CoM energy. I have set MSEL = 0, which allows me to choose
the hard process(es) to be simulated freely. For the simulation of signal events, I have set
MSUB(102) = 1. This switches on the hard process Higgs production via gluon-gluon fu-
sion, which is the dominant channel for Higgs production in the relevant mass range for
the channel

H—ZZ — 4, (4.11)

from my = 2myz to myg ~ 700 GeV (mz = 91.2 GeV) [29, 32]. The mass of the Higgs
boson is set with the parameter PMAS(25,1). The Higgs particle which is produced and
subsequently decay is a Standard-Model Higgs boson. I set MSTP(25) = 1 or MSTP(25) = 2,
to let the Higgs boson decay as a CP-even or a CP-odd scalar, respectively. Notice that
it is the Standard-Model Higgs, with the Standard-Model decay rate that decays as a
CP-odd scalar in the channel (4.7). I repeat that I do not intend to simulate a realistic
physical model, but a simple unrealistic model. Still T will get some idea of how the
angular distributions depend on the CP of the Higgs boson, also in a model with mixing
of CP-states.

To simulate the total cross section times branching ration for the channel (4.11), I have
switched on all the following Higgs boson production channels [32]:

e ISUB = 24 and ISUB = 26 are Higgs production through the Higgs-strahlung process,
or Bjorken process, with the W or Z boson, respectively.

e ISUB = 102: Higgs production through gluon fusion.
e ISUB = 121: Higgs production through heavy quark fusion.

e ISUB = 123 and ISUB = 124 are Higgs production through ZZ-fusion or W*W -
fusion, respectively.

The most important of these are Higgs production through gluon fusion and Higgs pro-
duction through vector boson fusion.

For the background events I have set MSUB(22) = 1, which switches on the hard pro-
cess continuum ZZ production through quark-antiquark fusion. This is the dominant
background channel for the process (4.11) at the LHC, but there is also another important
background channel, continuum ZZ production through gluon-gluon fusion. The matrix
element for this last channel is not included in PYTHIA, so it has not been possible to
simulate the distributions of the observables for it.

I have used only the quark-antiquark fusion background channel to simulate the total
cross section times branching ratio of the background. There exist calculations of the
relative size of the cross section for the gluon-gluon fusion channel compared to that for
the quark-antiquark fusion channel [30], and I have used these results in order to get a
realistic estimate of the background cross section times branching ratio.
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It is possible to switch on and off the different decay channels of a particle in PYTHIA.
I have used this option to restrict the possible decay channels of the Higgs boson, so that it
only decays into two Z bosons. I have also switched off all decay channels of the Z boson
except the decay into an ete™ or u™p~ pair. This is the most efficient way of simulating
the events I am interested in. Decay channels can be switched on or off through the switch
MDME(IDC,1). IDC is the number of the decay channel. Setting MDME(IDC,1) equal to
zero corresponds to switching off the channel IDC. For more details about MDME(IDC, 1),
see [26].

Final-state radiation and hadronisation have been switched off for the event simula-
tion, whereas initial-state radiation has been switched on (default). This is performed
through the switches MSTP(61) for initial state radiation, MSTP(71) for final state radia-
tion, and MSTP(81), MSTP(91), MSTP(111), MSTJ(1) and MSTJ(21) for different parts of
the hadronisation machinery.

I expect the simulations to give fairly realistic results even though final state radiation
and hadronisation have been switched off. Hadronisation would not change the results
much, since I have been working with a channel with only leptons in the final state. I do
not expect leptons that come from decay of hadrons or heavy quarks to contribute much
to the background. The final state radiation on the other hand would have some effect on
the measured momenta of the leptons. If a lepton radiates a photon before it is detected,
this photon is likely to have a momentum with a direction almost parallel to the electron
momentum. The electromagnetic calorimeter might therefore detect the photon energy as
part of the electron energy, and the measured momentum will have the same value as if
no radiation had taken place [28] (pages 197-200). This is the reason why I expect the
simulation to be fairly accurate even without final state radiation.

In order to increase the efficiency of background events surviving the kinematic cuts, I
have used the parameters CKIN(1) and CKIN(2), which set lower and upper limits on the
invariant mass of the Z boson pair produced in the background process. Because I am
only interested in background events with Z boson invariant mass near the nominal Higgs
mass, this might increase the efficiency of background events surviving the kinematic cuts
strongly. I will describe the values of these parameters and the kinematic cuts I have used
in the next section. I have also set the parameters CKIN(41) and CKIN(43), which set
lower limits on the invariant mass of the first and second Z boson produced, to the values
CKIN(41) = 20 and CKIN(43) = 20. This corresponds to a lower limit of 20 GeV on the
invariant mass of simulated Z bosons. The CKIN() parameters have been set to default
values in the simulation where I have estimated the total cross section times branching
ratio for signal and background.

The last switch to describe is MSTP(128). I have set it equal to 1, in order to make the
search for the mothers of decay products easier in the event analysis.

I have now described all PYTHIA settings I have used which depart from the defaults.
An overview of the described variables can be found in table 4.1.



4.3. OBSERVABLES AND KINEMATIC CUTS 63

Variable Comment

CKIN(1) lower limit on Z pair (background)
CKIN(2) upper limit on Z pair (background)
CKIN(41) = 20, lower cut on mass of first 7
CKIN(43) = 20, lower cut on mass of second Z
MDME(IDC,1) | switch on/off decay channel IDC
MSEL = 0, to select hard processes freely
MSTJ (1) = 0, hadronisation off

MSTJ(21) = 0, hadronisation off

MSTP (25) CP-even or CP-odd decay of Higgs
MSTP(61) = 1, initial state radiation on (default)
MSTP(71) = 0, final state radiation off
MSTP(81) = 0, hadronisation off

MSTP(91) = 0, hadronisation off

MSTP(111) = 0, hadronisation off

MSTP (128) =1, easier search

MSUB(ISUB) | switch on/off hard process ISUB
PMAS(25,1) | the Higgs boson mass

Table 4.1: Overview of PYTHIA settings that depart from the default values.

4.3 Observables and Kinematic Cuts

This section contains a description of the different observables I have studied and used
in the statistical analysis. I also give plots which show the distributions in the different
observables for decays of CP-even and CP-odd Higgs bosons, and background events.

In addition, I describe the kinematic cuts I have used. The cuts are similar to the cuts
described for this channel in the ATLAS TDR [29].

I conclude the section with tables which summarise the cross sections, cut percentages
and expected number of events after reconstruction and kinematic cuts for different values
of Higgs mass and integrated luminosity.

Let us start with definitions of rapidity, pseudorapidity and transverse momentum [21].
These are very useful notions when analysing events. A direction for the z-axis has to be
chosen. Usually the z-axis is defined to be along the beam axis. For a given z-axis the
transverse momentum p of a particle, or a system with total momentum p = (E, ps, py, ;)

1S
pL = /P2 +Di. (4.12)
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The rapidity y is defined as

1 E+p, 2
Y= §ln < +p > = tanh™! <p_> ) (4.13)

whereas the pseudorapidity 7 is equal to

= —In[tan(0/2)]. (4.14)

Here 6 is the polar angle of the three-momentum p, relative to the chosen z-axis. For
§ = 0 the pseudorapidity has the value n = oo, for # = 7/2 we have n = 0 and for § =«
we have n = —oo. It can be shown that for |p| > m, and for § > 1/, where m is the
invariant mass of the particle, the pseudorapidity 7 is approximately equal to the rapidity
y. For massless particles the relations below hold identically, but for relativistic particles
with mass, they are only approximations:

] 0 E—p, 1/2
cosf ~ %, and tan <§> = <E+iz> (4.15)
This implies
1 E+p,
~ -1 =y. 4.1
n 2n<E_pz> y (4.16)

4.3.1 Kinematic Cuts

Now I am ready to list the kinematic cuts I have used. The particles we are interested
in are electrons and/or muons, but for simplicity I will call them leptons below. The
pseudorapidity and transverse momenta are calculated in the laboratory frame, which is
the same as the CoM frame of the two incoming protons, with the z-axis defined as the
beam axis. In order to survive the kinematic cuts, an event has to fulfil the following
criteria:

e 4 leptons (electrons or muons) with |n| < 2.5
e of these, 2 leptons with p; > 7 GeV and 2 leptons with p; > 20 GeV

e 2 lepton-antilepton pairs with invariant masses m(2[) such that |m(2l) — mz| < 6
GeV, where my is the mass of the Z boson.

e the invariant mass m(4l) of the four leptons should satisfy |m(4l) — my| < 1.64 o,
where 0, = [(I'y/2.36)2 4 (0.02my)?]*/2, see [29]. Here I'y is the width of the Higgs
boson, and my is its mass.

The cuts on pseudorapidity and transverse momentum select events with outgoing leptons
that are not too close to the beam axis direction. It is more probable that an interesting
interaction has taken place for this kind of events, because the large angle relative to
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the beam axis indicates that these leptons come from a hard process, and that they are
not simply decay products of the beam remnant. (The beam remnant comes from the
quarks and gluons in the protons that do not take part in the hard interaction.) In
addition, detectors for colliding beam experiments are mostly built as a “barrel” around
the beam tube. Therefore the experimental resolution is much better for angles close to the
perpendicular direction. For directions too close to the beam axis it might be impossible
to measure the momentum of a particle.

I have used the same values for the cuts as described in the ATLAS TDR for this
channel [29] (pages 694 and 714).

In PYTHIA I obtained the value of 'y from the parameter PMAS (25,2) which contains
the total width of the Standard Model Higgs boson for the given value of the Higgs mass.
For comparison, I have calculated the value of Iy from the following formula [4] (page 23):

2G Fms3 3
T(H - VV) = 2(1)%\/1 — v (1 — oyt Za:%,) , (4.17)
7r
for V.= W(Z), and with zy = 4m2,/m?%, by noting that the decay channels H — WW
and H — ZZ are the dominant ones in the relevant mass range [13, 33]. Then we get for
the total width:
Dy (tot) ~ T(H — WW) +T(H — ZZ). (4.18)

Table 4.2 shows a comparison of the values obtained with the two methods. The formula
(4.17) is only a tree-level result, so I do not expect it to be as accurate as the value obtained
from PYTHIA.

mpg [GeV] | 'y [GeV] from PYTHIA | I'y [GeV] from (4.18)

200 1.36 1.41
250 3.99 4.00
300 8.36 8.37

Table 4.2: The total width 'y, of the Standard Model Higgs boson, for three different
Higgs masses. Values obtained from PYTHIA, PMAS(25,2), and from the formula (4.18).

See table 4.3 for an overview of the values of CKIN(1) and CKIN(2) used in the sim-
ulation. These values are chosen to maximise the efficiency of generation of background
events that survive kinematic cuts, at the same time as none of the events we are inter-
ested in should be cut away. The distribution of the invariant mass of the two Z bosons is
not changed by the initial state radiation, because of the way the initial state radiation is
generated. Final state radiation on the other hand, would shift the invariant mass of the
two Z bosons toward lower energies.
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my [GeV] | 1.64 0,,, [GeV] from PYTHIA | CKIN(1) | CKIN(2)

200 6.63 190 210
250 8.66 235 265
300 11.43 280 320

Table 4.3: The values of CKIN(1) and CKIN(2) used in the simulation, compared to the
value of the cut on the Higgs mass, 1.64 oy,.

4.3.2 Observables

Next, I am going to describe the observables I have studied. I have looked at in total seven
different observables including one that is similar but not identical to ¢ as it is defined in
(3.2).

As I mentioned in the introduction of this chapter, the CP-state of the Higgs boson in
the decay (4.1) determines the polarisation of the vector bosons, and this polarisation in
turn determines the distributions of the decay angles in the decays of the vector bosons.

The decays of the two Z bosons can be defined by the polar and azimuthal decay
angles in the respective rest frame of each Z boson. It is natural to study each decay in
its own CoM frame, because the phase space factor of the decay rate is isotropic here, and
any deviations from flat distributions must come from the matrix element. One of the
azimuthal angles should be trivial. This can be seen by noting that the decay rate must
be invariant under rotations around the axis of the Z momenta in the Higgs boson rest
frame, see figure 3.2.

We are left with two polar angles, and one azimuthal angle describing the decays of the
Z bosons [8-14]. T have denoted these angles by cos 7, cos 6} and ¢f;. They are defined
as follows:

First, the momenta of the four leptons are boosted to the rest frame of the Higgs boson
they are assumed to come from. For background events this is equivalent to boosting them
to the CoM frame of the four leptons. Next, the system is rotated so that the reconstructed
momentum of the first of the two Z bosons lies in the zz-plane. The choice of which Z
boson is first is arbitrary. Then the system is rotated one more time, so that the momentum
of the first Z boson points along the positive z-axis. The momentum of the other Z boson
now points along the negative z-axis, because we are in the CoM frame of the two Z bosons,
see figure 3.2.

