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Abstract. Synthetic Aperture Radar (SAR) data from

RADARSAT-2 (RS2) in dual-polarization mode provide ad-

ditional information for discriminating sea ice and open wa-

ter compared to single-polarization data. We have developed

an automatic algorithm based on dual-polarized RS2 SAR

images to distinguish open water (rough and calm) and sea

ice. Several technical issues inherent in RS2 data were solved

in the pre-processing stage, including thermal noise reduc-

tion in HV polarization and correction of angular backscatter

dependency in HH polarization. Texture features were ex-

plored and used in addition to supervised image classification

based on the support vector machines (SVM) approach. The

study was conducted in the ice-covered area between Green-

land and Franz Josef Land. The algorithm has been trained

using 24 RS2 scenes acquired in winter months in 2011 and

2012, and the results were validated against manually derived

ice charts of the Norwegian Meteorological Institute. The al-

gorithm was applied on a total of 2705 RS2 scenes obtained

from 2013 to 2015, and the validation results showed that the

average classification accuracy was 91± 4%.

1 Introduction

Synthetic Aperture Radar (SAR) is an active microwave sen-

sor providing high-resolution images over large areas inde-

pendent of clouds and daylight. This is especially useful for

observing the polar regions, where SAR data are widely used

for exploring sea ice concentration, extent, detection of leads,

polynyas, ice floes and ice edge, and ice type identification

and classification (Johannessen et al., 2007; Dierking, 2013).

Monitoring of sea ice processes, i.e., ice edge variations and

motion, is important for practical tasks such as ice navigation

and for scientific studies. High-resolution data from C-band

SAR such as ERS-1/2 (European Remote Sensing satellites,

European Space Agency, ESA), RADARSAT-1 (Earth ob-

servation satellite, Canadian Space Agency), and ENVISAT

(Environmental Satellite, ESA) have been used as the main

data source for sea ice monitoring in the last 2 decades (e.g.,

Johannessen et al., 2007). The advanced capabilities of SAR

on board of RADARSAT-2 (RS2) and Sentinel-1 (European

Commission and ESA) with multi-polarization data can im-

prove sea ice observations such as ice edge detection and ice

type classification.

SAR images can be used to identify different sea ice

types and open water (OW) areas based on variations of the

backscattered radar intensity caused by surface roughness

and other sea ice properties. Classification methods based

only on the backscattering coefficients (σ ◦) are hampered by
ambiguities in the relation between ice types and σ ◦, since
various ice types (multiyear, first-year, and some young and

new ice) and open water depending on wind speed and direc-

tion can have similar σ ◦ (Dierking, 2010; Johannessen et al.,
2007). In particular, discrimination between calm open wa-

ter and smooth first-year ice, as well as between windy open

water and young ice with frost flowers or multiyear ice, can

be problematic. Including additional image characteristics

like image texture, tone, and spatial structures can improve

the classification results significantly (Shokr, 1991; Soh and
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Tsatsoulis, 1999; Clausi, 2002; Bogdanov et al., 2005; Mail-

lard et al., 2005; Yu et al., 2012).

Numerous efforts have been made to develop algorithms to

retrieve sea ice variables from SAR data. The SAR polynya

detection algorithm proposed by Dokken et al. (2002) is

based on wavelet transforms for edge detection and standard

texture analysis. A threshold function using texture informa-

tion is used to classify sea ice and water for polynya detec-

tion. A semi-automated sea ice classification method based

on fuzzy rules was reported by Gill (2003) for classification

of RADARSAT-1 data over the Arctic into calm water, wind-

roughened water, and sea ice in low and high concentrations.

Advanced Reasoning using Knowledge for Typing of Sea Ice

(ARKTOS) (Soh et al., 2004) has been established to sup-

port scientific research and operational applications in the

field of sea ice segmentation and classification. Haarpainter

and Solbø (2007) developed an automatic algorithm for ice–

ocean discrimination in RADARSAT-1 and ENVISAT SAR

imagery. The texture-based algorithm consists of an automat-

ically trained maximum likelihood classifier and divides the

SAR images into slices of small incidence angle ranges. The

results show that sea ice and water can be discriminated quite

reliably. Some examples showed a tendency of the algorithm

to a better performance at low incidence angles. Karvonen et

al. (2005) distinguished the Baltic Sea ice from open water

based on thresholding of segment-wise local autocorrelations

in SAR images. The method provided 90% accuracy com-

pared to digital ice charts for the Baltic Sea. This algorithm

has been used by the Finnish Meteorological Institute (FMI).

Tests with RADARSAT-2 and ENVISAT SAR data show that

over 89.4% of the test data fit the ice classification provided

by the Finnish Ice Service for the Baltic Sea and Arctic Sea

(Karvonen, 2010, 2012).

Dual polarization has several advantages for sea ice clas-

sification compared to single-polarization SAR data. Rough

or frost-flower-covered young ice and multiyear ice, while

very different in their thickness (10–15 cm and more than

2.5m, respectively), show rather similar brightness in the

HH channel whereas MYI is brighter than young ice in the

HV channel. Smooth first-year level ice is darker in both

HH and HV and can be easily distinguished from young

ice and MYI. Wind-roughened open water is difficult to dis-

tinguish from sea ice in a single HH polarization. How-

ever, open water especially affected by wind is darker in HV

that improves sea ice classification (Sandven et al., 2008).

