

## Paper III

## The taxonomy of the lichen Fuscidea cyathoides (Fuscideaceae, Umbilicariomycetidae, Ascomycota) in Europe

Martina Zahradníková ${ }^{\mathbf{1}}$, Tor Tønsberg ${ }^{1}$ and Heidi Lie Andersen ${ }^{1,2}$
M. Zahradníková (corresponding author) and T. Tønsberg (co-corresponding author):
${ }^{1}$ Department of Natural History, University Museum, University of Bergen, Allégaten 41, P.O. Box 7800, N-5020 Bergen, Norway.
${ }^{2}$ The Arboretum and Botanical Gardens, Department of Natural History, University Museum, University of Bergen, Allégaten 41, P.O. Box 7800, N-5020 Bergen, Norway. Emails: Martina.Zahradnikova@uib.no, Tor.Tonsberg@uib.no


#### Abstract

Based on morphometric and molecular methods the taxonomy of the infraspecific taxa of Fuscidea cyathoides (Ach.) V. Wirth \& Vězda, var. corticola (Fr.) Kalb and var. sorediata (H. Magn.) Poelt, has been assessed. No formal taxonomic recognition should be attributed to the morphological and ecological variation. Accordingly, var. corticola and var. sorediata are synonymized with $F$. cyathoides var. cyathoides. New synonyms at the specific level are Fuscidea fagicola (Zschacke) Hafellner \& Türk and F. stiriaca (A. Massal.) Hafellner.


Key words: Fuscidea fagicola, Fuscidea stiriaca, molecular phylogeny, infraspecific taxonomy, lichen varieties, secondary chemistry.

## Introduction

Substrate specificity is a strong feature in Fuscidea, however there have been occasional reports of corticolous specimens of mainly saxicolous species. For example, F. recensa (Stirt.) Hertel, V. Wirth \& Vězda, is capable of inhabiting both rock and bark in Scandinavia (Tønsberg 1992), but corticolous specimens have not been formally recognized (Nordin et al. 2010). In Britain and Ireland, species of Fuscidea inhabit rock or, more rarely, bark, occasionally wood, and 10 of the 11 species are either exclusively saxicolous ( 8 spp .) or exclusively corticolous/lignicolous (2 spp.), and only F. cyathoides (Ach.) V. Wirth \& Vězda is capable of inhabiting both rock and bark (Gilbert et al. 2009). Substrate ecology and the presence/absence of soredia have been suggested as important characters for formal recognition of taxonomic entities at the species level (Hafellner \& Türk, 2001; Hafellner, 2002) and the varietal level (Fries, 1831; Magnusson, 1925; Zschacke, 1927) (see Table 1).

Magnusson (1925), for example, discussed seven saxicolous forms of $F$. cyathoides (as Lecidea rivulosa Ach.) and introduced var. infuscata H. Magn., separated from var. cyathoides based on habitat and thallus colour (see Supplementary Material Table S1). None of the F. cyathoides forms is longer recognized and Oberhollenzer \& Wirth (1984) synonymized var. infuscata with var. cyathoides (see Taxonomy below).

In $F$. cyathoides, corticolous material has been attributed taxonomic rank at both infraspecific and specific levels. According to Fries (1831), F. cyathoides var. corticola (Fr.) Kalb (as Biatora rivulosa b. corticola Fr.) is distinct from var. cyathoides in possessing a different thallus colour, i.e., black-brown when dry and greenish when wet, while var. cyathoides is grey when dry and umber-brown when wet. Although some authors (e.g. Oberhollenzer \& Wirth 1984; Gilbert et al. 2009) consider the corticolous variety as merely F. cyathoides on bark, others (e.g. Santesson et al. 2004; Inoue 1981) recognize this taxon as F. cyathoides var. corticola.

Zschacke (1927) recognized the absence of black prothallus, the larger and flatter thallus as well as the larger apothecia as diagnostic characters for distinguishing F. fagicola (as Lecidea fagicola Zschacke) from F. cyathoides (as L. rivulosa). When comparing the so-called Fagustype of apothecia of var. corticola, i.e. apothecia from specimens growing on Fagus in southern Europe, with those on Betula, the so-called Betula-type, Oberhollenzer \& Wirth (1984) did not find any significant variation. Based on this result they concluded that $L$. fagicola most certainly is synonymous with var. corticola. Hafellner \& Türk (2001) transferred L. fagicola to Fuscidea and placed F. cyathoides var. corticola in synonymy without any explanatory discussion.

Hafellner (2002) made the combination F. stiriaca (A. Massal.) Hafellner based on the basionym Biatora stiriaca A. Massal., which is treated as a synonym of var. cyathoides by Magnusson (1925) (as Lecidea rivulosa var. corticola (Fr.) Jatta) and by Vainio (1934) (as L. rivulosa f. corticola (Fr.) Vain), and synonymized F. fagicola with F. stiriaca. The sorediate form, var. sorediata (H. Magn.) Poelt, is saxicolous and rare. It was, for example, accepted by Santesson et al. (2004) and Gilbert et al. (2009).

Molecular approaches changed the concept of species delimitation (as discussed in Resl et al. 2016) and provided a new approach to assess the status of sorediate lichens. In the studies of Pseudevernia furfuracea (L.) Zopf byFerencová et al. (2010), Mycoblastus alpinus (Fr.) Kernst./M. affinis (Schaerer) Schauer by Spribille et al. (2011), several species of Dirina Fr. by Tehler et al. (2013) and Rinodina degeliana Coppins/R. subparieta (Nyl.) Zahlbr. by Resl et al. (2016), no taxonomic relevance was given to the presence of soredia.

For example, Spribille et al. (2011) confirmed the hypothesis of Tønsberg (1992) that Mycoblastus alpinus and M. affinis are conspecific using a combined matrix of two protein coding (EF1- $\alpha, \mathrm{MCM} 7$ ) and ITS genes. These two species differ in their morphology
(esorediate, richly fertile vs. sorediate, sterile or sparingly fertile) and chemistry (usnic acid absent/thallus grey $v s$. usnic acid present in the (yellowish) soralia.

Here we aim to revise the taxonomy of $F$. cyathoides s. lat., providing a morphological, chemical, and phylogenetic investigation of all three currently recognized varieties, and clarify the taxonomy of $F$. cyathoides, including the related $F$. fagicola and $F$. stiriaca.

## Material and Methods

## Taxon sampling

Herbarium material was provided by BG, HO, MSC, LD, UPS, TUR, and H-Ach, as well as from private collections. As var. sorediata is scarce in Europe, we only managed to obtain one fresh specimen.

## Morphology

To determine morphological differences between varieties, the anatomy and morphology of the apothecia and thalli were examined by light microscopy on hand-cut sections mounted in water with $10 \% \mathrm{KOH}$ using a Carl Zeiss Axiskoskop 2 microscope. 20 specimens of $F$. cyathoides, including all the three varieties, were investigated. The following morphological characters were studied: overall diameter of the apothecia and the areoles, height of the epihymenium and the hymenium, length and width of the ascospores, and the colour of the thalli (Table 2). The ratio between length and width of spores was calculated. The characters were examined using an unconstrained linear ordination, Principal Components Analysis (PCA), to explore the morphological variation. We performed the analysis with centering and standardization of characters in CANOCO 5 (Ter Braak \& Šmilauer 2012); the first two axes were displayed as a scatterplot.

## Secondary chemical compounds

Lichen substances were analysed by thin-layer chromatography (TLC), using the methods of Culberson \& Kristinsson (1970), Culberson (1972), and Menlove (1974). All three solvents ( $\mathrm{A}, \mathrm{B}^{\prime}$ and C ) were used, with glass plates in solvent C for the detection of fatty acids. Selected specimens were also run in solvent $G$ for a detailed study of $\beta$-orcinol depsidone fumarprotocetraric acid and possible occurrences of the related substances protocetraric and succinprotocetraric acids (see Culberson et al. 1981).

## DNA extraction, PCR amplification and sequencing

DNA from 10 specimens of Fuscidea cyathoides were analysed together with six other Fuscidea species for three genes. Altogether, we generated 36 new sequences, in addition to sequences of Fuscidea downloaded from GenBank (Table 3). DNA was extracted from apothecia or soredia with thallus using the DNeasy Plant Mini Kit (Qiagen). Although phylogenies based on ITS alone have been considered sufficient for infraspecific taxonomic investigations (e.g., Davydov et al. 2010; Solheim et al. 2013), we conducted a concatenate data set of three markers from two different genomes (mtSSU, nuITS and nuLSU). The mtSSU fragment was made with the primers mrSSU1 and mrSSU3R (Zoller et al. 1999), while ITS and LSU were amplified by ITS1f (Gardes \& Bruns 1993), ITS4 (White et al. 1990) and nu-nuLSU-1125-3' (Vilgalys \& Hester 1990). The PCR master mix included: 1x Buffer II GeneAmp® 10x PCR (Applied Biosystems), $2.5 \mu \mathrm{M} \mathrm{MgCl}_{2}$ (Applied Biosystems), $20 \mu \mathrm{M}$ dNTPs (Promega), $0.6 \mu \mathrm{M}$ of each primer, 0.036 U AmpliTaq ${ }^{\circledR}$ DNA Polymerase (Applied Biosystems), $5.0 \mu 1$ of genomic DNA extract, and distilled water to a total volume of $25 \mu \mathrm{l}$. The PCR reactions were performed using the $\mathrm{C} 1000^{\mathrm{TM}}$ Touch thermal cycler (Bio-Rad Laboratories) with the following programs: mtSSU: initial denaturation at $94^{\circ} \mathrm{C}$ for 5 min , touchdown of six cycles: $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 62-56^{\circ} \mathrm{C}$ for 30 s , and $72^{\circ} \mathrm{C}$ in 1 min 45 s , followed by 34 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 56^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ in 1 min 45 s , and a final elongation at $72^{\circ} \mathrm{C}$
for 10 min , LSU and ITS: as for mtSSU , except for the annealing temperature, where the touchdown ranged from $63-57^{\circ} \mathrm{C}$ for six cycles, ending at $57^{\circ} \mathrm{C}$ for 34 cycles.

