Integral Cryptanalysis

Vebjgrn Moen

November 21, 2002

blank page

Abstract

This master thesis looks at cryptanalysis of block ciphers, and specially integral
cryptanalysis. We show that Nyberg’s generalized Feistel networks[36] are vul-
nerable to integral cryptanalysis, and we present some attacks on these ciphers.
We also show that the generalized Feistel networks with parameters equal to the
parameters of the 128-bit key and block version of the AES, are more vulnerable
to integral cryptanalysis than the AES.

Keywords: cryptanalysis, block ciphers, integral, generalized Feistel net-
works, Rijndael, AES, MISTY, KASUMI

Acknowledgment

First of all I would like to thank my supervisor Lars R. Knudsen for introducing
me to the exciting world of cryptology and for always taking time to answer my
questions. I would also like to express my gratitude to Pal Berg at Sospita for
excellent comments and suggestions to this thesis, and to Havard Raddum for
helpful discussions.

Also thanks to Tor Helleseth and the coding theory and cryptography group
at the University of Bergen for financial support for Fast Software Encryption
and Eurocrypt, and Sospita for financial support for Norwegian Crypto Seminar.

Thanks to my family, especially Cecilie and Marie Bjgrk, for all support and
encouragement they have given me.

Vebjgrn Moen
Bergen, 26 April 2002

Contents

2.1

2.2

3.1

3.2

3.3
3.4
3.5

3.6

4.1
4.2

5.1
5.2
5.3
5.4

Introduction

Introduction to Cryptology

Cryptography
2.1.1 Design Principles oL
2.1.2 Block Ciphers.
Cryptanalysis
2.2.1 Classification of Attacks
2.2.2 Classification of Breaking Ciphers
2.2.3 Complexity of Attacks

Some Attacks on Block Ciphers

Differential Cryptanalysis
3.1.1 Some Definitions
3.1.2 Differentials
3.1.3 Principle of a General Attack
3.14 Complexity
Linear Cryptanalysis,
3.2.1 Imtroduction
3.2.2 Principle of a General Attack
3.2.3 Complexity of the Attack
Higher Order Differentials
Truncated Differentials
Interpolation Attack
3.5.1 Global and Instance Deduction
3.5.2 Key-recovery
Other Attacks

Resistance Against Differential Attacks

Some Results
Conclusion Of This Chapter

Integral Cryptanalysis of Block Ciphers

Introduction oo
Higher Order Integrals and Some Notations
Comparison to Other Attacks
The Square Attack
5.4.1 TheBasicAttack

CONTENTS

5.4.2 Extension by an Additional Round at the End
5.4.3 Extension by an Additional Round at the Beginning . . .
5.5 Attacks on Generalized Feistel Networks
5.6 Attackson MISTY,

6 New Integrals
6.1 Generalized Feistel Networks
6.1.1 First Order Integral
6.1.2 Second Order Integral
6.1.3 Even Higher Order Integrals
6.1.4 Implementation of the Attacks
6.2 KASUMI e
6.3 Conclusion

A Higher Order Derivatives
B MISTY

Implementations

C.1 Generalized Feistel Network
C.2 The Attack Using a 1. Order Integral
C.3 Integral Finder

30
32
33

37
37
37
41
43
44
44
45

49

50

Chapter 1

Introduction

Encryption, or using secret codes for private communication, dates back thou-
sands of years. How to protect communication and information by secret codes
is known as cryptography. An example of such encrypted communication is the
Roman Emperor Julius Caesar, who encoded messages to his generals to protect
the content against the possibility of interception. More recently, Alan Touring
led a group of British mathematicians who broke the German code, Enigma,
used in World War II for sending instructions to U-boats patrolling the Atlantic
Ocean. Governments still depend on secret codes, and much of the work that
have been done in this area were not and is not published.

While the first computers were owned by Governments and large corpora-
tions and had to be placed in specially built rooms, today’s personal computers
can fit into a hand. Smaller and cheaper computers and the development of
computer networks and the Internet have resulted in computers in almost ev-
ery home. This has increased the interest and need for secure communication.
In recent years, corporations and individuals have started to use encryption to
secure their electronic information and communication. Digital cellular tele-
phones, direct satellite television broadcast and electronic commerce over the
Internet, all depend on cryptographic measures to protect information. Soon,
nearly all electronic communication will be cryptographically secured.

It is only since the mid-seventies that cryptography has been an academic
field of research. In 1975, the National Bureau of Standards (NBS) proposed
a Data Encryption Standard (DES). What the Bureau published was an IBM
design with changes recommended by the National Security Agency (NSA),
including a shorter key length, reduced from 64 bits to 56 bits. In 1977, the
DES (with a 56-bit key) was issued as a Federal Information Processing Standard
(FIPS). Until 1991, when Biham and Shamir published the differential attack[6],
no attack faster than exhaustive search was known for the DES. The DES has
been and is still used in many systems.

Ever since the DES was published it has been criticized for too small key-size,
and in the end of the 1990s the National Institute of Standards and Technology
started a new process to select the block cipher that is going to be the standard
block cipher for commerce and US Government in the next 2 or 3 decades to
come. This standard is called the Advanced Encryption Standard (AES), and
much work has been done during the process of develop the new standard. New
attacks and design criteria have been found during this process. This was an

CHAPTER 1. INTRODUCTION 5

international and open competition, and the winner, a proposal from Belgium:
Rijndael [10], was selected in October 2000.

Several new attacks on block ciphers have been discovered during the work
to find a replacement for the DES, both previous to and during the AES process.
This thesis will consider one of these attack. This attack was formerly known as
the Square attack by Knudsen[9], then generalized by Knudsen and Wagner[23]
and called integral cryptanalysis. This is the best known attack on the AES at
the present time, and in this thesis it is investigated if the generalized Feistel
networks proposed by Kaisa Nyberg[36] have better resistance than the AES
against integral cryptanalysis.

The structure of the rest of this thesis is as follows: Chapter 2 gives some
definitions concerning cryptology, Chapter 3 looks at some previous attacks on
block ciphers. Chapter 4 gives a brief introduction to how a cipher can be
made resistant against differential and linear attacks. Chapter 5 provides the
basis for the integral attack, and gives some examples of (some reduced variants
of) ciphers that have been attacked with integral cryptanalysis. In Chapter 6
some new integrals and attacks are presented, and we draw some conclusions.
The main new results from this thesis are new integrals and attacks on the
generalized Feistel networks which show that this structure does not give any
advantage over the design of the AES.

Chapter 2

Introduction to Cryptology

The main idea in the development of cryptology is to make it possible for two
parties, traditionally called Alice and Bob, to have a secure communication
over an insecure channel where some enemy, often called Eve, can listen in
on the communication. The goal is that Eve should not learn anything about
the original message from what she sees on the line. Cryptology is a common
descriptor for cryptography and cryptanalysis. Cryptography is where we try to
make a message unreadable for anyone other than those who possess the right
“key”. Cryptanalysis is where we try to read an encrypted message, or to find
the secret key, without knowing the key in advance. Words like attack or break
a cryptosystem are common for cryptanalysis.

2.1 Cryptography

A cryptosystem is often referred to as a cipher, and the formal definition of a
cryptosystem can be stated as:

Definition 2.1.1 [/2] A cryptosystem is a five-tuple (P,C,K,E,D), where the
following conditions are satisfied:

1. P is a finite set of possible plaintexts
C is a finite set of possible ciphertexts

K, the key space, is a finite set of possible keys.

e e

For each K € K, there is an encryption rule ex € £ and a corresponding
decryption rule dx € D. Each ex : P — C and di : C — P are functions
such that dix (ex (x)) = x for every plaintext x € P.

A symmetric cryptosystem consists of a sender and a receiver who share a
secret called a key. When the sender, Alice, wants to send a message to Bob,
she encrypts the message, also called the plaintext, using some encryption al-
gorithm and a secret key agreed upon in advance. Alice sends the result, called
ciphertext, over an insecure channel to Bob. Bob decrypts the ciphertext with
the secret key using the some decryption algorithm. If Eve is listening to the
insecure channel, she will only see the ciphertext which to her is gibberish. This

CHAPTER 2. INTRODUCTION TO CRYPTOLOGY 7

FEve
Sender Encryption 1 Decryption Reciever

—_— —_— —_—
Alice plaintext FE(plaintext) ciphertext D(ciphertext) plaintext Bob

—_—
pr—
K Secure channel K

Figure 2.1: The secure communication between Alice and Bob, over an insecure
channel, where Eve is listening in.

situation is described in Figure 2.1. This kind of cryptosystem is in the litera-
ture referred to as a symmetric, one-key, private-key, conventional or secret-key
cryptosystem.

Another cryptosystem is the public-key cryptosystem, often called an asym-
metric cipher or a two-key cipher. In two-key ciphers each user has a public key
for encryption, so that anyone can encrypt, and one private key for decryption,
so that only the owner of the keys can decrypt. This feature simplifies the key
management, since there is no need to exchange a key over a secure channel.
The reason why these cryptosystems are not used for all encryption is that the
public key cryptosystems known today are slow compared to secret key systems.
This thesis will only consider symmetric key cryptosystems.

2.1.1 Design Principles

Diffusion and confusion are mentioned by Shannon [41] as two design princi-
ples. These principles are generally accepted, and Massey [28] interprets these
principles as follows.

Confusion “The ciphertext statistics should depend on the plaintext statistics
in a manner too complicated to be exploited by the cryptanalyst”

Diffusion “Each digit of the plaintext and each digit of the secret key should
influence many digits of the ciphertext”

In addition to these universal principles of how to design a cipher, Shannon also
discusses two more specific design principles.

1. Make the security of the system reducible to some known difficult problem.
2. Make the cipher secure against all known attacks.

Many public-key ciphers have security based on a well known problem, e.g.
RSA[39], where it is assumed that to break RSA it is necessary to factor a large
number. This principle is not used in the design of secret-key ciphers, for these
ciphers the second principle is the best known design principle today.

2.1.2 Block Ciphers

There are two kinds of secret key ciphers; stream ciphers and block ciphers. In
stream ciphers a long sequence of key bits are generated and exclusive or’ed
with the plaintext. In block ciphers the plaintext is divided into blocks of a
fixed length and encrypted into blocks of ciphertext using the same key. This
thesis will consider only block ciphers. The mathematical definition of a block
cipher is:

CHAPTER 2. INTRODUCTION TO CRYPTOLOGY 8

Definition 2.1.2 [38] An n-bit block cipher is a function E : V,,x K — V,, such
that for each key k € K, E(p, k) is an invertible mapping (encryption function
for k) from V,, to V,,, written Ex(P). The inverse mapping is the decryption
function, denoted Dy (C). C = Ej(P) denotes that ciphertext C' results from
plaintext P under k. The variable V,, is the space containing all the possible bit
strings of length n.

An n-bit block cipher with a fixed key is a permutation p : GF(2") —
GF(2™). It would require log2(2"!) = (n — 1.44)2™ bits to represent the key
such that all permutations p were possible, or roughly 2" times the number
of bits in a cipher block. With an ordinary block size, e.g. 64 bits, this is a
much too big number for practical use, therefore the key size in a practical block
cipher is much smaller, typically 128 bits or 256 bits.

A good encryption function must contain some non-linear component, and
this is often a substitution box or s-box. An s-box is defined as a mapping
GF(2™) — GF(2™), usually defined by a n x m lookup table.

Almost all block ciphers used today are iterated block ciphers. These ciphers
are based on iterating a function several times, each iteration is called a round.
A more formal definition of iterated block ciphers is given.

Definition 2.1.3 In an r-round iterated block cipher the ciphertezt is computed
by iteratively applying a round function g to the plaintext, s.t.

Ci+1 = g(C’i, Ki), 1= 1, ey T
where C; is the ciphertext after i rounds, and K; is the ith round key.

The round key is derived from the cipher key by a key schedule, which is an
algorithm that expands the master key or the cipher key. The cipher key is
usually between 40 and 256 bits for a block cipher, and for an r-round iterated
cipher this is expanded into r-round keys.

The round function is usually a combination of substitution and transposi-
tion. Substitution is when a block in the plaintext is substituted with another
block by some substitution rule. Transposition is to permute the blocks or char-
acters in the plaintext. In earlier ciphers substitution and transposition were
used on their own as a cipher, where each plaintext symbol was a block, but this
proved to be insecure because of the small block size. Most modern ciphers are
a combination of substitution and transposition, and are often called product
ciphers.

The Data Encryption Standard (DES) [34] has been the most widely used
iterated block cipher since it was published in 1977, but it is now replaced by the
Advanced Encryption Standard (AES) because of too small key and block size.
The DES can be seen as a special implementation of a Feistel cipher, named
after Horst Feistel [13], where the input to each round is divided into two halves,
as in the following definition.

Definition 2.1.4 A Feistel cipher with block size 2n and with r rounds is de-
fined as follows.
The round function is defined:

g: GF2)" x GF(2)" x GF(2)™ — GF(2)" x GF(2)"
9X,Y,Z2) = (Y,F(Y,Z)+X)

CHAPTER 2. INTRODUCTION TO CRYPTOLOGY 9

where F' can be any function teking two arguments of n bits and m bits respec-
tively and producing n bits. '+’ is a commutative group operation on the set of
n-bit blocks. We will assume that '+’ is the bitwise exclusive-or operation, if
not explicitly stated otherwise.

Given a plaintert P = (PL||P®) and r round keys K1, K, ..., K, the cipher-
text C = (CL||CF) is computed in r rounds. Set CF = PL and CFf = P and
compute fori=1,2, ... r

(CHICT) = (CELIF(Cy, Ki) + Cf 4

Set C; = (CL||CE) and C = CF and CT = CF. The round keys (K1, Ko, ..., K,.),
where K; € GF(2)™, are computed by a key schedule algorithm on input a mas-
ter key K.

