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Objective

In a reservoir simulator, equations relating physical variables in time and space are formu-
lated, and to the best of our abilities solved. In a full compositional model, information
concerning the balance of components among phases is of great importance when com-
puting fluid properties and flow. Therefore it is common to update the phase split often.
In a reservoir simulator, we might have millions of data points, and since the equations
governing the phase split must be solved by iterative routines, phase split calculations rep-
resent a mayor computational cost. This is the motivation for developing and investigating
preconditioners for iterative phase split routines.

In this work, our main objective is to construct a new preconditioner for iterative phase
splitting routines. We first investigate an existing preconditioner, [9], and recognize its
weakness in its poor order of execution time. The work required is proportional to O(n3

c),
where nc is the number of components in the mixture. The new preconditioners developed
have a complexity of O(n2

c).
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4 Introduction

The physical state in a given point in space and time can be described by variables. In the
case of an oil reservoir, the main variables are:

The number of moles of the chemical component i in phase α, Nα
i

Temperature, T

Pressure of phase α, pα

Porosity, φ

Saturation of phase α, Sα

Permeability, K

The Greek letter α (and later β) denotes any of the phases gas (g), oil (o) or water (w)
and i = 1...nc. The upper bound nc is the number of components in the mixture.

Given the above variables, we have knowledge of the amount of oil and gas present. In the
process of extracting oil from a reservoir, the variables above will vary with time, for all
points in the reservoir, and knowing how they vary is of great value if our objective is to
optimize oil production.

The characteristics of the components, and the above variables enable the calculation of
the properties:

Mass density of phase α, ρα

Concentration of component i in phase α, cαi

Viscosity of phase α, µα

Relative permeability of phase α, krα

Capillary pressures between phases α and β, pcα,β

Darcy velocity of phase α, ~uα

The equations needed to calculate all the relations between the above variables can be
divided into algebraic and differential. It is common to divide the variables into two groups,
primary and secondary, where the primary variables are calculated from the differential
equations and the secondary from the algebraic. The primary variables are most often
selected from the first of the above lists. We refer to [1, 8, 10, 11] for details. The main
differential equations will be given in the following.

We know that mass must be conserved, so for any volume CV with interface CS:

∂

∂t

∫
CV

NidV = −
∫
CS

Fi · d~S +

∫
CV

qidV (1.1)
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Where Fi =
∑

α c
α
i ρ

αuα is the molar flux of component i, ~S is the outward normal vector
to the interface CS, and qi is a source/sink term. If the volume CV is to vary with time,
the evaluation of the surface integral on the right hand side must reflect this.

Temperature is governed in time by the heat flow equation:

∂

∂t

∫
CV

(ρu)dV =

∫
CS

(k∇T ) · d~S −
∫
CS

(hρ~u) · d~S +

∫
CV

qdV (1.2)

ρu =
∑

α=g,o,w

φSαuαρα + urρr(1− φ) (1.3)

hρ~u =
∑

α=g,o,w

hαρα~uα

where ρ and u are the mass density and internal energy, and the superscript r represents
the rock phase. Further, k is heat conductivity and h is enthalpy. Enthalpy is defined as
the sum of the internal energy and the work potential (pressure):

h = u+ p (1.4)

The first term on the right hand side of Equation (1.2) represents heat flow (and is a
variant of Fourier’s law), while the second term represents the energy carried by the fluid
flow. In addition to the above equations, we have the usual expression for the Darcy phase
velocity ~uα:

~uα = −Kkrα
µα

(∇pα − ραg) ∀ α (1.5)

Where g is the gravitational constant. The total Darcy velocity is the sum of the phase
velocities:

~u = ~uo + ~ug + ~uw (1.6)

These equations are often manipulated to provide equations directly for the pressures,
when one of these these is used as a primary variable [2]. To calculate the molar masses
Nα
i , fugacity balance may be used:

fαi = fβi ∀i, α, β (1.7)

where fαi = fαi (p, T,Nα
1 , N

α
2 , ...N

α
nc

) where nc is the number of components in the system.
The fugacity is defined more precisely in Section 4.2, and more details on thermodynamics
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can be found in [4]. Equation (1.7) will be the basis for most of this work, since iterative
routines often take an initial estimate of the distribution of components between phases,
and by applying an iterative scheme based on some form of equation (1.7) produce an new
phase split.

In the next chapter the basin simulator SOM is introduced, and the preconditioners de-
veloped in this work are envisioned to be implementable in SOM. In Chapter 3, a flash
calculation preconditioner from literature is presented, followed by the development of two
new preconditioners in Chapter 4. Numerical experiments on these methods is conduc-
ted in Chapter 5, and Chapter 6 contains conclusions and suggestions for further work.
Appendices contain nomenclature and a overview of the test code.
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Reservoir simulation
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8 Reservoir simulation

2.1 The SOM

The model described in Chapter 1 has been implemented with various simplifications in
different simulators. This section will briefly describe one of them, the “Secondary Oil
Migration” simulator SOM, see [3].