The momenta of the decay products of the first Z boson, {; and I, are now boosted to
the rest frame of the first Z boson, and correspondingly the decay products of the second
Z boson, I3 and I, are boosted to the rest frame of the second Z boson. The angle cos 0}
is defined as the polar angle of /;, in the rest frame of the first Z boson. Similarly cos 6}
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is the polar angle of /3, in the rest frame of the second Z boson. Notice that both cos 67
and cos @3 are defined relative to the positive z-axis, and not relative to the direction of
the corresponding Z boson momentum. For a definition of the angles cos 67 and cos 65, see
figure 4.1.

Figure 4.1: Definition of the decay angles in the decays of the Z bosons. The black dots
show which particle is at rest in the given frame. Higgs rest frame (top), rest frame of first
Z boson (middle), rest frame of second Z boson (bottom). I got the idea to this figure
from [8].

The angle ¢7, is defined as

O1s = |67 — &5 + 2 (4.19)

where n is an integer, chosen so that (¢7 — ¢} + 27n) lies between —7 and 7. The angles
@] and ¢ are the azimuthal angles of /; and /3 in the rest frames of the corresponding Z
bosons, see figure 4.1.

I also define a third observable cos 075, which can be considered as a combination of the
information in the three observables I have already mentioned.> The observable cos 0}, is
defined as the angle between the momentum of /;, p;, and the momentum of I3, ps, where

2The observable cos 0}, was suggested by T. Sjdstrand.
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P: is measured in the rest frame of the first Z boson and p3 is measured in the rest frame
of the second Z boson. This makes cos 675 the angle between two momentum vectors which
are defined in two different frames of reference. Thus it is no physical decay angle, but a
function of the four angles 07, 65, ¢7 and ¢;:

cos 0]3 = cos 0] cos 031 — cos(¢p] — ¢3)] + cos(0] — 03) cos(p] — ¢3) (4.20)

Notice that ¢75 is also a difference between angles measured in two different frames,
but because we boost along the z-axis in order to get from the Higgs rest frame to the
respective Z boson rest frames, the azimuthal angles ¢} and ¢ are invariant under these
two boosts. Therefore we would get the same value of ¢3 if ¢; and ¢35 were measured in
the Higgs rest frame.

One can now easily show that the relation between the angle ¢ (3.2), defined in the
previous chapter, and the angle ¢75 is given by:

Pl =T — . (4.21)

There are three more observable angles which I have studied. They are chosen to
distinguish between background and signal events. The first two are different definitions of
the polar angle in the decay of the Higgs boson. These angles are expected to be completely
isotropically distributed for the signal events, because the Standard Model Higgs boson is
a scalar particle. The angle cos 67, is defined as the polar decay angle of the first Z boson
in the Higgs rest frame, relative to the direction of the Higgs momentum. The second
angle, cos 7 ,, is defined as the polar decay angle of the first Z boson in the Higgs rest
frame, relative to the z-axis (the beam axis). See figure 4.2 for the angle cos 0% .

Lab frame A Higgs rest frame

Figure 4.2: The angle cos 07, defined in the Higgs rest frame.

The last observable I have studied is the angle ¢Z ., defined as

sum?

Doum = |1 + &3 + 270/, (4.22)
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where n is again chosen so that (¢ +¢5+27n) lies between —m and 7. This is the azimuthal
angle in the Z boson decays which we expect to be isotropic, because of invariance under
rotations of the system. Thus it serves as a check.

At the end of this section I have included plots of five of the seven observables mentioned
above. The two observables which are not shown are cos@7, and ¢g,,. The reason to
exclude cos 67, is that it is very similar to cos 6% ,, so there is no need to show both
distributions. I have excluded ¢, because it is indeed completely isotropic, both in the
two types of signal as well as in the background.

I show distributions of each observable, before and after selecting events with the kine-
matic cuts described in this section for my = 200 GeV. See figures 4.3-4.7. In addition
each observable is shown for decay of a CP-even Higgs boson, a CP-odd Higgs, and the
quark-antiquark fusion background channel. The normalisation is arbitrary, because my
intention is to show the shapes of the distributions. The ratio of events before and after
cuts is correct shown though, except in the case of the background events, where 1 have
multiplied the distribution after cuts by 20, so that the shape should be clearly visible
compared to the distribution before cuts (the ratio of background events surviving cuts is
a few percent). The cross section times branching ratios and the ratio of events surviving
cuts are summarised in tables in the next section.

In appendix A I have shown the same plots for the Higgs masses my = 250 GeV and
myg = 300 GeV. See figures A.1-A.10.

The information in these distributions can be summarised as follows: Let us start with
the two observables cos 67 and cos 03, which by symmetry must be identical. The difference
between the distributions for the CP-even and CP-odd case is not ruined by the kinematic
cuts for either of the values of m;,. We see that the background distributions are similar in
shape to the CP-odd distribution before cuts. The cuts ruin some of this similarity though,
and makes the background distribution after cuts more isotropic.

It is interesting to note that the value of the Higgs mass does not have any effect on
the distribution for the CP-odd case. For the CP-even case we see that values of cos 6]
and cos 03 around zero become more and more probable as the Higgs mass increases, the
distributions become more peaked around zero.

Next I discuss the observable ¢7;. Again we notice that the CP-odd distributions do not
vary with the Higgs mass. The CP-even distributions become more and more isotropic as
the Higgs mass increases. We see some correlation for m;, = 200 GeV, and the correlation
is just visible for m;, = 250 GeV, but for m; = 300 GeV, the correlation can be ignored.
The shape of neither signal distribution is changed by the kinematic cuts. The background
is uncorrelated for all values of the Higgs mass, and this is also unchanged by the kinematic
cuts, except in the case of m; = 200 GeV, where we see a small correlation similar to the
CP-even case after cuts.

For the observable cos 075, the CP-odd distribution is again independent of the value of
the Higgs mass. The CP-even distribution is peaked in the forward and backward direc-
tions, opposite to the CP-odd which is peaked for the normal direction. We see a tendency
here too, that the CP-even distribution becomes more uncorrelated with increasing Higgs
mass, but the effect is much weaker than for the observable ¢7;. The signal distributions
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are not much changed by the kinematic cuts, if at all. The background is also here flat
and unchanged by the cuts, except for m;, = 200 GeV, where we see a small correlation
after cuts.

When it comes to the observable cos 8},, we see that it is completely isotropic for the
two types of signal, but that the cuts change the distributions slightly so that angles close
to the normal direction become a bit more probable compared to the forward and backward
directions. The deviation from an isotropic distribution increases slightly with the Higgs
mass, both for the CP-even and the CP-odd case. Among the observables I have studied,
this is the one where the CP-even and CP-odd distributions are most similar.

The background on the other hand is strongly peaked in the forward and backward
directions for this observable. After cuts most of these peaks disappear for the background.
The distribution for m;, = 200 GeV is almost flat after cuts, whereas the distribution for
myp, = 300 GeV has kept some of the peaks in the forward and backward directions.

The fact that the distribution in ¢7; becomes isotropic when the Higgs mass increases
in the CP-even case, and that it is independent of the Higgs mass in the CP-odd case,
is consistent with the expressions for the decay rates dI'/d¢ in (3.184) and (3.185) in the
previous chapter. The shape of the ¢]; distributions is also as we expected from these
expressions, see figure 3.5.

4.3.3 Cross Sections and Expected Number of Events after Cuts

The tables 4.4-4.7 summarise the cross section times branching ratios ¢ x BR, the percent
of events which survive kinematic cuts (cut%), and the expected number of events after
reconstruction and kinematic cuts, n, for three different Higgs boson masses and for two
values of the integrated luminosity [ £dt. I have used the following formula to calculate
the expected number of events that survive reconstruction and kinematic cuts:

n=0x BR / £ dt (cut%) (0.9)*. (4.23)

Here the factor (0.9)* comes from an expected reconstruction efficiency of 90% for electrons
and muons at ATLAS [29] (page 714).
I have obtained the background cross section times branching ratio by using the formula:

Owt X BR=1.350(qq — ZZ) x BR. (4.24)

The factor 1.35 I have found by noting that the cross section for the channel gg — ZZ is
expected to be 35-45% of the q7 — ZZ cross section for a CoM energy of 16 GeV [30].
The CoM energy at the LHC is now expected to be 14 GeV, and therefore I use the lower
limit 35% (the gluon distribution functions for the proton are largest for small values of
the momentum fraction z, and decreases when z increases.)

I have compared the values obtained for cross section times branching ratios and ex-
pected number of events with the values found in the ATLAS internal note in ref. [32]
for the same Higgs masses and with the same kinematic cuts. In this note the quoted
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signal cross section times branching ratios is approximately 10-20% higher than the values
I have found from default PYTHIA settings. This might be due to the fact that different
parton distribution functions have been used. The quoted expected number of signal and
background events, with kinematic cuts similar to the ones I have used, is also higher than
the values I have found. This might not be so difficult to explain, knowing that simulation
of the ATLAS detector has been used to find the reconstruction efficiencies and the back-
ground rejections in the note, whereas I have used a simpler analysis model to find the
fraction surviving cuts. This fact together with the effect of different parton distribution

functions might be enough to explain the differences in the results.

my [GeV] | o X BR [fb] signal

o X BR [tb] background

200 11.1
250 8.97
300 7.19

95.2
95.2
95.2

Table 4.4: The cross section times branching ratio (BR) for signal events, and for back-

ground events for three different Higgs masses

my [GeV] | Surviving cuts (%) signal | Surviving cuts (%) background
200 50.5 3.24
250 46.5 2.13
300 43.3 1.37

Table 4.5: The fraction of events surviving kinematic cuts
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myg [GeV] | Number of signal events | Number of background events

200 368 202
250 274 133
300 204 86

Table 4.6: Expected number of events for an integrated luminosity of 100 fb™"

mpy [GeV] | Number of signal events | Number of background events

200 110 61
250 82 40
300 62 26

Table 4.7: Expected number of events for an integrated luminosity of 30 fb™*
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4.4 Statistical Method

In this section I will describe the statistical method I am going to use. 1 want to make use
of the observables described in the previous section, to test the two hypotheses “CP-even
Higgs boson” and “CP-odd Higgs boson” against simulated experiments. My goal is to
assess the amount of integrated luminosity necessary in order to draw a conclusion about
the CP-property of a discovered Higgs boson from these observables.

My starting point is the least squares method. I use the modified minimum chi-square
method [34] (page 171):

N 0\12

- Y
Here Y; are the number of events in histogram bins, and f;(#) are the expectation values
of Y;, according to some model. The vector § contains the parameters of the model.

In its usual form the minimum chi-square method has got the variance o? in the de-
nominator (instead of Y;). The modified minimum chi-square method uses Y; instead of o?.
Asymptotically for a large number of bins and a large number of events per bin, the two
methods give the same result. This can be seen from the fact that f;(f) is the expectation
value of Y;, and that we have o? =~ f;(f) when the number of bins is large.

In the limit of a large number of events Y; becomes approximately normal. When 0 is
known, when there are many events in each bin, and for large N, then QQ? is asymptotically
distributed as x?(NN). The distributions x?(N) for some selected values of N can be seen
in figure 4.8.

I expect Q? to be generally larger for the “wrong” model than for the “correct” one.
We know, of course, which hypothesis is correct for a given simulated experiment. I will
determine how often Q% has the smallest value for the correct hypothesis. By demanding
that this must be the case in 95 out of 100 experiments, I can estimate the necessary
integrated luminosity in order to decide the CP-property of a discovered Higgs boson.

I am going to use the following notation for Q:

(Q2); _ ﬁ: (hi — (wfia ‘;(1 - w)gi)]Q a=h,A. (4.26)

Here f?, ¢g; and h; are histograms of distributions in some observable z, and N is the
number of bins in the histograms. The distributions f{* and g; are the theoretically expected
distributions for signal events and background events, respectively. The signal can be either
of type a = h, CP-even Higgs boson, or a = A, CP-odd Higgs boson. The histogram h;
represents the experimentally measured distribution in z. In the simulated experiment, the
Higgs boson must be chosen to be either CP-even or CP-odd. The expression (wf# + (1 —
w)g;) is the theoretically expected value of h; for a given hypothesis « = h or a« = A. Here
w equals the signal fraction of events in the experiment and (1 — w) equals the background
fraction.