The application of the Feistel structure guarantees that encryption and de-
cryption are similar processes, independent of the exact specification of the
so-called F-function. With the adoption of the Feistel structure, the design of
the F-function can concentrate completely on the desired propagation proper-
ties without restrictions imposed by the invertability. Because of the success of
the DES, many ciphers proposed in the two last decades are Feistel ciphers. A
special class of Feistel ciphers are the DES-like ciphers, named after DES.

Definition 2.1.5 A DES-like cipher is a Feistel cipher where the F' function is
defined as follows:

F(Cy K;) = [f(9(Ci) + Ki)
f:GF(2™) — GF(@2"),m>n
g: GF(2") — GF(2™), anaffine expansion mapping

There has also been proposed a generalized Feistel network described in [36],
more about this in Section 5.5. Many new ciphers have bijective components
only, which in Definition 2.1.5 would mean that m = n. This gives good distri-
bution of difference, which is preferable when constructing ciphers with provable
security against differential and linear attacks (see Chapter 4). Also, when a
cipher has only bijective components, we can easily construct the decryption al-
gorithm, since every bijective function has an inverse. A function f is bijective

if f(a) = f(b) = a=0.

2.2 Cryptanalysis

So why is it so important to do cryptanalysis? The goal in cryptology is to
create secure systems, where only the legitimate users should be able to learn
anything about the plaintext from the ciphertext. So why do we try to break the
cipher? It is because we want to try to make sure that to break the cipher is not
possible, or at least computational hard. By computational hard we mean that
it will take too much time or other resources to break the cipher. Only when we
have tried all thinkable attacks on the cipher, can we begin to trust the security
of the cipher. Even a very theoretical attack on a cipher, an attack that perhaps
is not possible to do in a practical way, but reduces the complexity of the cipher,
usually results in that the cipher will not be recommended for further use.

CHAPTER 2. INTRODUCTION TO CRYPTOLOGY 10

Preferably we would like to be able to give a proof of the security of a cipher,
but the problem with provable security for a block cipher is that if we assume
that it is possible to recognize the plaintext, then a block cipher is always totally
breakable in after observing some ciphertexts. Assume that the plaintext is not
random, e.g. English text encoded with ASCII characters. The secret key can
easily be found, simply by trying all possible keys one by one and check whether
the computed text is meaningful. It is possible to get meaningful text for more
than one key in this attack, and then we need more than one ciphertext block to
uniquely distinguish the correct key. This attack requires computation of about
2% encryptions, where k is the number of bit in the key. It is also possible to
precompute a table of encryptions of a fixed plaintext P under all possible keys
and sort and store the ciphertext. Thereafter the cipher is totally breakable if
we can obtain the ciphertext of a chosen plaintext. These attacks goes under
the name brute-force or exhaustive search attack.

This motivates the notion of computational security. The way to prevent
these trivial attacks is to choose a key big enough so that it is computational
impossible to do brute force attacks. This leads to a more practical definition
of a broken cipher, we say that a cipher is broken if it is possible to find (some
bits of the) key with less work than an exhaustive search for the key. So how
big must a key be to prevent brute force attacks? We have the following rule of
thumb:

Definition 2.2.1 (Moores Law) The computing power for a given cost is mul-
tiplied by four every 3 years.

The DES with a 56 bits key was broken in 22 hours in a distributed key search
on the Internet, and on Crypto2001 Jean-Jacques Quisquater broke 6 out of 8
DES-keys with 40 unknown bits on a small laptop during a 3 minutes rump-
session talk, using Hellman’s memory trade-off[15]. In the late 1990s, specialized
"DES Cracker" machines were built that could recover a 56-bits DES-key after
a few hours. In other words, by trying all possible key values, the hardware
could determine which key was used to encrypt a message. The AES has block
length 128 bits and three different key lengths 128, 196 and 256 bits, this is
assumed to be sufficient for the foreseeable future[27].

Breaking a cipher is not necessarily to find a practical way for an eavesdrop-
per to recover the plaintext from the ciphertext or to find the key. In academic
cryptology a cipher is said to be broken, if there has been found a weakness in
the cipher that can be exploited with less complexity than a checking all keys.
We would like to make the security of a cipher dependent only on the key, so
we make the following assumption.

Kerckhoffs’ Assumption ([18]) The enemy cryptanalysis knows all details
of the enciphering process and deciphering process except for the value of
the secret key.

This is in many cases a proper assumption to make, software can be reverse
engineered and tamper proof hardware can be opened and details compromised.
It is also possible that one of the designers of the cipher can be the attacker.
The most important aspect with this design principle is that it removes the
trust from the designers and place it solely on the cipher.

CHAPTER 2. INTRODUCTION TO CRYPTOLOGY 11

Other assumptions we can make are that the attacker has access to an en-
cryption oracle, which encrypts any given plaintexts, or perhaps only encrypts
some plaintexts, or decrypts ciphertexts. This motivates the following classifi-
cation of attacks.

2.2.1 Classification of Attacks

We can classify the possible attacks an attacker can do [42].

Ciphertext only attack The attacker possesses a set of intercepted cipher-
texts.

Known plaintext attack The attacker obtains a set of s plaintexts Py, P, ..., Ps
and the corresponding ciphertexts Cy, Co, ..., Cs. That is, the attacker
has no control over the pairs of plain- and ciphertexts available to him.

Chosen plaintext attack The attacker chooses a priori a set of s plaintexts
P, P, ..., P and obtains in some way the corresponding ciphertexts
Ci, Cy, ..., Cs. That is, he has a encryption oracle.

Adaptively chosen plaintext attack The attacker chooses a set of s plain-
texts Pj, Ps, ..., P, interactively as he obtains the corresponding cipher-
texts C1, Co, ..., Cs. That is, the attacker chooses P, obtains C, then
chooses P etc.

Chosen ciphertext attacks For symmetric ciphers these are similar to those
of chosen plaintext attack and adaptively chosen plaintext attack, where
the roles of plain- and ciphertexts are interchanged.

The weakest attack here is ciphertext only, which is also the most likely attack.
But there are situations where the other attacks are just as likely, e.g. encryption
with a smart card. Ideally the designer of a cipher should prove that the system
is secure against an adaptively chosen plaintext/ciphertext attack, then it would
be secure against the other types of attacks as well.

2.2.2 Classification of Breaking Ciphers
There are other ways to break a cipher than just finding the key.

Total Break An attacker finds the secret key K.

Global Deduction An attacker finds a formula functionally equivalent to E (+)
(or Dk()) without knowing the key K.

Instance (local) deduction An attacker finds the plaintext (ciphertext) of
an intercepted ciphertext (plaintext), which he did not obtain from the
legitimate sender.

Information deduction An attacker gains some information about key or
plaintexts from the ciphertexts, which he did not get directly from the
sender and which he did not have before the attack.

CHAPTER 2. INTRODUCTION TO CRYPTOLOGY 12

In the total break, also called key-recovery attack, the goal is to find the key.
The attacks in this thesis are distinguisher attacks. The distinguisher is some
information about the ciphertext after » rounds of a cipher, and it can be used
to attack r + 1-round of the cipher. We guess the last round key, or some bit of
it, and decrypt the ciphertext one round. Now we use our distinguisher to see
if our guess is correct. This may have to be repeated to uniquely distinguish
the right key. When the last round key is found, similar attacks to this can be
mounted on a cipher one round shorter.

2.2.3 Complexity of Attacks

It is natural to judge an attack on a cipher after how much effort goes into
a breaking it. Important factors in an attack are how much data we have to
gather before we can break the system, how long time an attack takes and how
large the storage requirements are.

Data complexity How many plaintext/ciphertext are needed as input in the
attack.

Processing complexity How long time does the attack take. Time in this
setting is measured in how many encryption/decryption that are needed.

Storage requirements How much memory is needed in the attack. Units are
measured in blocks of length n.

Trade-offs are often possible here. For example time-memory trade-off where
doing some calculations in advance and storing the results can lower the pro-
cessing requirements during the actual attack. One example of this is Hellman’s
time-memory trade-off attack[15], which is applicable to any block cipher. This
attack finds the secret k-bit key after 22*/3 encryptions using 2%/ words of
memory. The 22¥/3 words of memory are pre-computed, and takes time equiv-
alent to 2* encryptions.

Chapter 3

Some Attacks on Block
Ciphers

In this section we are going to look briefly at some of the well known cryptan-
alytic attacks on block ciphers.

3.1 Differential Cryptanalysis

Differential cryptanalysis was first published by Eli Biham and Adi Shamir [6],
even though it is assumed that it was known as early as the 1970s when the
DES was developed. The resilience of the s-boxes in the DES to differential
attack indicates that this attack was known by the designers of the DES, but
the design criteria have been classified by the National Security Agency (NSA).
This was the first attack which could recover DES-keys with less complexity
than exhaustive search, and several other ciphers have also been broken by
differential cryptanalysis, e.g. FEAL [5]. This attack has led to the redesign of
many ciphers.

This attack is a statistical, chosen plaintext attack, that exploits the correla-
tion between input and output differences. The idea of differential cryptanalysis
is to choose a pair of plaintexts with a known difference and try to predict the
difference of the pair after some rounds of an iterated cipher. When we have this
prediction for » — 1 rounds we can do an attack on r rounds by guessing some
key bits in the last round, calculate backwards and see if we get the predicted
difference after » — 1 rounds. The main criterion for a differential attack to be
successful on an iterated cipher with some non-linear component F', is that the
distribution of differences through F' is non-uniform, which means that some
output differences have to be more likely than others.

3.1.1 Some Definitions

Assume that the key K is combined to the text, X, via some group operation
®, then we can define difference:

Definition 3.1.1 The difference between X1 and Xo is defined as:
A(Xy, Xo) = X1 @ X5 !

13

CHAPTER 3. SOME ATTACKS ON BLOCK CIPHERS 14

The advantage of this definition of difference is easily seen when we look at how
the key combination effects the difference:

AX1 9K Xo9K) = (X10K)® (Xo@ K)™!
= Xi9KeoK 'oXx;!
= A(Xy, X»)

Definition of difference is relative to the cipher, but in most ciphers the differ-
ence is the exclusive-or or xor (notation: @) of the texts. This makes it very
easy to find inverses, since z2 & z2 = 0 and then z5 L' = x5. We denote the
difference between two plaintexts and the corresponding ciphertexts by AP and
AC respectively.

Definition 3.1.2 [6] An s-round characteristic is a series of differences defined
as an (s + 1)-tuple
Q: {QO; ALy -eny O[S)

where AP = oy, AC; = a; for 1 <i<s
We judge how “good” a characteristic is by how high probability it has
P?‘K,p(Q) = P’I“KJD(ACS = gy --uy ACl = CY1|AP = Oéo) (31)

but this probability can be difficult to compute because it is over all possible
plaintexts and keys. The calculation of a probability of a characteristic is easier
for a Markov cipher.

Definition 3.1.3 [26] An iterated cipher is called a Markov cipher, if there is
a group operation ® (defining A), such that

PT(ACl = ﬁ|ACQ = Q, CO = ’y)

is independent of v for all o, B, when the round key K is chosen uniformly at
random.

To calculate the probability of a characteristic for a Markov cipher with in-
dependent round keys it is enough to find the probability for each round and
multiply them together:

PTKJD(ACS = gy -.uy A01 = a1|AP = ao) =
Prg(ACs = ag, ..., AC1 = a1|AP = ap) =
Hj:l PTK(Acl == OZZ|AP = Oéifl)

Fact: The DES is a Markov cipher with difference exclusive-or.

3.1.2 Differentials

When we take a closer look at the differential attack, we see that for an s-round
characteristic (AP, ACY, ..., AC) only the plaintext difference AP and the last
ciphertext difference AC; make a difference in the attack. That is, for the attack
itself it does not matter what the values of AC1,...,AC,_1 are, they are not

CHAPTER 3. SOME ATTACKS ON BLOCK CIPHERS 15

used in the attack. The notion of differentials (AP, AC;) was first used by Lai
and Massey [26, 24] to describe this observation. The probability of an s-round
differential (AP, ACj) is the conditional probability that the output difference
after s rounds is AC; given AP.

Definition 3.1.4 [19] The probability of an s-round differential is given as

Pr(AC, = B|AP = fy) =
Y628, gy Limy Pr(AC; = Bi|ACi—1 = Bi-1)
when ACy = AP.

When we want to make an attack on a DES-like cipher, it is sufficient to find
one differential with probability high enough to do a successful attack, but to
make sure that a cipher is resistant against a differential attack, it is necessary to
make sure that no differential with probability high enough to make it possible to
mount a differential attack exists. Definition 3.1.4 shows that this is difficult, or
computational hard, to calculate the probability of every differential. However,
it is possible to give an upper bound on the probability of differentials for a
given cipher. More on this is given in Chapter 4.

3.1.3 Principle of a General Attack

If we are going to mount a differential attack on an r-round iterated block cipher
we need an (r — 1)-round differential determining AC,_; with probability p.
We will then find the last round key K, (or k bits of it) by using the following
procedure:

1. Choose pairs of plaintexts P and P* with difference AP.
2. Get the pairs of ciphertexts C' = Ex(P) and C* = Ex (P*).
3. For i =0to 2¥ —1 do

e From ciphertexts and the guessed K, = ¢, decrypt ciphertexts one
round.

o If the decrypted ciphertexts give the expected difference AC,._1, the
counter for i is incremented by 1.

4. Repeat steps 1 — 3 until one counter has a value bigger than the other
counters.

A right pair is a pair of plaintexts that follows each step of the characteristic.
A wrong pair is not a right pair.

The strategy for improving and in many cases making an attack possible, is to
minimize the number of wrong pairs. It is often possible from the ciphertexts
alone to determine that a pair is wrong, in that case the pair is filtered out and
not used in the analysis.

