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A B S T R A C T

Sea ice represents a major factor in the climate system and updated knowl-
edge about sea ice conditions is important for shipping and offshore industry,
local communities and others. Due to its remote location and strong variabil-
ity in extent and motion, satellite observations are among the most important
data sources for sea ice monitoring. Considering the polar night and 60−90%
cloud coverage over the Arctic, the most reliable sensors for year round, high
resolution sea ice monitoring are Synthetic Aperture Radar (SAR) that oper-
ate independent of solar illumination and cloud conditions. In the framework
of this thesis, the author developed and applied methods for deriving high
resolution sea ice information from space borne SAR imagery. A satellite
database displaying the area of Svalbard has been established for the time
period 2000-2014 and more than 3300 manual interpretations were conducted
to distinguish fast ice, drift ice and open water in Isfjorden and Hornsund.
The resulting time series revealed a significant reduction of fast ice coverage
when comparing the time period 2000-2005 and 2006-2014. The relationship
between sea ice, atmosphere and ocean in the two considered fjords has been
discussed by comparing fast ice coverage to sea surface temperature from
satellite measurements, surface temperature from weather stations and ocean
heat content from CTD data. To derive automatic sea ice/water classification
of dual polarisation Radarsat-2 SAR imagery, an algorithm based on texture
features and support vector machine has been developed and applied opera-
tionally in the period 2013 until 2015. Validating the algorithm against 2700
manually derived ice charts from the Norwegian Meteorological Institute
revealed an accuracy of 91± 4%. The algorithm showed better performance
in winter than in summer. To retrieve sea ice motion information from
consecutive SAR images, a feature-tracking algorithm has been developed
for Sentinel-1 data based on ORB (Oriented FAST and Rotated BRIEF). The
algorithm locates corners, describes the surrounding area and and connects
similar corners from one image to the next. The main advantages of the
developed feature-tracking algorithm are the computational efficiency and
the independence of the vectors in terms of position, lengths, direction and
rotation. However, the vector distribution is not controlled by the user. To
overcome this issue, a combined algorithm including a pattern-matching ap-
proach has been developed as a successor of the introduced feature-tracking
algorithm. Based on a filtered feature-tracking vector field, drift and rotation
on the entire SAR scene are estimated. This initial drift field limits the search
area for a consecutive pattern-matching algorithm that provides small to
medium scale adjustments of drift direction, length and rotation. Assessing
the potential performance of the combined algorithm with buoy GPS data
using 240 Sentinel-1 image pairs yielded a logarithmic normal distribution of
the displacement difference with a median at 352.9m using HV polarisation
and 535.7m using HH polarisation.
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1 I N T R O D U C T I O N

The thesis is divided into four chapters. The following Chapter 1 is an
introduction to both the study object sea ice and our main mean of observa-
tion, the Synthetic Aperture Radar (SAR). The sea ice formation process is
described, as well as the importance of sea ice for environment, shipping and
offshore industry, local communities and others. Sea ice observations based
on field techniques are discussed and the role of satellite remote sensing
in sea ice monitoring. The basic concept of space borne SAR is explained
to introduce the technique that enables high resolution sea ice monitoring
independent of weather and solar illumination. Chapter 2 describes the
methods that are applied for high resolution sea ice monitoring and explains
why SAR represents our main source for continuous year round observa-
tions. Pre-processing steps for SAR imagery that can be beneficial for sea
ice monitoring, like incidence angle correction and thermal noise removal,
are briefly introduced. An overview is given of the work that has been done
so far in the field of sea ice classification and sea ice motion retrieval from
SAR and the papers presented as part of this thesis are put into context with
previously published literature. A summary of the fours papers that are
presented as part of this thesis can be found in Chapter 3. The thesis closes
with Chapter 4 that includes a discussion on the presented work and an
outlook on future research in the field of high resolution sea ice monitoring.

1.1 sea ice formation

Formation of ice crystals occur in both freshwater lakes and saline oceans,
when the atmosphere cools down the surface water to the freezing point.
However, due to the presence of salt, properties and appearance of sea ice
are significantly different from freshwater ice.

The water salinity is the controlling factor that governs the temperature
dependence of both density and freezing temperature of the water. The max-
imum density of freshwater is reached at 3.98◦C. This value decreases with
increasing salinity to −3.5◦C at 35‰salinity. At the same time, the freezing
temperature decreases with salinity from 0◦C in freshwater to −1.88◦C at
35‰. The two temperatures are equal to −1.32◦C at a critical salinity value
of 24.69‰.

The salt induced changes in density and freezing temperature affect the
vertical convection that arises during surface cooling. As the atmosphere
removes heat from the water surface, the upper layer initially becomes denser
and sinks, allowing warmer water from below rise to the surface. Eventually
the entire water body reaches its maximum density temperature and the con-
vection stops. Further cooling lowers only the temperature of the uppermost
layer and once the freezing point is reached, the heat extraction leads to ice
growth.

1



2 introduction

In the case of freshwater, the critical density point is at 3.98◦C, meaning
that a freshwater lake allows surface ice growth even though the interior of
the water body is not colder than 3.98◦C. The freezing temperature of sea
water however, is above the maximum density temperature, meaning that
the entire depth of the water body must be cooled down to −1.88◦C before
ice growth is possible. Considering up to 5000m depth in the Arctic ocean,
cooling down the entire water column to the freezing point is certainly not
possible with observed surface energy fluxes. Nevertheless, sea ice growth
occurs every year in the Arctic ocean. Instead of cooling the entire water
column, the convection depth is usually limited to 50-200 m (also called
mixing layer) due to salt induced stratification. In typical Arctic conditions,
water density is controlled by the salinity range rather than the temperature
variation. The water below the mixing layer has a higher salinity and is
therefore denser regardless of a different temperature.

After reaching freezing temperature, continuing atmospheric cooling even-
tually leads to formation of ice crystals - given the presence of a sufficient
number of nuclei. Independent of water salinity, ice crystals up to a few mil-
limetres are generally formed in the shape of platelets due to the anisotropic
growth behaviour of hexagonal crystals like ice, i.e. the basal plane is the
preferred growing direction.

Under calm conditions, the platelets float parallel to the water surface and
further freezing leads to consolidation and a smooth and solid ice cover is
formed. This is typical for lake ice. In the ocean, calm conditions lead to the
formation of a continuous but flexible ice sheet, called Nilas, that initially
appears dark (thickness < 5 cm) and becomes brighter with increasing thick-
ness (5− 10 cm).

However, wind stress on the ocean surface rarely allows for this quies-
cent initial formation, but rather mixes the upper water columns and loose,
randomly oriented ice crystals (Frazil Ice) are formed until a surface layer
of slush builds up. Instead of consolidation, the Frazil Ice experiences a
cyclic compression following the wave motion. Once compressed and cooled
enough, the crystals bond with each other and eventually form disc-shaped
features with diameter ranging from 10 cm to several metres. The edges of
the discs are usually raised due to rotation and collision against each other.
This ice type is named Pancake Ice after its characteristic appearance. It is
commonly observed in the open sea, where the surface is generally rougher,
and in particular in the Southern ocean.

Once the ocean surface is covered by a closed ice sheet, either due to the
formation of Nilas or by consolidation of Pancake Ice, ice growth continues
vertically downwards along the direction of the maximum heat flow from
the relatively warm underlaying water to the cold atmosphere. Due to the
spatial limitation in horizontal direction, ice crystals with a preferred growth
direction along the vertical axis are favoured. So called congelation ice starts
to build with a vertical columnar structure.

Salt molecules are not embedded in the ice crystals and increase the salinity
of the surrounding sea water, which is then referred to as brine (a solution
of salt in water with salinity values above average seawater). Due to its high
density, a large portion of the brine is ejected by sinking and causes convec-
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tion in the water layer beneath. A part of the brine however, remains in the
sea ice, trapped by surrounding ice crystals, and forms brine pockets. The
shape of the brine pockets can be cylindrical, in particular in the congelation
ice, but also round or irregular, which is most common in the upper ice layer
that is built of Frazil Ice. The temperature of the ice represents the freezing
temperature of the brine, which means that size and salinity depend on the
ice temperature. Brine ejection occurs not only during ice formation but
continues as the ice ages. Typical salinity values of First Year Ice (FYI) are
between 5− 15‰, whereas Multi Year Ice (MYI) is often below 5‰.

The brine pockets have a significant impact on the sea ice properties.
Compared to freshwater, sea ice appears much brighter which is linked to a
higher albedo. More than three quarters of the incoming short wave radiation
penetrate lake ice, whereas sea ice reflects more than 50%. The lower salinity
of MYI, compared to FYI, makes the ice more resistant which means it is
difficult and energy consuming for icebreakers to navigate. Younger (hence
saltier) sea ice, as well as warmer sea ice is weaker in strength, since the liquid
fraction, represented by the volume of brine pockets, is larger compared to
old and cold ice. On the other side, MYI that survived several seasons can
be fresh enough to supply the drinking water for a polar expedition [Petrich
and Eicken, 2010; Stein Sandven and Johannesen, 2006; M. Shokr and Sinha,
2015].

1.2 importance of sea ice

Depending on the season, 5% to 10% of the earth surface is covered by sea ice.
Located in high latitudes, sea ice experiences a strong seasonal cycle and the
extent varies between 4million km2 (September) to 15million km2 (March)
in the Arctic and 3million km2 (February) to 18million km2 (September) in
the Antarctic. A decline in sea ice cover has been observed in the last decades
most visible when considering Arctic September ice extent that decreased
from almost 8million km2 in 1980 to slightly above 4million km2 in 2016
[Stroeve and W. Meier, 2017]. Despite its remote location in the polar oceans,
sea ice receives increasing human interest, because of its strong impact on
ocean, atmosphere, flora, fauna, ship navigation, offshore industry, local
communities and others.

Sea ice can be considered as a thin blanket that covers the polar ocean
surface and separates it from the atmosphere above. Its vertical extent is
limited to a few meters and very thin compared to ocean and atmosphere.
This results in a strong vulnerability against small external perturbations.
On the other hand, sea ice has also a major influence on the state of ocean
and atmosphere. Because of its ability to reveal small climatic changes and
its strong interaction with ocean and atmosphere, sea ice represents one of
the most important indicator of climate change and a crucial component in
climate research [Dieckmann and Hellmer, 2010]. Thermal and optical prop-
erties of sea ice are important input parameters for global climate models.
The state of the sea ice cover has a strong influence on large-scale ocean and
atmosphere circulations not only in high, but also mid latitudes [M. Shokr
and Sinha, 2015].



4 introduction

The fluxes of heat, moisture and momentum across the ocean-atmosphere
interface do not only affect the sea ice cover, but are to a large extent con-
trolled by it. By reducing convective heat exchange and outgoing longwave
radiation, sea ice effectively insulates the comparable warm ocean from the
cold polar atmosphere. When daylight is present, sea ice reflects a high
portion of incoming shortwave radiation, that would otherwise warm the
upper ocean layer. During sea ice growth, brine is ejected and cold, saline
water is produced that sinks down causing convection in the underlaying
ocean layers. Strong ice growth can lead to the production of water that is
dense enough to reach the deep water basins [McPhee, 2008].

Apart from land fast ice, that is attached to the coastline, sea ice is not
fixed to any location, but constantly forced into motion by wind and surface
currents. Sea ice drift can take place over large distances and into lower lati-
tudes, where thermodynamic conditions cause ice melt rather than growths.
Melting sea ice decreases both temperature and salinity of the upper ocean
layer with effects on stratification and surface currents. An example for large
scale ice export from the Arctic into lower latitudes is western Fram Strait,
where strong southward ice velocities are found throughout the year. Sea ice
drift can also shift the ice edge in a significant manner, defining the safe area
for vessels with no ice tolerance. Divergence zones inside the pack ice can
cause large fractures, where open water areas appear. Convergence zones on
the other hand, can build up large pressure ridges, that are challenging even
for ice breaker. Knowledge about sea ice drift is therefore crucial for naviga-
tion and any other offshore activity in sea ice covered waters [Leppäranta,
2011; M. Shokr and Sinha, 2015].

Safe marine navigation and offshore platforms situated in polar oceans
require timely information on sea ice extent, type, strength and surface fea-
tures along with meteorological data to evaluate possible routes, the need
for ice breaker assistance etc. Sea ice charts, based on manual interpretation
of satellite imagery, are therefore produced on a regular basis by several
national institutes. Vessels with zero ice tolerance have to avoid sea ice
covered areas at all and are mostly interested in information on ice edge
location. Depending on the ice class, ships with a strengthened hull and
strong enough engines can navigate through different ice types and need to
consider additional ice information to evaluate possible routes. Both fuel
consumption and navigation time can very significantly depending on ice
conditions and there is a need for high resolution ice classification to e.g.
detect fractures in the ice, also called leads, that can be used for navigation.
Existing ice charts often lack sufficient temporal and spatial resolution to
evaluate the best possible route. Recent Arctic summer ice loss increased
the attention of shipping and offshore industry on the polar oceans. The
sea ice decline is expected to continue and eventually open new profitable
shipping routes and easy access to previously ice covered areas that are rich
in natural resources. An example is the increasing interest in the Northwest
and Northeast passage that could shortcut the way from the Atlantic to the
Pacific via the Arctic ocean [Stein Sandven and Johannesen, 2006; M. Shokr
and Sinha, 2015].

Shipping and offshore industry consider sea ice mainly as an obstacle that
prevent safe and profitable operations in the polar oceans. However, for
local communities in the Arctic, whose life is directly affected by sea ice,
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the presence of sea ice is a very welcoming sight. Until the 1960’s, before
the traditional Inuit lifestyle was given up due to external influence, life
took place both on land and on sea ice depending on the season. During
winter and spring, temporary igloo villages were built on sea ice. People
lived, traveled and hunted on the ice - even children were born on sea ice.
The Inuit communities in the Canadian Arctic and Greenland are known for
their profound knowledge, detailed terminology, myths and stories about
sea ice. This reflects the important role that sea ice played and continues
to play in their life. Temporary villages are no longer built during winter,
but sea ice is still an important mean for travel, transportation and hunting.
The introduction of snowmobiles in the 1970’s has certainly increased speed
and range of Arctic activities, but a strong dependence on sea ice remains
[M. Shokr and Sinha, 2015].

Both in the Arctic and Antarctic, sea ice forms a unique habitat for a
large variety of species including micro organisms like bacteria and algae,
birds and marine mammals like seals and polar bears. Different types of
algae are known for flourishing at the ice ocean interface. They use sea
ice as a platform to remain in the uppermost ocean layer where incoming
sunlight is sufficient to support growth [Arrigo et al., 2010]. Marine birds
and mammals have evolved many different ways to exploit the presence of
sea ice as hunting ground, shelter, for breeding and feeding etc. On the other
side, several species experience sea ice merely as a barrier that first has to
melt or break into smaller pieces before they can move back into previously
ice covered areas. Presence of sea ice can separate the predator from its prey,
giving some resident populations the opportunity to grow large during the
period with ice cover [Tynan et al., 2010].

1.3 sea ice observations

Historical records of Arctic sea ice distribution are hardly ever older than
150 years. Sea ice conditions before can be constructed based on sediment
records and deposits along the Arctic coast. Ice rafted debris and other
marine proxies that are found in marine and coastal sediment cores support
the existence of sea ice in the area. Driftwood is primarily delivered on
shore if the coastline is not shielded by land fast ice. Several types of marine
mammals like polar bears, seals and different kinds of whale have a strong
affinity for sea ice. Finding corresponding bones leads to the assumption
that sea ice was present in this area.

It was not until the end of the 19th century that sea ice edge positions
around the entire Arctic were recorded systematically by ships - with varying
quality and position quantity, however. The most detailed historical records
exist from coastal seas that were accessible to shipping, in particular the
Barents Sea, where ice edge information was collected over the last four
centuries [Polyak et al., 2010]. A milestone in polar oceanography and sea
ice research was Nansen’s Fram expedition in 1893 - 1896. The Norwegian
explorer Fridtjof Nansen attempted to reach the North Pole by freezing the
specially designed ship Fram into the pack ice off the Siberian coast, and let
it follow the transpolar ice drift through the Arctic into the Atlantic Ocean.
Despite missing the geographical North Pole, the expedition is considered
a success, since Fram safely exited the ice pack into the North Atlantic and
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the extensive scientific observations [Nansen, 1902] represent a significant
contribution to the understanding of the polar oceans.

Soviet and Russian research stations were deployed in the Arctic on multi
year ice floes between 1937 - 1938, 1950 - 1951, 1954 - 1991 and 2003 - 2015.
The results of these expeditions represent a very important contribution to
long-term field observations of many sea ice parameters such as ice thickness,
drift velocity and snow depth distribution [Warren et al., 1999]. Since 2002, a
privately funded Russian sea ice camp (Camp Barneo) is established once
per year close to the North Pole as a tourist attraction. A small number of
scientists are generally included that may use the infrastructure to collect
observations for research purposes.

Field techniques for sea ice observations include a vast number of methods
to measure ice thickness and roughness, optical, thermal and mechanical
properties of sea ice, snow characteristics, biological activities connected to
sea ice, chemical composition, pollution etc. [Eicken et al., 2009] However,
despite access to modern equipment and infrastructures like nuclear powered
ice breaker, in-situ data remain comparable sparse considering the enormous
extent, its strong variability (17million km2 to 28million km2) and constant
motion. This is in particular the case for Antarctic sea ice. Until the 1950’s a
prevailing thought was that Antarctic sea ice was probably not any different
than Arctic sea ice and not many bothered studying it, since the logistical
challenges are higher than they are already in the Arctic [M. Shokr and Sinha,
2015].

To study and observe sea ice properties on a larger scale, remote sensing
tools are therefore irreplaceable. Sensors mounted on helicopters and air-
planes can provide sea ice data for the overflown area and satellite borne
sensors are able to monitor sea ice up to global scale [W. N. Meier and
Markus, 2015].

1.4 satellite remote sensing of sea ice

The basic challenge of satellite remote sensing is to measure properties of
the observed object with a sensor that is attached to a fast moving platform
in several 100km to several 1000km distance. A typical height of polar
orbiting satellites, which represent the majority of satellites used for sea ice
monitoring, is in the order of 700km to 800km, but geostationary satellites
are as far away as 35000km. To overcome the large distance, all satellite
sensors (apart from satellites measuring the gravity field of the Earth) use
electromagnetic waves that are either emitted or reflected by the observed
object. Based on measurements of the waves that travelled to the sensor, one
can derive information about the properties of the object.

Depending on the source of the electromagnetic wave, satellite sensors are
divided into two categories: active and passive. An active sensor includes
both transmitting and receiving antenna. It emits the electromagnetic wave
that is reflected by the object and measures the returning signal. Transmitting
and receiving can be done by the same physical antenna. A passive sensor
does not have the capability to emit waves, but includes only a receiving
antenna. In this case, the electromagnetic source can either be the object itself
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or a third component that illuminates the object, e.g. the sun illuminates the
Earth surface during daytime.

The electromagnetic spectrum includes all possible frequencies and respec-
tive wave lengths that could be used for remote sensing. However, observing
surface properties of the Earth from space limits the alternatives, because
the electromagnetic wave has to travel through the atmosphere. Oxygen and
ozone in the upper atmosphere shield us from high frequency radiation like
gamma rays and x-rays. The water vapour absorbs most parts of the infrared
spectrum and the ionosphere blocks low frequency radio waves. Two so
called atmospheric windows remain that are used for satellite remote sensing:
the optical and the radar window. Through the optical window, visible light
and parts of the infrared spectrum can pass with some atmospheric distortion
depending on e.g. cloud cover. To a large degree independent from weather
and other distortions, parts of the microwave and radio wave spectrum can
transit the atmosphere through the radar window.

Figure 1: Satellite images of Svalbard archipelago and sea ice: (left) RGB image
constructed from three bands acquired by NASA’s VIS/IR sensor MODIS
(Moderate Resolution Imaging Spectroradiometer) on 13 March 2014. (right)
SAR image from CSA’s Radarsat-2 taken on 16 March 2014.

The very first image of sea ice captured from space was taken by NASA’s
Television and Infrared Observations Satellite (TIROS) in 1960. TIROS be-
longs to the group of VIS/IR (visual/infrared) sensors. These are passive
sensors using the optical window of the atmosphere. The electromagnetic
sources for this type of sensor are the sun in the visual part of the spectrum
and the earth surface in the infrared spectrum. The sensor divides the consid-
ered part of the spectrum into frequency bands and measures the intensity
individually for each band. Appearing similar to the product of common
cameras, RGB images can be constructed by combining the corresponding
frequency bands (Figure 1). The albedo difference between sea ice and open
water allows straightforward sea ice identification. A more advanced analysis
of the different frequency bands can provide a variety of additional earth
surface parameters, that are not revealed in the RGB image. The infrared
bands reflect the temperature distribution of the surface and can be used
for sea ice identification during winter, when the ice surface is considerably
colder than the open water area. Depending on frequency band and acqui-
sition mode, typical resolutions are in the order of 10 - 100m in the visual
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Table 1: Space born Synthetic Aperture Radar sensors for sea ice observations.

Sensor Operator Band Polarisation Period
Seasat SAR NASA L HH 1978
ERS-1 ESA C VV 1991-2000
ERS-2 ESA C VV 1995-2011
JERS-1 JAXA L HH 1992-1998
Radarsat-1 CSA C VV 1995-2013
Radarsat-2 CSA C HH, VV, HV, VH 2007-today
Envisat ASAR ESA C HH, VV, HV, VH 2002-2012
ALOS PALSAR JAXA L HH, VV, HV, VH 2006-2011
ALOS-2 PALSAR-2 JAXA L HH, VV, HV, VH 2014-today
TerraSAR-X DLR X HH, VV, HV, VH 2007-today
Sentinel-1A/B ESA C HH, VV, HV, VH 2014-today

spectrum and 100 - 1000m in the infrared spectrum. Among the successors of
TIROS are NASA’s VIS/IR satellites Landsat 1 - 8 (https://landsat.usgs.gov).
Continuously operating since 1972, the Landsat mission provides the longest
temporal record of high to medium resolution images of the Earth’s surface.
The quality of sea ice observations through the optical window is strongly de-
pending on weather conditions, since the considered electromagnetic waves
are scattered and blocked by clouds. Considering 60 - 90% cloud coverage in
the Arctic, this represents a major drawback. In addition, the visual channels
of the sensor do not provide useful data during polar night, since the sun is
not illuminating the surface.

Introduced in the late 1960’s, space borne passive microwave (PM) sensors
build the most important data source for global, long-term sea ice observa-
tions until today. Similar to IR sensors, PM sensors capture electromagnetic
waves that are directly emitted by the Earth’s surface. However, instead of a
strong temperature dependence (as it is the case for the infrared spectrum),
the intensity of emitted microwaves is mostly varying due to different emis-
sivity values. The emissivity is a frequency depending material property
and can be understood as the material’s ability to emit radiation. Due to its
crystalline structure, sea ice has typically higher microwave emissivity values
than open water, meaning that sea ice emits more microwaves and appears
brighter to the sensor [Ulaby, Long, et al., 2014; Ulaby, Moore, et al., 1986].
The first PM sensor was launched into space in 1968 on board of the Russian
Kosmos-243 and the first sea ice estimates from PM are based on data from
the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus-
5 satellite that has been operational between 1973 and 1976. Since 1978,
a number of different PM sensors, like SMMR (1978 - 1987), SSM/I (1987 -
2008), SSMI/S (2003 - today), AMSR-E (2002 - 2011), SMOS (2009 - today) and
AMSR-2 (2012 - today), have provided the longest sea ice observation record
with global and daily coverage. Corresponding ice concentration maps
and datasets are distributed by the National Snow and Ice Data Centre
(http://nsidc.org). Passive microwave sensors operate on a very low energy
level limiting the spatial resolution to the order 10 - 50 km. Another drawback
beside the low resolution is the low reliability of ice concentration values in
late summer, because a high fraction of melt ponds has a strong effect on the
result.
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To provide high resolution images independent of cloud conditions and so-
lar illumination, an active microwave sensor called Synthetic Aperture Radar
(SAR) has been launched into space in 1978 onboard of NASA’s Seasat satel-
lite. Despite its short operation period of 105 days, the mission successfully
demonstrated the great value of SAR for sea ice research and monitoring.
Depending on the acquisition mode, SAR imagery over sea ice are usually
provided with a resolution of order 10 - 100m (NB: a higher resolution gen-
erally decreases the coverage). The data allows to provide high resolution
sea ice maps including information on ridges and leads, which is crucial for
ship navigation inside the ice cover and for determining heat exchange rates
between ocean and atmosphere. Identifying and tracking individual floes
from one SAR image to the next lead to the first detailed ice motion maps.
Unlike VIS/IR and PM, a single SAR pixel value does not provide enough
information to identify the ice concentration, but the textural characteristics
allows to both identify and classify different sea ice types. The values in
a SAR image (Figure 1) represent the radar backscatter, i.e. how much of
the emitted signal is returned back to the sensor, and must not be confused
with conventional black and white image values that depict the brightness
or albedo of the object. The measured radar backscatter is a function of
incidence angle, polarisation and scattering characteristics of the illuminated
surface. The parameters affecting the scattering characteristics of sea ice are
surface roughness, orientation of the surface features, as well as dielectric
permittivity (linked to the salinity of the ice) and dielectric discontinuities,
like gas bubbles. The band of a SAR sensor defines the frequency spectrum
of the antenna. Common SAR bands are X-band (centre frequency of 9.4GHz
and corresponding wavelength 3.2 cm), C-band (5.3GHz, 5.7 cm) and L-band
(1.3GHz, 24 cm). SAR sensors are capable of emitting (first letter in polari-
sation notation) and receiving (second letter) signals in both horizontal (H)
and vertical (V) polarisation. Emitting and receiving the same polarisation is
defined as co-polarisation mode (HH, VV), whereas HV and VH are referred
to as cross-polarisation. Modern SAR sensors can facilitate the possibility
to acquire images in single, dual or quad polarisation, i.e. taking one, two
or four images of the same scene with a different emitting and/or receiving
polarisation. Table 1 gives an overview of past and current space borne SAR
sensors used for sea ice applications [Stein Sandven and Johannesen, 2006;
M. Shokr and Sinha, 2015; Ulaby, Long, et al., 2014; Ulaby, Moore, et al.,
1986].

The following Section 1.5 explains the concept of SAR, as well as the
corresponding image construction for a more profound understanding of
image interpretation and application fields.

1.5 synthetic aperture radar

A Synthetic Aperture Radar (SAR) is an imaging radar, mounted on a moving
platform (e.g. aircraft, satellite), that utilises a combination of radar hardware,
waveforms, signal processing, and relative motion to create high-resolution
complex images of the illuminated area [Showman, 2010].

A conventional radar is an active sensor, that both transmits electromag-
netic pulses, which are eventually reflected by an object, and receives the
returning signal. By precisely measuring the time difference between trans-
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mission and receipt of the reflected pulse, a radar can determine the distance
between itself and the detected object. The range resolution of a radar system
is defined as the minimum distance difference of two separated objects in
order to be distinguished by the radar. If the distance difference of the two
objects is less than the range resolution, the radar will only recognise a com-
plex combination of the reflected energy from the two objects [McCandless
and Jackson, 2004; Tomiyasu, 1978].

The simplest approach to provide two-dimensional reflectivity images is to
mount a conventional radar in a side-looking angle on a moving platform and
make continuous measurements. Until the 1950s, these systems, denoted as
Side-Looking Airborne Radar (SLAR), were used to provide two-dimensional
images without making use of the synthetic aperture principle [Moreira
et al., 2013]. The flight direction of a moving radar is denoted as azimuth
or along track, and the line-of-sight direction, perpendicular to the flight
direction, as range or across track (Figure 2). The azimuth resolution δa of
a SLAR is determined by the beamwidth Θa, approximately given by the
wavelength λ divided by the antenna size da, and the distance between radar
and reflecting object r0 [McCandless and Jackson, 2004; Moreira et al., 2013;
Sullivan, 2008; Tomiyasu, 1978].

δa ≈ r0Θa ≈ r0λ

da
(real aperture) (1)

Considering the technical specifications of Sentinel-1, which has a 12m

long antenna operating at C-band with wavelength 0.18m, and an orbit
height of 700 km, limits the azimuth resolution of a comparable real aperture
to 10.5 km. This is certainly not enough for high-resolution sea ice monitor-
ing.

However, utilising that the same object is illuminated not only once, but
several times during the pass of the radar (Figure 2) and applying coherent
processing of the received overlapping signals allows to construct a synthetic
aperture that is much longer than the real aperture. The corresponding
synthetic aperture length is given through Lsa = Θar0 and results in a
narrower beamwidth Θsa = λ/2Lsa (the factor two appears due to the two-
way travel path of the signal). Equation 2 provides the adjusted azimuth
resolution calculation applying the synthetic aperture principle [McCandless
and Jackson, 2004; Moreira et al., 2013; Sullivan, 2008; Tomiyasu, 1978].

δa ≈ r0Θas ≈ r0λ

2Lsa
≈ da

2
(synthetic aperture) (2)

The above equation implies that a shorter antenna yields a finer azimuth
resolution and this makes sense considering that a shorter antenna has a
wider beamwidth and therefore illuminates the object over a longer time
period. However, it has to be mentioned that technical restrictions and appli-
cation constraints limit the possibilities of decreasing the antenna length to
much. The achieved azimuth resolution, considering the antenna length of
Sentinel-1, is in the order of 6m, which represents a distinct improvement
compared to the real aperture restrictions.

The original concept of SAR was invented in 1951 by Carl A. Wiley of the
Goodyear Aerospace Corporation, and is described under the name ’Doppler
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Figure 2: Schematic illustration of the SAR imaging geometry with r0 being the
shortest approach distance, Θa the azimuth beamwidth and v the satellite
velocity [Moreira et al., 2013].

beam sharpening’ in the patent on ’Pulsed Doppler radar methods and ap-
paratus’ (United States Patent Office, 1954) as making use of the Doppler
frequency shift phenomenon to obtain angular resolution. Carl Wiley ob-
served that the azimuth (along-track) coordinate of a reflecting object, that is
linearly passed by a radar with constant velocity, corresponds one-to-one to
the instantaneous Doppler shift of the reflected signal. Meaning that a fre-
quency analysis of the reflected signal can enable a finer azimuth resolution
than provided by a conventional real aperture radar, that is limited by the
width of the physical beam [McCandless and Jackson, 2004; Sullivan, 2008].

A necessity for SAR processing is the fully coherent nature of the utilised
radar. A pulse transmitted and received by a coherent radar has a defined
phase angle to a reference signal provided by a highly stable continuous
radar frequency source, called the waveform generator. E.g. in case the radar
frequency is a multiple of the pulse repetition frequency, each pulse starts
with the same phase. The coherent recording of the echoes enables the phase
history of individual scattering elements to be tracked and the analysis of
many echo records eventually delivers very fine resolution in both azimuth
and range direction [Tomiyasu, 1978].

To achieve fine range resolution, both SAR and conventional radar utilise
frequency modulated pulsed waveforms, so called chirp signals. The ampli-
tude of a transmitted chirp signal is usually constant, whereas the frequency
is increased (or decreased) over time in a linear manner. The chirp rate kτ
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describes how the frequency is varied over time, according to f = kτt, and
yields the pulse bandwidth Bτ = kττ for a chirp with pulse width τ. The
spatial resolution in range direction δr can be expressed as a function of
either the pulse width τ or the reciprocal of the bandwidth Bτ multiplied
by the speed of light c and divided by two [McCandless and Jackson, 2004;
Moreira et al., 2013; Sullivan, 2008].

δr ≈ cτ

2
≈ c

2Bτ
(3)

The time associated with the travel of the electromagnetic signal at the
speed of light is denoted as fast time. The transmission of a chirp signal
is followed by an echo window during which the SAR receives and stores
the returning signal. The ground range extent of a SAR image, called swath
width (Figure 2) depends on the time duration during which the radar
is receiving. The pulse repetition frequency defines how many times the
transmission and listening procedure is repeated per second. Utilising chirp
signals improves the resolution, but makes it necessary to perform a matched
filtering step called range compression [Moreira et al., 2013]. As shown
in Figure 3 [Younis, 2015], visualising raw SAR data does not yield useful
information before signal processing. The first step is to compress the chirp
signals to a short pulse. This can be done either in the time domain by a
convolution of the range signal with the range reference function (defined
by the chirp signal) or in the frequency domain using simple multiplication.
The latter is usually performed due to much lower computational cost. The
resulting range compressed image reveals improved information about the
relative distance between the sensor and the reflecting object [Moreira et al.,
2013].

raw data

SAR image

range compression

azimuth compression

range reference function

azimuth reference function

Figure 3: SAR processing chain of three point reflectors including a schematic
illustration of range and azimuth reference functions [Younis, 2015].

In the direction orthogonal to the radar beam, i.e. azimuth direction, the
SAR application is distinctive in its use of aperture synthesis to improve
the spatial resolution. In contrast to a SLAR, a SAR consists not only of
conventional radar building blocks such as antenna, transmitter and receiver,
but also includes a data collection system providing coherent Doppler phase
histories and an advanced signal processor capable of producing images out
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of these phase histories [McCandless and Jackson, 2004].