The dual-polarization ENVISAT SAR Alternative Polariza-

tion Mode data enabled discrimination of sea ice types and

open water with a decision-tree classifier using estimated

statistical thresholds for winter. Open water can be unam-

biguously discriminated from smooth FYI, rough FYI, and

MYI with > 99% accuracy using a co-polarized ratio thresh-

old (Geldsetzer and Yackel, 2009). The possibilities of su-

pervised k-means and maximum likelihood classification of

various SAR polarimetric data to three pre-identified sea ice

types and wind-roughened open water was explored in Gill

and Yackel (2012).

The MAp-Guided Sea Ice Classification System (MAGIC)

for automated ice–water discrimination on dual-polarization

images from RADARSAT-2 combines a “glocal” Iterative

Region Growing using Semantics (IRGS) classification (Yu

and Clausi, 2008) with a pixel-based support vector machine

(SVM) approach. The “glocal” classification identifies ho-

mogeneous regions with arbitrary class labels. The ice–water

map is created with the SVM classifier exploiting SAR tex-

ture and backscatter features. The MAGIC system has been

applied on 20 RS2 scenes over the Beaufort Sea. The aver-

age classification accuracy with respect to manually drawn

ice charts is 96.5% (Clausi et al., 2010; Ochilov and Clausi,

2012; Leigh et al., 2014).

A neural-network-based algorithm has been developed for

ENVISAT SAR images for operational sea ice classifica-

tion including validation (Zakhvatkina et al., 2013). The al-

gorithm discriminated the level FYI, deformed FYI, MYI,

and open water/nilas in the high Arctic in winter conditions

and demonstrated good applicability in the central Arctic.

Using the same approach an algorithm for mapping ice–

water utilizing ENVISAT ASAR WSM images was created

for automated ice edge detection in Fram Strait. The ice–

water classes were estimated by a multi-layer perceptron

neural network which uses SAR calculated texture features

and concentration data from AMSR (Advanced Microwave

Scanning Radiometer) and, later, SSM/I (Special Sensor Mi-

crowave/Imager) as inputs (Sandven et al., 2012). Daily ice–

water products were provided with a resolution of 525m

from winter 2011 until April 2012. The accuracy of this clas-

sification was about 97% compared to high-resolution sea

ice concentration charts based on manual interpretation of

satellite data provided by the Norwegian Meteorological In-

stitute.

Our goal is to extend the method originally used for the

single polarized ENVISAT SAR images (Sandven et al.,

2012) by utilizing dual-polarization data from RS2 and to

develop an algorithm for ice–water classification, which can

be applied to RS2 data for the production of ice–water maps

as part of marine services under the Copernicus programme.

A special motivation for our work was not only development

of an algorithm but also its extensively validation in various

sea ice conditions and identification of the applicability con-

ditions. We also aimed to develop the algorithm as an open-

source software available for other scientists. Our algorithm

is based on texture features and the SVM method using the

advantages of dual-polarization RS2 SAR image data.

This paper describes the developed algorithm and dis-

cusses practical issues of its applicability. The steps and pa-

rameters for implementation of the algorithm are described,

allowing users to test the algorithms themselves. The paper

is organized as follows. Section 2 introduces the satellite

images and geographical area used in the study. The algo-

rithm including pre-processing and validation procedure is
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described in Sect. 3. Results of the pre-processing step, ice–

water classification, and comparison with manual ice charts

are given in Sect. 4. Finally, a discussion of the results is pre-

sented in Sect. 5.

2 Data

The region of interest is the ice-covered sea between Green-

land and Franz Josef Land, where detailed ice information

from SAR data is important due to the highly variable sea ice

conditions, in particular the export out of the Arctic through

Fram Strait (Vinje and Finnekåsa, 1986). SAR is the most

useful sensor to provide high-resolution year-round data for

estimation of sea ice variables such as ice classification, ice

edge variability, and ice drift.

This study is based on RS2 ScanSAR Wide (SCW)

mode images with 500 km swath width, a pixel spacing of

50× 50m, and dual-polarization (HH+HV). This is the
main mode used by RS2 for operational sea ice monitoring

(RS2 Product Description, 2011). Twenty-four SCW scenes

around Svalbard (Fig. 1) from 2011 and 2012 were utilized

in the following analysis to train the algorithm. The winter-

month images were selected to cover various types of thin

(e.g., new and young ice), first-year, and multiyear ice with

different degrees of deformation, packed ice, broken ice, and

open water under different wind speed conditions (rough,

very rough, and calm water, also in leads). The radar images

include the most typical samples since the radar intensity

contrast between open water and ice varies greatly with ice

conditions and wind speed or direction which significantly

affect the radar brightness of open water. In summer the con-

trast between backscatter intensities of the melted different

ice types observed on the SAR image is diminished since

surfaces become smoother and are covered by meltwater. The

intensities are reduced as well as the contrast between ice and

OW.

The backscatter at HH generally decreases with increas-

ing incidence angle (Fig. 2a), whereas the HV channel is less

sensitive to the incidence angle. The HV channel includes

disturbances in azimuth direction (visible as bright and dark

stripes) along the burst boundaries in the ScanSAR Wide

Beam SAR image (Fig. 2b). The expected noise level is a

local mean noise power value that fluctuates across the im-

age. The noise level is obtained from a model that accounts

for the characteristics of the SAR sensor, the beam mode, the

acquisition, and the ground processing (RS2 PUG) (Jefferies,

2012). The system noise level as a function of the incidence

angle is documented in the XML file that comes with the RS2

image.