The theoretical predictions f? and g; are determined by Monte Carlo simulation of a
large number of events. The experiments are simulated with the expected number of signal
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0 5 10 15 20 25 30 35 40 45 50

Figure 4.8: The distributions x*(N) for N equal to 6, 10 and 20.

and background events for a given integrated luminosity, after kinematic cuts. The effect
of kinematic cuts on the distributions f and g; is also taken into account. The value of the
parameter w can be obtained by minimising (Q?)% with respect to w for some observable
x.

In the previous section several angular observables which can be used to separate the
two signals ¢ = h and @ = A from each other, and from the background, were introduced.
The observable cos 07,;; will be used to determine the value of w, because its distribution
for the two signal hypotheses a = h and a = A is similar, and different from its distribution
for background events.

I also tried to determine w by taking the average of the value obtained from all observ-
ables. This resulted in negative values for w when testing the CP-odd hypothesis against
CP-even Higgs bosons in the experiment, but positive values of w for the CP-even hypoth-
esis. I concluded that it was better to choose a method for determining w which would
give a value close to the actual fraction of signal events (which is known for Monte Carlo
simulated experiments) for the “wrong” hypothesis as well as for the “correct” one.

I will use the value of w determined from cos 8% when calculating (Q?)¢ for the five
observables cos 67, cos 63, @15, cosfi; and cos 0% . Then I will take the sum of (Q?)% over
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the four first of these observables for a given hypothesis:

4

(@) =>_(Q"); (4.27)
=1

This sum (Q?)* will then be used as the value of Q? for either hypothesis, a = h or

a = A. The reason why cos 6%y is not included when calculating (Q?)?, is that it gives

approximately the same value of Q2 for the two hypotheses. This is just as we would expect

because the distribution of cos 7 is so similar for the two hypotheses.

The statistical method now can be described as follows:

e Choose a value of the Higgs mass, my, and a value of the integrated luminosity.
Select the Higgs boson to be either CP-even or CP-odd.

e Determine the form of the distributions f{* and g; for each observable = for the given
Higgs mass.

e Calculate the expected number of signal and background events to survive the kine-
matic cuts.

e Simulate 100 different experiments, where

— the actual number of simulated signal events surviving the cuts, ngg, and the
actual number of background events surviving the cuts, npae, are chosen according
to a Poisson distribution around the expected values,

— the values of Q? for the two different hypotheses CP-even Higgs boson, a = h, and
CP-odd Higgs boson, a = A, are calculated.

e How often is Q2 for the “correct” hypothesis smaller than Q? for the “wrong” hypoth-
esis? We know, of course, whether the generated Higgs bosons in the experiments
were CP-even or CP-odd.

o If Q2 for the “correct” hypothesis is smallest in 95 out of 100 experiments, then we
can expect to be able to determine the CP-state of the Higgs boson of our simple
model, for the given integrated luminosity. If this is not the case, try with a higher
integrated luminosity.

e Repeat the above procedure for the other CP-state of the Higgs boson, and for several
values of the Higgs boson mass.

The expected number of signal and background events varies with the value of the
integrated luminosity and of the Higgs mass. Therefore also the number of bins N has to
be varied in order to avoid that the number of events per bin gets too small. The number
of bins should always be as large as possible to get as much information from the simulated
data as possible.
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4.5 Results of the Statistical Analysis

This section contains the results of the statistical analysis. I will give the results in the
form of tables and plots. Most of the plots are in appendix B. T will discuss all results of
the Monte Carlo analysis in this section though.

First I give an overview of the number of bins I have used in the histograms in the
statistical analysis. As I discussed in the previous section, the number of bins should be
as large as possible, both because the simulated data then is better exploited, and because
the asymptotic properties of the modified minimum chi-squared method, discussed in the
previous section, depend on a large number of bins.

When the number of events in one of the bins of the experimental distribution Y; equals
zero, though, the method either has to be changed, or the data has to be rebinned for a
smaller number of bins.

I have chosen to rebin the data (to run the simulation again for a smaller number
of bins). The alternative would be to throw away the bin with zero events in the Y;
distribution, or to combine the bin with zero events with the bin before or after.

I must admit that the choice of method is somewhat arbitrary, due to the fact that
my statistical analysis is not so accurate from the start. For the small number of events
available it would probably have been better to work with the maximum likelihood method
[34] (page 171).

On the other hand, I am not trying to make a highly specialised statistical analysis
of the simulated data, but only to get some estimate of the amount of information in the
observables I have studied. The theoretical model I have used as a basis for the simulations,
is also only an approximation. The advantage from these approximations is naturally that
the results could be obtained in a shorter time than what would otherwise have been the
case.

In table 4.8 below I have shown the number of bins used for different settings in the
simulations. Here also I have to admit that this is probably not the perfect binning for
the data. I started with 20 bins, and reduced the number of bins in the cases where I had
problems with empty bins in Y;. It is my opinion that this method can be justified from
the same arguments as above.

At the end of this section and in appendix B, I have shown all the plots which are the
results of the statistical analysis. In figures 4.9-4.20 in this section I show histograms for
the sum (Q?)* = Y2_,(Q?)2, where the sum goes over the four observables cos 6}, cos 63,
@75 and cos 075.

I show histograms for the hypotheses of a CP-even, a = h, and a CP-odd, a = A, Higgs
boson, as well as the difference (Q?)" — (Q?)“. See the previous section for more details on
the statistical method. The histograms are shown for three different values of the Higgs
mass, for either a CP-even or a CP-odd Higgs boson in the simulated experiments, and for
two different values of the integrated luminosity, [ £dt = 100 b~ and [ £dt = 30 fb™'.
The values of the integrated luminosity correspond to the values quoted in the ATLAS
TDR [29]. The histograms show the results of 100 simulated experiments.

In appendix B I show the corresponding histograms of (Q%) for each of the four ob-
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my, [GeV] 200 250 300

[ £dt =100 fb' CP-even || 20 bins | 10 bins | 20 bins
[ £dt =100 fb~' CP-odd || 20 bins | 10 bins | 20 bins
[L£dt=301fb ! CP-even || 10 bins | 10 bins | 6 bins
[£dt =30 fb~! CP-odd || 10 bins | 10 bins | 6 bins

Table 4.8: Number of bins /V used in the histograms in the statistical analysis, for different
values of the integrated luminosity | £dt, the CP-state of the Higgs boson in the simulated
experiments, and for the Higgs mass.

servables cos 07, cosf;, ¢7; and cosfj;. In addition I have shown the distributions in w,
for the CP-even and CP-odd hypotheses. Remember that w is the value which is used in
the statistical analysis, for the fraction of signal events in the experiments, and that w is
determined from the observable cos 67 ;. In addition to w, the same histograms as for the
other four observables, is shown for cos#7,,. See figures B.1-B.36 in the appendix.

How can the information in all these histograms be summarised? Let us start with a
table which shows how often the correct hypothesis would be chosen, using the statistical
method in the previous section, see table 4.9.

my, [GeV] 200 | 250 | 300

[ £dt =100 fb™' CP-even || 98% | 100% | 100%
[L£dt =100 fb ' CP-odd || 99% | 100% | 100%
[L£dt =30 fb~! CP-even || 84% | 98% | 99%
[L£dt=301fb ! CP-odd | 87% | 99% | 98%

Table 4.9: In how many out of 100 experiments is the value of % for the “correct”
hypothesis smaller than the value of Q? for the “wrong” hypothesis? The results are
shown for different values of the Higgs mass, for the two CP-states of the Higgs boson in
the simulated experiments, and for two values of the integrated luminosity.

From table 4.9, we see that an integrated luminosity of [£d¢t = 30 fb~' probably
would be sufficient to draw a conclusion about the CP-state of a Higgs boson with mass
myp, = 250 GeV or my, = 300 GeV, at the LHC, assuming the simple CP-conserving model
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I have used (see the introduction to this chapter for an explanation of the model).

For a Higgs mass of m;, = 200 GeV an integrated luminosity of [ £dt = 100 fb~! would
probably be necessary in order to measure the CP-state.

In table 4.10 I have shown the mean values and the root-mean-square values for the
histograms of (Q?)" — (Q*)# in figures 4.9-4.20. Notice that the mean values are negative

my, [GeV] 200 250 300
[ £dt =100 tb ! CP-even -79.00 -151.7 -175.3
RMS 48.50 | RMS 46.40 | RMS 65.89
[ £dt =100 fb~' CP-odd 113.8 129.9 129.6
RMS 54.39 | RMS 43.30 | RMS 47.82
[ £dt =30 fb~! CP-even -26.45 -42.90 -39.00
RMS 31.39 | RMS 26.92 24.30
[ £dt =30 fb~! CP-odd 33.10 46.70 34.95
RMS 35.02 | RMS 29.81 | RMS 21.90

Table 4.10: An overview of the mean and root-mean-square (RMS) values for the his-
tograms of (Q%)" — (Q*)”.

for a CP-even Higgs boson simulated in the experiments, and positive for a CP-odd Higgs
boson. This is consistent with the fact that (Q?)" — (Q?)“ will have a negative value when
(Q?)" is the smallest one, and a positive value when (Q?)# is the smallest.

The RMS values are smaller for the lower value of the integrated luminosity. Clearly,
the RMS values and the absolute values of the means, depend both on the number of bins
used, and on the statistical significance of the simulated experiments. The number of bins
used in the statistical method, determines the expectation value of the x?(N) distribution,
and therefore the expected value of (Q?)2 in the case of a correct hypothesis and high
statistics. The expected value of (Q?)? is therefore smaller for a smaller number of bins,
see figure 4.8 for the distribution x?(N) for different values of N. The sum (Q?)* will also
depend on the number of bins used in the chi-squared method.

As for the statistical significance of the experiments, a higher number of events will give
a larger difference between the value (Q?)% for the correct and for the wrong hypothesis.
This will lead to larger values for the RMS of the difference (Q?)" — (Q?)*. Both these
effects are consistent with the mean and RMS values in table 4.10.

How do the different observables contribute to the information about the CP-state of



84 CHAPTER 4. MONTE CARLO STUDIES

the Higgs boson?

The histograms of (Q?)" — (Q?)Z can give some impression about how much information
the different observables x contain about the CP-state of a Higgs boson, assuming the
simple CP-conserving model described earlier. If the value of (Q?%), for the “correct”
hypothesis often is smaller than the value of (Q?), for the “wrong” hypothesis, then the
observable contains more information than if this happens more seldom.

By comparing the histograms of (Q?)" — (Q?)4 for the two polar angles cos 67 and cos 0}
for different values of the Higgs mass, we can see that these two observables contain more
information about the CP-state of a Higgs boson for higher values of the Higgs mass.

For the angle ¢7; it is the other way around. It contains less information for higher
values of the Higgs mass.

This can be explained from the fact that the distributions cos ;] and cos 63, become more
correlated when the Higgs mass increases for the CP-even Higgs, whereas the distribution
of ¢75 becomes almost uncorrelated for the CP-even Higgs, for increasing Higgs masses.
For the CP-odd Higgs the distributions in all observables change little or not at all with
the Higgs mass. See the discussion of the distributions of the observables in the subsection
4.3.2.

I conclude that for all three values of the Higgs mass, all four observables contain
information about the CP-state of a Higgs boson. For the Higgs mass m;, = 200 GeV
the four observables contain about the same amount of information, whereas for the Higgs
mass my = 300 GeV, the two polar angles cosf] and cos@; are clearly more significant
than the other two observables.

Concerning the fraction of signal events w, and the observable cos 67, notice that the
distributions of w are very similar for the two hypotheses CP-even and CP-odd, and that
(Q?), have almost identical values for the two hypotheses, for the observable cos #3,;. This
shows that the distributions of cos @7, are very similar for the CP-even and the CP-odd
Higgs bosons, as we would expect.