As depicted in Figure 2, the satellite carrying the SAR sensor moves with
a velocity v through its synthetic aperture and views the same object from
different angles. The time associated with the movement of the satellite is
denoted as slow time [Moreira et al., 2013]. For the following, we have to
assume that the satellite velocity is constant and the object is not moved
during the acquisitions. From the viewpoint of a moving SAR mounted on a
satellite, a passed object on the ground appears to have a changing line-of-
sight velocity relative to the satellite [Sullivan, 2008]. Because SAR involves
phase coherent processing, the phase history of an isolated target during the
integration time, i.e. the time period during the satellite is illuminating the
target, follows a quadratic phase function corresponding to a linear frequency
change [Tomiyasu, 1978]. Applying a similar signal processing step as done
for range compression, the linear frequency shift in azimuth direction can be
utilised to provide much finer azimuth resolution than achieved by a SLAR
(Figure 3).

The SAR principle can be illustrated by considering the phase history of an
observed point target. The following equations are based on Moreira et al.,
2013 and Tomiyasu, 1978. At any point in time t, the distance r between the
sensor at position x (distance from closest point on the satellite track) and
the target can be described using

r =
√

r20 + x2 (4)

where r0 is the minimum distance at x = 0. While the target is illuminated
by the SAR, the distance r0 is in general much larger than x. This allows
expanding Equation 4 into a Taylor series and neglecting all but the first two
terms, which yields the approximation:

r = r0

√
1+

x2

r0
≈ r0 +

x2

2r0
(5)

NB: This approximation is only done here to provide an easy understand-
ing of the process and is not applied for accurate SAR processing.

The motion of the satellite along the target causes a range variation that is
directly related to the azimuth phase ϕ of the received echo. Hence, ϕ can
be expressed as a function of x.

ϕ(x) =
4π

λ
(r0 +

x2

2r0
) = const. +

2πx2

λr0
(6)

Assuming the satellite moves with a constant velocity v along the x-axis,
yields a quadratic phase behaviour in time. Using the abbreviation k = 2πv2

λr0
,

the time dependent part, excluding the constant phase term, becomes

ϕ(t) = kt2 (7)
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The quadratic phase behaviour corresponds to a linear change in the
received azimuth frequency f, which is also called Doppler frequency in
analogy to the Doppler effect.

f(t) =
1

2π

∂ϕ(t)

∂t
=

k

π
t (8)

Knowing the phase behaviour provides the azimuth reference function
that can be utilised to compress the azimuth signal and eventually makes it
possible to produce images with distinctly increased azimuth resolution.

Figure 3 summarises the two basic SAR processing steps range com-
pression and azimuth compression. The corresponding reference functions
depend in range direction on the transmitted chirp waveform and in azimuth
direction on the geometry with adaptation according to the range. It is an
interesting coincident that the frequency variation of the azimuth signal is
similar to that in the range domain. Du to its linear frequency modulation,
the azimuth signal is also referred to as azimuth chirp [Moreira et al., 2013].
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High resolution (order 10 - 1000m) sea ice monitoring from space is done
using either VIS/IR or SAR sensors. Due to the passive nature of the VIS/IR
sensor, image acquisition is less energy demanding allowing good cov-
erage with comparable high resolution. With the possibility to produce
conventional RGB images, the data are easy to understand and represent an
important tool for accessing the ice situation during favourable conditions
and validating other satellite sensors. However, the dependence on solar
illumination and clear sky is a major drawback in the polar regions and
prohibit reliable, year round monitoring. Our main source for continuous sea
ice monitoring with high temporal and spatial resolution is therefore SAR
data and VIS/IR imagery are mainly used for interpretation support of the
SAR scenes. The active nature of SAR includes a higher energy demand and
limits the acquisition time to around 30%. Nevertheless, we found good SAR
coverage in our area of interest, which is the European Arctic sector. The
interpretation of a SAR scene is not as intuitive as for a RGB image, but by
understanding the sensor concept and the interaction of the electromagnetic
waves with the sea ice surface, many details can be revealed that are not
captured by VIS/IR sensors.

The main tasks for high resolution sea ice monitoring from SAR are identi-
fying sea ice on a SAR image (ice/water classification), defining the ice type
(sea ice type classification) and tracking recognisable pattern over two, or
more, consecutive scenes to observe sea ice motion. Other sea ice param-
eters like thickness, age, strength and deformation can be estimated from
classification and motion products or observed with lower resolution sensors
(e.g. passive microwave, scatterometer, altimetry). The following Section
2.1, Section 2.2 and Section 2.3 will introduce the methods that are applied
for SAR pre-processing, sea ice classification and sea ice motion retrieval
and put the papers that are presented as part of this thesis into context with
previously published literature in this field.

2.1 sar pre-processing

Both sea ice classification and sea ice motion retrieval from SAR can benefit
from pre-processing steps like incidence angle correction and thermal noise
removal.

The backscatter signal of the co-polarisation mode (HH, VV) has a strong
dependence on the incidence angle, i.e. the backscatter generally decreases
with increasing incidence angle [M. Shokr, 2009]. To compensate for this
backscatter decrease in range direction, the image values can be corrected to
a certain extent using a linear function of the incidence angle. The angular
dependence, however, varies for different types of open water and sea ice
[Mäkynen et al., 2002], meaning that the correction factor depends on the

15
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illuminated object. Open water shows in general a higher angular depen-
dence with a strong influence of wind conditions (strong winds are linked to
a stronger angular dependence). The backscatter decrease of sea ice can be
considered more stable and less affected by wind or other conditions. This
allows to use a representative linear correction factor for all sea ice scenes
from a certain SAR sensor, as done by Zakhvatkina, Alexandrov, et al., 2013
for ENVISAT ASAR and Zakhvatkina, Anton A. Korosov, et al., 2017 for
Radarsat-2.

The returning signals of the cross-polarisation channels (HV, VH) are less
sensitive to the incidence angle, but have a comparable low energy level,
which reduces the signal to noise ratio and introduces artefacts produced by
thermal noise. Corresponding thermal noise correction values are usually
provided in the metadata of the SAR image and need to be subtracted from
the image values. Zakhvatkina, Anton A. Korosov, et al., 2017 presented a
thermal noise removal procedure for HV images from Radarsat-2 as part of
an ice/water classification algorithm.

2.2 sea ice classification

Sea ice classification on SAR imagery includes ice/water classification, dur-
ing which the sea ice covered area is separated from open water, and sea ice
type classification, representing another step during which different types
of sea ice are identified inside the ice covered area. Ice/water and ice type
classification can be done manually or using automatic algorithms.

The challenge of sea ice classification from SAR is, that both sea ice and
open water can appear dark (low backscatter) and bright (high backscatter)
on the image. Calm open water and flat young ice are usually dark on a
SAR image, whereas open water during strong winds can have a similar
bright backscatter signal as multi year ice, rough first year ice or young ice
covered with frost flowers. Using dual polarisation can add certain infor-
mation to distinguish sea ice from open water and different ice types, e.g.
rough open water appears darker in HV, but some ambiguities remain [On-
stott and Shuchman, 2004; Stein Sandven and Johannesen, 2006]. Therefore,
image characteristics like spatial structures and image textures need to be
considered to perform a reliable classification product [Bogdanov et al., 2005;
Clausi, 2002; Maillard et al., 2005; M. E. Shokr, 1991; Soh and Tsatsoulis, 1999;
P. Yu et al., 2012].

The human eye is well trained for pattern recognition, enabling experi-
enced sea ice experts to preform manual interpretation of SAR scenes to
classify open water and different sea ice types. Compared to automatic
algorithms, this approach demands more time effort, but can provide a
higher reliability. Several national institutes (Canadian Ice Service, Finnish
Meteorological Institute, Norwegian Meteorological Institute, Swedish Mete-
orological and Hydrological Institute etc.) provide daily sea ice charts based
on a combination of satellite imagery and in situ data. Manual interpretation
of SAR imagery represents a crucial instrument to produce these operational
ice charts, in particular during polar night and cloud coverage, when VIS/IR
images do not reveal any information about the ocean surface. However,
the provided ice charts have often a limited resolution and cannot be used
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to study small regions like Arctic fjords. Automatic algorithms also fail
near the coastline, adding to the lack of knowledge about sea ice coverage
inside Arctic fjords. To provide high resolution sea ice classification for
two Arctic fjords (Isfjorden, Hornsund), Stefan Muckenhuber, Nilsen, et al.,
2016 produced a time series (2000 - 2014) classifying open water, fast ice and
drift ice using manual interpretation of SAR data and VIS/IR images as
validation during polar day. To distinguish fast ice from drift ice, the motion
of the ice from one image to the next has been used as additional information.

Automatic sea ice classification algorithms significantly decrease the effort
to produce ice charts from SAR imagery. This can increase the temporal
resolution of operational products and improve the possibilities to work with
large SAR datasets. A number of studies have been conducted to develop au-
tomatic sea ice classification algorithms and several corresponding products
have been distributed operationally. Dokken et al., 2002 introduced a polynya
algorithm for ERS SAR imagery based on wavelet transformation for edge
detection and texture analysis to identify open water, new and young ice,
and define size and shape of polynyas. To support operational SAR sea ice
classification, Soh, Tsatsoulis, et al., 2004 developed a system called ARKTOS
(Advanced Reasoning using Knowledge for Typing of Sea Ice) that segments
the SAR image, generates descriptors for the segments, uses input from sea
ice experts to classify the segments and allows the incorporation of other
data types than SAR. Haarpaintner and Solbø, 2007 applied a texture based
algorithm, that uses an automatically trained maximum likelihood classifier,
on Radarsat-1 and ENVISAT ASAR imagery to distinguish sea ice from open
water. Better results were achieved when dividing the SAR images into slices
of incidence angle increments to overcome the angle dependence of the SAR
backscatter. Karvonen et al., 2005 developed an ice/water classification algo-
rithm for Radarsat-1 based on segmentation and intensity autocorrelation
to produce ice charts for the Baltic Sea. Comparison with manual ice charts
from the Finnish Ice Service showed about 90% accuracy. The continuation
of this work with Radarsat-2 and ENVISAT ASAR imagery is presented in
Karvonen, 2010. Geldsetzer and Yackel, 2009 found that the dual polarisation
mode of ENVISAT ASAR enables unambiguous open water discrimination
from all sea ice types except thin sea ice using a decision-tree classifier with
statistical thresholds. Gill and Yackel, 2012 applied a supervised k-means
and maximum likelihood classification algorithm on several polarimetric
parameters to assess the potential of discriminating three sea ice types and
rough open water. To classify sea ice and open water on Radarsat-2 im-
agery, Clausi et al., 2010, Ochilov and Clausi, 2012 and Leigh et al., 2014
developed a Map Guided Sea Ice Classification System that combines an
image segmentation method named iterative region growing using semantics
[Q. Yu and Clausi, 2008] with a pixel based support vector machine. The
algorithm has been validated using 20 SAR scenes over the Beaufort Sea and
the average accuracy was found to be 96%. Zakhvatkina, Alexandrov, et al.,
2013 introduced a neural network algorithm based on texture feature analysis
for sea ice classification of ENVISAT ASAR data that could discriminate two
types of first year ice, multi year ice and open water/nilas with an accuracy
of around 80− 85%. Operationally distributed ice/water maps based on
this algorithm were compared with manual ice charts from the Norwegian
Meteorological Institute and provided an accuracy of 97% [Stein Sandven,
Alexandrov, et al., 2012]. Zakhvatkina, Anton A. Korosov, et al., 2017 de-
veloped an ice/water classification algorithm for dual polarisation images
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from Radarsat-2 and distributed ice/water maps operationally as part of the
marine services under the Copernicus programme. More than 2700 SAR
scenes have been processed from 2013 until 2015 and the algorithm provided
an accuracy of 91% compared to manual ice charts from the Norwegian
Meteorological Institute. After pre-processing the SAR image, i.e. angular
correction for HH and thermal noise removal for HV, grey level co-occurrence
matrices (GLCM) are computed in a sliding window w. Based on the GLCM,
eight texture features are computed, which (together with the backscatter
values) specify whether the window w is classified as open water or sea ice.
A support vector machine has been trained to classify the window according
to the combination of texture feature and backscatter values.

2.3 sea ice motion

Similar to sea ice classification, sea ice drift can be derived manually or by
applying automatic algorithms. However, instead of working with a single
SAR scene, two consecutive images have to be considered that allow to follow
sea ice formations from one point in time and space to another point in time
and space (NB: instantaneous range velocity can also be retrieved from SAR
Doppler shift analysis, but this procedure is at an early development stage
and accuracy issues with e.g. Sentinel-1 Doppler data hinder the progress
in this field). The pattern recognition performance of the human eye allows
manual sea ice drift retrieval with good accuracy. However, compared to
automatic algorithms, the effort to produce manual drift maps is very large.
High resolution drift maps are therefore mainly produced by algorithms and
manual drift retrieval is rather used for validation purpose or case studies.

Contemporary algorithms for deriving sea ice drift from two consecutive
SAR images are usually based on one of two basic concepts:

• Feature-tracking

• Pattern-matching

Feature-tracking algorithms detect distinct patterns (features) in both im-
ages individually and connect similar features in a second step without the
need for knowing their locations. This can be done computationally efficient
and the resulting vectors are often independent of their neighbours in terms
of position, lengths, direction and rotation, which is an important advantage
for resolving shear zones, rotation and divergence/convergence zones. How-
ever, the distribution of the resulting vector field is usually not controlled
by the user, but defined by the locations of the features that the algorithm
successfully connected. Large gaps may occur between densely covered
areas, which can eventually lead to missing shear and/or divergence/conver-
gence zones [Stefan Muckenhuber, Anton Andreevich Korosov, et al., 2016].
Pattern-matching algorithms, on the other hand, consider a small template
from the first image (around the starting location of the vector) and try to find
its match by sliding it over a larger template from the second image. Despite
a comparable large computational effort, this approach is widely used, since
it allows user defined vector positioning. Tho speeds up the processing, a
pyramid approach is generally used for deriving high-resolution drift fields.
However, this limits usually the independence of neighbouring vectors, since
they are restricted by a lower resolution estimate [Thomas et al., 2008].
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Based on the first available space borne SAR imagery from Seasat in 1978,
Hall and Rothrock, 1981 and Curlander et al., 1985 derived sea ice displace-
ment vectors by identifying and connecting ice features manually. The first
automatic sea ice drift algorithm for Seasat data was introduced by Fily and
Rothrock, 1987, who presented a pattern-matching algorithm based on cross
correlation using a resolution pyramid, i.e. high resolution drift estimates
are based on low resolution estimates, to decrease the computational effort.
The algorithm performed well in heavy packed ice with large floes, but
fragmentation and rotation represented a challenge. Instead of computing
the cross correlation directly, as done by Fily and Rothrock, 1987, Collins
and Emery, 1988 proposed an algorithm that computed the correlations in
the Fourier domain to increase the computational efficiency and allow for
calculating sea ice drift without considering a resolution pyramid. Vesecky
et al., 1988 compared drift results from a pair of Seasat SAR images using two
automatic approaches: a cross correlation pattern-matching algorithm with
resolution pyramid and a feature-tracking algorithm using floe-lead bound-
ary segments. The results of the two approaches complemented each other
in many ways and Vesecky et al., 1988 concluded that a combined algorithm
including both methods can provide a better sea-ice velocity estimate than
either approach could alone. Considering the wide range of movement and
conditions that sea ice exhibits in particular in the marginal ice zone, Daida
et al., 1990 proposed a set of three feature based algorithms that are chosen
and applied according to an automatic pre-examination of the image pair.
After the Seasat mission, ERS-1 was the first earth observation satellite that
carried a SAR sensor and delivered systematic acquisitions of sea ice covered
oceans from 1991 until 2000. Based on ERS-1 data, the first operational sea
ice drift retrieval system, called Geophysical Processing System (GPS), was
put in place by Ronald Kwok et al., 1990 at the Alaska SAR Facility. The
algorithm combined a pattern-matching approach, based on cross correlation,
over pack ice with a feature-tracking method, considering the shape of ice
floes [McConnell et al., 1991], for the marginal ice zone. A pattern-matching
algorithm applying a pyramid resolution introduced by Kloster et al., 1992
was applied on a number of ERS-1 SAR scenes over the Barents Sea during
the SeasonalIce Zone Experiment 1992 Stein Sandven, Johannessen, et al.,
1999. Calculated drift vectors were compared with in-situ measurement from
Argos buoys and the pattern-matching algorithm performed well in the inte-
rior of the ice pack, but had difficulties to find drift vectors in the marginal
ice zone. Sun, 1996 demonstrated on ERS-1 SAR data that an algorithm
based on optical flow methods has the capacity to outperform traditional
pattern-matching techniques based on area correlation in areas with strong
rotation and deformation, while requiring less computational power. Based
on Radarsat-1, ENVISAT ASAR data and the GPS algorithm from Ronald
Kwok et al., 1990, sea ice drift fields, in particular over the Western Arctic
(depending on SAR coverage), have been calculated for the time period
1996-2012 once per week with a spatial resolution of 10− 25km [R. Kwok
and Cunningham, 2002]. A high-resolution sea ice drift algorithm for SAR
images from ERS-1 based on a pattern-matching procedure that included
both phase correlation and cross correlation was introduced by Thomas et al.,
2008, allowing drift calculation up to 400 m resolution. The work on this
algorithm has been continued by Hollands and Dierking, 2011, who derived
high-resolution sea ice drift from ENVISAT ASAR data. Karvonen, 2012 de-
veloped a phase correlation based algorithm with some additional constraints
for Radarsat-1 and ENVISAT ASAR data to provide an operational sea ice
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drift product for the Baltic Sea. Berg and Eriksson, 2014 introduced a hybrid
algorithm for sea ice drift retrieval from ENVISAT ASAR data using phase
correlation and a feature based matching procedure that is activated if the
phase correlation value is below a certain threshold. Komarov and Barber,
2014 and Stefan Muckenhuber, Anton Andreevich Korosov, et al., 2016 have
evaluated the sea ice drift retrieval performance of dual-polarisation SAR
imagery. Using a combination of phase/cross correlation, Komarov and Bar-
ber, 2014 found that sea ice drift information extracted from Radarsat-2 HV
images can improve the drift estimates from HH polarisation in certain areas.
They recommended a simple superposition of the vector fields obtained
from HH and HV. Stefan Muckenhuber, Anton Andreevich Korosov, et al.,
2016 developed an open-source feature-tracking algorithm based on corner
detection for computationally efficient sea ice drift retrieval from Sentinel-1
SAR imagery and showed that the HV channel provided on average around
four times as many feature-tracking vectors as the HH polarisation. Making
use of Sentinel-1 SAR data, an operational sea ice drift product with 10km
resolution is provided by the Danish Technical University (Pedersen et al.,
2015, http://www.seaice.dk/) as part of the Copernicus Marine Environment
Monitoring Service (CMEMS, http://marine.copernicus.eu). S. Muckenhu-
ber and S. Sandven, 2017 continued the work from Stefan Muckenhuber,
Anton Andreevich Korosov, et al., 2016 and improved the feature-tracking
approach by combining it with pattern-matching to derive drift vectors at
user defined locations in a computationally efficient manner. Unlike Berg
and Eriksson, 2014, the feature-tracking step is performed initially and serves
as a first guess to limit the computational effort of the pattern-matching step.
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3.1 publication i

Stefan Muckenhuber1, Frank Nilsen2,3 , Anton Korosov1 and Stein Sandven1:
Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote
sensing data, The Cryosphere, 10, 149-158, doi:10.5194/tc-10-149-2016, 2016

To study local sea ice cover in two Arctic fjords, Isfjorden and Hornsund,
the authors established a satellite database and produced corresponding sea
ice classification maps. Around 17000 SAR, VIS/IR satellite images and ice
charts were collected to display the area of Isfjorden, Hornsund, and the
Svalbard region during winter and spring for the time period 2000-2014.
More than 3300 manual interpretations of sea ice conditions in the two
considered fjords have been conducted, resulting in two time series with
almost daily resolution dividing the fjord area into fast ice (sea ice attached
to the coastline), drift ice and open water. The sea ice time series complement
the operationally provided ice charts from the Norwegian Meteorological
Institute and products from automatic algorithms by providing a higher
resolution, and hereby a reliable ice cover estimate for the fjord area, and
distinguishing between fast and drift ice. To quantify sea ice coverage in a
defined region over a certain period of time, a new index called ’days of fast
ice’ (DFI) has been introduced that includes both spatial and temporal extent
of the fast ice coverage. The DFI values are calculated by building the sum
over the fast ice area of all considered days relative to the total area. Based
on the sea ice cover time series, DFI values for Isfjorden and Hornsund have
been calculated for each winter season. A significant reduction of fast ice
coverage is found when comparing the time periods 2000-2005 and 2006-2014
both in the monthly averaged and the DFI values. Calculating a mean before
and after 2006 yields a decrease from 50 to 22DFI for Isfjorden and from
56 to 34DFI for Hornsund. Quantifying sea ice coverage with a single DFI
value per year allows for simple comparison with other data and the authors
relate the DFI values to sea surface temperature from satellite measurements,
surface temperature from weather stations and ocean heat content from CTD
data.

1 Nansen Environmental and Remote Sensing Center (NERSC), Thormøhlensgate 47,
5006 Bergen, Norway

2 University Centre in Svalbard (UNIS), P.O. Box 156, 9171 Longyearbyen, Norway
3 Geophysical Institute, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
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3 .2 publication ii

Natalia Zakhvatkina4,5, Anton Korosov1, Stefan Muckenhuber1, Stein Sandven1,
Mohamed Babiker1: Operational algorithm for ice/water classification on
dual-polarized RADARSAT-2 images, The Cryosphere, 11, 33-46, doi:10.5194/tc-
11-33-2017, 2017

The authors developed an automatic sea ice/water classification algorithm
for dual polarisation Radarsat-2 SAR imagery that has been applied opera-
tionally in the period 2013 until 2015. Technical issues inherent in Radarsat-2
data were addressed in a pre-processing step by introducing an angular cor-
rection procedure for the HH channel and a thermal noise removal method
for HV. The algorithm calculates grey level co-occurrence matrices (GLCMs)
from a sliding window with size 3.2km× 3.2km, that shall capture the tex-
tural characteristics inside the window. Based on the GLCM, a number of
different texture features are derived. A support vector machine classifica-
tion algorithm has been trained using 24 Radarsat-2 images acquired during
winter, to distinguish sea ice from open water based on texture feature and
backscatter values. The algorithm is already set up to define several sea ice
and open water classes, but these subclasses were merged into the main
classes sea ice and open water to increase the reliability of the algorithm.
Automatically produced sea ice charts of the ice-covered sea between Green-
land and Franz Josef Land have been distributed as open-source product
from 2013 until 2015. To evaluate the accuracy of the algorithm, the results
have been compared to manually derived ice charts from the Norwegian
Meteorological Institute. The validation of around 2700 automatically de-
rived ice charts from SAR showed that the average classification accuracy
was 91± 4%. The algorithm performed better during winter months and
had a stronger deviation from the manual ice charts during summer.

4 Nansen International Environmental and Remote Sensing Centre (NIERSC), 14th Line 7, Office
49, Vasilievsky Island, St. Petersburg, 199034, Russian Federation

5 Arctic and Antarctic Research Institute (AARI), Beringstr. 38, St. Petersburg, 199397, Russian
Federation
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3 .3 publication iii

Stefan Muckenhuber1, Anton Korosov1 and Stein Sandven1: Open-source
feature-tracking algorithm for sea ice drift retrieval from Sentinel-1 SAR
imagery, The Cryosphere, 10, 913-925, doi:10.5194/tc-10-913-2016, 2016

To derive high resolution sea ice motion from consecutive SAR images in
a computational efficient manner and independent of rotation, the authors
introduce a drift algorithm for Sentinel-1 data based on the feature-tracking
algorithm ORB (Oriented FAST and Rotated BRIEF). ORB builds on the FAST
keypoint detector and the binary BRIEF descriptor with many modifications
to enhance the performance. The FAST detector is used to find keypoints on
several resolution pyramid levels and the Harris corner measure is applied
to pick the best among them. To achieve rotation invariance, the orientation
of the keypoint is calculated by using the intensity-weighted centroid of a
circular patch with the located keypoint at the centre. To describe the area
around the keypoints, i.e. the features, the binary BRIEF descriptor is applied.
The Hamming distance in combination with a brute-force procedure is used
to match the features from the first and second SAR scene. The authors tuned
the parameters of the algorithm for optimal SAR sea ice drift application
and provided the most suitable parameter set (including spatial resolution
of SAR image, patch size of FAST descriptor, number of pyramid levels,
scale factor, etc.) for the area of interest, i.e. the ice-covered seas between
Greenland and Severnaya Zemlya. Using 43 test image pairs over Fram Strait,
the presented drift algorithm was compared to two other available feature-
tracking algorithms, i.e. SIFT and SURF, and showed the best performance
both in processing time and in quantity and quality of the drift vectors. To
assess the accuracy of the algorithm, calculated vectors have been compared
to 350 manually derived displacements vectors and the root mean square
distance was found to be 563m.
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3 .4 publication iv

Stefan Muckenhuber1 and Stein Sandven1: Open-source sea ice drift algo-
rithm for Sentinel-1 SAR imagery using a combination of feature tracking
and pattern matching, The Cryosphere, 11, 1835-1850, doi:10.5194/tc-11-1835-
2017, 2017

The authors introduce a sea ice drift algorithm for Sentinel-1 data that
shall combine the advantages from feature-tacking and patter-matching in
the most meaningful way. The main advantages of the considered feature-
tracking approach are the computational efficiency and the independence
of the vectors in terms of position, lengths, direction and rotation. Pattern-
matching on the other side allows better control over vector positioning
and resolution. A feature-tracking procedure based on the algorithm from
Publication III provides an un-evenly distributed vector field. Outliers in
this vector field are excluded using drift and rotation estimates derived from
least squares solutions. Based on the filtered feature-tracking vectors, drift
and rotation on the entire SAR scene are estimated. This initial drift field
limits the search area for a consecutive pattern-matching algorithm that
provides small to medium scale adjustments. The resolution of the final
drift product is mainly affected by the size of the pattern-matching template
(2.7km× 2.7km), i.e. the considered area that is tracked from one image
to the next. The vector spacing can be defined by the user. Considering
4km vector spacing, the algorithm needs about 4min when applied on a
regular laptop. To assess the potential performance of the algorithm after
finding suitable search restrictions, the authors compare the results from
246 Sentinel-1 image pairs to buoy GPS data collected in winter/spring 2015
north of Svalbard. A logarithmic normal distribution of the displacement
difference was found with a median at 352.9m using HV polarisation and
535.7m using HH polarisation.



4 D I S C U S S I O N A N D O U T LO O K

The focus of this thesis is put on the development and application of meth-
ods for deriving high resolution sea ice information from space borne SAR
imagery, in particular, manual and automatic sea ice classification and sea
ice drift retrieval from consecutive SAR images.

Combining manual interpretation with an efficient processing chain, it has
been shown that detailed sea ice information for small fjords like Isfjorden
and Hornsund can be derived from SAR imagery on a daily basis with high
accuracy. These efforts complement the operationally provided ice charts
and products from automatic algorithms by providing a higher resolution
and distinguishing between fast and drift ice. Together with constructed time
series and ongoing hydrographic measurement programs the sea ice time
series supports the hypothesis that the fjord systems along west Spitsbergen
went from an Arctic state to a more Atlantic water state after winter 2006.
The provided time series is meant to be used in future studies for a better
understanding of the air-ice-ocean interaction processes in an Arctic fjord
system, but also in climate effect studies linked to, e.g. glacier dynamics,
ocean chemistry, and marine biology.

Using the introduced sea ice/open water algorithm, operational sea ice
charts could be provided fully automatically based on dual polarisation
Radarsat-2 SAR imagery with an accuracy of more than 90%. The study
emphasises the advantages of using dual polarisation mode for discriminat-
ing sea ice and open water compared to single polarisation and introduces
pre-processing steps for both HH and HV that can be beneficial for other
SAR applications as well. Since the start of the Sentinel-1 mission, ESA
provided less Radarsat-2 imagery for non commercial purpose and the sea
ice/water algorithm needed to be adapted to the data format of Sentinel-1.
Ongoing work at NERSC includes the development of an automatic sea
ice classification algorithm for Sentinel-1 that is also based on a support
vector machine approach, but includes several modifications to enhance the
performance. Instead of considering a rectangular window, as done in the
Radarsar-2 algorithm, texture features are calculated for before defined seg-
ments. Classifying segments shall improve the resolution and allow a better
separation of different ice and open water classes. A principal components
analysis is applied to identify the most suitable set of texture features. In ad-
dition, ongoing efforts at NERSC to improve the thermal noise removal from
Sentinel-1 HV imagery will improve both automatic sea ice classification as
well as sea ice drift retrieval.

The developed feature-tracking algorithm showed that high resolution
sea ice motion can be derived automatically from Sentinel-1 imagery in a
computational efficient manner with vectors that are independent in terms
of position, lengths, direction and rotation. The HV channel provided signifi-
cantly more vectors than the HH channel, in particular for image pairs with
larger time gaps, suggesting that the HV image depicts more features that
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are better preserved over time. The major drawback of feature-tracking is
that the vector positioning is not user controlled and large gaps may occur
between clouds of densely located vectors. To overcome this problem, a com-
bined algorithm has been developed that is designed to utilise the respective
advantages of feature-tracking and pattern-matching to allow computational
efficient sea ice drift calculation at user defined locations including a quality
measure for each individual drift vector.

This combined algorithm allows to proceed to the next step towards provid-
ing large drift data-sets and developing an operational sea ice drift product
that is distributed in near-real-time with a resolution of order 1km. There-
fore, the algorithm performance needs to be tested on large SAR data-sets to
further evaluate weaknesses and strengths, and implemented in an infrastruc-
ture that allows near-real-time processing and distribution of the results. The
necessary expertise to continue these plans and access to a super-computing
and near-real-time infrastructure will be provided through an ongoing coop-
eration with the remote sensing group at TU Wien. The combined sea ice
drift algorithm will be implemented into the SAR processing structure of TU
Wien and applied on large SAR data-sets to evaluate its performance. The
drift algorithm will be improved and adjusted according to the results to
achieve a stable algorithm that performs well in different ice conditions. The
final goal is a fully automated near-real-time distribution of high-resolution
sea ice drift maps from Sentinel-1 data and providing large drift data-sets.
The results shall be automatically evaluated via buoy comparison to estimate
the accuracy of the product.

Another open task is to utilise the advantage of dual polarisation with
the combined drift algorithm. A simple approach would be to combine the
feature-tracking vectors derived from HH and HV and produce a combined
first-guess. Pattern-matching can be performed based on this combined first-
guess for both HH and HV individually and the results could be compared
and eventually merged into a single drift product. Having two drift esti-
mates for the same position, from HH and HV pattern-matching respectively,
would also allow to disregard vectors that disagree significantly. However,
this option would increase the computational effort by two.

Furthermore, the author is currently investigating the influence of non-
linear motion on sea ice displacement, as derived from satellite imagery,
based on GPS-data from in-situ tracker and the FRAM-2014/15 ice drift
expedition. These efforts shall help to combine drift results from satellite
image pairs with different time gaps to provide useful drift information from
large data-sets.

The introduced combination of feature-tracking and pattern-matching can
also be applied to any other application that aims to derive displacement
vectors computationally efficient from two consecutive images. The only
restriction is that the considered images need to depict edges, that can be
recognised as keypoints for the feature-tracking algorithm.

A long-term goal is to combine sea ice drift, including deformation, with
ice type classification from SAR data to create innovative, high-resolution
ice maps that can be used by a variety of stack holders in the polar regions
such as sea-ice modeller, operational ice forecasting services, ice navigation,
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offshore operation, climate research and environmental monitoring including
tracking of pollution embedded in sea ice.
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Abstract. A satellite database including 16 555 satellite im-
ages and ice charts displaying the area of Isfjorden, Horn-
sund, and the Svalbard region has been established with fo-
cus on the time period 2000–2014. 3319 manual interpreta-
tions of sea ice conditions have been conducted, resulting in
two time series dividing the area of Isfjorden and Hornsund
into “fast ice” (sea ice attached to the coastline), “drift ice”,
and “open water”. The maximum fast ice coverage of Isfjor-
den is > 40% in the periods 2000–2005 and 2009–2011 and
stays < 30% in 2006–2008 and 2012–2014. Fast ice cover
in Hornsund reaches > 40% in all considered years, except
for 2012 and 2014, where the maximum stays < 20%. The
mean seasonal cycles of fast ice in Isfjorden and Hornsund
show monthly averaged values of less than 1% between July
and November and maxima in March (Isfjorden, 35.7%) and
April (Hornsund, 42.1%), respectively. A significant reduc-
tion of the monthly averaged fast ice coverage is found when
comparing the time periods 2000–2005 and 2006–2014. The
seasonal maximum decreases from 57.5 to 23.2% in Isfjor-
den and from 52.6 to 35.2% in Hornsund. A new index,
called “days of fast ice” (DFI), is introduced for quantifi-
cation of the interannual variation of fast ice cover, allow-
ing for comparison between different fjords and winter sea-
sons. Considering the time period from 1 March until end of
the sea ice season, the mean DFI values for 2000–2014 are
33.1± 18.2DFI (Isfjorden) and 42.9± 18.2DFI (Hornsund).
A distinct shift to lower DFI values is observed in 2006.
Calculating a mean before and after 2006 yields a decrease
from 50 to 22DFI for Isfjorden and from 56 to 34DFI for
Hornsund. Fast ice coverage generally correlates well with
remote-sensing sea surface temperature and in situ air tem-

perature. An increase of autumn ocean heat content is ob-
served during the last few years when the DFI values de-
crease. The presented sea ice time series can be utilized for
various climate effect studies linked to, e.g. glacier dynam-
ics, ocean chemistry, and marine biology.

