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Abstract 

Modern day proteomics generates ever more complex data, causing the requirements on the 

storage and processing of such data to outgrow the capacity of most desktop computers. To cope 

with the increased computational demands, distributed architectures have gained substantial 

popularity in the recent years. In this review, we provide an overview of the current techniques for 

distributed computing, along with examples of how the techniques are currently being employed in 

the field of proteomics. We thus underline the benefits of distributed computing in proteomics, 

while also pointing out the potential issues and pitfalls involved. 
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Main Text 

Background 

As most scientists who come into contact with current high-throughput proteomics know, it is not 

always straightforward to process and store such data. Furthermore, because of continuous 

advances in mass spectrometry and proteomics methods, the size of the generated data will 

continue to increase in the foreseeable future [1–3]. As a result, the field of proteomics has 

encountered computational requirements that far exceed the specifications of most common 

desktop computers [4]. Indeed, for any computational process, the overall speed is determined by 

the size and amount of the input data, the amount of compute cores that can simultaneously 

perform calculations, and the availability of the necessary storage capacity. Additionally, the data 

storage has to be as efficient and accessible as possible, while the processing should be stable and 

powerful in order to avoid bottlenecks in the data analysis.  

Fortunately, proteomics does not have to start from scratch as there are precedents in fields outside 

of proteomics, such as the Galaxy genomic workbench [5] and TranSmart 

(http://www.transmartproject.org). Both these frameworks have been developed to store, 

distribute and analyze genomics data. The principles used in these examples should be amenable for 

reuse in solving the issues for distributed proteomics. Inspired by genomics, distributed proteomics 

is now starting to take off, yet a lot of innovation and new adaptations will likely emerge to deliver 

solid, field-changing applications.It is important to note that computers were originally intended to 

sequentially execute tasks. This was essentially a technical limitation, due to the fact that a 

computer possessed a single central processing unit (CPU). However, in the recent decade single-

CPU designs have been replaced by parallel systems with multiple compute cores, able to run 

multiple processes simultaneously. As a result, parallel processing has become the standard way of 

speeding up the transformation and storage of data, and is the main innovation that has allowed 

computers to keep up with Moore’s law [6]. This is important, because even though the total 

http://www.transmartproject.org/
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transistor count on a chip has kept increasing, as Moore famously predicted, the speed of the 

individual processing units has been more or less stagnant for well over five years.  

Software programs that only make use of a single compute core are therefore no longer speeding up 

with the purchase of a new computer, despite the fact that the new computer contains double or 

more transistors. The only way to capitalize on the presence of these additional transistors is to split 

the work over multiple processing units, thus executing the overall task as parallel subtasks. 

Consequentially, the biggest benefit of distributed systems is their scalability. And while it is not 

always an option to add additional CPUs to a system, adding additional machines to a coherent 

working group is in most cases straightforward. This ensures that in multi-machine distributed 

computing, the size of the computer pool can be scaled to match the requirements of the given 

problem. It is equally important to note that the actual compute time is not reduced in such a 

parallel computation approach, as the total running time summed across the different processing 

units is equal to, or even slightly higher than the running time on a single processor. Of course, the 

waiting time for the user is shortened by parallelization, and one therefore distinguishes between: 

wall time (as measured by the clock on the wall) for the user-perceived time to finish the task, and 

compute time for the total amount of time spent in computation by all enlisted processing units. 

The field of high-performance computing has also moved towards parallelization, by increasingly 

using multiple, relatively weak computers in parallel instead of a single supercomputer. Note that 

this does not imply that a collection of individual units is intrinsically more parallel than the internal 

workings of a single supercomputer, but rather that there is a tendency to stop increasing the 

processing power of a single device, and instead expanding into greater numbers of more 

standardized components. Indeed, where very large and expensive supercomputers were originally 

the main method of providing high-end computation in science [7], the combination of numerous 

(relatively) inexpensive computers into so called clusters via networking has since proven to be a 

valuable and highly popular substitute [8]. The culmination of this evolution has been an 
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optimization of both strategies in hybrid systems that build clusters of (mid-range) supercomputers 

[9].  