PCR products were visualized on a $1 \%$ Red Gel-stained agarose gel under UV light, and purified using Exosap-IT (GE Healthcare). The PCR products were sequenced using the PCR primers with the BigDye Terminator Cycle Sequencing kit (Applied Biosystems), and run on an ABI Prism 3700XL DNA analyser (Applied Biosystems) at the DNA Sequencing Laboratory, University of Bergen, Norway. The sequences were assembled in SeqMan II version 4.05 (DNASTAR).

## Phylogenetic analyses

Geneious version 8.1.8 (Biomatters Ltd.) was used to align the mtSSU, LSU, and ITS sequences with $65 \%$ similarity option on (Gap penalty $=14.5$, Gaps extension penalty $=5$ ), followed by manual adjustment. Candelariella vitellina (Hoffm.) Müll. Arg. was used as outgroup, and two sequences, Umbilicaria proboscidea (L.) Schrader and U. crustulosa (Ach.) Frey, as a sister group to Fuscidea.

To identify suitable substitution models for all fragments, i.e., mtSSU, LSU, ITS1, 5.8S and ITS2, a likelihood ratio test (Huelsenbeck \& Crandall 1997) was performed using the software jModelTest version 2.1.7 (Posada 2008). For mtSSU, the model GTR+G was selected, GTR+I+G for LSU, SYM+G for ITS1, K80+I for 5.8 S , HKY+G for ITS2, and GTR $+\mathrm{I}+\mathrm{G}$ for the concatenate data set.

To detect potential conflicts between the data sets, we inspected the internodes of the phylogenetic trees with bootstrap values $>70 \%$. These were generated using the neighbor-joining model with a maximum likelihood distance (e.g., Reeb et al. 2004). Bootstrap scores were calculated using 2,000 non-parametric replicates in the Jukes-Cantor distance model implemented in Geneious version 8.1.8 (Biomatters Ltd.).

Phylogenetic relationships were estimated from the data sets both from each gene separately and the concatenated using MrBayes version 3.2.1 (Ronquist \& Huelsenbeck 2003) to sample trees using a Markov chain Monte Carlo (MCMC) method in the Bayesian inference (BI). Tree sampling performed under the MCMC analysis was run for $4,000,000$ generations with four parallel chains starting from a random tree, using the default temperature of 0.2. Gaps were coded as a fifth character state. Sampling frequency of trees was every 10th generation, including branch lengths. The first 40,000 trees (i.e., $10 \%$ of the total number of trees) were deleted as "burn-in". A majority-rule consensus tree with average branch lengths was constructed from 360,000 trees and visualized in Geneious (Biomatters Ltd.). Significant posterior probabilities were equal to or above $95 \%$.

Weighted maximum parsimony (MP) and maximum likelihood (ML) analyses were carried out in PAUP*4.0b10 (Swofford 2002) to construct MP and ML trees with bootstrap support. A first heuristic search was run to find MP trees using random sequence additions with 500 replicates, and tree bisection-reconnection branch swapping (TBR). The MulTrees and steepest descent options were on, and the collapse zero-length branches option was off. Gaps were coded as a fifth character state. To estimate the branch support for the MP trees, 1,000 bootstrap replicates with 10 random additions of the taxa were performed. A second heuristic search with 500 replicates under the ML criterion and the selected substitution model was run using the MP trees from the previous heuristic search as starting trees. Branch support for the ML trees was estimated by 100 bootstrap replicates with 10 random additions of the taxa. High bootstrap support was considered to be equal or above $70 \%$.

## Results

## Morphological examination

The morphological examination (Table 2) showed that only corticolous specimens had greenish to green thalli. The colour of saxicolous specimens varied from grey to brown.

Corticolous specimens more frequently developed tuberculate apothecia (i.e., $90 \%$ of examined specimens) than saxicolous ones (i.e., $20 \%$ of examined specimens). Var. sorediata, represented by only one specimen, had smaller and fewer apothecia (see Table 2).

The ascospores of all the three varieties were bean-shaped. However, those of the corticolous specimens were narrower (mean $4.53 \pm 1.82 \mu \mathrm{~m}$ ) than saxicolous ones (mean $4.79 \pm 1.21 \mu \mathrm{~m}$ ), but were similar in the mean of spores length, i.e., $10.17 \pm 4.79 \mu \mathrm{~m}$ and $10.24 \pm 3.11 \mu \mathrm{~m}$, respectively (see Table 2).

PCA based on morphological characters of $F$. cyathoides did not separate corticolous and saxicolous specimens along the two first ordination axes representing $28.77 \%$ and $24.11 \%$ variation, respectively (Fig. 1). One character, namely the ratio between the length and width of ascospores, had a larger range for var. cyathoides than var. corticola. The height of hymenium and epihymenium, and width of ascospores, were both positively correlated with the size of areoles and tuberculate apothecia.

## Secondary chemical compounds

Analysis of secondary chemical compounds in the fumarprotocetraric acid chemosyndrome did not reveal any chemical differences between the specimens. The major and diagnostic constituent was fumarprotocetraric acid; a trace of the satellite substance protocetraric acid was present in most specimens, whereas succinprotocetraric acid was not detected in any of the specimens tested.

## Phylogeny of Fuscidea cyathoides

As no conflicts were detected between the data sets of different genes, they were combined and the final aligned sequence matrix comprised 26 taxa with 2,187 characters of which 1,618 were constant and 361 informative. The GenBank accession numbers are given in Table 3. The majority-rule consensus tree from the BI is displayed in Fig. 1. The average - ln likelihood of the tree was $8,081.83$ and the average standard deviation of split frequencies was 0.0025 , indicating that two independent runs of the Markov chain search converged. The calculated likelihood parameters of the MCMC analysis are summarized in Table S2.

A heuristic search using the parsimony criterion resulted in 100 MP trees of length 1,041 with consistency index $=0.7080$, homoplasy index $=0.2920$, retention index $=0.6984$, and rescaled retention index $=0.4945$. A second heuristic search under the ML criterion and the GTR $+\mathrm{I}+\mathrm{G}$ model using the MP trees as starting trees resulted in three equally best ML trees $(-\operatorname{lnL}=8,104.6499)$. The consensus ML tree was incongruent with the BI tree in the position of F. kochiana (Hepp) V. Wirth \& Vězda, and five specimens (A. Aptroot 55063, M. Zahradníková MZ05 (BG-L-96931), G. Thor 18066, G. Thor 18061 and R. Haugan 1389) within the F. cyathoides group. All incongruences are marked with a circle in Fig. 2.

All the samples of Fuscidea included here formed a monophyletic group. All three varieties of $F$. cyathoides were clustered in one subgroup with $\mathrm{PP}=0.99, \mathrm{MP}=97 \%, \mathrm{ML}=99 \%$ support. Within this subgroup, no clear classification into the varieties of corticolous and saxicolous specimens was discovered. The specimens from Central Europe, i.e. the Czech Republic and Slovakia, formed a group separate from northwest Europe, i.e., Norway and the Republic of Ireland.

## Discussion

Neither the chemistry nor the molecular data show evidence for differentiation within F. cyathoides. Our results suggest that the bean-shaped spores becoming brownish when mature and the production of fumarprotocetraric acid are the only diagnostic characters for the recognition of $F$. cyathoides.

Our findings agree with Bylin et al. (2007), where corticolous and saxicolous specimens of F.cyathoides were grouped together, but with less sampling and MP bootstrap support lower than $80 \%$. Moreover, Fuscidea stiriaca was clustered with var. cyathoides ( $\mathrm{MP}=100 \%$ ).

The included representatives with apothecia of both the Fagus- and Betula-types show no morphological nor genetic differences. The observed variation between these apothecia types is not significant (see Figs. 1 and 2), confirming the statement of Oberhollenzer \& Wirth (1984). In the PCA, the Betula-type (BG-L-89616) and the Fagus-type (JV 11397, JV 11411 and JM 6488) are not separated from each other; furthermore, specimens BG-L-89616 and JV 11411 are found to overlap. We consider the colour and the presence of crystals in the apothecia as adaptations to localities with direct light exposure. It should be noted that Fahselt (1981) found that levels of perlatolic and fumarprotocetraric acids in populations of Cladonia stellaris (Opiz) Pouzar \& Vězda and C. rangiformis Hoffm., respectively, were influenced by light intensity. Massalongo (1852) suggested the bean-shaped spores and the tuberculate apothecia to be diagnostic for F. stiriaca (as Biatora stiriaca) (see Fig. 1). This cannot be supported, since both characters are also present in var. cyathoides.

In the present study, var. sorediata has the smallest apothecia (see Table 2), but this feature is considered to be as result of a biological energy saving strategy (see Tønsberg 1992), and should not be used as a diagnostic character for species forming species pairs sensu Poelt (1970, 1972).

