
 1 

A Multilevel Scheme for the Travelling Salesman Problem 
 

Øystein M. Hjertenes 
University of Bergen 2002 

 
 



 2 

 
 
Preface: 
 
I would like to thank my tutors Fredrik Manne and Noureddine Bhoumala for support and 
help. I would also like to thank my girlfriend Line Carlsen for her support and patience, 
and Per Otto Hjertenes for his assistance in proofreading my texts. 
 
This text is about the Travelling Salesman Problem. An observant reader would already 
now have discovered that I am using travelling instead of traveling. This spelling 
difference comes from the subtle differences between U.K English and U.S English. If 
you are interested in more facts about the name travelling and traveling confusion I 
would like to refer to the following web site [29], or to [30] where it is also mentioned. 
The picture on the front page is by Applegate, Bixby, Chvátal, and Cook , and is 
collected from [31]. The picture shows the optimal tour of the tsp instance d15112 from 
TSPLIB [25], depicting the shortest tour to travel, if you want to visit all German cities. 
 
Ø. Hjertenes Bergen 2002.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3 

Contents: 
 

PREFACE:......................................................................................................................... 2 

CONTENTS:...................................................................................................................... 3 

CHAPTER 0 THE THESIS ............................................................................................. 7 

A Multilevel Scheme for the Travelling Salesman Problem................................... 7 
Solving the Thesis. .................................................................................................. 7 

CHAPTER 1 THE TRAVELLING SALESMAN PROBLEM .................................... 8 

1.1 HISTORY OF THE TRAVELLING SALESMAN PROBLEM ................................................. 9 
1.2 THE TRAVELLING SALESMAN PROBLEM TODAY ...................................................... 10 
1.3 DIFFERENT TYPES OF TRAVELLING SALESMAN PROBLEMS...................................... 11 
1.4 THE REASONS FOR STUDYING THE TSP ................................................................... 11 
1.5 REAL LIFE AND THE TSP.......................................................................................... 12 

A Case study: Circuit board construction and board cutting:............................ 12 
Genome sequencing .......................................................................................... 13 
Starlight Interferometer Program ...................................................................... 13 
Power Cables..................................................................................................... 13 
DNA Universal Strings ..................................................................................... 13 

CHAPTER 2 WORKING WITH AND TESTING SOLVERS FOR PROBLEMS IN 
NP...................................................................................................................................... 14 

2.1 THE TRAVELLING SALESMAN PROBLEM - A CHALLENGE TO WORK WITH. ............. 14 
Definition 2.1.1: P ............................................................................................. 14 
Definition 2.1.2:  NP ......................................................................................... 14 
Definition 2.1.3:  NP-Complete: ....................................................................... 15 

Proving the NP-Completeness of the Travelling Salesman Problem.................... 15 
2.2 WORKING WITH PROBLEMS THAT CANNOT BE SOLVED WITHIN REASONABLE TIME.
....................................................................................................................................... 16 

Approximation algorithms and heuristics ......................................................... 16 
2.3 HELD-KARP AND METHODS FOR TESTING THE QUALITY OF A SOLVER.................... 17 

The Held-Karp Lower Bound ............................................................................... 17 
Standard Test Instances......................................................................................... 18 

CHAPTER 3 ALGORITHMS AND HEURISTICS USED FOR SOLVING 
TRAVELLING SALESMAN......................................................................................... 19 

3.1 TOUR CONSTRUCTION HEURISTICS .......................................................................... 19 
3.1.1 Nearest Neighbour ........................................................................................... 19 
3.1.2 Greedy .............................................................................................................. 20 
3.1.3 Clarke Wright and Christofides ....................................................................... 20 

3.2 LOCAL SEARCH HEURISTICS AND ALGORITHMS....................................................... 20 
3.2.1 2-Opt................................................................................................................. 21 
3.2.2 3-Opt................................................................................................................. 21 
3.2.4 K-Opt variants.................................................................................................. 22 
3.2.5 K-Opt for K>3.................................................................................................. 23 



 4 

3.3 BACKTRACKING-JUMP ............................................................................................. 24 
3.3.1 Tabu Search: .................................................................................................... 24 
3.3.2 Lin-Kernighan:................................................................................................. 25 
3.3.3 Simulated Annealing: ....................................................................................... 25 

3.4 OTHER METHODS ..................................................................................................... 26 

CHAPTER 4 THE MULTILEVEL SCHEME:........................................................... 27 

4.1 THE GENERIC MULTILEVEL SCHEME ....................................................................... 27 
The Benefits produced by the MLS structure for Optimisation Problems........ 27 

Presenting the Generic Multilevel Scheme ........................................................... 28 
4.2 ADAPTING THE MULTILEVEL SCHEME FOR THE TRAVELLING SALESMAN PROBLEM 29 

The Coarsening Step ............................................................................................. 29 
The Initialization Step ........................................................................................... 30 
The Refinement Step............................................................................................. 31 
The Extension Step................................................................................................ 31 
Direct Coarsening versus Recursive Coarsening .................................................. 32 

4.3 THE ELEMENTS THAT NEEDS TO BE DECIDED AND DEVELOPED IN OUR STUDY OF THE 
MLS FOR THE TSP:........................................................................................................ 32 

CHAPTER 5. THE MULTILEVEL SCHEME FOR THE TRAVELLING 
SALESMAN PROBLEM ............................................................................................... 33 

5.1 INTRODUCTION......................................................................................................... 33 
5.1.1 Notation............................................................................................................ 33 
5.1.2 Merging and Extraction of Clusters................................................................. 33 

5.2 THE RECURSIVE AND DIRECT MULTILEVEL SCHEME ............................................... 34 
5.2.1 The Recursive Multilevel Scheme..................................................................... 34 
5.2.2 The Direct Multilevel Scheme .......................................................................... 36 

5.3 COARSENING ............................................................................................................ 38 
5.3.1 Recursive Coarsening: ..................................................................................... 38 
5.3.2. Direct Coarsening:.......................................................................................... 40 
5.3.3 Selection ........................................................................................................... 41 

Random ................................................................................................................. 41 
Nearest Neighbour................................................................................................. 42 
Greedy ................................................................................................................... 42 
Max Min................................................................................................................ 44 
Square.................................................................................................................... 45 
Radius.................................................................................................................... 46 

5.4 INITIALIZE ................................................................................................................ 47 
5.5 EXTENSION AND EXTRACTION HEURISTICS.............................................................. 47 

Edge insertion: .......................................................................................................... 49 
Random ................................................................................................................. 49 
BEST-FIT.............................................................................................................. 49 

5.6 REFINEMENT ............................................................................................................ 50 
5.6.1 Simulated Annealing Generally ....................................................................... 50 
5.6.2 S.A Adaptations to the Multilevel Scheme........................................................ 53 

Optimisations: ................................................................................................... 53 
5.6.3 S.A Permutations.............................................................................................. 53 



 5 

5.7 COMPARING OUR SCHEME WITH CHRIS WALSHAWS SCHEME. ................................ 54 

CHAPTER 6 EXPERIMENTAL RESULTS ............................................................... 54 

6.0 STARTING THE EXPERIMENTS................................................................................... 54 
System settings:..................................................................................................... 54 
The Parameters...................................................................................................... 55 
Search length ......................................................................................................... 55 
Refinement ............................................................................................................ 55 
Temperature decrement factor .............................................................................. 55 
Chance of accepting move at start......................................................................... 55 
Selection Method................................................................................................... 55 
Method of extraction ............................................................................................. 55 

6.1 EFFECT OF DIFFERENT EXTRACTION METHODS ON THE EXTENSION STEP ............... 56 
6.2 COARSENING SIZE FOR RECURSIVE COARSENING .................................................... 57 
6.3 COMPARING THE DIFFERENT METHODS OF SELECTION FOR RECURSIVE COARSENING
....................................................................................................................................... 58 
6.4 COMPARING THE DIFFERENCE BETWEEN THE METHODS OF DIRECT COARSENING. . 61 
6.5 COMPARING THE DIFFERENCE BETWEEN DIRECT AND RECURSIVE COARSENING .... 63 
6.6 SIMULATED ANNEALING ADAPTATIONS .................................................................. 64 

6.6.1 The Length of the Search Path ......................................................................... 64 
6.6.2 The Probability of Accepting Moves and the Temperature Decrement ........... 66 

The Probability of Accepting Moves. ................................................................... 66 
The Temperature Decrement................................................................................. 66 

6.6.3 Comparing the Different Methods of Permutation .......................................... 67 
6.7 REFERENCE RESULTS ............................................................................................... 69 

Comparing the Results with Multi Level Linn Kernighan(skriv om ?) ................ 72 

CHAPTER 7 CONCLUDING THE EXPERIMENTS................................................ 72 

7.1 AN OVERVIEW OF THE EXPERIMENTS ...................................................................... 72 
7.2 THE QUALITY GAP BETWEEN DIRECT AND RECURSIVE COARSENING ...................... 72 
7.3 THE METHOD OF EXTRACTION IS IMPORTANT.......................................................... 73 
7.4 THE BEST SELECTION METHOD WAS GREEDY ......................................................... 73 
7.5 THE SIMULATED ANNEALING ADAPTATION:............................................................ 73 

CHAPTER 8 CONCLUDING THE THESIS............................................................... 74 

REFERENCES:............................................................................................................... 75 

APPENDIX 1 METHODS USED IN DETAIL ............................................................ 78 

Distance calculating between two cities (clusters) ................................................... 78 
Length of Tour calculation........................................................................................ 79 
Nearest Neighbour coarsening.................................................................................. 80 
Greedy coarsening .................................................................................................... 81 
Max Min coarsening.................................................................................................. 82 
Square coarsening..................................................................................................... 83 
Radius coarsening ..................................................................................................... 84 
Random coarsening................................................................................................... 85 
Random Extension..................................................................................................... 86 



 6 

Best Fit Extension...................................................................................................... 87 
Exchange permute ..................................................................................................... 88 
2.5-Opt....................................................................................................................... 88 
2-Opt permute ........................................................................................................... 89 
3.3.2.5 3-Opt permute ............................................................................................... 89 

APPENDIX 2 RESULT TABLE.................................................................................... 90 

APPENDIX 3 TSPLIB.................................................................................................... 91 

APPENDIX 4 FURTHER RESEARCH POSSIBILITIES ......................................... 92 

Other Refinement Methods........................................................................................ 92 
The Extension Step and The coarsening Step............................................................ 92 
Another ML-Structure ............................................................................................... 92 

APPENDIX 5 LIST OF ABBREVIATIONS................................................................ 93 

APPENDIX 6 ABSTRACT ............................................................................................ 93 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 7 

 
 
Chapter 0 The Thesis 
 
A Multilevel Scheme for the Travelling Salesman Problem 
 
The Travelling Salesman Problem (TSP) is one of the most famous combinatorial 
problems of all time. A salesman visits N cities with given positions and returns finally to 
his city of origin. Each city is to be visited only once, and the problem is to find the 
shortest possible route. This problem belongs to a class known as NP-complete problems.  
 In this thesis, we aim at introducing a Multilevel scheme for finding good solutions for 
large graphs. The Multilevel Scheme works as follows: A sequence of smaller graphs is 
obtained from the original graphs using a coarsening procedure. Thereafter, an 
approximate solution to the problem is computed on the coarse graph. This solution is 
then projected back towards the original graph, by periodically proceeding with an 
improvement phase using a combinatorial optimisation technique such as the Simulated 
Annealing method. The objective of the project is to study the impact of different 
coarsening schemes on the quality of the final solution, and develop a structure for the 
Multilevel scheme for TSP. 
 
 
Solving the Thesis. 
 
It is necessary to demonstrate that the Multilevel Scheme (MLS) can be adapted to a TSP 
environment. Then it is possible to study the impact of different coarsening schemes on 
the solution quality. To solve these problems, we plan to study the field of approximation 
heuristics and algorithms for TSP. We will look for schemes and structures in that theory 
which can benefit us in the creation of the MLS. A clear picture of current use of TSP-
solvers also needs to be developed. We will also study techniques for testing the quality 
of the heuristics we develop. 
From this research we plan to develop and test different Multilevel Schemes. 
To study and compare the different schemes we propose, we plan to implement them. 
The solutions the implemented MLS produces will be used to compare them and to locate 
a best possible combination.  
 
In this paper an introduction to the Travelling Salesman Problem will be present first. 
Then we are going to present an overview of the methods for solving TSP. 
When enough material has been presented to give the reader an understanding of the 
methods for solving the TSP. Is it possible for us to give a detailed presentation of the 
Multilevel Scheme, and our approach to it.  
 
The last part of the paper is dedicated to testing the different adaptations and discussing 
the results found.  
 
 



 8 

 

Chapter 1 The Travelling Salesman Problem  
 
 The object of this chapter is to give an overview of the Travelling Salesman Problem and 
why it is so interesting to work with. The history of the problem will be presented, and 
why it is so important to work with solvers for the Travelling Salesman problem will be 
discussed.    
 
The Travelling Salesman Problem (TSP) is one of the most studied optimisation problem 
today. TSP is still a case for intensive studies in many fields; one of the reasons for this is 
that TSP is a NP-complete problem [2]. In The field of algorithms there are many 
classifications of problems, two of the most important ones are the classes of P and NP. If 
a problem is in P, it is reckoned that the problem is possible to solve on regular 
computers within reasonable time. If it is classified as NP as a rule of tomb it is not 
possible to do so. 
 
 One important field of theoretical studies is if a problem classified to be in NP can be 
solved in such a way, that the two classes P and NP is equal to each other. In NP there 
exists a set of problems which is call NP-Complete. These problems have the property 
that if one of those problems can be classified to be in P, all other problems in NP are 
also in P. Since the TSP is NP-Complete, it is therefore interesting in both the field of 
theoretical studies of the problem P=NP VS P�NP, and in the field of approximation 
heuristics.  
 
To get an understanding of what the TSP is all about it is necessary to define and work 
with a clear the mathematical representation of the problem. 
 
Definition 1.1: The Travelling Salesman Problem: 
 
The general problem can be stated as the following: 
If we are given a set of cities {c1, c2, …  c N} and for each pair {ci, cj} of distinct cities the 
distance between them is d(ci, cj). If a line is drawn trough all the cities visiting each city 
only once, and end up where it started. The goal is the to find an ordering ��of the cities 
that minimizes the total length of that line. This creates a Hamiltonian cycle in the graph 
of cities.  
 
Stated more formal: 
 
Using the same notation, the mathematical expression is to minimize: 
  

N-1 �d(c� (i) ,c� (i+1) ) + d(c � (N), c � (1) ) [1] 
i=1 

 
This sum is called the tour length. For the general problem the object is to find one of the 
paths in the graph that has the shortest length. 



 9 

This gives us the possibility to formulate the formal language for TSP, which is: 
 
TSP = {(G,c,k) : G=(V,E) is a complete graph, 
                             c is a function from VxV Æ Z, 
                             k ∈ Z, and  
       G has a Travelling Salesman tour with cost at most k}.  [2] 
 
This problem is NP-complete [2].  
If the P�NP holds, we need a different problems solving approach to solve problems that 
are classified to be in NP, then the more direct methods that can be used for solving 
problems classified to be in P. In Chapter 2.1 this problem is presented in more detail, 
and the implications are discussed. 
 
 
1.1 History of the Travelling Salesman Problem 
 
An Irish mathematician sir W. R. Hamilton and the English mathematician T. P. Kirkman 
already treated mathematical problems related to the TSP in the 1800’s. This work 
resulted in for example the famous game Icosian by Hamilton. Icosian is the problem of 
finding a Hamiltonian cycle along the edges of a dodecahedron. I.e. a path such that 
every vertex is visited a single time, no edge is visited twice, and the ending point is the 
same as the starting point [3], a game which clearly is not far away from the TSP 
formulation.  
   
K. Menger [4] seems to be the first Mathematician to write about the general TSP.  He 
showed that the Nearest Neighbour solver was not able to produce the optimal solution of 
the problem, so he was also one of the first researchers to discuss the hardness of TSP. 
The first mathematical results of TSP were published in 1940 when TSP solvers first 
were used as a tool for real life problems. The task was to solve the school buss routing 
of West Virginia, by Flood [4]. Flood was also involved in the development of other 
practical uses of TSP solvers in for instance machine scheduling.  
 
Because of factors as algorithmic improvement and hardware improvements over the 
years, the largest know map with a known optimal solution has grown a lot since the 
1950’s when the problem was first solved on computers.  
 
 
 
 
 
 
 
 
 
 
 



 10 

Table 1.1 Presented here is a list of historical benchmarks from [5]:  
 
 

Year Research Team Size of Instance 

1954 G. Dantzig, R. Fulkerson, and S. 
Johnson 49 cities 

1971 M. Held and R.M. Karp 64 cities 

1975 P.M. Camerini, L. Fratta, and F. 
Maffioli 100 cities 

1977 M. Grötschel 120 cities 

1980 H. Crowder and M.W. Padberg 318 cities 

1987 M. Padberg and G. Rinaldi 532 cities 

1987 M. Grötschel and O. Holland 666 cities 

1987 M. Padberg and G. Rinaldi 2,392 cities 

1994 D. Applegate, R. Bixby, V. Chvátal, 
and W. Cook 7,397 cities 

1998 D. Applegate, R. Bixby, V. Chvátal, 
and W. Cook 13,509 cities 

2001 D. Applegate, R. Bixby, V. Chvátal, 
and W. Cook 15,112 cities 

 
As one can see the possibilities given us by increased computer power, and the 
development of new solving techniques, has lead an increase in the size of the problem 
solved optimality over the past years.  
 
 The problems listed in the above table are all in the form of euclidian TSP. 
This is a special case of the TSP but is still NP-complete see Chapter 2.1. 
 
 
1.2 The Travelling Salesman Problem Today 
 
Today, because of the ever-expanding computer capabilities in speed and memory, 
problems with less than 100 cities can be solved to optimality within reasonable time. 
These problems can of course not be solved with just brute force enumeration and 
distance checking. For the 16-city Travelling Salesman Problem, the problem of Homer's 
Ulysses attempting to visit the cities described in The Odyssey exactly once, there are 
653,837,184,000 distinct routes! [6]. Enumerating all such roundtrips to find the shortest 
one, took 92 hours on a powerful workstation.  By applying test criterions on the fitness 
of solutions, most routes do not have to be checked, and provide us with a tool to solve 
Travelling Salesman Problems directly. But unless P=NP proves to hold, a question 
which by now looks more likely to be P�NP. No polynomial time algorithm is going to 
be discovered for the TSP. Therefore it is in the field of approximation algorithms and 



 11 

heuristics there will be improvements in the future.  Today several teams have done 
approximations on problems with up to a million cities and getting reasonable results [7]. 
The goals for future research on the TSP must be to optimise existing schemes, and 
exploring the more general algorithms and heuristics, to bring fort success as in the 
Travelling Salesman Problem for other fields of optimisation. 
 