It is interesting to compare the distributions (Q?)% with x?(N), where N is the number
of bins used in the histograms in the statistical analysis, 6, 10 and 20 respectively. See
figure 4.8 for plots of the x?(N) distributions for these values of N. From the histograms
in figures B.1-B.36 one can see that the distributions in (Q?)% are quite similar to the
corresponding x?(N) distributions for the correct hypotheses, whereas (Q?)% tend to have
larger values for the wrong hypotheses.
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Figure 4.9: CP-even Higgs boson with mass m;, = 200 GeV, integrated luminosity [ £dt =

100 fb~'. The sum (Q%)* = 1, (Q?)®

T

is shown for the CP-even hypothesis a = h and

for the CP-odd hypothesis a = A. The difference between the value of (Q*)® for the two
hypotheses, (Q%)" — (Q?)4, is also shown.
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Figure 4.10: As figure 4.9, but with lower integrated luminosity, 30 fb™'.
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CP—odd Higgs, m,=200 GeV, L=100 fb™
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Figure 4.11: CP-odd Higgs boson with mass m;, = 200 GeV, integrated luminosity [ £dt =
100 fb~'. The sum (Q%)* = Y*_,(Q?)® is shown for the CP-even hypothesis a = h and

for the CP-odd hypothesis a = A. The difference between the value of (Q*)® for the two
hypotheses, (Q%)" — (Q?)4, is also shown.
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CP—odd Higgs, m,=200 GeV, L=30 fp!
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Figure 4.12: As figure 4.11, but with lower integrated luminosity, 30 fb™'.
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Figure 4.13: CP-even Higgs boson with mass m;, = 250 GeV, integrated luminosity [ £dt =
100 fb~'. The sum (Q%)* = Y% (Q%)® is shown for the CP-even hypothesis a = h and

T

for the CP-odd hypothesis a = A. The difference between the value of (Q*)* for the two
hypotheses, (Q%)" — (Q?)4, is also shown.
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Figure 4.14: As figure 4.13, but with lower integrated luminosity, 30 fb™'.
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Figure 4.15: CP-odd Higgs boson with mass m;, = 250 GeV, integrated luminosity [ £dt =
100 fb~'. The sum (Q%)* = Y*_,(Q?)® is shown for the CP-even hypothesis a = h and

for the CP-odd hypothesis a = A. The difference between the value of (Q*)® for the two
hypotheses, (Q%)" — (Q?)4, is also shown.
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Figure 4.16: As figure 4.15, but with lower integrated luminosity, 30 fb~*.
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Figure 4.17: CP-even Higgs boson with mass m;, = 300 GeV, integrated luminosity [ £dt =
100 fb~'. The sum (Q%)* = Y*_,(Q?)® is shown for the CP-even hypothesis a = h and

T

for the CP-odd hypothesis a = A. The difference between the value of (Q*)® for the two
hypotheses, (Q%)" — (Q?)4, is also shown.
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CP—even Higgs, m,=300 GeV, L=30 fb™"
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Figure 4.18: As figure 4.17, but with lower integrated luminosity, 30 fb™.
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Figure 4.19: CP-odd Higgs boson with mass m;, = 300 GeV, integrated luminosity [ £dt =

100 fb~'.

The sum (Q?)* = ¥2_,(Q?)¢ is shown for the CP-even hypothesis a = h and

for the CP-odd hypothesis a = A. The difference between the value of (Q*)® for the two
hypotheses, (Q%)" — (Q?)4, is also shown.
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CP—odd Higgs, m,=300 GeV, L=30 fb™
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Figure 4.20: As figure 4.19, but with lower integrated luminosity, 30 fb~*.



Chapter 5

Conclusions

In this thesis I have studied several angular correlations in the decay
H — VWV, —»Af, (5.1)

which are sensitive to the CP-property of the Higgs boson H.

In chapter 3 the decay rate d['/d¢ was calculated for the case of a CP-even and a
CP-odd Higgs boson. These calculations have been performed before, and I confirmed
the earlier obtained results [10]. We saw that the decay rate dI'/d¢ is independent of the
Higgs mass for the CP-odd Higgs boson, and that it depends on the value of the Higgs
mass for the CP-even Higgs boson. In the limit of a heavy Higgs boson, the correlation in
¢ disappears for the decay of the CP-even Higgs.

The distribution of dI"/d¢ also depends on whether the vector bosons ViV, are W+W~
or ZZ, and in the case of a ZZ pair, on the flavour of the two fermion-antifermion pairs.

We saw that the correlation was strongest for decay to a W*W ™ pair, and that the
angle ¢ was almost uncorrelated for the decay

h— ZZ —4l, (5.2)

where 4/ denotes two pairs of electrons (electron-positron) and/or muons.

In chapter 4, a Monte Carlo analysis of the sensitivity for several observables, to the
CP-states of a Higgs boson at the LHC was performed, using the program PYTHIA. The
analysis was performed for a simple model with at least two Higgs bosons, one CP-even
and one CP-odd, which both have the same production rate as the SM Higgs boson. The
decay rate for the Higgs bosons, in the channel (5.2), was also assumed to be identical to
the standard model rate.

The dominant background channel for this decay mode is continuum ZZ production
through quark-antiquark fusion. Unfortunately there is another important background
channel which could not be simulated with PYTHIA. This channel is continuum ZZ pro-
duction through gluon-gluon fusion. In the analysis I have assumed that the decay distri-
butions are similar for the two background channels. This I conclude from the fact that
the polarisations of the Z pairs produced via the two channels are similar.
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The decay distributions I studied, have been suggested earlier as sensitive to the CP-
property of the Higgs boson [9-14]. I studied the polar decay angles in the decays of the Z
bosons, in the rest frames of the Z bosons, and the relative azimuthal angle between the
decay planes of the two decays Z — [*] . This last angle is uniquely related to the angle
¢ defined in chapter 3.

In addition I defined an observable which combines the information in the three other
angles. This is the angle between the momenta of the two negatively charged leptons,
where the momenta are defined in the rest frames of the corresponding Z boson.!

I found that the CP-state of a pure CP-even or CP-odd Higgs boson can be measured
at the LHC, provided that the production and decay rates are at least as large as the rates
of the SM Higgs boson, and that the Higgs mass is above the threshold for decay into two
real Z bosons. For a Higgs boson with mass m;, = 200 GeV, which seems to be the most
probable of the three values I have studied, an integrated luminosity of 100 fb™' would be
necessary. This corresponds to a few years of running with high luminosity at the LHC.

For a Higgs mass of m;, = 250 GeV or larger, the CP-state can be measured already
for an integrated luminosity of 30 fb ', which probably will be reached after the first few
years of running with medium luminosity at the LHC.

These are the results for a Higgs boson which is purely CP-even or CP-odd, and which
has a fairly large decay rate to weak vector bosons.

What are the possibilities to measure the CP-property of a Higgs boson for a more
general model? Provided that the mixing between Higgs bosons of different CP-states is
large, so that it is easy to measure, that the mixing does not reduce the decay rate of the
lightest Higgs boson to weak vector bosons too much, and that the coupling constant 7 for
the CP-odd decay to vector bosons by some mechanism is not too small, the CP-even and
CP-odd components of a mixed Higgs boson can probably be measured in this channel.
It is also necessary, of course, that the Higgs boson is sufficiently heavy to decay into two
real Z bosons.

The experimental data at present makes a Higgs boson lighter than 200 GeV most
probable. Still, a Higgs boson with mass m;, > 180 GeV is not experimentally excluded,
and until this is the case, it it would be wise to explore how to study the properties of a
Higgs boson also in this mass range.

It would be interesting to perform Monte Carlo analyses for the decay mode (5.2), given
a more realistic CP-violating model, like MSSM with explicit CP-violation [6]. There might
also be other observables for this decay than the ones I have studied, which are worth
examining, for instance the energy weighted decay rate introduced in [10]. In order to
get a better estimate of the background distributions, it would be necessary to study the
distributions of decay angles for ZZ continuum production through gluon-gluon fusion.
The effect of CP-violation and mixing of states on the effective coupling constant 7 for a
CP-odd decay of a (mixed) Higgs boson into a pair of weak vector bosons, would also have
to be calculated.

It is important to identify and study observables which are sensitive to the CP-properties

! This observable was suggested by T. Sjostrand.



99

of a Higgs boson with mass above 2my, at the LHC. If such a Higgs boson is discovered,
it will not be enough to confirm that it is mainly CP-even or CP-odd. We should also
try to determine how large a possible mixing is. This might be examined through decay
correlations such as the ones studied in this thesis.

We do not know what coming experiments will reveal about the sector of electroweak
symmetry breaking, but it is likely to change our view of the fundamental interactions in
nature, and to give rise to new puzzles which will be for the next generation of physicists
to unravel. This has always been the way physics has developed, and it will most certainly
be so also for the future.
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Appendix A

Angular Correlations

This appendix contains plots similar to figures 4.3-4.7, but for the Higgs masses m;, =
250 GeV and m; = 300 GeV. The plots show distributions of the observables cos 67,
cos 03, ¢35, cosfi; and cos %, before and after kinematic cuts. For a discussion of the
observables and the distributions, see subsection 4.3.2.
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A.1 Higgs boson with mass 250 GeV
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A.1. HIGGS BOSON WITH MASS 250 GEV
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A.1. HIGGS BOSON WITH MASS 250 GEV
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A.2. HIGGS BOSON WITH MASS 300 GEV
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A.2. HIGGS BOSON WITH MASS 300 GEV
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Appendix B

Statistical Results

This appendix contains most of the plots from the statistical analysis in chapter 4. For a
discussion of the results, see section 4.5. The appendix is divided into three sections, one
for each value of the Higgs mass, m; = 200 GeV, m; = 250 GeV and m;, = 300 GeV.

The plots show the distributions of (Q?)2, given by (4.26) on page 78, for several
observables x and for the two different hypotheses CP-even Higgs, a = h, and CP-odd
Higgs, a = A.

For each value of the Higgs mass, the results are given for two different values of the
integrated luminosity, and for either CP-even or CP-odd Higgs bosons simulated in the
experiments.

From the following figures, one can see that the amount of information in the simulated
experiments depends on the luminosity in an obvious way: when the luminosity decreases,
the amount of information also decreases.

The dependence on the Higgs mass of the different observables is as follows: for the
lowest Higgs mass considered, 200 GeV, the four observables cos 67, cos 65, ¢7; and cos 6]
have about the same sensitivity to the CP of the Higgs. For higher values of the Higgs mass,
250 and 300 GeV, the sensitivity of cos ] and cos 63 increases, whereas the sensitivity of
@75 and cos 075 decreases.
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B.1 Higgs boson with mass 200 GeV
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Figure B.1: The observables cosf; and cosf@;. CP-even Higgs boson with mass m; =
200 GeV, integrated luminosity [ £dt = 100 fb'. The histogram of (Q?)2 is shown for the
CP-even hypothesis a = h and for the CP-odd hypothesis a = A. The difference between
the values of (Q?)2 for the two hypotheses, (Q%)" — (Q?)4, is also shown. Here x refers to
the observable cos 0} or cos 6;.
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CP—even, m,=200 GeV, L=30 fb™'
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Figure B.2: Same as figure B.1, but for a lower integrated luminosity, 30 fb™'.
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CP—odd, m,=200 GeV, L=100 fb™
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Figure B.3: The observables cosf; and cosf;. CP-odd Higgs boson with mass m, =
200 GeV, integrated luminosity [ £dt = 100 fb~'. The histogram of (Q?)? is shown for the
CP-even hypothesis a = h and for the CP-odd hypothesis a = A. The difference between
the values of (Q?) for the two hypotheses, (Q?)" — (Q?)4, is also shown. Here z refers to
the observable cos 6] or cos 03.
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Figure B.4: Same as figure B.3, but for a lower integrated luminosity, 30 fb™'.
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CP—even, m,=200 GeV, L=100 fb™
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Figure B.5: The observables ¢j; and cos 5.
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Figure B.6: Same as figure B.5, but for a lower integrated luminosity, 30 fb™'.
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CP—odd, m,=200 GeV, L=100 fb™"
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Figure B.7: The observables ¢j; and cosfj;. CP-odd Higgs boson with mass m;, =
200 GeV, integrated luminosity [ £dt = 100 fb~"'. The histogram of (Q?) is shown for the
CP-even hypothesis a = h and for the CP-odd hypothesis a = A. The difference between
the values of (Q?) for the two hypotheses, (Q?)" — (Q?)4, is also shown. Here z refers to
the observable @75 or cos 6}.
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Figure B.8: Same as figure B.7, but for a lower integrated luminosity, 30 fb™'.



122 APPENDIX B. STATISTICAL RESULTS

CP—even, m,=200 GeV, L=100 fb™
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Figure B.9: The fraction of signal events in the experiments, w, and the observable cos 67, .
CP-even Higgs boson with mass m;, = 200 GeV, integrated luminosity [ £dt = 100 fb™".
The fraction w is shown for the CP-even and the CP-odd hypothesis. The histogram of
(Q*)¢ is shown for the CP-even hypothesis a = h and for the CP-odd hypothesis a = A.
The difference between the values of (Q?)2 for the two hypotheses, (Q*)" — (Q?)4, is also
shown. Here z stands for the observable cos 67 .
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CP—even, m,=200 GeV, L=30 fb™'
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Figure B.10: Same as figure B.9, but for a lower integrated luminosity, 30 fb™.
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Figure B.11:
able cos@7,.
[ L£dt = 100 fb~".