CHAPTER 3. SOME ATTACKS ON BLOCK CIPHERS 16

3.1.4 Complexity

First we have to describe an important term in the analysis of complexity of
differential attacks. The key we are looking for has to be suggested more (or
less) times than any other wrong value of the key. Signal to noise ratio gives a
description of how the key we are looking for can be recognized.

Definition 3.1.5 Signal to noise ratio:

F#times correct key is counted
#times a random key is counted

k mumber of key bits to find.

S/N =

p probability of characteristic.
m number of pairs required.
0B ratio of used pairs to all pairs.

o number of keys suggested by each used pair of ciphertezts.

mp p2k
SIN = = -
e = o

If S/N = 1 a differential attack is impossible, and if S/N > 1 the most suggested
key is the right key and if S/N < 1 the least suggested key is what we look for.
In a differential attack the number of chosen plaintexts needed is about:

c

po

where pq is the probability of the differential used and ¢ > 1 is a function of
S/N. The success of the attack depends on probability of characteristic, S/N
ratio (which can be increased by filter out wrong pairs), numbers of counters
required and time to run the attack, i.e. how many plaintext pairs we need and
how many key bits we are looking for. The attack on the full 16-round DES
needs about 2%7 chosen plaintexts to succeed.

3.2 Linear Cryptanalysis

Linear cryptanalysis was first introduced by Matsui in 1993 [31], and it is a
known plaintext attack and the best known attack on the DES today. The main
idea here is to use linear relations between bits in plaintext P and ciphertext
C = Ek(P) to determine (bits of) key K.

3.2.1 Introduction

If we let C; be the ciphertext after ¢ rounds, we can write a one-round linear
approximation as
(Ci-a)® (Ciy1-68) =0 (3:2)

which holds with a certain probability p, where C;, C;41, a, § are m-bits strings
and ’~’ is the dot (or inner) product modulo 2. «, 3 are often called masks.
|pi — 1/2] is called the bias of the approximation

CHAPTER 3. SOME ATTACKS ON BLOCK CIPHERS 17

Note The Expression 3.2 with a '1’ on the right side will have a probability of
1 — p, but the bias for the two expressions are the same.

The following describes why bias is a better way to describe the linear relation
between input and output of a round of a cipher when we do not know the value

of the key k. Consider the DES-like cipher
ki
1
Ci— & —D—f—Ci

We have that C; is the ciphertext after ¢ rounds, and k; is the ith round key. D
is C; been exclusive-or’ed with the key k;. Then D is inputed to the non-linear
function f which together with the exclusive-or with the round key is the round
function. The output C;;; is the ciphertext after i + 1 rounds. Now we want
to make the linear approximation of this round as

(a-Ci) & (a-D)=(a-ki)
(a-D Cit1) with p; # 1/2

) (8-
(@-C;) & (a-ki)= (B Citr1) with p; #1/2
) (8- Ciy1) with bias |p; — 1/2]

(a-C

These 1-round linear relations are then put together into an r-round characteris-
tic (do, ..., 0,). To calculate the probability of linear characteristics the piling-up
lemma [31] is used.

Lemma 3.2.1 (Piling-Up Lemma [81]) Let Z;,1 < i < n, be independent ran-
dom variables, whose boolean values are 0 with probability p;. Then

PrZ,@®...®Z,=0)=1/2+2"" 1H i —1/2)

This gives us the probability p, = 1/242" "' [],_, (p; —1/2) for the r-round lin-
ear characteristic, which again gives us the bias [p;, — 1/2| = |27 []'_; (p: — 1/2)|.
3.2.2 Principle of a General Attack

The attack on an r-round DES-like iterated cipher can be described by the
following procedure:

1. Find an (r — 1)-round characteristic (dp, ..., 6r—1):
(P-00) ®(Cre1-0p-1) =0
with some bias b # 0.
2. Obtain the plaintexts with corresponding ciphertexts.

3. Then make a guess for a value of the last round key, K., and calculate
one round back from the ciphertexts:

(P-60) ® (f1(C, Ky) - 6p-1) =0 (3.3)

with bias V'.

CHAPTER 3. SOME ATTACKS ON BLOCK CIPHERS 18

(a) For right value of K,, (3.3) is the linear characteristic for (r — 1)
rounds, and in this case the bias b’ = b.

(b) Assumption: for wrong values of K, (3.3) is a random approximation
with bias ' ~ 0.

4. Repeat step 3 for all values of K., and increase a counter 7 for each time
K; gives the right value in (3.3).

5. The value for K, that produces bias closest to expected is the key we are
looking for.

It is also possible to try to find key bits in both the first and last round of the
cipher.

3.2.3 Complexity of the Attack

The complexity, N, of the attack on the DES with up to 16 rounds is estimated
to be
N, ~cX |pr — 1/2|72

where ¢ < 8. The attack on the DES requires about 243 plaintexts.

3.3 Higher Order Differentials

Some ciphers with proof of resistance against differential and linear attacks can
successfully be cryptanalysed using higher order differentials.
Lai gives the definition of derivatives of discrete functions in [25].

Definition 3.3.1 [25] Let (S,+) and (T,+) be Abelian groups. For a function
f:8 — T, the derivative of f at the point a € S is defined as

Aof(z) = flz +a) = f(2)

Definition 3.3.2 [25] Let f be as in Definition 3.8.1. The i’th derivative of f
at the point a1, as, ..., a; is defined as

A o f@) =80, (AT f(@)

First order derivatives using definition by Lai coincides with the original differ-
entials and characteristics as defined by Biham and Shamir and used in their
attacks. We can extend the notion of differentials into higher order differentials.

Definition 3.3.3 [19] An 1-round differential of order i is an i+1-tuple (o, ..., o, 3),
s.t.

A o f@) =5

That is, we see how the difference between i inputs to round function f, the
ciphertexts C,_1, go through round r, and the difference between the i outputs,
the ciphertexts C., are then some 5. To be able to say more about how many
ciphertexts that are needed in each differential, or in other words, what is the
best order of a higher order differential, we need some more results.

CHAPTER 3. SOME ATTACKS ON BLOCK CIPHERS 19

Proposition 3.3.1 [25] Let L a1, as, ..., a;] be the list of all 2° possible linear
combinations of ai,as,...,a;. Then

A®
ay

Another important proposition from [25] is

Proposition 3.3.2 [25] Let ord(f) denote the mon-linear order of a multi-
variable polynomial function f(x). Then

ord(Aaf(x)) < ord(f(z)) — 1
This gives us the following proposition.

Proposition 3.3.3 [19] If A, . ., f(x) is not a constant, then the non-linear
order of f is greater than i.

Knudsen[19] shows that we generally can attack a cipher with five rounds,
where the round function has nonlinear order r, using 7’th order differentials.
This indicates that ciphers should not use round function of low non-linear
order.

3.4 Truncated Differentials

An other variation of the differential attack is truncated differentials, and it is
due to an idea by Knudsen [21].

Definition 3.4.1 [21] A differential that predicts only parts of an n-bit value is
called a truncated differential. More formally, let (a,b) be an i-round differential.
If o’ is a subsequence of a and V' is a subsequence of b, then (a’,V’) is called an
i-round truncated differential.

A truncated differential is a collection of ordinary differentials, only using
a part of the difference between the texts of the ordinary differential. This
allows the rest of the bits in the difference to chosen freely, which gives a higher
probability for truncated differentials compared to differentials.

Knudsen [22] shows an attack on a 5-round version of SAFER K-64 [29]
with truncated differentials. SAFER K-64 is resistant against a conventional
differential attack after 5 rounds [30] and against linear attack after 2 rounds
[14].

3.5 Interpolation Attack

This is an attack introduced by Jakobsen and Knudsen [17] on ciphers using
simple algebraic functions as s-boxes. This attack is based on a Lagrange inter-
polation formulas (see e.g. [8]).

CHAPTER 3. SOME ATTACKS ON BLOCK CIPHERS 20

Let R be a field. Given 2n elements z1,...,Zn, Y1, ..., Yn € R, where z; #
x5, © # j. Define

n

fw=w I =2

° . . L
=1 1<j<n,j#i

Then f(x) is the only polynomial over R of degree at most n — 1 such that
f(.%‘l) = ylV’L = 1, ceey N

3.5.1 GGlobal and Instance Deduction

Jakobsen and Knudsen constructed a cipher called PURE, secure against dif-
ferential [38] and linear [37] attacks. The round function in the DES-like Feistel
cipher is Fj;(z) = f(z @ k) where f : GF (2%%) — GF (23%), f(z) = 3.

In [17] a global deduction attack is mounted on an r-round version of PURE.
Keeping in mind that addition over a finite field with characteristic 2 is the same
as exclusive or (@), we have that the cipher only consists of simple algebraic
operations. This means that each of the halves of the ciphertext y can be
described as a polynomial p (z,zr) € GF (2%?) [z,] of the plaintext with
at most 32”71 + 3" + 37! + 1 coefficients, since the degree of 2; and xzp are
at most 3"~ and 3" respectively. Using the Lagrange Interpolation Formula,
we can reconstruct this polynomial considering at most 32"~ 4+ 3" + 3771 + 1
plaintext /ciphertext pairs. With » = 6 the attack needs at most 2'® known
plaintext/ciphertext pairs, which gives us an algorithm for a global deduction.
The actual number of coefficients will be lower than specified, since not all
elements z% 2}, for 0 < i < 3"! and 0 < j < 3" will appear in the polynomial.
More generally:

Theorem 3.5.1 [17] Consider an iterated block cipher with block size m. Ez-
press the ciphertext as a polynomial of the plaintext and let n denote the number
of coefficients in the polynomial. If n < 2™, then there exists an interpolation
attack of time complexity n requiring n known plaintexts encrypted with a secret
key K, which finds an algorithm equivalent to encryption (or decryption) with
K.

3.5.2 Key-recovery

This method can be extended to a key-recovery attack, since we have a distin-
guisher that can tell the difference between the output from the cipher after
r rounds from a random m bit string. Now we express the output from the
reduced cipher as a polynomial p(x) € GF (2™) [z] of the plaintext. Assuming
that the polynomial has degree d and that d + 1 known plaintext/ciphertext
pairs are available. Then the attack goes:

1. For all values of the last round key

(a) Decrypt the ciphertexts one round and try to construct the polyno-
mial.

(b) Use one extra plaintext/ciphertext pair to check whether the poly-
nomial is correct.

CHAPTER 3. SOME ATTACKS ON BLOCK CIPHERS 21

2. When the polynomial is correct, the last round key has been found with
high probability.

We have the following theorem:

Theorem 3.5.2 [17] Consider an iterated block cipher of size m. Ezpress the
output from the round next to the last as a polynomial of the plaintext and let n
denote the number of coefficients in the polynomial. Furthermore. let b denote
the number of last round key bits. Then there exists an interpolation attack of
average time complexity 2°~'(n+1) requiring n-+1 known (or chosen) plaintexts
which will successfully recover the last round key.

3.6 Other Attacks

We have looked at differential attacks, linear attacks, higher order and truncated
differentials. Other types of attacks are exhaustive search, related keys, Slide
attack [7] by Biryukov and Wagner and Boomerang Attack [43] by Wagner,
impossible differentials [3][4] and integral attacks. Integral attacks is a “family”
of attacks that exploits the fact that modern n-bit block ciphers often use per-
mutations: p: {0,1}* — {0,1}* with w < n as building blocks. E.g., p can be
an s-box, a round function or a group operation where one of the operands is
constant (e.g. a secret key). An integral attack is based on the idea of putting
every possible input to such a permutation p equally many times. We can then
say that p is saturated, and since p is a permutation, or a bijective function, we
have that the output is saturated as well. That is the reason why some have
called this attack for saturation attack. Chapter 5 provides more details about
integral attacks.

Chapter 4

Resistance Against
Differential Attacks

Lately several ciphers have appeared with proof of resistance against differential
attack. This idea was first introduced by Nyberg and Knudsen in [38], and they
gave an example of a cipher with provable security against differential attack.
Later Matsui has proposed MISTY [32] and KASUMI[1] with this property.

4.1 Some Results

We will look at an r-round iterated block cipher with round function f, and we
will use p to denote the highest probability of a non-trivial 1-round differential:

Py = mg,xmgé(PrK(Acl = B|AP = «) (4.1)

where the probabilities are taken over all possible keys. We can now obtain a
lower bound of any differential in an r-round iterated cipher expressed in terms

Ofpf.

Theorem 4.1.1 [19] Consider an r-round iterated cipher with independent round
keys. Any s-round differential, s > 1, has a probability of at most py, where ps
is the probability of the most likely 1-round differential

Theorem 4.1.1 is trivial when it comes to the DES-like ciphers, since if the
right halves of a pair is equal, then p; = 1. These differentials are called trivial
1-round differentials for DES-like ciphers. It is possible to calculate a lower
bound on all differentials for a DES-like iterated cipher expressed in terms of
the most likely non-trivial 1-round differential. Let p,,,,, denote:

DPmaz = mﬁaX max Pr(AC, = 8|AP = «) (4.2)

aprp#0

where ap is the right half of a. From now on we assume that p,,q, < 1.

Theorem 4.1.2 [19] Consider an r-round iterated DES-like cipher with inde-
pendent round keys. Any s-round differential, s > 4, has a probability of at most

20700+

22

CHAPTER 4. RESISTANCE AGAINST DIFFERENTIAL ATTACKS 23

If the round function F' of a DES-like cipher is a permutation for each given
round key, we say that the F-function is a permutation. In this case Theorem
4.1.2 can be proven for s > 3.

Theorem 4.1.3 [19] Consider an r-round iterated DES-like cipher with in-
dependent round keys, where the F-function is a permutation. Any s-round
differential, s > 3, has a probability of at most 2p2, ..

This has later been improved to p? by Aoki and Ohta [2].

There are similar results for linear characteristics.