The SOM is a basin simulator, built on the equations in Chapter 1. The full details of
the simulator are not of interest for us as it is only introduced to provide a general setting
for the further work. Built in C++ SOM is module based, and object oriented, so that
modules may easily be modified or changed, as done in [8]. We see that this implies that
the SOM does not have just one numerical discretization of the equations of Chapter 1,
but may have rather different discretizations in different modules. However, the general
framework of the simulator is not altered.

In [8], the main routine is described as initializing five classes:

· TimeStepping

· Basin

· Geometry

· InputData

· InitValues

We will pause a moment to review the functions of these classes. We start from the bottom
of the list.

InitValues and InputData

These initiation classes perform the ordinary tasks of reading simulation data from file
and/or keyboard.

Geometry

The Geometry class contains grid information, as well as boundary conditions. The bound-
ary conditions are stated as pressure and temperature restrictions.

Basin

Basin contains two main modules, a Rock module and a Fluid module. Together these
contain information as to how the equations of state, viscosity, compressibility, relative
permeability, capillary pressures, etc. are related.
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TimeStepping

When reading the description of the class TimeStepping we see the following procedure is
used:

Direct quote:

- update the top depth (UpdateTopDepth),

- calculate the transmissibilities (CalcGeomDepCoup),

- calculate the temperature (DoTemperature),

- calculate the secondary variables (CalcPhaseSplit),

- calculate the water pressure and the molar masses (DoPressMolMass),

- calculate the secondary variables (CalcPhaseSplit),

- calculate the new time step.

End quote.

Note that CalcPhaseSplit is called twice in each time-step. We also see as a consequence
that not all variables that appear in the fugacity equations are altered between each call
to CalcPhaseSplit. This is reflected in the numerical experiments implemented later.

With the knowledge that the phase split must be updated in every data point twice each
time-step, as well as knowledge that iterative routines are used to calculate fugacities, we
recognize the value of accurate initial guesses for the iterative routines.

Commonly, one has used either experimentally derived relationships, as in [6], or the
previous time-step as initial guesses. In this work we will attempt to find fast and reliable
estimates for the updated phase split.

2.2 Weakness of sequential approaches

Before we continue with the task outlined in the last paragraph above, we will pause a
moment to review the drawback of a sequential procedure as described above.

Phase composition, temperature, pressure, and other physical variables are continuous
variables, and the reason for the complexity of the problem is indeed the coupling of all
these variables. With sequential solution techniques, we essentially assume that if we only
take small enough steps, we may ignore these couplings. In fact, we are so confident in
this assumption, that no back substitution or iterations are made when calculating new
time-steps.
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Of special interest for us is the fact that the primary variables, when updated in the
classes DoTemperature and DoPressMolMass, are as a consequence inaccurate and that
this implies that even though we may make a phase split that is correct according to the
primary variables, it will not correspond to physical reality.

Just as important as accuracy is the concepts of stability and convergence. Due to the in-
accuracies outlined above, we immediately understand that without stability, our methods
are not reliable. Also, if we know that our methods converge, we may adjust our step size
to control the error.

One realizes that accurate direct schemes for calculating the phase splits would enable us
to avoid some of the sequentialization from Section 2.1. This is because one could insert
the phase split solution into the mass transport, pressure, and heat equations so that the
solution to these equations took into consideration the thermodynamics of the system.



Chapter 3

Non-iterative flash calculation
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12 Non-iterative flash calculation

3.1 Derivation

We will in the following exclusively concern ourselves with the phase split. First we present
a non-iterative flash calculation (NIFC), as presented by Wang and Stenby in [9].

We do the linear approximation:

dNα
i = (

∂Nα
i

∂p
)N,Tdp+ (

∂Nα
i

∂T
)N,pdT +

∑
j=1

(
∂Nα

i

∂Nj

)p,T,Nk 6=j
dNj ∀ i (3.1)

Neglecting temperature variation in the following, we further use:

Nα
i,new = Nα

i,old + dNα
i (3.2)

ln f oj = ln f gj (3.3)

N o
i +N g

i = Ni

By differentiating the last two equations, we obtains for the variables
∂No

k

∂p
and

∂No
k

∂Nj
:

nc∑
k=1

(
∂ ln f oi
∂N o

k

+
∂ ln f gi
∂N g

k

)
∂N o

k

∂p
=
∂ ln f gi
∂p

− ∂ ln f oi
∂p

∀ i (3.4)

and

nc∑
k=1

(
∂ ln f oi
∂N o

k

+
∂ ln f gi
∂N g

k

)
∂N o

k

∂Nj

=
∂ ln f gi
∂N g

j

∀ i, j (3.5)

The linear system defined by Equation (3.4) is solvable in O(n3
c) operations, and the de-

composition may be used again in Equation (3.5) since the left hand side is equal. This
allows for a total computational time of O(n3

c). Note that calculating the compressibility
factor Z for a phase (see Equation (4.9) below) is requires O(n2

c) operations, and that
the further calculations needed for fugacity can be done in order O(1). When calculat-
ing the derivatives numerically, the variables A,B (Equation (4.10)) can be updated for
the perturbated compositions in O(nc) operations, and hence the compressibility for the
nc + 1 compositions needed can be computed in O(n2

c). Finally, we need to calculate n2
c

derivatives, again these take O(1) time. In total, estimating the Jacobian Jnc×nc is done
in O(n2

c).
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3.2 Discussion

We observe that the vectors appearing on the left hand side of equations (3.4) and (3.5)
represent the true gradients of the implicit functions Nα

i = Nα
i (P,N1...Nnc). This means

that if we let dNα
i → 0 in Equation (3.2), the equations (3.2) - (3.5) converge to the actual

solution.