1 Introduction

Svalbard is an Arctic archipelago located between 76 and
81◦ N and 10–34◦ E. It is surrounded by the Arctic Ocean
in the north, with the Greenland Sea and Fram Strait to the
west and the Barents Sea to the east. Spitsbergen is the largest
island in the archipelago, and the study area of this work in-
cludes two fjords along the west coast of Spitsbergen (Fig. 1).
Water masses along the west side of Spitsbergen are

strongly influenced by the West Spitsbergen Current (WSC),
that is steered along the slope between the West Spitsber-
gen Shelf and the deep ocean, the coastal current (CC) on
the shelf, and freshwater input from glacier and river runoff
along the coastline (Fig. 1). The WSC transports warm and
salty Atlantic water (AW) northward, representing the ma-
jor oceanic heat and salt source for the Arctic Ocean. The
WSC contributes strongly to Svalbard’s relatively warm cli-
mate and causes the eastern Fram Strait to be the northern-
most permanently ice-free ocean (Onarheim et al., 2014).
The fjords along western Spitsbergen are usually separated
from the WSC by the colder and fresher water masses of the
northward flowing CC. This, in combination with low tem-
peratures and fresh water input from glacier and river runoff,
makes seasonal sea ice growth inside the fjords possible. But

Published by Copernicus Publications on behalf of the European Geosciences Union.
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AW from the WSC can reach the upper shelf and eventu-
ally flood into the fjords (Nilsen et al., 2008, 2012). These
warm water intrusions have a strong effect on the seasonal
sea ice cover inside the fjords. The fjord–shelf exchange is
controlled by the density difference between the fjord wa-
ter masses and the AW, which is determined by the sea ice
and brine production during winter (Nilsen et al., 2008). This
means that the sea ice cover inside the fjords is not only a re-
sult of advected or advecting water masses, but can alter the
fjord water significantly and influence the exchange with the
shelf.
The aim of this study is to investigate sea ice conditions

between 2000 and 2014 in two representative fjords along
the west coast of Spitsbergen (Fig. 1), where ocean and at-
mosphere data are available for further analysis. The two
considered fjords are Isfjorden, the largest fjord of Spits-
bergen with the size of 2490 km2 (as defined from 2013
Landsat 8 images), and Hornsund, a smaller fjord (320 km2)
located in southern Spitsbergen. Both fjords reveal a sea-
sonal sea ice coverage with strong variations between dif-
ferent years. Information about sea ice coverage in Isfjor-
den has been collected between 1974 and 2008 in Grønfjor-
den (Zhuravskiy et al., 2012), which is a small sub fjord at
the southern entrance of Isfjorden, but no data for the en-
tire fjord area have been published so far. Previous studies
have investigated sea ice conditions in Hornsund during the
winter seasons of 2005–2011, and the results have been pub-
lished in Styszyńska and Kowalczyk (2007), Styszyńska and
Rozwadowska (2008), Styszyńska (2009) and Kruszewski
(2010, 2011, 2012). These studies compare in situ observa-
tions from the Polish Polar Station in Isbjørnhamna, a bay
at the northern entrance of Hornsund, with atmospheric and
oceanic measurements and mean monthly sea ice concentra-
tion at the approach to Hornsund. The survey concentrates on
regional ice conditions near Isbjørnhamna and no time series
for the entire fjord is given.
The data for this article were collected and interpreted

within the framework of the Polish–Norwegian AWAKE-2
project. The aim of AWAKE-2 is to understand the interac-
tions between the main components of the climate system
in the Svalbard area: ocean, atmosphere, and ice, to identify
mechanisms of interannual climate variability and long-term
trends. The main hypothesis of AWAKE-2 is that the AW
inflows over the Svalbard shelf and into the fjords have be-
come more frequent during the last decades and this results in
new regimes and changes in atmosphere, ocean, sea ice, and
glaciers in Svalbard. Being a link between land and ocean,
Arctic fjords are highly vulnerable to warming and are ex-
pected to exhibit the earliest environmental changes result-
ing from anthropogenic impacts on climate. Sea ice cover is
a key parameter for monitoring climate variability and trends
since it captures the variability of both ocean and atmosphere
conditions. Due to the major role sea ice cover plays in air–
sea interactions, knowledge about the ice cover is crucial for
a better understanding of the Arctic fjord system. The focus

Figure 1. MODIS image of Svalbard taken on 8 April 2009 in-
cluding a schematic illustration of the ocean currents along western
Spitzbergen. The two considered fjords Isfjorden and Hornsund are
marked with red polygons. The respective weather stations, marked
with green dots, are located at 78.25◦ N, 15.50◦ E (Isfjorden) and
77.00◦ N, 15.54◦ E (Hornsund).

of this paper is to present a new sea ice cover time series,
revealing the variability in sea ice cover and showing that
the observed variability is consistent with other observations.
Future studies may be able to use the data set to further un-
derstand linkages and drivers of the observed variability.
The paper is organized as follows: Sect. 2 explains the col-

lected satellite images and gives an error estimate for the es-
tablished sea ice cover time series. A method for manual in-
terpretation of satellite data to describe sea ice conditions in
a fjord is introduced in Sect. 3 as well as a new index, the
days of fast ice (DFI) index, for quantifying fast ice cover-
age in a fjord. The sea ice cover time series for Isfjorden and
Hornsund, the resulting DFI values and the dates for onset
of freezing are presented in Sect. 4 and compared to atmo-
sphere and ocean time series. The discussion can be found in
Sect. 5.

2 Data

Investigating sea ice conditions, such as spatial extent and
ice type, via satellite remote sensing in comparable small ar-
eas like Isfjorden and Hornsund requires a spatial resolution
of a few 100m or lower. Daily images throughout the year
with this resolution are only produced by Synthetic Aper-
ture Radar (SAR), which is an active microwave sensor capa-
ble of penetrating cloud cover and taking images during po-
lar night. Since the interpretation of sea ice conditions from
SAR images can be ambiguous, high and medium resolution
visual/near infrared (VIS/NIR) images provide valuable ad-
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ditional information during polar day. They can also be uti-
lized, if SAR images are not available. However, good tem-
poral coverage with VIS/NIR sensors is only achieved with
a resolution above 250m. Hence, lower accuracy is expected
if only VIS/NIR images are utilized.
A satellite database including 6571 SAR images, 9123

VIS/NIR images and 861 ice charts displaying the area of
Isfjorden and Hornsund has been established (see Table 1).
Focus was placed on the time period 2000–2014, and the part
of the season when sea ice was present in the fjords.
NERSC (Nansen Environmental and Remote Sensing

Center) maintains a large satellite database including several
thousand Level 1 SAR images from ASAR (Advanced Syn-
thetic Aperture Radar on ENVISAT) and Radarsat-2. To se-
lect the images which are recorded at the considered region
and time period, the NERSC MAIRES online service (http://
web.nersc.no/project/maires/sadweb.py) has been used. 4326
ASAR and 2245 Radarsat-2 sub images covering Isfjor-
den and Hornsund, respectively, have then been created and
stored in GeoTIFF format. The collected SAR data represent
a time series from 2005 until 2014 with a temporal resolu-
tion of around 1–2 images per day and a spatial resolution
between 50 and 150m.
Medium resolution (300–500m) VIS/NIR images from

MERIS (Medium Resolution Imaging Spectrometer on EN-
VISAT) and MODIS (Moderate Resolution Imaging Spec-
troradiometer on Terra and Aqua) covering the Svalbard
region have been downloaded from websites hosted by
NASA (National Aeronautics and Space Administration).
MODIS images from the data sets MOD02HKM (Terra) and
MYD02HKM (Aqua) can be ordered pre-processed, which
allows all available images of the considered area and time
period to be downloaded. A total of 8501 MODIS images
represents a temporal resolution of up to several images per
day for the period 2000 until 2014. The relevant MERIS
images had to be chosen prior to downloading via online
“quicklooks” to select images with cloud-free conditions.
About 10 MERIS images per year have been chosen and
added to the database.
High resolution VIS/NIR images have a distinct lower spa-

tial and temporal coverage, but when available, view the ice
conditions with an unmistakable clarity. 335 images from
Landsat 1–8 and 161 from ASTER (Advanced Spaceborne
Thermal Emission and Reflection Radiometer on Terra) have
been chosen for downloading via quicklooks provided by
USGS (United States Geological Survey) and the Japan
Space System.
In addition to the satellite images, 861 ice charts from

the Norwegian Meteorological Institute (met.no) have been
added to the database. These ice charts are based on the same
satellite images that are used for this paper. The resolution of
the met.no ice charts is too low to give sufficient accurate
estimates about daily ice conditions in fjords like Isfjorden
and Hornsund. Nevertheless, the met.no charts can serve as
additional information about the overall sea ice concentra-

tion outside the boundary of the high resolution SAR im-
age. Most of the stored ice charts depict ice conditions dur-
ing polar night when no visual images are available to obtain
a quick overview of the large scale sea ice concentration.
To validate and discuss the remote sensing sea ice

observations, in situ air, ocean and remote sensing
sea surface temperature (SST) data are considered.
Monthly SST values are provided by the ESA (Euro-
pean Space Agency) for the time period 1993–2010
with a grid spacing of 25 km× 25 km (http://catalogue.
ceda.ac.uk/uuid/1dc189bbf94209b48ed446c0e9a078af,
doi:10.1002/gdj3.20). This data set is used to calculate win-
ter SST for Isfjorden, representing the mean January–April
at 78.25◦ N, 14.75◦ E. Moreover, 285 CTD (conductivity,
temperature, and depth) profiles taken between 2000 and
2014 at the Isfjorden mouth area (78.08–78.16◦ N, 13.5–
14.3◦ E) and 107 CTD profiles taken between 2009 and
2014 inside Hornsund have been used to calculate the mean
heat content of the 25–100m depth water column for each
year during autumn (July–September). The 25–100m depth
range was chosen in order to avoid the shallow atmospheric
heated surface layer and rather concentrate on the layers that
represent fjord circulation of either Atlantic water (AW) or
Arctic water (ArW). The CTD data were extracted from the
UNIS (University Centre in Svalbard) hydrographic database
(UNIS HD), where the CTD profiles used in this study are
mainly collected by UNIS with additional profiles from the
Norwegian Marine Data Centre (NMDC). Air temperature
measurements from weather stations in Isfjorden (Svalbard
airport, 78.25◦ N, 15.50◦ E) and Hornsund (77.00◦ N,
15.54◦ E) are provided by the Norwegian meteorological
institute (eklima.met.no) for the entire observation period.
The temperatures of days with average temperature below
−2 ◦C between October and May are added together to
derive negative degree days for each winter.
Continuity of the presented sea ice time series is expected

since VIS/NIR images from the same sensor are considered
for the entire observation period. Including SAR as addi-
tional data source for the time period 2005–2014 provides
useful data during cloud cover and leads to an increased tem-
poral resolution compared to the period prior to 2005, which
is solely based on visible data. Visible images are not able
to capture sudden sea ice condition changes, if the fjord is
covered by clouds. However, complete cloud cover usually
did not exceed a few days. The formation and melting of sea
ice takes place over time scales of days, but sea ice advection
from or into the fjord and break up of fast ice can happen
within a few hours. These sudden changes are captured in
the time series prior to 2005 on the first succeeding day with
little or no cloud cover.
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Table 1. Satellite databases used, including sensor, image type, spatial resolution (i.e. pixel size), amount of collected images, covered time
span (i.e. date of first and last image) and source.

Sensor Image type Resolution # of images Time span Source

ASAR SAR 150m 4326 21 Jul 2005–7 Apr 2012 NERSC database
ASTER VIS/NIR 15m 161 19 Aug 2000–12 Aug 2013 http://gds.ersdac.jspacesystems.or.jp
Landsat 1–8 VIS/NIR 15m 335 25 Mar 1973–29 Jul 2014 http://earthexplorer.usgs.gov
MERIS VIS/NIR 300m 126 25 Jun 2003–7 Apr 2012 http://oceancolor.gsfc.nasa.gov
MODIS VIS/NIR 500m 8501 25 Feb 2000–4 Aug 2014 http://ladsweb.nascom.nasa.gov
Radarsat 2 SAR 50m 2245 5 Apr 2011–30 Jul 2014 NERSC database
met.no ice chart – 861 24 Oct 2005–27 Jun 2014 http://polarview.met.no

Figure 2. Radarsat-2 (a,b) and MERIS (c) images of Isfjorden taken on 6 April 2011. Radarsat-2 images are shown in ArcGIS with adjusted
symbology (a) before and (b) after analysis by a sea ice expert.

3 Methods

The downloaded Level 1 satellite data fromASAR, Radarsat-
2, MODIS, and MERIS were processed with the open-source
python toolbox “Nansat” (developed by NERSC) into geo-
TIFF and PNG Level 2 images, which can be displayed by
ArcGIS and several other programs. Within ArcGIS, two
polygons covering Isfjorden and Hornsund were created us-
ing a high resolution VIS/NIR image from Landsat 8 as ref-
erence. This polygon describes the fjord area very accurately
and can be subdivided in order to evaluate the sea ice cover-
age by area. Due to the large amount of considered days and
images, the processing chain needed to be fast and efficient.

This was achieved by implementing most steps into a python
code working inside ArcGIS.
For the time period 2005–2014, both SAR and VIS/NIR

images are available, and the processing chain for a specific
date (leading to one data point in the time series) is as fol-
lows. The SAR images of the considered day are loaded
into ArcGIS, and their symbology is adjusted to increase
the visual difference between water and ice. Then the men-
tioned polygon is superimposed on the images and divided
by a sea ice expert into the regions “fast ice”, “drift ice”,
and “open water” (Fig. 2a, b). Both “fast ice” and “drift ice”
appear white on the visible image and are characterized by
high backscatter values on the SAR image. “Open water” ap-
pears dark blue on the visible image and has low/high SAR
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backscatter values during low/high wind speeds. “Fast ice”
is attached to the coastline and does not change its position
on consecutive SAR images. This makes it easy to identify
“fast ice”, but the difference between “drift ice” and “open
water” can be ambiguous during high wind speeds, if only
SAR data are available. The origin of the sea ice, which can
result from both freezing inside the fjord or advection from
the shelf, is not considered during the manual interpretation.
The area of each region is calculated in m2 using a built in
function of ArcGIS, and the results are saved in a text file.
In case VIS/NIR images are available for the same date, they
are used for validation and interpretation support of the SAR
images (Fig. 2c).
Prior to 2005, no high quality SAR images could be ac-

cessed, and the time series is solely based on VIS/NIR im-
ages. During polar night it is therefore not possible to de-
scribe the ice conditions. During polar day high accuracy is
only achieved for days with high resolution VIS/NIR images
and lower accuracy is expected for the other days, due to the
lower resolution of MODIS and MERIS compared to SAR.
The method yields still high reliability for the analyzed years
before 2005 since water and ice can be separated unmistak-
ably on visual images. Continuity of the time series is ex-
pected since MODIS, Aster, and Landsat data are available
and considered for the entire time series.

3.1 Days of fast ice (DFI)

To quantify sea ice coverage in a defined region (in our case
Isfjorden and Hornsund), a new index called “days of fast
ice” (DFI) is introduced. The index describes fast ice con-
ditions over a considered time period in a single value with
unit days. Both temporal and spatial extent of the fast ice is
included. The DFI are calculated by building the sum over
the fast ice area of all considered days relative to the total
area, i.e. in our case the entire fjord area (Eq. 1).

DFI=
∑
days

fast ice area

total area
(1)

The unit days shall give a quick understanding of the range
(considered time period) and linear scaling. The index in-
dicates the number of days that the fjord would be covered
100% with fast ice. The DFI values allow a simple compar-
ison between different regions and time periods as well as
with external parameters like atmospheric or oceanic data.

3.2 Error estimates

Since the time series is based on manual interpretation, defin-
ing an exact error value for spatial sea ice extent is not pos-
sible. Nevertheless, possible error sources can be evaluated
and an error estimate from the analyzing sea ice expert can
be given.
The biggest error source is wrong interpretation of am-

biguous SAR images during polar night, when no visible im-

ages are available for validation. As mentioned above, “fast
ice” is easy to identify, whereas the separation of “drift ice”
and “open water” is sometimes inconclusive. This error for
“drift ice” and “open water” is hard to quantify, but can be
up to 10% and in some cases even more.
The different resolutions of the utilized satellite images is

another potential source of error. In our study, the areas cov-
ered by “fast ice”, “drift ice”, and “open water” do not vary
randomly from pixel to pixel, but are usually divided by de-
fined edges. Using different resolutions should not affect the
classification of a certain region but only the accuracy of the
edge position in the order of one pixel. Hence, a relative er-
ror estimate can be given by multiplying the edge length with
the pixel size and dividing the result by the fjord area. As-
suming an edge of 20 km and 7 km, which is about the fjord
width of Isfjorden and Hornsund, and a resolution range of
15m (Landsat, ASTER) to 500m (MODIS), the resulting er-
ror range is 0.01–0.4% for Isfjorden and 0.03–1% for Horn-
sund.
Insufficient geographic information for the satellite image

can lead to a slightly stretched satellite image compared to
the fjord polygon in the order of a few pixels. This can lead
to an additional error of the same order of magnitude as the
discussed resolution error, but only a small number of the
satellite images are affected by that.
The observed glacier retreat has a negligible effect on

larger fjords like Isfjorden, but can change the total area of
smaller fjords like Hornsund on the order of 0.5% per year.
Blaszczyk et al. (2013) quantified the total glacier retreat area
at the marine margin in Hornsund to be 18.8 km2 between
2001 and 2010 (equal to 5.8% of the fjord area measured
in 2013). The utilized Hornsund coastline was created using
a Landsat image from 2013, meaning that the coastline rep-
resents the fjord area very well during the later years, but
overestimates the total fjord area during the first few years
in the order of up to 5%. The glacier covered area along the
coastline polygon was not classified separately but added to
the surface coverage at the glacier front. This might lead to
a slight overestimation of the surface type next to the glacier
front, which is most likely “fast ice” during winter. The re-
sulting error is negligible for the second half of the time se-
ries and in the order of 0–1% for the first half.
The daily error estimate based on consideration of the

mentioned sources and personal appraisal of the analyzing
sea ice expert is in the order of 1% for “fast ice” and between
1% up to 10% for “drift ice” and “open water” depending
on the availability of VIS/NIR images for validation. The er-
ror propagation from a single day to a time period of several
months leads to a very high accuracy for all given monthly
averaged fast ice cover and days of fast ice (DFI) values. The
error of these values are therefore not considered in the fol-
lowing since they do not influence the interpretation of the
results.
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Table 2. Calculated “days of fast ice” (DFI) for Isfjorden and Hornsund between 2000 and 2014 for two different time periods. “Total season”
refers to the entire sea ice season starting during autumn of the previous year and “short season” refers to 1 March until the end of the ice
season, i.e. the time period when VIS/NIR images are available. � describes the difference between the entire and short season.

(DFI) Isfjorden Hornsund
Year Total season Short season � Total season Short season �

2000 – 46.0 – 56.7
2001 – 33.8 – 54.3
2002 – 52.2 – 53.6
2003 – 43.1 – 53.5
2004 – 70.7 – 59.9
2005 – 55.4 – 56.0
2006 19.4 9.5 9.9 25.8 25.8 0
2007 19.3 14.1 5.2 51.1 40.1 11
2008 28.5 20.5 8 54.2 49.8 4.4
2009 61.6 49.8 11.8 71.4 51.4 20
2010 34.9 24.8 10.1 53.6 47.4 6.2
2011 68.7 32.2 36.5 76.1 44.9 31.2
2012 16.9 12.8 4.1 2.5 2.0 0.5
2013 22.7 19.0 3.7 49.9 47.0 2.9
2014 18.0 13.2 4.8 2.5 0.4 2.1
Mean±SD 32.2± 18.5 33.1± 18.2 10.5± 9.6 43.0± 25.5 42.9± 18.2 8.7± 9.9

Figure 3. Surface coverage of Isfjorden between 2000 and 2014
divided into “fast ice”, “drift ice”, and “open water” by a sea ice
expert. Total area= 2487.6 km2 (defined with Landsat image from
19 September 2013). White gaps occur when no satellite data were
available. The red dots display the “days of fast ice” (DFI) values
of the short season as shown in Table 2.

4 Results

By utilizing the created satellite database (Sect. 2) and ap-
plying the described method (Sect. 3), two time series divid-
ing the area of Isfjorden and Hornsund into “fast ice”, “drift
ice”, and “open water” have been created (Figs. 3 and 4). In
total, 3319 manual interpretations of sea ice conditions were
conducted by a sea ice expert, leading to an almost daily res-
olution between 2000 and 2014. Unclassified gaps occur in
both time series when SAR images were unavailable during
the dark season (white gaps in Figs. 3 and 4).
The daily surface coverage in Isfjorden between 2000 and

2014 is shown in Fig. 3. A maximum fast ice coverage of
40% and higher is reached in the time periods 2000–2005

Figure 4. Surface coverage of Hornsund between 2000 and 2014
divided into “fast ice”, “drift ice”, and “open water” by a sea ice
expert. Total area= 324.0 km2 (defined with Landsat image from
24 August 2013). White gaps occur when no satellite data were
available. The red dots display the “days of fast ice” (DFI) values
of the short season as shown in Table 2.

and 2009–2011. During the periods 2006–2008 and 2012–
2014, the fast ice area stays always below 30%. Figure 4
displays the daily surface coverage in Hornsund for 2000
until 2014. Maximum fast ice cover values above 40% are
reached in all years, except for 2012 and 2014, where the fast
ice season is significantly shorter and the maximum stays be-
low 20%. Late growth of fast ice is also observed in 2006,
2008 and 2013.
Monthly averaged fast ice cover, based on the time series

shown in Figs. 3 and 4, are shown in Figs. 5 and 6, respec-
tively. The monthly averaged values display the seasonal cy-
cle of fast ice growth and melt/break up in Isfjorden and
Hornsund. Values for the dark season (November–February)
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Figure 5. Monthly averaged fast ice coverage in Isfjorden shown
for three time periods: 2000–2014 (mean in black and standard de-
viation in grey) 2000–2005 (blue) and 2006–2014 (red).

Figure 6. Monthly averaged fast ice coverage in Hornsund shown
for three time periods: 2000–2014 (mean in black and standard de-
viation in grey) 2000–2005 (blue) and 2006–2014 (red).

before 2006 are missing since no high quality SAR images
were available for this period.
Less than 1% monthly averaged fast ice cover were ob-

served in Isfjorden between July and November (Fig. 5).
Considering the mean over the entire observation period
2000–2014 (black line, Fig. 5), the highest value is reached in
March (35.7%) or earlier. Before 2005 (blue line, Fig. 5), the
value in March is 57.5%. The mean for 2006–2014 (red line,
Fig. 5) shows the highest value with 23.2% in April. Monthly
averaged fast ice coverage in Hornsund is shown in Fig. 6.
Less than 2% fast ice is observed between July and Novem-
ber. April is the month with the highest fast ice coverage val-
ues: 42.1% for the mean over all considered years (black
line, Fig. 6), 52.6% for the period 2000–2005 (blue line,
Fig. 6) and 35.2% for 2006–2014 (red line, Fig. 6). Com-
paring the time periods 2000–2005 and 2006–2014 yields
a significant reduction of the monthly averaged fast ice cov-
erage. The seasonal maximum decreases by 60.2 and 33.1%

Figure 7. Onset of sea ice cover in Isfjorden and Hornsund. The
years refer to the sea ice season, which starts during the previous
year, meaning that January marks the beginning of the respective
year. The triangles and dots mark the days with first appearance of
drift and fast ice, i.e. the start of the sea ice season. Too few satel-
lite images were available for Isfjorden in 2007 to give a reliable
estimate.

(relative to the value for 2000–2005, assuming the maximum
occurs in March) in Isfjorden and Hornsund, respectively.

4.1 Days of fast ice (DFI)

Utilizing Eq. (1) and the time series shown in Figs. 3 and 4,
DFI values have been calculated for Isfjorden and Hornsund,
and the results are shown in Table 2. For each sea ice sea-
son, two different time periods were considered. The “total
season” refers to the entire sea ice season, which lasts usu-
ally from November of the previous year until June, and the
“short season” lasts from 1 March until the end of the sea ice
season. The “short season” can also be calculated for years
in which only VIS/NIR images are available, whereas SAR
images are necessary for the “total season”.
High correlation coefficients (R) between the total and

short season DFI time series for both Isfjorden (R = 0.89)
and Hornsund (R = 0.94) suggest that the short season val-
ues effectively capture the interannual variability of the entire
season. Only the ice season 2011 shows a higher than average
difference in the short and total season DFI values (Table 2),
due to very early fast ice growth (Fig. 7) and a high fast ice
peak before March.
The DFI mean values (total and short season, Table 2) for

Isfjorden are around 10DFI lower than the mean values for
Hornsund, which means around 25% less fast ice coverage in
Isfjorden relative to the total area of each fjord. Similar high
standard deviations for both fjords indicate strong variations
from year to year.
Both “short season” time series show a strong decrease in

2006. Isfjorden’s DFI values between 2000 and 2005 are all
above the mean, whereas after 2006 only 2009 has more than
the average “days of fast ice”. Calculating a mean before and

www.the-cryosphere.net/10/149/2016/ The Cryosphere, 10, 149–158, 2016



156 S. Muckenhuber et al.: Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data

after 2006 shows a drop from 50 to 22DFI. The situation of
Hornsund is similar, yet not so pronounced. The mean value
decreases from 56 to 34DFI before and after 2006. Low val-
ues are reached in 2006 and particularly in 2012 and 2014,
where the fast ice coverage goes down to almost 0DFI.

4.2 Onset of freezing

The sea ice season in Isfjorden and Hornsund starts usually
between late autumn and beginning of winter. Figure 7 shows
the days on which drift and fast ice first appear, i.e. the start of
the sea ice season in Isfjorden and Hornsund. The year refers
to the winter season, which starts during the previous year.
This means, that January in Fig. 7 refers to the beginning of
the respective year. The first sea ice of the season appears
during polar night and SAR images are necessary to define
the date of the freezing onset. Since no SAR images were
available prior to 2005, the time series in Fig. 7 starts with the
sea ice season 2006. Too few satellite images were available
to give an reliable estimate of the freezing onset in Isfjorden
2007.
Drift ice starts to grow in Isfjorden in all examined years

around the beginning of November. The appearance of fast
ice in Isfjorden varies between mid November (2011), De-
cember (2009, 2010, and 2012), and the beginning of Jan-
uary (2008, 2013, and 2014). The start of the sea ice season
in Hornsund underlies stronger variations. The first drift ice
of the season was found in November or December in all
years except for the last 2 years, during which an early start
in October was observed. Fast ice starts to appear in Horn-
sund between the end of November and mid March. Late fast
ice formation was observed during 2006, 2008, and 2013.

4.3 Ocean and atmospheric data

In Fig. 8, the DFI values for Isfjorden are compared with
satellite-derived winter sea surface temperatures (SSTs) near
the mouth of the fjord, ocean heat content from in situ pro-
files taken at the mouth of the fjord for 25–100m depth,
as well as winter atmospheric temperatures from a nearby
weather station, represented by negative degree days. Fast
ice coverage generally correlates well with winter SST and
air temperature. The SST time series deviate somewhat in
2003, 2004, and 2006 compared to the observed DFI values,
and fast ice coverage in 2011 is relatively low considering
the relatively low air temperatures. Low DFI values between
2006 and 2008 are reflected in the ocean heat content time
series and a general increase of autumn ocean heat content is
observed between 2010 and 2014 when the DFI values de-
crease.
The DFI values for Hornsund are shown together with au-

tumn ocean heat content and winter atmospheric tempera-
tures in Fig. 9. Except for 2001 and 2010, relatively low/high
fast ice cover occurs during winters with relatively high/low
air temperatures. The water masses found inside the fjord

Figure 8. Isfjorden’s (red) “days of fast ice” (DFI) values of the
short season compared to (blue) winter sea surface temperature
(SST), (black) autumn heat content above -2 ◦C of the 25–100m
depth water column and (green) winter negative degree days be-
low -2 ◦C. Winter SST values represent the mean for the period
January–April at 78.25◦ N, 14.75◦ E. Heat content values are cal-
culated using the mean temperature profile during autumn (July–
September) at the Isfjorden mouth area. Negative degree days have
been derived from temperature measurements at the Svalbard air-
port station (78.25◦ N, 15.50◦ E). Note the reversed SST and heat
content axis.

Figure 9. Hornsund’s (red) “days of fast ice” (DFI) values of the
short season, compared to (black) autumn heat content above -2 ◦C
of the 25–100m depth water column and (green) winter negative
degree days below -2 ◦C. Heat content values are calculated using
the mean temperature profile inside Hornsund during autumn (July–
September). Negative degree days have been derived from temper-
ature measurements at the Hornsund station at 77.00◦ N, 15.54◦ E.
Note the reversed heat content axis.

during autumn show a distinct higher heat content in 2013
and 2014 compared to 2009–2011.