To conclude, no significant genetic difference between specimens reflecting the morphological and ecological variations was found in F. cyathoides. Therefore, we synonymize var. corticola and var. sorediata with the typical form. Fuscidea fagicola and $F$. stiriaca are synonymized with $F$. cyathoides.

## Taxonomy

## Fuscidea cyathoides (Ach.) V. Wirth \& Vězda

Beiträge zur naturkundlichen Forschung in Südwestdeutschland 31: 92 (1972). - Lichen cyathoides Ach., Lichenographiae Suecicae Prodromus: 62 (1798); type: Sweden, in saxis et rupibus (H-Ach 273 F \& G-lectotypus [!] in Oberhollenzer \& Wirth, Beihefte zur Nova Hedwigia 79: 552 (1984)). - Lecidea cyathoides (Ach.) Ach., Methodus qua Omnes Detectos Lichenes: 51 (1803). - Biatora cyathoides (Ach.) Oxner, Flora of Lichens of the Ukraine 2: 78 (1968).

- Lecidea rivulosa Ach., Methododus qua Omnes Detectos Lichenes: 38 (1803); type: Sweden, in saxis et rupibus (H-Ach 273 C - lectotypus [!] in Oberhollenzer \& Wirth, Beihefte zur Nova Hedwigia 79: 553 (1984). - Biatora rivulosa (Ach.) Fr., Kongliga Vetenskaps Academiens Nya Handlingar: 269 (1822). - Microlecia rivulosa (Ach.) Choisy, Bulletin mensuel de la Société Linnéenne de Lyon 18: 151 (1949).
- Lecidea rivulosa Ach. var. infuscata H. Magn., Kongliga Götheborgska Vetenskaps Samhällets Handlingar, Vetenskskaps Afd. 29: 27 (1925); type: Norway, Hordaland: Mosterhavn, Aug. 1910, Havaas, Havaas, Lich. Norv. Occ. 43 (UPS - lectotypus [!] in Oberhollenzer \& Wirth, Beihefte zur Nova Hedwigia 79: 554 (1984)).
- Lecidea subrivulosa Vain., Acta Societiatis pro Fauna et Flora Fennica 57: 316 (1934); type: Russia [Finlandia]: in Somerikonvuoret in Suursaari v. Hoglandia, in rupe porphyrica, 1875, Vainio (TUR-Vainio 24352 - holotypus [!]). - Fuscidea subrivulosa (Vain.) P. James,

Poelt \& May. Inoue, Hikobia Supplement 1: 179 (1981). - Fuscidea subrivulosa (Vain.) P. James, Poelt \& V. Wirth, Bibliotheca Lichenologica 16: 154 (1981), nom. inval., Art. 41.4 (Melbourne).

- Biatora rivulosa b. corticola Fr., Lichenographia Europaea Reformata: 272 (1831); type: Sweden, Småland: Femsjö, on bark, E. Fries: Exs. Lich. Suec. n. 39 (1818) (UPS - lectotypus [!] in Inoue, Hikobia Supplement 1: 178 (1981) as "holotypus"). - Fuscidea cyathoides var. corticola (Fr.) Kalb, Herzogia 4: 57 (1976). Syn. nov.
- Lecidea fagicola Zschacke, Verhandlungen des Botanischen Vereins der Provinz Brandenburg 69: 11 (1927); type: Frankreich, Corsica: Vizzavona, H. Zschacke (B holotypus [lost, see Oberhollenzer \& Wirth, Beihefte zur Nova Hedwigia 79: 554 (1984)]; Frankreich, Corsica, Distr. Evissa: Silva Aitone, in valle rivi Aitone, c. 1300 m. Fagicola, 30 June 1969. J. Lambinon, Y. Rondon, A. Vězda (neotypus [probably lost] designated by Oberhollenzer \& Wirth, in Beihefte zur Nova Hedwigia 79: 554 (1984)). - Biatorinella fagicola (Zschacke) Deschâtres \& Werner, Bulletin de la Société Botanique de France 121: 305 (1974). - Fuscidea fagicola (Zschacke) Hafellner \& Türk, Stapfia 76: 152 (2001). Syn. nov.
- Biatora stiriaca A. Massal., Ricerche sull' autonomia del licheni crostosi: 125 (1852); type: Italia, vive sui faggi nelle Stiria, legit. Welwic. (VER - holotypus [!]). - Lecidea stiriaca (A. Massal.) Jatta, Sylloge Lichenum Italicorum 39: 328 (1900). - Fuscidea stiriaca (A. Massal.) Hafellner, Fritschiana 33: 42 (2002). Syn. nov.
- Lecidea rivulosa var. sorediata H. Magn., Göteborgs Kunglige Vetenskaps- och VitterhetsSamhälles Handlingar, Ser. 4, 29: 29 (1925); type: Sweden, Västergötland: par. Frölunda, Näset, on sunny boulder, 24 August 1924, A. H. Magnusson 9237 A (UPS, L-763155 lectotypus, designated here). - Fuscidea cyathoides var. sorediata (H. Magn.) Poelt, Norwegian Journal of Botany 25: 127 (1978). Syn. nov.
(Figs 4A-D)
Thallus crustose, very variable, rimose-cracked, to reticulate, delimited, occasionally sorediate; over-all colour in saxicolous habitats from light grey to dark grey or brown, in corticolous habitats greyish or brownish green to olive green. Areoles discrete, irregular, convex, highly variable in size, becoming secondarily cracked. Soralia rarely present, yellowish, sometimes tinged with brown, bursting from the apices of the areoles. Prothallus distinct, dark brown or black visible, ramifying the thallus, often forming mosaics. Photobiont green, coccoid, globose to broadly ellipsoid. Apothecia immersed to sessile, constricted at base, roundish, up to 1.4 mm in diam., to 1.9 mm when tuberculate, dark grey-brown to black; margin paler or concolorous with disc, rounded to strongly flexuouse; disc black, mostly flat. Epihymenium brown; hymenium pale or faintly brownish; hypothecium hyaline. Asci clavate, of the Fuscidea-type. Ascospores simple, colourless, sometimes elliptical when young, bean-shaped when mature, brownish (6-)10-11(-14.5) $\times(3-) 4-5(-7) \mu \mathrm{m}$. Pycnidia abundant, brown, immersed, to emergent with a thin thalline rim. Conidia bacilliform 3-4× $1.5-2 \mu \mathrm{~m}$.

Chemistry. Fumarprotocetraric acid (major), protocetraric acid (trace, usually present). Spot tests: K+ orange yellow, Pd+ rust-red; UV-.

Distribution and Ecology. Fuscidea cyathoides is mainly saxicolous on coarse-grained, nutrient-deficient, siliceous rocks; occasionally it is corticolous on trunks and branches of Acer, Alnus, Betula, Castanea, Fagus, Quercus and Sorbus.

The typical form (saxicolous esorediate) of Fuscidea cyathoides has been reported from Austria (Hafellner \& Türk 2001), Belgium and Luxembourg (Diederich \& Sérusiaux
2000), the British Isles (Hawksworth et al. 1980; Gilbert et al. 2009), China (Wei 1991), Croatia (Partl 2009), Czech Republic (Vězda \& Liška 1999), Denmark (Søchting \& Alstrup 2008), Estonia (Randlane \& Saag 1999), Finland (Nordin et al. 2010), France (Roux 2012), Germany (Wirth 1987), Greenland (Thomson 1997), Italy (Puntillo 1996), Morocco (Egea 1996), Norway (Nordin et al. 2010), Poland (Fałtynowicz 1993), Portugal (van den Boom \& Giralt 1999; Llimona \& Hladun 2001), Romania (Ciurchea 1998), Russia (Urbanavichus \& Andreev 2010), Serbia (Savić \& Tibell 2006), Slovakia (Pišút et al. 1998), Slovenia (Suppan et al. 2000), Spain (Llimona \& Hladun 2001), Sweden (Nordin et al. 2010), Switzerland (Clerc 2004), Turkey (Yildiz et al. 2002), and Ukraine (Kondratyuk et al. 2010). The saxicolous sorediate form is known from the British Isles (Hawksworth et al. 1980), Denmark (Søchting \& Alstrup 2008), France (Roux 2012), Poland (Faltynowicz 1993), Norway (Poelt \& Buschardt 1978) and presently published material, and Sweden (Nordin et al. 2010) (see Fig. 5). The records from North America and Tasmania (Richardson \& Richardson 1982; Egan 1987) were later rejected as they were based on misidentifications (Kantvilas 2001; Fryday 2008).

The corticolous form has been reported from Albania (Svoboda et al. 2012), Austria (Hafellner \& Türk 2001), Belgium and Luxembourg (Diederich \& Sérusiaux 2000), Bosnia-Herzegovina (Christensen 1994), Croatia (Partl 2009), Denmark (Søchting \& Alstrup 2008), France (Roux 2012), Germany (Cezanne et al. 2004), Italy (Tretiach \& Nimis 1994), Poland (Faltynowicz 1993), Portugal (van den Boom \& Giralt 1999; Llimona \& Hladun 2001), Montenegro (Knežević \& Mayrhofer 2009), Norway (Nordin et al. 2010), Russia (Urbanavichus \& Andreev 2010), Slovakia (Bielczyk et al. 2004), Slovenia (Suppan et al. 2000), Spain (Llimona \& Hladun 2001), W. Scotland (Gilbert et al. 2009), Sweden (Nordin et al. 2010), Switzerland (Clerc 2004), Ukraine (Coppins et al. 2005) (see Fig. 6), as well as from Taiwan (Aptroot \& Sparrius 2003).