3 Methodology

3.1 Incidence angle correction for HH

During the first step of our ice–water classification algorithm

SAR data pre-processing is conducted, including incidence

angular correction for HH and absolute calibration to ob-

tain σ ◦ values. The auxiliary XML files coming with the
product, i.e., scaling look-up table (LUT), provide informa-

tion for georeferencing and calibration. These LUTs allow

converting the processed digital numbers of the output SAR

image to calibrated values. An important goal of radiomet-

ric calibration is to provide the proper comparison between

the scattering of image targets with different SAR sensors or

from the same sensor with different operating conditions, so

the backscatter values of targets can be compared to one an-

other or a reference. Absolute radiation calibration is used to

convert the digital numbers in the SAR image to σ ◦, apply-
ing a constant offset and range dependent gains to the SAR

image (RS2 Product Description, 2011). All images are cor-

rected to a reference angle of 35◦, which represents the center
incidence angle and allows analysis of the SAR images with-

out brightness amplification. Backscatter recalculation to 35◦
incidence angle is carried out using a predefined calculated

coefficient:

σj
◦ = 10 · log10

⎛⎝
(
digital number2j

)
Aj

· sin(
θj

)⎞⎠
− (
coefficient · (θj − 35)) , (1)

where σ ◦ is the backscatter values of pixels in jth line (range
direction), given in dB; digital number is the pixel brightness

(data consist of the SAR amplitude value Amp and intensity
value I =Amp2; A is the gain value (invariant in line) corre-
sponding to the range sample j (obtained by linear interpo-
lation of the LUT supplied gain values); θ is the incidence

angle for each jth pixel; and coefficient is the predefined cal-
culated coefficient.

The coefficient was defined by calculating the linear trend

of the observed backscatter signal on several HH-polarized

RS2 SCW images of pack ice. The procedure is similar to

the pre-processing of ENVISAT ASAR data in Zakhvatkina

et al. (2013). The backscatter normalization to a pre-defined

incidence angle provides homogenous image contrast across

the swath over ice-covered areas. The details of the angular

correction method are discussed in Sect. 5.1.

3.2 Thermal noise correction for HV

SAR data pre-processing also includes reduction of ther-

mal noise effect and absolute calibration for HV. The ther-

mal noise reduction consists of three steps: (1) reading the

noise values and corresponding incidence angles from the

XML file, (2) interpolation of noise on a finer grid for each
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Figure 1. Location of RADARSAT-2 image used for training. All data are provided in GeoTIFF format with auxiliary XML files.

Figure 2. RS2 SCW dual-polarization image taken over Fram Strait on 28 November 2011 prior pre-processing. (a)HH channel with angular
dependence; (b) HV channel with noise floor variations.

pixel, and (3) subtraction of interpolated noise values from

the backscatter values of the entire image.

Due to the discontinuity of the noise floor at the bound-

aries of the individual SAR beams and the low resolution of

the provided noise values in the XML file (only 100 points

for 500 km swath width), the noise correction may result in

an erroneous subtraction of a high noise floor from a low sig-

nal of the neighboring SAR beam and, hence, yield negative

values for σ ◦. To prevent such flaws, a 10 pixel wide stripe

of data along the edge of the SAR beam is masked out and

disabled for further analysis.

3.3 Manual classification

The second step includes manual classification of SAR im-

ages into predefined classes (e.g., open water and ice of

various types depending on which classes are needed). The

predefined classes take into account information from opti-

cal data, ice concentration from passive microwave, previous

classification results, and historical data.
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Manual classification has been done for the training im-

ages containing several different sea ice types and ice-free

areas with both rough and smooth open water. Predominant

subclasses, which must be reliable and of high quality, were

identified and chosen by sea ice experts through visual anal-

ysis of RS2 scenes based on their previous experience. The

images selected for our algorithm training did not contain

homogeneous ice cover because the mixing of different ice

types with different degrees of deformation, cracks, ridges

and leads usually occurs in ice-covered areas. The main class

“sea ice” was chosen to include the following subclasses:

(1) subclass including young ice, first-year, and multiyear

ice; (2) fast ice; and (3) broken ice on the edge (border) mixed

with ice-free areas (mostly found in the marginal ice zone).

The class “open water” included the two subclasses open wa-

ter with high and very high wind speed conditions and a third

subclass that represented a mixture of calm open water, frazil

ice, leads, and nilas. These manual classification results were

collocated with texture feature images (description provided

in Sects. 3.4 and 4.2) to get a number of training vectors. For

the final product the subclasses were merged into the main

classes “sea ice” and “open water” since the similarities be-

tween the subclasses are too high for a reliable discrimination

without additional data.

3.4 Calculation of texture features

The third step is a calculation of texture features from HH

and HV images. The calculation of texture features con-

sists of the computation of the gray level co-occurrence ma-

trix (GLCM) using Eq. (2) and the calculation of texture

features based on the GLCM (Eqs. 3–10). Considering the

full range of possible brightness levels (e.g., 0–255) and a

small window size, most GLCM elements would be zero and

that would have a negative effect on the classification result.

Therefore we divide the full brightness range into few inter-

vals (quantization levels K). The GLCM is created for each

direction θ , where each cell (i, j) is a measure of the rel-
ative frequency of two pixels occurrence with brightness i
and j, respectively, separated by a co-occurrence distance d.
One may also say that the matrix element Pd,θ (i, j) is a mea-
sure of the second-order statistical probability for changes

between gray levels i and j at a particular displacement dis-
tance d and at a particular angle (direction) (θ). The size of

square GLCM is equal to number of quantized brightness

levels K. The GLCM is averaged over four directions θ (0,

45, 90, 135◦) to account for possible rotation of the ice floes
(Clausi, 2002; Haralick et al., 1973).