Perhaps the most striking result of the evolution towards cluster-based systems in high performance 

computing is that the availability of such systems is no longer confined to a short list of institutions, 

but is now well within the financial means of most individual research groups. It is however 

important to note that running software on a cluster is not equivalent to running the same software 

on a multicore machine. For example, the memory is not shared in the case of a cluster, with each 

machine only having direct access to its own memory, while the multicore approach allows all cores 

to access the same memory directly. This important difference is illustrated in Figure 1. Both 

versions of memory-architecture have their benefits. When memory is shared, there is little latency 

when programs communicate, but multiple instances may attempt to access the same data 

simultaneously, potentially creating so-called concurrency issues. Using distributed memory on the 

other hand, leads to the exclusion of such issues at the cost of higher latency due to the necessary 

network communication overhead. 

Perhaps the best known architecture for parallel computing using off-the-shelf computers is GRID-

computing. The term itself was first used in the early 90’s, as an analogy to the power grid [10], but 

where a traditional power grid allows a user to plug in and acquire electrical power at will, a 

computational GRID is designed to deliver CPU time and processing capacity upon request. In 

principle, cluster- and GRID-based systems are very similar, with the former essentially a simplified 

version of the latter [11].  

The culmination of the GRID architecture is known as cloud computing. The term cloud first 

appeared in 2006, with the inception of Amazon’s Web Service (AWS) [12]. It refers to the unknown 

nature of the trajectory that data goes through to get to its point of destination. In essence, the 

cloud is a return to an early concept in computing, when large and powerful mainframes connected 

to much less powerful terminals were the preferred setup in both industry and research. In both 
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early distributed computing and in cloud computing, the main compute power was thus provided 

offsite, likely at a geographically distinct location. Rather than contacting a single mainframe 

however, a compute cloud consists of a large group of computers that can be located anywhere in 

the world, and that are connected in a GRID-like architecture via the internet, as shown in Figure 2.  

Yet computers are not the only thing connected through the internet; users too can be reached via 

this global network. Rather than simply calling upon (spare) compute cycles through the internet, it 

is now also possible to obtain services, ideas or content from databases and users worldwide, 

prompting the term crowdsourcing. In a way, crowdsourcing is a logical next step in distributed 

scientific computing, as science itself has thrived on the sharing of ideas and results. And while the 

term might be new, the fundamental concept has been part of the life sciences, and of the studies of 

proteins in particular, for quite some time. Indeed, scientists have been sharing the results of their 

protein three-dimensional structure determination experiments for decades [13–16] and have been 

building impressive databases of annotated genomes and proteomes through a combination of a 

few large-scale efforts and numerous small-scale contributions [17,18]. The public availability of data 

is of course a key precondition for the success of crowdsourcing, and its importance has therefore 

been emphasized repeatedly, for instance in the field of proteomics [19,20]. 

In order to provide insight into the distributed computing techniques and their use in proteomics, 

this review presents a brief overview of solutions that have been developed to address both 

processing and storage issues, along with tangible examples of successful applications of these 

techniques in the field. This review can thus act as a guidebook to determine whether distributed 

computing techniques can be useful for future proteomics informatics projects, and if so, help select 

the most suitable approach. 

Divide and conquer 

It is not always necessary to invest in new hardware to maximize the speed of an application. In 

many cases, simply multithreading the software can significantly augment efficiency on modern 
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CPUs. When multithreaded, a program will not execute its operations in series, but in parallel. 

Needless to say, this excludes inevitably serial operations, such as the writing to magnetic hard 

drives. The basic concept of multithreading is explained in Figure 3. 

Examples of multithreaded applications for high-throughput proteomics include the parallelization 

of commonly used database search engines such as Mascot [21], X!Tandem [22] and OMSSA [23]; 

phosphoRS [24] performing phosphorylation site assignment in peptides based on the corresponding 

tandem mass spectra; and the proteome discovery pipeline by Gough et al. [25].  

Even though multithreading provides a straightforward way of speeding up tasks that can be divided 

into smaller subtasks, multithreaded applications remain tied to the limited resources available in 

the host computer. Indeed, very large projects can easily result in impractically long wall times on 

modern desktop computers, despite their ability to handle from two to eight parallel processes. In 

order to overcome the limitations inherent to a single computer, the move to a truly distributed 

architecture must be made. Such a transition was made for X!Tandem, where the multithreaded 

capacities of the database search engine were expanded to allow parallelization across machines. 