 
 
1.3 Different Types of Travelling Salesman Problems. 
 
In the field of research on the TSP, there are three main versions of TSP studied. The 
type of problem depends on how the input function is given: Euclidian symmetric or 
asymmetric, or random distance matrixes. The term euclidian comes from the 
representation of each city and the distance of the edges between them. Instead of 
representing the graph with weighted edges the problem is given as points in the 2-D 
plane (This can be generalized to problems in K-D for K>2). In order to calculate the 
distance between points, the euclidian distance formula for points in the plane is used. A 
euclidian problem is symmetric because the distance satisfies d(ci, cj) == d(cj, ci). If a 
problem is asymmetric this equality does not hold. Asymmetric problems studied today 
are usually a euclidian problem, but with an edge weight in addition on the direction of 
the travel.  Problem-sets where the euclidian distance formula does not hold are called 
random distance matrix problems. The problem type used by most researchers interested 
in approximation is the symmetric euclidian TSP. There are many reasons for this; one of 
the main reasons is that distance can be easily checked. Because it is bi-directional it also 
saves the programmers a lot of work treating with special cases. This allows for more 
focus on the development of general heuristics for solving the problem.  
 
1.4 The Reasons for Studying the TSP  
 
Most importantly, the TSP often comes up as a sub-problem in more complex 
combinatorial problems. It is also very easy to explain and state, but it is intriguingly 
hard. This has resulted in that the TSP has become one of the main tools in the study of 
the “P=NP?” problem. Since TSP is so hard and has a lot of real life applications, the 
field of approximation algorithms and heuristics has bloomed with solvers for the TSP 
problem. The field has had an enormous expansion since the Nearest Neighbour heuristic 
where studied by K. Menger[4]. As the field is so large, experience can be drawn from a 
lot of sources. These sources are one of the important reasons why the TSP is now one of 
the main test cases for general optimisation techniques. 
 
 
 
 



 12 

 
 
1.5 Real Life and the TSP 
 
 
The most fascinating part of the TSP problem is that it often arises in real life problems. 
This is one of the main reasons for the huge interest in the TSP, and hence the field of 
real life applications for the TSP deserves a closer look. 

The TSP naturally arises as a sub problem in many transportation and logistics 
applications. For example the problem of arranging school bus routes to pick up the 
children in a school district.  This bus application is of important historical significance to 
the TSP, since it provided motivation for Merrill Flood, one of the pioneers of TSP 
research in the 1940s[4].  A second TSP application from the 1940s involved the 
transportation of farming equipment from one location to another to test soil, leading to 
mathematical studies in Bengal by P. C. Mahalanobis and in Iowa by R. J. Jessen[4].   
More recent applications involve the scheduling of service calls at cable firms, the 
delivery of meals to homebound persons, the scheduling of stacker cranes in 
warehouses, the routing of trucks for parcel post pickup, and a host of others.  

Increasing the efficiency of processes is of great concern for many industries. It is in this 
field many commercial applications for a TSP solver can be found. In industry there are a 
lot of processes involving the time-consuming task of moving items and steering of 
machinery, which is where a good TSP solver can be used to increase the efficiency. 
 
 A Case study: Circuit board construction and board cutting: 

 
This industrial process involves a computer-operated machine moving over the 2-D plane 
adding or cutting parts to or from a flat board. In this process the points where a machine 
shall operate on the board is plotted as positions in a computer. The computer then has 
the responsibility of steering the head over the board to the coordinates, performing a set 
of tasks then returning and a new board is inserted in to the machine. This process is 
often repeated a large number of times.  Each board often has more than 100 operations 
done to it in different places. A typical example is the process of punching holes in a 
board for component placement. The route the head of the machine travels over the board 
can then be visualized as a euclidian Travelling Salesman Problem by setting the 
coordinates on the board as cities and the TSP tour as the route for the machine to move 
over the board. A cut in operating time of only 5% is a huge savings cut for a factory, and 
therefore a TSP solver used to calculate the paths for this problem is interesting.  A real 
life example where this is put in use is at the Metelco circuit board manufacturer where 
the machine drills 500 holes in each board. Before they used a TSP solver this process 
took one hour. By using the TSP algorithm this number increased to 4800 holes per hour, 
and the overall factory output increased by 10% [8].  For a factory this is a substantial 
increase in production.  



 13 

Many other fields, both in industrial and within science have found TSP like problems in 
their field of work. Here are some examples:  

Genome sequencing  

Researchers at the National Institute of Health in USA have used a TSP solver to 
construct radiation hybrid maps as part of their ongoing work in genome sequencing.   
The TSP provides a way to integrate local maps into a single radiation hybrid map for a 
genome; the cities are the local maps and the cost of travel is a measure of the likelihood 
that one local map immediately follows another [10]. 

Starlight Interferometer Program 

A team of engineers at Hernandez Engineering in Houston and at Brigham Young 
University have experimented on using Lin-Kernighan to optimise the sequence of 
celestial objects to be imaged in the proposed NASA Starlight space interferometer 
program.  The goal of the study is to minimize the use of fuel in targeting and imaging 
manoeuvres for the pair of satellites involved in the mission (the cities in the TSP are the 
celestial objects to be imaged, and the cost of travel is the amount of fuel needed to 
reposition the two satellites from one image to the next) [11]. 
 
Power Cables 

  
TSP has been used to locate cable placement to deliver power to electronic devices 
associated with fibre optic connections to homes [12]. 
 
DNA Universal Strings 

 
A group at AT&T used a TSP solver to compute DNA sequences in a genetic engineering 
research project.  In the application, a collection of DNA strings, each of length K, were 
embedded in one universal string (that is, each of the target strings is contained as a sub-
string in the universal string), with the goal of minimizing the length of the universal 
string.  The cities of the TSP are the target strings, and the cost of travel is K minus the 
maximum overlap of the corresponding strings [13].  
 
 
 
Concluding this chapter we have seen that the Travelling Salesman Problem has been 
subject for intensive research over the past decades. There has been a brief presentation 
of the importance of finding solvers for the TSP. Since the TSP and other problems in NP 
cannot be solved easily, in the next chapter there will be discussed how to handle a 
problem that cannot be solved within reasonable time. 
 
 
 



 14 

 

Chapter 2 Working With and Testing Solvers for 
Problems in NP 
 
The object of this chapter is to discuss the implication a classification as a problem in NP 
has for solving and testing that problem.   
 
Starting by presenting the complexity classes of P and NP, and the importance of NP-
Complete problems. Then it is shown where the Travelling Salesman Problem fits in to 
the picture and presented methods for solving problems in NP. In the last section there 
will be a discussion on testing the quality of solvers for the Travelling Salesman Problem.   
 
 
 
2.1 The Travelling Salesman Problem - a Challenge to Work 
With. 
 
 
The Travelling Salesman Problem is as previously stated NP-Complete.  
To clarify this a few definitions needs to be presented. 
 
Definition 2.1.1: P 

 
P is the complexity class of problems that can be solved in polynomial time on a single 
tape deterministic Turing machine [9], [24].  
If a problem is in P, as a rule of thumb it can be solved within reasonable time on 
computers existing today. Typical problems of this class are for example sorting 
problems.  
 
 
Definition 2.1.2:  NP 

 
NP is the complexity class of decision problems, for which answers can be checked by an 
algorithm whit a running time polynomial in the size of the input. Note that this doesn't 
require or imply that an answer can be found quickly, only that any claimed solution 
could be verified (or refused) quickly. NP is the class of problems that a non-
deterministic Turing machine accepts in polynomial time [9], [24]. 
If a problem is in NP it has an exponential running time on an ordinary computer and is 
therefore in most cases not solvable within reasonable time.  
 



 15 

 

 

Definition 2.1.3:  NP-Complete: 

 
This is the complexity class of decision problems for which answers can be checked for 
correctness, given a certificate by an algorithm whose running time is polynomial in the 
size of the input (that is, it is NP) and that no other NP problem is more than a 
polynomial factor harder [9], [24].  
Informally, a problem is NP-complete if answers can be verified quickly, and if there 
exist a polynomial time algorithm to solve a NP-Complete problem.  
All other problems in NP can be solved in polynomial time. If a problem is NP-complete, 
as for NP it cannot as a rule of tomb be solved within reasonable time on computers 
existing today.  
 
 
The consequences 
  
This implies that if a problem is NP-Complete there is no polynomial time algorithm for 
it unless P=NP. But this has not been proved yet, and it looks like that probably P ��13��
If it was possible to find a polynomial time algorithm for an NP-Complete problem, then 
could by definition 2.1.3 all NP-Complete problems solved in polynomial time and P 
would equal NP. But since that question is not proven yet, it is not possible to say there 
will be such a discovery or there will not be such a discovery. 
However it looks like those classes is not equal, and this is where research in this field 
stand at the moment [24]. Therefore it is not likely to exist a polynomial time algorithm 
for NP-Complete problems. That means if TSP is NP-Complete there is no known 
polynomial time algorithm for it, in fact it is O(N!) where N is the number of cities. 
 
Proving the NP-Completeness of the Travelling Salesman Problem 
 
The proof of the NP-Completeness of the general Travelling Salesman Problem stated in 
definition 1.1 is a classic in the textbooks for the field of algorithmic complexity [2]. This 
paper is mainly dealing with the euclidian version of the TSP explained in Chapter 1.3 It 
is therefore of importance that the euclidian TSP is also NP-Complete. 
C. H. Papadimitriou [15] presented the proof for the NP-Completeness of the euclidian 
TSP problem. Therefore is the current problem NP-Complete, and the following can be 
assumed:   
 
Solving TSP accurate is not feasible because of the exponential factor O(N!), where N is 
the number of cities. The running times just for solving small instances is enormous, a 
30-city tour would be more than 2.65*1032 operations.  
 



 16 

2.2 Working with Problems that cannot be Solved Within 
Reasonable Time. 
 
Since the task of solving the TSP accurately is not feasible, to get a solution for a TSP 
problem you could either focus on only small instances, or look for an approximate 
solution within polynomial time. If you choose to focus only on small instances, you will 
loose the possibility to solve many interesting problems. One of the reasons for the 
interest in the TSP is that it often is a part of another problem that can be solved by using 
a TSP solver. Solving small problems of this type is not often enough since large 
instances of the TSP problem is related to many industrial and scientific modelling tasks. 
Another method for solving problems in NP is to find an approximation for the solution.  
 

Approximation algorithms and heuristics 

 
An approximation algorithm finds a near optimal solution to a given optimisation 
problem, where the solution is never worse than a proven ration. 
This ratio is a function of the closeness to the solution [24]. 
 
 There are two types of approximation algorithms: Maximization and Minimization 
problems. The goal for an approximation algorithm for the TSP problem is to find the 
shortest possible route in the graph. Hence TSP is an example of a Minimization 
algorithm. The quality of an approximation algorithm can be proven, so by using an 
approximation algorithm it is possible to guarantee a bound on the solution for such 
problems.  
 
When a method cannot be proven to return a result within a specific ratio it is called a 
heuristic. The fact that heuristics does not have a worst-case boundary, does not mean it 
is weaker then the approximation algorithms [1].  
 
An approximation heuristics is a method for problem solving that finds a near optimal 
solution to a given optimisation problem, where there are no bound on the quality of the 
solution produced. 
 
For the TSP there are two common types of approximation heuristics: growing and 
refining. 
 
Growing methods works by constructing a tour from an unordered collection of cities so 
that the length of the tour is minimized. An example of such a method is a tour 
construction heuristic.  
 
 
 
 
 



 17 

A refining method takes a pre-made tour and refines its quality. The process of creating 
tours is easy. For example for an euclidian instance it can be done in O(N) time by 
picking a start vertex then adding each vertex to the tour in a random order ensuring that 
no vertex is added more than once. The refinement steps then reorder the tour in such a 
way that the length of the tour is minimized. An example of such a method is local search 
heuristics. 
 
The method for comparing the quality of an approximation algorithm is to give a proof 
for it is worst-case performance. For heuristics that possibility does not exists and you 
must therefore look at other methods for comparing the effect of the different heuristics. 
The usual method is to compare how close the solution produced by the heuristic on 
average, is to the actual solution. This can be a problem as for most cases, the optimal 
solution is not known.  
 
2.3 Held-Karp and Methods for Testing the Quality of a Solver 
 
 
The Held-Karp Lower Bound  
 
 
When evaluating the performance of a TSP heuristics, we are often not allowed the 
luxury of comparing the results with the precise optimal tour length. Since for large 
instances, typically the optimal tour length is not known. As a consequence, when 
studying large instances it has become the practice to compare the heuristics results to 
something which is possible to compute: The lower bound on the optimal tour length the 
so called Held-Karp lower bound [14]. The Held Karp bound is defined as the solution to 
the standard linear programming relaxation of the TSP [14]. For instances of moderate 
size it can be computed exactly using linear programming. For larger instances there is a 
problem because the number of constraints in the linear program is exponential in N 
where N is the size of the input. Instead a more practical approach is used to solve a 
sequence of restricted linear programs, each involving only a subset of the constraints, 
and to use a separation subroutine to identify violated constraints that need to be included 
in the next linear program. Using the simplex program developed by Applegate, Bixby, 
Chv’atal, and Cook exact values for the bound have been computed in this way for 
instances as large as 33,810 cities [14.] For larger instances, you have to settle for an 
approximation to the Held-Karp bound computed by an iterative te chnique proposed in 
the original Held-Karp papers [1].  
More important is that the Held-Karp bound appears to provide a consistently good 
approximation to the optimal tour length. From a worst case point of view, the Held-Karp 
bound can never be smaller than (2/3)OPT(Tour), assuming the triangle inequality [14]. 
In practice, it is typically far better than this. 
 
 
 
 



 18 

Standard Test Instances 
 
When experimental results are discussed in this paper, the problems are symmetric 
euclidian. Many of the applications of the symmetric TSP are of this sort, and most recent 
published studies have concentrated on them [1], using two main sources of such 
instances. 
 
The first source consists simply of randomly generated instances, where the cities have 
their locations chosen uniformly in the unit square, with distances computed under the 
Euclidean metric. The second source is a database of instances called TSPLIB collected 
by Gerhard Reinelt [25] and is available via anonymous ftp from softlib.rice.edu. The 
problem set can also be downloaded from a range of different web sites. 
TSPLIB contains instances with as many as 85,900 cities. Included in the collection are 
many instances from printed circuit board and VLSI applications as from the real life 
example in Chapter 1.5. The collection also includes geographical instances based on real 
cities, for example the figure on the front-page of this paper depicting the optimal tour of 
a graph with 15112 cities in Germany. For this package the Held Karp-lower bound is 
estimated for all instances and for most of the instances the optimal tour length is also 
known. 
The question then remains if this library of test instances is so diversified that it can be 
used as a reliable source for testing TSP-heuristics. D.Johnson [1] shows that results 
where random instances are used as method for comparison are consistent with results 
where the TSPLIB package is used. Therefore it is no need to use randomly generated 
sources for testing TSP-heuristics.  
 
Many papers covering geometric instances of the above two types, do not use the 
Held-Karp bound as their standard for comparison. Researchers dealing with TSPLIB 
instances, often restrict attention to those for which optimal solutions are known, 
comparing their results to the optimal tour lengths. Fortunately, the exact Held-Karp 
bounds are known for all of these instances, so it is easy to translate from one sort of 
comparison to the other. The results from studies where Random Euclidean instances 
where they compare their results only to the estimates of expected optimal tour length are 
more difficult to deal with. D.Johnson [1] shows that many claims of closeness to 
optimality are too optimistic by 5% or more, and one have to reinterpret such claims for 
random generated instances.  
Thus the TSPLIB is the best test instances for testing the quality of the TSP heuristics.  
 
 
 



 19 

 
 
 
Chapter 3 Algorithms and Heuristics Used for Solving 
Travelling Salesman 
 
The object of this chapter is to present an overview of different strategies used to create 
solvers for the TSP. The object is also to present elements used later in the text for 
constructing the Multilevel Scheme, and to show how those elements relate to other 
developed strategies. 
 
TSP Solvers 
 
The work in the field of approximation heuristics for TSP has given us a large set of tools 
to find possible solutions for the TSP. In this chapter a few of the most used solvers is 
presented. There are four different classes of solvers used today: tour construction 
methods, local search methods, backtracking-jump methods, and specials. For each 
category will we present some of the popular methods used. The heuristics and 
algorithms are presented as sketches with details where it is needed.            
 
 
3.1 Tour Construction Heuristics 
 
A tour construction heuristic is a method that from an unordered collection of cities 
constructs a valid TSP tour. 
 
A tour construction heuristic is usually used to create input for local search heuristics.  
Most of them can in fact also be used as a fast way to create a reasonable tour.  Nearest 
Neighbour, one of the oldest mentioned was used as early as 1956 [16] for constructing 
tours for local search heuristics. It is a very easy method to implement and create tour 
quality on random euclidian sets with reasonable quality even for larger graph sizes [1]. 
There are many tour construction heuristics. Four interesting ones are presented here: 
Nearest Neighbour, Greedy, Clarke Wright and Christofides. 
 
3.1.1 Nearest Neighbour 
 
This method is a natural strategy for the TSP, because it mimics the way the travelling 
salesman selects a travel route. 
It selects a starting point and then always selects the nearest city to be added to the tour, it 
then “walks” to that city and repeats by choosing a new non-selected city, until all cities 
is in the tour. To complete the tour, an edge is added between the last selected city and 
the starting city. A general version of this heuristic has running time of�,�12 ) [1]. 
 



 20 

3.1.2 Greedy 
 
This heuristic works by growing a Hamiltonian cycle in the graph. 
The Hamiltonian cycle is grown, by first picking the shortest edge, and then the shortest 
edge available is added to the tour until all cities are included in the tour. An edge is 
available if adding the edge does not create a loop or a vertex with a degree higher then 
two, and it is not already a part of the tour. This process is repeated until all cities are part 
of the cycle and each node in the cycle has a degree of two. 
Greedy has a running time of  ,�12logN) a bit worse than Nearest Neighbour.[1] 
 
3.1.3 Clarke Wright and Christofides 
 
The two most specialized tour construction heuristics mentioned in this paper are Clarke-
Wright (CW) and Christofides.  CW is another greedy method that works by choosing a 
city and then connecting all cites to this city with two edges as if it was a hub. It 
constructs the tour by removing edges to the hub if it is easier to travel directly from one 
city to another then trough the hub. This is done until a legal tour is created; the running 
time for CW is the same as for Greedy [1].  
 