Sd,θ (i,j) = Pd,θ (i,j)∑K
i=1

∑K
j=1Pd,θ (i,j)

, (2)

where Sd,θ is the GLCM, Pd,θ is the number of neighbor

pixel pairs, θ is the fixed vector directions (0, 45, 90, 135◦),
d is the co-occurrence distance, K is the number of quantized

gray levels, and i, j are the gray levels (0–255).

Energy=
∑K

i=1
∑K

j=1
[
Sd,θ (i,j)

]2
(3)

Homogeneity=
∑K

i=1
∑K

j=1
Sd,θ (i,j)

1+ (i − j)2
(4)

Contrast=
∑K

i=1
∑K

j=1(i − j)2Sd,θ (i,j) (5)

Correlation=
∑K

i=1
∑K

j=1 (i − μx)
(
j − μy

)
Sd,θ (i,j)

σxσy

(6)

Entropy= −
∑K

i=1
∑K

j=1Sd,θ (i,j) log10Sd,θ (i,j) (7)

Kurtosis=
∑K

i=1
∑K

j=1

(
Sd,θ − μ

)4
σ 4

(8)

Skewness=
∑K

i=1
∑K

j=1

(
Sd,θ − μ

)3
σ 3

(9)

Cluster prominence=∑K

i=1
∑K

j=1
(
i + j − μx − μy

)4
Sd,θ (i,j) (10)

σ 2x =
K∑

i=1

K∑
j=1

(j − μx)
2Sd,θ (i,j) and σ 2y =

K∑
i=1

K∑
j=1

(
j − μy

)2
Sd,θ (i,j) are standard devia-

tion of rows and columns, μx =
K∑

i=1

K∑
j=1

iSd,θ and

μy =
K∑

i=1

K∑
j=1

jSd,θ are mean values of rows and columns,

σ 2 =
K∑

i=1
(i − μ)2

K∑
j=1

Sd,θ (i,j) is the standard deviation,

and μ =
K∑

i=1

K∑
j=1

iSd,θ (i,j) is the mean values of brightness.

The results of this procedure depend on several factors

such as the size of the sliding window, the co-occurrence

distance, and the quantization levels (Shokr, 1991; Soh and

Tsatsoulis, 1999; Clausi, 2002). In order to test the effects of

these parameters on the classification accuracy, texture fea-

tures were calculated for the window sizes 16, 32, 64, and

128 pixels using different co-occurrence distances and vary-

ing the number of quantized gray levels (Table 1). The opti-

mal values for the parameters of texture features calculation

were selected analyzing variations in the texture parameters

by visual inspection of the normalized mean values distribu-

tion of each texture feature for a defined class. The decision

is made for the benefit of the cases when the separation of the

normalized texture values for the classes increases in the ma-

jority of investigated texture feature figures. Defined parame-

ters were applied for calculations of all set of texture features,

and then the visual comparison showed the best discrimina-

tion between the ice–water classes for some texture features

(details provided in Sect. 4.2).
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Table 1. Experiments of computation parameters. W is the window

size, d is the co-occurrence distance, K is the quantized gray level,
and moving step is a step of sliding window moving.

W d Moving step K

32 4 8/16/32 16/25/32

32 8 8/16/32 16/25/32

32 16 8/16/32 16/25/32

64 4 8/16/32/64 16/25/32

64 8 8/16/32/64 16/25/32

64 16 8/16/32/64 16/25/32

64 32 8/16/32/64 16/25/32

128 4 32/64/128 16/25/32

128 8 32/64/128 16/25/32

128 16 32/64/128 16/25/32

128 32 32/64/128 16/25/32

128 64 32/64/128 16/25/32

A selection procedure is applied to limit a set of tex-

ture characteristics that provides a good classification with

a small computational load. This procedure includes visual

assessment of scatter plots, comparing values of texture fea-

tures in different combinations. Candidate texture features

that provide the best separation of classes are selected and

others are discarded. The selection procedure also uses a set

of training images to establish the set of texture features and

its computation parameters, providing the smallest classifi-

cation error. In other words, we constrain the texture features

number by the demanded balance considering the SAR im-

age level of details, computation time, and the optimal reli-

able class separation.

3.5 Support vector machines

The next step is the training of classifier (e.g., SVM) for

classification of arrays with certain texture features as well

as σ ◦ values based on the results of manual classification.
The SVM are supervised learning methods with associated

learning algorithms that provide data classification. The ba-

sic SVM takes a set of input data (several “attributes”, i.e.,

the features) and predicts the outputs (i.e., the class labels)

for each given input, making it a non-probabilistic classifier.

The support vector network maps the input vectors into a

high dimensional feature space through nonlinear mapping.

SVM finds a linear hyperplane separating objects into classes

by the most widely clear gap between the nearest training

data points of any class. An optimal hyperplane is defined

as the linear decision function with maximal margin between

the vectors in this higher dimensional space. When the maxi-

mummargin is found, only points which lie closest to the hy-

perplane have weights > 0. These points determine this mar-

gin and are called support vectors (Cortes and Vapnik, 1995).

SVM performs a nonlinear classification using the ker-

nel trick. The kernel function may transform the data into

a higher dimensional space to make this nonlinearly separa-

tion possible when the relation between class labels and at-

tributes is nonlinear. A common choice is a Gaussian kernel.

In our study we have used the radial basis function kernel

(RBF kernel), which is found to work well in a wide variety

of applications.