5 Discussion and outlook

Isfjorden has two periods with relatively high sea ice cover
(2000–2005 and 2009–2011, Fig. 3) and two periods with
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relatively low sea ice cover (2006–2008 and 2012–2014,
Fig. 3). All periods last 3 years or more, which suggests the
involvement of an oceanic mechanism since the atmospheric
conditions underlay variations with shorter time scales. How-
ever, wind forcing of the West Spitsbergen Shelf (WSS) on
timescales from days to months is shown to be one of the
mechanisms of starting a shelf circulation of warm AW to-
wards the fjords (Cottier et al., 2007; Nilsen et al., 2012).
Cottier et al. (2007) reported that during the Arctic winter
of 2005/2006, periods of sustained along-shelf winds gener-
ated upwelling and cross-shelf exchange that caused exten-
sive flooding of the coastal waters with warm Atlantic wa-
ter from the West Spitsbergen Current (WSC) (Cottier et al.,
2007). The winter temperature of the WSS reverted to that
typical of fall, interrupting the normal cycle of sea ice for-
mation in the region, including both the shelf and the fjords
along the west coast of Spitsbergen.
Ongoing hydrographic measurement programs and con-

struction of longer time series (Pavlov et al., 2013) show that
fjord systems along west Spitsbergen went from an Arctic
state to a more Atlantic water state after winter 2006 (Cot-
tier et al., 2007). In Fig. 8, times series for the winter SST
in Isfjorden and the autumn heat content (25–100m depth)
at the mouth of Isfjorden show that both the SST and heat
content increased in the period 2006–2008. Atlantic water
circulated the WSS and Isfjorden during this period (Cottier
et al., 2007; Nilsen et al., 2016) and the surface water sel-
dom reached the freezing point temperature (Fig. 8). Hence,
the effect of forcing event on the time scale of weeks (Cot-
tier et al., 2007), and a corresponding advection of AW, can
have an influence on the fjord thermodynamics and local sea
ice condition on a yearly time-scale. The fjord–shelf system
went towards a more Arctic state during the following years,
but in 2012, similar forcing events as for 2006 (Nilsen et al.,
2016) caused the AW to dominate the fjords again, and the
heat content in Fig. 8 shows an increasing trend after 2011.
Calculated negative degree-days from atmospheric temper-
ature data closely follows the variation in DFI (Fig. 8) and
can also explain the low DFI values in some years. But care
must be taken in attributing changes in sea ice cover to at-
mospheric variability, as reduced sea ice cover and a warmer
ocean can also increase the atmospheric temperature.
Another possible explanation for the perennial duration of

both small and large fast ice cover years in Isfjorden can
be given by looking at the density difference between the
fjord water masses and the AW. In contrast to the external
forcing mechanism suggested above, this represents a local
forcing mechanism through air–ice–ocean interaction. Nilsen
et al. showed that a high ice production during winter, results
in a higher formation of dense brine-enriched fjord water and
the local water masses in the fjord proper can end up being
denser than the water masses residing on the shelf (Nilsen
et al., 2012). This is a key mechanism that enables AW to
penetrate into Isfjorden in spring and the following summer
and autumn, and determines in which depth the warm AW

will circulate in the water column. Considering Isfjorden as
a coastal polynya with the opening area restricted by fast ice
cover, more sea ice is produced in winters with less fast ice
coverage. Hence, low fast ice coverage can cause AW intru-
sion in the following summer, which then can lead to low
fast ice coverage in the following winter if the intruding AW
is circulating high in the water column.
The mechanisms described for Isfjorden could apply for

Hornsund, but being a smaller fjord, the resident time for dif-
ferent water masses will be smaller and variations on shorter
time scales can be expected. A comparison of the DFI time
series in Figs. 8 and 9 suggests that interannual sea ice cover
variability in Hornsund may be less influenced by intrusion
of AW residing on the shelf. The sea ice cover in Hornsund
seems to revert to a “normal” state after a year with known
AW intrusion, while Isfjorden is influenced by the AW for
several years after such events (Nilsen et al., 2008, 2016).
However, Hornsund responds similarly to Isfjorden during
the most extreme years of AW dominance on the WSS and
strong external forcing mechanisms (Nilsen et al., 2016), i.e.
the winters of 2006, 2012, and 2014. Thus, Hornsund, be-
ing the most southern fjord along the west coast of Spits-
bergen, could serve as an indicator of AW dominance for all
fjords north of Hornsund along the west coast. Ocean and
atmosphere measurements from the Polish research station
in Hornsund carried out by the ongoing Polish–Norwegian
project AWAKE-2 (Arctic climate system study of ocean,
sea ice and glaciers interactions in Svalbard area) will be uti-
lized within AWAKE-2 to explain the difference between av-
erage seasons and years with distinct less sea ice coverage,
i.e. 2006, 2012, and 2014.
Considering the start of the freezing season, i.e. the first

appearance of drift or fast ice in the two fjords, Isfjor-
den shows in general less variability and earlier ice growth
(Fig. 7). A low correlation between the start of the freezing
season for the two fjords is observed, suggesting a stronger
dependence on local conditions rather than a large-scale
ocean and/or atmosphere influence. Occurrence of drift ice
always precedes fast ice, often with a time lead of 1–2
months. However, care must be taken when defining the start
of the freezing in Arctic fjords using satellite images since
the first appearance of drift ice will not necessarily reflect that
the surface layer of the fjord proper has reached the freezing
point temperature, but merely that some protected side fjords
within the larger fjord system may have a fresher and colder
surface layer, allowing for sea ice production for a limited
period. Hence, the true freezing season will start somewhere
between the first detection of drift ice and the establishment
of fast ice in an Arctic fjord.
Recent observations of the ice cover to the north of Sval-

bard further demonstrate the intimate link between the heat
of the Atlantic water and the distribution of sea ice. Onarheim
et al. (2014) have shown that the sea ice area north of Sval-
bard has been decreasing for all months since 1979 with the
largest ice reduction occurring during the winter months at
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a rate of 10% per decade (Onarheim et al., 2014). This is in
contrast to the observed changes in more central parts of the
Arctic Ocean, where largest ice decline is happening during
summer. However, the observed reduction is concurrent with
a gradual warming of 0.3 ◦C per decade warming of the AW
along West Spitsbergen, and thus, the extra oceanic heat has
been the major driver of the sea ice loss, which is concurrent
with our results from both Isfjorden and Hornsund. Another
indication of warm water as a major driver is the delayed
maximum fast ice area in Isfjorden (Fig. 5) from March (or
earlier) to April for the 2000–2005 period to the 2006–2014
period, respectively. A warmer water column in late autumn
can cause delayed ice formation and consequently lower ice
concentrations in early winter.
In conclusion, the presented sea ice time series can be used

to obtain a better understanding of interannual variability in
Arctic fjord system. Since a sea ice cover reflects the physical
state of the ocean and atmosphere, the present sea ice time
series can be used in future studies to better understand air–
ice–ocean interaction processes within each fjord system, but
also in various climate effect studies linked to, e.g. glacier
dynamics, ocean chemistry, and marine biology.

The Supplement related to this article is available online
at doi:10.5194/tc-10-149-2016-supplement.
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Abstract. Synthetic Aperture Radar (SAR) data from

RADARSAT-2 (RS2) in dual-polarization mode provide ad-

ditional information for discriminating sea ice and open wa-

ter compared to single-polarization data. We have developed

an automatic algorithm based on dual-polarized RS2 SAR

images to distinguish open water (rough and calm) and sea

ice. Several technical issues inherent in RS2 data were solved

in the pre-processing stage, including thermal noise reduc-

tion in HV polarization and correction of angular backscatter

dependency in HH polarization. Texture features were ex-

plored and used in addition to supervised image classification

based on the support vector machines (SVM) approach. The

study was conducted in the ice-covered area between Green-

land and Franz Josef Land. The algorithm has been trained

using 24 RS2 scenes acquired in winter months in 2011 and

2012, and the results were validated against manually derived

ice charts of the Norwegian Meteorological Institute. The al-

gorithm was applied on a total of 2705 RS2 scenes obtained

from 2013 to 2015, and the validation results showed that the

average classification accuracy was 91± 4%.

1 Introduction

Synthetic Aperture Radar (SAR) is an active microwave sen-

sor providing high-resolution images over large areas inde-

pendent of clouds and daylight. This is especially useful for

observing the polar regions, where SAR data are widely used

for exploring sea ice concentration, extent, detection of leads,

polynyas, ice floes and ice edge, and ice type identification

and classification (Johannessen et al., 2007; Dierking, 2013).

Monitoring of sea ice processes, i.e., ice edge variations and

motion, is important for practical tasks such as ice navigation

and for scientific studies. High-resolution data from C-band

SAR such as ERS-1/2 (European Remote Sensing satellites,

European Space Agency, ESA), RADARSAT-1 (Earth ob-

servation satellite, Canadian Space Agency), and ENVISAT

(Environmental Satellite, ESA) have been used as the main

data source for sea ice monitoring in the last 2 decades (e.g.,

Johannessen et al., 2007). The advanced capabilities of SAR

on board of RADARSAT-2 (RS2) and Sentinel-1 (European

Commission and ESA) with multi-polarization data can im-

prove sea ice observations such as ice edge detection and ice

type classification.

SAR images can be used to identify different sea ice

types and open water (OW) areas based on variations of the

backscattered radar intensity caused by surface roughness

and other sea ice properties. Classification methods based

only on the backscattering coefficients (σ ◦) are hampered by
ambiguities in the relation between ice types and σ ◦, since
various ice types (multiyear, first-year, and some young and

new ice) and open water depending on wind speed and direc-

tion can have similar σ ◦ (Dierking, 2010; Johannessen et al.,
2007). In particular, discrimination between calm open wa-

ter and smooth first-year ice, as well as between windy open

water and young ice with frost flowers or multiyear ice, can

be problematic. Including additional image characteristics

like image texture, tone, and spatial structures can improve

the classification results significantly (Shokr, 1991; Soh and
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Tsatsoulis, 1999; Clausi, 2002; Bogdanov et al., 2005; Mail-

lard et al., 2005; Yu et al., 2012).

Numerous efforts have been made to develop algorithms to

retrieve sea ice variables from SAR data. The SAR polynya

detection algorithm proposed by Dokken et al. (2002) is

based on wavelet transforms for edge detection and standard

texture analysis. A threshold function using texture informa-

tion is used to classify sea ice and water for polynya detec-

tion. A semi-automated sea ice classification method based

on fuzzy rules was reported by Gill (2003) for classification

of RADARSAT-1 data over the Arctic into calm water, wind-

roughened water, and sea ice in low and high concentrations.

Advanced Reasoning using Knowledge for Typing of Sea Ice

(ARKTOS) (Soh et al., 2004) has been established to sup-

port scientific research and operational applications in the

field of sea ice segmentation and classification. Haarpainter

and Solbø (2007) developed an automatic algorithm for ice–

ocean discrimination in RADARSAT-1 and ENVISAT SAR

imagery. The texture-based algorithm consists of an automat-

ically trained maximum likelihood classifier and divides the

SAR images into slices of small incidence angle ranges. The

results show that sea ice and water can be discriminated quite

reliably. Some examples showed a tendency of the algorithm

to a better performance at low incidence angles. Karvonen et

al. (2005) distinguished the Baltic Sea ice from open water

based on thresholding of segment-wise local autocorrelations

in SAR images. The method provided 90% accuracy com-

pared to digital ice charts for the Baltic Sea. This algorithm

has been used by the Finnish Meteorological Institute (FMI).

Tests with RADARSAT-2 and ENVISAT SAR data show that

over 89.4% of the test data fit the ice classification provided

by the Finnish Ice Service for the Baltic Sea and Arctic Sea

(Karvonen, 2010, 2012).

Dual polarization has several advantages for sea ice clas-

sification compared to single-polarization SAR data. Rough

or frost-flower-covered young ice and multiyear ice, while

very different in their thickness (10–15 cm and more than

2.5m, respectively), show rather similar brightness in the

HH channel whereas MYI is brighter than young ice in the

HV channel. Smooth first-year level ice is darker in both

HH and HV and can be easily distinguished from young

ice and MYI. Wind-roughened open water is difficult to dis-

tinguish from sea ice in a single HH polarization. How-

ever, open water especially affected by wind is darker in HV

that improves sea ice classification (Sandven et al., 2008).

The dual-polarization ENVISAT SAR Alternative Polariza-

tion Mode data enabled discrimination of sea ice types and

open water with a decision-tree classifier using estimated

statistical thresholds for winter. Open water can be unam-

biguously discriminated from smooth FYI, rough FYI, and

MYI with > 99% accuracy using a co-polarized ratio thresh-

old (Geldsetzer and Yackel, 2009). The possibilities of su-

pervised k-means and maximum likelihood classification of

various SAR polarimetric data to three pre-identified sea ice

types and wind-roughened open water was explored in Gill

and Yackel (2012).

The MAp-Guided Sea Ice Classification System (MAGIC)

for automated ice–water discrimination on dual-polarization

images from RADARSAT-2 combines a “glocal” Iterative

Region Growing using Semantics (IRGS) classification (Yu

and Clausi, 2008) with a pixel-based support vector machine

(SVM) approach. The “glocal” classification identifies ho-

mogeneous regions with arbitrary class labels. The ice–water

map is created with the SVM classifier exploiting SAR tex-

ture and backscatter features. The MAGIC system has been

applied on 20 RS2 scenes over the Beaufort Sea. The aver-

age classification accuracy with respect to manually drawn

ice charts is 96.5% (Clausi et al., 2010; Ochilov and Clausi,

2012; Leigh et al., 2014).

A neural-network-based algorithm has been developed for

ENVISAT SAR images for operational sea ice classifica-

tion including validation (Zakhvatkina et al., 2013). The al-

gorithm discriminated the level FYI, deformed FYI, MYI,

and open water/nilas in the high Arctic in winter conditions

and demonstrated good applicability in the central Arctic.

Using the same approach an algorithm for mapping ice–

water utilizing ENVISAT ASAR WSM images was created

for automated ice edge detection in Fram Strait. The ice–

water classes were estimated by a multi-layer perceptron

neural network which uses SAR calculated texture features

and concentration data from AMSR (Advanced Microwave

Scanning Radiometer) and, later, SSM/I (Special Sensor Mi-

crowave/Imager) as inputs (Sandven et al., 2012). Daily ice–

water products were provided with a resolution of 525m

from winter 2011 until April 2012. The accuracy of this clas-

sification was about 97% compared to high-resolution sea

ice concentration charts based on manual interpretation of

satellite data provided by the Norwegian Meteorological In-

stitute.

Our goal is to extend the method originally used for the

single polarized ENVISAT SAR images (Sandven et al.,

2012) by utilizing dual-polarization data from RS2 and to

develop an algorithm for ice–water classification, which can

be applied to RS2 data for the production of ice–water maps

as part of marine services under the Copernicus programme.

A special motivation for our work was not only development

of an algorithm but also its extensively validation in various

sea ice conditions and identification of the applicability con-

ditions. We also aimed to develop the algorithm as an open-

source software available for other scientists. Our algorithm

is based on texture features and the SVM method using the

advantages of dual-polarization RS2 SAR image data.

This paper describes the developed algorithm and dis-

cusses practical issues of its applicability. The steps and pa-

rameters for implementation of the algorithm are described,

allowing users to test the algorithms themselves. The paper

is organized as follows. Section 2 introduces the satellite

images and geographical area used in the study. The algo-

rithm including pre-processing and validation procedure is
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described in Sect. 3. Results of the pre-processing step, ice–

water classification, and comparison with manual ice charts

are given in Sect. 4. Finally, a discussion of the results is pre-

sented in Sect. 5.

2 Data

The region of interest is the ice-covered sea between Green-

land and Franz Josef Land, where detailed ice information

from SAR data is important due to the highly variable sea ice

conditions, in particular the export out of the Arctic through

Fram Strait (Vinje and Finnekåsa, 1986). SAR is the most

useful sensor to provide high-resolution year-round data for

estimation of sea ice variables such as ice classification, ice

edge variability, and ice drift.

This study is based on RS2 ScanSAR Wide (SCW)

mode images with 500 km swath width, a pixel spacing of

50× 50m, and dual-polarization (HH+HV). This is the
main mode used by RS2 for operational sea ice monitoring

(RS2 Product Description, 2011). Twenty-four SCW scenes

around Svalbard (Fig. 1) from 2011 and 2012 were utilized

in the following analysis to train the algorithm. The winter-

month images were selected to cover various types of thin

(e.g., new and young ice), first-year, and multiyear ice with

different degrees of deformation, packed ice, broken ice, and

open water under different wind speed conditions (rough,

very rough, and calm water, also in leads). The radar images

include the most typical samples since the radar intensity

contrast between open water and ice varies greatly with ice

conditions and wind speed or direction which significantly

affect the radar brightness of open water. In summer the con-

trast between backscatter intensities of the melted different

ice types observed on the SAR image is diminished since

surfaces become smoother and are covered by meltwater. The

intensities are reduced as well as the contrast between ice and

OW.

The backscatter at HH generally decreases with increas-

ing incidence angle (Fig. 2a), whereas the HV channel is less

sensitive to the incidence angle. The HV channel includes

disturbances in azimuth direction (visible as bright and dark

stripes) along the burst boundaries in the ScanSAR Wide

Beam SAR image (Fig. 2b). The expected noise level is a

local mean noise power value that fluctuates across the im-

age. The noise level is obtained from a model that accounts

for the characteristics of the SAR sensor, the beam mode, the

acquisition, and the ground processing (RS2 PUG) (Jefferies,

2012). The system noise level as a function of the incidence

angle is documented in the XML file that comes with the RS2

image.

3 Methodology

3.1 Incidence angle correction for HH

During the first step of our ice–water classification algorithm

SAR data pre-processing is conducted, including incidence

angular correction for HH and absolute calibration to ob-

tain σ ◦ values. The auxiliary XML files coming with the
product, i.e., scaling look-up table (LUT), provide informa-

tion for georeferencing and calibration. These LUTs allow

converting the processed digital numbers of the output SAR

image to calibrated values. An important goal of radiomet-

ric calibration is to provide the proper comparison between

the scattering of image targets with different SAR sensors or

from the same sensor with different operating conditions, so

the backscatter values of targets can be compared to one an-

other or a reference. Absolute radiation calibration is used to

convert the digital numbers in the SAR image to σ ◦, apply-
ing a constant offset and range dependent gains to the SAR

image (RS2 Product Description, 2011). All images are cor-

rected to a reference angle of 35◦, which represents the center
incidence angle and allows analysis of the SAR images with-

out brightness amplification. Backscatter recalculation to 35◦
incidence angle is carried out using a predefined calculated

coefficient:

σj
◦ = 10 · log10

⎛⎝
(
digital number2j

)
Aj

· sin(
θj

)⎞⎠
− (
coefficient · (θj − 35)) , (1)

where σ ◦ is the backscatter values of pixels in jth line (range
direction), given in dB; digital number is the pixel brightness

(data consist of the SAR amplitude value Amp and intensity
value I =Amp2; A is the gain value (invariant in line) corre-
sponding to the range sample j (obtained by linear interpo-
lation of the LUT supplied gain values); θ is the incidence

angle for each jth pixel; and coefficient is the predefined cal-
culated coefficient.

The coefficient was defined by calculating the linear trend

of the observed backscatter signal on several HH-polarized

RS2 SCW images of pack ice. The procedure is similar to

the pre-processing of ENVISAT ASAR data in Zakhvatkina

et al. (2013). The backscatter normalization to a pre-defined

incidence angle provides homogenous image contrast across

the swath over ice-covered areas. The details of the angular

correction method are discussed in Sect. 5.1.

3.2 Thermal noise correction for HV

SAR data pre-processing also includes reduction of ther-

mal noise effect and absolute calibration for HV. The ther-

mal noise reduction consists of three steps: (1) reading the

noise values and corresponding incidence angles from the

XML file, (2) interpolation of noise on a finer grid for each
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Figure 1. Location of RADARSAT-2 image used for training. All data are provided in GeoTIFF format with auxiliary XML files.

Figure 2. RS2 SCW dual-polarization image taken over Fram Strait on 28 November 2011 prior pre-processing. (a)HH channel with angular
dependence; (b) HV channel with noise floor variations.

pixel, and (3) subtraction of interpolated noise values from

the backscatter values of the entire image.

Due to the discontinuity of the noise floor at the bound-

aries of the individual SAR beams and the low resolution of

the provided noise values in the XML file (only 100 points

for 500 km swath width), the noise correction may result in

an erroneous subtraction of a high noise floor from a low sig-

nal of the neighboring SAR beam and, hence, yield negative

values for σ ◦. To prevent such flaws, a 10 pixel wide stripe

of data along the edge of the SAR beam is masked out and

disabled for further analysis.

3.3 Manual classification

The second step includes manual classification of SAR im-

ages into predefined classes (e.g., open water and ice of

various types depending on which classes are needed). The

predefined classes take into account information from opti-

cal data, ice concentration from passive microwave, previous

classification results, and historical data.
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Manual classification has been done for the training im-

ages containing several different sea ice types and ice-free

areas with both rough and smooth open water. Predominant

subclasses, which must be reliable and of high quality, were

identified and chosen by sea ice experts through visual anal-

ysis of RS2 scenes based on their previous experience. The

images selected for our algorithm training did not contain

homogeneous ice cover because the mixing of different ice

types with different degrees of deformation, cracks, ridges

and leads usually occurs in ice-covered areas. The main class

“sea ice” was chosen to include the following subclasses:

(1) subclass including young ice, first-year, and multiyear

ice; (2) fast ice; and (3) broken ice on the edge (border) mixed

with ice-free areas (mostly found in the marginal ice zone).

The class “open water” included the two subclasses open wa-

ter with high and very high wind speed conditions and a third

subclass that represented a mixture of calm open water, frazil

ice, leads, and nilas. These manual classification results were

collocated with texture feature images (description provided

in Sects. 3.4 and 4.2) to get a number of training vectors. For

the final product the subclasses were merged into the main

classes “sea ice” and “open water” since the similarities be-

tween the subclasses are too high for a reliable discrimination

without additional data.

3.4 Calculation of texture features

The third step is a calculation of texture features from HH

and HV images. The calculation of texture features con-

sists of the computation of the gray level co-occurrence ma-

trix (GLCM) using Eq. (2) and the calculation of texture

features based on the GLCM (Eqs. 3–10). Considering the

full range of possible brightness levels (e.g., 0–255) and a

small window size, most GLCM elements would be zero and

that would have a negative effect on the classification result.

Therefore we divide the full brightness range into few inter-

vals (quantization levels K). The GLCM is created for each

direction θ , where each cell (i, j) is a measure of the rel-
ative frequency of two pixels occurrence with brightness i
and j, respectively, separated by a co-occurrence distance d.
One may also say that the matrix element Pd,θ (i, j) is a mea-
sure of the second-order statistical probability for changes

between gray levels i and j at a particular displacement dis-
tance d and at a particular angle (direction) (θ). The size of

square GLCM is equal to number of quantized brightness

levels K. The GLCM is averaged over four directions θ (0,

45, 90, 135◦) to account for possible rotation of the ice floes
(Clausi, 2002; Haralick et al., 1973).

Sd,θ (i,j) = Pd,θ (i,j)∑K
i=1

∑K
j=1Pd,θ (i,j)

, (2)

where Sd,θ is the GLCM, Pd,θ is the number of neighbor

pixel pairs, θ is the fixed vector directions (0, 45, 90, 135◦),
d is the co-occurrence distance, K is the number of quantized

gray levels, and i, j are the gray levels (0–255).

Energy=
∑K

i=1
∑K

j=1
[
Sd,θ (i,j)

]2
(3)

Homogeneity=
∑K

i=1
∑K

j=1
Sd,θ (i,j)

1+ (i − j)2
(4)

Contrast=
∑K

i=1
∑K

j=1(i − j)2Sd,θ (i,j) (5)

Correlation=
∑K

i=1
∑K

j=1 (i − μx)
(
j − μy

)
Sd,θ (i,j)

σxσy

(6)

Entropy= −
∑K

i=1
∑K

j=1Sd,θ (i,j) log10Sd,θ (i,j) (7)

Kurtosis=
∑K

i=1
∑K

j=1

(
Sd,θ − μ

)4
σ 4

(8)

Skewness=
∑K

i=1
∑K

j=1

(
Sd,θ − μ

)3
σ 3

(9)

Cluster prominence=∑K

i=1
∑K

j=1
(
i + j − μx − μy

)4
Sd,θ (i,j) (10)

σ 2x =
K∑

i=1

K∑
j=1

(j − μx)
2Sd,θ (i,j) and σ 2y =

K∑
i=1

K∑
j=1

(
j − μy

)2
Sd,θ (i,j) are standard devia-

tion of rows and columns, μx =
K∑

i=1

K∑
j=1

iSd,θ and

μy =
K∑

i=1

K∑
j=1

jSd,θ are mean values of rows and columns,

σ 2 =
K∑

i=1
(i − μ)2

K∑
j=1

Sd,θ (i,j) is the standard deviation,

and μ =
K∑

i=1

K∑
j=1

iSd,θ (i,j) is the mean values of brightness.

The results of this procedure depend on several factors

such as the size of the sliding window, the co-occurrence

distance, and the quantization levels (Shokr, 1991; Soh and

Tsatsoulis, 1999; Clausi, 2002). In order to test the effects of

these parameters on the classification accuracy, texture fea-

tures were calculated for the window sizes 16, 32, 64, and

128 pixels using different co-occurrence distances and vary-

ing the number of quantized gray levels (Table 1). The opti-

mal values for the parameters of texture features calculation

were selected analyzing variations in the texture parameters

by visual inspection of the normalized mean values distribu-

tion of each texture feature for a defined class. The decision

is made for the benefit of the cases when the separation of the

normalized texture values for the classes increases in the ma-

jority of investigated texture feature figures. Defined parame-

ters were applied for calculations of all set of texture features,

and then the visual comparison showed the best discrimina-

tion between the ice–water classes for some texture features

(details provided in Sect. 4.2).
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Table 1. Experiments of computation parameters. W is the window

size, d is the co-occurrence distance, K is the quantized gray level,
and moving step is a step of sliding window moving.

W d Moving step K

32 4 8/16/32 16/25/32

32 8 8/16/32 16/25/32

32 16 8/16/32 16/25/32

64 4 8/16/32/64 16/25/32

64 8 8/16/32/64 16/25/32

64 16 8/16/32/64 16/25/32

64 32 8/16/32/64 16/25/32

128 4 32/64/128 16/25/32

128 8 32/64/128 16/25/32

128 16 32/64/128 16/25/32

128 32 32/64/128 16/25/32

128 64 32/64/128 16/25/32

A selection procedure is applied to limit a set of tex-

ture characteristics that provides a good classification with

a small computational load. This procedure includes visual

assessment of scatter plots, comparing values of texture fea-

tures in different combinations. Candidate texture features

that provide the best separation of classes are selected and

others are discarded. The selection procedure also uses a set

of training images to establish the set of texture features and

its computation parameters, providing the smallest classifi-

cation error. In other words, we constrain the texture features

number by the demanded balance considering the SAR im-

age level of details, computation time, and the optimal reli-

able class separation.

3.5 Support vector machines

The next step is the training of classifier (e.g., SVM) for

classification of arrays with certain texture features as well

as σ ◦ values based on the results of manual classification.
The SVM are supervised learning methods with associated

learning algorithms that provide data classification. The ba-

sic SVM takes a set of input data (several “attributes”, i.e.,

the features) and predicts the outputs (i.e., the class labels)

for each given input, making it a non-probabilistic classifier.

The support vector network maps the input vectors into a

high dimensional feature space through nonlinear mapping.

SVM finds a linear hyperplane separating objects into classes

by the most widely clear gap between the nearest training

data points of any class. An optimal hyperplane is defined

as the linear decision function with maximal margin between

the vectors in this higher dimensional space. When the maxi-

mummargin is found, only points which lie closest to the hy-

perplane have weights > 0. These points determine this mar-

gin and are called support vectors (Cortes and Vapnik, 1995).

SVM performs a nonlinear classification using the ker-

nel trick. The kernel function may transform the data into

a higher dimensional space to make this nonlinearly separa-

tion possible when the relation between class labels and at-

tributes is nonlinear. A common choice is a Gaussian kernel.

In our study we have used the radial basis function kernel

(RBF kernel), which is found to work well in a wide variety

of applications.

The scikit-learn open source was used to implement

the SVM classification method (http://scikit-learn.org/stable/

index.html). SVM models implementation in scikit-learn is

based on LIBSVM. Basically, SVM trains the model using

low-level method and can only solve binary classification

problems. In the case of multi-class classification, LIBSVM

implements the “one-against-one” technique by fitting all bi-

nary sub-classifiers and finding the correct class by a vot-

ing mechanism. The effectiveness of SVM training depends

on the selection of kernel, the kernel’s parameters (γ ), and

margin parameter C. The software provides a simple tool to

check a grid of parameters obtaining cross-validation accu-

racy for each parameter setting: the parameters with the high-

est cross-validation accuracy are returned (Hsu et al., 2003).

The SVM parameters in our case were γ = 0.1 and C = 1.
The calculated texture features and σ ◦ values corre-

sponding to the manually identified classes on several pre-

processed RS2 images were used as input data for training

the SVM classifier. After completing the training procedure

the resulting SVM is applied for automatic sea ice classifica-

tion to divide the RS2 scene into the predefined classes.

3.6 Validation

The final step includes validation of the classification re-

sults using manually drawn ice charts. Validation of Arctic

sea ice classification results is a challenging task since sea

ice is a very inhomogeneous medium and validation data

on ice classification are difficult to obtain. As a substitute

our sea ice classification results have been compared with

manual sea ice charts produced by the operational ice ser-

vice at the Norwegian Meteorological Institute (MET Nor-

way, http://polarview.met.no/). MET Norway produces ice

charts every workday using the following data sources: high-

resolution SAR images, low-resolution microwave SSM/I

and SSMIS data (DMSP), MODIS images (Terra and Aqua),

and AVHRR data from NOAA. In our comparison MET Nor-

way ice charts are assumed to represent “true” classification

and the confusion matrix was calculated for accuracy evalu-

ation of our algorithm results.

After completing the algorithm training, the fully auto-

mated image classification includes only three of the above

mentioned steps: pre-processing (Sect. 3.1 and 3.2), texture

feature retrieval (Sect. 3.4), and application of the automatic

classifier (SVM).

The initial size of the full-resolution RS2 SCW image is

about 10 000× 10 000 pixels. We downscale the original im-
age by averaging to 5000× 5000 pixels to increase the com-
putational efficiency and decrease the influence of speckle
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noise. The image size is further reduced during the com-

putation of the texture features by using a sliding window

with 16 pixel step size (the detailed parameters are described

in Sect. 4.2). The image size of the final product is about

330× 330 pixels with 1600m pixel spacing. This reduction
in resolution significantly increases the processing speed and

allows computing a classification results in less than 15min.

Pre-processing of RS2 data was performed utilizing the

open-source Python toolbox NANSAT (Korosov et al.,

2015), (https://github.com/nansencenter/nansat/wiki). The

texture extraction algorithm was created in the Python pro-

gramming language.

4 Results

To illustrate the algorithm performance the automatic SVM

classification was applied to the RS2 scene shown in Fig. 2.

The example scene was acquired on 28 November 2011 over

the western part of Svalbard in Fram Strait. Figures 2 and 3

show both HH and HV polarizations before and after corre-

sponding corrections described in Sect. 2: compensation of

incidence angle effects for HH (Fig. 3a) and noise reduction

for HV (Fig. 3b). The image contains several ice types, open

water under different wind conditions, and land. The open

water area is located on the right-hand side of the image and

the ice-covered area in the upper-left corner. The sea ice area

includes a marginal ice zone with bright broken up ice. The

ice-covered areas and the rough OW areas appear both bright

in HH and are therefore difficult to distinguish. Including HV,

however, provides additional information since OW areas on

this image appear generally darker than sea ice in HV. This

is one of the major dual-polarization advantages and can be

seen in the lower right part of the example image (Fig. 2).

4.1 Correction for incidence angle and thermal noise

The linear trend coefficient used for backscatter angu-

lar dependence correction of HH was estimated to be

−0.298 dB/1◦ and allowed normalization of σ ◦ to the inci-
dence angle 35◦ as shown on Fig. 3a and c. The application of
our noise correction procedure for HV reduces significantly

thermal noise and gets rid of vertical striping as shown in

Fig. 3b, d.

4.2 Texture feature calculation

As part of the algorithm development texture features were

calculated based on different parameter settings. Visual

examination of mean values of several texture features

(Fig. 4a, b) suggested the optimal combination of the sliding

window, moving step, and distance between neighboring pix-

els, which provides better separation of the ice–water classes

compared to other combinations of window sizes with dif-

ferent texture parameters. A set of texture characteristics was

selected analyzing variations in mean values of the textu-

ral characteristics of defined classes calculated with several

combinations of obtained parameters (Fig. 4c, d). The largest

change of distance between mean values of texture features

of different classes on Fig. 4d defines the best option for

the potential classification. Finally, together with visual in-

spection of the texture images (some examples are given on

Fig. 5a–f) of the a priori known most problematic classifi-

cation cases on the SAR images used for training, the set

of texture characteristics are defined. The best results were

achieved using the following parameter set: number of gray

levels (K = 32), co-occurrence distance (d = 8), sliding win-
dow size (w = 64× 64), and moving step of the sliding win-
dow (s = 16). Using the following texture features for the
two channels provided the best test results: for HH channel

the energy, inertia, cluster prominence, entropy, third statis-

tical moment of brightness, backscatter, and standard devia-

tion were calculated; for HV channel the energy, correlation,

homogeneity, entropy, and backscatter were calculated. In-

cluding more texture features for both channels was tested

but found not to improve the information content. The calcu-

lation parameters were found experimentally to give a good

compromise between speckle noise reduction, preservation

of details, and correct classification results (methodology de-

scription in Zakhvatkina et al., 2013).

Texture characteristics provide a more complete delin-

eation of surface parameters in addition to the raw backscat-

ter signal, and increase the ability for ice and water separa-

tion. The scatter plots in Fig. 5g, h show the values of two

different texture features plotted against each other and il-

lustrate the usefulness of texture features for discrimination

between defined classes.

4.3 Manual versus automatic classification

As described in Sect. 3 several SAR images were classified

manually as part of the training procedure for the automatic

algorithm. Comparing the manual classification from sea ice

expert analysis with the algorithm results (Fig. 6) reveals a

general high level of correspondence and illustrates the capa-

bility of the automatic approach. Detailed observation of the

classification results show that most misclassifications are

observed near land and in the MIZ. Figure 6b shows small

features inside ice-covered zone (blue dots) that were mis-

classified as OW.

4.4 Validation

Validation of the algorithm results has been performed us-

ing 2705 RS2 images taken over our area of interest in the

period 1 January 2013 until 25 October 2015. For each RS2

image an error matrix based on pixel-by-pixel difference be-

tween algorithm result and MET Norway chart has been cal-

culated. OW and sea ice correspondence as well as an over-

all accuracy were obtained for each RS2 image classifica-

tion result and averaged accuracies have been calculated for
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Figure 3. RS2 SCW dual-polarization image taken over Fram Strait on 28 November 2011, including pre-processing. (a) Calibrated image
after correction of σ ◦ at 35◦ incidence angle using the predefined coefficient for sea ice of −0.298 dB/1◦. (b) Noise-corrected image: beam
boundaries are visible due to differences in noise levels between adjacent beams. (c) σ ◦ curves of SAR image across the entire swath: original
image (blue) and after angular correction (green). (d) σ ◦ curves of SAR image along the whole swath. The blue curve shows σ ◦ value profile
of the raw HV channel image in range direction, the red curve depicts the noise floor level, and the green curve is the result of subtraction.

each month. The impact of each class on the classification

error has been estimated and the respective monthly aver-

aged errors were computed. The averaged overall accuracies

including standard deviation and errors in ice and water clas-

sification for each month are given in Table 2. In addition,

the monthly accuracies are presented as a graph in Fig. 7.

The monthly averaged overall accuracies show lower values

during summer months (Fig. 7 – from May to October) and

higher values during winter. The average total classification

accuracy for all 2705 scenes is 91± 4%.
Figure 8 shows an example of the validation process. The

RS2 HH image is shown in Fig. 8a, the result of our SVM

classification in Fig. 8c, and the MET Norway sea ice chart

in Fig. 8b. To compare the algorithm result with the manu-

ally derived ice charts, both products are reclassified into ice

and water (Fig. 8d and e). The error matrix is represented as

an image (Fig. 8f) with the following three classes: no differ-

ence, sea ice error (METNorway: sea ice, OW in our results),

and OW error (MET Norway: OW, sea ice in our results).