Christofides is the current champion of the tour construction heuristics but it has a far 
worse running time then the other tour construction heuristics and is not useful on large 
instances [1]. It works by first constructing a minimum spanning tree T for the set of 
cities, and then a minimum length matching M is done on the vertexes with odd degree in 
T. Combining M with T gives us a connected graph where every vertex has an even 
degree, this graph now holds an Euler tour [1] i.e. a cycle that passes through each edge 
exactly once. By first identifying the Euler tour, the TSP tour is then created by 
traversing the Euler tour. 
 
 
3.2 Local Search Heuristics and Algorithms 
 
 
A local search heuristic uses a strategy where solution is taken as input, and then the 
heuristic samples the solution-space by making simple tour modifications. If the new 
modified tours are an improvement, it continues to work on it. If it is not an 
improvement, the modified tour is discarded and the heuristic tries a new modification of 
the current best tour. 
 
Local search heuristics are specified in terms of a class of operations (exchanges or 
moves) that can be used to convert a tour into another.  
 
Given a tour, the heuristic then repeatedly performs operations from the given class, as 
long as each operation reduces the length of the current tour, this process is repeated until 
a tour is reached for which no operation yields an improvement (a local optimal tour). 
It is also an important fact that no local search heuristic can guarantee to make an 
improvement on the input tour [1]. 



 21 

 
Local search heuristics for the TSP were one of the first methods developed to produce a 
reasonable tour quality.  It includes many famous methods as for example the 2-Opt.    
 
3.2.1 2-Opt 
    
2-Opt is one of the first local search algorithms for TSP. Results regarding 2-Opt was 
published as early as 1956 [16], where it was used together with the Nearest Neighbour 
tour construction heuristic.  
 
2-Opt is a simple local search algorithm that works on the basis of doing small changes 
on the tour and then checking if the solution quality improves. 
The change part for 2-Opt is to delete two edges from the tour, creating two tour 
segments then reconnecting them in a new way so that it forms a correct tour. 
 
Figure 2.2.1 shows a 2-Opt move: 
 

 
 
 
  
The 2-Opt is run until a stopping criterion is found.  The stopping criterion is a test of the 
possibility to find a new improvement. 
  
 
3.2.2 3-Opt 
   
3-Opt is an algorithm not unlike 2-Opt, in 3-Opt instead of creating two tour-segments 
three tour segments are created by removing three edges form the tour. This allows for a 
new element to be added to the method, it is now possible to reconnect the tour segments 
in different ways. This gives 3-Opt the possibility to locate the best possible way to 
reconnect the tour. This checking is the reason for why 3-Opt is a bit slower then 2-Opt, 
but instead creates tours with higher quality than 2-Opt [1].  
 
 



 22 

Figure 3.2.2 shows possibilities for reconnecting after a 3-Opt split. 
 

 
 
 
Except for the difference in the splitting, the rest of 3-Opt works as the 2-Opt method. 
These two methods are in fact part of a family of methods called K-Opt. 
 
3.2.4 K-Opt variants 
 
In the K-Opt family there are method that lies between 2 and 3-Opt and also methods 
with K>3. Examples of both classes will be presented later in the text. 
 
Between 2- and 3-Opt 
 
The two methods usually found form this class in the literature are 2.5-Opt and Or-Opt. 
2.5-Opt created by Bentley [1] works by moving a city instead of deleting edges. It picks 
a city A from the tour.  The method then splits the tour in to two tour segments as in 2-
Opt, where two of the end points are the cities in the position before and after A and a 
split in another place of the tour, then it reconnects the tour in the best possible way as for 
3-Opt   
 
Figure 3.2.3 shows a possibility for reconnecting after a 2.5-Opt split. 
 

 
 
 



 23 

Another method in this class is Or-Opt created by Or[1].  
It works by removing a segment with three or fewer cities and then reconnecting the tour 
as for 2-Opt and adding the line segment between two random neighbour cities. 
 
3.2.5 K-Opt for K>3. 
 
2.5-Opt and Or-Opt are improvements of the 2-Opt method. Some fixed K-Opt, for K>3 
has been proposed as improvements of 3-Opt but Lin [1] showed that there was nearly no 
improvement to be found from these methods. 
If a method uses K>3 today, it is used a solver in a variable Opt method.  
 
There are also some methods that lie lower than 2-Opt in the K-Opt hierarchy. These 
methods are all restrictions on the 2-Opt method. An example of one these methods is the 
Exchange 2-Opt. In Exchange 2-Opt only neighbour cities are exchanged by moving a 
city in front of it is neighbour in the tour.  This restriction reduces the neighbourhood size 
to N where N is the number of cites from N*(N-2)/2 which is the neighbourhood size for 
regular 2-Opt [1]. In practice this restriction seems to be to hard and causes the heuristic 
to create weaker results then 2-Opt [1].   
 
Figure 3.2.4 shows a possibility for reconnecting after an Exchange-Opt split. 
 

 
 
There are also more recently developed local search heuristics.  For example Dynasearch 
by Potts and van de Velde[1] and GENI/GENIUS of Gendrau, Hertz an Laporte [1]. 
 
 Dynasearch works by doing a set of Opt moves combining them into a single overall 
move. This effect removes some redundancy from the general Opt strategy.  
 
GENI is a hybrid tour construction and local search strategy. It starts with a tour of 3 
cities, and then it proceeds with adding new cities to the tour by doing a 3-or 4-opt split. 
It then adds the new city to the endpoint of one of the line segments completing the 
move. Requiring that the edges added is within a neighbour list will help restricting the 
range of possible insertions, and cut down time for finding local minima. 
 



 24 

GENIUS is a local search method that works at the same principles as GENI. It searches 
the tour for likely candidates to be removed from the tour, removes them and inserts them 
again using the same method as GENI. 
  
3.3 Backtracking-Jump        
 
Motivated by the observation that not all locally optimal solutions needs to be good 
solutions, pure local search may not be the answer to the search for the best solvers. It 
might instead be desirable to modify a pure local search heuristics by providing some 
mechanism that helps us escape local optima and continue the search further.  
A method to do this is for example to give the heuristics the possibility to do reruns on a 
random generated tour with a local search heuristic storing the best results. This method 
does not utilize the fact that local optimums is usually clustered together [1], so instead of 
starting completely anew, a mechanism for climbing out of a local optima looking for a 
neighbouring one is needed. This idea led to the development of a group of methods, 
which utilizes the idea in different ways. 
The most important tool that heuristic development has given us is a possibility to allow 
us to make moves that do not improve the tour but may do so in the future.  
The improvement in these heuristics is that they allow us to do a series of moves and test 
if they lead us to an improvement. If the current search does not lead anywhere it is then 
possible to step back and start anew. The most studied method of this class is Lin-
Kernighan (LK)[1]. Tabu Search was one of the first algorithms utilizing this idea [1]. 
The third presented in this chapter is Simulated Annealing (S.A) a very general 
optimisation strategy used in many fields of optimisation [1].  
 
 
3.3.1 Tabu Search: 
 
Tabu search (TS), LK and S.A are motivated by the observation that not all locally 
optimal solutions are necessary good solutions. 
 
That observation started a process where a range of new methods was created; the first of 
those was Tabu Search. In general Tabu Search restarts the search near the local optima 
instead of restarting on a complete newly generated tour.  
When TS finds a local optimum, it tries to step out of it by evaluating a series of moves, 
which picks the best move, but not necessary a move that leads to a better solution. 
To stop TS from finding the last optimal solution it keeps a list (a taboo list) over the 
moves that would lead back to an old local optimum. When no new moves are possible it 
stops. 
           



 25 

 
 
 
 
3.3.2 Lin-Kernighan:  
 
The Lin-Kernighan (LK) algorithm is generally considered to be one of the most 
effective methods for generating optimal or near-optimal solutions for the TSP.  
However, the design and implementation of LK is not simple. There are many designs 
and implementation decisions to be made, and most decisions have great influence on the 
performance. The creation of the LK was inspired by the observation that a static K in the 
K-Opt method is not necessary the best solution. Designers wanted to use a different K-
Opt in different stages in the execution of the heuristic. In practice it has been shown that 
it is difficult to know what K to use to achieve the best compromise between running time 
and quality of the solution [1]. Lin and Kernighan removed this drawback by introducing 
a powerful variable-Opt algorithm. The algorithm changes the value of K during its 
execution [1].  
 
Before each iteration, the algorithm decides what values of K should be used. It calculates 
the value of K by examining for ascending values from l, whether an interchange of 
Κ links may result in a shorter tour. Given that the exchange of r links is being 
considered, a series of tests is performed to determine whether r+1 link exchanges should 
be considered. This continues until some stopping conditions are satisfied. At each step 
the algorithm considers a growing set of potential exchanges (starting with r = 2). These 
exchanges are chosen in such a way that a feasible tour may be formed at any stage of the 
process. If the exploration succeeds in finding a new shorter tour, then the actual tour is 
replaced by the new tour. 
 
 

3.3.3 Simulated Annealing: 
 
Simulated Annealing is a Monte Carlo approach for minimizing functions with a large 
number of variables. The term Simulated Annealing comes from a roughly analogous 
chemical process of heating and then slowly cooling a substance to obtain a crystalline 
structure. In simulation, where the cost function is minimized, this corresponds to when 
the substance have crystallized. The Simulated Annealing process lowers the temperature 
in stages until the system “freezes” and no further changes occur. At each temperature the 
simulation must proceed long enough for the system to reach a steady state. This process 
is known as thermalization. The sequence of temperature decrements, and the number of 
iterations applied to thermalize the system at each temperature comprise an annealing 
schedule [23]. To use Simulated Annealing, the system is first initialised with a particular 
configuration. A new configuration is constructed by displacing the system in to a new 
state. If the energy of this new state is lower than that of the previous one, the change is 
accepted unconditionally and the system is updated. If the energy is greater, the new 
configuration has a probabilistic chance to be accepted. This is the Metropolis step, the 



 26 

fundamental procedure of Simulated Annealing. The Metropolis step allows the system to 
find areas with lower energy states, and yet still jump out of local minima due to the 
probabilistic acceptance of some upward moves.  
 
Simulated Annealing as a method for solving optimisation problems was first proposed 
by a team of computer scientist from IBM in 1983 [17]. They proposed to use it as a 
computing intensive algorithm for finding solutions to arbitrary optimisation problems. 
 
Now it has been used successfully as a solver for a wide range of fields. 
 
As a TSP solver it has been use successfully to solve problems to near optimum. 
Simulated Annealing as a TSP solver is presented in Chapter 5. 
Johnson and McGeoch in [1] shows us that Simulated Annealing in his implementation is 
not as good as LK but has a good average and a lot of room for interesting adaptations.  
They also state that the Simulated Annealing structure in use today is not necessary an 
optimal one, and there can be made interesting adaptations to it. It mentions temperature 
and solution neighbourhood as interesting fields for experimenting. Especially low 
temperature starts where Simulated Annealing is given a high quality starting solution. 
 
 
3.4 Other Methods 
 
TSP research has also givens us some more exotic solvers. The two methods worth 
mentioning are Genetic heuristics and iterated local search. 
Genetic heuristics as an approach to optimisation can be tracked back to the 1970’s. The 
heuristic applies the theory of the biological process of evolution to a problem. The 
heuristic has two basic steps.  First, create a group of many random tours ordered in a 
population. These tours are stored as a sequence of numbers. Second, pick two of the 
better (shorter) tours as “parents” in the population and combine them, using crossover to 
create two new solution children in the hope that they create an even better solution. The 
crossover step is performed: By first selecting a random point in the parent sequences, 
and then switching every element in the sequence after that point.  Then the good 
solutions are allowed to reproduce and form new and hopefully better solutions in the 
population, while the bad solutions are removed until a stopping criterion is reached. 
Iterated local search algorithms are a very interesting adaptation of the local search 
algorithms. It has been for example seen used by the team that develop the Concorde TSP 
solver [22] in their iterated LK version. The essence of this scheme is: one iteratively 
builds a sequence of solutions generated by the algorithm, leading to far better solutions 
than if one were to use repeated random trials of that algorithm. ILS explores the search 
of local minima for some given algorithm, called Local Search in the following.  
 
ILS achieves this by doing the following: Given the current best solution S*, it first 
applies a change or perturbation that leads to an intermediate state S' from the set of 
possible solutions S. Then local search is applied to S’ and it reach a solution S*'. If S*’ 
passes an acceptance test, it becomes the next element of the walk, otherwise one returns 
to S*. This ILS procedure should lead to good sampling as long as the perturbations are 



 27 

neither too small nor too large. If they are too small, one will often fall back to S* and 
few new solutions will be explored. If on the contrary the perturbations are too large, S’  
will be random, and the result is a random restart type heuristic.  
 
Because TSP is one of the most interesting testing grounds for optimisation heuristics and 
algorithms, there are many solvers for it. Comparing all of them is enough material for a 
life time study. But it should also be mentioned that a lot of work has been done in the 
field of parallel programming on some of the above-mentioned methods. But describing 
these are outside the scope of this text. 
   
 
 

Chapter 4 The Multilevel Scheme: 
 
In this chapter the generic Multilevel Scheme is presented, together with a study on how 
to adapt it to the Travelling Salesman Problem. The object of this chapter is to give the 
reader a good understanding of the Multilevel Scheme. The parts that need to be 
developed in the Multilevel Scheme for a given problem are discussed. The last par of the 
chapter will present how to develop the elements in a MLS for the TSP. 
 
 
4.1 The Generic Multilevel Scheme 
 
In this paper, another way to look at heuristics is presented: The Multilevel Scheme. The 
Multilevel Scheme is not a new idea. It has been applied with success on other problems 
for example graph partitioning [18], and graph drawing [19]. 
The idea behind the Multilevel Schemes is to coarsen a problem in such a way that the 
original problem is easier to solve.  The coarsened solution is then in a series of steps 
refined until the original problem size is reached. The effect of each refinement step is 
propagated to the refinement in the next level.  This produces in theory a high quality 
solution after the top step refinement.  
 
The Benefits produced by the MLS structure for Optimisation Problems.  

 
In optimisation problems are often solved, by using refinement on a constructed solution.  
But to construct a good solution from the problem to use in refinement can be as hard as 
the problem it self. A low quality input solution to a refinement method produces inn fact 
also poorer quality after the refinement [1]. The size of the problem is also important; it is 
usually much easier to find a good solution on a small problem then on a large problem. 
 
The Multilevel Scheme utilizes this property by refining on small problems, producing a 
good solution for the small problem. Then it expands the high quality solution in to a new 
problem where the quality found in the smaller problem size is also propagated up in to 
the larger problem. The next refinement step can therefore benefit by getting a better-
input solution. 



 28 

 
Presenting the Generic Multilevel Scheme 
 
Let us present the generic Multilevel Scheme, and then let us do some analysing on it.  
 

Name: The Generic Multilevel Scheme 
 

Input: Problem instance P0 

 
Output: Solution S0 on P0 

 
 

  1 for iÅ 1 to L 

  1.1 Pi = coarsen (Pi-1) 

  2 SL.u = initialize (PL) 

  3 SL  = refine(SL.u ) 

  4 for iÅL-1 to 0 

4.1 Si.u = extend(Si+1 ) 

4.2 Si = refine(Si.u ) 

 
 
 

A problem P is in the heuristic coarsened in a predefined number of levels L. The number 
of levels can be calculated in advance so that the solution on the bottom level is not just 
trivial, or the coarsening can be set to stop before the problem size is trivial. The fully 
coarsened problem is then initialised to a form a refinement algorithm for the problem 
can work with. This unrefined solution SL.u   is then refined by the refinement algorithm to 
SL. The heuristic then step vice extend the problem, and refine it until the full problem 
size is reached and the last refinement step produces the solution S0. 
 
 
The coarsen step: 
 
In the coarsen step the object is in some way, to decrease the size of the problem step 
vice. But it is important that the problem is not trivialized, and it is still intact so that the 
refinement on the lowest stages can be propagated up in to the next levels.  
 
The initialise step: 
 
The object of the initialise step is to prepare the coarsened solution in such a way that it 
can be used in a refinement solver for the problem.  
 



 29 

The extend step: 
 
The problem size is in this step increased again. The increasing should be done in such a 
way that the quality of the refinement in the previous step is propagated up a level.   
 
The refinement step: 
 
The refinement step is a regular refinement algorithm for the problem type. 
 
The Multilevel Scheme (MLS) must also hold some more conditions: 
 
Condition 1: Any solution in the coarsened stage should be a legitimate solution on the 
problem type. Therefore the heuristic should produce a legitimate solution if it was only 
initialised and then extended without refinement to full size. 
 
Condition 2: The coarsened problem should reflect the original problem, so that the 
problem space is not destroyed. Therefore the coarsening has to be done in such a way 
that we adapt the coarsened problem, to reflect the original problem. By letting the new 
coarsened problem inherit the hardness of the original problem fulfils this condition. 
 
 
The generic Multilevel Scheme above tells us nothing of how to construct all the parts 
needed to create a Multilevel Scheme for a given problem. For each different 
optimisation problem where the Multilevel scheme is applied, we need to develop 
methods to tackle each of the above-mentioned parts of the heuristic. 
 
 
 
4.2 Adapting the Multilevel Scheme for the Travelling 
Salesman Problem 
 
To fulfil all the above-mentioned conditions, three important parts and some smaller 
adaptations needs to be identified and constructed. First a coarsening heuristic has to be 
constructed; it needs to fulfil the conditions that the input graph is not reduced to 
triviality. An extension heuristic has to be constructed, so that no improvement is lost 
from the past refinement steps. For refinement algorithm there are already many available 
versions mentioned in Chapter 3, which can easily be adapted. An initialising method 
also needs to be constructed and the whole scheme has to fulfil the multilevel conditions.  
 
The Coarsening Step 
 
Our proposed method for coarsening TSP type problems is to decrease the number of 
cities in the input graph. But for the method to hold condition 1 and 2, this cannot be 
done just by randomly removing cities. The method for coarsening we choose to use is to 
collapse edges by creating a cluster of the two cities with the collapsed edge.   
 



 30 

But first we need some definitions 
 
A map is the input graph to a euclidian Travelling Salesman Problem. 
A city is a coordinate on map; it has an x coordinate and a y coordinate. 
A cluster is a collection of two or more cities, where the cluster is represented as a city on 
the map. The coordinates of the cluster are modified to reflect the collapsed cities within 
it by calculating an average position. This condition is included to full fill condition two. 
  
 
The coarsening heuristics for the TSP we have designed has two characteristics. 
 
1. Looking for edges that have a high probability to be in the optimal solution. 
 
2. Removing edges that are easy to fit in to the tour later, and thus creating a coarsened 
problem with the most difficult edges yet to place.  
 
 
The reason for including the first characteristic is to locate edges that have a high 
possibility of being in the optimal solution, and therefore the edges have a large chance 
for not needing to be changed after the extension of the solution. 
The object of this method is to produce a good solution after the extraction and therefore 
decrease the work needed in the refinement step. These heuristics can be constructed by 
using the principles of already existing tour construction heuristics because they work by 
the same principles.  
 