First, multiple instances of X!Tandem were combined in the Parallel Virtual Machine (PVM) 

environment, and in the Message Passing Interface (MPI) system to distribute the work [26]. This 

type of load balancing has been thoroughly investigated and proven to reduce the overall searching 

time, without compromising the final output [27]. Elaborating on the Parallel Tandem project, 

X!!Tandem was developed to further optimize the operation of X!Tandem searches [28]. Here the 

parallelism was optimized by centralizing the remaining sequential steps. This illustrates that the 

level at which parallelization is implemented can have an effect on the efficiency of the overall 

process. 

Classic database searching algorithms are not alone in putting a high combinatory load on 

processors. Another example is de novo sequencing of peptides, a classic problem in proteomics 

bearing high combinatory complexity [29]. These algorithms (reviewed in [30–32]) therefore 
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typically come with large computational demands, but the de novo sequencing of each spectrum can 

be performed as independent subtasks. And even though multithreading of de novo algorithms 

presents a clear opportunity for increasing the performance, no such efforts have been published to 

date. A third, hybrid approach to identifying tandem mass spectra combines short stretches of de 

novo sequencing called sequence tags with subsequent (often error-tolerant) database searching. An 

excellent example is provided by DirecTag [33] where parallelization is used to improve the 

efficiency of the tag detection.  

Thus far, we have only discussed the usage of CPUs as the main processing workhorse. Another 

option is to use the proficiency of Graphics Processing Units (GPUs) to perform parallel calculations. 

Even though GPUs were designed to accelerate the computation of 3D graphics, thus relieving the 

CPU of this task, technical advances have made it possible to instruct a GPU to also perform general 

purpose computations. It is also no coincidence that most of the GPU-based applications work with 

NVIDIA drivers using Compute Unified Device Architecture (CUDA). CUDA is a platform developed to 

allow programmers to enhance the performance of their software by using the processing powers of 

the GPU. Such GPUs are called General Purpose Graphics Processing Units (GPGPUs) [34] because 

they use an architecture originally developed for graphics for more generic calculation purposes. The 

two main benefits of these GPGPUs are that they are essentially massively parallel linear algebra 

processors that can perform more exact mathematical operations than normal CPUs, allowing for 

substantial speedups and higher quality results [35].  

Despite offering great potential and the promise of higher quality results, GPGPUs also come with a 

potentially serious drawback: writing algorithms that tap into the power offered by these 

processors, or porting existing algorithms to do so, can be quite challenging, requiring extensive 

expertise [36]. The usage of GPGPUs in proteomics data processing is therefore currently still in its 

infancy, with only limited examples available in the field. Nevertheless, these applications do 

demonstrate both the benefits and the difficulties of GPGPU processing, such as FastPaSS [36], an 
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emulated form of a tandem mass spectral library search algorithm called SpectraST [37]. In a 

comparison between identical searches performed on a single CPU and a single GPGPU, FastPaSS 

outperformed SpectraST in terms of speed. However, the authors compared a single CPU against a 

single (but internally highly parallel) GPGPU which means that speed differences might be less 

dramatic on computers possessing multiple cores or CPUs.  

The next logical step is to combine the expertise of both CPUs and GPUs. As discussed earlier, 

parallelizing a task over multiple cores is one of the pillars of distributed computing. Obviously, GPUs 

are also capable of this. It is thus logical to combine the strengths and weaknesses of both types of 

processing units, as shown in Figure 4. One project that explores this benefit of synergetic CPU-

GPGPU processing is Tempest [38]. Contrary to the focus placed on using solely a GPGPU, as is the 

case in FastPaSS, Tempest acknowledges the synergy between CPUs and GPUs, executing less 

straightforward calculations in the ranks of database digestion and MS/MS spectral indexing on a 

CPU, whilst reserving the GPGPU for the more cumbersome similarity scoring. This way, both types 

of processing units can be assigned those subtasks that fit their speciality. Although GPGPU driven 

proteomics data processing is currently in its infancy, the recent developments illustrated above 

show that this type of parallelization holds substantial promise. 

Enter the GRID 

A highly efficient, yet inexpensive way to achieve the parallel, distributed processing of datasets is to 

make optimal use of already existing resources. By employing idle computers in an existing network, 

a quite powerful cluster computer can be created ad hoc without extra resources. Since modern 

laboratories already have the required network infrastructure in place, which typically contains 

many computers that are often idle (even if only at night), this dormant computational power can 

easily be harvested using a GRID-computing approach. This strategy is used by the proTurbo 

framework, as part of the ProteomeGRID pipeline [39], developed to automate the analysis and 
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mining of two-dimensional gel images, a highly demanding computational challenge that has been 

the focus of considerable research for years . 