4.2 Conclusion Of This Chapter

The results in the previous section make it possible to design ciphers where it
is possible to obtain an upper bound on the probability, p, of any differential
characteristic for the cipher. It is then likely to conclude that it will take at
least 1/p chosen plaintexts/ciphertexts pairs to break the cipher with a differ-
ential attack. This is what most designers of block ciphers do, but sadly this is
not sufficient to say that a cipher is immune to differential attacks. Biham et
al.’s impossible differentials [3][4] use differentials of sufficiently low probability
in attacks on ciphers. Wagner’s Boomerang Attack [43] also shows that the
provable resistance against differential attack is not enough to say that it will
require at least 1/p texts to break the cipher with differentials.

To focus too much on making a cipher secure against one attack is dangerous,
because it might make the cipher vulnerable to other attacks. An example of this
is the Feistel cipher PURE [17] where the round function Fj(z) = f(x®k) where
f: GF(2%%) — GF(2%?), f(z) = 23. This cipher is secure against differential
attack [38] and linear attack [37], but breakable by interpolation attack (see
Section 3.5).

Chapter 5

Integral Cryptanalysis of
Block Ciphers

Integral cryptanalysis is a chosen plaintext attack, and it has much in common
with differential attacks. However, it applies to ciphers not vulnerable to differ-
ential attacks. It is especially applicable to ciphers using bijective components
only. It is a chosen plaintext attack and was first introduced by Daemen, Knud-
sen and Rijmen as a special attack on the Square cipher[9]. It has been known
as the Square attack or the saturation attack, but on Fast Software Encryption
2002 Knudsen and Wagner[23] presented a generalization and introduced the
term integral cryptanalysis about this attack.

5.1 Introduction

Definition 5.1.1 [23] Let (G, +) be a finite Abelian group of order k. Consider
the product G" = G X ... x G, that s, the group with elements of the form
v = (v1,...,v,) where v; € G. The addition of G™ is defined component-wise, so
that w + v = w holds for u,v,w € G just when u; + v; = w; for all i

Let S be a multi set of vectors. An integral over S is defined as the sum of
all vectors in S. In other words, the integral is

/S:Zv

where the summation is defined in terms of the group operation for G. (For a
multiplicative group this would usually be called a “product”).

In integral cryptanalysis we divide the plaintexts and ciphertext into smaller
blocks, which we call words. A word in this context is just a bit string of a given
length s. If n represents the number of words in the plaintext and ciphertexts,
and m denotes the number of plaintexts and ciphertexts considered (at a time),
then typically, G = GF(2°) or G = Z/kZ, m = k = 2° (recall that k = |G|),
and the vectors v € S represent the plaintext and ciphertexts.

When we want to do an integral attack, we must try to predict something
about the value of the integral after a certain number of rounds of encryption.

24

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS 25

We distinguish between three different cases; where all ith words are equal, all
different, or sum to a certain value. Let S be as before, then we consider these
cases:

v; = c forallveS (5.1)
{vi:veS} = G (5.2)
Z v, = ¢ (5.3)

vES

where c, ¢’ € G are some known values that are fixed in advance.

If we now consider the case where m = k, that is the number of vectors in
the set S is equal to the number of elements in the considered group. If all the
1th words are equal then it is obvious that the ith word in the integral will take
the value of the neutral element in G. In group theory there are a result that
makes it easy to calculate the integral in the second case [16, Problem 2.1, p.
116]:

Theorem 5.1.1 [16] Let G be a finite Abelian additive group, and let H =
{g € G: g+ g =0} be the subgroup of elements of order 1 or 2. Write s(G)
for the sum 3° . g of all the elements of G. Then s(G) =),y h. Moreover
s(G) € H, i.e. s(G)+s(G)=0.

Proof: Assume that G is a finite Abelian additive group, and H = {g € G : g+
g =0} is a subgroup of G. Then s(G) = > ;9 = g1+ ...+ gn. For those
gi, 1 < i < n that have order(g;) > 2 we have that 3¢;,1 < j <n,j #1¢
such that g; + g; = 0. Then, there only remains the elements that have
order 1 or 2 in the sum s(() , and hence s(G) = >, . ;; h. s(G) € H since
H is closed under the group operation of G, and s(G) is a sum of elements
from H.

If we look at G = GF(2°) we get s(G) = 0. To see this, observe that all elements
in GF(2°) have order 2, and that + is equal to x-or in this group. If G = Z/mZ
we get s(G) = m/2 if m is even and s(G) = 0 if m is odd. To see this, observe
that only 0 and m/2 can have order 2 in this group. But if m is odd, then m/2
will not exist in Z/mZ. There is an analogue for multiplicative groups.

Theorem 5.1.2 [16] Let G be a finite multiplicative group, and let H = {g €
G : g+g = 1} be the subgroup of elements of order 1 or 2. Write p(G) for
the product [[. g of all the elements of G. Then p(G) = [[;,cy h. Moreover
p(G) € H, i.e. p(G) *p(G) =1.

Proof: Assume that G is a finite multiplicative group, and H = {g € G : g*xg =
1} is a subgroup of G. Then p(G) = [[,c5 9 = g1 * g2 * ... * g For those
gi, 1 < i < n that have order(g;) > 2 we have that Jg;,1 < j <n,j # i
such that g; * g; = 1. Then, there only remains the elements that have
order 1 or 2 in the product p(G), and hence p(G) = [[,cy h- p(G) € H
since H is closed under the group operation of GG, and p(G) is a product
of elements from H.

For G = (Z/mZ)*, the product of all the group elements depends on m, if m is
prime then p(G) = —1 (Wilson’s Theorem).

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS 26

These two theorems give us tools to decide the value of the integral after
it has gone through a component of the cipher, in all of the above three cases
((5.1), (5.2) and (5.3)).

In differential cryptanalysis over a group G, it is typically to define difference
with subtraction or division, e.g. dx = 2/ — z for an additive group or dz =
2’ x 27! for a multiplicative group. In [23] Knudsen and Wagner claim that the
right operation for integrals is addition or multiplication. They base this claim
on how integrals go through different parts of a block cipher.

If a cipher computes w; = u; + v; where u;,v;, w; are intermediate values,
and the integral predicts that the words u; and v; are on one of the forms (5.1),
(5.2) or (5.3). Then we have

Zw]— :Zuj+Zvj
J J J

and if we know the sum of the words u; and v;, we can determine the sum of
the words w;. So, if all the words u; are equal and all the words v; are different
or visa-versa, all the words w; will be different. And if all the words u; are
equal and v; are equal, then so will all the words w;.

All good ciphers contain non-linear components or non-linear s-boxes. Sup-
pose that a function f is applied to a word in the cipher, i.e. v; = f(u;). It is
obvious that if all the words u; are equal, then so will all the words v;. We have
that if f is a bijection or a permutation, and if all the words u; are different
then all the words v; will also be different.

5.2 Higher Order Integrals and Some Notations

Just as we can define higher order differentials (see Section 3.3), we can define
higher order integrals.

We look at a set S = S7; U...U S, made up of s sets of vectors, where each
S; forms an integral. Then, if one can determine the sum of elements of .5; for
each i, then one can also determine the sum of all vectors in S. Suppose the
words in a cipher can take m values. Consider a set of m vectors (representing
a set of plaintexts) which differ only in one particular word. The sum over the
vectors of this set is called a first order integral.

Definition 5.2.1 [28] Consider a set of m? vectors which differ in d compo-
nents, such that each of the m? possible values for the d-tuple of values from
these components occurs exactly once. The sum of this set is called an dth order
integral.

We will use the same notation for words in an integral as in [23]. For the
first order integral

’C? (for “Constant”) in the ith entry, means that all the values of all ith words
in the collection of texts are equal.

*A’ (for “All”) means that all words in the collection of texts are different.
’S? (for “Sum”) means that the sum of all ith words can be predicted.

*?’ will be written when the sum of words can not be predicted.

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS 27

For dth order integrals we use ’C’ and ’? as before, and

A4 means that the corresponding component participates in a dth order inte-
gral. That is, if we assume that one word can take m different values, then
A4 means that in the integral the particular word takes all values exactly
md~1 times. We use A as a short notation for A!.

A{ means that in the integral the string concatenation of all words with sub-
script i take the m? values exactly once.

5.3 Comparison to Other Attacks

Integral cryptanalysis has similarities with both truncated differentials [20][21][22]
and higher order differentials [21].

In truncated differentials (see Section 3.4) one is only often interested in if
the words in a pair are equal or different. Integrals restricted to pairs of texts
with only the values C and A are similar to such truncated differentials.

We also note that integrals are somewhat similar to higher order differentials.
Recall the definition of first order derivative from Definition 3.3.1

fa(x) = f(z +a) = f(2)

This is the definition used in a differential or characteristic which is tradition-
ally used in cryptanalysis. This definition can be extended to a definition of
higher order differentials. Also recall the definition of higher order derivatives
Definition 3.3.2: The the ith-order derivative of f at the point a1, ..., a; is:

fal-,---qai(:r) = fai (fai—l-,---qal (x))

An example of this, a third-order derivative is:

fape = fl+a+b+c)—
fle+a+d)—flz+db+c)— f(r+a+c)+
fle+a)+ fla+b)+ f(z+c) - f(z)

(See Appendix A for an example of a fourth-order derivative).

So for general groups the higher-order derivatives are not the same as inte-
grals, since in an integral one looks at the sum of all elements in a set. In groups
with characteristic 2, an sth-order differential is the x-or of all 2° different words,
which means that it is also an integral.

Higher order differentials are mostly applicable to ciphers consisting of sub-
functions of low algebraic degree.

To conclude this section we make some observations. In some cases an in-
tegral can contain both truncated differentials and higher-order differentials,
but there are cases where integrals can be specified for more rounds than ei-
ther of the other two. But in contrast to truncated and higher-order differen-
tials, integrals do not seem to be as applicable to ciphers using non-bijective
s-boxes/components, since sending a collection of texts which are all different
through a non-bijective s-box does not guarantee that the output texts are all
different.

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS 28

5.4 The Square Attack

In FSE’97 an integral attack was given on the cipher Square, and first known
as “the Square Attack” [9]. This attack can also be used on the ciphers AES and
Crypton. All three ciphers are 128-bit block ciphers operating on bytes. The
sixteen bytes are arranged in a 4 X 4 matrix. In one round of the ciphers the
following is performed on the matrix, or state:

e An addition of a sub-key
e A substitution of each byte

e A linear transformation, MixColumn, which modifies the four bytes in a
column of the matrix.

e For the AES: cyclic shift of rows in the cipher

This attack was first given on Square, but due to similarities between the three
ciphers the attack applied to the AES and Crypton is quite analogous. Here we
will give the attack on the AES.

5.4.1 The Basic Attack

The AES operates on a 4 x 4 matrix of bytes called the State. It is an it-
erated cipher, and in each round a non-linear byte substitution (ByteSub), a
cyclic shift of the rows of the State (ShiftRow), a linear mixing of the columns
(MixColumn), and a round key addition. The last round does not contain the
MixColumn transformation.

e The ByteSub is a non-linear byte substitution, or a bijective mapping
m : GF(2%) — GF(28). This mapping can be defined by a s-box which is
applied to all bytes in the State.

e The ShiftRow shifts the rows in the State. The first row is not shifted,
the second row is shifted once to the right, the third row is shifted twice
to the right and the fourth row is shifted three times to the right.

e In MixColumn, the columns of the State are considered as polynomials
over GF(2%) and multiplied modulo z* + 1 with a fixed polynomial c(z) =
03162> 4+ 011622 + 01162 + 02, where e.g. 0316 is hexadecimal.

e The round key addition is just an exclusive or of the State with the round
key. The round key is derived from the cipher key by means of a key
schedule.

For a complete description of the AES, see [10].

We look at an integral consisting of 256 texts, which have different values
in one byte and equal values in all other bytes. This happens with the integral,
round for round:

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS 29

alalals
alalala
alalala
alalala

—

QI QA
QI QA
QI QA

A S RS R B I N NN N

SIRZII I R PN BN BSBS

2] R RS B SRS RNES
(IR AN N AN AN

Figure 5.1: 3-round (first order) integral for the ciphers AES, Square and Cryp-
ton, where S = 0.

Round 1

1.

The non-linear byte substitution will not affect the integral in the first
round. This substitution is a bijective mapping, and following the argu-
ment in Section 5.1, this will not change the integral in the first round.

. The ShiftRow is a cyclic shift and will not move the A in the first round,

since the first row is not shifted in the AES.

The MixColumn will spread the A down the first column.

. The addition of the round key does not change the integral, since this

round key is constant for all words with the same position in the texts in
the integral. Words that are equal before the addition will be equal after,
and words that are all different will all be different after the addition.

Round 2

1.

The non-linear byte substitution will not affect the integral in the second
round.

The ShiftRow is a cyclic shift and will move the 4 so that there will be
one A on each row and each column (on the diagonal).

. The MixColumn will spread A to every entry in the matrix.

. The round key addition will not affect the integral.

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS 30

Round 3

1. The non-linear byte substitution will not affect the integral in the second
round.

2. The ShiftRow cyclic shift will not affect the integral, since every entry in
the matrix contains the A.

3. The MixColumn will change the bytes, but since we have that every byte
is a sum of two bytes that both takes all values in GF(2%), we have that
the sum of every byte will be zero.

4. The round key addition will not affect the integral

The attack using the 3-round integral shown in Figure 5.1, on a 4-round variant
of Rijndael, goes as follows:

e Choose 256 plaintexts that differ in the first byte, and obtain the corre-
sponding ciphertexts.

e For each byte in the State

— Repeat until the right key byte is found:

* Guess a key byte and compute byte-wise backwards (this is pos-
sible since the last round of the AES does not contain a Mix-
Column transformation) to check if the sum of all 256 values is
Z€TO.

The attack on the 4 round version of the AES finds all bits of the last round
key, with data 16 * 28 chosen plaintexts and workload 16 * 28.