APPENDIX B. STATISTICAL RESULTS
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50 100 150

50 100 150

W

n pyp.)

-1 0 1 2 3

2 3

The fraction of signal events in the experiments, w, and the observ-
CP-odd Higgs boson with mass m;, = 200 GeV, integrated luminosity
The fraction w is shown for the CP-even and the CP-odd hypothe-
sis. The histogram of (Q?) is shown for the CP-even hypothesis a = h and for the CP-odd
hypothesis a = A. The difference between the values of (Q?)2 for the two hypotheses,

(QH)" — (Q*)4, is also shown. Here z stands for the observable cos 6%,
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Figure B.12: Same as figure B.11, but for a lower integrated luminosity, 30 fb™.
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B.2 Higgs boson with mass 250 GeV
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Figure B.13: The observables cosf] and cosf@;. CP-even Higgs boson with mass m; =
250 GeV, integrated luminosity [ £dt = 100 fb'. The histogram of (Q?)2 is shown for the
CP-even hypothesis a = h and for the CP-odd hypothesis a = A. The difference between
the values of (Q?)2 for the two hypotheses, (Q%)" — (Q?)4, is also shown. Here x refers to
the observable cos 0} or cos 6;.
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GeV, L=30 fb™"
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Same as figure B.13, but for a lower integrated luminosity, 30 fb™'.
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CP—odd, m,=250 GeV, L=100 fb™
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Figure B.15: The observables cosf] and cosf;. CP-odd Higgs boson with mass m; =
250 GeV, integrated luminosity [ £dt = 100 fb~'. The histogram of (Q?) is shown for the
CP-even hypothesis a = h and for the CP-odd hypothesis a = A. The difference between
the values of (Q?) for the two hypotheses, (Q?)" — (Q?)4, is also shown. Here z refers to
the observable cos 6] or cos 03.
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CP—odd, m,=250 GeV, L=30 fb™'
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Figure B.16: Same as figure B.15, but for a lower integrated luminosity, 30 fb™.
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CP—even, m,=250 GeV, L=100 fb™
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Figure B.17: The observables ¢j; and cosfj;. CP-even Higgs boson with mass m, =
250 GeV, integrated luminosity [ £dt = 100 fb~"'. The histogram of (Q?) is shown for the
CP-even hypothesis a = h and for the CP-odd hypothesis a = A. The difference between
the values of (Q?) for the two hypotheses, (Q?)" — (Q?)4, is also shown. Here z refers to
the observable @75 or cos 6}.
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Figure B.18: Same as figure B.17, but for a lower integrated luminosity, 30 fb™.
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CP—odd, m,=250 GeV, L=100 fb™"
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Figure B.19: The observables ¢j; and cosfj;. CP-odd Higgs boson with mass m;, =
250 GeV, integrated luminosity [ £dt = 100 fb~'. The histogram of (Q?) is shown for the
CP-even hypothesis a = h and for the CP-odd hypothesis a = A. The difference between
the values of (Q?) for the two hypotheses, (Q?)" — (Q?)4, is also shown. Here z refers to
the observable @75 or cos 6}.
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Figure B.20: Same as figure B.19, but for a lower integrated luminosity, 30 fb™".
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CP—even, m,=250 GeV, L=100 fb™
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Figure B.21: The fraction of signal events in the experiments, w, and the observ-
able cos#7,;. CP-even Higgs boson with mass m;, = 250 GeV, integrated luminosity
[ L£dt = 100 fb~'. The fraction w is shown for the CP-even and the CP-odd hypothesis.
The histogram of (Q?)2 is shown for the CP-even hypothesis a = h and for the CP-odd

hypothesis a = A. The difference between the values of (Q?)2 for the two hypotheses,
(QH)" — (Q*)4, is also shown. Here z stands for the observable cos 6%,
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CP—even, m,=250 GeV, L=30 fb™'
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Figure B.22: Same as figure B.21, but for a lower integrated luminosity, 30 fb™".
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CP—odd, m,=250 GeV, L=100 fb™"
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Figure B.23: The fraction of signal events in the experiments, w, and the observ-
able cos 7. CP-odd Higgs boson with mass m, = 250 GeV, integrated luminosity
[ L£dt = 100 fb~'. The fraction w is shown for the CP-even and the CP-odd hypothe-
sis. The histogram of (Q?) is shown for the CP-even hypothesis a = h and for the CP-odd
hypothesis a = A. The difference between the values of (Q?)2 for the two hypotheses,
(QH)" — (Q*)4, is also shown. Here z stands for the observable cos 6%,
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B.3 Higgs boson with mass 300 GeV
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Figure B.25: The observables cosf] and cosf@;. CP-even Higgs boson with mass m;, =
300 GeV, integrated luminosity [ £dt = 100 fb'. The histogram of (Q?)2 is shown for the
CP-even hypothesis a = h and for the CP-odd hypothesis a = A. The difference between
the values of (Q?)2 for the two hypotheses, (Q%)" — (Q?)4, is also shown. Here x refers to
the observable cos 0} or cos 6;.
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CP—even, m,=300 GeV, L=30 fb™'
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Figure B.26: Same as figure B.25, but for a lower integrated luminosity, 30 fb™'.
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CP—odd, m,=300 GeV, L=100 fb™"
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Figure B.27: The observables cosf] and cosf;. CP-odd Higgs boson with mass m; =
300 GeV, integrated luminosity [ £dt = 100 fb™ 2 . The histogram of (Q?)? is shown for the
CP-even hypothesis a = h and for the CP-odd hypothesis a = A. The difference between
the values of (Q?) for the two hypotheses, (Q?)" — (Q?)4, is also shown. Here z refers to
the observable cos 6] or cos 03.
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Figure B.28: Same as figure B.27, but for a lower integrated luminosity, 30 fb™'.
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CP—even, m,=300 GeV, L=100 fb™
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Figure B.29: The observables ¢j; and cosfj;. CP-even Higgs boson with mass m, =
300 GeV, integrated luminosity [ £d¢ = 100 fb~'. The histogram of (Q?)2 is shown for the
CP-even hypothesis a = h and for the CP-odd hypothesis a = A. The difference between
the values of (Q?) for the two hypotheses, (Q?)" — (Q?)4, is also shown. Here z refers to
the observable @75 or cos 6}.
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Figure B.30: Same as figure B.29, but for a lower integrated luminosity, 30 fb™.
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CP—odd, m,=300 GeV, L=100 fb™"
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Figure B.31: The observables ¢j; and cosfj;. CP-odd Higgs boson with mass m;, =
300 GeV, integrated luminosity [ £d¢ = 100 fb~'. The histogram of (Q?)2 is shown for the
CP-even hypothesis a = h and for the CP-odd hypothesis a = A. The difference between
the values of (Q?) for the two hypotheses, (Q?)" — (Q?)4, is also shown. Here z refers to
the observable @75 or cos 6}.
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Figure B.32: Same as figure B.31, but for a lower integrated luminosity, 30 fb™.
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Figure B.33: The fraction of signal events in the experiments, w, and the observ-
able cos#7,;;. CP-even Higgs boson with mass m;, = 300 GeV, integrated luminosity
[ L£dt = 100 fb~'. The fraction w is shown for the CP-even and the CP-odd hypothesis.
The histogram of (Q?)2 is shown for the CP-even hypothesis a = h and for the CP-odd

hypothesis a = A. The difference between the values of (Q?)2 for the two hypotheses,
(QH)" — (Q*)4, is also shown. Here z stands for the observable cos 6%,
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Figure B.35: The fraction of signal events in the experiments, w, and the observ-
able cos 7. CP-odd Higgs boson with mass m, = 300 GeV, integrated luminosity
[ L£dt = 100 fb~'. The fraction w is shown for the CP-even and the CP-odd hypothe-
sis. The histogram of (Q?) is shown for the CP-even hypothesis a = h and for the CP-odd
hypothesis a = A. The difference between the values of (Q?)2 for the two hypotheses,
(QH)" — (Q*)4, is also shown. Here z stands for the observable cos 6%,
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Figure B.36: Same as figure B.35, but for a lower integrated luminosity, 30 fb™.
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Appendix C

Fortran Code

This appendix contains the source code of a fortran program I have used for the simulation
of experiments and for the statistical analysis.

In order to compile the program, it has to be linked with PYTHIA (the modifications
described in section 4.2 are included in the version 6.206 of PYTHIA), and with CERNLIB.

Use the following commands (in Linux or UNIX):
> £77 -c pythia6206.f

This produces the file pythia6206.0, which can be linked with other fortran programs,
without being compiled again (saves a lot of time).

> f77 -o stat stat.f pythia6206.0 -L/cern/pro/lib -1lpdflib
-lpacklib -1mathlib -lkernlib -1phtools -1nsl -lcrypt -1dl

This command compiles the file stat.f and links it with pythia6206.0 and CERNLIB
(CERNLIB might be placed somewhere else on a different server). The CERNLIB library
is needed for the HBOOK routines in the program. The executable file produced gets the
name stat.

Here follows the source code of the fortran program STAT:

PROGRAM STAT

..Simulating NEXP "experiments'" with number of signal and background
..events chosen around the expectation values after a Poisson
..distribution. For each "experiment", calculate chi”2 for the

. .hypothesis H=S and H=PS. Histogram distributions in chi~2.

aQQaQ

C...All real arithmetic in double precision.
IMPLICIT DOUBLE PRECISION(A-H, 0-Z)

C...Three Pythia functions return integers, so need declaring.
INTEGER PYK,PYCHGE,PYCOMP

C...Parameter statement to help give large particle numbers
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C...(left- and right-handed SUSY, Technicolour, excited fermions,
C...extra dimensions).
PARAMETER (KSUSY1=1000000,KSUSY2=2000000,KTECHN=3000000,
&KEXCIT=4000000,KDIMEN=5000000)

integer nwpawc

parameter (nwpawc=1000000)
integer ipaw

common /pawc/ ipaw(nwpawc)

C...EXTERNAL statement links PYDATA on most machines.
EXTERNAL PYDATA

C...Commonblocks.
C...The event record.
COMMON/PYJETS/N,NPAD,K(4000,5) ,P(4000,5) ,V(4000,5)
C...Parameters.
COMMON/PYDAT1/MSTU(200) ,PARU(200) ,MSTJ(200) ,PARJ(200)
C...Particle properties + some flavour parameters.
COMMON/PYDAT2/KCHG (500,4) ,PMAS (500,4) ,PARF (2000) ,VCKM(4,4)
C...Decay information.
COMMON/PYDAT3/MDCY (500, 3) ,MDME (8000,2) ,BRAT(8000) ,KFDP(8000,5)
C...Selection of hard scattering subprocesses.
COMMON/PYSUBS/MSEL ,MSELPD ,MSUB (500) ,KFIN(2,-40:40) ,CKIN(200)
C...Parameters.
COMMON/PYPARS/MSTP (200) , PARP (200) ,MSTI (200) ,PARI (200)
C...Supersymmetry parameters.
COMMON/PYMSSM/IMSS(0:99) ,RMSS(0:99)

C...Vectors and type definitions
CHARACTER *13 NAME
REAL CTHE1, CTHE3, PHI13, CTHE13, CTHEWH, CTHEWZ
REAL PI
REAL FSCS, FPSS, GS, HS, WSCD(5), WSCN(5), WSC(5)
REAL WPSD(5), WPSN(5), WPS(5), WSCA, WPSA
REAL CH2SC(5), CH2PS(5), CH2SCA, CH2PSA
DIMENSION IFM(4)
DIMENSION ILEPT(10), IPAIR(4,2)
REAL FSCHI1(20), FPSHI1(20), GHIST1(20), HHIST1(20)
REAL FSCHI2(20), FPSHI2(20), GHIST2(20), HHIST2(20)
REAL FSCHI3(20), FPSHI3(20), GHIST3(20), HHIST3(20)
REAL FSCHI4(20), FPSHI4(20), GHIST4(20), HHIST4(20)
REAL FSCHI5(20), FPSHI5(20), GHIST5(20), HHIST5(20)



(@}

C..

REAL AMUS, AMUB

..Invariant mass function

XM2(I,J)=SQRT((P(I,4)+P(J,4))**2-(P(I,1)+P(J,1))**2-
& (P(1,2)+P(J,2))**2-(P(I,3)+P(J,3))*%2)

..Set the length of array IPAW(NWPAWC)

CALL HLIMIT(nwpawc)

. .Number of experiments, number of events per experiment.
..Type of signal: (1) scalar or (2) pseudoscalar.
. .Name of ouput file (.hbook).