5 Discussion

5.1 Significance of incidence angle variations and
thermal noise reduction

Water areas have a very large range of brightness depending

on wind speed. At higher wind speeds the contrast between

open water and first- and multi-year ice is reduced, which

gives an ambiguity between these classes. The dependence of

backscatter on incidence angle is well known (Shokr, 2009)

and is significantly higher for open water than for sea ice.

The correction factor for the incidence angle is therefore very

different for ice and water. The coefficients for the angu-

lar dependence of water-covered areas are significantly in-

fluenced by wind conditions – with stronger wind intensity

grows faster. Our observations show that angular dependence

of sea ice is more stable regardless of wind or other condi-

tions (Fig. 3). Since the surface type is not known a priori

we have to choose which angular correction to apply and the

preference is given to the more reliable sea ice angular cor-

rection. However, the total compensation is impossible as the

backscatter dependence on the incidence angle varies for dif-
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Figure 4.Normalized mean values of texture characteristics for calm open water (OWc), rough open water (OWr), ice, and fast ice, calculated
in window size 64× 64 pixels: (a) energy and (b) σ ◦ of HH with different co-occurrence distances for several moving step variations. Set
of texture features are calculated with found above parameters: (c) d = 4 and step= 16; (d) d = 8 and step= 16 pixels (0 – energy, 1 –
correlation, 2 – inertia or contrast, 3 – cluster prominence, 4 – homogeneity, 5 – entropy, 6 – third central statistical moment of brightness,

7 – fourth central statistical moment of brightness, 8 – average sea ice backscatter, 9 – standard deviation of brightness for HH). The range

from 10 to 19 indicates the same texture features calculated for HV. The calculations were made for several images used for training.

Table 2.Monthly averaged accuracies of the automatic ice charts compared to MET Norway ice charts (results given in %).

2013 2014 2015

Months Images Ov acc SD OW err Ice err Months Images Ov acc SD OW err Ice err Months Images Ov acc SD OW err Ice err

Jan 72 91.52 5.43 3.99 4.50 Jan 97 91.89 4.70 2.52 5.59 Jan 51 94.84 3.10 1.28 3.88

Feb 70 91.05 4.54 2.66 6.30 Feb 93 92.11 5.05 3.37 4.52 Feb 33 94.47 4.05 2.33 3.86

Mar 106 91.21 4.71 1.20 7.59 Mar 110 92.20 3.45 2.83 4.98 Mar 73 94.36 4.40 1.67 3.82

Apr 110 92.03 4.57 0.95 7.02 Apr 130 93.34 3.40 1.30 5.36 Apr 54 94.86 4.36 1.47 3.83

May 111 88.60 7.96 0.88 10.52 May 137 92.80 4.77 1.00 6.20 May 63 95.05 3.21 0.72 3.81

Jun 98 87.64 7.58 1.59 10.76 Jun 93 89.98 5.78 1.54 8.48 Jun 67 84.73 14.09 0.69 3.80

Jul 83 89.73 8.01 2.72 7.54 Jul 95 86.82 9.89 1.98 11.20 Jul 47 74.49 21.61 1.73 3.81

Aug 85 94.36 3.10 2.96 2.68 Aug 88 88.39 10.87 1.87 9.74 Aug 47 86.65 12.25 2.64 3.85

Sep 93 95.88 2.02 2.47 1.65 Sep 97 87.55 17.56 8.24 4.21 Sep 43 94.83 3.87 3.36 3.78

Okt 72 94.53 2.99 3.98 1.49 Okt 78 94.89 3.15 1.87 3.24 Okt 27 94.69 4.16 4.58 3.78

Nov 84 92.00 4.77 5.10 2.90 Nov 47 94.58 2.84 2.38 3.04 Nov

Dec 97 90.93 6.63 3.18 5.88 Dec 54 92.94 7.99 3.45 3.61 Dec

Ov acc is monthly overall accuracy; SD is the standard deviation; OW err means open water on MET Norway ice chart and sea ice on automatic ice chart; Ice err means sea ice on MET Norway ice chart and open water on automatic ice
chart.

ferent ice types (Mäkynen et al., 2002) and water areas in the

scene. The radiometric corrections during calibration process

are just a first-order approximation; nevertheless, the advan-

tages of performing the angular correction are greater than

the disadvantages (Moen et al., 2015). With regards to ther-

mal noise correction we found that sometimes not all visible

noise floor artifacts inside beams can be completely removed

and these residuals may cause classification errors.

5.2 Number of texture features vs. efficiency

In addition to the eigth extracted texture features we charac-

terize the surface by values of σ ◦ averaged within the sliding
window and a value of standard deviations. Given that we

have two channels (HH and HV) the number of parameters

grows up to 20 and some of them are strongly intercorre-

lated (Shokr, 1991; Albregtsen, 2008). High correlation be-
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Figure 5. Texture features calculated for RS2 SCW scene, 28 November 2011, in the Fram Strait. (a) Backscatter of HH polariza-

tion; (b) backscatter of HV polarization; (c) inertia of HH polarization; (d) energy of HV polarization; (e) correlation of HH polariza-
tion; (f) correlation of HV polarization. The scatter plots show how a couple of textural features calculated from RS2 images, shown in
Fig. 1, can be used to classify ice (green), rough OW (blue), and calm OW (cyan). (g) σ ◦ of HV vs. σ ◦ of HH. (h) Energy of HH vs.
correlation of HV.

Figure 6. OW and sea ice classification of RS2 SCW image shown in Fig. 2. (a) Manual classification based on sea ice expert analysis to
delineate sea ice (in the MIZ and general sea ice cover) and open water (calm and rough open water): dark gray is sea ice; very dark gray is

marginal ice zone; light gray is OW; green is land. (b) Automatic SVM classification result: white is sea ice; dark blue is calm OW; blue is

OW; green is land.

tween two textural characteristics shows that they have sim-

ilar properties, and hence it makes no sense to use both fea-

tures. In case of low correlation both features will contribute

to the improvement of the classification accuracy (Clausi,

2002). The similarity can explain the misclassifications and

in fact this is part of the motivation to reduce dimensionality.

If we include too few texture features to the classifier then

the informationally poor features have to be compensated by

using complicated discrimination function and can lead to

increased classification confusion. In contrast, if all texture

features are used by the classifier, some classes can be under-

estimated or overestimated and the discrimination for many

classes may lead to higher classification errors.
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Figure 7.Monthly accuracy and standard deviation of SVM classification of RS2 images assuming that MET Norway operational ice charts
are correct.

Sea ice in the upper part of Fig. 5a could not be dis-

tinguished from rough open water (upper right). However,

Fig. 5b shows reliable detection of sea ice-covered area (left

side). Calm open water can be easily recognized in Fig. 5c

and d (dark blue areas). In both figures, the heterogeneous

sea ice area can be clearly distinguished from the open water

zone. The latter consist of very close ice floes and/or broken

ice. Some other ice-covered area can be incorrectly defined

as open water. Figure 5e adds more useful information about

open water location (blue colored area). The scatter plot on

Fig. 5g, h represents advantage of texture feature applica-

tion for discrimination between the sea ice and two classes

of open water using both polarizations, where sea ice (green)

can be clearly seen as standing separately from OW (blue).

The scatter plot in Fig. 5h demonstrates how different texture

characteristics, e.g., energy versus correlation, of different

polarizations can add useful information for detection. The

examples in Fig. 5e and f show that the same texture feature

calculated for one polarization can be used in applications to

obtain well-delineated class; otherwise for other polarization

it demonstrates the poor separation between classes.

5.3 Sources of errors

The MET Norway manual products and our algorithm re-

sults show generally a good consistency. However, differ-

ences typically appear at the ice–water boundary and inside

ice-covered areas, where leads or channels on the SAR im-

age are not delineated on the MET Norway ice charts. Some

differences are also found in the coastal zones, where narrow

ice zones near the coast are wrongly shown in our results or

fast ice is wrongly classified as OW by our algorithm. This

misclassification can be explained by appearance of fast ice

and calm open water on a SAR image and its similarity in

the low backscatter. For this case the polarization difference

in backscatter between HH and HV bands (cross-polarization

ratio) could be included for further improvement (Sandven,

2008; Dierking and Pedersen, 2012; Moen et al., 2013). More

significant classification errors can be found in the MIZ.

Detecting typical backscatter ranges and textural struc-

tures for different sea ice types and water areas with differ-

ent roughness stages is extremely difficult due to the high

dynamic and variable nature of sea ice and wind speed im-

pact. In particular, different structures on the water affected

by wind and currents and visually detected on the SAR im-

ages (e.g., stripes, eddies) may cause wrong sea ice classifi-

cation.

Residual HV noise effects (after correction) along the

ScanSAR image beam boundaries and signal variations

inside the separate beams due to instrumental artifacts

(Fig. 5b, d) can have an uncorrected effect on the texture

feature analysis and may cause classification errors. These

residual noise effects are not visible in the ice-covered areas,

but rough open water on high incidence angle close to the

beam boundaries may be erroneously classified as sea ice.

The backscatter signal of melting ice becomes similar to

open water and imposes limitations for the classification of

RS2 images for the summer season.

We assume that our automatic algorithm classifies SAR

images more reliable as than represented by the provided ac-

curacy (91%), and this inconsistency may occur for the fol-

lowing reasons:

1. The MET Norway ice charts have a lower resolution

than our automatic ice charts making an absolute ac-

curate estimation of the ice conditions in the each SAR

images and detailed comparison impossible.

2. The classes obtained byMETNorway are not consistent

with the simple ice–water classification provided by the

algorithm. In the comparison, we reclassify the MET

Norway ice chart into ice and open water. Here, areas

with ice concentrations≤ 10% are regarded as open wa-
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Figure 8. Validation procedure of automatic classification results compared to MET Norway ice charts. (a) Original RS2 SCW SAR image

(HH polarization), taken over the southern part of Svalbard on 14 March 2013. (b) Collocated subset of manual ice concentration chart,
provided by the Norwegian Ice Service (met.no) for the same day. (c) Result of the SVM classification. (d) Result of the SVM classification
with delineation of two classes: water and sea ice. (e) Ice chart of MET Norway reclassified into two classes: open water (ice concentration
from 0 to 10%) and sea ice (ice concentration from 10 to 100%). (f) The difference of recalculated MET Norway chart and classification
result represents the error matrix as “image”: no difference, sea ice error (sea ice in MET Norway, OW in our results), and OW error (OW in

MET Norway, sea ice in our results). Overall accuracy is 95.78%, OW error is 0.19%, and ice error is 4.03%.

ter. This assumption appears to be the subjective error

factor during the validation process and finally reduces

the accuracy.

3. MET Norway provides manual ice charts for every

working day, but not for weekends and holidays. This

might cause a difference in timing up to several days.

Manual and automatic ice charts of the same day might

also not be based on images taken at the same time of

the day. Fram Strait is a very dynamic region and the sea

ice situation can significantly change over time periods

of several hours.

6 Conclusion

We have proposed an automated OW–ice cover classification

of RADARSAT-2 SAR ScanSAR Wide Beam mode data ac-

quired over Fram Strait for varying wind speeds and sea ice

conditions. The classification uses backscatter and texture

features together in a SVM approach. The intensity contrast

between HH and HV polarization of open water increases at

higher wind speeds, and open water is distinguished more

reliably on dual-polarized RS2 data.

Previous studies of ENVISAT ASAR HH data in wide

swath mode showed a similar backscatter dependence on in-

cidence angle (Zakhvatkina et al., 2013), and the same tech-
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nique was applied for the HH band of RS2 SCW images.

The ScanSAR image swath consists of different combina-

tions of four physical beams and there are well-known tech-

nical features caused by a wave-like modulation of the im-

age intensity in range direction throughout the entire image

in the sub-swaths and their edges of HV band (Romeiser et

al., 2013). Although the techniques for compensating the ef-

fect in the SAR processor have been developed and applied,

some ScanSAR images still show residual effects. To im-

prove utilization of such images we have carried out a pro-

cedure of HV band noise reduction that is applied as a pre-

processing tool. By computing texture features with sliding

window size of 64× 64 pixels and number of quantized gray
levels amounting to 32, we classified more that 2700 SAR

images for the period from January 2013 to October 2015.

Validation of the classification was done by comparing with

ice charts produced by MET Norway. The texture features

were used as input to SVM classification. The results show

that open water and ice are discriminated with an accuracy

of 91%.

The automated SVM-based algorithm has been adopted

for operational decoding the ice edge, and it will also be

extended and improved for sea ice type classification. With

Sentinel-1A/B as the main satellite SAR system in the com-

ing years, the next step will be to adapt the classification al-

gorithm to Sentinel-1 data (Korosov, 2016). The amount of

SAR data available for sea ice monitoring will increase sig-

nificantly in the coming years. Efficient utilization of these

data will require further efforts to develop automated algo-

rithms which can be used in operational ice services.

7 Data availability

The RADARSAT-2 data used in this study are not publicly

accessible because RADARSAT-2 is a commercial satellite.

We obtained the data used in the study as MyOcean users un-

der a special contingency agreement between ESA and MDA

GSI.
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Abstract. A computationally efficient, open-source feature-
tracking algorithm, called ORB, is adopted and tuned for sea
ice drift retrieval from Sentinel-1 SAR (Synthetic Aperture
Radar) images. The most suitable setting and parameter val-
ues have been found using four Sentinel-1 image pairs repre-
sentative of sea ice conditions between Greenland and Sever-
naya Zemlya during winter and spring. The performance of
the algorithm is compared to two other feature-tracking al-
gorithms, namely SIFT (Scale-Invariant Feature Transform)
and SURF (Speeded-Up Robust Features). Having been ap-
plied to 43 test image pairs acquired over Fram Strait and
the north-east of Greenland, the tuned ORB (Oriented FAST
and Rotated BRIEF) algorithm produces the highest num-
ber of vectors (177 513, SIFT: 43 260 and SURF: 25 113),
while being computationally most efficient (66 s, SIFT: 182 s
and SURF: 99 s per image pair using a 2.7GHz processor
with 8GB memory). For validation purposes, 314 manually
drawn vectors have been compared with the closest calcu-
lated vectors, and the resulting root mean square error of ice
drift is 563m. All test image pairs show a significantly better
performance of the HV (horizontal transmit, vertical receive)
channel due to higher informativeness. On average, around
four times as many vectors have been found using HV po-
larization. All software requirements necessary for applying
the presented feature-tracking algorithm are open source to
ensure a free and easy implementation.

1 Introduction

Sea ice motion is an essential variable to observe from re-
mote sensing data, because it strongly influences the distri-
bution of sea ice on different spatial and temporal scales.

Ice drift causes advection of ice from one region to another
and export of ice from the Arctic Ocean to the sub-Arctic
seas. Antarctic sea ice is even more mobile and its strong
seasonality is linked to the ice transport from high to low
latitudes (IPCC, 2013). Furthermore, ice drift generates con-
vergence and divergence zones that cause formation of ridges
and leads. However, there is still a lack of extensive sea ice
drift data sets with sufficient resolution to estimate conver-
gence and divergence on a spatial scaling of less than 5 km.
The regions of interest are the ice-covered seas between

Greenland and Severnaya Zemlya, i.e. the Greenland Sea,
Barents Sea, Kara Sea and the adjacent part of the Arctic
Ocean. This area is characterized by a strong seasonal cycle
of sea ice cover, a large variation of different ice classes (mul-
tiyear ice, first-year ice, marginal ice zone etc.) and a wide
range of drift speeds (e.g. strong ice drift in Fram Strait).
With systematic acquisition of space-borne Synthetic

Aperture Radar (SAR) data over sea ice areas, Kwok et al.
(1990) have demonstrated that high-resolution ice drift fields
can be derived from SAR data. SAR is an active microwave
radar which acquires data independently of solar illumination
and weather conditions. Sea ice motion fields of the Arc-
tic Ocean with a grid spacing of 5 km have been produced
on a weekly basis between 1997–2012 using Radarsat and
ENVISAT (Environmental Satellite) SAR data and the geo-
physical processor system introduced by Kwok et al. (1990).
Thomas et al. (2008a) have used pattern recognition to cal-
culate sea ice drift between successive ERS-1 (European
remote-sensing satellite) SAR images with a resolution of
400m. This work has been continued by Hollands and Dierk-
ing (2011) using Advanced SAR (ASAR) data from EN-
VISAT. Komarov and Barber (2014) used a similar pattern-
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matching technique to evaluate ice motion results from dual-
polarization Radarsat-2 images.
With the successful launch of Sentinel-1A in April 2014

and the planned launch of Sentinel-1B in early 2016, high-
resolution SAR data will be delivered for the first time with
open and free access for all users and unprecedented revisit
time of less than one day in the Arctic (ESA, 2012). This in-
troduces a new era in SAR Earth observation. Sea ice drift
data with medium resolution (10 km) are provided opera-
tionally via the Copernicus Marine Environment Monitoring
Service (CMEMS, http://marine.copernicus.eu), but no sea
ice drift algorithm using Sentinel-1 data has been published
so far. The objective of this paper is to identify and develop
the most efficient open-source algorithm for high-resolution
sea ice drift retrieval from Sentinel-1 data.
Our goal is to exploit recent improvements and devel-

opments in computer vision by adopting a state-of-the-art
feature-tracking algorithm to derive sea ice drift (i.e. vec-
tors of sea ice displacement). Current pattern-matching al-
gorithms constrain the high-resolution vectors with low-
resolution estimates for practical reasons. Using feature
tracking, drift vectors can be derived independently from
the surrounding motion, which leads to better performance
e.g. along shear zones. For application on large data sets and
for operational use, we considered a computationally effi-
cient algorithm, called ORB (Oriented FAST and Rotated
BRIEF) (Rublee et al., 2011), tuned it for sea ice drift re-
trieval from Sentinel-1 imagery and compared the results
with other available feature-tracking algorithms and existing
sea ice drift products.
The software requirements necessary for deriving ice drift

fields from Sentinel-1 data (Python with OpenCV and the
Python toolbox Nansat) are all open source to ensure a free,
user friendly and easy implementation.
The paper is organized as follows: Sect. 2 introduces the

used Sentinel-1A data product. The ORB algorithm descrip-
tion and the used methods for tuning, comparison and valida-
tion are presented in Sect. 3. The recommended parameter set
including the tuning, comparison and validation results are
provided in Sect. 4. The discussion can be found in Sect. 5.

2 Data

The Sentinel-1 mission, an initiative of the European Union
and operated by the European Space Agency (ESA), is com-
posed of a constellation of two identical satellites sharing
the same near-polar, sun-synchronous orbit: Sentinel-1A,
launched in April 2014, and Sentinel-1B, planned to launch
in early 2016. Sentinel-1 carries a single C-band Synthetic
Aperture Radar (SAR) instrument measuring radar backscat-
ter at a centre frequency of 5.405GHz and supporting dual
polarization (HH+HV, VV+VH). With both satellites op-
erating, the constellation will have a revisit time of less than
one day in the Arctic. Radar data are delivered to Coperni-

cus services within an hour of acquisition with open and free
access for all users (ESA, 2012).
The Sentinel-1 product used in this paper is called

Extra-wide Swath Mode Ground Range Detected with
Medium Resolution. These images cover an area of
400 km× 400 km with a pixel spacing of 40m× 40m (reso-
lution: 93m range× 87m azimuth; residual planimetric dis-
tortions: within 10m; Schubert et al., 2014) and provide both
HH (horizontal transmit, horizontal receive) and HV (hori-
zontal transmit, vertical receive) polarization.
Four image pairs (Table 1) representative of our region of

interest have been chosen for parameter tuning. Furthermore,
43 image pairs acquired over Fram Strait and north-east of
Greenland (Fig. 8) have been used to test the performance of
different feature-tracking algorithms. To ensure an indepen-
dent evaluation, the 43 test image pairs have not been used
for parameter tuning. The two considered sets of image pairs
cover both a range of different sea ice conditions (pack ice,
fast ice, leads, ridges, marginal ice zone, ice edge etc.) and
intervals between the acquisitions. We focused on winter and
spring data, since our area of interest experiences the highest
sea ice cover during this period.

3 Method

Sentinel-1 data sets were opened and processed with the
open-source software Nansat (see Appendix A; Korosov et
al., 2015, 2016). Nansat is a scientist-friendly Python tool-
box for processing 2-D satellite Earth observation data. It is
based on the Geospatial Data Abstraction Library (GDAL)
and provides easy access to geospatial data, a simple and
generic interface to common operations including reading,
geographic transformation and export. Nansat proves to be
efficient both for development and testing of scientific al-
gorithms and for fast operational processing. To extend the
functionality of GDAL, Nansat reads metadata from XML
files accompanying Sentinel-1 data and supplements the
GDAL data model with georeference information stored as
ground control points (GCPs). Originally GCPs are pairs of
latitude/longitude and corresponding pixel/line coordinates.
In order to increase the accuracy of the geographic transfor-
mation, the projection of GCPs is changed from cylindrical
to stereographic, placed at the centre of the scene. The re-
projected GCPs are then used by GDAL to calculate geo-
graphic coordinates of any pixel in the raster using spline
interpolation. Reprojection of GCPs does not require much
additional computational effort, but improves the result sig-
nificantly, particularly at high latitudes.
The normalized radar cross section (σ 0) is calculated from

raw Sentinel 1A data using the following equation:

σ 0 = DN2i /A
2
i , (1)

where DNi is the digital number provided in the source TIFF
file, Ai is the value of normalization coefficient from the ac-

The Cryosphere, 10, 913–925, 2016 www.the-cryosphere.net/10/913/2016/



S. Muckenhuber et al.: Open-source feature-tracking algorithm for sea ice drift retrieval 915

Table 1. Sentinel-1 image pairs used for parameter tuning.

Region First image acquisition Second image acquisition Time
time, UTC time, UTC gap

Fram Strait 28 Mar 2015 07:44:33 29 Mar 2015 16:34:52 33 h
Svalbard North 22 Apr 2015 06:46:23 23 Apr 2015 13:59:03 31 h
Franz Josef Land 24 Mar 2015 03:21:13 24 Mar 2015 11:30:06 8 h
Kara Sea 22 Apr 2015 11:37:16 24 Apr 2015 11:20:59 48 h

companying calibration metadata and i is an index of a pixel
(Anonymous, 2014). No additional preprocessing of SAR
data was performed.
Our algorithm for sea ice drift detection includes three

main steps: (a) resampling of raw data to lower resolution,
(b) detection and matching of features and (c) compari-
son/validation.

a. To decrease the influence of speckle noise and increase
the computational efficiency, the resolution is reduced
before applying the ice drift algorithm from 40 to 80m
pixel spacing using simple averaging.

b. For detection and tracking of features on large data sets
and for operational use, a computationally efficient al-
gorithm, called ORB (Rublee et al., 2011), has been
used. In our numerical experiments we tuned the param-
eters of ORB for optimal SAR sea ice drift application.
The most suitable parameter set (including spatial res-
olution of SAR image, patch size of FAST descriptor,
number of pyramid levels, scale factor, etc.) has been
evaluated for our area and season of interest.

c. The introduced ORB set-up is compared to other avail-
able OpenCV feature-tracking algorithms, CMEMS
data and manually drawn vectors for performance ap-
praisal and validation.

3.1 ORB algorithm

ORB (Oriented FAST and Rotated BRIEF) is a feature-
tracking algorithm introduced by Rublee et al. (2011) as
“a computationally efficient replacement to Scale-Invariant
Feature Transform (SIFT) that has similar matching per-
formance, is less affected by image noise, and is capable
of being used for real-time performance”. ORB builds on
the FAST keypoint detector (Rosten and Drummond, 2006)
and the binary BRIEF descriptor (Calonder et al., 2010)
with many modifications to enhance the performance. It uses
FAST to find multiscale keypoints on several pyramid levels
and applies a Harris corner measure (Harris and Stephens,
1988) to pick the best keypoints. To achieve rotation invari-
ance, the orientation of the keypoint is calculated by using
the intensity-weighted centroid of a circular patch with the
located keypoint at the centre. Rublee et al. (2011) states
that the ORB descriptor performance is equal to SIFT (Lowe,

2004) and higher than Speeded-Up Robust Features (SURF)
(Bay et al., 2006). Like Rublee et al. (2011), we use a brute-
force matcher and Hamming distance for feature matching.
Unlike SIFT and SURF, ORB is an open-source software and
use and distribution are not limited by any licenses.
Before the feature-tracking algorithm can be applied to a

satellite image, the SAR backscatter values σ 0 have to be
transformed into the intensity i range (0≤ i ≤ 255 for i ∈R)
used in OpenCV. This transformation is done by using Eq. (2)
and setting all intensity values below and above the range to 0
and 255.

i = 255 · σ 0− σ 0min

σ 0max− σ 0min

, (2)

Lower and upper brightness boundaries σ 0min and σ 0max are
user defined and chosen to be constant in order to limit
the influence of speckle noise and be independent e.g. of
high backscatter values σ 0 over land. Converting the lin-
ear backscatter values before the transformation into deci-
bel units has been tested, but decreased the algorithm perfor-
mance for both channels.
After the transformation into intensity values, keypoints

are detected on both SAR scenes using the FAST-9 keypoint
detector (Rosten and Drummond, 2006). FAST-9 compares
the intensity Ip of a centre pixel to the intensities of pixels on
the surrounding circle with a perimeter of 16 pixels (Fig. 1).
If there exists a set of nine contiguous pixels in the circle
which are all brighter than Ip+ t , or all darker than Ip− t ,
the centre pixel is recognized as a keypoint. The threshold t

is set low enough to get more than the predefined amount N
of keypoints.
To detect features of different scales, the keypoint search is

performed on several pyramid levels. The number of pyramid
levels in combination with the scale factor defines the range
and increment of the keypoint detection scaling. A scale fac-
tor of 2 means that each next pyramid level has four times
fewer pixels, but such a large-scale factor degrades the fea-
ture matching score. On the other hand, a small-scale factor
close to 1 means to cover a certain scale range needs more
pyramid levels and hence, the computational cost increases.
FAST does not produce a measure of cornerness and

Rublee et al. (2011) have found that it has large responses
along edges. Harris corner measure (Harris and Stephens,
1988) is used to order the FAST keypoints according to their
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Figure 1. Subset of the first image from Fram Strait pair (Ta-
ble 1) with centre at 2.31◦W, 81.70◦ N and pixel spacing of 80m.
The centre pixel (red) is recognized as keypoint since � 9 contigu-
ous pixels (bold blue) of the surrounding blue circle have inten-
sity values smaller than the centre minus threshold t . The orienta-
tion θ of the keypoint is shown with a green arrow. The displayed
area (34× 34 pixels) around the keypoint represents the considered
patch p used for feature description. The yellow 5× 5 pixels sub-
windowsX and Y are an example for a possible binary test sampling
pair with p(X) <p(Y ) and hence, τ(p; X, Y ) = 1 (Eq. 7).

cornerness and reject less reliable keypoints. Considering a
window w(x, y) around the keypoint, the intensity deriva-
tives Ix , Iy in x and y direction can be written in a matrixM:

M=
∑
x,y

w(x,y)

[
I 2x IxIy

IxIy I 2y

]
. (3)

The eigenvalues λ1 and λ2 ofM contain the intensity deriva-
tive in the direction of the fastest and slowest change respec-
tively. Based on λ1 and λ2, a score R can be calculated for
each keypoint:

R = λ1λ2− k(λ1+ λ2)
2, (4)

with k being an empirical constant. A high intensity variation
in both dimensions returns a high R value. The top N key-
points with the highest R values are used and the rest is re-
jected.
FAST does not include orientation, but ORB adds a di-

rection to each keypoint using the intensity-weighted cen-
troid from Rosin (1999). The momentsmpq of a circular area
around the keypoint are used:

mpq =
∑
x,y

xpyqI (x,y). (5)

The intensity-weighted centroid has its location at the fol-
lowing:

C =
(

m01

m00
,
m10

m00

)
. (6)

The orientation θ (e.g. green arrow in Fig. 1) represents
the direction of the vector connecting the keypoint with the
intensity-weighted centroid. The momentsmpq are computed
with x and y remaining within a circular region of radius r ,
where r is chosen to be the size of the patch p used for the
following feature description Rublee et al. (2011).
After locating and adding orientation to the best N key-

points, a patch p around each keypoint is used for feature
description (NB: keypoint refers to 1 pixel, feature refers to
description of p). ORB applies a modified version of the bi-
nary descriptor BRIEF (Calonder et al., 2010). Rublee et al.
(2011) defines a binary test τ for a patch p as follows:

τ(p;X,Y ) :=
{
1 if p(X) < p(Y )

0 if p(X) ≥ p(Y ),
(7)

with p(X) and p(Y ) being the intensities at test points X

and Y . ORB uses 5× 5 sub-windows as test points (e.g. in
Fig. 1). Applying n binary tests on a single patch, Rublee et
al. (2011) derive a binary feature vector f :

f n(p) :=
∑
1≤i≤n

2i−1τ (p;Xi,Yi) . (8)

The considered set of n binary tests with test points (Xi , Yi)
can be written in a 2× n matrix (Rublee et al., 2011):

S=
(

X1, . . ., Xn

Y1, . . ., Yn

)
. (9)

To be invariant to in-plane rotation, Rublee et al. (2011)
steers S according to the orientation θ using the correspond-
ing rotation matrix Rθ :

Sθ = RθS. (10)

A good set S of sampling pairs needs to be uncorrelated, so
that each pair adds new information to the descriptor and they
must have high variance to make features more discrimina-
tive. Rublee et al. (2011) applied a greedy search to a large
training data set to obtain a set for ORB with n = 256 rela-
tively uncorrelated tests with high variance.
After the feature description, OpenCV allows different

matching procedures for ORB. Like Rublee et al. (2011), we
use brute-force matching and compare each feature of the
first image to all features in the second image.
As a comparison measure, we use the Hamming distance,

which is equal to the number of positions in which the two
considered feature vectors have a different value.

b1 = 1011101

b2 = 1001001, (11)

For example, comparing the two binary vectors b1 and b2
returns the Hamming distance d = 2, since the third and fifth
position have a different value.
Our setting returns the best two matches and applies the

ratio test from Lowe (2004) to decide whether the best match
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is accepted or rejected. The match is accepted if ratio of the
distances d1

d2
< is below a given threshold. The ratio test elim-

inates a high number of false matches, while discarding only
few correct matches.

3.2 ORB setting and parameter tuning

Achieving the best possible performance of ORB for sea ice
drift from Sentinel-1 images requires a good setting and tun-
ing of the parameters shown in Table 2.
It is not recommended to reproject one image onto the pro-

jection of the second image before applying the ORB algo-
rithm, since this is computationally very expensive. Instead,
geographic coordinates of the matched start and end point
shall be calculated independently using the georeference in-
formation from GCPs of the first and second image.
Manual interpretation of ice drift results (using the training

data from Table 1) reveals that a good compromise between
amount of vectors and correct results can be achieved with
a Lowe ratio test threshold equal to 0.75. That means that
the Hamming distance of the best match has to be less than
0.75×Hamming distance of the second best match. Tested
on the image pairs from Table 1, the ratio test showed a
clearly better performance and is computationally less ex-
pensive than the alternative cross-check, where features are
matched in both directions (first image to second image and
vice versa) and rejected if the drift vectors are too different.
Unreasonably high sea ice displacements (e.g. above

40 km for a time difference between two scenes of ∼ 30 h)
are removed in a post-processing step from the drift field. In
addition, displacements below 2.5 km are rejected during the
testing to disregard matches over land. This does not influ-
ence the number of correct matches, since the sea ice dis-
placement in all considered test images is above 2.5 km.
Based on our observations we assume that the proportion

of wrong matches does not increase with increasing total
number of matches. Under this assumption the algorithm per-
formance refers to the total number of matches and is used to
tune the algorithm parameters in Table 2. ORB is computa-
tionally more efficient, enabling testing the parameters over
a wide range with high-resolution using both HH and HV
polarization.
As a starting point, the tested parameters were set as

follows: resize factor= 0.5, patch size= 31, pyramid lev-
els= 8, scale factor= 1.2, HH limits= [0,0.12], HV lim-
its= [0, 0.012] and ratio test = 0.8. As a compromise be-
tween performance and computational efficiency, the max-
imum amount of retained keypoints is set to 100 000. Tested
range and parameter meaning are shown in Table 2.
In order to find an optimal value for the tested parameter, it

is varied in a reasonable range, the feature-tracking algorithm
is applied and the total number of matched vectors is found.
Once the most suitable value for a tested parameter is found,
it is applied for further testing.