5.4.2 Extension by an Additional Round at the End

This attack can be extended to an attack on a 5-round variant of Rijndael (also
relevant to Square and Crypton). This is simply done by guessing 1 byte of the
round key in the 5th round and additionally 4 byte of the round key in the 4th
round for each key byte we want to find.

5.4.3 Extension by an Additional Round at the Beginning

We will use the same integral as before, but now we will use it from the second
round and onwards. The idea is to choose a set of plaintexts that after the
first round will give a collection of texts that follows the 3-round integral. We
choose a collection of 232 plaintexts, such that for each guess of four key bytes
in the first round, one can find a collection of 256 ciphertexts after one round
of encryption which form an integral going through the next three rounds just
like the 3-round integral in Section 5.4.1. Figure 5.2 shows the 4-round fourth
order-integral. Guess further one key byte in the sixth round and four in the
fifth round, in total nine bytes. So, using the extension at the end and the
beginning, we can attack 6 rounds of Rijndael using 23 plaintexts, 272 cipher
executions and 232 memory. Later this has been improved to 2** by Ferguson
et. al. in [12].

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS 31

ATclcTc
c ATl cC|cC
clc ATlcC
clclc Al
!
ArTclc]c
Arlclc]c
ArTclc]c
Arlclc]c

S|S|S|S
S|S|S|S
S|S|S|S
S|S|S|S

Figure 5.2: 4-round (fourth-order) integral for Rijndael.

| Attack | # Plaintexts | # Cipher executions | Memory |
Basic (4 rounds) 29 29 small
Extension at end 211 210 small
Extension at beginning 232 240 232
Both Extensions (6 rounds) 232 24 232

Table 5.1: Complexity of the Square attack applied to Rijndael.

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS 32

So in this attack on a 128 bit block and key length version of Rijndael, we
can successfully break 6 out of 10 rounds using both extensions, with less work
than searching through the whole key space. This is the best attack on Rijndael
known today. See table 5.1 for details of about the complexity of this attack.

5.5 Attacks on Generalized Feistel Networks

The generalized Feistel networks were proposed by Nyberg [36].

Definition 5.5.1 [36] Let Xy, ..., Xan—1 be the inputs to one round of the ci-
pher. Given n s-bozes Fy, ..., F,_1, where F; : {0,1}¢ — {0,1}%, and n round
keys Kq, ..., K,,_1, the output of the round Zy, ..., Zon—1 s defined as follows:

}/i = Xi@Fi(Ki@Xanlfi), fO’I"i :0,...,717 1 (54)
Y, = X;fori=n,..2n-1 (5.5)
Z; = Yiq1fori=0,..,2n—1 (5.6)

where all indices are computed modulo 2n.

As a special case of this construction Nyberg considers the cipher where the
s-boxes are bijective. For this cipher the probabilities of differentials can be
upper bounded to p2",. where p,,,. is the maximum probability of a non-trivial
differential through the s-boxes. With n = 4 and d = 8 there are s-boxes for
which P, = 276 and the probabilities of all differentials over 12 rounds are
bounded by 2748, Also, the probabilities of linear hulls over 12 rounds can be
bounded by 2% [36]. This gives the cipher a good resistance against linear
and differential attacks. We will later look at a generalized Feistel Network
with n = d = 8, where the probabilities of all differentials over 12 rounds are
bounded by p2",, = (279)2*8 =279,

In [23] it is shown that there exist integrals to successfully attack a general-
ized Feistel network assuming that the s-boxes are bijective, and that all round
keys are independent and chosen uniformly at random. The attacks in [23] are
given for n = 4 and d = 8. The most basic attack on this network is with
an 11-round integral using only 256 texts and making it possible to attack an
12-round version of the generalized Feistel cipher by calculating backwards from
the ciphertexts by guessing on key byte in the last round, and checking whether
or not the first byte of all the 256 ciphertexts sum to zero. It is also possible
to attack 13-round version of this cipher by guessing only three key bytes. To
uniquely distinguish the right key, more than one integral may have to be used.
An further extension of this attack to the 14-round and 15-round versions of
this cipher can be done by similarly guessing bytes in more rounds, and check-
ing the sum of the first byte in the output after 11 rounds. In these cases it is
also necessary to repeat the attack some times to uniquely distinguish the right
round-keys. The complexity of these attacks is given in Table 5.4 together with
complexity of attacks from [23] on the generalized Feistel networks using higher
order integrals.

A second order integral for the generalized Feistel networks withn =4, d =8
and bijective s-boxes is given in Table 5.3, and this integral goes two rounds
further than the first order integral. The second order 13-round integral use

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS 33

Ciphertexts
afterround | A | C | C | C||C|C|C|C
1 clA|C|C|c|c|cCc]|cC
2 c|clA|lC|cCc|cCc|C]|C
3 c|cl|clA|llcCc|c|cCc|cC
4 c|cl|c|cijlA|Cc|C]|C
5 cl|cl|c|Cc|l|lA|lA|C]|C
6 c|CcC|C|l|A|lA|A|A]|C
7 C|C|A|A||S|A|AA
8 AlAlA| S| ? S |A|A
9 Al S|S|?2|?2]?72]S|A
10 AlS|?2|?2|?2]?2]|?7]|S8
11 S|{?|?21?24?2(?2|7?]7

Table 5.2: An 11-round integral with 256 texts for the generalized Feistel cipher
with n = 4, d = 8 and using bijective s-boxes, where S = 0.

216 chosen plaintexts, and in the trivial attack on a 14-round version of the
generalized Feistel cipher using this integral ,we guess one key byte and calculate
the ciphertexts after 13 rounds and check if all the 2'6 texts sum to zero.

5.6 Attacks on MISTY

The MISTY cipher [32] was constructed by Mitsuru Matsui, and it is a block
cipher with 128-bit key-size and 64-bit block-size, a Feistel structure and a
variable number of rounds. MISTY is used as a generic name for MISTY1 and
MISTY?2, and it is designed on the basis of provable security against differential
and linear cryptanalysis (see Chapter 4). Appendix B contains more details
about the structures and functions in MISTY.

In [23] the best known attack today on MISTY1 is given. The idea is to use
an integral where the last 32 bits of the plaintexts take all values in GF(232),
this integral can be predicted for four rounds: (C, A) — (?,S) (see Figure 5.3).
The integral is used in a chosen plaintext attack on 5 rounds of MISTY1 with
data complexity 234 texts and work comparable to 2%® trial encryptions.

This attack uses the fact that S = 0 goes unchanged through F'L6. To
explain this, consider the input < x,y > to F'L6, the output will then be

(x@[(y® (xNKLe1))UKLe , (y® (xNKLe1)))

Since the sum in GF(2'9) is the exclusive or, we can consider this sum bit for
bit, and from & = 0 we have that > o = > y = 0. First consider the right
part of the output (y @ (z N K Lg1)). We need to show that > (z N K Lg) = 0.
To see this assume that bit number ¢ in 2 is 0’ then so is bit number ¢ in
(x N K Lgy). If bit number ¢ in z is 1’ then the bit number ¢ in (z N K Lg;) will
be ’0’ or ’1’, but we know that the number of texts where bit number 7 in z is
’1’ is an even number, which means that we will have an even number of texts
where the ith bit in (x N K Lg) is '1°. It follows that) (y @& (x N K Lg1)) = 0.
We can do a similar argument for) (z & ((y @ (N K Lg1)) UK Lg2)) = 0.

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS 34

Ciphertexts

afterround | A2 | C | C | C C| C | C | A
i | AaZlclclclclc]lec
2 cla|&|cclclc]ec
3 clec AR [AaZclclc]c
1 clclc | a[AZ[clc]c
5 clclclc | &[Aa[c]|c
6 clclc ARl A[2Z]C
7 C | C | A | A3 | AT | A3 | A3 | A3
8 A | AZ | A2 | AZ || AT | AT | A3 | A3
9 LA S [242 A
10 TS [STs|[? 8 [L&A
i1 sl 2778 &
12 AT [AT 7 | 7 2?1 ?7]S
13 S ? ? ? ? ? ? ?

Table 5.3: A 13-round second order integral with 2'6 texts for the generalized
Feistel cipher with n = 4, d = 8 and using bijective s-boxes, where S = 0.

Number of rounds Data Time Comments

complexity | complexity | (all attacks from [23])
14 250 250 impossible differential
14 232 232 fourth-order integral
13 29-6 232 first-order 11-round integral
14 210-6 256 first-order 11-round integral
15 2113 288 first-order 11-round integral
14 216 224 second-order 13-round integral
15 2176 240 second-order 13-round integral
16 218.6 204 second-order 13-round integral
16 233-6 256 fourth-order 14-round integral
17 2346 280 fourth-order 14-round integral
17 2196 272 sixth-order 15-round integral

Table 5.4: Complexity of different attacks on the generalized Feistel networks
from [36]. The results are from [23].

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS

C P A
2 v & 2
KLI» FL FL2/4 KL2

’i‘Kll’ KOlC

KL7» FL7 FL8/¢ KL8

C

35

Figure 5.3: A four-round integral for MISTY1 using 232 chosen plaintexts where

S=0.

CHAPTER 5. INTEGRAL CRYPTANALYSIS OF BLOCK CIPHERS 36

The following property of the function FFO5 (see Appendix B) is used in
the attack on MISTY1. Let F(z,y) be the left half of the output of F'O5 on
the input < z,y >, then F(x,y) = f(x) ® g(y), where f and g are some key-
dependent bijective mappings. It was Sakurai and Zheng[40] who noted that
three round of MISTY?2 has this property, and F'O5 has the same structure as
3 rounds of MISTY2. Also note that the function F'Iij has this structure. The
attack on 5 rounds of MISTY1 can be described by the following procedure:

1. Choose the plaintexts to form the integral, and obtain the ciphertexts.

2. The input to the FO5 function in known, and we express the left part of
the output of the FO5 function as fx, (left — input) ® g, (right — input),
where kl = (KO571, KIZ'J) and k2 = (KOE,’Q, KILQ), totally 64 bits.

3. We now use the Sakurai-Zheng property of the F'I; ; function, and the left
output can be expressed as fi(left —input) ® fao(right — input) & KI; ;1.
The sum of the text in the integral will not depend on K1I; ;,, and we
obtain a 7-bit condition on the output from F'O5, only dependent on the
16-bit keys KOs 1 and KOs », totally 32 bits.

4. Guess KOs and KOs 2 and check the condition.

5. We need to repeat step 1-4 four or five times to uniquely distinguish the
right candidates for KOs ; and KOs ».

Chapter 6

New Integrals

Some new integrals on the generalized Feistel networks, how to mount an attack
on these networks and an integral on KASUMI will be presented in this chapter.

6.1 Generalized Feistel Networks

We have found some new integrals on the generalized Feistel networks with
n = d = 8, which will have a comparable parameter size to the 128-bit key
and 128-bit block version of the AES. This version of the AES has 10-rounds
and 128-bit sub-keys or round-keys, while the generalized Feistel networks have
2 % n x d = 128-bit block length, n *x d = 64-bit sub-keys or round-keys. With
20 rounds the generalized Feistel networks will have a comparable performance
level to the AES. Figure 6.1 shows one round of the generalized Feistel networks
withn=d =28.

If we can find integrals that go 19 or more rounds for this structure, this will
be a good reason not to choose the generalized Feistel networks with n =d = 8
and bijective components as an encryption standard over the AES.

6.1.1 First Order Integral

Table 6.1 shows a new integral applying to the generalized Feistel networks with
n=d=_8.

The integral starts with 256 plaintexts all different in only the first byte,
and equal in all other bytes. Sending the integral through (5.4) does not make
any change to the integral, because when we look at the first byte, which takes
all 256 possible values, that byte will still take all 256 possible values after the
first part of the round function 5.4, as described in Section 5.1 on page 24. As
for the rest of the bytes, if the texts are equal before (5.4) or (5.5), they will
be equal after (5.4) or (5.5) as well. (5.6) will only cycle the bytes one to the
right. The integral will change similarly from round 1 to 8. From round 8§, the
byte that takes all values will start to effect other bytes. When this byte is sent
through a bijective function and x-or’ed to another byte where all values are
equal, the resulting byte value will also take all values. In round 12 we have one
byte in the integral which takes all 256 possible values and is added to another

37

CHAPTER 6. NEW INTEGRALS 38

XX XX XXX X Xy XX X X X o X

A D

i ey

< om om | em em [on o | om
=
x
4
y

B vy

A~

< <
< <
< <
< <
< <
-<A

z|z|zz]z|zzz] z]z] 2022020202

Figure 6.1: Round ¢ of the generalized Feistel networks with n = d = 8, and
round key k;.

CHAPTER 6. NEW INTEGRALS 39

Ciphertexts
after round

1

O[O || N

9

10

11

12

13

14

15

16

17

18

DN N QQIQQQ QDDA D

ESIESTRV B NB NI K I e K K Ee Ee Ko Ko Ee T Ko\ B Ko\ Ko

wlalalalalalalalalalalalalalalalalalal s
D 2 US| QD
))| W n|n ol alalalalalaln|alalala
SN BN BB N D N B NI N N I I I P N E K K R e R e
S IESIENIESBS B IR N B NI I I I B N e Ea ke Ea e\ KN
BN K R I BKIBCIE D N D N I I D S I I K K A A
BN BCIBCIBS N D N D N B S el E e I Ea Ko\ Ka Ko\ Ko
B SSIIECI RSB C BN R D N D B e K K K Ko K K Ko\ Ren
EXIIENIENIESIBSIBIE D N B N NI K Eal H e Ee T Ea Ko\ Ka Ko\ Ko
SNBSS I BN BN B NI I E e Ee H o I Ea ke K EeN Ko
| ol | | S n | nl Al o alalalalalalalalala
ECIBSIECIEIB N B N BN e I e Ha H e K Ko K NeN KT He T K\ Re

19

|| 0|l alalalalalalalalalalalalala

Ol S ol alalalalalalalalalalala|ala

Table 6.1: A 19-round integral with 28 texts for the generalized Feistel networks,
with n = d = 8 and using bijective s-boxes, where S = 0.

byte in the integral which also takes all 256 possible values. The sum is

255
S:Z$i+91(yi), i,y € GF(2°) (6.1)
i=0
where ¢; is a key-dependent bijective function, + is the group operation in
(GF(2%),4),and o, = z; = i = j, y; = y; = i = j. From 5.1.1 we known that
the sum s (6.1) is 0 (zero). This S = 0 will survive until round 19. When S =0
is cycled in round 19 it will end up at the beginning of the integral, and we have
a distinguisher after 19 round that we can use to mount a simple attack on a
20 round version of the generalized Feistel networks with n = d = 8, finding 8
key-bits of the last round key.