The error occurring using equations (3.2) - (3.5) is therefore exclusively due to the non-
linearity of Nα

i (P,N1...Nnc) (which is caused by the nonlinear part of fαi ), Figure 3.1. If
one attempts to use equations (3.2) - (3.5) several times in succession, without letting the
solution converge with an iterative routine, one would get an additional error due to the
fact that Equation (3.3) is no longer exact. This is further discussed in Section 5.3.3.

Figure 3.1: If we let the figure represent the variation of any two components i 6= j during a
time-step, the path AB would represent the true movement of the composition,
while the line segment AC represents the changes estimated by NIFC.

We will from now on refer to the procedure described in equations (3.2) - (3.5) as NIFC
(Non-Iterative Flash Calculations).

One may also note another weakness with NIFC is that when a component i disappears
in a phase α, ln fαi = −∞, and that the partial derivatives occurring in equations (3.4)
and (3.5) are not defined. This is a problem when using this method in simulations with
many components, as heavier components tend to drop out of the gas phase at lower
temperatures and pressures. Components that only appear in one phase will from now
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on be called non-split components. To avoid the problem of undefined derivatives of non-
split components, we introduce the method NIFC-NS (Non-Iterative Flash Calculation
- Non-Split components). This method is identical to NIFC, except that we ignore the
components that appear in only one phase. Mathematically, this is equivalent to setting
∂ln(f̃α

i )

∂Nα
j

= 0 when i or j denotes a non split component.



Chapter 4

A new approximate flash calculation
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4.1 Derivation

Bearing in mind the same ideas in [9], we can proceed using equations (3.2) and (3.3) with:

f oi = f gi (4.1)

We do this to avoid double logarithms later. This leads to a variant of equations (3.4) and
(3.5):

∑
k

(
∂f oi
∂N o

k

+
∂f gi
∂N g

k

)
∂N o

k

∂p
=
∂f gi
∂p

− ∂f oi
∂p

∀ i (4.2)

∑
k

(
∂f oi
∂N o

k

+
∂f gi
∂N g

k

)
∂N o

k

∂Nj

=
∂f gi
∂N g

j

∀ i, j (4.3)

The temperature can be dealt with in an analogue fashion to pressure, and for simplicity
will not be considered in the following.

Inserting fαi = Nα
i f̃

α
i above, we may arrive at the form:

∑
k

(δik +
N o
i N

g
i

Ni

(
∂ln(f̃ oi )

∂N o
k

+
∂ln(f̃ gi )

∂N g
k

))
∂N o

k

∂p
=
N o
i N

g
i

Ni

∂ln(f gi /f
o
i )

∂p
(4.4)

∑
k

(δik +
N o
i N

g
i

Ni

(
∂ln(f̃ oi )

∂N o
k

+
∂ln(f̃ gi )

∂N g
k

))
∂N o

k

∂Nj

=
N o
i N

g
i

Ni

∂ln(f gi )

∂N g
j

(4.5)

Where δik is the Kronecker delta, and

f̃αi =
fαi
Nα
i

(4.6)

Equation (4.5) can be solved simply by evaluating the derivatives (either numerically or
analytically), an hence solve the linear system of equations that arise. This would most
likely result in an equivalent estimate to NIFC. With multicomponent oil where the number
of components easily rise above 100, the above system (and also that of equations (3.4)
and (3.5)) may take some time to invert and solve. To be precise: We have n2

c equations in
the system (4.5), which in Wang’s scheme is solvable by inverting (e.g. PLU decomposing)
a single nc × nc matrix, and subsequently applying this to the nc systems. Both these
operations take O(n3

c). We will show that with the system (4.5), the Jacobi
∂No

i

∂Nj
is possible

to estimate in O(n2
c), which is identical to the length of the vector, and hence must be

optimal.



4.2 Evaluation of
∂ln(f̃α

i )

∂Nα
j

17

4.2 Evaluation of
∂ln(f̃α

i )

∂Nα
j

When treating the term
∂ln(f̃α

i )

∂Nα
j

, we will use the fugacity based on the Peng-Robinson

equation [7]:

fαi = cαi ψ
α
i

ψαi =
pα

Zα −Bα
exp

[
bi
bα

(Zα − 1)

] [
Zα + (

√
2 + 1)Bα

Zα − (
√

2− 1)Bα

]−nα
i

(4.7)

nαi =
Aα

2
√

2Bα

[
2

aα

∑
j

(aiaj)
1/2cαj (1− κij)−

bi
bα

]
(4.8)

Where Zα is the positive real solution of the Peng-Robinson equation of state:

Z3 − (1−Bα)Z2 + (Aα − 3(Bα)2 − 2Bα)Z − (AαBα − (Bα)2 − (Bα)3) = 0 (4.9)