3.3 Comparison of ORB to SIFT and SURF

The presented ORB algorithm has been compared to other
OpenCV feature-tracking algorithms, namely SIFT (Lowe,
2004) and SURF (Bay et al., 2006), using 43 image pairs ac-
quired over Fram Strait and north-east of Greenland (Fig. 8).
SIFT and SURF were used in standard mode and the frame-
work conditions were set to equal for the comparison. Image
preprocessing has been carried out as described above, brute-
force matching including the Lowe ratio test with thresh-
old 0.75 has been applied for all three algorithms as well
as the removal of unreasonably high sea ice displacements
in a post-processing step. Since SIFT allows for defining the
number of retained keypoints, this parameter has been set
to 100 000 as done for ORB. The further tuning of SIFT and
SURF is not the aim of this paper, since these two algorithms
are not open source and computationally less efficient.
The distribution and reliability of the calculated vector

fields have been assessed for each image pair using two pa-
rameters on a grid with cell size 1◦ longitude× 0.2◦ latitude:
number of derived vectors per grid cell (N ) and root mean
square distance (D) of all vectors in a gird cell computed as
follows:

D =

√∑
i

(ui − ũ)2+ (vi − ṽ)2

N
, (12)

where i is the index of a vector inside the grid cell, ui and
vi are the eastward and northward drift components and ũ,
ṽ the corresponding mean values. To combine the results of
several image pairs, the sum of N and the mean of D is con-
sidered.

3.4 Validation

The ORB algorithm has been validated against drift data
from two independent sources using the image pair Fram
Strait (Table 1). First, 350 features were identified by a
sea ice expert in both images and manually connected us-
ing ArcGIS. Second, sea ice drift vectors were taken from
the Copernicus Marine Environment Monitoring Service
(CMEMS, http://marine.copernicus.eu). The SAR ice drift
product of CMEMS is operated by the Technical University
of Denmark (DTU) and drift data are provided with a reso-
lution of 10 km using pattern-matching techniques (Pederson
et al., 2015, http://www.seaice.dk/).
Since the starting locations of ORB, manual and CMEMS

vectors do not coincide, the corresponding (ORB) reference
vectors were found as nearest neighbours within 5 km radius
from the (CMEMS or manual) validation vectors.
Three parameters were considered for the comparison:

root mean square error (E), slope (S) and offset (O) of the
linear fit between the reference and validation vectors.E was
calculated as follows:
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Table 2. Recommended set of parameters for retrieval of sea ice drift from Sentinel-1 data using ORB.

Parameter Meaning Tested range Recommended
(increment) setting

Amount keypoints Maximum number of keypoints to retain – 100 000
Resize factor Resolution reduction during pre-processing 0.5–1 (0.5) 0.5
Patch size Size of descriptor patch in pixels 10–60 (1) 34
Pyramid levels Number of pyramid levels 1–15 (1) 7
Scale factor Pyramid decimation ratio 1.1–1.4 (0.1) 1.2
[σ 0min, σ 0max] (HH) Brightness boundaries for HH channel [0–0.04, 0.01–0.2] (0.01) [0, 0.08]
[σ 0min, σ 0max] (HV) Brightness boundaries for HV channel [0–0.007, 0.001–0.02] (0.001) [0, 0.013]
Ratio test Threshold for ratio test 0.5–1 (0.1), 0.7–0.8 (0.01) 0.75

E =

√∑
i

(ui − Ui)
2+ (vi − Vi)

2

n
, (13)

where i is the index of a vector pair (reference and validation
vector) inside the entire sample, ui and vi are eastward and
northward drift components of the validation vector, Ui and
Vi are eastward and northward components of the reference
vector and n is the number of vector pairs.
In addition, the CMEMS data have been validated against

manual vectors in order to understand the credibility of the
reference data.

4 Results

4.1 ORB parameter tuning

Table 2 shows the recommended parameter set for ORB
Sentinel-1 sea ice drift application for our region and period
of interest. Using these parameters yielded the best compro-
mise between performance and computational efficiency for
the four representative image pairs from Table 1.

4.1.1 Patch size

Figure 2 shows that changing the size (length and width) of
the considered patch p between 10 and 60 pixels can mod-
ify the resulting amount of vectors by an order of magnitude.
To resolve drift gradients with high resolution, the patch size
shall be as small as possible. Taking this into account and the
performance represented by the amount of matches, the most
suitable patch size was chosen to be 34 pixels. For our train-
ing data set (Table 1), this yields on average around 1 and
4 vectors per 10 km2 for HH and HV respectively. The four
image pairs respond similar to a patch size variation. Franz
Josef Land has the highest number of HH matches and the
lowest for HV.

-2

Figure 2. Patch size of descriptor vs. number of matches of the
four test image pairs from Table 1. Solid and dashed lines represent
results for HH and HV polarization respectively. Mean values of the
four image pairs are shown in black and the sum of the mean values
in red. Vertical grey line at 34 pixels represents chosen parameter.

4.1.2 Brightness boundaries

The performance of the algorithm (represented by the
amount of matches) for different backscatter limits σ 0max
(Eq. 2) for HH and HV polarization is shown in Fig. 3.Within
the chosen backscatter range, the amount of vectors can vary
by an order of magnitude. As a compromise between the dif-
ferent results of the four image pairs, we suggest setting the
upper brightness boundary σ 0max to 0.08 and 0.013 for HH
and HV. The chosen lower boundary σ 0min is 0 for both HH
and HV, because the number of matches decreases for in-
creasing values of σ 0min (not shown). Applying this setting on
the training data set yields on average around 1 and 4 vectors
per 10 km2 for HH and HV.

4.1.3 Pyramid levels and scale factor

We calculated the number of matches using 1 to 14 pyramid
levels and the scale factors 1.1, 1.2, 1.3 and 1.4. As a com-
promise between performance, i.e. number of matches, and
computational efficiency (linked to the number of pyramid
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-2

Figure 3. Upper brightness boundary σ 0max (Eq. 2) vs. number of
matches of the four test image pairs from Table 1. Solid and dashed
lines represent results for HH and HV respectively. Black lines
are the mean values of the four image pairs. Vertical grey lines at
0.08 (HH) and 0.013 (HV) represent chosen parameters.

-2

Figure 4. Number of pyramid levels vs. number of matches of the
four test image pairs from Table 1 for a scale factor of 1.2. Solid and
dashed lines represent results for HH and HV polarization. Mean
values are shown in black and the sum of the mean values in red.
Vertical grey line at 7 represents chosen number of pyramid levels.

levels), a scale factor of 1.2 with seven pyramid levels was
chosen. As shown in Fig. 4, the number of matches does not
increase significantly when using more than seven pyramid
levels and even decreases towards 14 pyramid levels.

4.2 HH and HV comparison

Figures 2, 3 and 4 display the HH and HV results with
solid and dashed lines. All image pairs show significantly
better performance of the HV channel. On average, around
four times as many vectors have been found using HV. Even
the image pair Franz Josef Land (Table 1), which has the
best HH and the worst HV performance, shows more than
two times as many vectors using HV channel. However, due
to the different appearance of sea ice in the HH and HV im-

Figure 5. Sea ice drift of the Sentinel-1 image pair Fram Strait (Ta-
ble 1). (a)Manually drawn vectors are shown in white and the com-
puted ORB vectors in red. (b) shows ORB vectors in comparison to
the drift vectors from the CMEMS/DTU data (blue).

age, the spatial distribution of the resulting drift vectors is
also slightly different.
Figure 6 shows the spatial distribution of identified key-

points and matched features in a 200× 200 pixels sub-image
from image pair Fram Strait (Table 1). The results for HH
and HV are displayed in two separate panels. The density of
identified keypoints in HH (11 keypoints per 10× 10 pix-
els window) is in the same order of magnitude as in HV
(15 keypoints per 10× 10 pixels window). This is expected,
since the number of retained keypoints for both channels is
set to 100 000 for the entire scene. However, the number of
matched features in HH is significantly lower (0.15 features
per 10× 10 pixels window) than in HV (1.6 features per
10× 10 pixels window). The observed difference in match-
ing success can be explained by looking at the frequency dis-
tribution of the radar backscatter standard deviation in a slid-
ing window with same size as used for feature description
(34× 34 pixels). The comparison in Fig. 7 shows that HH
provides a few windows with very high variability, i.e. high
standard deviation, but the majority have very low backscat-
ter variability (sharp peak with mode 20). On the HV im-
age, however, most of the windows have a medium to high
backscatter variability (wide peak with mode 25) which is
more favourable for keypoint detection.
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Figure 6. Identified keypoints (blue) and matched features (red) on a 200× 200 pixels sub-image from the pack ice area in image pair Fram
Strait (Table 1). Results of HH are shown in the left panel and HV in the right panel.

Figure 7. Frequency distribution of radar backscatter standard de-
viation using a 34× 34 pixels sliding window (step= 1 pixel) on
a 1000× 1000 pixels sub-image from image pair Fram Strait (Ta-
ble 1). The radar backscatter is scaled to range 0–255 using Eq. (2).
The considered sub-image covers pack ice, marginal ice zone and
small parts of open water. Results for HH are shown in blue and HV
in green.

4.3 Comparison with SIFT and SURF

A total of 177 513, 43 260 and 25 113 vectors are found for
the 43 test image pairs (Fig. 8) using ORB, SIFT and SURF
respectively (Fig. 9a). Comparing the vector fields using the
sum of N and the mean of D, as described in Sect. 3, shows
that ORB covers the largest area with close to 1000 vectors
per grid cell and lower root mean square distance values.
Comparing the distributions ofN (Q-Q plot in Fig. 10, left

panel), shows that ORB derives in all cases around five times
as many vectors than SIFT and SURF. The Q-Q plot in the
right panel of Fig. 10 considers the distributions of D. For
D < 500m, the vectors derived by ORB exhibit a higher
variability within one grid cell (slightly higher D), proba-
bly due to a larger number of vectors N . For the higher root

Figure 8. Overlapping area of 43 Sentinel-1 image pairs used to
compare ORB, SIFT and SURF. The image pairs have been ac-
quired between 2 January and 21 March 2015 with time gaps vary-
ing between 7 and 48 h.

mean square values (D > 500m), SIFT and SURF vectors
are much less consistent than ORB vectors (higher D).

4.4 Computational efficiency

The OpenCV feature-tracking algorithms ORB, SIFT and
SURF in combination with the Python toolbox, Nansat, are
computationally efficient (total processing time on regular
MacBook Pro: 2–4min) and allow high-resolution sea ice
drift retrieval from data sets with large temporal and spatial
extent. The processing times shown in Table 3 are based on
testing the algorithms on a MacBook Pro from early 2013
with a 2.7GHz Intel Core i7 processor and 8GB 1600MHz
DDR3 memory. Applying the introduced ORB algorithm
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ORB SIFT SURF

Figure 9. Sea ice drift derived from 43 Sentinel-1 image pairs (Fig. 8) using both HH and HV channel and ORB (first column, 177 513 vec-
tors), SIFT (second column, 43 260 vectors) and SURF (third column, 25 113 vectors) algorithm. The panels show the sum of the number of
vectors per grid cell N (green, first row) and mean root mean square distance D in km (red, second row).

SIFT
SURF
One-to-one

SIFT
SURF
One-to-one

Figure 10. Q-Q plot of number of vectors N (left panel) and root
mean square distance D (right panel) from results shown in Fig. 9.
Tuned ORB algorithm (x axis) compared to SIFT (y axis, blue dots)
and SURF (y axis, green dots).

needs 36 and 67% of the processing time to compute drift
fields with SIFT and SURF.

4.5 Validation

Since reference vectors were searched only within a given
radius of the validation vectors, the number of matches de-
creased for the ORB vs. manual comparison from 350 possi-
ble matches to 314, for ORB vs. CMEMS from 560 to 436
and for CMEMS vs. manual from 350 to 201 (Table 4).
The average distances between compared vectors were 1702,
2261 and 3440m for ORB vs. manual, ORB vs. CMEMS and
CMEMS vs. manual respectively.
The validation of ORB vectors with manually derived vec-

tors (Fig. 5a, Table 4) reveals a high accuracy of our tuned
ORB algorithm with root mean square error E = 563m,
slope S = 1.02 and offset O = −372m. Given the displace-

Table 3. Processing times for sea ice drift computation from one
channel.

Process Time [s]
Create two Nansat objects from Sentinel-1 image pair 21.1
Read matrixes from two Nansat objects 48.8
Apply feature-tracking algorithm – ORB 65.8
Apply feature-tracking algorithm – SIFT 181.8
Apply feature-tracking algorithm – SURF 98.5

ment range for the used image pair of 10–35 km, the relative
error of the algorithm (ratio of E to mean drift) is 2.5%.
The vector distributions of ORB and CMEMS (Fig. 5b)

are similar. ORB covers a larger area in total, but in a few
regions only CMEMS provides drift information. The ORB
vs. CMEMS comparison gives an error E = 1641m, slope
S = 1.03 and offset O = 265m (Table 4).
Validating CMEMS using manual data results in the high-

est root mean square error E = 1690m with slope S = 0.98
and offset O = −415m (Table 4) .
Decreasing the threshold radius between reference and

validation vectors does not influence the errorE significantly
but reduces the number of found matching vectors, especially
when comparing CMEMS and manual vectors.

5 Discussion and outlook

The open-source feature-tracking algorithm ORB (Oriented
FAST and Rotated BRIEF) has been tuned for sea ice drift
retrieval from Sentinel-1 SAR imagery and used for pro-
cessing winter and spring data in the ice-covered oceans
between Greenland and Severnaya Zemlya. Validating cal-
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Table 4. Comparison of ORB, CMEMS and manually derived sea
ice drift data from image pair Fram Strait (Table 1). The total num-
bers of derived vectors are 6920 (ORB), 560 (CMEMS/DTU) and
350 (manual). The # vector pairs is the number of used vector pairs
for comparison, i.e. vector pairs with maximum 5 km distance. The
average distance refers to the starting locations of the used reference
and validation vectors. E is the root mean square error, S andO are
slope and offset of the linear fit.

Algorithm E S O # vector Average
[m] [m] pairs distance [m]

ORB vs. manual 563 1.02 −372 314 1702± 1325
ORB vs. CMEMS 1641 1.03 265 436 2261± 1247
CMEMS vs. manual 1690 0.98 −415 201 3440± 1105

culated drift results against manually derived vectors, we
found that our algorithm (EORB= 563m) had a distinctly
higher accuracy than the drift data set provided by CMEMS
(ECMEMS= 1690m). The given root mean square errors E

represent a combination of three error sources:

– error of manual ice drift identification introduced by the
sea ice expert

– difference between derived and reference vector due
to different geographical location of the starting point
(maximum 5 km)

– actual error of the algorithm.

Hence, the actual error of the tuned ORB algorithm is ex-
pected to be even lower than 563m.
As expected, the application of the tuned ORB algorithm

is much more efficient than manual ice drift assessment,
e.g. 6920 vectors have been calculated within 3min, whereas
identifying 350 sea ice drift vectors manually takes several
hours. The number of calculated vectors can be increased
by returning a higher number of keypoints (e.g. 1 000 000).
However, the processing time increases proportional to the
square of the considered keypoints and the algorithm perfor-
mance becomes suboptimal at some point.
The presented ORB algorithm also outperforms other

available feature-tracking algorithms, such as SIFT and
SURF not only in processing time, but also in quantity and
quality of drift vectors, measured by the two introduced in-
dexes N and D. This proves that ORB is the best option for
feature-tracking of sea ice on Sentinel-1 SAR imagery.
The algorithm tuning has been performed using winter and

spring data, since our area of interest experiences the high-
est sea ice cover during this period. During summer and au-
tumn, most considered areas have very little or no ice cover
(e.g. Barents Sea and Kara Sea), making ice drift calculation
during this period less meaningful. Nevertheless, some areas,
like the western Fram Strait, experience sea ice cover during
the entire year. Dependence of the algorithm performance on
the season needs to be evaluated in future work. Computing

sea ice drift from summer and autumn data is expected to be
more demanding, since features might be destroyed by melt-
ing.
Comparing the four considered image pairs, Franz Josef

Land yields the highest number of HH matches, accompa-
nied by the lowest number from HV channel. A distinctly
shorter time difference between the acquisitions (8 h for
Franz Josef Land compared to more than 30 for the other
image pairs) might be one reason for an improved HH per-
formance. That would conclude that HH features are less pre-
served over time and increasing the repeat frequency of the
satellite (as planned with Sentinel-1B) will improve the algo-
rithm performance, in particular for the HH channel. The sea
ice conditions are another important factor when comparing
the algorithm performance for different scenes. The image
pair Fram Strait includes the marginal ice zone in the eastern
part and multiyear ice in the north-west. Not many matches
are expected in the marginal ice zone, but the multiyear ice
includes more stable deformation pattern, like ridges, that
lead to a good feature-tracking performance. The image pair
Svalbard North includes a very small part of the marginal ice
zone and the major part is comparable homogeneous pack
ice with long cracks along a prevailing direction. Franz Josef
Land and Kara Sea are clearly less homogeneous and show
a mixture of ice floes with different scales and newly formed
young ice. This paper has focused on finding the most suit-
able algorithm for a range of ice conditions found in the con-
sidered area and we can give an idea how ice conditions and
acquisition time might affect the ORB feature-tracking per-
formance. Further investigations need to be carried out in or-
der to evaluate the algorithm performance for different ice
conditions and other areas like the Beaufort Sea or Antarc-
tica.
Komarov and Barber (2014) have evaluated sea ice drift

results from dual-polarization Radarsat-2 imagery using a
combination of phase and cross-correlation. Comparing the
polarization channels, HH is more sensitive to small-scale
roughness, whereas the HV channel provides more stable,
large-scale features linked to ice topography. Komarov and
Barber (2014) concludes that the combination of HH and HV
is beneficial, since more reliable vectors are provided and
the vector distributions complement each other. They also
found that noise floor stripes in the HV images do not affect
the motion tracking from pattern matching. We can extent
this discussion for feature based algorithms. Using noise re-
moval for HV and angular correction for HH has been tested,
but did not improve the feature-tracking results, i.e. a lower
number of vectors has been found. Like Komarov and Barber
(2014), we recommend the usage of both channels since the
vector distributions are complementary. However, using fea-
ture tracking, HV provides about four times as many vectors
than HH, making HV the more informative channel. The dif-
ferent performance can be explained by a higher variability
of the HV backscatter intensity, considering a window with
the same size as used for feature description (34× 34 pix).
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Figure 11. Sea ice drift anomaly (compared to mean drift of the
scene) detected in a 300× 400 pix (24× 32 km) sub-image from
Fram Strait (Table 1) close to the marginal ice zone.

Contemporary algorithms for calculating sea ice drift vec-
tors from consecutive image pairs are based either on fea-
ture tracking or pattern matching. The feature-tracking ap-
proach detects keypoints on two images based solely on the
backscatter distribution of the images without taking other
keypoints into account. Hence, ORB identifies the keypoints
independently. Based on the keypoint locations, the binary
feature vectors are calculated. During the second step, all
features in the first images are compared to all features in
the second image without taking drift information from sur-
rounding vectors into account, i.e. the matching of features
from one image to the other is also done independently. Al-
though very close keypoints may share some pixels during
the feature description process (i.e. overlap of the considered
patches around the keypoints), the detection of keypoints
and matching of features are done independently. Eventu-
ally, feature-tracking vectors are independent of each other in
terms of position, lengths and direction, allowing very close
drift vectors to point into different directions.
Figure 11 illustrates 430 drift vector anomalies detected

in a 300× 400 pix (24× 32 km) sub-image from Fram Strait
(Table 1) close to the marginal ice zone. The anomalies are
calculated as the difference to the mean drift of the entire
scene. This example shows that very small-scale dynamic
processes, such as the observed rotation, can be detected and
quantified with the feature-tracking approach.
Common pattern-matching techniques limit the indepen-

dence of neighbour vectors for practical reasons. First, pat-
tern matching is usually performed on a regular grid, de-
termining the position and distance between vectors. Sec-
ond, pattern matching often follows a pyramid approach in
order to speed up processing (Thomas et al., 2008a): low-
resolution drift is initially estimated using large subwindows
and large steps. This first guess constrains the following pat-
tern matching to a finer scale. Repeating this procedure in-
creases the resolution of the end product, but length and
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Figure 12. Variogram of drift vectors (black line) on top of 2-D his-
togram of distance between vectors and difference between vectors
estimated from vectors identified on the Sentinel-1 image pair Fram
Strait (Table 1). Colour of the 2-D histogram indicates the number
of vectors.

direction of the high-resolution vectors depend on the low-
resolution estimates, i.e. neighbour vectors depend on each
other. Although pattern matching can be designed to retrieve
independent vectors by varying the extent of the correlation
area and the spacing between vectors, for practical reasons
the overlap between the correlation areas is usually half the
size of the area (Thomas et al., 2008b).
The independence of feature-tracking vectors has positive

and negative implications. On one hand, very close vectors
that are independent in length and direction allow identifi-
cation of ice deformation at very high resolution. The var-
iogram (Fig. 12), which shows how vector differences de-
pendent on the distance between them (Cressie, 1993), in-
dicates that very close vectors may differ significantly, al-
though the difference is generally linearly proportional to the
distance. On the other hand, feature-tracking vectors are not
evenly distributed in space, and large gaps may occur be-
tween clouds of densely located vectors. Spatial irregular-
ity is not optimal for systematic detection of divergence and
shear zones and calculation of deformation.
Therefore, computationally efficient feature tracking

should be complemented by systematic pattern matching
to deliver evenly distributed, high-resolution vector fields.
Combining the two different drift calculation approaches and
making use of the respective advantages is planned as the
next step of our research.
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Appendix A: Open-source distribution

The presented work is entirely based on open-source soft-
ware (Python, OpenCV and Nansat) and satellite images
with open and free access for all users. Sentinel-1 SAR
data can be downloaded at no cost, in near real time under
https://scihub.esa.int/dhus/. The used programming language
is Python, a free and open-source software available under
https://www.python.org. The OpenCV (open-source Com-
puter Vision) programming library includes the ORB algo-
rithm, and a Python-compatible version can be downloaded
under http://opencv.org. To handle and read the satellite data,
Nansat is used, which is a scientist-friendly Python toolbox
for processing 2-D satellite Earth observation data (source
code incl. installation description can be found under https://
github.com/nansencenter/nansat). The presented sea ice drift
algorithm including an application example can be down-
loaded from https://github.com/nansencenter/sea_ice_drift.
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Abstract. An open-source sea ice drift algorithm for

Sentinel-1 SAR imagery is introduced based on the combina-

tion of feature tracking and pattern matching. Feature track-

ing produces an initial drift estimate and limits the search

area for the consecutive pattern matching, which provides

small- to medium-scale drift adjustments and normalised

cross-correlation values. The algorithm is designed to com-

bine the two approaches in order to benefit from the respec-

tive advantages. The considered feature-tracking method al-

lows for an efficient computation of the drift field and the re-

sulting vectors show a high degree of independence in terms

of position, length, direction and rotation. The considered

pattern-matching method, on the other hand, allows better

control over vector positioning and resolution. The prepro-

cessing of the Sentinel-1 data has been adjusted to retrieve

a feature distribution that depends less on SAR backscatter

peak values. Applying the algorithm with the recommended

parameter setting, sea ice drift retrieval with a vector spac-

ing of 4 km on Sentinel-1 images covering 400 km× 400 km,
takes about 4min on a standard 2.7GHz processor with 8GB

memory. The corresponding recommended patch size for the

pattern-matching step that defines the final resolution of each

drift vector is 34× 34 pixels (2.7× 2.7 km). To assess the po-
tential performance after finding suitable search restrictions,

calculated drift results from 246 Sentinel-1 image pairs have

been compared to buoy GPS data, collected in 2015 between

15 January and 22 April and covering an area from 80.5 to

83.5◦ N and 12 to 27◦ E. We found a logarithmic normal
distribution of the displacement difference with a median at

352.9m using HV polarisation and 535.7m using HH polar-

isation. All software requirements necessary for applying the

presented sea ice drift algorithm are open-source to ensure

free implementation and easy distribution.

1 Introduction

Sea ice drift has a strong impact on sea ice distribution on dif-

ferent temporal and spatial scales. The motion of sea ice due

to wind and ocean currents causes convergence and diver-

gence zones, resulting in the formation of ridges and open-

ing/closing of leads. On large scales, ice export from the Arc-

tic and Antarctic into lower latitudes, where the ice eventu-

ally melts away, contributes to a strong seasonality of total

sea ice coverage (IPCC, 2013). Due to a lack of ground sta-

tions in sea-ice-covered areas, satellite remote sensing repre-

sents the most important tool for observing sea ice conditions

on medium to large scales. Despite the strong impact of sea

ice drift and the opportunities given by the latest satellite re-

mote sensing techniques, there is a lack of extensive ice drift

data sets providing sufficient resolution for estimating sea ice

deformation on a spatial scaling of less than 5 km.

Our main regions of interest are the ice-covered seas

around Svalbard and the east of Greenland. Characteristic of

this area are a large variation of different ice types (marginal

ice zone, first-year ice, multiyear ice, etc.), a strong season-

ality of ice cover and a wide range of drift velocities. Focus

was put on the winter/spring period, since the area of interest

experiences the highest ice cover during this time of the year.

Early work from Nansen (1902) established the rule-of-

thumb that sea ice velocity resembles 2% of the surface wind

speed with a drift direction of about 45◦ to the right (North-
ern Hemisphere) of the wind. This wind-driven explanation

can give a rough estimate for instantaneous ice velocities.

However, the respective influences of wind and ocean current

strongly depend on the temporal and spatial scale. Only about

50% of the long-term (several months) averaged ice drift in

the Arctic can be explained by geostrophic winds, whereas

the rest is related to mean ocean circulation. This proportion
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increases to more than 70% explained by wind, when con-

sidering shorter timescales (days to weeks). The wind fails to

explain large-scale ice divergence patterns and its influence

decreases towards the coast (Thorndike and Colony, 1982).

Using GPS drift data from the International Arctic Buoy

Program (IABP), Rampal et al. (2009a) analysed the gen-

eral circulation of the Arctic sea ice velocity field and found

that the fluctuations follow the same diffusive regime as tur-

bulent flows in other geophysical fluids. The monthly mean

drift using 12 h displacements was found to be in the order of

0.05 to 0.1m s−1 and showed a strong seasonal cycle with a
minimum in April and maximum in October. The IABP data

set also revealed a positive trend in the mean Arctic sea ice

speed of +17% per decade for winter and +8.5% for sum-
mer considering the time period 1979–2007. This is unlikely

to be the consequence of increased external forcing. Instead,

the thinning of the ice cover is suggested to decrease the me-

chanical strength which eventually causes higher speed given

a constant external forcing (Rampal et al., 2009b).

Fram Strait represents the main gate for Arctic ice ex-

port and high drift velocities are generally found in this area

with direction southward. Based on moored doppler cur-

rent meters mounted near 79◦ N 5◦W, Widell et al. (2003)
found an average southward velocity of 0.16m s−1 for the
period 1996–2000. Daily averaged values were usually in

the range 0–0.5m s−1 and on very few occasions above

0.5m s−1.
GPS buoys and current meters are important tools for mea-

suring ice drift at specific locations. However, to monitor sea

ice drift on medium to large scales, satellite remote sensing

represents the most important data source today. The polar

night and a high probability for cloud cover over sea ice limit

the capability of optical sensors for reliable year-round sea

ice monitoring. Unlike optical sensors, Spaceborne Synthetic

Aperture Radar (SAR) are active sensors, operate in the mi-

crowave spectrum and can produce high-resolution images

regardless of solar illumination and cloud cover. Since the

early 1990s SAR sensors have been delivering systematic ac-

quisitions of sea-ice-covered oceans and Kwok et al. (1990)

showed that sea ice displacement can be calculated from con-

secutive SAR scenes.

The geophysical processor system from Kwok et al.

(1990) has been used to calculate sea ice drift fields in par-

ticular over the western Arctic (depending on SAR coverage)

once per week with a spatial resolution of 10–25 km for the

time period 1996–2012. This extensive data set makes use

of SAR data from RADARSAT-1 operated by the Canadian

Space Agency, and from ENVISAT (Environmental Satel-

lite) ASAR (Advanced Synthetic Aperture Radar) operated

by ESA (European Space Agency).

To resolve drift details on a finer scale, a high-resolution

sea ice drift algorithm for SAR images from ERS-1 (Euro-

pean Remote-sensing Satellite from ESA) based on pattern

matching was introduced by Thomas et al. (2008), which al-

lowed drift calculation with up to 400m resolution. Hollands

and Dierking (2011) implemented their own modified ver-

sion of this algorithm to derive sea ice drift from ENVISAT

ASAR data.

To also provide drift estimates in areas where areal match-

ing procedures (like cross and phase correlation) fail, Berg

and Eriksson (2014) introduced a hybrid algorithm for sea

ice drift retrieval from ENVISAT ASAR data using phase

correlation and a feature based matching procedure that is

activated if the phase correlation value is below a certain

threshold.

The current generation of SAR satellites including

RADARSAT-2 and Sentinel-1 are able to provide images

with more than one polarisation. Komarov and Barber (2014)

and Muckenhuber et al. (2016) have evaluated the sea ice

drift retrieval performance with respect to the polarisation

using a combination of phase/cross-correlation and feature

tracking based on corner detection respectively. Muckenhu-

ber et al. (2016) has shown that feature tracking provides on

average around four times as many vectors using HV polari-

sation compared to HH polarisation.

After the successful start of the Sentinel-1 mission in

early 2014, high-resolution SAR images are delivered for

the first time in history within a few hours after acquisition

as open-source data to all users. This introduced a new era

in SAR Earth observation with great benefits for both sci-

entists and other stakeholders. Easy, free and fast access to

satellite imagery facilitate the possibility to provide prod-

ucts on an operational basis. The Danish Technical Uni-

versity (Pedersen et al., 2015, http://www.seaice.dk/) pro-

vides an operational sea ice drift product based on Sentinel-1

data with 10 km resolution as part of the Copernicus Marine

Environment Monitoring Service (CMEMS, http://marine.

copernicus.eu).

The sea-ice-covered oceans in the European Arctic sector

represent an important area of interest for the Sentinel-1 mis-

sion and due to the short revisit time in the Arctic, our area

of interest is monitored by Sentinel-1 on a daily basis (ESA,

2012).

This paper follows up the work from Muckenhuber et al.

(2016), who published an open-source feature-tracking algo-

rithm to derive computationally efficient sea ice drift from

Sentinel-1 data based on the open-source ORB algorithm

from Rublee et al. (2011), which is included in the OpenCV

Python package. We aim to improve the feature-tracking ap-

proach by combining it with pattern matching. Unlike Berg

and Eriksson (2014), the feature-tracking step is performed

initially and serves as a first guess to limit the search area of

the pattern-matching step.

From a methodological point of view, algorithms for de-

riving displacement vectors between two consecutive SAR

images are based either on feature tracking or pattern match-

ing.

Feature tracking detects distinct patterns (features) in both

images and tries to connect similar features in a second step

without the need for knowing the locations. This can be done
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in a computationally efficient manner and the resulting vec-

tors are often independent of their neighbours in terms of

position, length, direction and rotation, which can potentially

be an important advantage for resolving shear zones, rotation

and divergence/convergence zones. The considered feature-

tracking approach identifies features without taking the po-

sition of other features into account and matches features

from one image to the other without taking the drift and ro-

tation information from the surrounding vectors into account

(Muckenhuber et al., 2016). However, due to the independent

positioning of the features, very close features may share

some pixels and since all vectors from the resolution pyra-

mid are combined, the feature size varies among the matches,

which implies a varying resolution. In addition, the resulting

vector field is not evenly distributed in space and large gaps

may occur between densely covered areas, which can eventu-

ally lead to missing a shear or divergence/convergence zone.

Pattern matching, on the other hand, takes a small template

from the first image at the starting location of the vector and

tries to find a match on a larger template from the second im-

age. Simple pattern-matching methods based on normalised

cross-correlation often demand considerable computational

effort. Nevertheless, this approach is widely used, since it

allows the vector positions to be defined. For practical rea-

sons, a pyramid approach is generally used to derive high-

resolution ice drift. This speeds up the processing, but poten-

tially limits the independence of neighbouring vectors, since

they depend on a lower-resolution estimate (Thomas et al.,

2008).

The objective of this paper is to combine the two ap-

proaches in order to benefit from the respective advantages.

The main advantages of the considered feature-tracking ap-

proach are the computational efficiency and the indepen-

dence of the vectors in terms of position, length, direction

and rotation. The considered pattern-matching method, on

the other hand, allows better control over vector position-

ing and resolution, which is a necessity for computing di-

vergence, shear and total deformation.

The presented algorithm, all necessary software require-

ments (python including Nansat, openCV and SciPy) and the

satellite data from Sentinel-1 are open-source. A free and

user-friendly implementation shall support an easy distribu-

tion of the algorithm among scientists and other stakeholders.

The paper is organised as follows: the used satellite prod-

ucts and buoy data are introduced in Sect. 2. The algo-

rithm description including data preprocessing is given in

Sect. 3, together with tuning and performance assessment

methods. Section 4 presents the preprocessing, parameter

tuning and performance assessment results and provides a

recommended parameter setting for the area and time period

of interest. The discussion including outlook can be found in

Sect. 5.

Figure 1. Coverage of image pair Fram Strait that is used as repre-
sentative image pair to explain the algorithm approach. The dashed

rectangle depicts the area shown in Fig. 4 and illustrates the vector

distribution of the algorithm steps.