NEXP=100

ISIG=1

AMUS=203.

AMUB=87 .
NAME=’stathl/chi2__’

..Initial and final state radiation on (1) or off (2)
..Also hadronisation, fragmentation and decays on (1) or off (2)

MRADI=1
MRADF=2
MHADR=2

..Kinematic cuts on events before simulating (internal PYTHIA).

CKIN(1)=280D0
CKIN(2)=320D0
CKIN(41)=20D0
CKIN(43)=20D0

..Pick Higgs mass and decay mode, hO -> ZZ

PMAS(25,1)=300D0
KZ=23
IWZ=KZ

..Only allow H decay to selected channel.

DO 100 IDC=MDCY(25,2),MDCY(25,2)+MDCY(25,3)-1
IF (IABS (KFDP(IDC,1)) .NE.IWZ.0R.IABS(KFDP(IDC,2)) .NE.IWZ)
& MDME(IDC,1)=MIN(0,MDME(IDC,1))

100 CONTINUE

.Only allow W/Z decays to leptons.

DO 110 IDC=MDCY(24,2),MDCY(24,2)+MDCY(24,3)-1
IF (IABS (KFDP(IDC,1)) .LE.10.0R.IABS(KFDP(IDC, 1)) .GE.20)
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& MDME(IDC,1)=MIN(0,MDME(IDC,1))
110 CONTINUE
DO 120 IDC=MDCY(23,2),MDCY(23,2)+MDCY(23,3)-1
IF (IABS (KFDP(IDC,1)) .NE.11.AND.IABS(KFDP(IDC,1)).NE.13)
& MDME(IDC,1)=MIN(O,MDME(IDC,1))
120 CONTINUE

C...Switch off showers and hadronization for quick and dirty simulation.
C...Initial and final state radiation.
IF(MRADI.EQ.2) MSTP(61)=0
IF(MRADF.EQ.2) MSTP(71)=0

IF(MHADR.EQ.2) THEN
MSTP(81)=0
MSTP(91)=0
MSTP(111)=0
MSTJ(1)=0
MSTJ(21)=0

ENDIF

C...Set history option for simpler search.
MSTP(128)=1

C...Book histograms for distributions of W and chi~2.
PI=PARU(1)
CALL HBOOK1(11,’CTEH1, Weight W, Scalar hyp.’,
& 100, -1.5, 3., 0.0)
CALL HBOOK1(12,’CTEH1, Weight W, Pseudosc hyp.’,
& 100, -1.5, 3., 0.0)
CALL HBOOK1(13,’CTEH1, Chi2, Scalar hyp.’, 100, 0., 150., 0.0)
CALL HBOOK1(14,’CTEH1, Chi2, Pseudo hyp.’, 100, 0., 240., 0.0)
CALL HBOOK1(15,’CTEH1, (Chi2)sc - (Chi2)ps’,
& 100, -140., 60., 0.0)
CALL HBOOK1(21,’CTEH3, Weight W, Scalar hyp.’,
& 100, -1.5, 3., 0.0)
CALL HBOOK1(22,’CTEH3, Weight W, Pseudosc hyp.’,
& 100, -1.5, 3., 0.0)
CALL HBOOK1(23,’CTEH3, Chi2, Scalar hyp.’, 100, 0., 150., 0.0)
CALL HBOOK1(24,’CTEH3, Chi2, Pseudo hyp.’, 100, 0., 240., 0.0)
CALL HBOOK1(25,’CTEH3, (Chi2)sc - (Chi2)ps’,

& 100, -140., 60., 0.0)
CALL HBOOK1(31,’PHI13, Weight W, Scalar hyp.’,
& 100, -1.5, 3., 0.0)

CALL HBOOK1(32,’PHI13, Weight W, Pseudosc hyp.’,
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& 100, -1.5, 3., 0.0)
CALL HBOOK1(33,’PHI13, Chi2, Scalar hyp.’, 100, 0., 150., 0.0)
CALL HBOOK1(34,’PHI13, Chi2, Pseudo hyp.’, 100, 0., 240., 0.0)

CALL HBOOK1(35,’PHI13, (Chi2)sc - (Chi2)ps’,

& 100, -140., 60., 0.0)
CALL HBOOK1(41,’CTEH13, Weight W, Scalar hyp.’,

& 100, -1.5, 3., 0.0)
CALL HBOOK1(42,’CTEH13, Weight W, Pseudosc hyp.’,

& 100, -1.5, 3., 0.0)
CALL HBOOK1(43,’CTEH13, Chi2, Scalar hyp.’, 100, 0., 150., 0.0)
CALL HBOOK1(44,’CTEH13, Chi2, Pseudo hyp.’, 100, 0., 240., 0.0)
CALL HBOOK1(45,’CTEH13, (Chi2)sc - (Chi2)ps’,

& 100, -140., 60., 0.0)
CALL HBOOK1(51,’CTEHWH, Weight W, Scalar hyp.’,

& 100, -1.5, 3., 0.0)
CALL HBOOK1(52,’CTEHWH, Weight W, Pseudosc hyp.’,

& 100, -1.5, 3., 0.0)
CALL HBOOK1(53,’CTEHWH, Chi2, Scalar hyp.’, 100, 0., 150., 0.0)
CALL HBOOK1(54,’CTEHWH, Chi2, Pseudo hyp.’, 100, 0., 240., 0.0
CALL HBOOK1(55,’CTEHWH, (Chi2)sc - (Chi2)ps’,

& 100, -140., 60., 0.0)
CALL HBOOK1(63,’Sum chi2, Scalar hyp.’, 100, 0., 500., 0.0)
CALL HBOOK1(64,’Sum chi2, Pseudo hyp.’, 100, 0., 500., 0.0)
CALL HBOOK1(65,’Sum (Chi2)sc - (Chi2)ps’, 100, -560., 240., 0.0)

—

C...Open .hook file with distributions for signal and background
CALL HCDIR(’//PAWC’,’> ’)
CALL HROPEN(50,’SLUGRZ’,’tford/fhisth.hbook’,’ ’,1024,ISTAT)
IF(ISTAT.NE.O) print#*,’ Error from HROPEN!!! ISTAT=’,6ISTAT

C...Get histo from current working directory

CALL HCDIR(’//SLUGRZ’,’ ’)
CALL HRGET(301,’ ’,’ )
CALL HRGET(302,’ ’,’ )
CALL HRGET(303,’ ’,’ )
CALL HRGET(304,’ ’,’ ?)
CALL HRGET(305,’ ’,’ ?)

GS=HSUM(301)
WRITE(*,%*) ’GS=’, GS

CALL HUNPAK(301, GHIST1, ’> ’, 0)
CALL HUNPAK(302, GHIST2, ’> ’, 0)
CALL HUNPAK(303, GHIST3, ’ ’, 0)

CALL HUNPAK(304, GHIST4, ’> ’, 0)
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CALL

CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

HUNPAK (305, GHISTS5,

HRGET (101,°
HRGET (102,
HRGET (103,
HRGET (104, ’
HRGET (105, °
FSCS=HSUM(101)

WRITE (*,*)

HRGET (201,
HRGET (202,
HRGET (203, °
HRGET (204,
HRGET (205,
FPSS=HSUM(201)

WRITE (*, %)

HDELET
HDELET
HDELET
HDELET
HDELET
HDELET
HDELET
HDELET
HDELET
HDELET
HDELET
HDELET
HDELET
HDELET
HDELET

(101)
(102)
(103)
(104)
(105)
(201)
(202)
(203)
(204)
(205)
(301)
(302)
(303)
(304)
(305)

)

)

)

)

)

)

)

)

)

)

b

b

2

2

b

2

2

2

2

b

)

)

)

)

)

)

)

)

)

)

)
)
)
)
)

’FSCS=’, FSCS
HUNPAK (101, FSCHI1,
HUNPAK (102, FSCHI2,
HUNPAK (103, FSCHI3,
HUNPAK (104, FSCHI4,
HUNPAK (105, FSCHIS5,

)
)
)
)
)

’FPSS=’, FPSS
HUNPAK (201, FPSHI1,
HUNPAK (202, FPSHI2,
HUNPAK (203, FPSHI3,
HUNPAK (204, FPSHI4,
HUNPAK (205, FPSHIS5,

;’ O)

7, 0)
7, 0)
’, 0)
’, 0)
’, 0)

7, 0)
7, 0)
7, 0)
’, 0)
7, 0)
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C...Close hbook files.

C...Normalize distributions FSC, FPS and G.

3k 3k 3k 3k 3k 5k >k ok ok ok 3k 5k %k >k 5k 3k 3k 5k 5k %k 5k 5k 3k 3k 5k 5k %k >k >k >k 3k 3k 3k 5k 5k 5k %k >k 5k 3k 3k 3k 5k 5k >k %k 5k 5k >k 3k %k %k >k %k >k K >k %k %k k

CALL HREND(’SLUGRZ’)
CLOSE (50)

DO IBIN=1,20

GHIST1(IBIN)=GHIST1(IBIN)/GS
GHIST2 (IBIN)=GHIST2(IBIN)/GS
GHIST3(IBIN)=GHIST3(IBIN)/GS
GHIST4 (IBIN)=GHIST4(IBIN)/GS
GHISTS (IBIN)=GHIST5(IBIN)/GS
FSCHI1(IBIN)=FSCHI1(IBIN)/FSCS
FSCHI2(IBIN)=FSCHI2(IBIN)/FSCS
FSCHI3(IBIN)=FSCHI3(IBIN)/FSCS
FSCHI4 (IBIN)=FSCHI4 (IBIN)/FSCS
FSCHI5 (IBIN)=FSCHI5(IBIN)/FSCS
FPSHI1(IBIN)=FPSHI1(IBIN)/FPSS
FPSHI2 (IBIN)=FPSHI2(IBIN)/FPSS
FPSHI3 (IBIN)=FPSHI3(IBIN)/FPSS
FPSHI4 (IBIN)=FPSHI4(IBIN)/FPSS
FPSHI5 (IBIN)=FPSHI5(IBIN)/FPSS

ENDDO

C...Loop over experiments

C

C...Choose number of signal and background events after Poisson.

DO 500, IEXP=1, NEXP

DO 500, IEXP=1,10
WRITE(*,%*) ’IEXP ’, IEXP

CALL RNPSSN(AMUS, NSEV, IERR)
IF(IERR.NE.Q) THEN
WRITE(*,*) ’Error in RNPSSN’
GOTO 900
ENDIF
CALL RNPSSN(AMUB, NBEV, IERR)
IF(IERR.NE.OQ) THEN
WRITE(*,*) ’Error in RNPSSN’
GOTO 900
ENDIF
WRITE (*,*) ’NSEV=’, NSEV
WRITE(*,*) ’NBEV=’, NBEV
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C...Book histograms
PI=PARU(1)
CALL HBOOK1(1001,’CTHE1’, 20, -1., 1., 0.0)
CALL HBOOK1(1002,’CTHE3’, 20, -1., 1., 0.0)
CALL HBOOK1(1003,’PHI13’, 20, 0., PI, 0.0)
CALL HBOOK1(1004,’CTHE13’, 20, -1., 1., 0.0)
CALL HBOOK1(1005,’CTHEWH’, 20, -1., 1., 0.0)

C...Pick process. Loop over CP-even (1), CP-odd (2) or background (3).
MSEL=0

DO 300 MODE=1,3
IF(ISIG.EQ.1.AND.MODE.EQ.2) GOTO 300
IF(ISIG.EQ.2.AND.MODE.EQ.1) GOTO 300

WRITE(*,*) ’MODE ’, MODE
MSUB(102)=0
MSUB(22)=0
C...g + g ->h0
IF(MODE.NE.3) MSUB(102)=1
C...q + gbar > Z + Z
IF(MODE.EQ.3) MSUB(22)=1

C...Choose CP-even or CP-odd.
IF(MODE.EQ.1) MSTP(25)=1
IF(MODE.EQ.2) MSTP(25)=2

C...Initialize for LHC.
CALL PYINIT(’cms’,’p’,’p’,14000D0)