Specimens examined (saxicolous, esorediate): Czech Republic: Central Bohemia, Distr. Beroun, Brdy Mts, Neřežín - Malá Víska: upper part of Krkavčina Mt., forested (Picea, Betula, Larix etc.) rocky hill, $49^{\circ} 45^{\prime} 55^{\prime} \mathrm{N}, 13^{\circ} 53^{\prime} 36^{\prime \prime} \mathrm{E}$, alt. $570-600 \mathrm{~m}$, on siliceous boulder, 17.11.2012, J. Malíček 4916; Distr. Beroun, Brdy Mts, Neřežín, Jindřichova skála Mt., 1 km SE of Malá Víska, rock with E-exposed boulder scree, $49^{\circ} 46^{\prime} 05^{\prime \prime} \mathrm{N}, 13^{\circ} 52^{\prime} 55^{\prime \prime} \mathrm{E}$, alt. $550-580$ m, on siliceous boulder, 17.11.2012, J. Malíček 4928; Western Bohemia, Distr. Rokycany, Brdy Mts, Strašice - Lipovsko Mts ( 651 m ), 3 km SE of town, rock with boulder scree on Sexposed slope, $49^{\circ} 42^{\prime} 53^{\prime \prime} \mathrm{N}, 13^{\circ} 47^{\prime} 11^{\prime \prime} \mathrm{E}$, alt. $620-640 \mathrm{~m}$, on siliceous rock, 8.11.2012, J. Malíček (4866); Moravský kras, Mohelno, $49^{\circ} 06^{\prime} 08.80^{\prime} \mathrm{N}, 16^{\circ} 11^{\prime} 05.20^{\prime \prime} \mathrm{E}$, alt. 344 m , in deciduous forest on shaded siliceous rock, 7.5.2011, J. Halda 662/2011 (JHP/13294). Norway: Hordaland, Fjell, Sotra, SW from Landro, Ingholet, 100 m from cemetery, $60^{\circ} 25^{\prime} 6^{\prime \prime} \mathrm{N} 4^{\circ} 58^{\prime} 31.2^{\prime \prime} \mathrm{E}$, alt. $35-45 \mathrm{~m}$, saxicolous on SW-facing vertical siliceous stone wall, 20.3.2011, M. Zahradníková MZ 30 (BG-L-96933); Fjell, Sotra, W of the road between Skålvik and Sekkingstad, S of road jct to Algrøyna, $60^{\circ} 20^{\prime} 06.6^{\prime \prime} \mathrm{N}, 4^{\circ} 59^{\prime} 42.0^{\prime \prime} \mathrm{E}$, alt. $40-70$ m , saxicolous on siliceous rock wall in coastal heath, 15.11.2010, M. Zahradníková MZ 5 (BG-L-96931); Nordland, Nesna, Island Tomma, Valhaugen, $66^{\circ} 17^{\prime} 44.63^{\prime \prime} \mathrm{N}, 12^{\circ} 49^{\prime} 15.31^{\prime \prime}$, alt. 35 m , saxicolous on bedrock in open, treeless situation, 20.6.2016, T. Tønsberg 46572 \& A. Botnen (BG-L-99904). Ireland: Co. Kerry, Macgillycuddy's Reeks, Gaddagh River valley NE of Carrauntoohil (Corrán Tuathail) [1039 m], c. 14 km WSW of Killarney, $52^{\circ} 00^{\prime} 50.0^{\prime \prime} \mathrm{N}, 9^{\circ} 42^{\prime} 49.0^{\prime} \mathrm{W}$, alt. 225 m , on boulders near the brook, 4.9.2003, J. Halda \& Z. Palice 7903. U.K., Scotland: South Aberdeenshire: V.C. 92, Braemar, Invercauld Estate, Craig Leek, NE-E facing crags, partly limestone, $57^{\circ} 01^{\prime} 24.0^{\prime \prime} \mathrm{N}, 3^{\circ} 39^{\prime} 60.0^{\prime} \mathrm{W}$, alt. 425 m , on siliceous rock in pasture below crags, 24.5.2005, A.M. Fryday 9012 (MSC0050557).

Sweden: Skåne: S. Mellby, Stenshuvud, på block i strandskogen, 13.4.1987, S. Ekman 265 (LD-1132977).

Specimens examined (corticolous): Norway: Rogaland, Forsand, N side of Mt Uburen by Forsandåna, alt. 60-80 m, on Betula pubescens in boulder field, 29.8.2001, J.I. Johnsen (BG-L-89616); Sokndal, S of Årstad, alt. $60-80 \mathrm{~m}$, on Betula pubescens, 25.8.2010, J.I. Johnsen (BG-L-89638). Slovakia: Bukovské Mts: Nová Sedlica - protected area Stužica, valley of Stužická rieka river, natural deciduous forest, $49^{\circ} 04^{\prime} 23^{\prime \prime} \mathrm{N}, 22^{\circ} 32^{\prime} 25^{\prime \prime} \mathrm{E}$, alt. $608-$ 700 m, on bark of Fagus sylvatica, 24.10.2013, J. Malíček \& J. Vondrák 6488; Nová Sedlica: beech forest on the crest Čiertáž - Hrúbky - Kremenec, $49^{\circ} 05^{\prime} 34.2^{\prime \prime} \mathrm{N}, 22^{\circ} 22^{\circ} 31^{\prime} 36.6^{\prime} \mathrm{E}$, alt. 1110 m, on bark of Fagus, 8.7.2004, Z. Palice \& J. Šárová 9629; Nová Sedlica, protected area Stužica, $49^{\circ} 4^{\prime} 24^{\prime \prime} \mathrm{N}, 22^{\circ} 32^{\prime} 35^{\prime \prime} \mathrm{E}$, alt. $600-1200 \mathrm{~m}$, on bark of Acer pseudoplatanus, 26.10.2013, J. Vondrák \& J. Malíček 11411; Ulič, Nová Sedlica, protected area Stužica, $49^{\circ} 04^{\prime} 24^{\prime} \mathrm{N}, 22^{\circ} 32^{\prime} 35^{\prime} \mathrm{E}$, alt. 600-1200 m, on bark of Fagus sylvatica, 26.10.2013, J. Vondrák \& J. Malíček 11397; Ulič, Nová Sedlica, protected area Stužica, $49^{\circ} 04^{\prime} 24^{\prime \prime} \mathrm{N}$, $22^{\circ} 32^{\prime} 35^{\prime \prime} \mathrm{E}$, alt. $1000-1200 \mathrm{~m}$, on bark of Fagus sylvatica, 26.10.2013, J. Vondrák \& J. Malíček 11476; Muránska planina: Nová Maša: alder stand along unnamed stream in parallel stream with Rácov Brook), $48^{\circ} 48^{\prime} 45-50^{\prime} \mathrm{N}, 20^{\circ} 01^{\prime} 45^{\prime} \mathrm{E}$, alt. $770-780 \mathrm{~m}$, on bark of Alnus incana, 17.10.1999, A. Guttová, V. Orthová \& Z. Palice 4642. Sweden: Sk. Vittsjö: N end of Vittsjö, on roadside Fagus near bridge, 29.09.1987, U. Arup \& S. Ekman L035 (LD1157864); Sk. N. Åkarp: 2.5 km S Bjärnum, c. 500-700 m SSW of Lake Agnsjön, W of road, on Fagus, 29.9.1987, U. Arup \& S. Ekman L036 (LD-1157444); Skåne: Tåssjö par., Hålskutt, 22.5.1988, U. Arup \& S. Ekman L130 (LD-1131717); S. Mellby, Stenshuvud, på rönn i Öbranten, 28.4.1987, S. Ekman L146 (LD-1133157).

Specimens examined (saxicolous, sorediate): Norway: Nordland, Nesna, Tomma, Valhaugen, $66^{\circ} 17^{\prime} 44.77^{\prime \prime} \mathrm{N}, 12^{\circ} 49^{\prime} 15.31^{\prime \prime} \mathrm{E}$, alt. 35-40 m, saxicolous in shallow crevice (with seeping water) in bedrock in open, treeless situation, 20.6.2016, T. Tønsberg 46570 (BG-L-99902).

## Acknowledgements

We thank the curators of HO, LD, UPS, H-Ach, and MSC for loan of material, Zdeněk Palice, Jan Vondrák, Jiří Malíček (all from the Academy of Science of the Czech Republic) and Josef Halda (Museum and Gallery of Orlické hory Mts., Czech Republic) for providing fresh material from Central Europe, M.R.D. Seaward (University of Bradford, England) for language improvements, Louise Lindblom, Beate Helle, and Per M. Jørgensen (all University of Bergen, Norway) for technical help with the molecular work (LL), technical help with the preparation of the distribution maps ( BH ) and help with botanical nomenclature (PMJ), respectively, and Kim Abel (Røyken, Norway) for taking the photos. The project was funded by the University Museum of Bergen, University of Bergen, including grants from the Grolle Olsen fund. This work is a part of the doctoral thesis of MZ. The molecular work was done in the Biodiversity Laboratories at University of Bergen.

## Appendix A: Supplementary material

Supplementary data associated with this article can be found in the online version at http://\#\#\#

## References

Acharius, E. (1798) Lichenographiae Suecicae Prodromus: 62. Lincopiae, D.G. Björn.
Aptroot, A. \& Sparrius, L. B. (2003) New microlichens from Taiwan. Fungal Diversity 14: 1-50.

Bielczyk, U., Lackovičová, A., Farkas, E., Lőkös L., Breuss, O. \& Kondratyuk, S. Ya. (2004) Checklist of lichens of the Western Carpathians. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences.