The scikit-learn open source was used to implement

the SVM classification method (http://scikit-learn.org/stable/

index.html). SVM models implementation in scikit-learn is

based on LIBSVM. Basically, SVM trains the model using

low-level method and can only solve binary classification

problems. In the case of multi-class classification, LIBSVM

implements the “one-against-one” technique by fitting all bi-

nary sub-classifiers and finding the correct class by a vot-

ing mechanism. The effectiveness of SVM training depends

on the selection of kernel, the kernel’s parameters (γ ), and

margin parameter C. The software provides a simple tool to

check a grid of parameters obtaining cross-validation accu-

racy for each parameter setting: the parameters with the high-

est cross-validation accuracy are returned (Hsu et al., 2003).

The SVM parameters in our case were γ = 0.1 and C = 1.
The calculated texture features and σ ◦ values corre-

sponding to the manually identified classes on several pre-

processed RS2 images were used as input data for training

the SVM classifier. After completing the training procedure

the resulting SVM is applied for automatic sea ice classifica-

tion to divide the RS2 scene into the predefined classes.

3.6 Validation

The final step includes validation of the classification re-

sults using manually drawn ice charts. Validation of Arctic

sea ice classification results is a challenging task since sea

ice is a very inhomogeneous medium and validation data

on ice classification are difficult to obtain. As a substitute

our sea ice classification results have been compared with

manual sea ice charts produced by the operational ice ser-

vice at the Norwegian Meteorological Institute (MET Nor-

way, http://polarview.met.no/). MET Norway produces ice

charts every workday using the following data sources: high-

resolution SAR images, low-resolution microwave SSM/I

and SSMIS data (DMSP), MODIS images (Terra and Aqua),

and AVHRR data from NOAA. In our comparison MET Nor-

way ice charts are assumed to represent “true” classification

and the confusion matrix was calculated for accuracy evalu-

ation of our algorithm results.

After completing the algorithm training, the fully auto-

mated image classification includes only three of the above

mentioned steps: pre-processing (Sect. 3.1 and 3.2), texture

feature retrieval (Sect. 3.4), and application of the automatic

classifier (SVM).

The initial size of the full-resolution RS2 SCW image is

about 10 000× 10 000 pixels. We downscale the original im-
age by averaging to 5000× 5000 pixels to increase the com-
putational efficiency and decrease the influence of speckle
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noise. The image size is further reduced during the com-

putation of the texture features by using a sliding window

with 16 pixel step size (the detailed parameters are described

in Sect. 4.2). The image size of the final product is about

330× 330 pixels with 1600m pixel spacing. This reduction
in resolution significantly increases the processing speed and

allows computing a classification results in less than 15min.

Pre-processing of RS2 data was performed utilizing the

open-source Python toolbox NANSAT (Korosov et al.,

2015), (https://github.com/nansencenter/nansat/wiki). The

texture extraction algorithm was created in the Python pro-

gramming language.

4 Results

To illustrate the algorithm performance the automatic SVM

classification was applied to the RS2 scene shown in Fig. 2.

The example scene was acquired on 28 November 2011 over

the western part of Svalbard in Fram Strait. Figures 2 and 3

show both HH and HV polarizations before and after corre-

sponding corrections described in Sect. 2: compensation of

incidence angle effects for HH (Fig. 3a) and noise reduction

for HV (Fig. 3b). The image contains several ice types, open

water under different wind conditions, and land. The open

water area is located on the right-hand side of the image and

the ice-covered area in the upper-left corner. The sea ice area

includes a marginal ice zone with bright broken up ice. The

ice-covered areas and the rough OW areas appear both bright

in HH and are therefore difficult to distinguish. Including HV,

however, provides additional information since OW areas on

this image appear generally darker than sea ice in HV. This

is one of the major dual-polarization advantages and can be

seen in the lower right part of the example image (Fig. 2).

4.1 Correction for incidence angle and thermal noise

The linear trend coefficient used for backscatter angu-

lar dependence correction of HH was estimated to be

−0.298 dB/1◦ and allowed normalization of σ ◦ to the inci-
dence angle 35◦ as shown on Fig. 3a and c. The application of
our noise correction procedure for HV reduces significantly

thermal noise and gets rid of vertical striping as shown in

Fig. 3b, d.

4.2 Texture feature calculation

As part of the algorithm development texture features were

calculated based on different parameter settings. Visual

examination of mean values of several texture features

(Fig. 4a, b) suggested the optimal combination of the sliding

window, moving step, and distance between neighboring pix-

els, which provides better separation of the ice–water classes

compared to other combinations of window sizes with dif-

ferent texture parameters. A set of texture characteristics was

selected analyzing variations in mean values of the textu-

ral characteristics of defined classes calculated with several

combinations of obtained parameters (Fig. 4c, d). The largest

change of distance between mean values of texture features

of different classes on Fig. 4d defines the best option for

the potential classification. Finally, together with visual in-

spection of the texture images (some examples are given on

Fig. 5a–f) of the a priori known most problematic classifi-

cation cases on the SAR images used for training, the set

of texture characteristics are defined. The best results were

achieved using the following parameter set: number of gray

levels (K = 32), co-occurrence distance (d = 8), sliding win-
dow size (w = 64× 64), and moving step of the sliding win-
dow (s = 16). Using the following texture features for the
two channels provided the best test results: for HH channel

the energy, inertia, cluster prominence, entropy, third statis-

tical moment of brightness, backscatter, and standard devia-

tion were calculated; for HV channel the energy, correlation,

homogeneity, entropy, and backscatter were calculated. In-

cluding more texture features for both channels was tested

but found not to improve the information content. The calcu-

lation parameters were found experimentally to give a good

compromise between speckle noise reduction, preservation

of details, and correct classification results (methodology de-

scription in Zakhvatkina et al., 2013).