The second characteristic is to collapse edges that are easy to place in each step. Thus the 
coarsening creates a solution with the most difficult edges to locate when the problem is 
coarsened fully, and the difficulty to locate and place edges decreases therefore for each 
extend step, while the size of the problem increases.  
Inspiration for such characteristics can be found in methods for excluding possible moves 
in optimisation heuristics. 
 
The Initialization Step 
 
The initialization of a coarsened problem into a TSP type problem is not difficult for our 
coarsening scheme. Since the output of the coarsening is a map, it is already a TSP type 
problem. The only initialization we need to do is to transform the instance of type map 
into a form our refinement algorithm can work with. This is typical to construct a TSP 
tour on the map. Such a tour can be produced by just picking a random start cluster then 
at random pick a new cluster to add to the tour until all clusters are included in the tour. 
Another method is to use an already existing tour construction heuristic on the clusters. 
The use of a tour construction heuristic can possibly create a better input for the first 
refinement step then just a random generated tour. 
 
 



 31 

The Refinement Step 
 
There is no need to create a new refinement algorithm for TSP. There are already many 
well-tested refinement algorithms described in textbooks [1]. 
Some of them may need some minor adaptations to work with the MLS.  
 
The Extension Step 
 
The extending of the problem after the refining is an important part of the scheme. 
The object is to propagate the quality from the previous solution to the next refinement 
step. To do this the extending heuristic has to keep the order of the tour more or less 
intact after the clusters has been split and the tour has been extended. 
Therefore the collapsed edges are now reintroduced in the position of the cluster in the 
tour. The method for extension then works by locating every cluster that shall be opened 
in the current level of expansion then splitting them by reintroducing the collapsed edge 
to the tour. 
 
 
Has this Description of an Adaptation of the TSP Heuristic Fulfilled the MLS 
Requirements? 
 
 
This scheme fulfils clearly the requirements for the general MLS. 
Then the only thing left is to argue that the two conditions are held. 
 
Condition 1 
 
The point of condition 1 is that if one does not use a refinement method, the MLS should 
produce a legitimate solution of the problem. The constructed scheme clearly manages to 
do this. A tour is constructed in the initialising step. The extension heuristic for each new 
split of a cluster splits the tour in the position of the old cluster. On each end the two new 
cities from the collapsed edge is added. The tour is then reconnected again by adding the 
edge between those two cities. This operation clearly does not add any loop or fragments. 
Therefore the resulting tour is still a valid tour after each splitting. The resulting tour is 
therefore still valid after it has been fully extended. So it is possible for us to conclude 
that condition 1 holds. 
 
Condition 2 
 
The point of condition 2 is that the coarsened problem should not lie to far away from the 
original problem. This condition is held because for each cluster reflects the collapsed 
edge after merging. The coarsened solution therefore inherits the hardness of the original 
problem, and holds therefore condition 2. 
 
So this scheme for the MLS holds. The heuristics for each part are presented in detail in 
Chapter 5. 



 32 

 
 
Direct Coarsening versus Recursive Coarsening 
 
There is still an aspect yet to be discussed before presenting the heuristics. 
It is the question of Direct versus Recursive coarsening. 
The general MLS heuristic presented in the preceding chapter is for Recursive 
coarsening. This method creates clusters for each level by merging two clusters in to a 
new cluster. Another method to reduce the problem size is to use Direct coarsening [18]. 
This scheme has nearly the same strategy as the Recursive coarsening except it differs in 
the coarsening part. Instead of clearly levelled coarsening, Direct coarsening lets the 
clusters grow until they reach a predefined size and then evict the cluster from the 
possible choice for merging.  This does not damage any of the above-mentioned 
restrictions. So Direct coarsening also holds the MLS conditions. 
The heuristics for both versions and the more subtle differences are explained in detail in 
Chapter 5. 
 
 
 
4.3 The Elements that needs to be Decided and Developed in 
our Study of the MLS for the TSP: 
 
To ease the creation of methods a general template for coarsening and extension needs to 
be developed. Then using the general template, it is possible to develop a set of tools to 
use in both classes.  When this work is finished, we need to create the to different MLS: 
Direct and Recursive. 
Now we are ready to develop the different elements that shall be included in the two 
different MLS.  The only previously mentioned coarsening heuristic for TSP was a 
method described in [19]. So to get inspiration for coarsening heuristics we will study the 
field of tour construction and local optimisation for ideas that can be turned into good 
coarsening heuristics. 
The last part studies how to integrate the refinement heuristics. Walshaw has used the 
refinement method Lin-Kernighan in an MLS already [19], by making an interface to 
CONCORDE [22].  Therefore it would be interesting to experiment if the MLS would 
work with another approximation strategy for TSP. We chose to use Simulated 
Annealing, since it is an interesting method, and has as stated before still many 
possibilities for optimisation [1]. 
Since S.A has so many variables that need to be optimised, for S.A to sample the solution 
space correctly.  This part will therefore needed considerable work in testing and 
experimenting. The algorithms and heuristics for each of these parts are presented in 
Chapter 5 and Appendix 2. Results are presented and discussed in Chapter 6 and Chapter 
7. 
 
 



 33 

Chapter 5. The Multilevel Scheme for the Travelling 
Salesman Problem 
 
In this Chapter we are going to present the heuristics constructed by us, and modified for 
use in the Multilevel Scheme (MLS) for the TSP. We will start by giving a detailed 
description of the Direct and Recursive coarsening schemes. For each scheme all 
necessary methods are presented in detail.  Then we are going to present the Simulated 
Annealing and the adaptations and possible optimisations we plan to use. The object of 
this Chapter is to present an abstract and detailed view of the methods. The levels of 
details in the methods are pseudocode. Details that are not important for the methods are 
not presented. Included is also a worst-case running time analysis for each of the different 
parts developed. Detailed description for each of the important heuristics and algorithms 
used in our program can be found in Appendix 2.   
  
 
 
5.1 Introduction 
 
Before of each MLS is presented, some common details found in every method needs to 
be defined.  
 
 
5.1.1 Notation  
 
A MAP is an unordered collection of cities (clusters). A TOUR is an ordered collection 
of the cities (clusters). Both MAP and TOUR has sizes, the expression SIZE(element) 
returns the size. A city or a cluster is a point in the plane with a pair of coordinates and is 
always denoted with big letters. The coordinates of a city is denoted within brackets 
behind the city, so if A is a city A(x) and A(y) is its coordinates.  
When it is important to display the content of a cluster the notation is a combination of 
the internal cities. If A is merged with B to a cluster it will be denoted as AB. The cluster 
coordinate is denoted in the same way as city coordinates.  
 
5.1.2 Merging and Extraction of Clusters 
 
In the scheme constructed by us, graphs are coarsened by collapsing edges. Merging 
cities in to clusters is done by removing the connected cities from the map, and then 
adding the new cluster to the map instead. If this scheme shall hold the multilevel 
condition 2, the coordinate of the cluster needs to be updated to reflect the merged cities 
within. When two cities or clusters are merged an average coordinate is calculate based 
on the coordinates of the involved cities or clusters. This new average coordinate is now 
set as the coordinate for the cluster, which is added to MAP. The two cities or clusters are 
then removed from MAP.  
 



 34 

When the problem is extended after refinement the clusters needs to be split in to the two 
cities which where merged. This process called extraction is the direct reversal of 
merging. But to hold the multilevel restriction, extraction must ensure that the cities are 
removed from the cluster in the correct order. If a city is removed from the cluster too 
early, all the assumptions done in the coarsening are destroyed. These two processes is 
from now on called MERGE(ELEMENT, ELEMENT) and EXTRACT(ELEMENT), 
where ELEMENT is a cluster or a city. 
  
 
5.2 The Recursive and Direct Multilevel Scheme  
 
The general structure for the MLS was presented in Chapter 4. In this Chapter the two 
heuristics: Recursive and Direct is presented in detail.   
 
 
5.2.1 The Recursive Multilevel Scheme 
 
Recursive coarsening was the first coarsening scheme described. Recursive coarsening in 
our scheme creates clusters with an internal structure like a binary tree.  This structure 
makes it easy to keep track of the order of extraction from the clusters.  
The extraction of the Recursive scheme is easy since the clusters are arranged as a binary 
tree. Splitting is done by locating the root, then removing the root node creating two new 
trees where the roots are added back to MAP.  This can be repeated until there are only 
trees with no leaves left in the tour.  This solution tackles the problem with the order of 
extraction, and clearly holds the conditions mentioned in the description of the extraction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 35 

Name: RECURSIVE MLS 
 

Input: MAP, number of coarsening levels. 

 
Output: Finished TOUR. 

 
 

1 for iÅ0; i<number of coarsening levels; i++ 

1.2 Prepare MAP for merging 

1.3 Coarsening_heur (MAP) 

2 Initialize by creating a tour with the fully coarsened MAP. 

3 Improve the tour with Refinement_alg (TOUR) 

4 for iÅ0;i<numlev;i++ 

4.2 extract a level(TOUR) 

4.3 Improve the tour with tour Refinement_alg 

(TOUR) 

 
 
 
Comments:  
 
Input: number of coarsening levels. 
 
This number is determined by calculating how many times the graph needs to be 
coarsened to obtain the problem size we wish to use.  
 
Line 1.2: prepare MAP for merging  
 
This line includes all the processes involved in transforming the input and the active 
MAP into a format usable by the coarsening methods. The work involved in this line 
depends on the implementation of the different coarsening methods.  
 
 
Line 1.3: coarsening_heur (MAP) 
 
This is the general coarsening heuristic. The running time of this step is dependent on the 
heuristic that has been used.  
 
 
 
 



 36 

Line 2: Create a tour on the bottom level. 
 
Since output from the coarsening is already of the TSP form, the method only needs to 
initialize the output from the coarsening to an input usable by the refinement method. 
Therefore the running time should be no more then for one of the tour construction 
heuristics presented in Chapter 3.   
 
Line 3 and 4.3: Improve the tour with tour refinement_alg (TOUR) 
 
In this process a standard tour refinement heuristic is used.  The running time of these 
steps is therefore dependent on the running time of the heuristic picked. 
 
Line 4.2: Extract a level (TOUR) 
  
In this step the extraction principle is used and the running time is therefore dependent on 
the method used.  
  
 
 
 
Running time analysis: 
 
The running time for the heuristic clearly depends of the coarsening depth and running 
time of each of the elements. Since it is important for the total heuristic to have a non-
exponential running time, it must be ensured that each part is non-exponential in time. 
Therefore each part created by us must be analyzed, to ensure that no parts run in 
exponential time. 
  
 
 
5.2.2 The Direct Multilevel Scheme 
 
 
Direct coarsening is the second MLS we are going to study. It does not create the tree 
structure seen in the Recursive heuristic. Instead it creates clusters with a predefined 
largest size, in our scheme that size is defined to be on average four. In this scheme the 
internal cities of clusters points to each other in circles instead of trees. The same 
coarsening heuristic used for Recursive coarsening can be used for Direct coarsening 
except for a few differences. When a merging has been done the clusters are added back 
to the map, instead of removed. When a cluster grows to the predefined size, the cluster is 
set as non-valid choice for merging. All other aspects are the same as before, the only 
difference is that the pointers within the clusters are arranged as a list and not as a tree 
structure.  
 
 
 



 37 

Name: DIRECT MLS 
 

Input: MAP 

 
Output: Finished TOUR. 

 
 

1 Prepare MAP for merging 

2  Coarsening_heur(MAP) 

3 Create a tour on the bottom level. 

4 Improve the tour with tour refinement_alg (TOUR) 

5 for iÅ0; i< Size(Cluster); i++ 

5.1 Extract a city from each cluster in TOUR 

5.2 Improve the tour with tour  

refinement_alg (TOUR) 

 
 
 
Comments:  
 
 
Line 1: prepare MAP for merging  
 
This line includes all the processes involved in transforming the input and the active 
MAP into a format usable by the coarsening methods. The work involved in this line 
depends on the implementation of the different coarsening methods.  
 
 
Line 2: coarsening_heur (MAP) 
 
This is the general coarsening heuristic. The running time of this step is determined by 
the heuristic that has been used.  
 
Line 3: Create a tour on the bottom level. 
 
Since output from the coarsening is already of the TSP form, the method only needs to 
initialize the output from the coarsening to an input usable by the refinement method. 
The running time should therefore be no more then for one of the tour construction 
heuristics presented in Chapter 3.   
 
 
 



 38 

Line 4 and 5.3: Improve the tour with tour refinement_alg (TOUR) 
 
In this process a standard tour refinement heuristic is used.  The running time of these 
steps is therefore dependent on the running time of the heuristic picked. 
 
Line 5.1: Extract a city from each cluster in TOUR 
  
In this step the extraction principle is used and the running time is therefore dependent on 
the method used.  
  
 
Running time analysis: 
 
The running time for the heuristic clearly depends of the coarsening depth and running 
time of each of the elements. Since it is important for the total heuristic to have a non-
exponential running time it must be ensured that each part is non-exponential in time. 
Therefore we have to analyses each part created by us, to ensure that no parts run in 
exponential time. 
 
 
 
5.3 Coarsening 
 
In the next chapters we will present the heuristics for each part of the two schemes. 
In this chapter will first present the two general coarsening methods. Then we will 
discuss ideas and methods used in the selection part of the two coarsening heuristics.  
 
 
 
 
 
5.3.1 Recursive Coarsening: 
 
Recursive coarsening takes as input a MAP and returns a MAP half its size.  
The object of the coarsening is to locate edges that fit a predetermined criterion and 
remove them from the MAP. The coarsening method does this by using a selection 
method; the method selects the edges and uses the MERGE method to remove them from 
the MAP. It is important that this is done in non-exponential time so that the overall time 
of the MLS is still polynomial. 
 
 
 
 
 
 
 



 39 

Name: GENERAL RECURSIVE 
COARSENING 
 

Input: MAP  

 
Output: A coarsened MAP 

 
 

1. Initialise MAP 

2. While still able to find merging partners 

    2.1 Do merge selection of A and B 

    2.2 MERGE(A,B)  

    2.3 Remove A and B from MAP 

    2.4 Add AB to MAP 

    2.5 Set AB as not available for merging 

    2.6 Update selection info 
 
Input:  
 
This method gets MAP in a state of coarsening as input. 
 
Line 1: Initialise MAP 
 
Some methods need a special rearrangement of the MAP. For example creating a set of 
possible edges to choose from. The running time of this method is dependent on the 
selection type.    
 
Line 2: While still able to find merging partners 
 
This loop is executed at most N/2 times where N is the number of cities in input 
 
Line 2.1: Do merge selection of A and B 
 
In this step the method chooses the merging partners. The running time is depends on the 
selection method. 
 
Line 2.2 to 2.5  
 
These steps are merge steps and are constant time operations.  
 
 
 



 40 

Line 2.6: Update selection info 
 
This is the information required by some of the selection methods. The running time 
depend on the selection method. 
 
Running time analysis:   
 
The total running time is dependent on the method of selection. No part mentioned here is 
exponential. 
  
5.3.2. Direct Coarsening: 
 
The Direct scheme is similar to the Recursive scheme in most parts.   
The same selection methods for Recursive coarsening can be used for Direct coarsening. 
But there are three major changes to the method: 
 
1. The coarsening is not run in levels but until no more merging can be done. 
2. When a cluster is created it is not evicted from the possible merge partners, it is added 
back to MAP and set as available.  
3. When a cluster has grown in to a predefined size, it has to be set as not available as a 
choice for merging. 
 

Name: GENERAL DIRECT COARSENING 
 

Input: MAP 
 

Output: A completely coarsened MAP 

 
 

1.Initilaise MAP 

2. While still able to find merging partners 

    2.1 Do merge selection of A and B 

    2.2 MERGE(A,B)  

2.3 Remove A and B from MAP 

2.4 If AB< max-cluster-size 

2.4.1 Add AB to MAP 

2.4.2 Update   

2.5 else 

2.5.1 Add AB to MAP 

2.5.2 Set AB as not available for merging 



 41 

 
 
 
Line 1: Initilaise MAP 
 
Some methods need a special rearrangement of the MAP. For example creating a set of 
possible edges to choose from. The running time of this method is dependent on the 
selection type.    
 
Line 2: While still able to find merging partners 
 
This loop is executed less than N times where N is the number of cities merged. 
Since for each execution of the loop one city is removed and one cluster is added back.  
 
Line 2.1: Do merge selection of A and B 
 
In this step the method chooses the merging partners. The running time is dependent on 
the selection method. 
 
Line 2.2 to 2.5:  
 
All these steps treat the merging operation and are constant time operations. The 
exception is Line 2.4.2 where the arrangements for the selected step are updated. The 
running time of that line depends on the selection method. 
 
  
Running time analysis:   
 
The total running time is dependent on the method of selection. No part mentioned here is 
exponential. 
  
5.3.3 Selection  
 
The important part of the coarsening methods is the selection of merging partners.  
To find good selection methods, we studied previously used ideas in tour construction 
heuristics and other selection ideas. From this basis a set of selection methods was 
decided on for us to implement and test. In this chapter a description of each selector is 
presented together with the idea behind the selector. 
 
 
Random 
 
This method selects two random partners and merges them. The idea is to create a test 
method to see if the different selection methods have an effect. If the other selection 
methods produce a solution with higher quality than Random, then it is the selection 
method that creates the improvement. 



 42 

 
Time analysis: 
 
Recursive: 
 
Random does not need any special ordering of MAP to function.  
This gives us a total running time of O(N). The method can be found in Appendix 2. 
 
Direct:  
 
There is no difference between the Direct and the Recursive structure for this method. 
The update function is not needed and therefore the running time is O(N). 
 
Nearest Neighbour 
 
This heuristic was inspired by the heavy edge merging of N. Bouhmala [18].  
The object of heavy edge merging is to find the current best available choice in the 
problem space. It was also inspired by the Nearest Neighbour tour construction heuristic 
which is a parallel to the heavy edge method. The selection method picks at random a 
cluster from MAP. It then locates the nearest available cluster on the map and merges 
them.  
 
Time analysis: 
 
Recursive: 
 
The selection loop is executed N/2 times. The check for finding the nearest neighbour is 
executed N-I times for each iteration of N where I increase with 2 for each time the loop 
is executed. This gives us a total running time of order O(N2), where N is the number of 
cities.  
 
 
Direct:  
 
The selection loop is executed N times. The check for finding the nearest neighbour is 
executed N-I times for each iteration of N where I increase with 1 for each time the loop 
is executed. This gives us a total running time of order O(N2), where N is the number of 
cities.  
 
 
Greedy 
 
This selection heuristic is an adaptation of the Greedy tour construction heuristic [1].  
The Greedy tour construction heuristic is explained in Chapter 3.1.2. 
This heuristic merges the two still vacant closest cities on the map.   