As explained above, the GRID architecture is essentially an expanded cluster architecture. This allows 

a GRID system to run on traditional cluster setups while simultaneously allowing it to exploit the idle 

time on local, network-connected desktop computers. In the case of the proTurbo software, this 

property was used to great effect by running the system in a local facility, tapping into the idle CPU 

time of computers in a student lab. This increased the overall processing speed of the system 

dramatically while operation costs were reduced by the re-use of existing, idle equipment, thus 

nicely illustrating the usefulness and efficiency of GRID-computing. 

Another recent application of a GRID-based architecture in proteomics research is the Hydra search 

engine [40], a system built around a modified X!Tandem version designed to handle both very large 

amounts of spectra, as well as very large databases. Hydra is built on the Hadoop 

(http://hadoop.apache.org) distributed computing framework, famous for its scalability, as it allows 

for the efficient distribution of large datasets among many compute nodes connected in a GRID 

architecture. The development of tools such as Hydra will likely play a key role in the future of 

proteomics, as data volumes from typical experiments are set to continue to increase [41], and as 

meta-analysis becomes even more popular[42–44]. 

For those needing help in setting up GRID-computing systems, there is now a growing community 

aimed at providing support, with the ultimate goal of being able to process data easily on remote 

locations. The BOINC [45] system has proven its value in achieving this goal, as it allows users to 

donate compute cycles to one or more projects of choice without requiring technical know-how. As 

such, it provides a solid platform to develop GRID-based tools with access to a vast pool of users. 

One of the best known uses of the BOINC platform is the Rosetta@Home project [46,47] providing a 

very successful illustration of the raw power of GRID-computing by tackling the notoriously difficult 

problem of ab initio protein structure determination [48,49]. With approximately 60.000 active 

http://hadoop.apache.org/
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computers donating their spare compute cycles, Rosetta@Home effectively functions, on an average 

basis, as a 57 teraflops (Floating Point Operations Per Second) supercomputer 

(http://boincstats.com/en/stats/14/project/detail).  

Finally, it should be noted that moving from a single computer to a GRID setup also has an impact on 

the complexity of the required error handling. Failure recovery is thus an important aspect for large, 

ad hoc, distributed systems such as BOINC and Hadoop (http://hadoop.apache.org). This is due to 

the fact that failure during certain sub processes cannot always be avoided, and large efforts have 

therefore gone into correct error handling and failure recovery in these systems. If such an advanced 

framework is not used however, the internal structure of the overall process should be meticulously 

planned and tested to account for subtask failure. 

Take it to the cloud 

The advent of the global internet has enabled computers all over the world to be connected to a 

common network, thus doing away with the requirement that computers need to be co-located in 

order to function as a coordinated whole. It is therefore a logical sequence of steps from the cluster 

architecture, via GRID-computing to the current cloud computing systems. As cloud computing is a 

relatively young concept, the definition has changed quite a bit during its evolution. This can cause 

confusion and eventually misuse of the term. According to the comprehensive NIST definition, cloud 

computing is a model for enabling convenient, on-demand network access to a shared pool of 

configurable computing resources (e.g., networks, servers, storage, applications, and services) that 

can be rapidly provisioned and released with minimal management effort or service provider 

interaction [50].  

Furthermore the definition states that a cloud system should possess five key features. First of all, it 

should be a self-contained, readily available service, requiring little to no manual intervention. 

Secondly, the service should be independent of the user and their end devices, with an adequate 

network connection to sustain high performance for that particular service. Thirdly, the required 

http://boincstats.com/en/stats/14/project/detail
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resources should be simultaneously available to multiple consumers, using technologies such as 

virtualization. Fourthly, cloud systems must be capable of both providing and disposing resources 

rapidly, with no manual intervention required. Lastly, there is a more economical prerequisite to 

cloud computing. Each abstracted service should be measurable in terms of used resources. De 

facto, cloud systems are capable of automatically controlling and optimizing resource use by 

monitoring certain parameters appropriate to the service (for example storage, bandwidth, and 

active user accounts). Resource usage can then be managed easily, which leads to a billable, 

consumption based system. Indeed, using cloud systems, the geographic locations of the various 

computers, whose processing and storage capabilities are combined into a coherent whole, are no 

longer important. Dedicated servers can be combined with idle computer time from desktop 

machines or even gaming consoles anywhere in the world, as long as they are connected to the 

internet. This approach to large-scale systems architecture has led to the provision of computing-as-

a-service, where the necessary hardware is no longer owned or maintained by the user, but by the 

service provider, and where compute power and storage space are simply rented out. Of the many 

cloud computing providers, the popular Amazon Elastic Compute Cloud (EC2) has already proven its 

value in proteomics. 