2 Data

The Sentinel-1 mission is a joint initiative of the Euro-

pean Commission and the European Space Agency (ESA)

and represents the European Radar Observatory for the

Copernicus programme, a European system for monitoring

the Earth with respect to environmental and security is-

sues. The mission includes two identical satellites, Sentinel-

1A (launched in April 2014) and Sentinel-1B (launched in

April 2016), each carrying a single C-band SAR with a cen-

tre frequency of 5.405GHz and dual-polarisation support

(HH+HV, VV+VH) also for the wide swath mode. Both
satellites fly in the same near-polar, sun-synchronous orbit

and the revisit time is less than 1 day in the Arctic (ESA,

2012). The main acquisition mode of Sentinel-1 over sea-

ice-covered areas is Extra Wide mode Ground Range De-

tected Medium Resolution (EW GRDM) and the presented

algorithm is built for processing this data type. The covered

area per image is 400 km× 400 km and the data are provided
with a pixel spacing of 40m× 40m in both HV and HH po-
larisation. The introduced algorithm can utilise both the HV

and HH channel. However, the focus of this paper is put on

using HV polarisation (mainly acquired over the European

Arctic and the Baltic sea), since this channel provides on av-

erage four times more feature tracking vectors in our area of

interest than HH (Muckenhuber et al., 2016), representing a

better initial drift estimate for the combined algorithm.

To illustrate the algorithm performance and explain the

individual steps, we use an image pair acquired over Fram

Strait. The acquisition times of the two consecutive im-

ages are 28 March 2015 07:44:33UTC and 29 March 2015

16:34:52UTC, and the covered area is shown in Fig. 1. This

image pair covers a wide range of different ice conditions

(multiyear ice, first-year ice, marginal ice zone etc.) and the

ice conditions are representative of our area and time period

of interest.
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To evaluate suitable search limitations and assess the po-

tential algorithm performance, we use GPS data from drift

buoys that have been set out in the ice-covered waters

north of Svalbard as part of the Norwegian Young Sea Ice

Cruise (N-ICE2015) project of the Norwegian Polar Insti-

tute (Spreen and Itkin, 2015). The ice conditions during the

N-ICE2015 expedition are described on the project website

(http://www.npolar.no/en/projects/n-ice2015.html) as chal-

lenging. The observed ice pack, mainly consisting of 1.3–

1.5m thick multiyear and first-year ice, drifted faster than

expected and was very dynamic. Closer to the ice edge, a

break up of ice floes has been observed due to rapid ice drift

and the research camp had to be evacuated and re-established

four times. This represents a good study field, since these

challenging conditions are expected in our area and time pe-

riod of interest. The considered GPS data have been collected

in 2015 between 15 January and 22 April, and cover an area

ranging from 80.5 to 83.5◦ N and 12 to 27◦ E. The buoys
recorded their positions either hourly or every 3 h. In the lat-

ter case, the positions have been interpolated for each hour.

3 Method

3.1 Data preprocessing

To process Sentinel-1 images within Python (extraction of

backscatter values and corresponding geolocations, reprojec-

tion, resolution reduction etc.), we use the Python toolbox

Nansat (Korosov et al., 2016), which builds on the Geospa-

tial Data Abstraction Library (http://www.gdal.org). As in

Muckenhuber et al. (2016), we change the projection of

the provided ground control points (latitude/longitude values

given for certain pixel/line coordinates) to stereographic and

use spline interpolation to calculate geographic coordinates.

This also provides a good geolocation accuracy at high lati-

tudes. The pixel spacing of the image is changed by averag-

ing from 40 to 80m, which is closer to the sensor resolution

of 93m range× 87m azimuth, and decreases the computa-
tional effort.

For each pixel p, the Sentinel-1 data file provides a digital

number DNp and a normalisation coefficient Ap, from which

the normalised radar cross section σ 0raw is derived by the fol-

lowing equation:

σ 0raw = DN2p/A2p. (1)

The normalised radar cross section σ 0raw reveals a logarith-

mic distribution and the structures in the sea ice are mainly

represented in the low and medium backscatter values rather

than in the highlights. Therefore, we change the linear scal-

ing of the raw backscatter values σ 0raw to a logarithmic scaling

and get the backscatter values σ 0= 10 · lg(σ 0raw) [dB]. A rep-
resentative backscatter distribution over sea ice is shown in

Fig. 2. Using a logarithmic scaling provides a keypoint distri-

bution for the feature tracking algorithm that depends less on

high peak values, while the total number of vectors increases.

To apply the feature-tracking algorithm from Muckenhu-

ber et al. (2016), the SAR backscatter values σ 0 have to be

converted into intensity values i with 0≤ i ≤ 255 for i ∈R.

This conversion is done by using Eq. (2) and setting all val-

ues outside the domain to 0 and 255.

i = 255 · σ 0− σ 0min

σ 0max− σ 0min

. (2)

The upper brightness boundary σ 0max is set according to

the recommended values from Muckenhuber et al. (2016),

i.e.−18.86 and−10.97 dB for HV and HH respectively. The
lower boundary σ 0min was chosen to be −32.5 dB (HV) and
−25.0 dB (HH), since this was found to be a reasonable range
of expected backscatter values. Figure 3 shows the image

pair Fram Strait after the conversion into intensity values.

For the sake of computational efficiency, the same intensity

value scaling is used for the pattern-matching step.

3.2 Sea ice drift algorithm

The presented sea ice drift algorithm is based on a combina-

tion of feature tracking and pattern matching, and is designed

to utilise the respective advantages of the two considered ap-

proaches. Computationally efficient feature tracking is used

to derive a first estimate of the drift field. The provided vec-

tors serve as the initial search position for pattern matching,

which provides accurate drift vectors at each given location

including rotation estimate and maximum cross-correlation

value. As illustrated in the flow chart in Fig. 4, the algo-

rithm consists of five main steps: (I) feature tracking, (II) fil-

ter, (III) first guess, (IV) pattern matching and (V) final drift

product.

(I) Feature tracking

The feature-tracking algorithm used in this work is an ad-

justed version from Muckenhuber et al. (2016), who intro-

duced a computationally efficient sea ice drift algorithm for

Sentinel-1 based on the ORB (Oriented FAST and Rotated

BRIEF) algorithm from Rublee et al. (2011). ORB uses the

concept of the FAST keypoint detector (Rosten and Drum-

mond, 2006) to find corners on several resolution levels. The

patch around each corner is then described using an modi-

fied version of the binary BRIEF descriptor from Calonder

et al. (2010). To ensure rotation invariance, the orientation of

the patch is calculated using the intensity-weighted centroid.

Muckenhuber et al. (2016) applies a brute force matcher that

compares each feature from the first image to all features in

the second image. The comparison of two features is done

using the Hamming distance, which represents the number

of positions in which the two compared binary feature vec-

tors differ from each other. The best match is accepted if the

ratio of the shortest and second shortest Hamming distances
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Figure 2. Histogram of (a) HV and (b) HH backscatter values σ 0 from image pair Fram Strait. The lower and upper brightness boundaries

for HV (σ 0min= −32.5 dB, σ 0max= −18.86 dB) and HH (σ 0min= −25.0 dB, σ 0max= −10.97 dB) are shown with blue lines and illustrate the
domain for the intensity values i.

Figure 3. Image pair Fram Strait in (a) HV and (b) HH polarisation after conversion (Eq. 2) from backscatter values σ 0 into intensity

values with range 0≤ i ≤ 255 using lower and upper brightness boundaries for HV: σ 0min= −32.5 dB and σ 0max= −18.86 dB and HH:
σ 0min= −25.0 dB, σ 0max= −10.97 dB.

is below a certain threshold. Given a suitable threshold (and

unique features), the ratio test will discard a high number of

false matches, while eliminating only a few correct matches.

Muckenhuber et al. (2016) found a suitable parameter set-

ting for our area and time period of interest, including a

Hamming distance threshold of 0.75, a maximum drift fil-

ter of 0.5m s−1, a patch size of 34× 34 pixels and a resolu-
tion pyramid with seven steps combined with a scaling factor

of 1.2. Due to the resolution pyramid, the considered fea-

ture area varies from 2.7× 2.7 to 9.8× 9.8 km and the result-
ing drift field represents a resolution mixture between these

boundaries.

We adjust the algorithm from Muckenhuber et al. (2016)

by applying a logarithmic scaling for the SAR backscat-

ter values σ0 instead of the previously used linear scaling

(Sect. 3.1). In addition, we extract for each vector the ro-

tation information α, i.e. how much the feature rotates from

the first to the second image.
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Figure 4. The flow chart on the left depicts the five main steps of the
algorithm. The right column illustrates the evolution of the drift re-

sults using image pair Fram Strait in HV polarisation and a grid with

4 km spacing. (NB The part of the image pair that is depicted here is

marked with a dashed rectangle in Fig. 1.) Blue vectors are derived

by applying an adjusted version of the feature tracking algorithm

from Muckenhuber et al. (2016). Black vectors indicate the initial

drift estimate (first guess) based on filtered feature-tracking vectors.

The final drift product (yellow to red vectors) are derived from com-

bining the first guess with pattern-matching adjustment and apply-

ing a minimum cross-correlation value. A total of 4725 vectors have

been found on image pair Fram Strait with a MCC value above 0.4

in 4min.

Applying the adjusted feature-tracking algorithm provides

a number of unevenly distributed vectors (e.g. blue vectors in

Fig. 4) with start positions x1f, y1f on the first image (SAR1),

end positions x2f, y2f on the subsequent image (SAR2) and

corresponding rotation values αraw f. The index f represents

a feature-tracking vector and ranges from 1 to F , with F be-

ing the total number of derived feature-tracking vectors. For

the sake of computational efficiency, the vectors from all res-

olution pyramid levels are treated equally.

To avoid zero-crossing issues during the following filter

and inter-/extrapolation process (in case the image rotation δ

between SAR1 and SAR2 is close to 0
◦), a factor |180− δ|

is added to the raw rotation values αraw f using the following

equation:

αf =
{
αraw f+ |180− δ| if αraw f+ |180− δ| < 360

αraw f+ |180− δ| − 360 if αraw f+ |180− δ| > 360
. (3)

This centres the reasonable rotation values in the proxim-

ity of 180◦. After applying the filter and inter-/extrapolation
process, the estimated rotation α is corrected by subtracting

|180− δ|.
(II) Filter

To reduce the impact of potentially erroneous feature-

tracking vectors on the following steps, outliers are filtered

according to drift and rotation estimates derived from least-

squares solutions using a third-degree polynomial function.

Considering a matrix A that contains all end positions x2f,

y2f in the following form

A =

⎛⎜⎜⎜⎝
1 x21 y21 x221 y221 x21 · y21 x321 y321
1 x22 y22 x222 y222 x22 · y22 x322 y322
...

...
...

...
...

...
...

...

1 x2F y2F x22F y22F x2F · y2F x32F y32F

⎞⎟⎟⎟⎠ , (4)

we derive three vectors bx1 , by1 and bα that represent

the least-squares solutions for A and x1= (x11, . . . , x1F),

y1= (y11, . . . , y1F) and α = (α1, . . . , αF) respectively. The

starting position x1f, y1f and the rotation αf of each vector

can then be simulated using a third-degree polynomial func-

tion f (x2f, y2f, b) depending on the end position x2f, y2f and

the corresponding least-squares solution b = (b0, b1, b2, b3,
b4, b5, b6, b7).

f (x2f,y2f,b) = b0+ b1x2f+ b2y2f+ b3x
2
2f+ b4y

2
2f

+ b5x2fy2f+ b6x
3
2f+ b7y

3
2f (5)

If the simulated start position, derived from f (x2f, y2f, b),

deviates from the feature-tracking start position x1f, y1f by

more than 100 pixels, the vector is deleted. The same ac-

counts for rotation outliers. If the simulated rotation deviates

from the feature-tracking rotation αf by more than 60
◦, the

vector is deleted. We found a third-degree polynomial func-

tion to be a good compromise between allowing for small- to

medium-scale displacement and rotation discontinuities, and

excluding very unlikely vectors that eventually would disturb

the following steps. The parameters for the filter process, i.e.

100 pixels (displacement) and 60◦ (rotation), have been cho-
sen according to visual interpretation using several represen-

tative image pairs. Figure 5 illustrates the filter process by

depicting the results from image pair Fram Strait.

(III) First guess

The remaining feature-tracking vectors are used to estimate

the drift including rotation on the entire first image, i.e. es-

timated x2, y2 and α values are provided for each pixel on

SAR1 (Fig. 6). The quality of this “first guess”, however, de-

pends on the density of the feature-tracking vector field and

the local ice conditions.

Between the feature-tracking vectors, estimated values are

constructed by triangulating the input data and perform-

ing linear barycentric interpolation on each triangle. That
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Figure 5. Filter process applied to image pair Fram Strait in HV polarisation. The x axis represents the simulated start position and rotation,

derived from f (x2f, y2f, b) and the y axis represents the feature-tracking start position x1f, y1f and rotation αf. NB The image rotation is

δ = 129.08◦, which means the rotation was adjusted by 50.92◦ (Eq. 3). Red points were identified as outliers and deleted.

Figure 6. Example of estimated drift and rotation (first guess) based on filtered feature-tracking vectors using image pair Fram Strait in HV
polarisation. The three panels show the components x2, y2 of the estimated end positions and the estimated rotation α for each pixel on the

coordinate system x1, y1 of the first image (SAR1).

means the estimated values represent the weighted mean of

the three neighbouring feature-tracking values. The interpo-

lated value vp at any pixel p inside the triangle is given by

Eq. (6), where v1, v2, v3 represent the feature-tracking values

at the corners of the triangle and A1, A2, A3 are the areas of

the triangle constructed by p and the two opposite corners;

e.g. A1 is the area between p, and the corners with values v2
and v3.

vp = A1v1+ A2v2+ A3v3

A1+ A2+ A3
(6)

To provide a first guess for the surrounding area, values are

estimated based on the least-squares solutions using a linear

combination of x1 and y1. Considering a matrix C that con-
tains all start positions x1f, y1f in the following form

C =

⎛⎜⎜⎜⎝
1 x11 y11
1 x12 y12
...

...

1 x1F y1F

⎞⎟⎟⎟⎠ . (7)

We derive three vectors dx2 , dy2 and dα that represent

the least-squares solutions for C and x2= (x21, . . . , x2F),

y2= (y21, . . . , y2F) and α = (α1, . . . , αF) respectively. The

estimated end position x2, y2 and rotation α at any location

can then be simulated using the linear function f (x1, y1, c)

depending on the start position x1, y1 and the corresponding

least-squares solution d = (d0, d1, d2).
f (x1,y1,d) = d0+ d1x1+ d2y1 (8)

As mentioned above, the rotation estimates α are now cor-

rected for the adjustment applied in Eq. (3), by subtracting

|180− δ|.
An example for the resulting first guess, i.e. estimated val-

ues for x2, y2 and α on SAR1, is shown in Fig. 6 (this fig-

ure illustrates the matrices that the algorithm considers as

first guess) and corresponding vectors are shown in black in

Fig. 4. Note that rotation α has already been corrected by

subtracting |180− δ|. It now includes both the relative im-
age rotation δ from SAR1 to SAR2 and the actual rotation

of the feature itself. The introduced algorithm also provides

the image rotation δ by projecting the left corners of SAR2
onto SAR1 and calculating the angle between the left edges

of SAR1 and SAR2. The actual rotation of the features can

easily be obtained by subtracting δ from α.
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(IV) Pattern matching

The estimated drift field derived from feature tracking pro-

vides values for x2, y2 and α at any location on SAR1. The

representativeness of this estimate however, depends on the

distance d to the closest feature-tracking vector. Therefore,

small- to medium-scale adjustments of the estimates are nec-

essary, depending on the distance d (NB The representative-

ness also depends on the variability of the surrounding vec-

tors, but for the sake of computational efficiency, we only

consider the distance d as representativeness measure). We

apply pattern matching at the chosen points of interest to ad-

just the drift and rotation estimate at these specific locations.

The used pattern-matching approach is based on the max-

imisation of the normalised cross-correlation coefficient.

Considering a small template t1 around the point of inter-

est from SAR1 with size t1s× t1s and a larger template t2
around the location x2, y2 (defined by the corresponding first

guess) from SAR2 with size t2s× t2s, the normalised cross-

correlation matrix NCC is defined as (Hollands, 2012):

NCC(x,y) =

∑
x′,y′

(
t ′1(x′,y′)t ′2(x + x′,y + y′)

)
√√√√ ∑

x′,y′

(
t ′1(x′,y′)2

∑
x′,y′

t ′2(x + x′,y + y′)
)2 (9)

t ′1(x′,y′) = t1(x
′,y′) − 1

t21s

∑
x′′,y′′

t1(x
′′,y′′) (10)

t ′2(x + x′,y + y′) = t2(x + x′,y + y′) − 1

t21s∑
x′′,y′′

t2(x + x′′,y + y′′) (11)

with t1(x
′, y′) and t2(x

′, y′) representing the value of t1
and t2 at location x′, y′. The summations are calculated over
the size of the smaller template, i.e. x′, y′, x′′ and y′′ go
from 1 to t1s. Template t1 is moved with step size 1 pixel over

template t2 both in the horizontal (x) and vertical (y) direc-

tion and the cross-correlation values for each step are stored

in the matrix NCC with size (1+ t2s− t1s)× (1+ t2s− t1s).

The highest value in the matrix NCC, i.e. the maximum nor-
malised cross-correlation value MCC, represents the location

of the best match and the corresponding location adjustment

is given by dx and dy.(
1+ t2s− t1s

2
+ dx,

1+ t2s− t1s

2
+ dy

)
= argmax

x,y (NCC(x,y)) (12)

To restrict the search area t2s to a circle, we set all values

of NCC that are further than t2s/2 away from the centre po-

sition to zero. This limits the distance from the first guess to

a constant value, rather than to an arbitrary value depending

on the looking angle of the satellite. To account for rotation

adjustment, the matrix NCC is calculated several times: tem-
plate t1 is rotated around the initially estimated rotation α

from α − β to α + β with step size �β. The angle β is the

maximum additional rotation and therefore represents the ro-

tation restriction. The NCC matrix with the highest cross-

correlation value MCC is returned.

To illustrate the pattern-matching process, an example

taken from image pair Fram Strait is shown in Fig. 7.

The described process demands the specification of four

parameters: t1s, t2s, β and �β.

The size of the small template t1s× t1s defines the consid-

ered area that is tracked from one image to the next and hence

affects the resolution of the resulting drift product. Sea ice

drift might be different on different resolution scales. This

is particularly an issue in the case of rotation. The feature-

tracking vectors provide the first guess and this vector field

should represent the same drift resolution as considered by

the pattern-matching step. In order to be consistent with the

resolution of the feature-tracking step and achieve our goal of

a sea ice drift product with a spatial scaling of less than 5 km,

we use the size of the feature-tracking patch of the pyramid

level with the highest resolution to define the size of t1. That

means we use t1s= 34 pixels (2.7 km).
The size of the larger template t2s× t2s restricts the search

area on SAR2, i.e. to what extent the first guess can be ad-

justed geographically, and the angle β restricts the rotation

adjustment of the first guess α. The three parameters t2s, β

and �β have a strong influence on the computational effi-

ciency of the drift algorithm, meaning that an increase of t2s,

β and a decrease of �β increase the computational effort of

the pattern-matching step. Based on the visual interpretation

of several representative image pairs, we found �β = 3◦ to
be a good compromise between the matching performance

and computational efficiency.

Since the representativeness of the first guess decreases

with distance d to the closest feature-tracking vector (an ex-

ample to illustrate the distribution of d is shown Fig. 8), the

search restrictions t2s and β should increase with d. Based

on the performed search restriction evaluation (Sect. 4), we

found the following functions to represent useful restrictions

for our area and time period of interest.

t2s(d) = t1s+ 2d dmin ≤ d ≤ dmax d ∈ N (13)

β(d) =
{
9 if d < dmax

12 if d ≥ dmax
(14)

The values for dmin, dmax, β and �β can easily be varied

in the algorithm to adjust, for example, for different areas,

drift conditions or a different compromise between matching

performance and computational efficiency.

(V) Final drift product

In the last step, the small- to medium-scale displacement ad-

justments from pattern matching are added to the estimated
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Figure 7. Pattern matching using initial drift estimate from feature tracking: The small template t1 (a) around the point of interest on SAR1
is rotated from α − β to α + β and matched with the large template t2 (b) from SAR2, which has its centre at the estimated end position x2,

y2. The right contour plot shows the normalised cross-correlation matrix NCC of the rotation β∗ that provided the highest maximum cross-
correlation coefficient MCC. The estimated end position x2, y2 of this example has to be adjusted by dx = −21 pixels, dy = 32 pixels to fit
with the location of MCC= 0.71. Rotation adjustment β∗ was found got be 3◦. NB x and y axes represent pixel coordinates.

Figure 8. Example to illustrate the distribution of distance d to the

closest feature-tracking vector using image pair Fram Strait in HV

polarisation. Values outside the range dmin≤ d ≤ dmax are set to

dmin= 10 and dmax= 100. The points with value dmin represent

the start positions x1f, y1f of the feature-tracking vectors on the co-

ordinate system x1, y1 of SAR1. The figure depicts the matrix that

the algorithm considers for the distribution of d.

first guess derived from feature tracking. Using buoy com-

parison, we found that the probability for large displace-

ment errors decreases with increasing MCC value (Sect. 4).

Therefore, vectors that have a MCC value below the thresh-

old MCCmin are removed. We found MCCmin= 0.4 to be
a good filter value, but this value can easily be adjusted in

the algorithm depending on the sought compromise between

number of vectors and error probability. The algorithm re-

turns the final drift vectors in longitude, latitude, the corre-

sponding first guess rotation α and the rotation adjustment β

in degrees and the maximum cross-correlation value MCC.

An example for the final product is depicted with yellow-to-

red-coloured vectors in Fig. 4. The colour scale refers to the

MCC value, indicating the probability of an erroneous vector.

3.3 Comparison with buoy data

Sentinel-1 image pairs have been selected automatically ac-

cording to the position and timing of the GPS buoy data

from the N-ICE2015 expedition. Each pair yielded more than

300 drift vectors when applying the feature-tracking algo-

rithm from Section 3.2 and had a time difference between the

two acquisitions of less than 3 days. Drift vectors have been

calculated with the presented algorithm starting at the buoy

GPS position with the least time difference to the acquisition

of the first satellite image. The distance D between the cal-

culated end position on the second image and the buoy GPS

position with the least time difference to the second satellite

acquisition has been calculated using the following equation:

D =
√

(u − U)2+ (v − V )2, (15)

where u and v represent eastward and northward drift com-

ponents of the displacement vector derived by the algorithm,

and U and V are the corresponding drift components of the

buoy.

4 Results

4.1 Search restriction evaluation

To find suitable values for restricting the size of the search

window t2s and the rotation range defined by β, we calcu-

lated drift vectors, which can be compared to the considered

GPS buoy data set, using restrictions that are computationally

more demanding than we anticipate for the recommended

setting, i.e. t2s= 434 pixels and β = 18◦. These values cor-
respond to a possible pattern-matching adjustment of up to

200 pixels (16 km) and 18◦ in any direction independent of
the distance d to the closest feature-tracking vector.

Based on an automatic search, we found 244 matching

Sentinel-1 image pairs (consisting of 111 images) that al-
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Figure 9. Considered buoy locations from the N-ICE2015 expedition that were used for comparison with algorithm results. Green and blue
colours indicate start locations (on SAR1) to which the algorithm provided vectors with a MCC value above and below 0.4 using (a) HV and
(b) HH polarisation.

lowed for comparison with 711 buoy vectors (buoy locations

are shown in Fig. 9). The distance D (Eq. 15) between the

buoy location at the time of the second image SAR2 and the

corresponding algorithm result represents the error estimate

for one vector pair. To identify algorithm results that are more

likely erroneous, vector pairs with a value D above 1000m

are marked with red dots in Figs. 10 and 11. Vector pairs with

D < 1000m are plotted with black dots.

Figures 10 and 11 show the resulting pattern-matching ad-

justment of location (dx, dy) and rotation (dβ) using the

computationally demanding restrictions. The values are plot-

ted against distance d to the next feature tracking vector in

order to identify the dependence of the parameters on d. The

blue lines in Figs. 10 and 11 indicate the recommended re-

strictions. This represents a compromise between computa-

tional efficiency and allowing the algorithm to adjust the first

guess as much as needed for our time period and area of in-

terest. The corresponding functions for t2s(d) and β(d) are

given in Eqs. (13) and (14) and the recommended boundary

values for distance d are dmin= 10 and dmax= 100.
4.2 Performance assessment

Using the recommended search restrictions from above, the

algorithm has been compared to the N-ICE2015 GPS buoy

data set (Fig. 9) to assess the potential performance after find-

ing suitable search restrictions for the area and time period

of interest. The automatic search provided 246 image pairs

(consisting of 111 images) and 746 vectors for comparison

for the considered time period (15 January to 22 April) and

area (80.5 to 83.5◦ N and 12 to 27◦ E). NB This is a higher
number of vectors than found for the evaluation of the search

restrictions, since the used search windows t2 are smaller and

vectors closer to the SAR edge may be included.

The results of the conducted performance assessment

are shown in Fig. 12. We found that the probability for a

large D value (representative for the error) decreases with

increasing maximum cross-correlation value MCC. There-

fore we suggest excluding matches with a MCC value be-

low a certain threshold MCCmin. This option is embedded

into the algorithm, but can easily be adjusted or turned

off by setting MCCmin= 0. Based on the findings shown
in Fig. 12, we recommend a cross-correlation coefficient

threshold MCCmin= 0.4 for our time period and area of in-
terest. Using the suggested threshold reduces the number of

vector pairs from 746 to 588 for the HV channel and to 478

for the HH channel.

The conducted performance assessment also reveals a log-

arithmic normal distribution of the distance D (Eq. 15) that

can be expressed by the following probability density func-

tion (solid red line in Fig. 12):

lnN(D;μ,σ) = 1

σD
√
2π

e
− (lnD−μ)2

2σ2 , (16)

with μ and σ being the mean and standard deviation of the

variable’s natural logarithm. We found the mean and vari-

ance of the distribution lnN to be μ = 5.866 and σ 2= 1.602
for HV polarisation and μ = 6.284 and σ 2= 2.731 for HH
polarisation (solid red lines in Fig. 12). The medians of the

logarithmic normal distribution are eμ = 352.9m for HV po-
larisation and eμ = 535.7m for HH polarisation (dashed red
lines in Fig. 12).

4.3 Recommended parameter setting

Based on the restriction evaluation, our experience with the

algorithm behaviour, and considering a good compromise be-

tween computational efficiency and high quality of the result-

ing vector field, we recommend the parameter setting shown

in Table 1 for our area and time period of interest. The corre-

sponding recommended values for t2s(d) and β(d) are given

in Eqs. (13) and (14).
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(a)

(b)

Figure 10. Pattern-matching location adjustment dx and dy in x and y direction vs. distance d to closest feature-tracking vector using

(a) HV and (b) HH polarisation. D represents the difference between buoy GPS position and algorithm result. The blue lines indicate the

recommended setting for t2s (Eq. 13) with dmin= 10 and dmax= 100.

Figure 11. Pattern-matching rotation adjustment dβ vs. distance d to closest feature-tracking vector using (a) HV and (b) HH polarisation.
D represents the difference between buoy GPS position and algorithm result. The blue lines indicate the recommended setting for β (Eq. 14)

with dmin= 10 and dmax= 100.

4.4 Computational efficiency

The processing time depends on the parameter setting and

the chosen vector distribution. Using the recommended pa-

rameter setting from Table 1 allows for high-resolution sea

ice drift retrieval from a Sentinel-1 image pair within a few

minutes. Figure 4 depicts calculated ice drift vectors for the

image pair Fram Strait on a grid with 4 km (50 pixels) spac-
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Figure 12. Calculated ice drift using recommended search restrictions compared to buoy GPS data using (a–c) HV and (d–f) HH polar-
isation. Light grey represents vectors with maximum cross-correlation values MCC< 0.4 and results after using the suggested threshold

MCCmin= 0.4 are shown in black. (a, d) MCC values against distance D (Eq. 15) between algorithm and buoy end position. The blue line

indicates the recommended setting for MCCmin= 0.4. (b, e) Logarithmic histogram of distance D with 100 bins between 10 and 105 m

including two logarithmic normal distributions that were fitted to all results (grey) and to the filtered results with MCC> 0.4 (solid red line).

(c, f) Comparison of drift distance derived from the algorithm against buoy displacement for the filtered results with MCC> 0.4.

Table 1. Recommended parameter setting for sea ice drift retrieval from Sentinel-1 using the presented algorithm.

Parameter Meaning Recommended setting

[σ 0min, σ 0max] (HH) Brightness boundaries for HH channel [−25, −10.97 dB]
[σ 0min, σ 0max] (HV) Brightness boundaries for HV channel [−32.5, −18.86 dB]
t1s Size of template t1 34 pixels (2.7 km)

[dmin, dmax] Boundaries for distance d [10, 100 pixels]
MCCmin Threshold for cross-correlation 0.4

�β Rotation angle increment 3◦

ing. The corresponding processing times are shown in Ta-

ble 2. The calculations have been done using a MacBook Pro

from early 2013 with a 2.7GHz Intel Core i7 processor and

8GB 1600MHz DDR3 memory. The total processing time

for 4725 vectors with a normalised cross-correlation value

above 0.4, is about 4min. This can be considered a represen-

tative value for an image pair with large overlap, good cov-

erage with feature-tracking vectors and 4 km grid spacing.

The initial process in Table 2 “Create Nansat objects from

Sentinel-1 image pair and read matrixes” takes the same

amount of computational effort for all image pairs consist-

ing of Sentinel-1 images with 400× 400 km coverage.
The process (I) feature tracking depends on the setting of

the feature-tracking algorithm and varies strongly with the

chosen number of features. Using the recommended setting

from Muckenhuber et al. (2016), which includes the number

of features to be 100 000, the presented computational effort

can be considered representative for all image pairs, inde-

pendent of chosen points of interest and overlap of the SAR

scenes.
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Table 2. Processing time for sea ice drift retrieval from image pair Fram Strait on a grid with 4 km (50 pixels) spacing using HV polarisation
(Fig. 4). Representative for an image with large overlap and good coverage with feature-tracking vectors.

Process Time [s]
Create Nansat objects from Sentinel-1 image pair and read matrixes 70

(I) Feature tracking 66

(II)–(V) Pattern matching and combination 107∑
Sea ice drift retrieval 243

The process (IV) pattern matching, however, depends on

the considered image pair and the chosen drift resolution.

The computational effort is proportional to the number of

chosen points of interest. Given a evenly distributed grid

of points of interest, the computational effort increases with

overlapping area of the SAR scenes, since pattern-matching

adjustments are only calculated in the overlapping area. The

effort potentially decreases with a higher number of well-

distributed feature-tracking vectors, since the size of the

search windows t2 (and slightly the range of the angle β)

increases with distance d to the closest feature-tracking vec-

tor.

5 Discussion and outlook

To estimate the potential performance of the introduced al-

gorithm for given image pairs, given ice conditions, given

region and given time, we compared drift results from

246 Sentinel-1 image pairs with corresponding GPS posi-

tions from the N-ICE2015 buoy data set. We found a loga-

rithmic error distribution with a median at 352.9m for HV

and 535.7m for HH (Fig. 12). The derived error values rep-

resent a combination of the following error sources:

– Timing: buoy GPS data were collected every 1–3 h and
the timing does not necessarily match the satellite ac-

quisition time.

– Resolution: the algorithm returns the drift of a pattern
(recommended size= 34 pixels; see Table 1), whereas
the buoy measures the drift at a single location.

– Conditions: the ice conditions around the buoy are not
known well enough to exclude the possibility that the

buoy is floating in a lead. In this case, the buoy trajec-

tory could represent a drift along the lead rather then the

drift of the surrounding sea ice.

– Actual error of the algorithm.

A main advantage of the combined algorithm compared to

simple feature tracking is the user-defined positioning of the

drift vectors. The current algorithm set-up allows the user to

choose whether the drift vectors should be positioned at cer-

tain points of interest or on a regular grid with adjustable

spacing. Constricting the pattern-matching process to the

area of interest minimises the computational effort accord-

ing to the individual needs.

The recommended parameters shown in Table 1 are not

meant as a fixed setting, but should rather act as guidelines

to estimate the expected results and the corresponding com-

putational effort. The parameters can easily be varied in the

algorithm set-up and should be chosen according to avail-

ability of computational power, required resolution, area of

interest and expected ice conditions (e.g. strong rotation).

The presented combination of feature tracking and pattern

matching can be applied to any other application that aims to

derive displacement vectors from two consecutive images in

a computationally efficient way. The only restriction is that

images need to depict edges that can be recognised as key-

points for the feature-tracking algorithm, and the conversion

into intensity values i (Eq. 2) needs to be adjusted according

to the image type.

The remote sensing group at NERSC is currently develop-

ing a new preprocessing step to remove thermal noise on HV

images over the ocean and sea ice. First tests have shown a

significant improvement of the sea ice drift results using this

preprocessing step before applying the presented algorithm.