An attack using the 19-round first order integral

1. Choose 256 plaintext, different in only the first byte, and obtain the ci-
phertexts from the encryption Oracle.

2. For each guess k of the 8 bit of the last round key, check:

255

> (Cll[L) + F(C[0] + k) =0 (6.2)

=0

CHAPTER 6. NEW INTEGRALS 40

Cr-1[i][0] ., CrililiLs]

CIilrol CIilri

Figure 6.2: Shows how we check the condition after 19 rounds by calculating
backwards from the ciphertexts after 20 rounds. C"~! is the ciphertext we
get when calculating one round backwards from the original ciphertext. C[i][j]
means ciphertexts number i, and byte number j in that ciphertext, counting
from left to right.

where C[i][0] is the first byte in the ith ciphertext of the 256 ciphertexts
obtained in step 1, and C[i|[1] is the second byte in the ith ciphertext.
+ is the group operation in GF(232), xor. Increase a counter for the key
k if this condition is true. Figure 6.2 shows how we calculate one round
backwards.

3. Repeat 1 and 2 until only one key is suggested every time, this key is the
correct 8-bit part of the last round key.

Step 1 and 2 often suggest only one key, but sometimes it suggests 2 or 3 keys
for one integral. Then we need to choose a different integral and repeat the
key-search until only one key is suggested every time.

How many keys are suggested by each integral

If we take a closer look at (6.2) we see that it can also be written as:

clo)1] & Cl[l] & ... & C[255)[1)&
F(C[0][0] @ k) ® F(C[1)[0] ® k) & ... ® F(C[255][0] & k) = 0

T
clol] e CAll] & ... C[255][1] =
F(C0][0] & k) & F(C[1][0] & k) & .. & F(C[255][0] @ k) = A

where A is a constant for every integral if the condition is satisfied, since
Clo][1] ® C[1][1] ® ... ® C[255][1]

is independent of k£ and therefore a constant relative to each integral. So sug-
gested keys are those who satisfy

F(Clo]0] @ k) ® F(C[1][0)®@ k) @ ... ® F(C[255][0] @ k) = A (6.3)
If the 8-bit key & is not correct correct, then

F(C0][0] & k) & F(C[1)[0] & k) & ... & F(C[255](0] & k) (6.4)

CHAPTER 6. NEW INTEGRALS 41

is assumed take a random value in the range [1,...,2% = 255] and it will do this
for each choice of k. Since we have 255 wrong choices for k, (6.4) will take 255
random values. We only have 256 possible output values for (6.4), and for at
least one of these values it is likely that the condition (6.3) is met. To sum
up, the right key will always be suggested, and it is likely that 2 keys will be
suggested for each integral - one right and one wrong.

Complexity of the attack

Since we only need two integrals to successfully identify the correct key, the
data complexity of this attack is 2 * 28. For each text in the integral we need to
backtrack one round by guessing one key-byte. This gives processing complexity
28 % 28 = 216, When testing for the key we need to keep a variable for the sum
for each key, which requires 2% byte blocks of memory.

6.1.2 Second Order Integral

Table 6.2 shows a new integral on the generalized Feistel networks with n = d =
8. It is a second order integral using 2'6 chosen plaintexts, and it starts with
plaintexts where the first and the last byte together take 2'6 different values,
and the rest of the bytes are equal in all plaintexts. After 21 rounds we have a
condition which we can use in an attack on a 22 round version of the generalized
Feistel networks with n = d = 8 and bijective s-boxes.

In the first round we have the situation that the concatenation of the first
byte » and the last byte y takes all values in GF(s'®). Then these bytes are
x-or’ed, after that y has gone through a key dependent bijective function gx(y).
We see from Table 6.2 that the string concatenation (z |y) in the input to round
1 takes all values in GF (2!¢). Table 6.2 also shows that the string concatenation
of the first and the second byte in the output from round one takes all values in
GF (216). The reason for this is that the string concatenation of the first and
the second byte in the output from round one has the structure:

(z®gr(y)ly) (6.5)

and for every fixed value of y, we have that (z®g(y)) takes all values in GF (2°)
since = takes all values in GF(2%) for every fixed value of y. (6.5) will therefore
take all values in GF (2'°). This observation also explains why this integral will
go at least one round further than the first order integral. To see this observe
that if we fix the second byte in the integral, the first byte will take every value,
and this gives us 256 first order integrals starting after round 1 of the cipher.
This is similar to the “first round trick” that is used in the integral attack on
Rijndael (see Section 5.4). But, instead of just going one round further, this
second order integral goes 2 round further. To explain this, we need to look at
what happens to the bytes after round 9 in the integral.

Rounds 2 to 8 are similar in respect to the fact that we have a xor either
between bytes that are all equal, which will give bytes that are all equal, or
between bytes that are all different with bytes that are all equal, which will give
bytes that are all different. After round 8 we have that the concatenation of the
eighth and the ninth byte takes all values in GF(2'°).

For the rest of this section, = and y will be used to describe respectively the
9th and 10th byte in the integral after 9 rounds, and the string concatenation

CHAPTER 6. NEW INTEGRALS 42

(z|y) takes all values in GF (2'°). After 10 rounds of encryption we have the
integral
Ca Ca Ca Ca Ca Ca Ca gl(Y)v gQ(X)v XY C7 C7 C7 Ca c

where g1, g2 are key-dependent bijective functions. And because for any given
Y, g2(x) takes all values, which gives us

C,C,C,C,C,C,C, A3, AT, A5, Af.C.C.C.C.C
After 11 rounds we have these words in the integral

C,C.C,C,C,C g5(y), 8a(x), 81(Y) B 83(x), 82(x),x,¥,C,C,C,C
Since g; are bijective functions this gives us
C,C,C,C,C,C, A3, A3, A3 A3, A2 A2 C.C.C.C
After 12 rounds we have these words in the integral

Ca Ca Ca C7 C7 gg(.Y)? gS(X)7 g5(y) @ g7(X)a
94(x) ® g6(91(y) @ 93(x)), 91(y) ® g3(x), g2(x), x,y,C,C,C

Which gives us
C,C,C,C,C, A2, A2, A3, AT, A3, A3, A5, A3, C.C.C
After 13 rounds we have these words in the integral

C,C,C,C,e29(y),88(x),89(y) © g2(x), gs(x) ® g1(y) © g3(x),
95(y) ® g7(z) ® g10(94(x) ® g6(91(y) ® g3(x))),
94(z) @ g6(91(y) © g3(), 91(y) @ g3(%), g2(), 2, 9,C,C

From this we get
C,C,C,C, A% A2 A% A% S, A3 A3, A% A2 A3.C,.C

Here it is important to note why the 9th word in the integral is S = 0 after 13
rounds. Expressed with our = and y, this word is:

(95(y) © g7(x)) @ (910(94(x) © g6(91(y) © g3(2)))) = X DY

where X = g5(y) @ g7(z) and Y = g10(g4(z) ® g6(91(y) & g3(x))) both takes all
values in GF'(2%) 256 times. That is, we look at the texts where the z is fixed,
and since y takes all values in GF(28) exactly once for each z, g;(y) takes all
values in GF(28) for each g;(x). We have that for each fixed z, X and Y take
all values in GF(2%) once, and since = takes all values in GF(28) 256 times, so
will X and Y. Then > (X ®Y) =0.

This S is not changed from round 13 to round 20, and in round 21 it is
cycled round and ends up in the first word in the integral after 21 rounds. Now
we have a condition on ciphertexts after 21 rounds and we can mount an attack
on a 22 round this version of the generalized Feistel networks.

CHAPTER 6. NEW INTEGRALS 43

Ciphertexts

afterround | A2 | ¢ | Cc | c | c | c|c|¢cC clclclclclc|c|A
1 Al Al c|lclclclc|c clclclclclclcl|c
2 c | A ALl cl|lcl|lclc|ec clclclclclclcl|ec
3 c |l c A A|lc|lclc|c clclclcl|lc|lc|lc]|ec
4 clclclAAlALlclc|c clclclclclclcl|ec
5 clclclclAlAlc]|c clclclcl|lc|lc|lc]|ec
6 clclclcl|lclAalAalc clclclclclc]lcl|ec
7 clclclclclclAalAdlclclclclc|lc|c]|ec
8 clclclclclclclAagllagalc|lclclc|lc|c]|ec
9 clclclclclclclcllAaglAalclclc|lc]|c]ec
10 clclclclclclec 2 2l A2l A2 c|lc|c]|c]oc
11 clclclc|lclc | AjAa2A2AalAa24clc|lc|c
12 clclc|c | c | A2]A2| A A 2l A A A c|c|c
13 Cl cCc | cCc | cCc|l|AlAlAalAa||s|A|A|A2|A A C|cC
14 clclcl|AaAlAals]|s]|s ?2 | S | A2 2l AT AR A ¢
15 c | c | AJA|ls|s |7 ? ? ? | S | A2 | A2 | A% | AZ | A2
16 A A2 A | s | S| ? ? ? ? ? ?7 | s ? 2 A% | AR
17 A A2 S| S| ? ? ? ? ? ? ? ? | S | A3 | AF | A7
18 A2 s | s | ? ? ? ? ? ? ? ? ? 2 | s 2 2
19 A2 s | 7 ? ? ? ? |7 ? ? ? ? 7 2| s | A
20 21 A2 2 ? ? ? ? ? ? ? ? ? ? ? S
21 s| 2|2 ? ? ? ? | ? ? ? ? ? | ? ?

Table 6.2: A 21-round second order integral with 2'6 texts for the generalized
Feistel networks with n = d = 8 and using bijective s-boxes, where S = 0.

The attack on 22 rounds of the generalized Feistel Networks

This integral can be used to attack a 22 round version of the generalized Feistel
networks in almost the same way as in Section 6.1.1, but using 2'¢ chosen
plaintext in each integral.

The complexity of the attack

Since we on the average only need two integrals in this attack to successfully
identify the right key, the data complexity of this attack is 2+ 2'6. For each text
in the integral we need to backtrack one round by guessing one key-byte, this
gives processing complexity 28 « 216 = 224, Ag for the first order attack, we only
need a look at one ciphertext at a time, and keep track of the sum for each key
we are testing, which gives memory complexity 2% bytes.

6.1.3 Even Higher Order Integrals

The first round trick that gave us the second order integral of the generalized
Feistel networks can be extended. Every time the order is increased by two, we
“move” the starting point of our collection of first order integrals. For fourth
order, we fix the second and third byte after round 1 and get 2'¢ second order

CHAPTER 6. NEW INTEGRALS 44

| Integral | Time | Data | Memory (bytes) | Rounds attacked |

19 round first order | O(2!%) | O(2%) 28 20
21 round second order | O(2%%) | O(2') 28 22

fourth order 0219 | 0(2%?) 28 at least 23

sixth order 0(2%) | 0(2%) 28 at least 24

eighth order 0(27) | 0(2%) 28 at least 25

tenth order 0(2%) | 0(2%) 28 at least 26

twelfth order o2 | 0(2%) 28 at least 27

fourteenth order 0(2129) | 0(211?) 28 at least 28

Table 6.3: Complexity of attacks on the generalized Feistel networks with bi-
jective s-boxes and n = d = 8.

integrals that start after round 1. We have similar results for higher order
integrals, shown in Table 6.3. A natural question would be how high the order
of the integral can be, and still be faster than exhaustive search for the key.
When we increase the order of the integral for the generalized Feistel networks,
we have to increase it by 2 because of the way the cipher is constructed. We
have given examples for first and second order integrals, and in Table 6.3 the
complexity for integrals for the generalized Feistel networks with n = d = 8
up to fourteenth order are given. Sixteenth order integrals do not give us any
information, since that will be the all possible input to the cipher, which is
bijective by definition for a fixed key, which trivially gives all possible output.

6.1.4 Implementation of the Attacks

The attack on a 20 round generalized Feistel network with randomly chosen
s-boxes was implemented, and we ran tests with chosen plaintexts and random
keys. 8 bits of the key was recovered using one first order integral in 31 out of
100 tests. Average over 100 000 tests, it took 1.6 integrals to find the right key,
and the right key was found using at most 2 integrals.

The attack on a 22 round generalized Feistel network found the right key
using 1.6 integrals in average over 1000 tests, and the right key was found using
at most 2 second order integrals.

We also implemented a program as a help to find and check integrals. This
worked well for first and second order integrals, but to check fourth order inte-
grals with 232 texts were too time consuming. We did not implement attacks
with fourth and higher order integrals for the same reasons, too high complexity
to be implemented with our limited resources.

The source code for these programs can be found in Appendix C.

6.2 KASUMI

KASUMI[1] is based on MISTY, and it is the international standard encryption
algorithm for Third Generation Mobile Communications Systems. Since it is
based on MISTY it would be likely to believe that the attacks on MISTY would
be applicable to KASUMI as well. We observe that the 4 round integral given
on MISTY1 in Section 5.6, i.e. the four-round integral (C,.A) — (?,S), also

CHAPTER 6. NEW INTEGRALS 45

is a 4-round integral for KASUMI (see Figure 6.3). This integral is actually
applicable to all DES-like ciphers with only bijective components.