Texture characteristics provide a more complete delin-

eation of surface parameters in addition to the raw backscat-

ter signal, and increase the ability for ice and water separa-

tion. The scatter plots in Fig. 5g, h show the values of two

different texture features plotted against each other and il-

lustrate the usefulness of texture features for discrimination

between defined classes.

4.3 Manual versus automatic classification

As described in Sect. 3 several SAR images were classified

manually as part of the training procedure for the automatic

algorithm. Comparing the manual classification from sea ice

expert analysis with the algorithm results (Fig. 6) reveals a

general high level of correspondence and illustrates the capa-

bility of the automatic approach. Detailed observation of the

classification results show that most misclassifications are

observed near land and in the MIZ. Figure 6b shows small

features inside ice-covered zone (blue dots) that were mis-

classified as OW.

4.4 Validation

Validation of the algorithm results has been performed us-

ing 2705 RS2 images taken over our area of interest in the

period 1 January 2013 until 25 October 2015. For each RS2

image an error matrix based on pixel-by-pixel difference be-

tween algorithm result and MET Norway chart has been cal-

culated. OW and sea ice correspondence as well as an over-

all accuracy were obtained for each RS2 image classifica-

tion result and averaged accuracies have been calculated for
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Figure 3. RS2 SCW dual-polarization image taken over Fram Strait on 28 November 2011, including pre-processing. (a) Calibrated image
after correction of σ ◦ at 35◦ incidence angle using the predefined coefficient for sea ice of −0.298 dB/1◦. (b) Noise-corrected image: beam
boundaries are visible due to differences in noise levels between adjacent beams. (c) σ ◦ curves of SAR image across the entire swath: original
image (blue) and after angular correction (green). (d) σ ◦ curves of SAR image along the whole swath. The blue curve shows σ ◦ value profile
of the raw HV channel image in range direction, the red curve depicts the noise floor level, and the green curve is the result of subtraction.

each month. The impact of each class on the classification

error has been estimated and the respective monthly aver-

aged errors were computed. The averaged overall accuracies

including standard deviation and errors in ice and water clas-

sification for each month are given in Table 2. In addition,

the monthly accuracies are presented as a graph in Fig. 7.

The monthly averaged overall accuracies show lower values

during summer months (Fig. 7 – from May to October) and

higher values during winter. The average total classification

accuracy for all 2705 scenes is 91± 4%.
Figure 8 shows an example of the validation process. The

RS2 HH image is shown in Fig. 8a, the result of our SVM

classification in Fig. 8c, and the MET Norway sea ice chart

in Fig. 8b. To compare the algorithm result with the manu-

ally derived ice charts, both products are reclassified into ice

and water (Fig. 8d and e). The error matrix is represented as

an image (Fig. 8f) with the following three classes: no differ-

ence, sea ice error (METNorway: sea ice, OW in our results),

and OW error (MET Norway: OW, sea ice in our results).

5 Discussion

5.1 Significance of incidence angle variations and
thermal noise reduction

Water areas have a very large range of brightness depending

on wind speed. At higher wind speeds the contrast between

open water and first- and multi-year ice is reduced, which

gives an ambiguity between these classes. The dependence of

backscatter on incidence angle is well known (Shokr, 2009)

and is significantly higher for open water than for sea ice.

The correction factor for the incidence angle is therefore very

different for ice and water. The coefficients for the angu-

lar dependence of water-covered areas are significantly in-

fluenced by wind conditions – with stronger wind intensity

grows faster. Our observations show that angular dependence

of sea ice is more stable regardless of wind or other condi-

tions (Fig. 3). Since the surface type is not known a priori

we have to choose which angular correction to apply and the

preference is given to the more reliable sea ice angular cor-

rection. However, the total compensation is impossible as the

backscatter dependence on the incidence angle varies for dif-
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Figure 4.Normalized mean values of texture characteristics for calm open water (OWc), rough open water (OWr), ice, and fast ice, calculated
in window size 64× 64 pixels: (a) energy and (b) σ ◦ of HH with different co-occurrence distances for several moving step variations. Set
of texture features are calculated with found above parameters: (c) d = 4 and step= 16; (d) d = 8 and step= 16 pixels (0 – energy, 1 –
correlation, 2 – inertia or contrast, 3 – cluster prominence, 4 – homogeneity, 5 – entropy, 6 – third central statistical moment of brightness,

7 – fourth central statistical moment of brightness, 8 – average sea ice backscatter, 9 – standard deviation of brightness for HH). The range

from 10 to 19 indicates the same texture features calculated for HV. The calculations were made for several images used for training.

Table 2.Monthly averaged accuracies of the automatic ice charts compared to MET Norway ice charts (results given in %).