Bylin, A., Arnerup, J., Hogberg, N. \& Thor, G. (2007) A phylogenetic study of Fuscideaceae using mtSSU rDNA. Bibliotheca Lichenologica 96: 49-60.

Cezanne, R., Eichler, M. \& Wirth, V. (2004) Flechten-Exkursion in die Umgebung von Bad Wildungen 04./05. 10. 2002. Hessische Floristische Briefe 53: 17-28.

Christensen, S. (1994) Lichens from Bosnia-Herzegovina. Nova Hedwigia 59: 441-453.
Ciurchea, D. (1998) Catalog of lichens in Romania. Available online at http://www.bgbm.fu-berlin.de/sipman/Zschackia/Rumania/index.htm.

Clerc, P. (2004) Les champignons lichénisés de Suisse - Catalogue bibliographie complété par des données sur la distribution et l'écologie des espèces. Cryptogamica Helvetica 19: 1-320. Available online at http://www.villege.ch/musinfo/bd/cjb/cataloguelichen/recherche.

Coppins, B. J., Kondratyuk, S. Y., Khodosovtsev, A. Y., Zelenko, S. D. \& Wolseley, P. A. (2005) Contribution to lichen flora of Ukrainian Carpathians. Chornomors' kyi Botanical Journal 1: 5-23.

Culberson, C. F. (1972) Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method. Journal of Chromatography 72: 113-125.

Culberson, C. F., Culberson, W. L. \& Johnson, A. (1981) A standardized TLC analysis of $\beta$ orcinol depsidones. Bryologist 84: 16-29.

Culberson, C. F. \& Kristinsson, H.-D. (1970) A standardized method for the identification of lichen products. Journal of Chromatography 46: 85-93.

Davydov, E. A., Peršoh, D. \& Rambold, G. (2010) The systematic position of Lasallia caroliniana (Tuck.) Davydov, Peršoh \& Rambold comb. nova and considerations on the generic concept of Lasallia (Umbilicariaceae, Ascomycota). Mycological Progress 9: 261-266.

Diederich, P. \& Sérusiaux, E. (2000) The Lichens and Lichenicolous Fungi of Belgium and Luxembourg. An Annotated Checklist. Musée National d'Histoire naturelle, Luxembourg, pp. 1-208.
Egan, R. S. (1987) A fifth checklist of the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada. Bryologist 90: 77-173.
Egea, J. M. (1996) Catalogue of lichenized and lichenicolous fungi of Morocco. Bocconea $\mathbf{6}$ : 52.

Fahselt, D. (1981) Lichen products of Cladonia stellaris and Cladonia rangiferina maintained under artificial conditions. Lichenologist 13: 87-91.

Fattynowicz, W. (1993) A checklist of Polish lichen forming and lichenicolous fungi including parasitic and saprophytic fungi occurring on lichens. Polish Botanical Studies 6: 1-65.

Ferencová, Z., Del Prado, R., Pérez-Vargas, I., Hernández-Padrón, C. \& Crespo, A. (2010) A discussion about reproductive modes of Pseudevernia furfuracea based on phylogenetic data. Lichenologist 42: 449-460.

Fries, E. (1831) Lichenographia Europaea Reformata: Lund.
Fryday, A. M. (2008) The genus Fuscidea (Fuscideaceae, lichenized Ascomycota) in North America. Lichenologist 40: 295-328.

Gardes, M. \& Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.

Gilbert, O. L., Purvis, O. W., Skjoddal, L. H. \& Tønsberg, T. (2009) Fuscidea V.Wirth \& Vězda (1972). In The Lichens of the Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James \& P. A. Wolseley, eds): 407-411. British Lichen Society: London.

Hafellner, J. (2002) Ein Beitrag zur Diversität von lichenisierten und lichenicolen Pilzen im Gebiet der Gleinalpe (Steiermark, Österreich). Fritschiana 33: 33-51.

Hafellner, J. \& Türk, R. (2001) Die lichenisierten Pilze Österreichs - eine Checkliste der bisher nachgewiesenen Arten mit Verbreitungsangaben. Stapfia 76: 1-167.

Hawksworth, D. L., James, P. W. \& Coppins, B. J. (1980) Checklist of British lichenforming, lichenicolous and allied fungi. Lichenologist 12: 1-115.

Huelsenbeck, J. P. \& Crandall, K. A. (1997) Phylogeny estimation and hypothesis testing using maximum likelihood. Annual Review of Ecology and Systematics 28: 437-466.

Inoue, M. (1981) A taxonomic study on the Japanese species of Fuscidea (Lichens). Hikobia Supplement 1: 161-176.

Kalb, K. (1976) Flechtenfunde aus Korsika. Herzogia 4: 55-63.
Kantvilas, G. (2001) The lichen family Fuscideaceae in Tasmania. Bibliotheca Lichenologica 78: 169-192.

Knežević, B. \& Mayrhofer, H. (2009) Catalogue of the Lichenized and Lichenicolous Fungi of Montenegro. Phyton 48: 283-328.

Kondratyuk, S. Y., Dymytrova, L. V. \& Nadyeina, O. V. (2010) The third checklist of lichen-forming and allied fungi of Ukraine. In Flora Lišajnikiv Ukraini Vol. 2, part 3 (S. Y. Kondratyuk \& O. G. Roms, eds): 446-486. Kyiv: Naukova dumka.

Kroken, S. \& Taylor, J. W. (2001) A gene genealogical approach to recognize phylogenetic species boundaries in the lichenized fungus Letharia. Mycologia 93: 38-53.

Llimona, X. \& Hladun, N. L. (2001) Checklist of the lichens and lichenicolous fungi of the Iberian Peninsula and Balearic Islands. Bocconea 14: 153.

Magnusson, A. H. (1925) Studies in the Rivulosa-group of the genus Lecidea. Göteborgs Kungliga Vetenskaps-och Vitterhets-Samhälles Handlingar 22: 1-50.

Massalongo, A. (1852) Licheni crostosi e materiali. Ricerche sull' autonomia del licheni crostosi. Verona.

Menlove, J. E. (1974). Thin-layer chromatography for the identification of lichen substances. British Lichen Society Bulletin 34: 3-5.
Nordin, A., Moberg, R., Tønsberg, T., Vitikainen, O., Dalsätt, Å., Myrdal, M. \& Ekman, S. (2010) Santesson's Checklist of Fennoscandian Lichen-forming and Lichenicolous fungi. Uppsala: Museum of Evolution, Uppsala University.

Oberhollenzer, H. \& Wirth, V. (1984) Beitrage zur Revision der Flechtengattung Fuscidea. Beihefte zur Nova Hedwigia 79: 562-566.

Partl, A. (2009) Checklist of lichens and lichenicolous fungi of Croatia. University of Osijek, Croatia, Preliminary version 1 March 2009.

Pišút, I., Guttová, A., Lackovičová, A. \& Lisická, E. (1998) Lichenizované huby (lišajníky). In Zoznam nižších a vyšších rastlín Slovenska (Checklist of nonvascular and vascular plants of Slovakia) (K. Marhold \& F. Hindák, eds): 229-295. Veda, Bratislava.
Poelt, J. (1970) Das Konzept der Artenpaare bei den Flechten. Berichte der Deutschen Botanischen Gesellschaft 4: 187-198.

Poelt, J. (1972) Die taxonomische Behandlung von Artenpaaren bei den Flechten. Botaniska Notiser 125: 77-81.

Poelt, J. \& Buschardt, A. (1978) Über einige bemerkenswerte Flechten aus Norwegen. Norwegian Journal of Botany 25: 123-135.

Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253-1256.

Puntillo, D. (1996) I Licheni di Calabria. Museo Regionale di Scienze Naturali Torino, Monografie 22.

Randlane, T. \& Saag, A. (eds) (1999) Second checklist of lichenized, lichenicolous and allied fungi of Estonia. Folia Cryptogamica Estonica 35: 1-132.

Reeb, V., Lutzoni, F. \& Roux, C. (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution 32: 1036-1060.
Resl, P., Mayrhofer, H., Clayden, S. R., Spribille, T., Thor, G., Tønsberg, T. \& Sheard, J. W. (2016) Morphological, chemical and species delimitation analyses provide new taxonomic insights into two groups of Rinodina. Lichenologist 48: 469-488.

Richardson, R. M. \& Richardson, D. H. S. (1982) A systematic list with distributions of the lichen species of Western Australia, based on collections in the Western Australian Herbarium. Western Australian Herbarium Research Notes 7: 17-29.
Ronquist, F. \& Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.

Roux, C. (2012) Liste des lichens et champignons lichénicoles de France. Bulletin de la Société linnéenne de Provence, $n^{\circ}$ spécial 16: 16. Available online at http://lichenologue.org/fr/index.php.
Santesson, R., Moberg, R., Nordin, A., Tønsberg, T. \& Vitikainen, O. (2004) Lichenforming and lichenicolous fungi of Fennoscandia. Museum of Evolution, Uppsala University.
Savić, S. \& Tibell, L. (2006) Checklist of the lichens of Serbia. Mycologia Balcanica 3: 187-215.

Søchting, U. \& Alstrup, V. (2008) Danish Lichen Checklist: 14. Faculty of Science, University of Copenhagen, Copenhagen.
Solheim H., Torp, T. B. \& Hietala, A. M. (2013) Characterization of the ascomycetes Therrya fuckelii and T. pini fruiting on Scots pine branches in Nordic countries. Mycological Progress 12: 37-44.