 43 

To be able to find the closest cities fast, the method needs to use a distance matrix. Since 
the input is of the type symmetric Euclidian instances, the distance matrix is upper 
triangular and can be generated in O(N²) time. 
 
When the distance matrix is generated it is possible to create a fast lookup table. The 
lookup tables stores the closest cluster, for each cluster, together with the distance 
between the clusters. 
Then when two clusters are removed from the MAP, it is easy to update the system, by 
locating all the clusters with a shortest edge to one of the two clusters removed, and then 
update those entries. 
 
Time analysis: 
 
Recursive: 
 
Generating a distance matrix is done in O(N²) time. Creating the Shortest edge List is 
done in O(N²) time. The selection loop is executed N/2 times. The selection is executed 
for N-I times where I increase with 2 for each execution. 
Where N is the number of cities. 
Update has a running time in K*N where K is the number of edges to be updated and K is 
usually much smaller then N, but it is possible to have a value close to N. This gives us a 
total running time of O(N2*K). It is also possible by using a heap structure for each node 
to get a running time of O(N2logN), but it is not necessary worth the extra 
implementation work, since K is usually much smaller then N.  
 
Direct:  
 
Generating a distance matrix is done in O(N²) time. Creating the Shortest edge List is 
done in O(N²) time. The selection loop is executed less than N times. The selection is 
executed for N-I times where I increase with 1 for each execution. 
Where N is the number of cities. 
The rest of the method behaves as the Recursive version and the running time analysis for 
that part is as for the Recursive version.  
This gives us a total running time of O(N2*K). As for the Recursive version it is possible 
to use a heap structure for each node to get a running time of O(N2logN). But as for the 
Recursive version it is not necessary worth the extra implementation work.  
 
 
 
 
 
 
 
 
 
 



 44 

Figure 5.3.3.1 Shows how the Nearest Neighbour and the Greedy selection functions. 
 
 

 
 
 
Max Min 
 
This selection method is not unlike the Greedy selection; this strategy is to minimize the 
sum of the length of the edges by selecting always the longest “shortest edge” not yet 
merged. 
It uses the same data structure as Greedy. But instead of selecting the shortest “shortest 
edge” it selects the longest “shortest edge”.  
 
 



 45 

Time analysis: 
 
Recursive: 
 
Generating a distance matrix is done in O(N²) time. Creating the Shortest edge List is 
done in O(N²) time. The selection loop is executed N/2 times. The selection is executed 
for N-I times where I increase with 2 for each execution. 
Where N is the number of cities. 
Update has a running time in K*N where K is the number of edges to be updated and K is 
usually much smaller then N but it is possible to have a value close to N.  
This gives us a total running time of O(N2*K). It is also possible by using a heap structure 
for each node to get a running time of O(N2logN) but it is not necessary worth the extra 
implementation work, since K is usually much smaller then N.  
 
 
 
Direct:  
 
Generating a distance matrix is done in O(N²) time. Creating the Shortest edge List is 
done in O(N²) time. The selection loop is executed less than N times. The selection is 
executed for N-I times where I increase with 1 for each execution. 
Where N is the number of cities. 
The rest of the method works as for the Recursive method. 
This gives us a total running time of O(N2*K). By using a heap structure for each node is 
for this method also possible to get a running time of O(N2logN).  
 
 
Square  
 
This is the selection scheme used by C.Walshaw in [19]. 
 
Square selection works by ensuring that long edges are not merged in the upper levels of 
the ML scheme. The idea for this method is that long edges have the highest possibility 
of not being a part of the optimal tour in a uniformly spaced TSP input. It works by 
partitioning the map in to squares, where each square contains an average number of 
cities. When the square is calculated for the heuristic, it is assumed that the cities are 
uniformly spaced. C. Walshaw proposed to have an average number of the cities equal to 
ten in each square.  From those two notions it is possible to calculate the width and the 
height of the squares with the square formula.  
 
Definition: Square Formula 
 
h = ¥�$Q�1��� 
 
Where A is the area of the smallest rectangle containing all the cities, n is the average 
number of cities per square, and N is the number of cities on the map. 



 46 

 
As the graph is coarsened, h will increase because there will be fewer cities on the map. 
Therefore it needs to be recalculated for each level of matching. In the last coarsening 
there will be only one square. 
To position cities within the squares a bucket sort adaptation is useful.  Each bucket is a 
square of MAP. Then it is easy to calculate from the coordinate of each cluster to locate 
which bucket it goes in to. The selection inside each square is executed by finding the 
closest city within the square or in one of the adjacent squares. 
 
Time analysis: 
 
Recursive: 
 
The calculation of h is done in constant time. Sorting in to the buckets takes O(N) times. 
The selection loop is executed N/2 times. The selection is executed for N-I times where I 
increase with 2 for each execution. This gives us a running time of O(N2) 
 
Direct:  
 
This selection scheme is not usable in Direct coarsening. The size of the squares must be 
updated as the size decreases. Leading to a lot of work in resorting and updating, together 
with the problem of when to recalculate the squares. Because of this and since it is not 
one of our selection methods; choose we not to implement the Square for the Direct 
scheme. 
 
Radius  
 
This is an adaptation of the Square selection strategy, it is an attempt to create an easy, 
and on average, fast scheme. It works by using the formula for calculating the length of 
the edges h in Square (see the Square method). This creates a circle around each cluster 
with diameter of h. The heuristic selects a random city or cluster and merges it with the 
first found cluster or city within this circle. This scheme provides us with a way to ensure 
that no long edges are merged in the first levels of merging.  
 
 
Time analysis: 
 
 
Recursive: 
 
The constant h can be calculated in constant time. The selection loop is executed no more 
then N/2 times. The selection is executed less then N times, where N is the number of 
cities, but can be as large as N.  
This gives us a worst case running time of O(N2).  
 
 



 47 

 
Direct:  
 
The constant h can be calculated in constant time, and since this operation is constant, it 
is possible for h to be calculated between each selection. The selection loop is executed 
no more then N times. The selection is executed less then N times, but can be as large as 
N. This gives us a worst case running time of O(N2), where N is the number of cities. 
 
 
5.4 Initialize 
 
When MAP is fully coarsened it must be initialized to a form usable for the refinement 
method we have chosen. Since it was chosen to use Simulated Annealing (S.A), the 
coarsened map must be transformed in to a form usable by S.A. S.A takes as input a TSP 
tour and refines it. Therefore problem the output from the coarsening must be 
transformed in to this form. Since the product after the coarsening is on the same form as 
a symmetric euclidian input, using a standard tour construction heuristic to initialize the 
output can therefore fulfill this criterion.  The running time is therefore no more then the 
running time for the chosen tour construction heuristic. Where N is the number of 
clusters when MAP is fully coarsened.      
 
 
5.5 Extension and Extraction Heuristics. 
 
The extraction of a cluster is the process of splitting a cluster in two lesser parts. This 
creates an edge with two vertexes to be inserted in the tour. To ensure that the quality of 
the solution from the last refinement step is not damaged in the extension, the new edge 
must be inserted in the tour position of the split cluster. Since this is now an edge with 
two vertexes, there are two possible ways to add the edge to the tour, see figure 5.5.1.  
To insert the edge in one of the two different ways shown in figure 5.5.1, one can either 
just use a random method to choose on of the possibilities, or use a local optimisation 
method to ensure that the quality form the last refinement step is propagated to the next 
refinement step.  
 
 
 



 48 

Figure 5.5.1 

 
 
Figure 5.5.1 shows two different possibilities for inserting the edge in TOUR. 
 
Both of the extraction methods are presented here.  There are no real difference between 
Direct and Recursive extension. The only difference is the handling of cluster pointers 
and will not be commented in this text. 
 
But first let us present the general extension scheme: 
 

Name: GENERAL EXTENSION 
 

Input: A refined TOUR 
 

Output: An extended TOUR 

 
 

1. for all clusters 

    1.1 SPLIT(CLUSTER) 

    1.2 Insert edge in TOUR 

    1.3 Remove CLUSTER from MAP 

    1.4 add the two cities to MAP  

 

 
 
Comments: 
 
Input: A refined TOUR 
 
The input to the extension method is the refined TOUR. And it is therefore not necessary 
to initialise this input. 
 



 49 

 
 
Line 2. for all clusters 
 
All current clusters need to be split. The method searches the tour and splits the current 
clusters. Since all clusters needs to be split, this loop is executed N times where N is the 
number of clusters in input. 
 
Line 2.1 SPLIT(CLUSTER) 
 
This is the reversal of the MERGE operation and is a constant time method. 
 
Line 2.2 Insert edge in TOUR 
 
Inserts the edge in the TOUR at the position of the cluster. Two methods has been created 
for this, both have constant time operation, so that step has a constant running time 
 
Line 2.3 to 2.4 
 
Updates MAP and are constant time operations. 
 
 
Time analysis: 
 
All lines except line 2 are constant time operations which gives us a running time of O(N) 
where N is the number of clusters at input.  
 
 
Edge insertion: 
 
Two different edge insertion methods RANDOM and BEST-FIT shall be tested.  
The object behind the test of different edge insertion methods is to experiment if it is 
possible propagate better the quality from the past refinement step.  
 
RANDOM 
 
This method chooses randomly one of the two ways to insert edges, as depicted in figure 
5.5.1.  
 
BESTFIT 
 
This method minimizes locally the length of the new line segment added to TOUR.  
In the figure this method would minimize the length of the path from E-A.  
By locating the shortest path of the two different possible paths in figure 5.5.1. 
It then inserts the edge F-G in the setting that minimizes this line segment. 



 50 

This calculation is also a constant time operation, but has a constant factor higher then 
RANDOM. 
 
 
 
5.6 Refinement 
 
We now move on to present the refinement method. Since it is important for the 
comprehension of our experiments to understand the refinement method; Simulated 
Annealing is present here in detail. Because Simulated Annealing do not have an 
exponential running time and it is not one of our designs, there will not be presented a 
running time analysis for it.  
 
5.6.1 Simulated Annealing Generally 
 
The principle behind Simulated Annealing was explained in Chapter 3.3.3.  
In this chapter the Simulated Annealing (S.A) adapted to TSP is presented. 
 
The principle of the TSP version of S.A is very like the principle of a normal local search 
strategy. It uses permutations of the input tour to look for improvements.  
The permutations used are inn fact adaptations of local search methods. 
 
But S.A is an improvement of the local search strategy used. Since S.A has the ability to 
do moves that are not an improvement of the tour, but can be so in the future. 
  
S.A starts with an input tour S. It then creates a copy of the tour S* which S.A sets as the 
best current tour. We now have two tours S and S*. One to work with S, and one where it 
store the best possible version found S*.  
S.A then starts to make permutations of the tour and creates a temporary S’ . When a 
permutation is made, it compares the resulting length with S*, if it is of higher quality 
then S* it discards S* and sets S’  as S* and S.  
 
If it is not the best current solution, it is not discarded as in a local search method. S.A 
now checks if it shall continue to work on the weaker solution. Each move has a percent 
chance to be approved if it is not the best current solution. If it accepts the move, S is 
discarded and S’  is set as S, and S.A continues to work on this new tour. Or else it 
discards S’  and makes a new permutation on S. The percent chance for acceptance of a 
bad move is lowered as the solution “cools”.  
This goes on until the solution has “frozen”, when a bad move has a very minute chance 
to be accepted. 
  
 
 
 
 
 



 51 

 Now let us present Simulated Annealing. 
 
 

Name: SIMULATED ANNEALING 
 

Input: TOUR 

 
Output: Refined TOUR 

 
 

1. Generate a starting solution S and then set the initial 

champion solution S* = S. 

2. Determine a starting temperature T. 

3. While not yet frozen do, the following: 

3.1 While not yet at equilibrium for this temperature, do the 

following: 

3.1.1 Choose a random neighbour S’ of the current 

solution. 

3.1.2 6HW�û�� �/HQJWK��6¶� -Length(S) 

3.1.3 if ��û������  

3.1.3.1 Set S = S’  

                        3.1.3.2 if Length (S)<Length (S*) 

                              3.1.3.2.1 Set S*=S 

 3.1.4 else  

           3.1.4.1 choose a random number r uniformly from 

[0,1]. 

  3.1.4.2 if r < e-
�

 /T 

                   3.1.4.2.1   Set S=S’  

3.1.4 End “While not yet equilibrium” loop  

3.2 Lower the temperature T. 

            3.3 End “While not yet frozen” loop.  

 
 
 
 



 52 

Comments: 
 
Line 1 
 
 In the Multilevel Scheme the starting solution is the previous expanded TOUR. 

 
Line 2   
 
To determine start temperature a formula suggested by N. Bouhmala [21]  was used 
 T_init = -ûOHQJWK�S)avg /log(P),  
 :KHUH� ûOHQJWK�S)avg is calculated by repeatedly doing iterations on S and calculate the 
average of the changes. 
P is the probability for a accepting a bad move (an uphill move), 
P values is from 0.999999->0.00000. A P value of 0.80 gives an uphill move an 80% 
chance of being accepted. 
 
Line 3  
 
The loop in this line has a stop condition for when the solution temperature is equivalent 
to a frozen solution. The temperature for the frozen solution is set as a static value that 
can be lowered if the solution still has possibilities for improvement. 
 
Line 3.1  
 
The number of executions of this line is defined as the search length. This is the number 
of changes, which can be performed to a tour before it is rejected. 
This number needs to be adjusted. It is also dynamic in the sense that it checks if there 
has been an improvement. If it has been improved within a factor, it does not lover the 
temperature, else if no improvement was found the temperature is lowered. This step is 
the main contributor to work in the S.A, and a large number for search depth and 
therefore leads to a considerable running time. 
 
Line 3.1.1  
 
This is the process of making a permutation on the TOUR. This can be done in many 
ways; usually by using a local search strategy. 
 
Line 3.1.3.2  
 
If a new champion solution is found, the champion solution is updated. 
 
Line 3.1.4.2  
 
This line checks if the bad move is accepted and the work TOUR is updated with this bad 
move.  



 53 

 
Line 3.2  
 
The lowering of the temperature is executed by multiplying the current temperature with 
a value from 0.9 to 0.999. Most authors recommend 0.95.  
 
Line 3.3  
 
In this line the not frozen loop is ended with a dynamic check on if the solution has 
frozen. The method has a value where it is anticipated that the solution is frozen. When 
the temperature reaches this value, S.A starts to check if the solution is frozen, by testing 
if there has been an improvement in the last runs of the search loop. It continues to run 
while the solution still improves. This value is set in [21] to be 2-5. 
 
 
 
5.6.2 S.A Adaptations to the Multilevel Scheme 
 
Since the quality of the input tour before the refinement from Simulated Annealing (S.A) 
is of high quality, S.A can be started on a much lower chance for accepting an uphill 
move than a random input. This saves a lot of running time since the temperature does 
not have to be lowered so often.  
But the best start value for the percent chance of accepting an uphill move, can only be 
found by experimenting with the settings. This is one of the many optimisations S.A 
needs before it can work properly with our MLS.  
 
Optimisations: 

 
As mentioned before the correct percent chance of accepting uphill moves has to be 
located. The others are: 
Choosing the correct permutation method and optimising the length of the search path. 
Testing the effect of the dynamic search depth.  
All these optimisations is explored in Chapter 6. 
  
 
5.6.3 S.A Permutations  
 
To find tour improvement, S.A uses permutations. It is a simple scheme. It changes the 
tour in some random way and compares the new length with the old length and checks if 
it improves the quality of the tour. Many permutation schemes has been used and 
proposed, usually it is a K-Opt move. The main difference between them is the number of 
edges changed.  One of our objects in this paper is to test different permutation methods.   
The reason is that the different permutation methods have been shown to not behave in 
the same manner [1], and it is important to find one that suits our task.  



 54 

Therefore it was chosen to test different methods for permutation.  Four different 
permutations have been chosen to use in the experiment, all of them are adaptations of 
the local refinement methods described in Chapter 3: 2-Opt, 3-Opt, 2.5-Opt and 
Exchange 2-Opt. 
 
 
5.7 Comparing Our Scheme with Chris Walshaws Scheme. 
 
Since C.Walshaw already has shown that it is possible to create a MLS [19] for the 
Travelling Salesman Problem, it is interesting to compare our scheme with his to see 
where we fit into the picture.  
Our Recursive scheme is modelled after C.Walshaws scheme.  As refinement method 
C.Walshaw used LK and chained LK instead of Simulated Annealing. He implemented a 
multilevel interface to the perfected TSP solver Concorde[22]. The Square method 
described in our text, is modelled after the same coarsening method used by him. The 
object of C.Walshaws paper was to show that it was possible to create a MLS for TSP. 
Compared with our goal to test different schemes and different coarsening methods, 
C.Walshaw also focused on testing the quality produced by ordinary LK and different 
settings of chained LK with Concorde. 
 
 
 
 
 

Chapter 6 Experimental Results 
 
In this chapter the results obtained by testing the different Multilevel Schemes will be 
presented and compared. The object is to check if the different MLS is returning results, 
and which elements developed for the MLS is best to combine. Included is also the 
testing of the different adaptations developed for Simulated Annealing. The best settings 
found is then used to create a reference table, comparable with other results for TSPLIB 
instances.  
  
 
6.0 Starting the Experiments  
 
First some initial information concerning the experiments needs to be presented before 
the results can be studied. This chapter explains the details used in the experiments.  
 
System settings: 
 
All test runs were done on a pc Pentium III with an 800Mhz processor and 128 MB ram, 
using the Windows ME operating system and the Dev-C++ Compiler/Debugger. The 
program was written in the programming language C. All test instances used is from 



 55 

TSPLIB [26], ranging in size from 103 to 2*104 cities. All test instances used can be 
found in Appendix 3, where size and optimal length for each instance are given. 
 
The Parameters 
 
As mentioned before, there is a range of different parameters that needs to be optimised 
in this experiment. It is always best to start working with optimal parameters, but since 
this is not an option for us; some of the parameters must be predetermined.   
 
 
Search length 
  
The search length was set to a value of 2N where N is the number of cities in the current 
step. That value was chosen since we would like to start with a reasonable fast running 
time. 
 
Refinement 
  
As a refinement method the 2.5-Opt was chosen since we wanted to investigate the 
performance of this method.  
 
 
Temperature decrement factor  
 
The Temperature decrement factor is set to 0.99.  Since we hope that this value will give 
us finer resolution, when we test methods that perform nearly identical. 
 
Chance of accepting move at start 
 
Was set to a value recommenced in [21] 30%. 
 
Selection Method  
 
The Nearest Neighbour  (N.N) selection method was selected for coarsening. Since the 
principle behind this selection is well tested in other TSP studies, it should therefore 
perform well for our use.  
 