2013 2014 2015

Months Images Ov acc SD OW err Ice err Months Images Ov acc SD OW err Ice err Months Images Ov acc SD OW err Ice err

Jan 72 91.52 5.43 3.99 4.50 Jan 97 91.89 4.70 2.52 5.59 Jan 51 94.84 3.10 1.28 3.88

Feb 70 91.05 4.54 2.66 6.30 Feb 93 92.11 5.05 3.37 4.52 Feb 33 94.47 4.05 2.33 3.86

Mar 106 91.21 4.71 1.20 7.59 Mar 110 92.20 3.45 2.83 4.98 Mar 73 94.36 4.40 1.67 3.82

Apr 110 92.03 4.57 0.95 7.02 Apr 130 93.34 3.40 1.30 5.36 Apr 54 94.86 4.36 1.47 3.83

May 111 88.60 7.96 0.88 10.52 May 137 92.80 4.77 1.00 6.20 May 63 95.05 3.21 0.72 3.81

Jun 98 87.64 7.58 1.59 10.76 Jun 93 89.98 5.78 1.54 8.48 Jun 67 84.73 14.09 0.69 3.80

Jul 83 89.73 8.01 2.72 7.54 Jul 95 86.82 9.89 1.98 11.20 Jul 47 74.49 21.61 1.73 3.81

Aug 85 94.36 3.10 2.96 2.68 Aug 88 88.39 10.87 1.87 9.74 Aug 47 86.65 12.25 2.64 3.85

Sep 93 95.88 2.02 2.47 1.65 Sep 97 87.55 17.56 8.24 4.21 Sep 43 94.83 3.87 3.36 3.78

Okt 72 94.53 2.99 3.98 1.49 Okt 78 94.89 3.15 1.87 3.24 Okt 27 94.69 4.16 4.58 3.78

Nov 84 92.00 4.77 5.10 2.90 Nov 47 94.58 2.84 2.38 3.04 Nov

Dec 97 90.93 6.63 3.18 5.88 Dec 54 92.94 7.99 3.45 3.61 Dec

Ov acc is monthly overall accuracy; SD is the standard deviation; OW err means open water on MET Norway ice chart and sea ice on automatic ice chart; Ice err means sea ice on MET Norway ice chart and open water on automatic ice
chart.

ferent ice types (Mäkynen et al., 2002) and water areas in the

scene. The radiometric corrections during calibration process

are just a first-order approximation; nevertheless, the advan-

tages of performing the angular correction are greater than

the disadvantages (Moen et al., 2015). With regards to ther-

mal noise correction we found that sometimes not all visible

noise floor artifacts inside beams can be completely removed

and these residuals may cause classification errors.

5.2 Number of texture features vs. efficiency

In addition to the eigth extracted texture features we charac-

terize the surface by values of σ ◦ averaged within the sliding
window and a value of standard deviations. Given that we

have two channels (HH and HV) the number of parameters

grows up to 20 and some of them are strongly intercorre-

lated (Shokr, 1991; Albregtsen, 2008). High correlation be-
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Figure 5. Texture features calculated for RS2 SCW scene, 28 November 2011, in the Fram Strait. (a) Backscatter of HH polariza-

tion; (b) backscatter of HV polarization; (c) inertia of HH polarization; (d) energy of HV polarization; (e) correlation of HH polariza-
tion; (f) correlation of HV polarization. The scatter plots show how a couple of textural features calculated from RS2 images, shown in
Fig. 1, can be used to classify ice (green), rough OW (blue), and calm OW (cyan). (g) σ ◦ of HV vs. σ ◦ of HH. (h) Energy of HH vs.
correlation of HV.

Figure 6. OW and sea ice classification of RS2 SCW image shown in Fig. 2. (a) Manual classification based on sea ice expert analysis to
delineate sea ice (in the MIZ and general sea ice cover) and open water (calm and rough open water): dark gray is sea ice; very dark gray is

marginal ice zone; light gray is OW; green is land. (b) Automatic SVM classification result: white is sea ice; dark blue is calm OW; blue is

OW; green is land.

tween two textural characteristics shows that they have sim-

ilar properties, and hence it makes no sense to use both fea-

tures. In case of low correlation both features will contribute

to the improvement of the classification accuracy (Clausi,

2002). The similarity can explain the misclassifications and

in fact this is part of the motivation to reduce dimensionality.

If we include too few texture features to the classifier then

the informationally poor features have to be compensated by

using complicated discrimination function and can lead to

increased classification confusion. In contrast, if all texture

features are used by the classifier, some classes can be under-

estimated or overestimated and the discrimination for many

classes may lead to higher classification errors.
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Figure 7.Monthly accuracy and standard deviation of SVM classification of RS2 images assuming that MET Norway operational ice charts
are correct.

Sea ice in the upper part of Fig. 5a could not be dis-

tinguished from rough open water (upper right). However,

Fig. 5b shows reliable detection of sea ice-covered area (left

side). Calm open water can be easily recognized in Fig. 5c

and d (dark blue areas). In both figures, the heterogeneous

sea ice area can be clearly distinguished from the open water

zone. The latter consist of very close ice floes and/or broken

ice. Some other ice-covered area can be incorrectly defined

as open water. Figure 5e adds more useful information about

open water location (blue colored area). The scatter plot on

Fig. 5g, h represents advantage of texture feature applica-

tion for discrimination between the sea ice and two classes

of open water using both polarizations, where sea ice (green)

can be clearly seen as standing separately from OW (blue).

The scatter plot in Fig. 5h demonstrates how different texture

characteristics, e.g., energy versus correlation, of different

polarizations can add useful information for detection. The

examples in Fig. 5e and f show that the same texture feature

calculated for one polarization can be used in applications to

obtain well-delineated class; otherwise for other polarization

it demonstrates the poor separation between classes.