Spribille, T., Klug, B. \& Mayrhofer, H. (2011) A phylogenetic analysis of the boreal lichen Mycoblastus sanguinarius (Mycoblastaceae, lichenized Ascomycota) reveals cryptic clades correlated with fatty acid profiles. Molecular Phylogenetics and Evolution 59: 603-614.

Suppan, U., Prügger, J. \& Mayrhofer, H. (2000) Catalogue of the lichenized and lichenicolous fungi of Slovenia. Bibliotheca Lichenologica 76: 1-215.

Svoboda, D., Bouda, F., Malíček, J. \& Hafellner, J. (2012) A contribution to the knowledge of lichenized and lichenicolous fungi in Albania. Herzogia 25: 146-165.

Swofford, D. L. (2002) PAUP*: Phylogenetic analysis using parsimony (and Other Methods) 4.0 beta. Sinauer Associates, Sunderland, Mass., USA.

Tehler, A., Ertz, D. \& Irestedt, M. (2013) The genus Dirina (Roccellaceae, Arthoniales) revisited. Lichenologist 45: 427-476.

Ter Braak, C. J. F. \& Šmilauer, P. (2012) Canoco reference manual and user's guide: software for ordination (version 50) microcomputer power. Ithaca, NY, USA.

Thomson, J. W. (1997) American Arctic Lichens. 2. The Microlichens. Madison, Wisconsin: The University of Wisconsin Press.

Tretiach, M. \& Nimis, P. L. (1994) Una collezione di licheni dalle Foreste Casentinesi (Camaldoli, Toscana). Notiziario della Società Lichenologica Italiana 7: 25-32.

Tønsberg, T. (1992) The sorediate and isidiate, corticolous crustose lichens in Norway. Sommerfeltia 14: 1-331.

Urbanavichus, G. P. \& Andreev, M. (2010) A checklist of the lichen flora of Russia. Saint Petersburg: Nauka.
Vainio, E. A. (1934) Lichenographia Fennica IV - Lecideales II. Acta Societatis pro Fauna et flora Fennica 57: 314-315.
Van den Boom, P. P. G. \& Giralt, M. (1999) Contribution to the flora of Portugal, lichens and lichenicolous fungi II. Nova Hedwigia 68: 183-196.

Vězda, A. \& Liška, J. (1999) Katalog lišejníků České republiky (A catalogue of lichens of the Czech Republic). Průhonice: Institute of Botany, Academy of Science of the Czech Republic.
Wei, J.-C. (1991) An Enumeration of Lichens in China. Beijing: International Academic Publishers.

Vilgalys, R. \& Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species.
Journal of Bacteriology 172: 4238-4246.

White, T. J., Bruns, T., Lee, S. \& Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (M. A. Innis, D. H. Gelfand, J. J. Sninsky \& T. J. White, eds): 315-322. San Diego: Academic Press.
Wirth, V. (1987) Die Flechten Baden-Württembergs. Stuttgart: Eugen Ulmer.
Wirth, V. \& Vězda, A. (1972) Zur Systematik der Lecidea cyathoides-Gruppe. Beiträge zur naturkundlichen Forschung in Südwestdeutschland 31: 91-92.
Yildiz, A., John, V. \& Yurdakul, E. (2002) Lichens from the Çangal Mountains (Sinop, Turkey). Cryptogamie Mycologie 23: 81-88.
Zoller, S., Scheidegger, C. \& Sperisen, C. (1999). PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511-516.
Zschacke, H. (1927) Korsische Flechten, gesammelt in den Jahren 1914-16. Berlin: Botanischer Verein der Provinz Brandenburg.


Figure 1. Biplot of the two first principal component axes, showing morphological variation of the studied specimens of $F$. cyathoides. Abbreviations of the variables: Apom $=$ diam. (mm) of apothecia; Apotub $=$ diam.$(\mathrm{mm})$ of tuberculate apothecia; Aream $=$ diam. $(\mathrm{mm})$ of areolum; $H y m=$ width $(\mu \mathrm{m})$ of hymenium; $E p i=$ width $(\mu \mathrm{m})$ of epihymenium; Lspore $=$ length $(\mu \mathrm{m})$ of ascospores; Wspore $=$ width $(\mu \mathrm{m})$ of ascospores; Lwspore $=$ ratio of wspore $:$ lspore .


Figure 2. Phylogenetic relationships of esorediate and sorediate, saxicolous, and corticolous specimens of Fuscidea cyathoides, shown here as a $50 \%$ majority rule consensus tree of a $B / \mathrm{MCMC}$ analysis based on the concatenate data set $(-\ln =8,081.83)$ of mtSSU , LSU and ITS. Posterior probabilities (PP) are displayed above the branches; MP and ML bootstrap values are displayed under the branches; asterisks indicate value of $100 \%$. A circle indicates incongruent topology with the ML tree.


Figure 3. Fuscidea cyathoides. A: saxicolous and sorediate specimen, B: saxicolous and esorediate; C-D: corticolous. A, Norway (TT 46570, BG-L-99902); B, Norway (TT 46572, BG-L-99904); C, on Fagus sylvatica, Slovakia (JV 11397); D, on Alnus incana, Norway (TT 26205, BG-L-70280). Scale: A, B, D $=2 \mathrm{~cm}, \mathrm{C}=0.5 \mathrm{~cm}$. Photos by Kim Abel.


Figure 4. Distribution of saxicolous, esorediate and sorediate forms of Fuscidea cyathoides based on the examined material and the literature.


Figure 5. Distribution of corticolous forms of Fuscidea cyathoides based on the examined material and the literature.

Table 1. Overview of Fuscidea cyathoides nomenclature.

| Author | Year | Name of species at |  | Basionym | Synonyms |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Species level | Variety level |  |  |
| Acharius E. | 1798 | Lichen cyathoides Ach. |  |  |  |
| Fries E. | 1831 |  | Biatora rivulosa b. corticola Fr . |  | Lecidea Lightfootii Ach.; Lecidea rivulosa |
| Massalongo A. | 1852 | Biatora stiriaca A. Massal. |  |  |  |
| Magnusson H. | 1925 |  | Lecidea rivulosa var. sorediata H. Magn. |  |  |
| Zschacke H. | 1927 | Lecidea fagicola Zschacke |  |  |  |
| Wirth V. \& Vězda A. | 1972 | Fuscidea cyathoides (Ach.) V. Wirth \& |  | Lichen cyathoides Ach. |  |
| Kalb K. | 1976 |  | Fuscidea cyathoides var. corticola (Fr.) Kalb | Biatora rivulosa b. corticola Fr. | Biatorinella rivulosa var. corticola |
| Poelt J. \& Buschardt | 1978 |  | Fuscidea cyathoides var. sorediata (H. Magn.) | Lecidea rivulosa var. sorediata H . |  |
| Hafellner J. \& Türk R. | 2001 | Fuscidea fagicola (Zschacke) Hafellner \& |  | Lecidea fagicola Zschacke | Biatora rivulosa b. corticola Fr. |
| Hafellner J. | 2002 | Fuscidea stiriaca (A. Massal.) Hafellner |  | Biatora stiriaca A. Massal. |  |

Table 2. Overview of morphological characters measured on the studied specimens of $F$. cyathoides, given as (smallest values-)arithmetic mean $\pm$ s.d.(-largest values) (number of measurements).