One example is the Virtual Proteomics Data Analysis Cluster (ViPDAC) [51] that provides a cost-

efficient means to process large amounts of mass spectrometry based proteomics data. The system 

is built on a standard Amazon Machine Image (AMI), a medium performance virtual computer that 

can be rented from the Amazon cloud, that was modified by installing database search programs 

(OMSSA and X!Tandem) and protein sequence databases. Users can thus request as many such 

virtual computers as required, and use these to process the acquired mass spectra. It should be 

noted however, that the task of distributing these spectra across different virtual computers is left to 

the user, and that substantial manual interaction remains to set up and coordinate the system, and 

to retrieve and parse the results after the searches are done. 
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Two more recent systems have been built that provide more convenient, pipelined access to cloud 

computing resources. The approach taken by Mohammed et al. [52] is to provide convenient access 

to the trans-proteomic pipeline (TPP) tools [53] in a GRID fashion by decomposing and recomposing 

the input data and output results automatically. As a result, a generic workflow engine like Taverna 

[54,55] can be used to create ad hoc pipelines that can take full advantage of GRID or cloud 

architectures. Another solution, developed by Trudgian and Mirzaei [56] extends their existing, 

special purpose Central Proteomics Facilities Pipeline (CPFP) system to allow access to cloud 

computing resources. 

A fourth cloud-based identification system, called ProteoCloud [57] takes a slightly different 

approach to user convenience, by providing a stand-alone system that covers the entire analysis 

workflow, including cloud-based database storage of the results, and full control of the system 

through a user-oriented graphical interface. ProteoCloud makes use of the previously mentioned 

Amazon EC2 cloud. In addition to the typical search engines provided by the four above-mentioned 

proteomics cloud based approaches, ProteoCloud also includes more exhaustive methods for 

spectrum identification using both tag-based searches through the InSPECT tool [58] and de novo 

sequencing through PepNovo [59]. The output of the different algorithms is unified and merged 

based on the q-values determined using QVality [60]. 

A different example of cloud computing in proteomics is provided by Stanford University’s 

Computing Cloud to process MS datasets and compare protein abundance in order to discover 

possible biomarkers [61]. The discovery of biomarkers using mass spectrometry is a hot topic in 

proteomics and has been considered for a long time [62–64]. In this system, source data is uploaded 

through a web portal, followed by selection of peaks and statistical analysis on a cloud server with 

sufficient capacity to handle these computationally demanding operations. This approach allows 

researchers to quickly scan datasets for differentially expressed proteins, so that potential 
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biomarkers can be picked up efficiently. However, it should be noted that the uploading of ever 

larger proteomics datasets can be a serious bottleneck for such setups. 

 

Combining wetware with hardware 

Despite the ability to simply rent compute time and storage space on globally distributed commodity 

hardware as the need arises, there remain challenges that cannot easily be solved by simply 

increasing computational power. In such cases, crowdsourcing often provides a more efficient 

means to solve the problem [65,66]. Crowdsourcing relies on making an appeal to the collective 

online community to help solve a particular problem, either by asking for idle CPU time to create a 

GRID based supercomputer, or by recruiting volunteers to carry out a particular task that computers 

do much more slowly than humans. One example depending on the use of idle CPUs is the already 

mentioned Rosetta@Home project [46,47]. Another structure determination project, called Foldit 

[67], goes beyond mere computational power and requests its human volunteers to perform a more 

active task in solving protein structures. Foldit is essentially a multiplayer, online game that allows 

players to manipulate the structure of proteins, based on three simple biochemical rules 

understandable by non-scientists: (i) the smaller the resulting protein the higher the resulting 

structure scores; (ii) the hydrophobicity of residues should be respected, i.e., shielded from the 

surface; and (iii): two atoms cannot be in the same place at the same time. By thus turning a 

scientific problem into an online puzzle game, interested individuals from the general population can 

actively contribute to state-of-the-art research, thus generating an enormous working capacity while 

promoting and communicating science to non-scientists at the same time. The scientific results so 

far can be illustrated by the recently solved crystal structure of a retroviral protease called M-PMV 

[68] and the improved enzyme design for Diels alderase [69].  