C...Initialize number of events escaping cuts.
NCUTS=0

C...Loop over events, and generate them. List first few events.
IEV=0
150 CONTINUE
IEV=IEV+1
CALL PYEVNT
IF(IEV.LE.5) WRITE(x,%) ’IEV ’, IEV
IF(IEV.EQ.500) WRITE(*,*) ’IEV ’, IEV
IF(IEV.EQ.5000) WRITE(*,*) ’IEV ’, IEV
IF(IEV.LE.5) CALL PYLIST(1)
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C...Find leptons that satisfy the kinematics
C...cuts pt>7GeV and abs(eta)<2.5.
NLE=0
DO ILE=1,10
ILEPT(ILE)=0
ENDDO
DO I=1,N
TABSK=IABS(K(I,2))
IF((IABSK.EQ.13.0R.IABSK.EQ.11) .AND.K(I,1).LT.20.AND.
& PYP(I,10).GT.7DO.AND.ABS(PYP(I,19)).LT.2.5D0) THEN
NLE=NLE+1
C...Ends program if too many leptons
IF(NLE.GE.10) THEN
WRITE(*,*) ’Number of leptons larger than 10’
GOTO 900
ELSE
ILEPT(NLE)=I
ENDIF
ENDIF
ENDDO
C...Throw away events that do not satisfy cuts.
IF(NLE.LT.4) GO TO 150

C...Satisfy 2 leptons with pt>20GeV
NLPT=0
DO ILE=1,NLE
IF(PYP(ILEPT(ILE),10) .GT.20D0) NLPT=NLPT+1
ENDDO
IF(NLPT.LT.2) GOTO 150

C...Cuts on invariant masses
IF(NLE.GT.4) THEN
WRITE(11,%*) °IEV, NLE: ’, IEV, NLE
GOTO 150
ENDIF
C...Mass of 4 leptons
P1=0D0
P2=0D0
P3=0D0
P4=0D0
DO ILE=1,4
P1=P1+P(ILEPT(ILE),1)
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P2=P2+P (ILEPT(ILE),2)
P3=P3+P (ILEPT(ILE),3)
P4=P4+P (ILEPT(ILE) ,4)
ENDDO
XM4=P4x*2-P1**2-P2%*2-P3%*2
IF(XM4.LE.ODO) THEN
WRITE(*,*) ’XM4°2=’, XM4, ’in event ’, IEV
GOTO 900
ENDIF
XM4=SQRT (XM4)
C...Cut on 4 lepton invariant mass
GAMMH=PMAS (25, 2)
C WRITE(*,*) GAMMH
SIGMH=1.64D0*SQRT ( (GAMMH/2.36) **2+(0.02*PMAS(25,1) ) **2)
C WRITE(*,*) SIGMH
IF (ABS (XM4-PMAS (25,1)) .GE.SIGMH) GOTO 150
C...Make particle-antiparticle pairs and cut on 2 lepton invariant masses
NPA=0
DO ILE=1,3
DO JLE=ILE+1,4
I1=ILEPT(ILE)
I2=ILEPT(JLE)
IF(K(I1,2)+K(I2,2).EQ.0) THEN
XM=XM2(I1,I2)
SIGMZ=6D0
IF (ABS(XM-PMAS(23,1)) .LT.SIGMZ) THEN
NPA=NPA+1
IF(NPA.GT.4) THEN
WRITE(*,*) °NPA=’, NPA, ’ in event number ’, IEV
GOTO 900
ENDIF
IF(K(I1,2).GT.0) THEN
IPAIR(NPA,1)=I1
IPAIR(NPA,2)=I2
ELSEIF(K(I2,2).GT.0) THEN
IPAIR(NPA,1)=I2
IPAIR(NPA,2)=I1
ELSE
WRITE(*,*) ’Not particle-antiparticle’
GOTO 900
ENDIF
ENDIF
ENDIF
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ENDDQO
ENDDO
IF(NPA.LT.2) GOTO 150

C...When more than 2 pairs, choose the two best omes
IF(NPA.GT.2) THEN
NFMP=0
XMDB=100D0
DO IPA=1,NPA-1
DO 160 JPA=IPA+1,NPA
IF(IPAIR(IPA,1) .EQ.IPAIR(JPA,1).0R.
& IPAIR(IPA,2) .EQ.IPAIR(JPA,2)) THEN
GOTO 160
ELSE
NFMP=NFMP+1
I1=IPAIR(IPA,1)
I2=IPAIR(IPA,2)
I3=IPAIR(JPA,1)
I14=IPAIR(JPA,?2)
XMD=ABS (XM2(I1,I2)-PMAS(23,1))+
& ABS (XM2(I3,I4)-PMAS(23,1))
IF(XMD.LT.XMDB) THEN
XMDB=XMD
IFM(1)=I1
IFM(2)=1I2
IFM(3)=1I3
IFM(4)=14
ENDIF
ENDIF
160 CONTINUE
ENDDO
IF(NFMP.EQ.0) GOTO 150
ELSEIF(NPA.EQ.2) THEN
IF(IPAIR(1,1) .EQ.IPAIR(2,1).0R.
& IPAIR(1,2) .EQ.IPAIR(2,2)) THEN
GOTO 150
ELSE
IFM(1)=IPAIR(1,1)
IFM(2)=IPAIR(1,2)
IFM(3)=IPAIR(2,1)
IFM(4)=IPAIR(2,2)
XMDB=ABS (XM2 (IFM(1) ,IFM(2))-PMAS(23,1))+
& ABS (XM2 (IFM(3) ,IFM(4))-PMAS(23,1))
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ENDIF
ENDIF
IF(IFM(1) .EQ.IFM(3) .0R.
IFM(2) .EQ.IFM(4)) THEN
WRITE(*,*) ’Not four distinct fermions in event number 7,
IEV
GOTO 900
ELSEIF (XMDB.GT.12D0) THEN
WRITE(*,*) ’XMDB=’, XMDB, ’ in event number ’, IEV
GOTO 900
ENDIF
NCUTS=NCUTS+1

C...Check with "simple" lepton ID that we have chosen "right" pairs
C...Find VV and Higgs positions.

170

IHIGG=0
IWP=0
IWM=0
NZ=0
DO 170 I=1,N
IF(K(I,1).LT.20) THEN
IF(K(I,2).EQ.25) IHIGG=I
IF(K(I,2) .EQ.KZ) THEN
NZ=NZ+1
IF(NZ.EQ.1) IwWP=I
IF(NZ.EQ.2) IwWM=I
ENDIF
ENDIF
CONTINUE
IF(NZ.GT.2) THEN
WRITE(*,*) ’NZ=’, NZ, ’in event number ’, IEV
GOTO 900
ENDIF

C...Identify fermions (and antifermions) by W+- ancestry.

IF(MODE.NE.3) NROBO=IHIGG

IF(MODE.EQ.3) NROBO=MIN(IWP,IWM)

IFM1=0

IFM2=0

IFM3=0

IFM4=0

DO 180 I=NROBO+1,N
IF(K(I,3).EQ.IWP) THEN
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IF(K(I,2).GT.0) IFM1=I
IF(K(I,2) .LT.0) IFM2=I
ELSEIF(K(I,3) .EQ.IWM) THEN
IF(K(I,2) .GT.0) IFM3=I
IF(K(I,2).LT.0) IFM4=I
ENDIF
180 CONTINUE
C...Check that IFM-pairs are identical with the two methods.
IF(IFM(1) .EQ.IFM1.AND.IFM(2) .EQ.IFM2.AND.

& IFM(3) .EQ.IFM3.AND.IFM(4) .EQ.IFM4) THEN
IWPA=0
ELSEIF(IFM(1) .EQ.IFM3.AND.IFM(2) .EQ.IFM4.AND.
& IFM(3) .EQ.IFM1.AND.IFM(4) .EQ.IFM2) THEN
IWPA=0
ELSE
IWPA=1
ENDIF

C...Boost to f1, f2, £f3, £f4 COM frame.
P1=P(IFM(1),1)+P(IFM(2),1)+P(IFM(3),1)+P(IFM(4),1)
P2=P(IFM(1),2)+P(IFM(2),2)+P(IFM(3),2)+P(IFM(4),2)
P3=P(IFM(1),3)+P(IFM(2),3)+P(IFM(3),3)+P(IFM(4),3)
P4=P(IFM(1),4)+P(IFM(2),4)+P(IFM(3),4)+P(IFM(4),4)
CALL PYROBO(0,0,0D0,0D0,-P1/P4,-P2/P4,-P3/P4)

C...Calculate the angle cos(thetax_W+).
PP1=P(IFM(1),1)+P(IFM(2),1)
PP2=P(IFM(1),2)+P(IFM(2),2)
PP3=P(IFM(1),3)+P(IFM(2),3)
PABSH=SQRT (P1**2+P2x*2+P3%*2)
PABSW=SQRT (PP1%*2+PP2%*2+PP3%*2)
CTHWH= (P1%PP1+P2%PP2

& +P3*PP3) / (PABSH*PABSW)
CTHWZ=PP3/PABSW

C...Rotate so that W+ is along +z axis.
PHIWP=PYANGL (PP1,PP2)
CALL PYROBO(0,0,0D0,-PHIWP,0DO,0DO,0DO)
PP1=P(IFM(1),1)+P(IFM(2),1)
PP3=P (IFM(1),3)+P(IFM(2),3)
THEWP=PYANGL (PP3,PP1)
CALL PYROBO(0,0,-THEWP,O0DO,0DO,0D0,0DO)
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C...Boost the fermions to the rest frame of the respective W.
PP1=P(IFM(1),1)+P(IFM(2),1)
PP2=P (IFM(1),2)+P(IFM(2),2)
PP3=P (IFM(1),3)+P(IFM(2),3)
PP4=P (IFM(1) ,4)+P(IFM(2) ,4)
PM1=P (IFM(3),1)+P(IFM(4),1)
PM2=P (IFM(3),2)+P(IFM(4),2)
PM3=P (IFM(3),3)+P(IFM(4),3)
PM4=P (IFM(3) ,4)+P (IFM(4) ,4)
CALL PYROBO(IFM(1),IFM(1),0D0,0D0,-PP1/PP4,
& -PP2/PP4,-PP3/PP4)
CALL PYROBO(IFM(2),IFM(2),0D0,0D0,-PP1/PP4,
& -PP2/PP4,-PP3/PP4)
CALL PYROBO(IFM(3),IFM(3),0D0,0D0,-PM1/PM4,
& -PM2/PM4,-PM3/PM4)
CALL PYROBO(IFM(4),IFM(4),0D0,0D0,-PM1/PM4,
& -PM2/PM4,-PM3/PM4)
c IF(IEV.LE.5) CALL PYLIST(1)

C...Calculate relative angles.
PABS1=SQRT(P(IFM(1),1)**2+P(IFM(1),2)**2+P (IFM(1),3)**2)
PABS2=SQRT (P (IFM(2),1)**2+P(IFM(2),2) **2+P (IFM(2) ,3) **2)
PABS3=SQRT (P (IFM(3),1)**2+P(IFM(3),2)**2+P (IFM(3),3)*%*2)
PABS4=SQRT (P (IFM(4),1)**2+P(IFM(4),2)**2+P (IFM(4),3) **2)
CTH1=P(IFM(1),3)/PABS1
CTH2=P(IFM(2),3)/PABS2
CTH3=P(IFM(3),3)/PABS3
CTH4=P(IFM(4),3)/PABS4
CTH13=(P(IFM(1),1)*P(IFM(3),1)+P(IFM(1),2)*P(IFM(3),2)+

& P(IFM(1),3)*P(IFM(3),3))/(PABS1*PABS3)
PH13=PYANGL(P(IFM(1),1),P(IFM(1),2))

& -PYANGL (P(IFM(3),1) ,P(IFM(3),2))
IF(PH13.LT.-PI) PH13=PH13+2D0*PI
IF(PH13.GT.PI) PH13=PH13-2D0*PI
IF(PH13.LT.0) PH13=-PH13

C...Set angular variables.
CTHE1=CTH1
CTHE3=CTH3
CTHE13=CTH13
CTHEWH=CTHWH
CTHEWZ=CTHWZ
PHI13=PH13
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C...Fill histograms
CALL HF1(1001, CTHE1, 1.)
CALL HF1(1002, CTHE3, 1.)
CALL HF1(1003, PHI13, 1.)