| Variety | Collection number | Country | Thallus colour | Areoles Q [mm] | Apothecia $Q[\mathrm{~mm}]$ | Apothecia tuberculate $Q[\mathrm{~mm}]$ | $\begin{aligned} & \text { Hymenium } \\ & {[\mu \mathrm{m}]} \end{aligned}$ | Epihymenium [ $\mu \mathrm{m}$ ] | Length of spores [ $\mu \mathrm{m}$ ] | Width of spores [ $\mu \mathrm{m}$ ] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cyathoides | ZP 7903 | Ireland | dark grey | $\begin{aligned} & (0.23-) 0.45( \pm 0.24)(-0.90) \\ & (\mathrm{n}=7) \end{aligned}$ | $\begin{aligned} & \begin{array}{l} (0.63-) 0.86( \pm 0.12)(-1.04) \\ (\mathrm{n}=8) \end{array} \end{aligned}$ |  | $93(\mathrm{n}=1)$ | $31(\mathrm{n}=1)$ | $\begin{aligned} & (10-) 10.6( \pm 0.89)(-12) \\ & (\mathrm{n}=5) \end{aligned}$ | $\begin{aligned} & (4.5-) 5.1( \pm 0.89)(-6) \\ & (\mathrm{n}=5) \end{aligned}$ |
|  | JM 4928 | Czech Rep. | dark grey, dark brown | $\begin{aligned} & (0.41-) 0.68( \pm 0.23)(-0.95) \\ & (\mathrm{n}=5) \end{aligned}$ | $\begin{aligned} & (0.45-) 0.85( \pm 0.27)(-1.17) \\ & (\mathrm{n}=8) \end{aligned}$ |  | $62(\mathrm{n}=1)$ | $31(\mathrm{n}=1)$ | $\begin{aligned} & (10-) 10.6( \pm 0.52)(-11) \\ & (\mathrm{n}=8) \end{aligned}$ | $5( \pm 0)(\mathrm{n}=8)$ |
|  | MSC0050557 | Scotland | dark grey, dark brown | $\begin{aligned} & (0.45-) 0.84( \pm 0.3)(-1.35) \\ & (\mathrm{n}=10) \end{aligned}$ | $\begin{aligned} & (0.63-) 0.9( \pm 0.29)(-1.44) \\ & (\mathrm{n}=6) \end{aligned}$ |  | 155 ( $\mathrm{n}=1$ ) | $31(\mathrm{n}=1)$ | $\begin{aligned} & (7-) 9.7( \pm 1.51)(-11) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (4-) 4.9( \pm 1.11)(-7) \\ & (\mathrm{n}=6) \end{aligned}$ |
|  | JM 4866 | Czech Rep. | mouse grey | $\begin{aligned} & (0.23-) 0.41( \pm 0.15)(-0.59) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (0.50-) 0.93( \pm 0.25)(-1.35) \\ & (\mathrm{n}=7) \end{aligned}$ |  | $68(\mathrm{n}=1)$ | $22(\mathrm{n}=1)$ | $\begin{aligned} & (6-) 10( \pm 2)(-12)(\mathrm{n}= \\ & \text { 7) } \end{aligned}$ | $\begin{aligned} & (4-) 4.14( \pm 0.38)(-5) \\ & (\mathrm{n}=7) \end{aligned}$ |
|  | JM 4916 | Czech Rep. | grey-brown | $\begin{aligned} & (0.23-) 0.59( \pm 0.24)(-0.90) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (0.50-) 0.63( \pm 0.13)(-0.90) \\ & (\mathrm{n}=7) \end{aligned}$ |  | $62(\mathrm{n}=1)$ | $31(\mathrm{n}=1)$ | $\begin{aligned} & (11-) 11.5( \pm 0.55)(-12) \\ & (\mathrm{n}=6) \end{aligned}$ | $5( \pm 0)(\mathrm{n}=6)$ |
|  | JPH 13294 | Czech Rep. | brown-grey, <br> brown | $\begin{aligned} & (0.45-) 1.06( \pm 0.59)(-2.03) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (0.45-) 0.93( \pm 0.32)(-1.35) \\ & (\mathrm{n}=5) \end{aligned}$ | $\begin{aligned} & (1.40-) 1.64( \pm 0.35)(-1.89) \\ & (\mathrm{n}=2) \end{aligned}$ | $93(\mathrm{n}=1)$ | $31(\mathrm{n}=1)$ | $\begin{aligned} & (9-) 9.9( \pm 0.99)(-11) \\ & (\mathrm{n}=8) \end{aligned}$ | $\begin{aligned} & (4-) 4.88( \pm 0.64)(-6) \\ & (\mathrm{n}=8) \end{aligned}$ |
|  | BG-L-96931 | Norway | grey, browngrey | $\begin{aligned} & (0.18-) 0.41( \pm 0.26)(-0.99) \\ & (\mathrm{n}=9) \end{aligned}$ | $\begin{aligned} & (0.41-) 0.55( \pm 0.11)(-0.72) \\ & (\mathrm{n}=7) \end{aligned}$ |  | $78(\mathrm{n}=1)$ | $16(\mathrm{n}=1)$ | $\begin{aligned} & (9-) 9.86( \pm 0.69)(-11) \\ & (\mathrm{n}=7) \end{aligned}$ | $\begin{aligned} & (3-) 4.14( \pm 0.75)(-5) \\ & (\mathrm{n}=7) \end{aligned}$ |
|  | BG-L-99904 | Norway | light grey, dark grey | $\begin{aligned} & (0.25-) 0.51( \pm 0.24)(-0.88) \\ & (\mathrm{n}=7) \end{aligned}$ | $\begin{aligned} & (0.60-) 0.79( \pm 0.16)(-1.12) \\ & (\mathrm{n}=8) \end{aligned}$ | $\begin{aligned} & (0.67-) 0.78( \pm 0.11)(-0.88) \\ & (\mathrm{n}=4) \end{aligned}$ | 145 ( $\mathrm{n}=1$ ) | $32(\mathrm{n}=2)$ | $\begin{aligned} & (8-) 11.55( \pm 2.19)(-14) \\ & (\mathrm{n}=9) \end{aligned}$ | $\begin{aligned} & (4.5-) 4.89( \pm 0.22)(-5) \\ & (\mathrm{n}=9) \end{aligned}$ |
|  | BG-L-96933 | Norway | light grey, whitish | $\begin{aligned} & (0.14-) 0.56( \pm 0.41)(-1.35) \\ & (\mathrm{n}=8) \end{aligned}$ | $\begin{aligned} & (0.45-) 0.76( \pm 0.29)(-1.13) \\ & (\mathrm{n}=8) \end{aligned}$ |  | $93(\mathrm{n}=1)$ | $19(\mathrm{n}=1)$ | $\begin{aligned} & (8-) 9.29( \pm 0.76)(-10) \\ & (\mathrm{n}=7) \end{aligned}$ | $\begin{aligned} & (4-) 4.7( \pm 0.49)(-5) \\ & (\mathrm{n}=7) \end{aligned}$ |
|  | LD-1132977 | Sweden | dark greybrown | $\begin{aligned} & (0.45-) 1.14( \pm 0.45)(-1.94) \\ & (\mathrm{n}=7) \end{aligned}$ | $\begin{aligned} & (0.45-) 0.74( \pm 0.24)(-1.13) \\ & (\mathrm{n}=6) \end{aligned}$ |  | $109(\mathrm{n}=1)$ | $16(\mathrm{n}=1)$ | $\begin{aligned} & (7-) 9.33( \pm 2.08)(-11) \\ & (\mathrm{n}=3) \end{aligned}$ | $\begin{aligned} & (5-) 5.5( \pm 0.87)(-6.5) \\ & (\mathrm{n}=3) \end{aligned}$ |
| sorediata <br> corticola | BG-L-99902 | Norway | whitish, light grey | $\begin{aligned} & (0.25-) 0.55( \pm 0.31)(-1.05) \\ & (\mathrm{n}=7) \end{aligned}$ | $\begin{aligned} & (0.16-) 0.33( \pm 0.17)(-0.70) \\ & (\mathrm{n}=10) \end{aligned}$ |  | 150 ( $\mathrm{n}=2$ ) | $28(\mathrm{n}=2)$ | $\begin{aligned} & (7-) 11.71( \pm 2.21)(-13) \\ & (\mathrm{n}=7) \end{aligned}$ | $\begin{aligned} & (4-) 4.71( \pm 0.49)(-5) \\ & (\mathrm{n}=7) \end{aligned}$ |
|  | BG-L-89638 | Norway | light grey | $\begin{aligned} & (0.50-) 1.15( \pm 0.46)(-1.76) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (0.54-) 0.72( \pm 0.25)(-0.90) \\ & (\mathrm{n}=2) \end{aligned}$ | $\begin{aligned} & (0.94-) 1.34( \pm 0.32)(-1.76) \\ & (\mathrm{n}=4) \end{aligned}$ | $78(\mathrm{n}=1)$ | $16(\mathrm{n}=1)$ | $\begin{aligned} & (10-) 11( \pm 1.21)(-13) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (4-) 4.5( \pm 0.55)(-5) \\ & (\mathrm{n}=6) \end{aligned}$ |
|  | JV 11476 | Slovakia | dark greenish brown | $\begin{aligned} & (0.23-) 0.38( \pm 0.1)(-0.5)(\mathrm{n} \\ & =6) \end{aligned}$ | $\begin{aligned} & (0.32-) 0.48( \pm 0.12)(-0.59) \\ & (\mathrm{n}=4) \end{aligned}$ |  | $53(\mathrm{n}=1)$ | $31(\mathrm{n}=1)$ | $\begin{aligned} & (8-) 8.83( \pm 0.98)(-10) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (3.5-) 4.1( \pm 0.49)(-5) \\ & (\mathrm{n}=6) \end{aligned}$ |
|  | BG-L-89616 | Norway | grey, brown | $\begin{aligned} & (0.45-) 0.71( \pm 0.32)(-1.35) \\ & (\mathrm{n}=7) \end{aligned}$ | $\begin{aligned} & (0.45-) 0.78( \pm 0.31)(-1.40) \\ & (\mathrm{n}=8) \end{aligned}$ |  | $62(\mathrm{n}=1)$ | $19(\mathrm{n}=1)$ | $\begin{aligned} & (10-) 10.75( \pm 0.87)(-1 \\ & \text { 2) }(\mathrm{n}=8) \end{aligned}$ | $\begin{aligned} & (4-) 4.5( \pm 0.53)(-5) \\ & (\mathrm{n}=8) \end{aligned}$ |
|  | JM 6488 | Slovakia | olive-green | $\begin{aligned} & (0.45-) 0.76( \pm 0.37)(-1.35) \\ & (\mathrm{n}=5) \end{aligned}$ | $\begin{aligned} & (0.72-) 0.9( \pm 0.12) 3-(1.17) \\ & (\mathrm{n}=5) \end{aligned}$ | $\begin{aligned} & (0.50-) 1.24( \pm 0.53)(-1.85) \\ & (\mathrm{n}=5) \end{aligned}$ | $62(\mathrm{n}=1)$ | $16(\mathrm{n}=1)$ | $\begin{aligned} & (8-) 9.25( \pm 1.5)(-11) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (4-) 4.5( \pm 0.58)(-5) \\ & (\mathrm{n}=6) \end{aligned}$ |
|  | JV 11397 | Slovakia | light green | $\begin{aligned} & (0.23-) 0.63( \pm 0.24)(-0.90) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (0.54-) 0.83( \pm 0.17)(-0.90) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (1.35-) 1.51( \pm 0.22)(-1.67) \\ & (\mathrm{n}=2) \end{aligned}$ | $68(\mathrm{n}=1)$ | $19(\mathrm{n}=1)$ | $\begin{aligned} & (9-) 10.1( \pm 1.3)(-12) \\ & (\mathrm{n}=7) \end{aligned}$ | $\begin{aligned} & (4-) 4.5( \pm 0.53)(-5) \\ & (\mathrm{n}=7) \end{aligned}$ |
|  | JV 11411 | Slovakia | green, light green | $\begin{aligned} & (0.45-) 0.53( \pm 0.12)(-0.77) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (0.54-) 0.73( \pm 0.15)(-0.90) \\ & (\mathrm{n}=6) \end{aligned}$ |  | $62(\mathrm{n}=1)$ | $19(\mathrm{n}=1)$ | $\begin{aligned} & (9-) 10.3( \pm 1.38)(-13) \\ & (\mathrm{n}=7) \end{aligned}$ | $\begin{aligned} & (4-) 4.6( \pm 0.53)(-5) \\ & (\mathrm{n}=7) \end{aligned}$ |
|  | ZP 9629 | Slovakia | mouse grey, brown | $\begin{aligned} & (0.45-) 0.64( \pm 0.21)(-0.90) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (0.50-) 0.87( \pm 0.27)(-1.13) \\ & (\mathrm{n}=4) \end{aligned}$ | $\begin{aligned} & (1.31-) 1.5( \pm 0.21)(-1.89)(\mathrm{n} \\ & =6) \end{aligned}$ | $93(\mathrm{n}=1)$ | $16(\mathrm{n}=1)$ | $\begin{aligned} & (6-) 8.6( \pm 1.5)(-10) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (4-) 4.3( \pm 0.51)(-5) \\ & (\mathrm{n}=6) \end{aligned}$ |
|  | LD-1133157 | Sweden | dark grey | $\begin{aligned} & (0.45-) 0.73( \pm 0.31)(-1.04) \\ & (\mathrm{n}=7) \end{aligned}$ | $\begin{aligned} & (0.54-) 0.77( \pm 0.14)(-0.90) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (1.13-) 1.24( \pm 0.16)(-1.35) \\ & (\mathrm{n}=2) \end{aligned}$ | 155 ( $\mathrm{n}=1$ ) | $22(\mathrm{n}=1)$ | $(10-) 12.5( \pm 1.68)(-14$ $\text { 5) }(\mathrm{n}=8)$ | $5( \pm 0)(\mathrm{n}=8)$ |
|  | LD-1157864 | Sweden | mouse grey | $\begin{aligned} & (0.45-) 0.89( \pm 0.38)(-1.31) \\ & (\mathrm{n}=6) \end{aligned}$ | $\begin{aligned} & (0.50-) 1.03( \pm 0.3)(-1.44) \\ & (\mathrm{n}=6) \end{aligned}$ |  | $124(\mathrm{n}=1)$ | $31(\mathrm{n}=1)$ | $10( \pm 0)(\mathrm{n}=5)$ | $\begin{aligned} & (4.5-) 4.8( \pm 0.27)(-5) \\ & (\mathrm{n}=5) \end{aligned}$ |