Projects such as Foldit effectively fuse two overall approaches for maximum benefit: the integration 

of human pattern-detection and problem-solving capabilities with modern advanced computational 
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algorithms [70]. And thus, as the division of complex problems into subtasks formed the basis for 

parallel computing, problems are here split into new types of tasks: human-solvable, and machine-

solvable tasks. The system distributes these subtasks over a global population of active volunteers 

that donate both brain power as well as compute power. This type of parallelism, spanning both 

human brains (wetware) as well as computer processor cores (hardware), holds immense promise 

for future scientific research. 

Is the sky the limit? 

Although the above examples of distributed computing might lead one to think that there are no 

limitations in parallelizing complex problems, there are clearly defined hard limits to the benefits 

offered by distributed computing. Indeed, the efficiency of adding more computational power to a 

parallelized pool is not linearly correlated to the amount of cores employed. Additionally, not all 

processes can be effectively parallelized. Indeed, while computing the dot product of a single 

fragmentation spectrum against multiple proposed candidates from a spectral library can easily be 

parallelized, the subsequent consolidation of these scores into a ranked list is an inherently serial 

operation. Both aspects contribute to the maximal acceleration for a given algorithm in a parallel 

computing environment. This fact is described by Amdahl’s law [71]. There is a strong resemblance 

between the theory  that governs the reaction rate of a chemical process, where the slowest step 

determines the total speed of the entire reaction, and Amdahl’s law. In the latter, it is assumed that 

any given program can be divided into sub-processes that can be either parallelizable or sequential. 

The degree in which a problem can be split into parallel sub-problems without changing the 

outcome is called parallelizability. As shown in Figure 5, the number of parallelizable tasks strongly 

determines the potential benefit of parallelization on the total process [72]. Yet even in nearly 

perfectly parallelizable problems, the acceleration of the process by adding more cores can still turn 

marginal quite fast. 
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Another limitation to parallel computing, which is not explicitly covered by Amdahl’s law, involves 

the latencies inherent in data storage access and network communications. To reduce the impact of 

such limitations, it is possible to move away from a central point of storage by distributing the data 

across the system. The Hadoop framework mentioned above is perhaps the best known example of 

a strategy where the spread of the data is employed to speed up calculations across very large 

volumes of data. As a rule of thumb, the copying of data from a central location to the working unit’s 

local storage becomes beneficial as soon as more than seven nodes are present in a cluster [73]. 

There is also an entirely orthogonal limitation that can affect distributed computing, and that relates 

to possible licensing issues. Many commercial software packages, such as the popular Mascot search 

engine, limit the number of computers the software can be installed on, and further place limitations 

on the number of CPUs and CPU cores that can be employed. Licenses to use additional compute 

power can be purchased in addition, but this often involves a substantial cost. It therefore comes as 

no surprise that the cloud-based proteomics platforms discussed earlier rely exclusively on freely 

available, open-source software packages. Furthermore, free or commercial closed-source packages 

that were not originally designed to exploit parallel or distributed computing cannot easily be 

adapted, an issue that is largely absent in open-source software. The utility of being able to dive into 

the code and make changes is nicely shown throughout this review for the X!Tandem software, 

which several researchers have already adapted to better suit a particular parallel or distributed 

architecture. 

Distributed databases 

Apart from using the data, storing the data is another important aspect to consider when discussing 

distributed proteomics. Currently, there are two trends that “omics-scientists” follow: (i) specialist 

databases specific to a certain domain; or (ii) large databases encompassing a plethora of global data 

types or sources. 
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On the one hand, databases are often designed for a specific goal. Such is the idea behind SoyProDb 

[74] for instance, a database consisting of proteins derived from soy and intended to aid scientists in 

their efforts to genetically enhance soyplants, keeping track of the changed proteome. Another 

example is EPIC-DB [75], a publicly available database specifically built around the proteome and 

genome of Apicomplexan organisms. Another form of specialization is found in UniCarb-DB [76]. 

UniCarb-DB is a comprehensive LC MS/MS library for N- and O- linked glycans derived from 

glycoproteins. Furthermore, proteomics data repositories like PRIDE [3] and PeptideAtlas [77,78] 

specialize in capturing and disseminating mass spectrometry based proteomics data.  