This is ongoing work and will be included in a future version

of the algorithm.

The European Space Agency is also in the process of im-

proving their thermal noise removal for Sentinel-1 imagery.

Noise removal in range direction is driven by a function that

takes measured noise power into account. Until now, noise

measurements are taken at the start of each data acquisi-

tion, i.e. every 10–20min, and a linear interpolation is per-

formed to provide noise values every 3 s. The distribution of

noise measurements showed a bimodal shape and it was re-

cently discovered that lower values are related to noise over

ocean while higher values are related to noise over land. This

means that Sentinel-1 is able to sense the difference of the

earth surface brightness temperature similarly to a passive

radiometer. When the data acquisition includes a transition

from ocean to land or vice versa, the linear interpolation fails

to track the noise variation. The successors of Sentinel-1A/B

are planned to include more frequent noise measurements.

Until then, ESA wants to use the 8–10 echoes after the burst

that is recorded while the transmitted pulse is still travelling

and the instrument is measuring the noise. This will provide
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noise measurements every 0.9 s and allows the noise varia-

tions to be tracked in more detail. In addition, ESA is plan-

ning to introduce a change in the data format during 2017

that shall remove the noise shaping in azimuth. These efforts

are expected to improve the performance of the presented al-

gorithm significantly (N. Miranda, personal communication,

January 2017).

Having a computationally efficient algorithm with ad-

justable vector positioning allows not only the provision of

near-real-time operational drift data, but also the investiga-

tion of sea ice drift over large areas and long time peri-

ods. Our next step is to embed the algorithm into a super-

computing facility to further test the performance in differ-

ent regions, time periods and ice conditions and evaluate and

combine the results of different polarisation modes. The goal

is to deliver large ice drift data sets and open-source opera-

tional sea ice drift products with a spatial resolution of less

than 5 km.

This work is linked to the question of how to combine the

different timings of the individual image pairs in a most use-

ful way. Having more frequent satellite acquisitions, as we

get with the Sentinel-1 satellite constellation, enables to de-

rive displacements for shorter time gaps and the calculated

vectors will reveal more details, e.g. rotational motion due

to tides. As part of a scientific cruise with KV-Svalbard in

July 2016, we deployed three GPS trackers on loose ice floes

and pack-ice in Fram Strait. The trackers send their position

every 5–30min to deliver drift information with high tem-

poral resolution. These efforts shall help us to gain a better

understanding of short-term drift variability and by compar-

ison with calculated sea ice drift, we will investigate how

displacement vectors from subsequent satellite images relate

to sea ice displacements with higher temporal resolution.

The focus of this paper in terms of polarisation was put on

the HV channel, since this polarisation provides on average

four times more feature-tracking vectors (using our feature-

tracking approach) than HH and therefore delivers a finer

initial drift for the first guess. We found our area of inter-

est covered with HV images, but other areas in the Arctic

and Antarctic are currently only monitored in HH polarisa-

tion. Considering the four representative feature-tracking im-

age pairs from Muckenhuber et al. (2016), the relatively bet-

ter HH polarisation performance (i.e. most vectors from HH,

while at the same time fewest vectors fromHV) was provided

by the image pair that had the least time difference, i.e. 8 h

compared to 31, 33 and 48 h. Therefore, we assume that the

HV polarisation provides more corner features that are better

preserved over time. And more consistent features could po-

tentially also favour the performance of the pattern-matching

step, but this is only an assumption and has not been tested

yet. Another argument is that the presented feature-tracking

approach identifies and matches corners, which represent lin-

ear features. The linear features on HH images are more sen-

sitive to changes in incidence angle, orbit and ice conditions

than the linear features on HV images. This could explain

the better feature-tracking performance of the HV channel.

However, pattern matching is less affected by changing lin-

ear features and more sensitive to areal pattern changes. This

could potentially mean that the HH channel performs bet-

ter than HV when it comes to pattern matching. However, at

this point, these are just assumptions and will be addressed

in more detail in our future work.

Utilising the advantage of dual polarisation (HH+HV) is
certainly possible with the presented algorithm, but increases

the computational effort. A simple approach is to combine

the feature tracking vectors derived from HH and HV and

produce a combined first guess. Pattern matching can be per-

formed based on this combined first guess for both HH and

HV individually and the results can be compared and even-

tually merged into a single drift product. Having two drift

estimates for the same position, from HH and HV pattern

matching respectively, would also allow us to disregard vec-

tors that disagree significantly. However, this option would

increase the computational effort by two, meaning that the

presented Fram Strait example would need about 8min pro-

cessing time.

After implementing the presented algorithm into a super-

computing facility, we aim to test and compare the respective

performances of HV, HH and HH+HV on large data sets to
identify the respective advantages.

The current setting of the feature-tracking algorithm ap-

plies a maximum drift filter of 0.5m s−1. We found this to be
a reasonable value for our time period and area of interest.

However, when considering extreme drift situations in Fram

Strait and a short time interval between image acquisitions,

this threshold should be adjusted.

As mentioned above, we deployed three GPS tracker in

Fram Strait and they recorded their positions with a temporal

resolution of 5–30min between 8 July and 9 September 2016

in an area covering 75 to 80◦ N and 4 to 14◦W. Considering
the displacements with 30min interval, we found velocities

above 0.5m s−1 on a few occasions, when the tidal motion
adds to an exceptionally fast ice drift.

The GPS data from the hovercraft expedition FRAM2014-

2015 (https://sabvabaa.nersc.no), which was collected with

a temporal resolution of 10 s between 31 August 2014 and

6 July 2015, did not reveal a single 30min interval dur-

ing which the hovercraft was moved by ice drift more

than 0.45m s−1. The hovercraft expedition started at 280 km
south from the North Pole towards the Siberian coast, crossed

the Arctic Ocean towards Greenland and was picked up in the

north-western part of Fram Strait.

In case the estimated drift from feature tracking reaches

velocities close to 0.5m s−1, the pattern-matching step might
add an additional degree of freedom of up to 8 km, which

could eventually lead to a higher drift result than 0.5m s−1,
depending on the time interval between the acquisitions. The

smaller the time difference, the larger the potentially added

velocity. In order to be consistent when combining the drift

information from several image pairs with different timings,
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one should apply a maximum drift filter on the final drift

product of the presented algorithm that has the same max-

imum velocity as the feature-tracking filter. The correspond-

ing function is implemented in the distributed open-source

algorithm. As an alternative, one could adjust the search win-

dow according to the time span. However, this would add ad-

ditional complexity to both the algorithm and the parameter

evaluation and needs more research on how the search win-

dow should be adjusted depending on the time span. For the

sake of computational efficiency, we suggest the simple ap-

proach of removing final drift vectors above the maximum

speed.

Data availability. The presented sea ice drift retrieval method
is based on open-source satellite data and software to ensure

free application and easy distribution. Sentinel-1 SAR images are

distributed by ESA for free within a few hours of acquisition

under https://scihub.esa.int/dhus/. The algorithm is programmed

in Python (source code: https://www.python.org) and makes use

of the open-source libraries Nansat, openCV and SciPy. Nansat

is a Python toolbox for processing 2-D satellite Earth obser-

vation data (source code: https://github.com/nansencenter/nansat).

OpenCV (Open Source Computer Vision) is a computer vision and

machine learning software library and can be downloaded under

http://opencv.org. SciPy (source code: https://www.scipy.org) is a

Python-based ecosystem of software for mathematics, science and

engineering. The presented sea ice drift algorithm, which includes

an application example, is distributed as open-source software as

supplement to this paper.

The Supplement related to this article is available online
at https://doi.org/10.5194/tc-11-1835-2017-supplement.

Competing interests. The authors declare that they have no conflict
of interest.

Author contributions. S Muckenhuber designed the algorithm and
the experiments, performed the data analysis and interpretation of

the results and wrote the paper. S Sandven critically revised the

work and gave important feedback for improvement. Stefan Muck-

enhuber and Stein Sandven approved the final version for publica-

tion.

Acknowledgements. This research was supported by the Norwe-
gian Research Council project IceMotion (High resolution sea-ice

motion from Synthetic Aperture Radar using pattern tracking and

Doppler shift, project number 239998/F50). We thank Polona Itkin

and Gunnar Spreen for providing us with the buoy GPS data that

were collected as part of the N-ICE2015 project with support

from the Norwegian Polar Institute’s Centre for Ice, Climate and

Ecosystems (ICE) and its partner institutes. The used satellite data

were provided by the European Space Agency. We thank Nuno

Miranda for information on ESA’s denoising efforts for Sentinel-1.

A special thanks to the anonymous reviewers for their comments

and valuable input that improved the paper.

Edited by: Lars Kaleschke

Reviewed by: three anonymous referees

References

Berg, A. and Eriksson, L. E. B.: Investigation of a Hybrid Algorithm

for Sea Ice Drift Measurements Using Synthetic Aperture Radar

Images, IEEE T. Geosci. Remote, 52, 5023–5033, 2014.

Calonder, M., Lepetit, V., Strecha, C., and Fua, P.: BRIEF: Binary

Robust Independent Elementary Features, CVLab, EPFL, Lau-

sanne, Switzerland, 2010.

ESA: Sentinel-1 ESA’s Radar Observatory Mission for GMES Op-

erational Services, ESA Communications, SP-1322/1, ESA, the

Netherlands, 2012.

Hollands, T.: Motion tracking of sea ice with SAR satellite data,

dissertaiton, Section 2: Estimation of motion from images, Uni-

versity Bremen, Bremen, 2012.

Hollands, T. and Dierking, W.: Performance of a multiscale cor-

relation algorithm for the estimation of sea-ice drift from SAR

images: initial results, Ann. Glaciol., 52, 311–317, 2011.

IPCC – Intergovernmental Panel on Climate Change: Climate

Change 2013: The Physical Science Basis, Fifth Assessment Re-

port AR5, Cambridge University Press, Cambridge, UK and New

York, NY, USA, 317–382, 323–335, 2013.

Komarov, A. S. and Barber, D. G.: Sea Ice Motion Track-

ing From Sequential Dual-Polarization RADARSAT-

2 Images, IEEE T. Geosci. Remote, 52, 121–136,

https://doi.org/10.1109/TGRS.2012.2236845, 2014.

Korosov, A. A., Hansen, W. M., Dagestad, F. K., Yamakawa,

A., Vines, A., and Riechert, A.: Nansat: a Scientist-Orientated

Python Package for Geospatial Data Processing, J. Open Res.

Softw., 4, e39, https://doi.org/10.5334/jors.120, 2016.

Kwok, R., Curlander, J. C., McConnell, R., and Pang, S.: An Ice

Motion Tracking System at the Alaska SAR Facility, IEEE J.

Ocean. Eng., 15, 44–54, 1990.

Muckenhuber, S., Korosov, A. A., and Sandven, S.: Open-

source feature-tracking algorithm for sea ice drift retrieval

from Sentinel-1 SAR imagery, The Cryosphere, 10, 913–925,

https://doi.org/10.5194/tc-10-913-2016, 2016.

Nansen, F.: The Oceanography of the North Polar Basin. Scientific

Results, Vol. 3, 9, Longman Green and Co., Kristinania, Norway,

1902.

Pedersen, L. T., Saldo, R., and Fenger-Nielsen, R.: Sentinel-

1 results: Sea ice operational monitoring, IEEE In-

ternational Geoscience and Remote Sensing Sympo-

sium (IGARSS), 26–31 July 2015, Milan, Italy, 2828–2831,

https://doi.org/10.1109/IGARSS.2015.7326403, 2015

Rampal, P., Weiss, J., Marsan, D., and Bourgoin, M.: Arc-

tic sea ice velocity field: General circulation and turbulent-

like fluctuations, J. Geophys. Res.-Oceans, 114, C10014,

https://doi.org/10.1029/2008JC005227, 2009a.

Rampal, P., Weiss, J., and Marsan, D.: Positive trend in

the mean speed and deformation rate of Arctic sea

www.the-cryosphere.net/11/1835/2017/ The Cryosphere, 11, 1835–1850, 2017



1850 S. Muckenhuber and S. Sandven: Open-source sea ice drift algorithm for Sentinel-1 SAR imagery

ice 1979–2007, J. Geophys. Res.-Oceans, 114, C5013,

https://doi.org/10.1029/2008JC005066, 2009b.

Rosten, E. and Drummond, T.: Machine learning for high-

speed corner detection, in: European Conference on Com-

puter Vision, 7–13 May 2006, Graz, Austria, 430–443,

https://doi.org/10.1007/11744023_34, 2006.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.: ORB: an

efficient alternative to SIFT or SURF, IEEE I. Conf. Comp.

Vis. (ICCV), 6–13 November 2011, Barcelona, Spain, 2564–

2571, https://doi.org/10.1109/ICCV.2011.6126544, 2011.

Spreen, G. and Itkin, P.: N-ICE2015 buoy data, Nor-

wegian Polar Institute, https://data.npolar.no/dataset/

6ed9a8ca-95b0-43be-bedf-8176bf56da80 (last access: 30 Au-

gust 2016), 2015.

Thomas, M., Geiger, C. A., and Kambhamettu, C.: High resolution

(400m) motion characterization of sea ice using ERS-1 SAR im-

agery, Cold Reg. Sci. Technol., 52, 207–223, 2008.

Thorndike, A. S. and Colony, R.: Sea ice motion in response to

geostrophic winds, J. Geophys. Res.-Oceans, 87, Nr. C8, 5845–

5852, https://doi.org/10.1029/JC087iC08p05845, 1982.

Widell, K., Østerhus, S., and Gammelsrød, T.: Sea ice velocity in

the Fram Strait monitored by moored instruments, Geophys. Res.

Lett., 30, 1982, https://doi.org/10.1029/2003GL018119, 2003.

The Cryosphere, 11, 1835–1850, 2017 www.the-cryosphere.net/11/1835/2017/



B I B L I O G R A P H Y

Arrigo, Kevin R., Thomas Mock, and Michael P. Lizotte
2010 “Sea Ice”, in ed. by David N. Thomas and Gerhard S. Dieckmann,

second edition, Wiley-Blackwell, chap. 8 Primary Producers and
Sea Ice.

Berg, Anders and Leif E. B. Eriksson
2014 “Investigation of a Hybrid Algorithm for Sea Ice Drift Measure-

ments Using Synthetic Aperture Radar Images”, IEEE Transactions
on Geoscience and Remote Sensing, 52, 8, pp. 5023-5033.

Bogdanov, Andrey V., Stein Sandven, Ola M. Johannessen, Vitaly Yu. Alexan-
drov, and Leonid P. Bobylev

2005 “Multisensor Approach to Automated Classification of Sea Ice Im-
age Data”, IEEE Transactions on Geoscience and Remote Sensing, 43, 7,
pp. 1448-1664.

Clausi, David A.
2002 “An analysis of co-occurrence texture statistics as a function of grey

level quantization”, Can. J. Remote Sensing, 28, 1, pp. 45-62.

Clausi, David A., Kai A. Qin, M S Chowdhury, P. Yu, and Philippe Maillard
2010 “MAGIC: MAp-Guided Ice Classification System”, Canadian Journal

of Remote Sensing, 36, S1, S13-S25, doi: 10.5589/m10-008, eprint:
http://dx.doi.org/10.5589/m10-008, http://dx.doi.org/10.
5589/m10-008.

Collins, Michael J. and William J. Emery
1988 “A computational method for estimating sea ice motion in sequen-

tial Seasat synthetic aperture radar imagery by matched filtering”,
Journal of Geophysical Research: Oceans, 93, C8, pp. 9241-9251, issn:
2156-2202, doi: 10.1029/JC093iC08p09241, http://dx.doi.org/
10.1029/JC093iC08p09241.

Curlander, John C., Benjamin Holt, and Hussey Kevin J.
1985 “Determination of sea ice motion using digital SAR imagery”, IEEE

Journal of Oceanic Engineering, 10, 4, pp. 358-367.

Daida, Jasonand, Ramin Samadani, and John F. Vesecky
1990 “Object-oriented Feature-tracking Algorithms For SAR Image Of

The Marginal Ice Zone”, IEEE Transactions on Geoscience and Remote
Sensing, 28, 4, pp. 573-589.

Dieckmann, Gerhard S. and Hartmut H. Hellmer
2010 “Sea Ice”, in ed. by David N. Thomas and Gerhard S. Dieckmann,

second edition, Wiley-Blackwell, chap. 1 The Importance of sea ice:
An Overview.

89



90 bibliography

Dokken, Sverre Thune, Peter Winsor, Thorsten Markus, Jan Askne, and
Göran Björk

2002 “{ERS} {SAR} characterization of coastal polynyas in the Arctic
and comparison with SSM/I and numerical model investigations”,
Remote Sensing of Environment, 80, 2, pp. 321-335, issn: 0034-4257,
doi: http://dx.doi.org/10.1016/S0034- 4257(01)00313- 3,
http://www.sciencedirect.com/science/article/pii/S0034425

701003133.

Eicken, Hajo, Rolf Gradinger, Maya Salganek, Kunio Shirasawa, Don Per-
ovich, and Leppäranta Matti

2009 (eds.), Field Techniques for Sea Ice Research, ISBN: 978-1-60223-059-0,
University of Alaska Press.

Fily, Michel and D.A. Rothrock
1987 “Sea Ice Tracking by Nested Correlations”, IEEE Transactions on

Geoscience and Remote Sensing, GE-25, 5, pp. 570-580.

Geldsetzer, Torsten and John J. Yackel
2009 “Sea ice type and open water discrimination using dual co-polarized

C-band SAR”, Canadian Journal of Remote Sensing, 35, 1, pp. 73-84,
doi: 10.5589/m08-075, eprint: http://dx.doi.org/10.5589/m08-
075, http://dx.doi.org/10.5589/m08-075.

Gill, Jagvijay P.S. and John J. Yackel
2012 “Evaluation of C-band SAR polarimetric parameters for discrimina-

tion of first-year sea ice types”, Canadian Journal of Remote Sensing,
38, 3, pp. 306-323, doi: 10.5589/m12-025, eprint: http://dx.doi.
org/10.5589/m12-025, http://dx.doi.org/10.5589/m12-025.

Haarpaintner, Jörg and Stian Solbø
2007 Automatic ice-ocean discrimination in SAR imagery, Tech. Rep. Norut

IT-rapport.

Hall, R.T. and D.A. Rothrock
1981 “Sea ice displacement from Seasat synthetic aperture radar”, Journal

of Geophysical Research, 86, C11, pp. 11078-11082.

Hollands, Thomas and Wolfgang Dierking
2011 “Performance of a multiscale correlation algorithm for the estima-

tion of sea-ice drift from SAR images: initial results”, Annals of
Glaciology, 52, 57, pp. 311-317.

Karvonen, Juha
2010 “Geoscience and Remote Sensing New Achievements”, in ed. by

Pasquale Imperatore and Daniele Riccio, InTech, chap. 8 C-Band
Sea Ice SAR Classification Based on Segmentwise Edge Features.

2012 “Operational SAR-based sea ice drift monitoring over the Baltic
Sea”, Ocean Science, 8, pp. 473-483.

Karvonen, Juha, Markku Similä, and Marko Mäkynen
2005 “Open Water Detection From Baltic Sea Ice Radarsat-1 SAR Im-

agery”, IEEE Geoscience and Remote Sensing Letters, 2, 3.



bibliography 91

Kloster, K., H. Flesche, and O.M. Johannessen
1992 “Ice motion from airborne SAR and satellite imagery”, Advances

in Space Research, 12, 7, pp. 149-153, issn: 0273-1177, doi: http:
//dx.doi.org/10.1016/0273- 1177(92)90210- O, http://www.
sciencedirect.com/science/article/pii/027311779290210O.

Komarov, Alexander S. and David G. Barber
2014 “Sea Ice Motion Tracking From Sequential Dual-Polarization RADARSAT-

2 Images”, IEEE Transactions on Geoscience and Remote Sensing, 52, 1,
pp. 121-136.

Kwok, R. and G. F. Cunningham
2002 “Seasonal ice area and volume production of the Arctic Ocean:

November 1996 through April 1997”, Journal of Geophysical Research:
Oceans, 107, C10, 8038, SHE 12-1-SHE 12-17, issn: 2156-2202, doi:
10.1029/2000JC000469, http://dx.doi.org/10.1029/2000JC0004
69.

Kwok, Ronald, John C. Curlander, Ross McConnell, and Shirley S. Pang
1990 “An ice-motion tracking system at the Alaska SAR facility”, IEEE

Journal of Oceanic Engineering, 15, 1, pp. 44-54.

Leigh, Steven, Zhijie Wang, and David A. Clausi
2014 “Automated Ice-Water Classification Using Dual Polarization SAR

Satellite Imagery”, IEEE Transactions on Geoscience and Remote Sens-
ing, 52, 9, pp. 5529-5539.

Leppäranta, Matti
2011 The Drift of Sea Ice, second edition, ISBN: 978-3-642-04682-7, Springer.

Maillard, Philippe, David A. Clausi, and H. Deng
2005 “Map-guided sea ice segmentation and classification using SAR

imagery and a MRF segmentation scheme”, IEEE Transactions on
Geoscience and Remote Sensing, 43, 12, pp. 2940-2951.

Mäkynen, Marko P., A. Terhikki Manninen, Markku H. Similä, Juha A.
Karvonen, and Martti T. Hallikainen

2002 “Incidence angle dependence of the statistical properties of C-band
HH-polarization backscattering signatures of the Baltic Sea ice”,
IEEE Transactions on Geoscience and Remote Sensing, 40, 12, pp. 2593-
2605.

McCandless, Samuel W. and Christopher R. Jackson
2004 “Synthetic Aperture Radar Marine User’s Manual”, in ed. by Christo-

pher R. Jackson and John R. Apel, U.S. department of commerce,
National Oceanic and Atmospheric Administration, chap. 1 Princi-
ples of Synthetic Aperture Radar, pp. 1-23.

McConnell, Ross, Ronald Kwok, John C. Curlander, Wolfgang Kober, and
Shirley S. Pang

1991 “Psi-S correlation and dynamic time warping: two methods for
tracking ice floes in SAR images”, IEEE Transactions on Geoscience
and Remote Sensing, 29, 6, pp. 1004-1012.

McPhee, Miles
2008 Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange

Processes, ISBN: 978-0-387-78334-5, Springer.



92 bibliography

Meier, Walter N. and Thorsten Markus
2015 “Remote Sensing of the Cryosphere”, in ed. by Marc Tedesco, John

Wiley and Sons, Ltd, chap. 11 Remote sensing of sea ice, pp. 248-272.

Moreira, Alberto, Pau Prats-Iraola, Marwan Younis, Gerhard Krieger, Irena
Hajnsek, and Konstantinos Papathanassiou

2013 “A Tutorial on Synthetic Aperture Radar”, IEEE Geoscience and remote
sensing magazine, doi: 10.1109/MGRS.2013.2248301 (Apr. 2013),
pp. 6-43.

Muckenhuber, S. and S. Sandven
2017 “Open-source sea ice drift algorithm for Sentinel-1 SAR imagery

using a combination of feature tracking and pattern matching”, The
Cryosphere, 11, 4 (Aug. 2017), pp. 1835-1850, doi: 10.5194/tc-11-
1835-2017, https://www.the-cryosphere.net/11/1835/2017/.

Muckenhuber, Stefan, Anton Andreevich Korosov, and Stein Sandven
2016 “Open-source feature-tracking algorithm for sea ice drift retrieval

from Sentinel-1 SAR imagery”, The Cryosphere, doi:10.5194/tc-10-
913-2016, 10, pp. 913-925.

Muckenhuber, Stefan, Frank Nilsen, Anton Andreevich Korosov, and Stein
Sandven

2016 “Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from
remote sensing data”, The Cryosphere, doi:10.5194/tc-10-149-2016,
10, pp. 149-158.

Nansen, Fridtjof
1902 “The Oceanography of the North Polar Basin. Scientific Results”, in

9, Longmans, Green and Company, vol. 3.

Ochilov, Shuhratchon and David A. Clausi
2012 “Operational SAR Sea-Ice Image Classification”, IEEE Transactions

on Geoscience and Remote Sensing, 50, 11, pp. 4397-4408.

Onstott, Robert G.
1992 “Microwave Remote Sensing of Sea Ice”, in ed. by Frank D. Carsey,

American Geophysical Union, chap. 5 SAR and Scatterometer Sig-
natures of Sea Ice, pp. 73-104.

Onstott, Robert G. and Robert A. Shuchman
2004 “Synthetic Aperture Radar Marine User’s Manual”, in ed. by Christo-

pher R. Jackson and John R. Apel, U.S. department of commerce,
National Oceanic and Atmospheric Administration, chap. 3 SAR
Measurements of Sea Ice, pp. 81-115.

Pedersen, Leif T., Roberto Saldo, and Rasmus Fenger-Nielsen
2015 “Sentinel-1 results: Sea ice operational monitoring”, in 2015 IEEE

International Geoscience and Remote Sensing Symposium (IGARSS),
doi=10.1109/IGARSS.2015.7326403, IEEE, pp. 2828-2831.

Petrich, Chris and Hajo Eicken
2010 “Sea Ice”, in ed. by David N. Thomas and Gerhard S. Dieckmann,

second edition, Wiley-Blackwell, chap. 2 Growth, Structure and
Properties of Sea Ice.



bibliography 93

Polyak, Leonid, Richard B. Alley, John T. Andrews, Julie Brigham-Grette,
Thomas M. Cronin, Dennis A. Darby, Arthur S. Dyke, Joan J. Fitz-
patrick, Svend Funder, Marika Holland, Anne E. Jennings, Gifford
H. Miller, Matt O’Regan, James Savelle, Mark Serreze, Kristen St.
John, James W.C. White, and Eric Wolff

2010 “History of sea ice in the Arctic”, Quaternary Science Reviews, 29,
15–16, Special Theme: Arctic Palaeoclimate Synthesis (PP. 1674-
1790), pp. 1757-1778, issn: 0277-3791, doi: http://dx.doi.org/
10.1016/j.quascirev.2010.02.010, http://www.sciencedirect.
com/science/article/pii/S0277379110000429.

Sandven, Stein, Vitaly Y. Alexandrov, Natalia Zakhvatkina, and Mohammed
Babiker

2012 “Sea ice classification using RADARSAT-2 Dual Polarisation data”,
SeaSAR 2012, the 4th International Workshop on Advances in SAR
Oceanography, Tromso, Norway, 18-22 June 2012.

Sandven, Stein and Ola M. Johannesen
2006 “Manual of Remote Sensing: Remote Sensing of the Marine Envi-

ronment”, in ed. by James F.R. Gower, 3rd, The American Society
for Photogrammetry and Remote Sensing, vol. 6, chap. 8 Sea Ice
Monitoring by Remote Sensing, pp. 241-283.

Sandven, Stein, Ola M. Johannessen, Martin W. Miles, Lasse H. Pettersson,
and Kjell Kloster

1999 “Barents Sea seasonal ice zone features and processes from ERS
1 synthetic aperture radar: Seasonal Ice Zone Experiment 1992”,
Journal of Geophysical Research: Oceans, 104, C7, pp. 15843-15857,
issn: 2156-2202, doi: 10.1029/1998JC900050, http://dx.doi.
org/10.1029/1998JC900050.

Shokr, Mohammed
2009 “Compilation of a radar backscatter database of sea ice types and

open water using operational analysis of heterogeneous ice regimes”,
Can. J. Remote Sensing, 35, 4, pp. 369-384.

Shokr, Mohammed E.
1991 “Evaluation of second-order texture parameters for sea ice classifi-

cation from radar images”, Journal of Geophysical Research: Oceans,
96, C6, pp. 10625-10640, issn: 2156-2202, doi: 10.1029/91JC00693,
http://dx.doi.org/10.1029/91JC00693.

Shokr, Mohammed and Nirmal Sinha
2015 Sea Ice: Physics and Remote Sensing, Geophysical Monograph 209, ISBN:

978-1-119-02789-8, American Geophysical Union, John Wiley and
Sons.

Showman, Gregory A.
2010 “Principles of Modern Radar”, in ed. by Mark A. Richards, James A.

Scheer, and William A. Holm, Scitech Publishing, vol. Volume I -
Basic Principles, chap. 21. An Overview of Radar Imaging.

Soh, Leen-Kiat and Costas Tsatsoulis
1999 “Texture analysis of SAR sea ice imagery using gray level co-

occurrence matrices”, IEEE Transactions on Geoscience and Remote
Sensing, 37, 2, pp. 780-795.



94 bibliography

Soh, Leen-Kiat, Costas Tsatsoulis, Denise Gineris, and Cheryl Bertoia
2004 “ARKTOS: An Intelligent System for SAR Sea Ice Image Classifi-

cation”, IEEE Transactions on Geoscience and Remote Sensing, 42, 1,
pp. 229-248.

Stroeve, Julienne and Walt Meier
2017 “Sea Ice Trends and Climatologies from SMMR and SSM/I-SSMIS,

Version 2.” Boulder, Colorado USA. NASA National Snow and Ice Data
Center Distributed Active Archive Center. doi: http://dx.doi.org/10.50
67/EYICLBOAAJOU.

Sullivan, Roger
2008 “Radar Handbook”, in ed. by Merrill Skolnik, Third Edition, Mc-

Graw Hill, chap. 17. Synthetic Aperture Radar.

Sun, Y.
1996 “Automatic ice motion retrieval from ERS-1 SAR images using

the optical flow method”, International Journal of Remote Sensing,
17, 11, pp. 2059-2087, doi: 10.1080/01431169608948759, eprint:
http://dx.doi.org/10.1080/01431169608948759, http://dx.doi.
org/10.1080/01431169608948759.

Thomas, M., C.A. Geiger, and C. Kambhamettu
2008 “High resolution (400 m) motion characterization of sea ice using

ERS-1 {SAR} imagery”, Cold Regions Science and Technology, 52, 2,
Research in Cryospheric Science and Engineering, pp. 207-223, issn:
0165-232X, doi: http://dx.doi.org/10.1016/j.coldregions.

2007.06.006, http://www.sciencedirect.com/science/article/
pii/S0165232X07001449.

Tomiyasu, Kiyo
1978 “Tutorial Review of Synthetic-Aperture Radar (SAR) with Applica-

tions to Imaging of the Ocean Surface”, Proceedings of the IEEE, 66, 5
(May 1978).

Tynan, Cynthia T., David G. Ainley, and Ian Stirling
2010 “Sea Ice”, in ed. by David N. Thomas and Gerhard S. Dieckmann,

second edition, Wiley-Blackwell, chap. 11 Sea Ice: A Critical Habit
for Polar Marine Mammals and Birds.

Ulaby, Fawwaz T., David G. Long, William Blackwell, Charles Elachi, Adrian
Fung, Chris Ruf, Kamal Sarabandi, Jakob van Zyl, and Howard
Zebker

2014 Microwave Radar and Radiometric Remote Sensing, Ann Arbor, Univer-
sity of Michigan Press.

Ulaby, Fawwaz T., Richard K. Moore, and Adrian K. Fung
1986 Microwave remote sensing: active and passive, Volume III: from theory to

applications, Artech House Inc.

Vesecky, John F., Ramin Samadani, Martha P. Smith, Jason M. Daida, and
Ronald N. Bracewell

1988 “Observation of sea-ice dynamics using synthetic aperture radar
images: automated analysis”, IEEE Transactions on Geoscience and
Remote Sensing, 26, 1, pp. 38-48.



bibliography 95

Warren, Stephen G., Ignatius G. Rigor, Norbert Untersteiner, Vladimir F.
Radionov, Nikolay N. Bryazgin, Yevgeniy I. Aleksandrov, and Roger
Colony

1999 “Snow Depth on Arctic Sea Ice”, Journal of Climate, 12, 1814-1829.

Younis, Marwan
2015 “Synthetic Aperture Radar (SAR): Principles and Applications”

(Sept. 2015), presentation at 6th ESA advanced trainging course on
land remote sensing in Bucharest Romania.

Yu, Peter, A. K. Qin, and David A. Clausi
2012 “Feature extraction of dual-pol SAR imagery for sea ice image

segmentation”, Canadian Journal of Remote Sensing, 38, 3, pp. 352-366,
doi: 10.5589/m12-028, eprint: http://dx.doi.org/10.5589/m12-
028, http://dx.doi.org/10.5589/m12-028.

Yu, Qiyao and David A. Clausi
2008 “IRGS: Image Segmentation Using Edge Penalties and Region Grow-

ing”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
30, 12, pp. 2126-2139.

Zakhvatkina, Natalia, Vitaly Y. Alexandrov, Ola M. Johannessen, Stein Sand-
ven, and Ivan Y. Frolov

2013 “Classification of Sea Ice Types in ENVISAT Synthetic Aperture
Radar Images”, IEEE Transactions on Geoscience and Remote Sensing,
51, 5, pp. 2587-2600.

Zakhvatkina, Natalia, Anton A. Korosov, Stefan Muckenhuber, Stein Sandven,
and Mohammed Babiker

2017 “Operational algorithm for ice–water classification on dual-polarized
RADARSAT-2 images”, The Cryosphere, 11, 1, pp. 33-46.




	Blank Page


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