When the equation has several positive roots, the largest is that of the gas phase and the
smallest is that of the oil phase. The variables Aα and Bα are determined from:

Aα =
aαpα

R2T 2
, Bα =

bαpα

RT
(4.10)

where the constants aα and bα are determined from critical conditions (note that aα is in
fact a function of temperature):

aα =
nc∑
i,j=1

√
(aiaj)c

α
i c
α
j (1− κij), bα =

nc∑
i=1

cαi bi

ai = 0.45724
R2T 2

i

Pi
[1 +mi(1−

√
Tri)]

2, bi = 0.07780
RTi
Pi

(4.11)

mi = 0.37464 + 1.54226ωi − 0.26992ω2
i , Tri =

T

Ti
, Pri =

P

Pi

With the definitions above, and Equation (4.6), we have:



18 A new approximate flash calculation

∂ln(f̃αi )

∂Nα
j

=
∂

∂Nα
j

ln(
cαi
Nα
i

) +
∂ln(ψαi )

∂Nα
j

(4.12)

At this point we will propose the simplification:

∂ln(ψαi )

∂Nα
j

<<
∂

∂Nα
j

ln(
cαi
Nα
i

) (4.13)

Deeper investigation into the fugacity coefficient, indicates that the above simplification
in many cases is not valid. However, the results obtained in the numerical experiments
presented later, along with the speed at which they may be obtained, justifies some further
investigation.

We then calculate:

∂ln(f̃αi )

∂Nα
j

=
∂

∂Nα
j

ln(
cαi
Nα
i

)

=

∂
∂Nα

j
(
cαi
Nα

i
)

cαi
Nα

i

= −
1

(
∑

k N
α
k )2

1∑
k N

α
k

(4.14)

= − 1∑
kN

α
k

= − 1

Nα
= −

cαj
Nα
j

4.3 New estimate for
∂Nα

i
∂Ni

and
∂Nα

i
∂p

Inserting here the results from Section 4.2 into the left hand sides of equations (4.4) and
(4.5), we obtain:

∑
k

(δik −
N o
i N

g
i

Ni

(
1

N o
+

1

N g
))
∂N o

k

∂p
=
N o
i N

g
i

Ni

∂ln(f gi /f
o
i )

∂p
(4.15)

∑
k

(δik −
N o
i N

g
i

Ni

(
1

N o
+

1

N g
))
∂N o

k

∂Nj

=
N o
i N

g
i

Ni

∂ln(f gi )

∂N g
j

(4.16)

We further arrive at:
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∂Ni
and

∂Nα
i

∂p
19

∑
k

(δik −
N o
i N

g
i

Ni

N

N oN g
)
∂N o

k

∂p
=
N o
i N

g
i

Ni

∂ln(f gi /f
o
i )

∂p
(4.17)

∑
k

(δik −
N o
i N

g
i

Ni

N

N oN g
)
∂N o

k

∂Nj

=
N o
i N

g
i

Ni

∂ln(f gi )

∂N g
j

(4.18)

These are in the form:

J ′ W = B

Where J ′ is a matrix, W a vector with the partial derivatives, and B a vector.

We see from Equation (4.17) and Equation (4.18) that J ′ is independent of the index j,
and hence we have nc systems of nc linear equations which can be solved simultaneously
with the same inversion of J ′. Also, note that J∗ = J ′ − I defines a matrix J∗ where all
columns are identical. We use this information to construct the inverse of J ′. Let ~j be
any column of J∗, and ~in = [11...1] such that J∗ = ~j ·~in. Let us for simplicity of notation

introduce (J ′)−1 = K, and let K, as J ′, be K = I +K∗ = I + ~k ·~in. This enables:

I = (J ′)−1 · J = (I + ~k ·~in) · (I +~j ·~in)
=⇒ (~k +~j + ~k · (~in ·~j)) ·~in = 0

=⇒ ~k =
−~j

1 + sum(~j)

=⇒ (J ′)−1 = K = I + ~k ·~in = I +
−~j ·~in

1 + sum(~j)
(4.19)

We now have a simple expression for (J ′)−1, and inserting Equation (4.19) into Equation
(4.18), we get:

∂N o
k

∂Nj

=
∑
i

(δik +

No
kN

g
k

Nk

N
NoNg

1 + S
)(
N o
i N

g
i

Ni

∂ln(f gi )

∂N g
j

) ∀ j, k

= S2,j

No
kN

g
k

Nk

N
NoNg

1 + S
+ (

N o
kN

g
k

Nk

∂ln(f gk )

∂N g
j

) (4.20)

S =
∑
i

−N
o
i N

g
i

Ni

N

N oN g

S2,j =
∑
i

N o
i N

g
i

Ni

∂ln(f gi )

∂N g
j
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and likewise when inserting Equation (4.19) into Equation (4.17):

∂N o
k

∂p
=

∑
i

(δik +

No
kN

g
k

Nk

N
NoNg

1 + S
)(
N o
i N

g
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The system (4.20) may also be presented with (4.14) inserted everywhere, leading to:
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Observe that this final system does not involve any fugacity calculations at all, and therefore
avoids many time consuming operations.