We have a distinguisher after 4 rounds of KASUMI and we can use this to
attack 5 rounds of KASUMI. The structure of KASUMI is a bit different to
MISTY1, so we cannot “copy” the attack from Knudsen and Wagner [23]. The
structure of KASUMI is given in Figure 6.3, and the functions in KASUMI is
given in Figure 6.4. Note that the F'L and F'I functions have been changed. The
FI function in KASUMI has four rounds and does not have the Sakurai-Zheng
property anymore.

If we just try to guess the last round key K L5, KOs and KI5 and check
the 32 bit condition we get from the integral, the attack would not be faster
than exhaustive search. The round key consists of 128 independent key-bits
derived from the 128-bit cipher key. One refinement of this attack is to use the
Sakurai-Zheng property of the FO function, which gives us that the left part
of the output from F'O function can be written as fxo., (%) ® gxos,(y) where
(x,y) is the input. To find the input (x,y) we need to guess the keys to the
F' L5 function, since we cannot predict the sum of the outputs from F'L5 even
if we know the sum of the inputs, when this is different from 0 (zero). The
Sakurai-Zheng property of the F'O function together with the integral give us a
16 bit condition that can be checked by guessing 96 bits of the last round key.
This attack is not faster than exhaustive search either, because of two things.
We need to backtrack one round for each of the 232 ciphertexts in the integral,
and repeat this for all guesses of the 96 bits. This alone gives time complexity
2128 Since we have 2°6 possibilities for the key, and only a 16-bit condition,
each integral will suggest 2% possibilities for the key. This means that we need
five or six integrals to uniquely distinguish the key.

6.3 Conclusion

We have looked at the generalized Feistel networks with parameters that are
comparable to those of a 128-bit block size and key size version of Rijndael,
the Advanced Encryption Standard. The best known attack on the AES is
an integral attack which breaks 6 out of 10 rounds using O(2%*) time, O(232)
chosen plaintexts and O(232) memory. This version of the AES has comparable
parameters to the generalized Feistel networks with 20 rounds and n = d = 8.
‘We have shown attacks on the generalized Feistel networks that can be mounted
on up to 28 rounds. This leads us to the conclusion that the generalized Feistel
networks with n = d = 8 do not give any advantage over the construction of
the AES.

From the integrals we can see that the problem with the generalized Feistel
networks is that these structures have less diffusion than the AES per round. In
the integral for the AES, it only takes two rounds before every byte is influenced
by the first byte in the integral, while in the generalized Feistel Networks with
n = d = 8 it takes 16 rounds. One way to fix this could be to change the round
function in the generalized Feistel networks so that each byte influence more
bytes per round, as in the AES function.

We observe that it is easy to use a distinguisher in an attack for both the
AES and the generalized Feistel networks. In the distinguisher attacks that
we have seen for the AES and the generalized Feistel networks, we need only to

CHAPTER 6. NEW INTEGRALS

C

P

32 #64 32
KL1 KO1,KI]
C C

KO2,KI2 KL2
o |y

KL3 KO3,KI3

FL3 FO3 g

s o | A A
KO4,Kl14 KL4

FO4 o I FLA >

KL5 KO5,KI5

KO6,K16 KL6
FO6 FL6 ¥

KL7 KO7,K17

KO8,KI8 KL8
FO8 FL8 ¥

v

C

46

Figure 6.3: A four-round integral for KASUMI using 232 chosen plaintexts where

S=0.

CHAPTER 6. NEW INTEGRALS 47

KOil »¢ ? KLil
Klil - Fli1 L0 < b
KLi2
bt <<
KOI2 —p- >4 Klij2
Kli2—» Fli2 ¢
K0I3 4’ P truncate
Kli3—» i3

FOI Flij FLi

Figure 6.4: The functions in KASUMI.

CHAPTER 6. NEW INTEGRALS 48

guess one key byte to calculate part of the ciphertexts one round backwards and
check the condition. We have also seen that this does not seem the be as easy
for KASUMI, which have similarities with the generalized Feistel networks with
n =1 and d = 32, but have a round function with more complex dependency
to the round key. Even though we have a distinguisher after four rounds of
KASUMI it is not trivial how we can take use this in an attack on the cipher.

It is also worth noticing that the number of rounds we can predict an integral
for the generalized Feistel networks seems dependent on the size of n for these
networks. With n = 1 we have a DES-like cipher, and we can specify a first
order integral that can be predicted for 4 rounds. For n = 4 we have a first
order integral that can be predicted for 11 rounds, and for n = 8 we have a 19
round first order integral.

We see that if d was larger, the integral attack would require more texts,
e.g. for a generalized Feistel network with d = 16, we would need 2'¢ texts in
the first order integral. The disadvantage with a bigger d is that we need larger
s-boxes. While the s-boxes in n = d = 8 is of size 256, the s-boxes in d = 16
will be of size 2!6 = 65535 16 bits values, much too large for platforms with
limited resources, i.e. smart cards. This can be solved by a bijective mapping
f: GF(2'%) — GF(2'°) defined by a function instead of a s-box, as it has been
done in MISTY and KASUMI.

As others before us have remarked, it can be dangerous to focus on resistance
against one attack when designing a cipher. This can make the cipher vulnerable
to other attacks, as is the case for the generalized Feistel networks with n > 1.

There are some open question in this thesis. We do not know whether the
integrals with higher order than 2 can be predicted for more rounds than what is
given in Table 6.3. We have been unable to use the 4 round integral for KASUMI
in a key-recovery attack, but further analysis might make it possible to find some
bits of the last round using this integral with less work than exhaustive search.

Appendix A

Higher Order Derivatives

Example of a 4th-order derivative:

= falfape(2) = fa(fe(fap(@))) = fa(fe(fo(fa(2))))

fa,b,c,d(z)

falfe(f(z+a+b) = f(z+a) = f(z+b) + f(x)))

(x+a+b+c)— f(x+a+d)— flx+a+c)+

(

= Jalfe(fo(f(z +a) = f(2))))
(f
(f

(@ +a) — fl@+b+c)+ flz+b) + f(z +0) — f(z)
(x+a+b+c+d) —flx+a+bt+c)— flx+a+b+d) —
(t+a+c+d)— flx+b+c+d)+

(z+a+d)+ flea+a+c)+ fle+a+d)+
(x4+b+c)+ flz+b+d)+ flx+c+d) —
(

Ja
f
f
f
f
f
fleta)=fz+0) = flz+c) - flz+d)+ f(z)

49

Appendix B

MISTY

Here we will give a short description of how MISTY works, the figures of MISTY
are taken from [32]. The full details of MISTY can be found in [32].

Figure B.2 shows the data randomizing part of MISTY1 and MISTY2. We
see that the 64-bit plaintext P is divided into the left 32-bit string and the
right 32-bit string, which are transformed into the 64-bit ciphertext C after n
rounds, using bitwise exclusive or and the sub-functions FO;, 1 < i < n and
FL;,1<¢<n+2.

Figure B.3 shows the sub-functions F'O;,F1;;,1 < j < 3 and FL;. FO;
divides the input into a 16-bit left string and a 16-bit right string, which are
transformed into the 32-bit output by bitwise exclusive or and the sub-functions
FI;;. FI;; divides the input into a left 9-bit string and a right 7-bit string,
which are transformed into the 16-bit output by bitwise exclusive or and by
substitution tables S7 and Syg. F'L; divides the input into the left 16-bit string
and the right 16-bit string, which are transformed into the 32 bit output by
bitwise exclusive or, bitwise AND and bitwise OR.

50

APPENDIX B. MISTY 51

32 32 32 32
_-7"16 16
FO FO
,//—//;,// f:ﬂ ////

FO FO |

\ ><
\
\
\
\
\
\
\
\
\
\
\
\

/
/
’
’
/
’
’
/
’
’
’
’
’

\\FI Level 3

MISTY2 Level 1
MISTY1 Level 1

Figure B.1: Recursive structure of MISTY

APPENDIX B. MISTY

¢
R

32

32

EKIl, KO1

FL2

K17, KO7

KLn+1-

KLn+2

O «

KL2

KL8

KL

[

KlI1, KO1

K12, KO2

KI3, KO3

K14, KO4

KL5

K15, KO5

K16, KO6

K17, KO7

K18, KO8

KLn+1

2]

8
e
R

8

B
LU
[
B
U

FO1 E KL3

m
r
E’

FO2

FO3 KL4

o

]
L
ol
]
L

FO5| KL7

Ely

KL8

TI
@]
3

m
L
oo

>([

Figure B.2: The structure of MISTY1 and MISTY2

2

6

52

KL2

KL6

APPENDIX B. MISTY 53

K0il »o KLi1 —
KIL = Fiig S9 a
zero—extend A
KLi2 Ty
U
K0i2
KII2+ FII2 87 truncate ¢
Klij1»® o4 Klij2
K0i3 %<
KI3—» Fii3 S9
zero—extend
KOi4
FOi Flij FLi

Figure B.3: The functions used in MISTY.

Appendix C

Implementations

C.1 Generalized Feistel Network

#include <stdio.h>
#define uint32 unsigned long
#define uint8 unsigned char
#define ROUNDS 22

#define BLOCKLENGTH 8
#define n 8

#define d 8

uint8 sbox[81[266]; /* GenFeistel s-box */
uint8 key[nl;

/* Key setup. Using the same key in every round #*/
void key_setup(uint32 *userkey) {
int i=0;
for (3idnji++)
key[il=(uint8) ((userkey[i/4]>>(3-i%4)*8)&0xff);

¥

/* Setting up sbox, using approximatly the same method as in RC4.
* n different sboxes are made

*/
void sbox_setup(uint32 *setupKey) {

int i=0,3j=0,k=0, temp=0;

//initialize sboxes

for (i=0ji<m;i++) {

for (j=0; j<266; j++) {
sbox[i1[j1=];

b
// mix up sboxes - only swap elements (bijection)
for (i=0;i<m;i++) {
for (j=0; j<266; j++) { //j controls the step through the sbox
k=((sbox[i] [j1+(setupKey [i1>>(j%24)))%266) ; //update k
//swap
temp=sbox [i][j1;
sbox [i1[j1=sbox[i] [k];
sbox[i] [k]=temp;
b

b
}

/* Generalized Feistel encryption, assume
* that d (from Nybergs article) is 8.
*/
void generalFeistel(uint8 *plain, uint8 *cipher) {
int i,j,k=0;
uint8 Y[2#n];
// freeing plain to be changed
for (k=0;k<2#n;k++)
cipher [k]=plain[kx];
// the round iteration
for (i=0; i<ROUNDS; i++) {
//the round function, Y is a temp value
for (j=0; j<2#nj j++) {
if (j<n)
Y[jl=cipher[j]-sbox[j][key[j]l-cipher[2#n-1-j11;
else
Y[jl=cipher[jl;

// Y cycled one step to the right to make next rounds ciphertext
for (k=0;k<2#n;k++) {
if (k>0)
cipher[k]=Y[k-1];
else
cipher[k]=Y[2*n-1];

54

APPENDIX C. IMPLEMENTATIONS

C.2 The Attack Using a 1. Order Integral

#include <stdio.h>
#include "genFeistel.c"

#define uint32 unsigned long
#define uint8 unsigned char
#define ROUNDS 20

#define BLOCKLENGTH 8
#define n 8

#define d 8

void generateIntegral();
uint8 ciphertext[256][2#n];

main() {
int i=0,j=0,k=0,counter=0,sum=0;
int no_suggested_keys=0,sugg _key=0, key [266], key s integralUsed=0;
uint32 myKey[]={Oxabababab, Oxabababab};
for (key 5 key 100000; key) {
//set up new key
for (i=0;i<1ji++)
myKey[i]l=(uint32)lrand48();
//printf ("Key to find: %.2x\n", (myKey[01>>24)&0xff);
for (j=0;j<266;j++)
keyCounter[j1=0;
key_setup(myKey) ;
sbox_setup (0x7d3569e1£) ;
//avoid infinite loop, should exit before counter hits 10
counter=0;
while (counter<10) {
counter++;
no_suggested_keys=0;
generateIntegral();
for (i=0;i<266;i++) { //step through keys
sum=03
for (j=0;j<266;j++) { //step through ciphertexts
sum~=ciphertext[j][1]~sbox[ciphertext[j1[0]~il;

// check criterium for correct key
if (sum==0)
keyCounter[il++;
b
// find the most suggested key
for (i=0;i<2663i++)
if (keyCounter[i]==counter) {
no_suggested_keys++;
suggested_key=i;

if (no_suggested_keys==1) {
integralUsed+=counter;
//printf("Key found: %.2x after %i integrals\n",suggested_key,counter);
break;
b
b
b

printf("In average was %f integrals used to find the right key (100000 tests)\n", ((double)integralUsed)/100000);

/*creating integral */
void generateIntegral() {
uint8 plaintext[2+nl;

H
3i<2¥nji++)

plaintext[i]=(uint8)1lrand48();
// creating the 256 ciphertexts in the 1.order integral
for (i=0;i<266;i++) {

plaintext[0]=i;

//obtaining the ciphertext

generalFeistel(plaintext, ciphertext[il);