 
Method of extraction  
 
This is the parameter that needs to be tested first, since it can have an important effect on 
the rest of the scheme. Therefore there is no initial method set here.  
 
 
 
 



 56 

6.1 Effect of Different Extraction Methods on the Extension 
Step 
 
Two different methods for extraction has been developed, see Chapter 5.5. Since the 
extension step is important for the experiment, we have to be sure that we use the best 
possible method for this step. The two different methods was BESTFIT and RANDOM. 
 
Table 6.1.0 Experiment settings: 
 
Parameters 
 

Value 

Search length 2N 

Refinement 2.5-Opt 

Temperature decrement factor 0.99 

Chance of accepting move at start 30% 

Selection Method Nearest Neighbour 

Method of extraction Varies 

 

 
 
We choose to use a set of different test instances for this experiment. The two extraction 
methods on different instances after each step of extraction are then compared. The object 
is to see if there is a difference in the quality after each extension step.  The table uses 
normalised values; they are obtained by taking the length produced by RANDOM 
divided by the length produced by BESTFIT. This produces an easy to understand table 
for comparison, where 1 is equal. If the value is larger then 1; RANDOM produces a 
longer tour after extension. If the value is less then 1, RANDOM produces a length 
shorter then BESTFIT. 
  
Table 6.1.1 Compares the two different methods for extraction of a set of graphs after 
each extraction. 
 

Step: pr1002 d1291 u2319 rl5915 brd14050 average 
6 1.291 1.197 1.147 1.200 1.175 1.202 
5 1.188 1.203 1.140 1.183 1.149 1.173 
4 1.243 1.154 1.154 1.114 1.170 1.167 
3 1.219 1.195 1.162 1.160 1.160 1.179 
2 1.182 1.158 1.167 1.165 1.146 1.163 
1 1.116 1.144 1.163 1.174 1.181 1.156 
0 1.164 1.183 1.169 1.188 1.174 1.175 

 
 
 



 57 

Conclusion: 
 
From the table it can easily be seen that RANDOM extraction produces results with 
lower quality than BESTFIT. Since after each step of extraction on all instances the result 
by using RANDOM is worse the results from BESTFIT.  
RANDOM produces inn fact tours that are always in average 1.15 times longer than 
BESTFIT. Therefore the use of the BESTFIT method propagates better the quality from 
the past refinement step. The difference is also nearly equal on all steps for each instance.  
 
 
 
6.2 Coarsening Size for Recursive Coarsening 
 
Since it is important to test when the coarsening for the Recursive scheme should be 
halted, we choose to test different coarsening sizes on different tables. The idea is that by 
reducing the size of the problem to 10% would be sufficient. We compared the results 
obtained by reducing it first to 20% and then to 50%.   
 
 
Table 6.2.0 Experiment settings: 
 
Parameters 
 

Value 

Search length 2N 

Refinement 2.5-Opt 

Temperature decrement factor 0.99 

Chance of accepting move at start 30% 

Selection Method Greedy 

Method of extraction BESTFIT 

 

 
 
In this normalized table we have used the result from our assumed reduction to 10% by 
dividing the results from the other settings by the results produced by reducing it to 10%. 
 
Table 6.2.1 Compares the coarsening size for Recursive coarsening 
 

Name: pr1002 rl5915 pla7397 
20% 1.005 1.017 1.014 
50% 1.015 1.138 1.127 

 
From the table it is obviously that the reduction to 10% produces better results then both 
of the two other sizes. But the quality increase obtained by reducing the number of cities 



 58 

on the MAP from 20% to 10% is too small to let us believe it is useful to reduce the 
instances any more. We can therefore conclude that it is enough to coarsen the instances 
to a size where only 10% percent of the cities are active.   
 
 
 
 
6.3 Comparing the Different Methods of Selection for 
Recursive Coarsening 
 
The development and testing of the different methods of coarsening, is one of the main 
goals of this paper.  
The experiment has three parts:  
Testing different selection methods for Recursive coarsening 
Testing different selection methods for Direct coarsening methods 
Comparing Recursive coarsening with Direct coarsening. 
 
Testing different selection methods for Recursive coarsening is best done by comparing 
the results from runs on the same instance with different selection methods. 
 
A set of test instances where selected, and as for the previous experiments normalized 
values is used. 
 
Table 6.3.0 Experiment settings: 
 
Parameters 
 

Value 

Search length 2N 

Refinement 2.5-Opt 

Temperature decrement factor 0.99 

Chance of accepting move at start 30% 

Selection Method Varies 

Method of extraction BESTFIT 

 
 
 
In these tables the normalized values are calculated by taking the result value from the 
row and divide it by the value in the column. The tables are therefore best read row by 
row. As for the last experiment 1 is equal, larger then 1 is longer and less then 1 is 
shorter. 

 



 59 

Table 6.3.1 Compares the different methods of selection with the Recursive coarsening 
scheme. 
 

Name: 
pr1002 N.N Greedy Min Sum Square Radius Random 

N.N 1.000 1.002 0.983 0.968 0.833 0.584 
Greedy 0.998 1.000 0.981 0.966 0.831 0.583 
Min Sum 1.017 1.019 1.000 0.985 0.847 0.594 
Square 1.033 1.035 1.015 1.000 0.860 0.603 
Radius 1.200 1.203 1.180 1.162 1.000 0.701 
Random 1.712 1.715 1.683 1.657 1.426 1.000 

 
Table 6.3.2 Compares the different methods of selection with the Recursive coarsening 
scheme. 
 
 

Name: 
rl1323 N.N Greedy Min Sum Square Radius Random 

N.N 1.000 1.028 0.975 0.760 0.793 0.501 
Greedy 0.973 1.000 0.949 0.740 0.772 0.487 
Min Sum 1.025 1.054 1.000 0.780 0.813 0.514 
Square 1.051 1.080 1.025 1.000 0.834 0.527 
Radius 1.261 1.295 1.229 0.958 1.000 0.631 
Random 1.996 2.051 1.947 1.518 1.584 1.000 

 
Table 6.3.3 Compares the different methods of selection with the Recursive coarsening 
scheme. 
 
 

Name: 
u2319 N.N Greedy Min Sum Square Radius Random 

N.N 1.000 1.010 1.015 0.956 0.839 0.597 
Greedy 0.990 1.000 1.005 0.946 0.830 0.591 
Min Sum 0.985 0.995 1.000 0.941 0.826 0.588 
Square 1.046 1.057 1.062 1.000 0.877 0.625 
Radius 1.193 1.204 1.211 1.140 1.000 0.712 
Random 1.674 1.691 1.700 1.600 1.404 1.000 

 
Table 6.3.4 Compares the different methods of selection with the Recursive coarsening 
scheme. 
 
 

Name: 
rl5915 N.N Greedy Min Sum Square Radius Random 

N.N 1.000 1.029 0.949 0.939 0.719 0.361 
Greedy 0.972 1.000 0.922 0.913 0.699 0.351 
Min Sum 1.054 1.084 1.000 0.990 0.758 0.380 
Square 1.065 1.096 1.010 1.000 0.765 0.384 
Radius 1.392 1.431 1.320 1.307 1.000 0.502 
Random 2.773 2.852 2.631 2.604 1.993 1.000 



 60 

 
Table 6.3.5 Compares the different methods of selection with the Recursive coarsening 
scheme. 
 
 

Name: 
pla7397 N.N Greedy Min Sum Square Radius Random 

N.N 1.000 1.032 0.996 0.971 0.785 0.301 
Greedy 0.969 1.000 0.965 0.941 0.761 0.292 
Min Sum 1.004 1.036 1.000 0.975 0.788 0.302 
Square 1.030 1.063 1.026 1.000 0.808 0.310 
Radius 1.275 1.315 1.269 1.237 1.000 0.384 
Random 3.323 3.427 3.309 3.226 2.607 1.000 

 
Table 6.3.6 Compares the different methods of selection with the Recursive coarsening 
scheme. 
 

Average: N.N Greedy Min Sum Square Radius Random 
N.N 1.000 1.023 0.976 0.910 0.783 0.437 
Greedy 0.978 1.000 0.954 0.890 0.766 0.428 
Min Sum 1.025 1.048 1.000 0.933 0.802 0.448 
Square 1.045 1.069 1.019 1.000 0.817 0.456 
Radius 1.282 1.311 1.250 1.166 1.000 0.555 
Random 2.451 2.511 2.393 2.251 1.903 1.000 

 
 
Conclusion 
 
The test experiments from the selection methods for Recursive coarsening show us that 
the result of each of the methods had better quality than the Random selection method. 
This clearly indicates that the different selection methods have an effect. Greedy 
produces clearly the best results since on nearly all instances it produces better results 
than the other methods. Nearest Neighbour is good second with MinSum and Square 
producing nearly equal results. Radius clearly produces a worse tour than the other 
methods but it still works better then the Random selection.        
 
 
 
 
 
 
 
 



 61 

 
6.4 Comparing the Difference Between the Methods of Direct 
Coarsening. 
 
 
The goal of this experiment is the same as for the Recursive coarsening.  
We wish to find the best overall selection method to be used with our MLS 
 
Table 6.4.0 Experiment settings: 
 
Parameters 
 

Value 

Search length 2N 

Refinement 2.5-Opt 

Temperature decrement factor 0.99 

Chance of accepting move at start 30% 

Selection Method Varies 

Method of extraction BESTFIT 

 
A set of test instances where selected, and as for the previous experiments normalized 
values is used. 
 
In these tables the normalized values are calculated by taking the result value from the 
row and divide it by the value in the column. The tables are therefore best read row by 
row. As for the last experiment 1 is equal, larger then 1 is longer and less then 1 is 
shorter. 
  
 
Table 6.4.1 Compares the different methods of selection with the Direct coarsening 
scheme. 
 

pr1002 N.N Greedy Min Sum Radius Random 
N.N 1.000 1.026 1.006 0.900 0.607 
Greedy 0.975 1.000 0.980 0.878 0.592 
Min Sum 0.994 1.020 1.000 0.895 0.604 
Radius 1.111 1.139 1.117 1.000 0.674 
Random 1.647 1.689 1.656 1.483 1.000 

 
 
 
 
 



 62 

Table 6.4.2 Compares the different methods of selection with the Direct coarsening 
scheme. 
 

rl1323 N.N Greedy Min Sum Radius Random 
N.N 1.000 1.037 1.010 0.855 0.507 
Greedy 0.964 1.000 0.974 0.824 0.489 
Min Sum 0.990 1.027 1.000 0.846 0.502 
Radius 1.170 1.214 1.182 1.000 0.593 
Random 1.972 2.046 1.993 1.685 1.000 

 
Table 6.4.3 Compares the different methods of selection with the Direct coarsening 
scheme. 
 

u2319 N.N Greedy Min Sum Radius Random 
N.N 1.000 1.007 1.006 0.888 0.611 
Greedy 0.994 1.000 1.000 0.882 0.608 
Min Sum 0.994 1.000 1.000 0.882 0.608 
Radius 1.126 1.134 1.133 1.000 0.689 
Random 1.635 1.646 1.645 1.452 1.000 

 
Table 6.4.4 Compares the different methods of selection with the Direct coarsening 
scheme. 
 

rl5915 N.N Greedy Min Sum Radius Random 
N.N 1.000 1.089 1.025 0.780 0.347 
Greedy 0.918 1.000 0.941 0.716 0.319 
Min Sum 0.975 1.063 1.000 0.760 0.339 
Radius 1.283 1.397 1.315 1.000 0.445 
Random 2.880 3.138 2.953 2.246 1.000 

 
Table 6.4.5 Compares the different methods of selection with the Direct coarsening 
scheme. 
 

pla7393 N.N Greedy Min Sum Radius Random 
N.N 1.000 1.073 1.041 0.862 0.306 
Greedy 0.932 1.000 0.970 0.804 0.285 
Min Sum 0.961 1.031 1.000 0.829 0.294 
Radius 1.159 1.244 1.207 1.000 0.354 
Random 3.272 3.511 3.406 2.822 1.000 

 
Table 6.4.6 Compares the different methods of selection with the Direct coarsening 
scheme. 
 

Average N.N Greedy Min Sum Radius Random 
N.N 1 1.0464 1.0176 0.857 0.4756 
Greedy 0.9566 1 0.973 0.8208 0.4586 
Min Sum 0.9828 1.0282 1 0.8424 0.4694 
Radius 1.1698 1.2256 1.1908 1 0.551 
Random 2.2812 2.406 2.3306 1.9376 1 

 



 63 

 
 
Conclusion: 
 
The Direct selection methods reproduce nearly the same results as the Recursive selection 
methods. But the difference between the different selection methods has changed 
somewhat. The Greedy method produced the best results in Direct coarsening as in 
Recursive coarsening, and all methods still produces better results than the Random 
selection. But the difference between the selection methods is less; N.N and Min Sum 
produce nearly identical results, especially in the smaller instances. The difference 
between Greedy and N.N is also less. Radius selection still produces the weakest result 
but the difference is less in the Direct scheme then in the Recursive scheme.  
 
 
 
 
 
6.5 Comparing the Difference Between Direct and Recursive 
Coarsening 
 
The last experiment for the different coarsening schemes is to compare the result from 
Direct coarsening with the Recursive coarsening selection. Since the last two experiments 
showed the different qualities for each selection type, this experiment compares the result 
from the Recursive method with its Direct counterpart.  
 
 
 
Table 6.5.0 Experiment settings: 
 
Parameters 
 

Value 

Search length 2N 

Refinement 2.5-Opt 

Temperature decrement factor 0.99 

Chance of accepting move at start 30% 

Selection Method Varies 

Method of extraction BESTFIT 

 
In this table we have calculated the normalized values by dividing the result from the 
Recursive scheme with the result of the Direct scheme. If the value is larger then 1, the 
Recursive scheme is longer then the Direct. If it is less then 1, the Recursive scheme is 
shorter. 



 64 

 
 
Table 6.5.1 Compares the difference between the Recursive and Direct coarsening 
scheme for each of the selection methods.  
 

 pr1002 rl1323 u2319 rl5915 pla7397 Average: 
NN 0.991 1.006 1.007 1.034 1.010 1.010 
Radius 1.071 1.084 1.066 1.122 1.110 1.091 
Min sum 1.014 1.043 0.998 1.118 1.055 1.046 
Greedy 1.015 1.016 1.004 1.095 1.050 1.036 
Random 1.030 1.019 1.031 0.996 1.025 1.020 

 
 
 
 
 
Conclusion: 
 
Comparing the two different coarsening schemes it is obvious that the Direct coarsening 
performs better than the Recursive coarsening, for all the different selection methods.  
 
This can only lead us to one conclusion.  The Direct MLS is more powerful than the 
Recursive MLS. This means that the experiments of N. Bouhmala[18] where he shows us 
that the Direct scheme produces higher quality for Graph Partioning also holds for the 
Travelling Salesman Problem. An interesting observation is that this also holds for the 
Random selection method and we can therefore conclude that it is the coarsening scheme 
that produces the improvement effect. It can also be read from the table that the 
difference varies.  Radius clearly produces a better result for Direct coarsening while the 
difference is very little for Nearest Neighbour.     
 
 
 
 
 
6.6 Simulated Annealing Adaptations 
 
As mentioned before S.A parameters needs to be tweaked before they work correctly. 
The best selection method and best scheme has now been identified; it is therefore now 
possible to start to adjust S.A so that it produces the best possible results with our best 
MLS. 
  
 
6.6.1 The Length of the Search Path 
 
The length of the search path needs to be determined. There are two obvious choices for 
search path length, either a constant multiplier, or a variable dependent on the size of the 
map. The length of the search path is one of the main contributors to the running time for 



 65 

S.A. The running time of S.A depends on the following factors M*N*T*K: Where K is 
the time for each perturbation, T is the number of temperature decreasing steps, M*N is 
the length of the search path which is a multiplier M of the Size of the problem N.  
The search length is also dynamic because the Simulated Annealing does not lower the 
temperature before it reaches equilibrium. The solution reaches equilibrium if it has not 
change more than 2% in the last search step. Therefore, since we use this equilibrium 
condition, a constant value for M should be enough. 
 
Table 6.6.1.0 Experiment settings: 
 
Parameters 
 

Value 

Search length Varies 

Refinement 2.5-Opt 

Temperature decrement factor 0.99 

Chance of accepting move at start 30% 

Selection Method Greedy 

Method of extraction BESTFIT 

 
  
The two graphs pr1002 and u2319 was selected for this experiment, the size is an 
important factor here, because testing for M close to N takes a long time, but the instances 
should sample the problem space well enough. 
 

pr1002

275000

280000

285000

290000

N N*2 N*4 N*8 N*14 N*20 N*N/40 N*N/20 N*N/12

 Plot 4.6.1.1 shows the length for different values of M on the graph pr1002. 
 
 
 
 
 



 66 

u2319

240000

245000

250000

255000

260000

N N*2 N*4 N*8 N*14 N*20 N*N/40 N*N/20 N*N/12

  
 Plot 4.6.1.2 shows the length for different values of M on the graph u2319. 
 
 
Conclusion: 
 
As one can see from the figures, a value of M=20 are well within the range where the 
solution for both instances stabilises. Then, if M is selected to be equal to 20, it should 
represent a sufficient value for M for most graphs to reach stability.  
  
6.6.2 The Probability of Accepting Moves and the Temperature 
Decrement  
 
The Probability of Accepting Moves  
 
The start probability of accepting moves was proposed by N. Bouhmala [21] to be 30%. 
By experimenting with this value we found that the quality decreases slightly by reducing 
it to 20%. Reducing the value to 10% resulted in an increase of more then 5% difference 
in length compared with a value of 30%. By increasing the value to more then 30% there 
is a slightly gain but not enough compared to the increase in running time. Hence a value 
between 10% and 40% gave us the best results. The difference between 30% and 20% 
showed that 30% was a bit better than 20% but with an increase in running time. This 
time could be utilized in a different place to get better results. So a value of 25% for this 
variable is sufficient.  
 
The Temperature Decrement 
 
The temperature decrement is also an important factor in the total running time for 
Simulated Annealing. Usually in the literature this factor is set to be 0.95 [1][21]. Values 
from 0.90 to 0.99 were tested. A factor higher than 0.99 gives a higher quality but the 
running time increases very fast. Values lower then 0.90 results in a fast running time, but 
a lower quality solution. 0.95 is on average approximately 6% longer then 0.99 and 0.90 
is about 8% longer than 0.95. 
So on small graphs, sizes<104, a decrement factor of 0.99 can be used without problems. 
On sizes larger then 104 a decrement factor of 0.95 gives us a reasonable result.  
 