CALL HF1(1004, CTHE13, 1.)
CALL HF1(1005, CTHEWH, 1.)
C CALL HF2(1006, CTHE13, PHI13, 1.)
C...End of event loop
C IF(MODE.EQ.1.AND.NCUTS.LT.NSEV) GOTO 150

C IF(MODE.EQ.2.AND.NCUTS.LT.NPSEV) GOTO 150
IF(MODE.NE.3.AND.NCUTS.LT.NSEV) GOTO 150
IF(MODE.EQ.3.AND.NCUTS.LT.NBEV) GOTO 150

WRITE(*,*) ’IEV ’, IEV
WRITE(*,*) ’NCUTS ’, NCUTS

C...End loop over modes (signal and background) .
300 CONTINUE

...Write histos to file

IF(IEXP.EQ.1) THEN
CALL HRPUT(1001,NAME//’1.hbook’,’N’)
CALL HRPUT(1002,NAME//’1.hbook’,’U’)
CALL HRPUT(1003,NAME//’1.hbook’,’U’)
CALL HRPUT(1004,NAME//’1.hbook’,’U’)
CALL HRPUT(1005,NAME//’1.hbook’,’U’)

ENDIF

O O 0O 0O O O O Q

5k ok ok >k >k >k 5k ok ok 5k 5k %k >k 5k 5k 5k >k >k >k 5k 5k 5k 5k >k >k %k %k >k >k 5k 5k ok >k >k %k %k >k 5k 5k 5k %k >k >k >k %k >k >k >k %k %k %k >k k%
C...STATISTICAL ANALYSIS
C...Write histogram H to array.

HS=HSUM(1001)

IF(IEXP.LE.5) WRITE(*,*) ’HS= ’, HS
CALL HUNPAK(1001, HHIST1, ’ ’, 0)
CALL HUNPAK(1002, HHIST2, ’ ’, 0)
CALL HUNPAK(1003, HHIST3, ’ ’, 0)
CALL HUNPAK(1004, HHIST4, ’ °’, 0)
CALL HUNPAK(1005, HHIST5, ’ ’, 0)

CALL HDELET (1001)
CALL HDELET (1002)
CALL HDELET (1003)
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CALL HDELET (1004)
CALL HDELET (1005)

C...SCALAR hypotesis:

C...Find the denominator of the weight W.

C...Find the numerator, W=WN/WD.

DO IX=1,5
WSCD(IX)=0.
WSCN(IX)=0.
WSC(IX)=0.

ENDDO

DO IBIN=1,20
IF(HHIST1(IBIN) .EQ.0) THEN

WRITE(*,%*) ’Empty bin in HHIST1’

GOTO 900

ELSEIF (HHIST2(IBIN) .EQ.0) THEN
WRITE(*,*) ’Empty bin in HHIST2’

GOTO 900

ELSETF (HHIST3(IBIN) .EQ.0) THEN
WRITE(*,*) ’Empty bin in HHIST3’

GOTO 900

ELSEIF(HHIST4(IBIN) .EQ.0) THEN
WRITE(*,%*) ’Empty bin in HHIST4’

GOTO 900

ELSEIF (HHIST5(IBIN) .EQ.0) THEN
WRITE(*,%*) ’Empty bin in HHIST5’

APPENDIX C. FORTRAN CODE

GOTO 900

ENDIF

WSCD (1)=WSCD (1) + (HS*FSCHI1(IBIN)-HS*GHIST1 (IBIN))**2/
& HHIST1(IBIN)

WSCD (2)=WSCD(2) + (HS*FSCHI2 (IBIN)-HS*GHIST2 (IBIN) ) **2/
& HHIST2(IBIN)

WSCD (3)=WSCD(3) + (HS*FSCHI3 (IBIN)-HS*GHIST3 (IBIN) ) **2/
& HHIST3(IBIN)

WSCD (4)=WSCD (4) + (HS*FSCHI4 (IBIN)-HS*GHIST4 (IBIN) ) **2/
& HHIST4 (IBIN)

WSCD(5)=WSCD (5) + (HS*FSCHI5 (IBIN)-HS*GHIST5 (IBIN) ) **2/
& HHIST5(IBIN)

WSCN (1) =WSCN (1) +(HHIST1 (IBIN)-HS*GHIST1(IBIN))*
& (HS*FSCHI1(IBIN)-HS*GHIST1(IBIN))/HHIST1(IBIN)

WSCN (2) =WSCN (2) + (HHIST2 (IBIN)-HS*GHIST2 (IBIN) ) *
& (HS*FSCHI2 (IBIN)-HS*GHIST2 (IBIN)) /HHIST2(IBIN)

WSCN(3) =WSCN(3) +(HHIST3 (IBIN)-HS*GHIST3 (IBIN)) *



&

&

&

(HS*FSCHI3 (IBIN)-HS*GHIST3(IBIN))/HHIST3(IBIN)

WSCN (4)=WSCN (4) + (HHIST4 (IBIN)-HS*GHIST4 (IBIN) ) *

(HS*FSCHI4 (IBIN)-HS*GHIST4 (IBIN))/HHIST4(IBIN)

WSCN (5) =WSCN (5) + (HHIST5 (IBIN)-HS*GHIST5 (IBIN) ) *

(HS*FSCHI5 (IBIN)-HS*GHISTS5 (IBIN)) /HHISTS (IBIN)
ENDDO

C...The weight W.

DO IX=1,5

IF(WSCD(IX) .EQ.0.) THEN
WRITE(*,*) ’WSCD(IX)=0’
GOTO 900

ENDIF

WSC(IX)=WSCN(IX)/WSCD(IX)

ENDDO

C...Use the w from CTHEWH

C...Chi"2
DO IX=1,5

&

&

&

&

CH2SC(IX)=0.

ENDDQ
DO IBIN=1,20

IF (HHIST3(IBIN) .EQ.0) THEN
WRITE(*,*) ’Empty bin in HHIST3’
GOTO 900
ENDIF
CH2SC(1)=CH2SC(1)+
(HHIST1(IBIN)-WSC(5)*HS*FSCHI1(IBIN)-
(1-WSC(5) ) *HS*GHIST1 (IBIN) ) **2/HHIST1 (IBIN)
CH2SC(2)=CH2SC(2)+
(HHIST2(IBIN)-WSC(5)*HS*FSCHI2(IBIN)-
(1-WSC(5) ) *HS*GHIST2 (IBIN) ) **2/HHIST2 (IBIN)
CH2SC(3)=CH2SC(3)+
(HHIST3(IBIN)-WSC(5)*HS*FSCHI3 (IBIN)-
(1-WSC(5)) *HS*GHIST3 (IBIN) ) **2/HHIST3 (IBIN)
CH2SC(4)=CH2SC(4)+
(HHIST4 (IBIN)-WSC(5) *HS*FSCHI4 (IBIN)-
(1-WSC(5)) *HS*GHIST4 (IBIN) ) **2/HHIST4 (IBIN)
CH2SC(5)=CH2SC(5)+
(HHIST5(IBIN)-WSC(5)*HS*FSCHI5 (IBIN) -
(1-WSC(5)) *HS*GHISTS5 (IBIN) ) **2/HHISTS5 (IBIN)

ENDDO

C...Take the sum over all chi2, except CTHEWH:

CH2SCA=0.
DO IX=1,4
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CH2SCA=CH2SCA+CH2SC(IX)
ENDDO
WRITE(*,%*) ’CH2SCA=’, CH2SCA

C...PSEUDOSCALAR hypotesis:
..Find the denominator of the weight W.
C...Find the numerator, W=WN/WD.
DO IX=1,5
WPSD (IX)=0.
WPSN(IX)=0.
WPS(IX)=0.
ENDDQ
DO IBIN=1,20
IF (HHIST1(IBIN) .EQ.0) THEN
WRITE(*,*) ’Empty bin in HHIST1’
GOTO 900
ELSEIF(HHIST2(IBIN) .EQ.0) THEN
WRITE(*,*) ’Empty bin in HHIST2’
GOTO 900
ELSEIF (HHIST3(IBIN) .EQ.0) THEN
WRITE(*,*) ’Empty bin in HHIST3’
GOTO 900
ELSEIF (HHIST4 (IBIN) .EQ.0) THEN
WRITE(*,*) ’Empty bin in HHIST4’
GOTO 900
ELSEIF (HHIST5(IBIN) .EQ.0) THEN
WRITE(*,*) ’Empty bin in HHIST5’
GOTO 900
ENDIF

(@}

APPENDIX C. FORTRAN CODE

WPSD (1)=WPSD (1) +(HS*FPSHI1 (IBIN)-HS*GHIST1 (IBIN))**2/

& HHIST1(IBIN)

WPSD (2) =WPSD (2) + (HS*FPSHI2 (IBIN)-HS*GHIST2 (IBIN) ) **2/

& HHIST2(IBIN)

WPSD (3) =WPSD (3) + (HS*FPSHI3 (IBIN)-HS*GHIST3 (IBIN) ) **2/

& HHIST3(IBIN)

WPSD (4) =WPSD (4) + (HS*FPSHI4 (IBIN)-HS*GHIST4 (IBIN) ) **2/

& HHIST4 (IBIN)

WPSD (5) =WPSD (5) + (HS*FPSHI5 (IBIN)-HS*GHIST5 (IBIN) ) **2/

& HHISTS5(IBIN)

WPSN (1) =WPSN(1)+(HHIST1 (IBIN)-HS*GHIST1(IBIN))*

& (HS*FPSHI1 (IBIN)-HS*GHIST1 (IBIN))/HHIST1(IBIN)
WPSN (2)=WPSN (2) +(HHIST2 (IBIN)-HS*GHIST2(IBIN) ) *

& (HS*FPSHI2 (IBIN)-HS*GHIST2 (IBIN)) /HHIST2(IBIN)



&

&

&

WPSN(3) =WPSN (3) + (HHIST3 (IBIN)-HS*GHIST3 (IBIN) ) *

(HS*FPSHI3 (IBIN)-HS*GHIST3 (IBIN))/HHIST3(IBIN)

WPSN (4) =WPSN (4) + (HHIST4 (IBIN)-HS*GHIST4 (IBIN) ) *

(HS*FPSHI4 (IBIN)-HS*GHIST4 (IBIN))/HHIST4(IBIN)

WPSN (5) =WPSN(5) + (HHIST5 (IBIN)-HS*GHIST5 (IBIN) ) *

(HS*FPSHI5 (IBIN)-HS*GHISTS (IBIN)) /HHISTS (IBIN)
ENDDO

C...The weight W.

DO IX=1,5

IF (WPSD(IX) .EQ.0.) THEN
WRITE(*,*) ’WPSD(IX)=0’
GOTO 900

ENDIF

WPS (IX)=WPSN(IX)/WPSD(IX)

ENDDQ

C...Use w from CTHEWH

C...Chi~2
DO IX=1,5

&

&

&

&

X

CH2PS (IX)=0.

ENDDO
DO IBIN=1,20

IF (HHIST3(IBIN) .EQ.0) THEN
WRITE(*,*) ’Empty bin in HHIST3’
GOTO 900
ENDIF
CH2PS(1)=CH2PS(1)+
(HHIST1 (IBIN)-WPS(5)*HS*FPSHI1 (IBIN)-
(1-WPS(5) ) *HS*GHIST1 (IBIN) ) **2/HHIST1 (IBIN)
CH2PS (2)=CH2PS(2)+
(HHIST2(IBIN)-WPS(5)*HS*FPSHI2 (IBIN)-
(1-WPS(5) ) *HS*GHIST2 (IBIN) ) **2/HHIST2 (IBIN)
CH2PS (3)=CH2PS(3)+
(HHIST3(IBIN)-WPS(5) *HS*FPSHI3 (IBIN)-
(1-WPS(5)) *HS*GHIST3 (IBIN) ) **2/HHIST3 (IBIN)
CH2PS (4)=CH2PS (4) +
(HHIST4 (IBIN)-WPS(5) *HS*FPSHI4 (IBIN)-
(1-WPS(5)) *HS*GHIST4 (IBIN) ) **2/HHIST4 (IBIN)
CH2PS (5)=CH2PS(5) +
(HHIST5(IBIN)-WPS(5) *HS*FPSHIS (IBIN) -
(1-WPS(5)) *HS*GHISTS5 (IBIN) ) **2/HHISTS5 (IBIN)

ENDDQ

C...Take the sum over all chi2, except CTHEWH:

CH2PSA=0.
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DO IX=1,4
CH2PSA=CH2PSA+CH2PS (IX)

ENDDO

WRITE (*,*) ’>CH2PSA=’, CH2PSA

C...Fill histos

DO IX=1,5
CALL HF1(10*IX+1, WSC(IX), 1.)
CALL HF1(10*IX+2, WPS(IX), 1.)
CALL HF1(10%IX+3, CH2SC(IX), 1.)
CALL HF1(10%IX+4, CH2PS(IX), 1.)
CALL HF1(10*IX+5, (CH2SC(IX)-CH2PS(IX)), 1.)

ENDDO

CALL HF1(63, CH2SCA, 1.)

CALL HF1(64, CH2PSA, 1.)

CALL HF1(65, (CH2SCA-CH2PSA), 1.)

C...End loop over experiments.
500 CONTINUE

900 CONTINUE
C...Save histograms.

CALL HRPUT(O,NAME//’.hbook’,’N’)

999 END
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