Table 3. List of voucher specimens with their collection details and GenBank Accession numbers, in addition to included sequences from GenBank. Newly generated sequences are indicated in bold.

| Species | Variety | Country | Substrate | Collection/Accession number | GenBank Accesion Number |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | mtSSU | ITS | LSU |
| Candelariella vitellina |  |  |  |  | AY853315 | AJ640085 | AY853363 |
| Fuscidea austera |  | Scotland | siliceous rock | MSC0050558 | KY874033 | KY874026 | KY874045 |
| Fuscidea austera |  | Norway |  | E. Timdal 4177 | KJ766395 | - | KJ766719 |
| Fuscidea australis | australis | Tasmania | Banksia marginata | HO:546743 | KY874034 | KY874022 | KY874044 |
| Fuscidea cyathoides | cyathoides | Czech Rep. | siliceous rock | J. Malíček 4866 | - | KY874017 | - |
|  | cyathoides | Norway | siliceous rock | BG-L-96931 | KY874030 | KY874018 | KY874038 |
|  | cyathoides | Norway | siliceous rock | BG-L-96933 | - | KY874011 | - |
|  | cyathoides | Norway |  | R. Haugan 1389 | KJ766396 | - | KJ766563 |
|  | cyathoides | Rep. of Ireland | boulders | Z. Palice 7903 | - | KY874012 | - |
|  | cyathoides | Sweden |  | G. Thor 18066 | EF659761 | - | - |
|  | cyathoides | Sweden |  | G. Thor 18061 | EF659763 | - | - |
| Fuscidea cyathoides | corticola | Norway | Betula pubescens | BG-L-89616 | KY874027 | KY874015 | KY874037 |
|  | corticola | Norway | Betula pubescens | BG-L-89638 | - | KY874014 | - |
|  | corticola | Slovakia | Fagus sylvatica | J. Malíček 6488 | - | KY874016 | KY874039 |
|  | corticola | Slovakia | Fagus sylvatica | J. Vondrák 11397 | KY874028 | KY874019 | - |
|  | corticola | Slovakia | Acer pseudoplatanus | J. Vondrák 11411 | - | KY874021 | - |
| Fuscidea cyathoides | sorediata | Norway | siliceous rock | BG-L-99902 | KY874029 | KY874013 | KY874046 |
| Fuscidea elixii |  | New South Wales | Acacia melanoxylon | HO:559235 | KY874035 | KY874020 | KY874043 |
| Fuscidea gothoburgensis |  | Norway | siliceous rock | BG-L-100245 | KY874036 | KY874024 | KY874042 |
| Fuscidea kochiana |  | Norway | siliceous rock | BG-L-96940 | KY874031 | KY874023 | KY874041 |
| Fuscidea pusilla |  | Norway | Betula sp. | BG-L-96938 | KY874032 | KY874025 | KY874040 |
| Fuscidea pusilla |  | Sweden |  | G. Thor 18063a | EF659765 | - | - |
| Fuscidea pusilla |  | Sweden |  | G. Thor 18058 | EF659767 | - | - |
| Fuscidea stiriaca |  | France |  | A. Aptroot 55063 | EF659762 | - | - |
| Umbilicaria proboscidea |  |  |  |  | AY300920 | FR799304 | AY300870 |
| Umbilicaria crustulosa |  |  |  |  | AY300919 | HM161499 | HM161591 |

## Appendix A: Supplementary material

Table S1. Infraspecific taxa of Fuscidea cyathoides (as Lecidea rivulosa Ach.) according to Magnusson (1925).

| $F$. cyathoides var. cyathoides (as Lecidea rivulosa Ach.) | Thallus | Apothecia | Habitat |
| :---: | :---: | :---: | :---: |
| f. lobaluta Nyl. <br> f. depressa Leight. | thick, with convex areoles areolate-rimose, areoles flat or subtly concave | up to 2 mm , margin lobate sessile | locality rich in nitrogen |
| f. obscurior Cromb. | areolate-rimose, dark grey with brownish-black hypothallus | sessile |  |
| f. depauperata Leight. <br> f. falsaria Ach. | thin and fading, hypothallus blackish thick with verrucose areoles, greyishbrown | sessile |  |
| f. cyathoides Ach. | rimose, whitish-grey | sessile, concave, flexuous with thin greyish pruina | very shaded |
| f. sylvatica Anzi. | smooth or finely rimose-areolate, whitish or greyish when fresh, intersecting hypothalline lines visible | rare, sessile, small | shaded |
| var. infuscata H. Magn. | thick, cracky with plane areoles, dark brown | appressed, only slightly rising above thallus, usually flat | in open situation along the coast |

Table S2. Calculated likelihood parameters of individual data sets of the MCMC analysis. The values indicate the mean and, in brackets, the variance.

| Parameters | mtSSU | LSU | ITS1 | 5.8 S | ITS2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency A | $0.3317(0.0002)$ | $0.2553(0.0002)$ |  | $0.1852(0.0006)$ |  |
| Frequency C | $0.1521(0.0001)$ | $0.2272(0.0001)$ |  | $0.2965(0.0009)$ |  |
| Frequency G | $0.2118(0.0002)$ | $0.2980(0.0002)$ |  | $0.2836(0.0009)$ |  |
| Frequency T | $0.3045(0.0002)$ | $0.2196(0.0001)$ |  | $0.2347(0.0007)$ |  |
| Gamma shape (G) | $0.2740(0.0016)$ | $1.7940(1.3397)$ | $0.2411(0.0045)$ | $0.3632(0.0105)$ |  |
| Proportion of invariant sites (I) |  | $0.6428(0.0007)$ |  |  |  |
| R-matrix [A-C] | $0.1071(0.0006)$ | $0.06532(0.0002)$ | $0.1387(0.0009)$ |  |  |
| R-matrix [A-G] | $0.2934(0.0018)$ | $0.1732(0.0007)$ | $0.1976(0.0011)$ |  |  |
| R-matrix [A-T] | $0.0968(0.0004)$ | $0.0499(0.0002)$ | $0.1057(0.0007)$ |  |  |
| R-matrix [C-G] | $0.1518(0.0002)$ | $0.0476(0.0001)$ | $0.0670(0.0005)$ |  |  |
| R-matrix [C-T] | $0.3765(0.0022)$ | $0.5986(0.0014)$ | $0.4490(0.0016)$ |  |  |
| R-matrix [G-T] | $0.1111(0.0005)$ | $0.0654(0.0002)$ | $0.0501(0.0004)$ |  | $3.9198(0.4114)$ |
| Kappa (K) |  |  |  |  |  |