 67 

 
Table 6.6.2.0 Experiment settings: 
 
Parameters 
 

Value 

Search length 2N 

Refinement 2.5-Opt 

Temperature decrement factor 0.99/Varies 

Chance of accepting move at start Varies/25% 

Selection Method Greedy 

Method of extraction BESTFIT 

 
 
 
 
The probability of accepting moves was performed with a temperature decrementing 
factor of 0.99. The temperature decrement factor was done with a probability of 
accepting moves at start of 25%. 
 
 
 
6.6.3 Comparing the Different Methods of Permutation 
 
Permutation is the most important part of the Simulated Annealing. It is the permutation 
that allows us to find the new solutions. Usually the permutation method is a K-Opt 
move, and we have focused on some of the best-known versions. We found it necessary 
to test several methods, since it would be interesting to see if there is a best possible 
permutation method that can be used with our MLS. We would also like to know if the 
quality discussion of different permutations discussed in [1], also holds for input 
produced by the MLS.  
 
After some research into the field of local search strategies we decided to test the 
following permutations: Exchange, 2-Opt, 2.5-Opt and 3-Opt. All these permutations are 
described in detail in Chapter 3.2, and they can also be found presented in Appendix 1.  
 
 
 
 
 
 
 
 
 



 68 

Table 6.6.3.0 Experiment settings: 
 
Parameters 
 

Value 

Search depth 2N 

Refinement Varies 

Temperature decrement factor 0.99 

Chance of accepting move at start 30% 

Merging Method Greedy 

Method of extraction BESTFIT 

 
 
As for the tables calculated for the selection experiments, these tables have normalized 
values. They are calculated by taking the resulting value from the row and divide it by the 
value in the column. The tables are therefore best read row by row. As for the last 
experiment 1 is equal, larger then 1 is longer and less then 1 is shorter. 
 
 
Table 6.6.3.1 Compares the different methods permutation  
 

pr1002 2-Opt 3-Opt 2.5-Opt Exchange 
2-Opt 1.000 1.202 1.214 0.868 
3-Opt 0.832 1.000 1.010 0.722 
2.5-Opt 0.823 0.990 1.000 0.715 
Exchange 1.151 1.385 1.398 1.000 

 
Table 6.6.3.2 Compares the different methods permutation 
 

u2319 2-Opt 3-Opt 2.5-Opt Exchange 
2-Opt 1.000 1.165 1.166 0.936 
3-Opt 0.858 1.000 1.001 0.804 
2.5-Opt 0.858 0.999 1.000 0.803 
Exchange 1.068 1.244 1.245 1.000 

 
Table 6.6.3.3 Compares the different methods permutation 
 

rl5915 2-Opt 3-Opt 2.5-Opt Exchange 
2-Opt 1.000 1.453 1.377 0.953 
3-Opt 0.688 1.000 0.948 0.655 
2.5-Opt 0.726 1.055 1.000 0.692 
Exchange 1.050 1.526 1.446 1.000 

 
 
 
 



 69 

Table 6.6.3.4 Compares the different methods permutation 
 

pla7397 2-Opt 3-Opt 2.5-Opt Exchange 
2-Opt 1.000 1.417 1.348 0.903 
3-Opt 0.706 1.000 0.951 0.637 
2.5-Opt 0.742 1.051 1.000 0.670 
Exchange 1.108 1.570 1.493 1.000 

 
Table 6.6.3.5 Compares the different methods permutation 
 

brd14051 2-Opt 3-Opt 2.5-Opt Exchange 
2-Opt 1.000 1.368 1.266 0.997 
3-Opt 0.731 1.000 0.926 0.729 
2.5-Opt 0.790 1.080 1.000 0.788 
Exchange 1.003 1.372 1.270 1.000 

 
 
 
 
Conclusion: 
 
The test showed clearly that a weaker than 2-Opt method gave no gain in quality, and the 
use of such a method is therefore of no value in this case. The 2-Opt permutation 
produced acceptable quality for small instances, but for the larger instances the quality 
deteriorates quickly. The overall best permutation method was 3-Opt, but 2.5-Opt had 
approximately the same quality on the small graphs as 3-Opt. But since 2.5-Opt 
deteriorates in quality on larger instances, 3-Opt is better then 2.5-Opt.  
The results found were comparable with the results from the comparison of different 
local search methods done in [1].  It is therefore possible to conclude that our scheme 
works as a regular TSP problem, also in the field of permutations. We can therefore get 
improved results by using a 3-Opt permutation when our result-tables are generated. 
 
 
 
6.7 Reference Results 
 
For every Travelling Salesman solver created it is important to provide reference-results. 
In that way other researchers can recreate or compare their results with ours. 
As said in Chapter 2.3 it was recommended in [1] to provide such results and use a 
problem set available for every interested researcher. We selected a set of instances from 
the TSPLIB packet, since instances from that packet are included in many studies of the 
Travelling Salesman Problem, and results are available from other researchers on the 
DIMACS [7] web site.  The results provided is performed by using the best settings 
found in Chapter 6: The GREEDY selection method, combined with the Direct 
coarsening scheme, the extraction method BESTFIT and the different settings for 
Simulated Annealing. We used these settings on different instances to produce a 
reference table for a set of standard graphs.  



 70 

The results provided can also be used by students who creates other coarsening schemes 
as reference for comparing their results; see Appendix 4 for further research possibilities.  
 In the table we present the results from Simulated Annealing, and for Simulated 
Annealing used as a greedy method. S.A is turned into this greedy version by setting the 
start temperature to 0, there by not allowing any uphill moves. The results are presented 
in percent excess longer than the optimal tour length. The reason for choosing to present 
also the result for the greedy S.A, is that it is a good tool for comparison when studying 
the effect of the S.A. Also included are the results from C.Walshaws Multilevel Lin-
Kernighan (MLLK) [19]. The results can also be found in Appendix 2 where a table 
presents the actual average length found for each instance.    
 
 
 
Table 6.7.0 Experiment settings: 
 
Parameters 
 

Value 

Search depth 20N 

Refinement 3-Opt 

Temperature decrement factor 0.95 

Chance of accepting move at start 25% 

Merging Method Greedy 

Method of extraction BESTFIT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 71 

 
Table 6.7.1 Presents the reference results 
 

Name %ex S.A normal %ex S.A Greedy %ex MLLK 
dsj1000 5.11 8.34 1.419 
pr1002 5.33 7.02 2.093 
u1060 5.29 6.29 1.703 
vm1048 7.01 7.28 1.456 
pcb1173 8.71 10.49 2.482 
d1291 12.93 17.15 4.252 
rl1304 7.25 9.89 1.282 
rl1323 7.71 10.86 1.541 
nrw1379 6.11 7.97 1.49 
fl1400 3.77 5.65 1.168 
u1432 6.7 9.62 2.108 
fl1577 4.88 11.31 2.71 
d1655 11.16 13.17 2.377 
vm1748 8.33 8.39 1.958 
u1817 12.82 15.56 3.5 
rl1889 8.12 9.23 2.227 
d2103 14.97 15.22 3.961 
u2152 13.66 16.04 3.15 
u2319 4.97 7.26 0.599 
pr2392 7.86 9.49 2.489 
pcb3038 10.25 11.36 1.944 
fl3795 8.74 8.15 1.668 
fnl4461 9.96 8.54 1.46 
rl5915 17.21 14.05 2.152 
rl5934 16.96 12.77 1.936 
pla7393 12 9.47 1.724 
usa13509 18.19 9 1.586 
brd14051 18.73 8.66  
d15112 16.18 8.57  
d18512 19.44 9.36  

 
 
Comments:   
 
The low quality in the larger instances is explained by the fact that the standard 
Simulated Annealing did not reach equilibrium on these instances within the constrains 
set by us. We can demonstrate this by comparing with the Greedy S.A where the quality 
for the larger instances is within the same result area as for the smaller instances.  This 
effect is also visible in the experiments where the different selection methods were tested, 
where the Random selection produces a clearly weaker result. This is caused by the fact 
that S.A does not reach equilibrium for Random selection. The reason for this where that 
not enough work had been done on the larger instances before they reached the point of 
freezing.  This where observed by lowering the temperature before the freezing test 
started. It was then possible observe that the quality improved for the larger graphs, but 
not for the smaller graphs. Since our goal was to produce a table where the same settings 
were used for all instances, we kept the above values.  



 72 

 
 
Comparing the Results with Multi Level Linn Kernighan 
 
It can be easily read from table 6.7.1 that our results have weaker quality than the results 
produced by Multi Level Linn Kernighan (MLLK). Since MLLK is wrap around the 
Concorde TSP solver, we know that the refinement used in that scheme is perfected. By 
observing the differences in quality produced by MLLK, we can see that where MLLK 
produces weaker then average results. We also produce weaker then average results. This 
holds for all instances, so the results are possibly consistent. 
But it looks like our results were weakened by not perfect implementation of the 
refinement method. This is one of the topics in the next chapter.   
 
 

Chapter 7 Concluding the Experiments 
 
7.1 An Overview of the Experiments 
 
In Chapter 5 the two developed coarsening schemes for the Travelling Salesman 
Problem, Recursive and Direct, were argued to hold the multilevel conditions from 
Chapter 4. Therefore they could be used to test the different aspects of the MLS. 
Using the two different coarsening schemes proposed, we where able to test the different 
selection methods developed. In the experiments where the different selection methods 
was compared, the methods that were former tour construction heuristics was the 
champions, with the Greedy method as the one producing the highest quality.  
By comparing the two different coarsening schemes for the different selection methods, 
the Direct coarsening method produced highest quality overall for all the different 
selection methods.  
Since the Greedy method was the best selection method for the Direct coarsening scheme 
as well as for the Recursive coarsening scheme, the best combination for a coarsening 
scheme for the Travelling Salesman Problem according to my experiments would be:  
The combination of the Greedy selection method and the Direct coarsening scheme. 
 
 
7.2 The Quality Gap Between Direct and Recursive coarsening 
 
One of the more interesting discoveries was the difference in quality produced between 
the Recursive and the Direct coarsening scheme. In the graph partitioning paper of N. 
Bouhmala [18], it was shown that the Direct scheme produced higher quality than the 
Recursive scheme. By the comparison of the two different types of coarsening it was 
interesting to observe that this also holds for problems of the TSP type.  
When we compared the two different coarsening schemes in Chapter 6, it is shown that 
the Direct coarsening scheme propagates clearly a better solution than the Recursive 
version. This also holds when the Random selection method is used.  



 73 

Our observations can only lead to one conclusion: Somewhere in the Recursive scheme 
quality is lost. Since the refinement method should perform equally for the two 
coarsening schemes, we can assume that the quality is for some reason lost in the 
extension step. We can identify where the quality is lost in the Recursive scheme, by 
studying where the two different methods perform most of their work. 
The main difference between the two methods is the number of cities added to the tour 
for each un-coarsening step. Since Recursive clusters are merged as binary trees, the 
current graph size is doubled for extension step. This leads to a problem in the last step 
where the graph is expanded from 50% to 100% graph size. In the Direct scheme this 
step size can be calculated by the formula (100/X) % where X is the number of cities in a 
Direct cluster. For an average value of 4, X would be ca 25% approximately for the 
Direct version. The step of 50% is probably too large for the extension method to cope 
with, and less quality is propagated from the previous refinement step. This makes the 
Recursive method top heavy compared with the Direct version that spreads the work out 
more evenly. 
   
 
 
7.3 The Method of Extraction is Important 
 
The extraction step is where the new start solution shall be created from the old refined 
solution. This step is important since it is here the quality found in the last refinement 
step shall be conserved and propagated to next step. In Chapter 6 it was shown that it is 
not enough to just perform a random placement. Comparing the two different extraction 
methods in Chapter 6, demonstrates that the simple BEST FIT method transfers a higher 
quality from the lower level than the RANDOM method. The experiments performed on 
the extension step demonstrate that in this step, quality affecting the whole solution can 
be lost.   
  
 
7.4 The Best Selection Method was Greedy 
 
The difference between Greedy and the other selection methods was nearly the same for 
the different coarsening schemes. Greedy outperformed all the different selection 
schemes, on nearly all the different graphs. This result could be anticipated since the 
Greedy selection method was modelled after the Greedy tour construction heuristic. The 
Greedy tour construction algorithm is shown to function well in [1], and shown there to 
produce higher quality tours than the Nearest Neighbour tour construction heuristic. We 
anticipated that this result should hold also for a selection scheme based on the two 
heuristics. Since the methods based on tour construction heuristics produced the best 
results, it tells us that more advanced tour construction heuristic can possibly be a base 
for further studies into this field, see Appendix 4. 
 
7.5 The Simulated Annealing Adaptation: 
 



 74 

To find a universal setting for Simulated Annealing was problematic. The work 
performed to find the different settings lead us to the following conclusions: The best 
permutation method was 3-Opt. This is demonstrated in the experiment described in 
Chapter 6.6.3. The task of finding a universal setting of search length and temperature 
settings was more difficult. Especially a constant setting for M in the search length was 
hard to identify, but an acceptable value was found in Chapter 6.6.1 and further used to 
produce the results for the reference table. The temperature decrement factor was also 
hard to set correctly. Decreasing it always lead to an increase in quality but also an 
increase in running time. Most authors recommended 0.95[1][21] and we chose therefore 
to use that value in the all graph reference table. In the comparing experiments the value 
was set to 0.99 to create higher resolution, to be able to discern the trends better.  The 
correct settings for S.A were difficult to identify, and as discussed before, equilibrium 
was not reached with our version of Simulated Annealing for the larger graphs. This fact 
can be explained by different factors but mainly it looks like the solution did not reach 
stability before it was stopped by the freezing point test. We can therefore conclude that 
not enough work was performed by the refinement method on the larger instances for it 
to be able to reach equilibrium on them. 
 
 

Chapter 8 Concluding the Thesis  
 
 
In this paper two different schemes for the multilevel structure has been developed, tested 
and compared with each other. A set of selection methods has been developed and tested 
for the two MLS developed, and the best combination was found. The Simulated 
Annealing was adapted to work in the ML environment and different settings for S.A, 
was tested until a universal best was found.  The best settings were used to produce a 
reference table for further studies.  
We found that the ML-Scheme with S.A did not produce a result with the quality we 
hoped for in the beginning of this project. The reasons were discovered and possible 
ways to work around this problem is proposed in Appendix 4 further research 
possibilities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 75 

References: 
 
[1] The Travelling Salesman Problem: A case study in local optimization by  
       David S. Johnson and Lyle A. McGeoch 1995 
 
[2] Introduction to ALGORITHMS   
     MIT Press 
     Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest 1998 
 
[3] Web source: 
       http://mathworld.wolfram.com/IcosianGame.html  
       Eric W. Weisstein (Last Update 1999) 
 
[4] The history of combinatorial optimization (till 1960) 
      Alexander Schrivjer  
 
[5] Web Source: 
      http://www.math.princeton.edu/tsp/milestone.html 
      William J. Cook (bico@math.princeton.edu) (Last Update March 2002) 
 
[6] Ulysses 2000: In Search of Optimal Solutions to Hard Combinatorial Problems,    
      Technical Report, New York University Stern School of Business. 
      M. Grötschel and M. Padberg, (1993). 
 
[7] Web Source: 
      http://www.research.att.com/~dsj/chtsp/ 
      David S. Johnson (Last Update 19 June 2002) 
 
[8] Web Source: 
      http://mie.eng.wayne.edu/faculty/chelst/informs/case-studies/metelco.htm 
      Anonymous; Industrial and Manufacturing Department - Wayne State 
      University (Last Update 18 August 1997)  
 
[9] Models of computation, Exploring the Power of Computing 
      Addison Wesley Publishing Company 
      John E. Savage 1998 
 
[10] Web Source: 
        http://www.ncbi.nlm.nih.gov/genome/rhmap/ 
        Richa Agarwala (Last Update Not Posted)       
 
[11] Fuel-Saving Strategies for Dual Spacecraft Interferometry Missions 
        Journal of the Astronatical Sciences Volume 49, No. 3 
       Christopher A. Bailey, Timothy W. McLain, Randal W. Beard  
 
 



 76 

[12] Powering the Last Mile   
       Alpha Technologies white papers 
       Thomas H. Sloane Kurt Gutierrez 1997 
  
[13] Web Source:  
        http://www.math.princeton.edu/tsp/apps/dna.html 
        William J. Cook (bico@math.princeton.edu) (Last Update December 5, 2001) 
 
[14] Asymptotic Experimental Analysis for the Held-Karp Traveling Salesman Bound 
       proceedings of the 7th annual ACM-SIAM Symposium on Discrete Algorithms(341-             
350). D. S. Johnson L. A. McGeoch E. E. Rothberg 1996 
 
[15]   Euclidean TSP is NP-complete.  
         Theoretical Computer Science, 4:237-244, 
         C. H. Papadimitriou 1977  
 
[16]  The travelling-salesman problem,  
        Operations Research 4, 61-75 
        M.M. Flood 1956 
 
[17] Optimization by Simulated Annealing, 
        Scince, 220, No. 4598. 498-516, 
        S. Kirkpatrick, C. Gelatt, Jr., and M. Vecchi  1983 
 
[18] An experimental comparison of Different graph coarsening schemes 
        Noureddine Bouhmala  
 
[19] A Multilevel approach to the travelling salesman problem 
        Mathematics research report 00/IM/63        
        Chris Walshaw 2000 
 
[20] Calculus a complete course Third Edition  
        Addison Wesley Publishing Company 
        Robert A. Adams 1995 
  
[21] Correspondence: 
        Simulated Annealing  
        Noureddine Bouhmala  2001 
 
[22] Web Source: 
        http://www.math.princeton.edu/tsp/concorde.html 
        William J. Cook (bico@math.princeton.edu) (Last Update 3 July  2001.) 
 
[23] Computer Simulation Methods,  
        Addison-Wesley Publishing Company 
        H. Gould, J. Tobochnik 1988. 



 77 

 
[24]  Introduction to the theory of computation  
        PWS publishing company 
        Michael Sipser 1997  
 
[25] Web Source: 
        http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ 
        Gerhard Reinelt (Last Update 6 December 2001)         
 
[26] Web Source: 
        http://www.research.att.com/~dsj/chtsp/download.html 
        Anonymous (Last Update 28 May 2002) 
 
Reference books used in the programming: 
 
[27] Mastering Algorithms with C 
        O’Reilly & Associates, Inc.  
         Kyle Loudon 1999 
 
[28] C BY EXAMPLE 
       Que Corporation 
       Greg Perry 2000 
 
References used in the preface 
 
[29] Web Source 
       http://www.math.princeton.edu/tsp/travelling.html 
       William J. Cook (bico@math.princeton.edu) (Last Update 22 March 2002.) 
 
[30] Oxford Advanced Learner’s Dictionary of Current English Fifth Edition 
       Oxford University Press  
       Jonathan Crowther, Kathryn Kavanagh, Michael Ashby 1995 
 
[31] http://www.math.princeton.edu/tsp/history/d15112.html 
       William J. Cook (bico@math.princeton.edu) (Last Update 27 March 2002.) 
 