4.4 Complexity of the new procedure

We will refer to the procedure proposed in equations (4.20) and (4.21) as FFC1 (Faster
non-iterative Flash Calculations) and the procedure proposed in Equation (4.22) as FFC2.
Pressure variation in FFC2 will be ignored for the time being.

After calculating the fugacities in O(n2
c) operations (as discussed in the end of Section 3.1),

we observe that S2,j, S3 and S4 are calculated in O(nc) operations, so all the S2,j’s hence
are computed in O(n2

c). Equations (4.20), (4.21) and (4.22) are all calculated in O(1) ∀ j, k.
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Since we then have n2
c + nc equations it then follows that solving the whole system takes

O(n2
c) operations, as promised.

We note that although both FFC1 and FFC2 have the same order of execution time, many
more calculations are required in FFC1 than FFC2 due to the complexity of calculating
fugacities and their derivatives. Therefore FFC2 is by far the faster alternative.

4.5 Discussion

We see that we have managed to reduce the computational cost of NIFC, O(n3
c), to O(n2

c)
at the expense of one rather drastic assumption; we have neglected the partial derivatives
of the fugacity coefficient with respect to component molar mass on the left (and right in
the case of Equation (4.22)) hand side of equations (4.15) and (4.16).

As a consequence the vector
∂No

k

∂Nj
computed is no longer the true gradient ofNα

i (P,N1...Nnc),

and hence that letting dNα
i → 0 in Equation (3.2) does not make the system converge.

This is unfortunate, but not necessarily all that bad. We note that in addition to the errors
described for NIFC in Section 3.2, we now have the additional error due to the assumptions
made in Equation (4.14), see Figure 4.1.

Figure 4.1: This figure (analogue to Figure 3.1), again shows the true compositional change
AB, the estimate of NIFC, C, and the additional error introduced in the new
methods, described by the angle v.
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It is also worth noting that the error occurring in NIFC (described in Section 3.2) due to
the non-split in phases is eliminated in FFC2 due to Equation (4.14).

We introduce FFC1-NS in the same way as we did with NIFC and NIFC-NS in Section

3.2: FFC1-NS estimates the new composition with the assumption that
∂ln(f̃α

i )

∂Nα
j

= 0 when

i or j denotes a non-split component.
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5.1 Relevant data

When evaluating the validity of the new preconditioners, it is essential to test them in an
environment where we can avoid all other potential sources of error. For this purpose we
have used the following setting as a testing scheme:

Using conventional means (a phase-splitting program called PVTsim, available courtesy of
Norsk Hydro), we obtained phase splits for several compositions, at various thermodynamic
states. Basing our calculations on the split of one composition, at a given pressure and
temperature, we may then be able to attempt to estimate other splits. This is a simulation
of the real-life scenario where you have computed the change of composition, and need
to update the phase-split. As we saw in in Section 2.1 the pressure and composition is
updated separately, so we conduct the tests without attempting simultaneous update of
composition and pressure. Temperature is still assumed constant.

The input data is therefore: Total phase composition, pressure and temperature, along
with the correct phase split, and the desired variation of composition or pressure. Output
is the phase split at the new composition, which can be compared with known data. The
component characteristics used in calculating the fugacities (equations (4.7)-(4.11)) are
available to our program as well.

We will compare NIFC with the two preconditioners introduced in this work, FFC1 and
FFC2. We will also investigate the effect of using several steps.

5.2 Experiments

Although several compositions have been tested, with different components, we will for
brevity only present one experiment here. The other experiments presented us with much
the same results.

We are looking at a 22 component system, where two components are non-hydrocarbon,
11 were hydrocarbons, and the remaining nine were pseudo-components of C+

10 fractions.
The components in this experiment are the same as found in many reservoirs, indeed, the
composition chosen here closely matches one of the sample cases in PVTsim. Experiments
are also conducted with this system when the non-hydrocarbons were removed.

First we tested with two closely related (∆Ni < 0.1 ∗ Ni) compositions, while holding
the pressure constant. Then we tested related pressures (∆p = 1) while keeping the
composition constant. To assess the effect on the derivatives of non-existent components
in phases (described in Section 3.2), we conducted experiments on the procedures NIFC
and FFC1 (where the undefined derivatives appearing were replaced by estimates from
FFC2), and also the special procedures NIFC-NS and FFC1-NS. The results are presented
in tables 5.1 and 5.2, along with the results for FFC2.
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The inaccuracy referred to in the tables is calculated by the formula:

e =
‖(N o

i )ex − (N o
i )est‖

‖(N o
i )ex − (N o

i )init‖
(5.1)

Where (N o
i )ex, (N

o
i )est, (N

o
i )init are the exact, estimated, and initial composition vectors,

respectively. ‖·‖ is the 2-norm of the vectors. This is motivated by the fact that ‖(N o
i )ex−

(N o
i )est‖ is the error fed to the subsequent iterative routine, while ‖(N o

i )ex − (N o
i )init‖ is

the error that would be present if no preconditioning was done. Therefore estimating that
the composition will not change during the time-step leads to an error of 1.00, as appears
in Table 5.2 for FFC2. In the experiments, we naturally also looked at the error in the gas
vectors, as well as the oil/gas ratios, and although variations occur, the selected error is
typical.