5.3 Sources of errors

The MET Norway manual products and our algorithm re-

sults show generally a good consistency. However, differ-

ences typically appear at the ice–water boundary and inside

ice-covered areas, where leads or channels on the SAR im-

age are not delineated on the MET Norway ice charts. Some

differences are also found in the coastal zones, where narrow

ice zones near the coast are wrongly shown in our results or

fast ice is wrongly classified as OW by our algorithm. This

misclassification can be explained by appearance of fast ice

and calm open water on a SAR image and its similarity in

the low backscatter. For this case the polarization difference

in backscatter between HH and HV bands (cross-polarization

ratio) could be included for further improvement (Sandven,

2008; Dierking and Pedersen, 2012; Moen et al., 2013). More

significant classification errors can be found in the MIZ.

Detecting typical backscatter ranges and textural struc-

tures for different sea ice types and water areas with differ-

ent roughness stages is extremely difficult due to the high

dynamic and variable nature of sea ice and wind speed im-

pact. In particular, different structures on the water affected

by wind and currents and visually detected on the SAR im-

ages (e.g., stripes, eddies) may cause wrong sea ice classifi-

cation.

Residual HV noise effects (after correction) along the

ScanSAR image beam boundaries and signal variations

inside the separate beams due to instrumental artifacts

(Fig. 5b, d) can have an uncorrected effect on the texture

feature analysis and may cause classification errors. These

residual noise effects are not visible in the ice-covered areas,

but rough open water on high incidence angle close to the

beam boundaries may be erroneously classified as sea ice.

The backscatter signal of melting ice becomes similar to

open water and imposes limitations for the classification of

RS2 images for the summer season.

We assume that our automatic algorithm classifies SAR

images more reliable as than represented by the provided ac-

curacy (91%), and this inconsistency may occur for the fol-

lowing reasons:

1. The MET Norway ice charts have a lower resolution

than our automatic ice charts making an absolute ac-

curate estimation of the ice conditions in the each SAR

images and detailed comparison impossible.

2. The classes obtained byMETNorway are not consistent

with the simple ice–water classification provided by the

algorithm. In the comparison, we reclassify the MET

Norway ice chart into ice and open water. Here, areas

with ice concentrations≤ 10% are regarded as open wa-

www.the-cryosphere.net/11/33/2017/ The Cryosphere, 11, 33–46, 2017



44 N. Zakhvatkina et al.: Operational algorithm for ice–water classification

Figure 8. Validation procedure of automatic classification results compared to MET Norway ice charts. (a) Original RS2 SCW SAR image

(HH polarization), taken over the southern part of Svalbard on 14 March 2013. (b) Collocated subset of manual ice concentration chart,
provided by the Norwegian Ice Service (met.no) for the same day. (c) Result of the SVM classification. (d) Result of the SVM classification
with delineation of two classes: water and sea ice. (e) Ice chart of MET Norway reclassified into two classes: open water (ice concentration
from 0 to 10%) and sea ice (ice concentration from 10 to 100%). (f) The difference of recalculated MET Norway chart and classification
result represents the error matrix as “image”: no difference, sea ice error (sea ice in MET Norway, OW in our results), and OW error (OW in

MET Norway, sea ice in our results). Overall accuracy is 95.78%, OW error is 0.19%, and ice error is 4.03%.

ter. This assumption appears to be the subjective error

factor during the validation process and finally reduces

the accuracy.

3. MET Norway provides manual ice charts for every

working day, but not for weekends and holidays. This

might cause a difference in timing up to several days.

Manual and automatic ice charts of the same day might

also not be based on images taken at the same time of

the day. Fram Strait is a very dynamic region and the sea

ice situation can significantly change over time periods

of several hours.

6 Conclusion

We have proposed an automated OW–ice cover classification

of RADARSAT-2 SAR ScanSAR Wide Beam mode data ac-

quired over Fram Strait for varying wind speeds and sea ice

conditions. The classification uses backscatter and texture

features together in a SVM approach. The intensity contrast

between HH and HV polarization of open water increases at

higher wind speeds, and open water is distinguished more

reliably on dual-polarized RS2 data.

Previous studies of ENVISAT ASAR HH data in wide

swath mode showed a similar backscatter dependence on in-

cidence angle (Zakhvatkina et al., 2013), and the same tech-
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nique was applied for the HH band of RS2 SCW images.

The ScanSAR image swath consists of different combina-

tions of four physical beams and there are well-known tech-

nical features caused by a wave-like modulation of the im-

age intensity in range direction throughout the entire image

in the sub-swaths and their edges of HV band (Romeiser et

al., 2013). Although the techniques for compensating the ef-

fect in the SAR processor have been developed and applied,

some ScanSAR images still show residual effects. To im-

prove utilization of such images we have carried out a pro-

cedure of HV band noise reduction that is applied as a pre-

processing tool. By computing texture features with sliding

window size of 64× 64 pixels and number of quantized gray
levels amounting to 32, we classified more that 2700 SAR

images for the period from January 2013 to October 2015.

Validation of the classification was done by comparing with

ice charts produced by MET Norway. The texture features

were used as input to SVM classification. The results show

that open water and ice are discriminated with an accuracy

of 91%.

The automated SVM-based algorithm has been adopted

for operational decoding the ice edge, and it will also be

extended and improved for sea ice type classification. With

Sentinel-1A/B as the main satellite SAR system in the com-

ing years, the next step will be to adapt the classification al-

gorithm to Sentinel-1 data (Korosov, 2016). The amount of

SAR data available for sea ice monitoring will increase sig-

nificantly in the coming years. Efficient utilization of these

data will require further efforts to develop automated algo-

rithms which can be used in operational ice services.

7 Data availability

The RADARSAT-2 data used in this study are not publicly

accessible because RADARSAT-2 is a commercial satellite.

We obtained the data used in the study as MyOcean users un-

der a special contingency agreement between ESA and MDA

GSI.
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