C.3 Integral Finder

#include <stdio.h>

#define uint32 unsigned long

#define uint8 unsigned char

#define n 8

#define d 8

#define SIZE 266 //27d - size of s-box

#define WORDS 16 //cipher block size in bytes

#define ORDER 2 //order of integral

#define TEXTS 66636 //number of texts in integral: SIZE-DRDER
#define ROUNDS 22 //number of rounds we want to check

uint8 plaintext[WORDS],ciphertext[WORDS]; //representing the ciphertext

55

APPENDIX C. IMPLEMENTATIONS

uint8 sbox[n][SIZE]; /* GenFeistel s-box */
uint8 Y[WORDS]; //temp value in generalized Feistel round
uint8 key[ROUNDS][n]; //round key

void key_setup();
void sbox_setup();
void generalFeistelRound(uint8 *,int);

main() {
int i=0, j=0, k=0, sum=0,211=0,found=0;
uint32 counter=0;
// we need to maintain a integral observator for each round
uint32 integral[ROUNDS] [WORDS] [SIZE];
// we also need to know the sum of each byte for each round
uint32 number [ROUNDS] [WORDS] ;
//initialize structures
for (i=03;i<ROUNDS;i++) {
for (j=0;j<WORDS;j++) {
number[i][j]1=0;
for (k=0;k<SIZE;k++) {
integrallil[j]1[k1=0;

b
b
key_setup();
sbox_setup(); //set up s-boxes
//create the integral, handles 1.,2. and 4. order
for (i=0;i<WORDS;i++) {
plaintext[i]=(uint8) (1rand48()&0xf);

for (counter=0;counter<TEXTS;counter++) {
if (ORDER==2) {
plaintext[0]=counter & SIZE-1;
plaintext [WORDS-1]=(counter>>8) SIZE-1;
b
else if (ORDER==4) {
plaintext[0]=counter & SIZE-1;
plaintext[1]=(counter>>8) & SIZE-1;
plaintext [WORDS-1]=(counter>>16) & SIZE-
plaintext [WORDS-2]=(counter>>24) & SIZE-
X
else plaintext[0]=counter & SIZE-1; //ORDER:
for (i=0;i<WORDS;i++) {
ciphertext[i]=plaintext[i];
X
//send the ciphertext through each round and look at the result
for (i=0;i<ROUNDS;i++) {
generalFeistelRound(ciphertext,i);
for (j=0;j<WORDS;j++) {
number[i][j]1-=ciphertext[jl;
integral[il[j][ciphertext[j1]++;

tH
tH

X
X
b

//vrite the integral, from round 1 to round ROUND
for (i=0;i<ROUNDS;i++) {
printf ("After round %i:\n",i+1);
for (j=0;j<WORDS;j++) {
all=1;
S = %.3i, ",number[i][j1);
=0;k<SIZE;k++) {
if (integrall[i][j][x]==TEXTS) {
printf("C") ;found=1;
b
if (integrallil[j][k]!=TEXTS/SIZE) all=0;

if (all)
printf ("a");
else if (!found)
printf("?");
printf("\n");

printf("\n");

/* Setting up sbox, inspired by RC4.
* n s-boxes are made
*/
void sbox_setup() {
int i=0,3j=0,k=0,temp=0;
//initialize sboxes
for (i=0;i<n;i++) {
for (j=0; j<SIZE; j++) {
sbox[11[j1=]3

b

// mix up sboxes - only swap elements (bijection)

for (i=0ji<m;i++) {

for (j=0; j<SIZE; j++) { //j controls the step through the sbox

k=sbox[il[j1- (1rand48()%SIZE); //update k
//swap
temp=sbox[i][j1;
sbox[i][jl=sbox[i]l[x];
sbox[i] [k]=temp;

56

APPENDIX C. IMPLEMENTATIONS

b
b
}

void key_setup() {

int i=0,3j=0;

//choosing a different key for every round
<ROUNDS;i++) {
33+
kxey[il[jI=1rand48 () &(SIZE-1);

/* Generalized Feistel encryption, one round

*/

void generalFeistelRound(uint8 *cipher,int round) {
int i,j,k=0;

//the round function, Y is a temp value
for (j=0; j<WORDS; j++) {
if (j<n)
Y[jl=cipher[j]1-sbox[j][key[round][j]-cipher [WORDS-1-j11;
else
Y[jl=cipher[jl;
b
// Y cycled one step to the right to make next rounds ciphertext
for (k=0; k<WORDS; k++) {
if (x>0)
cipher[k]=Y[k-11;
else
cipher[k]=Y[WORDS-1];

57

List of Figures

2.1

5.1

5.2
5.3

6.1

6.2

6.3

6.4

B.1
B.2
B.3

The secure communication between Alice and Bob, over an inse-
cure channel, where Eve is listeningin.

3-round (first order) integral for the ciphers AES, Square and
Crypton, where S=0. L.,
4-round (fourth-order) integral for Rijndael.
A four-round integral for MISTY1 using 2%? chosen plaintexts
where S=0.

Round i of the generalized Feistel networks with n = d = 8, and

round key k;. . .. L.
Shows how we check the condition after 19 rounds by calculating

backwards from the ciphertexts after 20 rounds. C”~! is the

ciphertext we get when calculating one round backwards from

the original ciphertext. C[i|[j] means ciphertexts number ¢, and

byte number j in that ciphertext, counting from left to right.

A four-round integral for KASUMI using 23 chosen plaintexts

where S =0. e
The functions in KASUMI.

Recursive structure of MISTY
The structure of MISTY1 and MISTY2
The functions used in MISTY.

58

List of Tables

5.1
5.2

5.3

5.4

6.1

6.2

6.3

Complexity of the Square attack applied to Rijndael. 31
An 11-round integral with 256 texts for the generalized Feistel
cipher with n = 4, d = 8 and using bijective s-boxes, where S = 0. 33
A 13-round second order integral with 2'¢ texts for the general-
ized Feistel cipher with n = 4, d = 8 and using bijective s-boxes,

where S =0. e 34
Complexity of different attacks on the generalized Feistel net-
works from [36]. The results are from [23]. 34

A 19-round integral with 28 texts for the generalized Feistel net-
works, with n = d = 8 and using bijective s-boxes, where S =0.. 39
A 21-round second order integral with 2'¢ texts for the general-
ized Feistel networks with n = d = 8 and using bijective s-boxes,

where S =0. e e e e 43
Complexity of attacks on the generalized Feistel networks with
bijective s-boxesand n=d=28.., 44

59

Bibliography

[1] 3GPP TS 35.202: "Specification of the 3GPP Confidentiality and In-
tegrity Algorithms; Document 2: KASUMI Algorithm Specification".
http://www.3gpp.org/TB/Other/algorithms.htm

[2] K. Aoki, K. Ohta, Strict evaluation of the maximum average of differen-
tial probability and the maximum average of linear probability, preprint,
February 1996.

[3] Eli Biham, Alex Biryukov, Adi Shamir. “Cryptanalysis of Skipjack reduced
to 31 rounds using impossible differentials”. In Jacques Stern, editor, EU-
ROCRYPT ’99, LNCS 1592, Springer Verlag, 1999.

[4] E. Biham, A. Biryukov, A. Shamir, “Miss-in-the-Middle Attacks on IDEA,
Khufu and Khafre”, Fast Software Encryption, LNCS 1636, L.R. Knudsen,
Ed., Springer Verlag, 1999, pp. 124-138.

[5] E. Biham and A. Shamir. “Differential cryptanalysis of FEAL and N-Hash”.
Advances in Cryptology, Eurocrypt '91, pages 1-16, 1991.

[6] E. Biham, A. Shamir, “Differential Cryptanalysis of the Data Encryption
Standard”, Springer Verlag, 1993.

[7] A. Biryukov, D. Wagner, “Slide Attacks”, FSE’99, LNCS 1636, pp.245-259,
Springer Verlag, 1999.

[8] P.M. Cohn. “Algebra, Volume 1”. John Wiley & Sons, 1982.

[9] J. Daemen, L.R. Knudsen, and V. Rijmen, “The block cipher Square”, Fast
Software Encryption, LNCS 1267, Springer Verlag, 1997, pp.149-165.

[10] J. Daemen, V. Rijmen, “AES Proposal: Rijndael”, AES Round 1 Techni-
cal Evaluation CD-1: Documentation, National Institute of Standards and
Technology, Aug. 1998.

[11] C. D’Halluin, G.Bijnens, V. Rijmen and B. Preneel, “Attack on 6 Rounds
of Crypton”, Fast Software Encryption '99, Springer Verlag, 1999.

[12] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D.
Whiting, “Improved Cryptanalysis of Rijndael”, Fast Software Encryption,
Springer Verlag, 2000.

[13] H. Feistel. “Cryptography and computer privacy”. Scientific American,
228(5):15-23, 1973.

60

BIBLIOGRAPHY 61

[14] C. Harpes, G.G. Kramer, J.L. Massey. “A generalization of linear cryptanal-
ysis and the applicability of Matsui’s piling-up lemma”. Advances in Cryp-
tology - EUROCRYPT’95, LNCS 921, pp.24-38, Springer Verlag, 1995.

[15] M.E. Hellman. “A cryptanalytic time-memory trade off. IEEE Transactions
on Information Theory”, IT-26:401-406, 1980.

[16] I.N. Herstein, “Topics in Algebra”, 2nd ed., John Wiley & Sons, 1975.

[17] T. Jakobsen, L.R. Knudsen. “The Interpolation Attack on Block Ciphers”,
Fast Software Encryption, Springer Verlag, 1997, pp. 28-40.

[18] D. Kahn. “The Codebreakers”. MacMillan, 1967.

[19] L.R. Knudsen. “Block Ciphers - Analysis, Design and Applications”. PhD
thesis, Aarhus University, July 1994.

[20] L.R. Knudsen and T.A. Berson, “Truncated differentials of SAFER”, Fast
Software Encryption, Springer Verlag, 1997, pp.15-26.

[21] L.R. Knudsen, “Truncated and Higher Order Differentials”, Fast Software
Encryption, Springer Verlag, 1995, pp. 196-211.

[22] L.R. Knudsen, “A Detailed Analysis of SAFER K”, Journal of Cryptology,
vol.13, no.4, Springer Verlag, 2000, pp.417-436.

[23] L.R. Knudsen, D. Wagner, “Integral Cryptanalysis”, Fast Software Encryp-
tion, Springer Verlag, 2002.

[24] X. Lai, “On the Design and Security of Block Ciphers”. PhD thesis, ETH,
Ziirich, Switzerland, 1992.

[25] X. Lai, “Higher Order Derivations and Differential Cryptanalysis”, Commu-
nications and Cryptography: Two Sides of One Tapestry, Kluwer Academic
Publishers, 1994, pp.227-233.

[26] X. Lai, J.L. Massey, and S. Murphy. “Markov ciphers and differential crypt-
analysis”. In D.W. Davies, editor, Advances in Cryptology - Proc. EURO-
CRYPT’91, LNCS 547, pages 17-38. Springer Verlag, 1992.

[27] A.K. Lenstra, E.R. Verheul. “Selecting Cryptographic Key Sizes”, Journal
of Cryptology, vol.14, no.4, pp.255-293, Springer Verlag, 2001.

[28] J.L. Massey. “Cryptography: Fundamentals and applications”. Copies of
transparancies, Advanced Technology Seminars, 1993.

[29] J.L. Massey. “SAFER K-64: A byte-oriented block-ciphering algorithm”
FSE-94, LNCS 809, pp.1-17 Springer Verlag, 1994.

[30] J.L. Massey. “SAFER K-64: One year later”, FSE-95, LNCS 1008, pp.212-
241, Springer Verlag, 1995.

[31] M. Matsui. “Linear cryptanalysis method for DES cipher”. In T. Helleseth,
editor, Advances in Cryptology - Proc. EUROCRYPT’93, LNCS 765, pages
386-397. Springer Verlag, 1993.

BIBLIOGRAPHY 62

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

M. Matsui. “New Block Encryption Algorithm MISTY”. Fast Software En-
cryption, LNCS 1267, pp. 54-68, Springer Verlag, 1997.

A. Menezes, P. van Oorschot, S. Vanstone. “Handbook of Applied Cryptog-
raphy”, CRC Press 1996.

National Bureau of Standards. “Data encryption standard. Federal Informa-
tion Processing Standard (FIPS), Publication 46”. National Bureau of Stan-
dards, U.S. Department of Commerce, Washington D.C., January 1977.

K. Nyberg. “Differentially uniform mappings for cryptography”. In T. Helle-
seth, editor, Advances in Cryptology - Proc. EUROCRYPT’93, LNCS 765,
pages 55-64. Springer Verlag, 1993.

K. Nyberg. “Generalized Feistel networks”, In K. Kim and T. Matsumoto,
editors, Advances in Cryptology - ASTACRYPT’96, LNCS 1163, pp. 91-104,
Springer Verlag, 1996.

K. Nyberg. “Linear approximations of block ciphers”. In A. De Santis, ed-
itor, Advances in Cryptology - Proc. EUROCRYPT’94, LNCS 950, pp-
439-444. Springer Verlag, 1994.

K. Nyberg and L.R. Knudsen. “Provable security against differential
cryptanalysis”. In E.F. Brickell, editor, Advances in Cryptology - Proc.
CRYPTQ’92, LNCS 740, pages 566-574. Springer Verlag, 1993.

R. Rivest, A. Shamir and L. Adlemann. "A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems." Communications of the ACM,
21: 120-126. February 1978.

K. Sakurai and Y. Zheng. “On Non-Pseudorandomness from Block Ciphers
with provable Immunity against Linear Cryptanalysis” IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Science,
Vol. E80-A, No.1, pp. 19-24, 1997.

C.E. Shannon. “Communication theory of secrecy systems”. Bell System
Technical Journal, 28:656-715, 1949.

D. Stinson, Cryptography - Theory and Practise, CRC press 1995.

D. Wagner, “The Boomerang Attack”, Fast Software Encryption, Springer
Verlag, 1999, pp. 156-170.

	Abstract
	Acknowledgement
	Contents
	Chapter 1 Introduction
	Chapter 2 Introduction to Cryptology
	Chapter 3 Some Attacks on Block Ciphers
	Chapter 4 Resistance Against Differential Attacks
	Chapter 5 Integral Cryptanalysis of Block Ciphers
	Chapter 6 New Integrals