State Inaccuracy in procedure
Pres. (bar) Temp. (C) NIFC NIFC-NS FFC1 FFC1-NS FFC2 Non-SC

Case 1 100 50 0.77 0.65 0.61 0.61 0.11 6
Case 2 150 50 0.43 0.37 0.26 0.17 0.22 4
Case 3 100 100 0.43 0.43 0.15 0.10 0.08 4
Case 4 200 100 0.42 0.38 0.36 0.32 0.29 2
Case 5 300 100 0.64 0.64 0.81 0.81 0.63 0
Case 6* 100 0 0.38 0.45 0.39 0.33 0.20 7
Case 7* 280 100 0.50 0.50 1.30 1.30 0.75 0
Case 8* 330 250 0.84 0.84 1.00 1.00 0.24 0
Case 9* 200 400 0.22 0.22 0.61 0.61 0.26 0
Case 10* 100 250 0.37 0.39 0.34 0.33 0.10 1

Table 5.1: In this table we have constant temperature and pressure, while the composition
is varying. The ’*’ denotes cases where the composition is of pure hydrocarbon
components.

To see the results in connection to the properties of the mixtures, we include the phase
envelopes of Cases 1-5, Figure 5.1 and Cases 6-10, Figure 5.2.

Finally we include experiments with multiple steps. These are done in full scale only for
FFC2, since the time required for the runs of FFC1 and NIFC was not available. We also
did a smaller scale test of NIFC, assuming that the results for FFC1 would be somewhere
in between. In the Cases presented in tables 5.1 and 5.2 multiple steps have little or no
effect on the precision of FFC2, so only the results for NIFC will be presented here in
tables 5.3 and 5.4, with the understanding that they may be compared with the results
given for FFC2 in tables 5.1 and 5.2.
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State Inaccuracy in procedure
Pres. (bar) Temp. (C) NIFC NIFC-NS FFC1 FFC1-NS FFC2 Non-SC

Case 1 100 50 0.68 0.18 0.18 0.15 1.00 6
Case 2 150 50 0.49 0.11 0.26 0.28 1.00 4
Case 3 100 100 0.54 0.11 0.15 0.14 1.00 4
Case 4 200 100 0.56 0.04 0.35 0.37 1.00 2
Case 5 300 100 0.03 0.03 0.69 0.69 1.00 0
Case 6* 100 0 0.69 0.27 0.21 0.16 1.00 7
Case 7* 280 100 0.02 0.02 0.60 0.60 1.00 0
Case 8* 330 250 0.52 0.52 0.89 0.89 1.00 0
Case 9* 200 400 0.15 0.15 0.19 0.19 1.00 0
Case 10* 100 250 0.26 0.05 0.29 0.30 1.00 1

Table 5.2: In this table we have constant temperature and composition, while the pressure
is varying. The ’*’ denotes cases where the composition is of pure hydrocarbon
components.

State Inaccuracy in procedure
Pres. (bar) Temp. (C) 1 step 2 steps 5 steps 10 steps Non-SC

Case 1 100 50 0.77 0.62 0.48 0.44 6
Case 2 150 50 0.43 0.39 0.42 0.41 4
Case 3 100 100 0.43 0.44 0.44 0.44 4
Case 4 200 100 0.42 0.38 0.37 0.36 2
Case 5 300 100 0.64 0.99 1.04 0.97 0
Case 6* 100 0 0.38 0.38 0.43 0.45 7
Case 7* 280 100 0.50 0.40 0.77 1.00 0
Case 8* 330 250 0.84 1.02 1.08 1.16 0
Case 9* 200 400 0.22 0.24 0.24 0.24 0
Case 10* 100 250 0.37 0.38 0.38 0.38 1

Table 5.3: Tests for multiple steps with NIFC, composition variation. All tests without
eliminating non-split components.
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Figure 5.1: Initial phase envelope and critical point for cases 1-5.
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Figure 5.2: Initial phase envelope and critical point for cases 6-10.
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State Inaccuracy in procedure
Pres. (bar) Temp. (C) 1 step 2 steps 5 steps 10 steps Non-SC

Case 1 100 50 0.68 0.43 0.17 0.09 6
Case 2 150 50 0.49 0.62 0.13 0.05 4
Case 3 100 100 0.54 0.28 0.11 0.06 4
Case 4 200 100 0.56 0.23 0.10 0.07 2
Case 5 300 100 0.03 0.04 0.05 0.05 0
Case 6* 100 0 0.69 0.38 0.25 0.10 7
Case 7* 280 100 0.02 0.38 0.09 0.06 0
Case 8* 330 250 0.52 0.59 0.63 0.64 0
Case 9* 200 400 0.15 0.15 0.15 0.15 0
Case 10* 100 250 0.26 0.15 0.08 0.07 1

Table 5.4: Tests for multiple steps with NIFC, pressure variation. All tests without elim-
inating non-split components.