Despite the usefulness of these diverse kinds of specialized resources, the most interesting biological 

questions typically require combined data retrieval, where the ability to cross-link information 

across different fields of research or organisms is required. Yet it is very complex to build integrated 

databases that can hold enough data to satisfy such complex queries, and it is even harder to keep 

them up-to-date. For this reason, the decentralized approach is typically chosen, where a shared 

integrative layer across a variety of repositories serves to tie all the data together. The quintessential 

example in the life sciences is BioMart [79–82], that allows users to access and combine data across 

many specialist databases, including HapMap [83], Wormbase [84], Gramene [85], dictybase [86] 

amongst others. Particularly important is the inclusion of hub-databases such as Ensembl [87] and 

UniProt [88], that are already quite connected, and thus allow reliable links to be made between 

data sources, and even across domains in the life sciences. Finally, inclusion of repositories holding 

original research data such as PRIDE [3], allow the provenance of information to be verified down to 

the initial discovery. Novel technologies in the field of data storage, such as in-memory databases 

(e.g., https://www.proteomicsdb.org), will furthermore speed up access to increasingly large data 

resources, promising almost instantaneous results for even the most wide-ranging and complex 

queries. 

A distributed future for proteomics 
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Distributed computing and parallelization of calculations have long been recognized to provide 

scientists with extremely powerful approaches to perform massive computations. This review 

therefore highlighted several recent approaches in which proteomics problems have been 

successfully parallelized. Since both the size and complexity of data analysis problems are likely to 

continue to grow in the field of proteomics, the popularity of clustered, GRID, or cloud-based data 

processing and analysis platforms is likely to increase further over the next few years.  

Indeed, as laboratories become increasingly populated by computers for various tasks, and as 

increasingly sophisticated instruments continue to generate more data, the ready availability of 

spare compute power will almost certainly fuel the development of novel grid-based solutions for 

typical proteomics data analysis tasks. Furthermore, with cloud computing prices constantly 

dropping due to strong competition between providers, the renting of large, on-demand clusters for 

specific, demanding processing tasks will become more mainstream as well.  

It will also be very interesting to see if the field of proteomics can successfully embrace the power of 

crowdsourcing. As shown by the Foldit project, a well-designed crowdsourcing project need not rely 

only on contributors with expertise in the applied field, vastly increasing the target audience of 

potential volunteers. Indeed, Foldit is now firmly rooted among the most popular scientific 

crowdsourcing project, rivalling perennial crowdsourcing giants like SETI@Home 

(http://setiathome.berkeley.edu) solidly planting proteins into the collective consciousness as a 

worthwhile target for study.  

Finally, it has also become clear that the availability of open-source projects is of high importance. 

This is beautifully illustrated by the amount of available examples using the X!Tandem search engine 

across the entire palette of parallelized computing. Surely, easy to access open-source software has 

contributed to the novel, but clearly booming field of distributed computational proteomics. It will 

now be up to the field at large to devise strategies that can capitalize on this momentum, and 
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harness the most of distributed computing for the purposes of mass spectrometry based 

proteomics! 
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Figure legends 

Figure 1 : The biggest difference between a multi-core computer and a multi-node architecture is 

the memory usage. In the first case, shared memory is used between local CPUs, while in the latter, 

every node has CPUs linked by local memory, yet the nodes themselves do not share memory. 

Figure 2: A computer cluster is built up out of several connected computers that cooperate as a 

single powerful unit. These computers are per definition in the same geographical location. The GRID 

methodology strongly resembles the cluster architecture, but makes uses of geographically 

separated computers, allowing nodes to be dispersed across institutes. Cloud based computing 

implies that resources are not accessed directly, but are queried via an intermediate service. 



20 
 

Figure 3: A multithreaded approach to solving a computational problem. Initially, a serialized 

sequence of operations is fed to a program. Then, the whole is broken down into smaller, sub-

problems that can be computed simultaneously. Finally, the results of each sub problem are merged 

to provide the final solution. 

Figure 4: Multithreading is not confined to only generic CPUs. A parallelizable problem can be solved 

by both CPUs and GPUs, according to the complexity of the calculation. Often, there is even synergy 

between the efficiency in parallelized calculations of a GPU and the versatility of a CPU to handle 

complex calculations. 

Figure 5: Amdahl's law [68] shows that the acceleration of processing is directly linked to the 

amount of available processors and the percentage of the computing process that is parallelizable. 

Any process that is not perfectly parallelizable will always encounter an upper limit where addition 

of further compute cores becomes essentially useless.  
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