 
 
 
 
 
 
 
 
 



 78 

Appendix 1 Methods Used in Detail 
 
In this appendix some of methods used in our implementation is presented in pseudocode. 
The object is to give the reader a deeper understanding of some important structures, and 
to complement the discussion in Chapter 5. For each method, there is presented a short 
analysis of special elements and a worst-case analysis.  
 
 
 
 
Distance calculating between two cities (clusters)  
 
To calculate the distance from city A to city B, the euclidian distance formula for points 
in the 2D plane is used:  
 
Definition: The euclidian distance formula 
 
For the 2 points in the plane (x1, y1) and (x2, y2) the distance between them equals ¥���[ 2-x1) ² + (y2–y1) ²) [20] 
 
From this formula it is possible to derive a method for calculating the distance between 
two cities in constant time. Since the input type is symmetric, the order of the input 
values A and B is not important. 
 
 
 

Name: DIST CALC 
 

Input: Two cities A, B. 

 
Output: The distance between the two cities. 

 
 

1 i Å(B(x)-A(x)) ²  

2 j Å(B(y)-A(y)) ² 

3 return root (i+j) 
 

 
 
Running time analysis: 
 
All operations are constant time operations; this leads to a constant running time. 
 



 79 

 
Length of Tour calculation  
 
The length of a travelling salesman tour is the sum of the length of every edge in the tour 
se Chapter 1.1. To calculate the tour length, the algorithm walks the travelling salesman 
tour. For each new edge the algorithm traverses, the length of the edge is added to the 
sum of the tour length.  
 
 
 
 

Name: TOUR LENGTH 
 

Input: A TOUR 

 
Output: The total length of the TOUR 

 
 

1 while all edges in TOUR are not yet visited 

1.1 Get next unvisited edge form TOUR  

1.2.1 AÅ Start edge city 

1.2.2 BÅ End edge city 

1.3 distÅdist + Dist Calc (A, B) 

2 return dist 

 

 
 
 
The direction and the starting point of the traversal is not important since the instance is 
symmetric and euclidian, and as long as all the edges are visited this method will produce 
the length of the tour.   
 
Running time analysis: 
 
Since the distance calculation is constant, this operation can be done time order O(N) 
where N is the number of cities in the TOUR.  
 
 
 
 
 



 80 

Nearest Neighbour coarsening 
 
For each of the selection methods, we have chosen presented them in the Recursive 
structure. By comparing the methods with the Direct structure presented in Chapter 5 it is 
easily seen how these selection methods can be converted to the Direct scheme.  
 
 

Name: Nearest Neighbour  
 

Input: MAP 

 
Output: A coarsened level 

 
 

  1. While still unmerged clusters in MAP  

1.1 Select a random cluster A from MAP 

1.2   for all unmerged cities in MAP 

1.2.1   Select B the nearest cluster to A 

1.3 Merge(A, B) 

1.4 Set AB as merged 

 

 
 
 
Comments on operations: 
 
Line 1.2.1: This can be done in two different ways, either with a pre-generated distance 
matrix or by finding the best distance for each merging. This does not affect the order of 
the running time because the creating of the distance matrix takes an order O(N²) running 
time. In practice the running time is in fact shorter for the second option since N 
decreases by two for every iteration.  
 
The running time of the algorithm 
 
The loop in line 1 is executed N/2 times, the loop in line 1.2 is executed N-I times for 
each iteration of N where I increase with 2 for each time the loop is executed. The 
merging operation is constant. So the running time is of order O(N2), where N is the 
number of cities.  
 
 
   



 81 

Greedy coarsening 
 
 

Name: GREEDY  
 

Input: MAP 

 
Output: A coarsened level  

 
 

1.for all cities in MAP  

1.1 Generate entries in the distance matrix 

2.for all cities in MAP 

2.1 Locate the shortest edge 

2.2 Add it to the shortest edge list 

3. While still unmerged cities in MAP 

3.1 for all unmerged cities in map  

3.1.1 locate the shortest edge in the shortest 

edge list. 

3.2 Let A and B be the vertexes connected to the edge   

3.3 MERGE(A ,B) 

3.4 Update the shortest edge list 

 

 
 

 
Comments: 
 
Line 1:  Entries in the distance matrix are found for each city by calculating the distance 
to all other cities on the map. Since the problem is symmetric only the upper triangular 
part of the heuristic needs to be calculated. 
 
Line 2: This creates a list where the shortest edge for each city/cluster is stored. 
 
Line 3.4: The update step is to locate all of the shortest edges with one of the removed 
cities/clusters as endpoints. 
 
 
 



 82 

Running time analysis: 
 
Generating distance matrix in line 1 is done in O(N²) time. Creating the Shortest edge 
List is done in O(N²) time. The loop in line 3 is executed N/2 times. The Loop in line 3.1 
is executed for N-I times where I increase with two for each execution where N is the 
number of cities. Line 3.4 has a running time in K*N where K is the number of edges to 
be updated and K is usually much smaller then N but it is possible to have a value close 
to N.  
This gives us a total running time of O(N2*K). It is also possible, by using a heap 
structure for each node, to get a running time of O(N2logN). But it is not necessarily 
worth the extra implementation work since K is usually much smaller then N.  
 
 
 
Max Min coarsening 
 
 
 
 

Name: MAXMIN  
 

Input: MAP 

 
Output: A coarsened level 

 
 

1.for all cities in MAP  

1.1 Generate entries in the distance matrix 

2.for all cities in MAP 

2.1 Locate the shortest edge 

2.2 Add it to the shortest edge list 

3. While still unmerged cities in MAP 

3.1  for all unmerged cities in MAP 

3.1.1 locate the longest edge in the shortest 

edge list. 

3.2 Let A and B be the vertexes connected to the edge   

3.3 MERGE(A,B) 

3.4 Update the shortest edge list 

   



 83 

 
 
 
Comments: 
 
Line 1:  Entries in the distance matrix are found for each city by calculating the distance 
to all other cities on the map. Since the problem is symmetric only the upper triangular 
part of the heuristic need to be calculated. 
 
 
Line 2: This creates a list where the shortest edge for each city/cluster is stored. 
 
Line 3.4: The update step is to locate all shortest edges where the endpoints was one of 
the removed cities/clusters. 
 
Running time analysis: 
 
Generating distance matrix in line 1 is done in O(N²) time. Creating the Shortest edge 
List is done in O(N²) time. The loop in line 3 is executed N/2 times where N is the 
number of cities. The Loop in line 3.1 is executed for N-I times where I increase with two 
for each execution. Line 3.4 has a running time in K*N where K is the number of edges 
to be updated and K is usually much smaller then N but it is possible to have a value 
close to N. This gives us a total running time of O(N2*K). 
 
 
Square coarsening 
 
 

Name: SQUARE  
 

Input: MAP 

 
Output: A coarsened level 

 
 

1 calculate h 

2 generate the buckets for bucket sort 

3 for all cities in MAP 

3.1 sort the cities in to the buckets using bucket sort  

4 for each bucket 

4.1 Merge with the closes vacant cluster within the 

bucket or one of the adjacent buckets. 



 84 

 
Comments: 
 
Line 2: The number of buckets needs to be calculated to be equal to the number squares. 
 
Line 3.1: By comparing the position of the city/cluster it is straightforward to calculate 
which bucket the city/cluster is placed within. 
 
Line 4.1: This step merges the cities/clusters within each bucket, by a merging method.  
 The same method as C.Walshaw selecting the closest cluster/city where used.  
 
Running time analysis 
 
In line 1 h is calculated in constant time. The calculation of the size of the bucket is done 
in constant time. The loop in line 3 is executed N times. 
The running time of line 4 and 4.1 M*L where M is the number of buckets and L is the 
running time of merging the cities within each bucket giving us a worst case of O(N2). 
 
Radius coarsening 
 
 

Name: RADIUS  
 

Input: MAP 

 
Output: A coarsened level 

 
 

1 Calculate h 

1.2 rÅh/2 

2 while still unmerged cities in MAP 

2.1 randomly select a city A from MAP 

2.2 while no merge candidate had been found 

2.2.1 pick a new B from MAP 

2.2.2 if Dist Calc (A, B)<r 

2.2.2.1 merge candidate found 

             2.3 MERGE(A,B ) 

2.4 remove A and B from MAP 

2.5 if no merge was found remove A from MAP 

 



 85 

 
 
Comments: 
 
Line 1:  h is calculated as explained for Square. 
 
Line 2.5: If there was no city/cluster within the radius the city/cluster is removed and 
cannot be merged before h is increased, in the next level of merging. 
 
Running time analysis: 
 
In line 1 h can be calculated in constant time. The loop in line 2 is executed no more then 
N/2 times. The Loop in line 2.2 is executed less then N  
This gives us a worst case running time of O(N2).  
 
  
 
 
Random coarsening 
    
 

Name: RANDOM  
 

Input: MAP 

 
Output: A coarsened level 

 
 

1 while still unmerged cities in MAP 

1.2 Select a random cluster A from MAP 

1.3 Select a random cluster B from MAP 

1.4 MERGE(A, B). 

1.5 Remove A and B from MAP 

 
 
 
Running Time analysis  
 
Line 1 is executed N/2 times and is the only line in the heuristic without constant running 
time this gives us a total running time of O(N). 
 



 86 

 
RANDOM Extension 
 
 

Name: RANDOM  
 

Input: TOUR 

 
Output: Extended TOUR 

 
 

1 for each cluster in the tour 

1.2 EXTRACT (AB) 

1.3 i ÅRANDOM (1,2)  

1.4 if i ==1  

1.4.1 add the new edge A-B to TOUR where the 

cluster A was 

1.5 else  

1.5.1 add the new edge B-A to the TOUR where the cluster A was  

 
 
 

Running Time: 
 
The loop in Line 1 is executed N times where N is the Number of Clusters before  
the extraction. All other lines are constant time operations. So the running time is O(N). 
 
 
 
 
 
 
 
 



 87 

 
 
 
 
 
Best Fit Extension 
 

Name: BEST FIT  
 

Input: TOUR 

 
Output: Extended TOUR 

 
 

1 for each cluster in the tour 

1.2 extract the cluster in to two clusters A and B 

1.3 xÅ Dist Calc (X, A)+ Dist Calc (A, B) 

+ Dist Calc (B, Y) 

1.4 yÅ Dist Calc (X, B)+ Dist Calc (B, A) 

+ Dist Calc (A, Y) 

1.5 if x<=y  

1.5.1 add the new edge A-B to TOUR where the 

cluster A was 

1.6 else 

1.6.1 add the new edge B-A to the TOUR where the 

cluster A was 
 

 

Comments:  

Line 1.3 and line 1.4 calculates the distance of the two line segments. 

Line 1.5ÆLine 1.6.1 compares the length of the two line segments and inserts the 

shortest configuration to the tour. 

Running time: 

The loop in line 1 is executed N times where N is the Number of Clusters before the 
extraction. All other lines are constant time operations. So the running time is O(N). 
But the constant factor in BEST FIT is larger than RANDOM. 



 88 

Exchange permute 
 
 

Name: EXCHANGE PERMUTATION 
 

Input: TOUR 

 
Output: The changed TOUR, and new length of 

tour 

 
 

1 randomly select a city A from TOUR 

2 remove A from TOUR 

3 add A to TOUR in the position before the next cluster 

4 Recalculate the length of the tour 

 
 
 
2.5-Opt 
 
 
 

Name: 2.5-OPT PERMUTATION 
 

Input: TOUR 

 
Output: The changed TOUR, and new length of 

tour 

 
 

1 randomly select two cities A and B 

2 remove A from the tour  

3 add A in the position before B in the tour 

4 recalculate the new tour length 

 
 
 
 



 89 

2-Opt permute 
  

Name: 2-OPT PERMUTATION 
 

Input: TOUR 

 
Output: The changed TOUR, and new length of 

tour 

 
 

1 randomly select two clusters A and C from TOUR  

2 remove the edge from A to cluster B  

3 remove the edge from C to cluster D 

4 Add a new edge from A to C 

5 Add a new edge from B to D 

6 Recalculate the length of the new tour 

 
 
 
 3.3.2.5 3-Opt permute 
 
 

Name: 3-OPT PERMUTATION 
 

Input: TOUR 

 
Output: The changed TOUR, and new length of 

tour 

 
 

1 Randomly select 3 different cities from the tour A, C and E 

2 Remove edges from A to B, C to D and E to F 

3 Find the best possible way to reconnect TOUR     

   

 
 
 
 
 



 90 

Comments: 
 
Line 3: Because there are 6 different ways to reconnect the graph legally after 3 edges are 
cut, the move gain for each of those has be calculated and compared to find the best 
solution.  
 

Appendix 2 Result table 
 

Name S.A Normal(1) S.A Greedy(2) Optimal length 
dsj1000 19613159 20216530.52 18659688 
pr1002 272862.73 277220.67 259045 
u1060 235944.97 238191.4809 224094 
vm1048 256078.24 256719.3151 239297 
pcb1173 61848.223 62860.5487 56892 
d1291 57371.282 59511.17548 50801 
rl1304 271277.96 277965.7688 252948 
rl1323 291025.98 299537.9101 270199 
nrw1379 60100.395 61150.88654 56638 
fl1400 20885.55 21264.89033 20127 
u1432 163213.2 167692.594 152970 
fl1577 23333.946 24766.09718 22249 
d1655 69061.857 70309.77203 62128 
vm1748 364580.26 364802.4836 336556 
u1817 64533.316 66102.95033 57201 
rl1889 342234.95 345766.3542 316536 
d2103 92496.5 92691.6606 80450 
u2152 73030.23 74557.65995 64253 
u2319 245902.62 251266.8863 234256 
pr2392 407729.38 413914.7589 378032 
pcb3038 151807.13 153334.2312 137694 
fl3795 31286.647 31117.32661 28772 
fnl4461 200743.01 198161.0175 182566 
rl5915 662873.8 644962.8326 565530 
rl5934 650353.49 627027.908 556045 
pla7393 26062569.6 25473219.03 23269728 
usa13509 23617121.55 21780588.88 19982859 
brd14051* 557269.7909 510009.7391 469375 
d15112* 1827542.619 1707873.612 1573040 
d18512* 770659.0438 705598.9887 645230 

 
 
 
 
 
 
 
 
 
 



 91 

 

Appendix 3 TSPLIB 
 
 
This table holds the different instances used from the TSPLIB package.  
The table shows the name of the instance, the size of the instance and optimal length. 
The instances marked with * is within +/- 0.05% of optimal length. 
 

Name Size Optimal 
dsj1000 1000 18659688 
pr1002 1002 259045 
u1060 1060 224094 
vm1048 1048 239297 
pcb1173 1173 56892 
d1291 1291 50801 
rl1304 1304 252948 
rl1323 1323 270199 
nrw1379 1379 56638 
fl1400 1400 20127 
u1432 1432 152970 
fl1577 1577 22249 
d1655 1655 62128 
vm1748 1748 336556 
u1817 1817 57201 
rl1889 1889 316536 
d2103 2103 80450 
u2152 2152 64253 
u2319 2319 234256 
pr2392 2392 378032 
pcb3038 3038 137694 
fl3795 3795 28772 
fnl4461 4461 182566 
rl5915 5915 565530 
rl5934 5934 556045 
pla7393 7393 23269728 
usa13509 13509 19982859 
brd14051* 14051 469375 
d15112* 15112 1573040 
d18512* 18512 645230 

 
 
 
 
 
 
 
 
 



 92 

Appendix 4 Further Research Possibilities 
 
 Other Refinement Methods 
 
Further studies should investigate the impact of different refinement methods with the 
best scheme found in this study. An interesting possibility is to develop a ML interface 
for the Direct Multilevel scheme to the perfected Linn-Kernighan program Concorde [22] 
developed by a Princeton research group.  
Other interesting possibilities are to use the ML-Scheme in a study of more “exotic” 
refinement algorithms for example the genetic refinement mentioned in Chapter 3.4.  
 
 
The Extension Step and The coarsening Step 
 
From the comparing of the different MLS developed, is it obvious that quality most likely 
is lost in the extension step. A further research possibility is to improve the method of 
extraction to expect more the way that particular edge should be inserted. Since the best 
selection methods were adaptations of different tour construction heuristics, another 
possible research subject could be to look for other tour construction heuristics that are 
adaptable to the MLS. 
 
 
 
Another ML-Structure 
 
Another possibility is to change the way we look at clusters and thereby remove the 
problem we have seen with the extension. Since we loose quality when we increase the 
graph size by splitting clusters and thereby adding new edges to the tour, one possibility 
is to create a Multilevel scheme that works on a fully extended graph. Where it instead of 
merging cities into clusters, locks city connections in to place. Then the clusters would be 
organized as rigid line segments in the tour, where the length of the line segment is 
known. This solution let the refinement work with a full-length tour but holds the 
conditions for the Multilevel scheme, since it coarsens the problem by just letting a few 
edges be free for change. This solves the extension problem because the extension for 
such a problem would be to free edges instead of adding new edges to the tour, and no 
quality of the previous solution is lost because of the insertion of new edges.   
Therefore it should be interesting to test the selection methods we have developed for 
such a scheme.  
 
 
 
 
 
 



 93 

Appendix 5 List of Abbreviations 
 
 
CW     Clark- Wrigth 
LK    Lin-Kernighan 
MLLK Multilevel Lin-Kernighan 
MLS Multilevel Scheme 
NP Non-deterministic Polynomial Time; See definition 2.1.2 
P    Polynomial Time;  See definition 2.1.1 
S.A          Simulated Annealing 
TSP Travelling Salesman Problem 
TS Tabu search 
N.N Nearest Neighbour 
 
 
 

Appendix 6 Abstract 
 
 
The Travelling Salesman Problem is one of the intriguing problems from the world of 
computational complexity. In this paper a new structure for solving computational hard 
problems; the Multilevel scheme, is introduced.   
By using the Multilevel scheme combined with the large resource of existing studies of 
the Travelling Salesman Problem, we whished to see if the Travelling Salesman problem 
could be solved by using the Multilevel scheme. By developing and studying tools, we 
will try to refine the eventual quality produced by the Multilevel scheme.  
The Multilevel scheme is a technique, which limits the problem size in such away that a 
refinement method can be used on a smaller problem. The refinement on the smaller 
problem can then be used to solve the original problem with higher quality.  
We found that it was possible to use the Multilevel scheme on the Travelling Salesman 
Problem. We also found and studied tools that can be used in further studies; we 
identified also directions and ideas in areas where new techniques for improving the 
results with the Multilevel scheme can be found. By comparing different Multilevel 
scheme structures we found that they differed in quality, our research can therefore also 
be interesting for other problems where the Multilevel scheme can be used.  
 
 
 