5.3 Discussion of results

The results presented above give us ample possibility to draw some conclusions. This will
be done in the following subsections.

5.3.1 Composition changes

When viewing the test results presented in Table 5.1 as well as the phase envelopes in
figures 5.1 and 5.2, we are led to the conclusions that follow.

The method NIFC suffers by the fact that it does not handle components that are only in
one phase. Eliminating these components as done in NIFC-NS generally helps, although
this introduces a new error. If we focus on NIFC-NS we observe that the performance
of this method is closely dependent on the distance from the phase envelope, the critical
point and the number of non-split components.

The first proposed methods, FFC1 and FFC1-NS, lead to better results with non-split
components than NIFC-NS, but suffer when we approach the phase envelope and the
critical point. This may be due to the fact that we use two different estimates for the
derivative of the logarithm of the fugacity (the numerical derivative used in NIFC and
Equation (4.14)) and that these may vary greatly in critical regions. In Case 7, FFC1 even
manages to propose a worse split than just using the old phase split.

The second proposed method, FFC2, performs in all cases except 2, 7, and 9, better than
both FFC1 and NIFC. We know from the derivation of the method that we may expect
poor results in regions with strong dependency on the factor ψαi (from Equation (4.7)).
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The poor result in Case 7 was therefore expected, and viewing similar cases to Case 8 from
different tests, we may say that this very good split was a bit lucky.

Since the proximity to the phase envelope seems to be so important for the accuracy of all
methods, one might wish to have knowledge of the phase envelope before any calculations
are initiated. A description of an efficient way of calculating the phase envelope can be
found in [5]. This idea will not be pursued further here.

The author would also like to comment that while testing, FFC2 was observed to be faster
by far than the two other methods, although no time testing has been conducted.

5.3.2 Pressure changes

There is little need to dwell too much at the results from pressure variation. Table 5.2
clearly shows the great advantage of NIFC-NS over NIFC, and gives good reference values
when evaluating the proposed methods.

FFC1 does not seem to benefit from the elimination of non-split components, and produces
reasonably good results. As above, we see that when approaching the phase envelope the
results are substantially poorer than those of NIFC.

FFC2 has no method of handling pressure variation.

5.3.3 Several steps

It is obvious that when approximating a new composition in v steps, we use v times as
much time. Since the main feature of the above procedure is speed, we must asses the
benefits of several steps.

Given the inaccuracy of the solution in some of the more testing conditions (near the critical
point and the phase envelope), we understand that this solution procedure can not be used
alone in finding the next phase split. This is no surprise, indeed we consistently called our

solution procedure a preconditioner, as we understand that the assumption
∂ln(ψα

i )

∂Nα
j

= 0 is

not always justifiable.

We propose to do as in [9], that is, to use our estimate as an initial estimate in a standard
iteration procedure. This has not been implemented, as state of the art phase-splitting
codes are not available to us.

Using v steps to approximate a new split can be seen as applying the iteration only every
v steps. But we must then be aware of the nature of our solution procedure. We have

based our system of equations on the fact that
∂fo

i

∂Nj
− ∂fg

i

∂Nj
= 0 ∀ i, j, and differentiated this

equation. This implies that
∂fo

i

∂Nj
− ∂fg

i

∂Nj
= constant ∀ i. Which is indeed true when the
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constant is 0 and the system is in balance. But after a step leading to an only approximate

solution, we will have
∂fo

i

∂Nj
− ∂fg

i

∂Nj
= constant 6= 0. This is shown in Figure 5.3.

Figure 5.3: This is the same figure as in Section 3.2, but with a possible two step method
introduced. The first step leads to point E, the second step leads to a point D
beyond our control.

When viewing the test results from Table 5.3 (cases 3, 5, 6, (7), 8, 9, and 10), we see
that using the direct methods reviewed here several times per application of the iterative
cannot be recommended. Especially when keeping in mind the extra computational time
involved. The same conclusion can be drawn from Table 5.4, although the results here are
slightly better.
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6.1 Conclusion

We have presented two new preconditioners for phase splitting algorithms in Chapter 4,
abbreviated FFC1 and FFC2. The preconditioner NIFC from [9] was presented in Chapter
3. Experiments on these were conducted and evaluated in Chapter 5.

The experiments show that the method FFC2 performs at least as well as the previously
published NIFC when concerned with composition variation. We further note that since
the test results indicate that the preconditioners are not accurate enough to be used alone,
and therefore must be used along with an iterative scheme, the new method FFC2 has a
marked advantage over NIFC, due to its simplicity and speed.

In the case of pressure variation, we see that the results of NIFC and FFC1-NS are com-
parable. Again, we suggest that the new method FFC1-NS has the advantage, when
considering computational costs.

Generally, we suggest to use FFC2 to estimate changes due to variation in mixture com-
positions, and FFC1-NS when estimating changes due to pressure changes. This is seen as
the third and first terms on the right hand side of Equation (3.1).

We note that when the mixture is close to the phase envelope, all methods produce generally
more unpredictable estimates. We have no data from experiments indicate errors e > 1 for
NIFC or FFC2 and FFC1-NS when used in conjunction as mentioned in the two previous
paragraphs.

Multiple steps between iterations is not recommended, as this may result in overall worse
results than doing just one step, as described in Section 5.3.3.

In sum, we see that preconditioning with the conjunction of FFC2 and FFC1-NS provides
results at least as accurate as the previously published method used as reference, while
having a substantially lower computational cost. There is therefore reason to be motivated
into further research and implementation of these methods.

6.2 Further work

The natural continuation of the investigation is to implement the preconditioner in a
simulator like SOM, so that more rigorous experiments may be performed with respect
to the accuracy of the new methods, as well as time testing the preconditioner against the
previous pure iterative method.

In the case of non-split components, one might try to implement non square matrices, that

is: Instead of setting
∂ln(f̃α

i )

∂Nα
j

= 0 when i or j denotes a non-split component, one might set

∂ln(f̃α
i )

∂Nα
j

= 0 only when i denotes a non-split component. This might produce better results,
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although it affects the speed of the method.

Temperature variation should be included.

In an implementation, one might wish to not use the current node as the basis precondi-
tioner, it might turn out that one of the neighboring nodes might be more related to the
new composition, especially in advection dominated processes. By backtracking charac-
teristics, one might find a candidate node. A comparison to find which composition was
closest related can be done by choosing the composition at node ni, where the expression
g(ni, nj):

g(ni, nj) = ‖(Ni)old, node ni
− (Ni)new, node nj

‖ (6.1)

attains a minimum. Here (Ni) is the vector of total molar mass of components, ni is chosen
from some set of candidate nodes, and nj is the node where we want to do the phase split.
The subscripts old and new indicate previous and new time-step.

This method may be used not only when updating a time-step. Grid cells close to each
other should have related phase splits, this would make an impact on the first calculation
of the phase split on the grid.

The ideas introduced in the final paragraph of Section 2.2 should be followed up. This
might involve inserting FFC2 into mass transport equations and see if this would lead to a
more accurate calculation of multicomponent flow. Work in this direction has been done at
this institute, but with much simpler approximations to phase split dynamics than FFC2.

The proposed method is a first order approximation. Higher order approximations should
be investigated.

A more rigorous analytic evaluation of the methods would be desirable, although difficult
(no mention of any such is made in Wang’s report).
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Nomenclature

Symbols

· a constant, see Equation (4.11)

· A variable, see Equation (4.10)

· b constant, see Equation (4.11)

· B variable, see Equation (4.10)

· cαi concentration of component i in phase α

· CS surface of control volume, CV

· CV control volume

· d depth

· e inaccuracy in preconditioner

· δ Kronecker delta (δi,j = 1 if i = j, 0 otherwise)

· f fugacity

· F flux

· g gravitational constant

· h enthalpy

· I identity matrix

· J a Jacobian matrix

· κ permeability tensor of the medium

· m constant, see Equation (4.11)

· nc number of components

· nαi exponent in Equation (4.7)

· N molar mass

· N molar mass seen as a vector

· φ porosity

· p pressure

· pc capillary pressure

· pi critical pressure of component i
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· pri relative pressure, see Equation (4.11)

· ψ fugacity coefficient

· ρ mass density

· R universal gas constant

· q source/sink term

· S saturation

· t time

· T temperature

· Ti critical temperature of component i

· Tri relative temperature, see Equation (4.11)

· ~u Darcy velocity

· u internal energy

· µ viscosity

· ω accentric factor

· Z compressibility

Superscripts

· α index for the phases gas, oil, water

· β index for the phases gas, oil, water

· g gas

· o oil

· r rock phase

· w water

Subscripts

· i index for components

· j index for components

· k index for components

· T temperature
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Abbreviations

· Non-SC Non-Split Component

· NIFC Non-Iterative Flash Calculation

· FFC Fast non-iterative Flash Calculation

· -NS - Non-Split components

· SOM Secondary Oil Migration

· PLU Permutation Lower Upper (matrices)
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Overview of test code

The code is constructed with the concept of clarity in mind, instead of quickness of exe-
cution or elegance, since its purpose is merely to test the validity of our preconditioner, as
described in sections 3.1, 4.1 and 5.1.

We are concerned with three main files (script6.m, Estimat2.m, Estimat4.m), three utility
files (c to N.m, N to c.m, fugacity.m), and one datafile, all coded in Matlab.

script6.m is our main file, it functions as following:

- Input from user (which method to use).

- Loads data in two datasets (primary and secondary).

- Estimates the split for the secondary dataset based on the primary, by calling Es-
timat2.m or Estimat4.m.

- Compares estimate with the true values from the secondary dataset.

- Saves to file the relative error of the estimate to the change in composition, oil/gas
ratio etc.

Estimat2.m estimates then new composition using FFC2.

Estimat4.m calculates the Jacobian needed using fugacity.m, and then estimates using
NIFC or FFC1.

c to N.m and N to c.m have no function except converting between composition (as the
data is originally given in) and molar mass (as is used in the calculations), and back.

fugacity.m is the top method in a hierarchy of functions that calculate the fugacity as
described in Section 4.1.

There are several additional scrips functions that serve the purpose of checking the validity
of the above mentioned. These are of little interest now.
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