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Abstract 

Here we report a series of close analogues of our recently published scaffold-based 

tripeptidomimetic CXCR4 antagonists, containing positively charged guanidino groups in R1 

and R2, and an aromatic group in R3. While contraction/elongation of the guanidine carrying 

side chains (R1 and R2) resulted in loss of activity, introduction of bromine in position 1 on 

the naphth-2-ylmethyl moiety (R3) resulted in an EC50 of 61 µM (mixture of 

diastereoisomers) against wild-type CXCR4; thus, the antagonistic activity of these 

tripeptidomimetics seems to be amenable to optimization of the aromatic moiety. Moreover, 

for analogues carrying a naphth-2-ylmethyl substituent, we observed that a Pictet-Spengler 

like cyclization side reaction depended on the nature of the R1 substituent. 
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1. Introduction 

The G protein coupled CXC chemokine receptor 4 (CXCR4) and its only known endogenous 

ligand, the 68-residue CXC chemokine ligand 12 (CXCL12), are involved in development 

and chemotaxis of leucocytes and lymphocytes,1-3 as well as in embryogenesis by 

participating in vascularization of the gastrointestinal tract,4 neural development5 and 

haematopoiesis.6 Since the CXCR4/CXCL12 axis also has been shown to have a pathological 

role in HIV, cancer and rheumatoid arthritis7 CXCR4 is an attractive drug target, and several 

small-molecule CXCR4 antagonists have been described in the literature.7-9 Plerixafor, the 

only small-molecule CXCR4 antagonist that has been approved so far, is used for 

mobilization of hematopoietic stem cells prior to autologous bone marrow transplantation in 

patients with Hodgkin disease, non-Hodgkin’s lymphoma and multiple myeloma.10, 11 Other 

small molecule CXCR4 antagonists are undergoing clinical trials; among them is the orally 

available AMD11070, which is investigated for its efficacy against HIV infection.12  

 

In addition to the small-molecule antagonists, a large number of potent peptide antagonists for 

CXCR4 have been identified.13-17 From a drug discovery perspective, a series of head-to-tail 

cyclized pentapeptides originally reported by Fujii and co-workers,18 i.e. cyclo(-L/D-Arg1-

Arg2-2-Nal3-Gly4-D-Tyr5-) (1 and 2, Figure 1A) represents a particularly attractive starting 

point. Extensive SAR studies of 1 and 219 indicate that the main activity of the 

cyclopentapeptide CXCR4 antagonists resides in the L/D-Arg1-Arg2-2-Nal3 tripeptide 

fragment, which again suggests that tripeptidomimetic compounds based on this motif are 

interesting as small-molecule CXCR4 antagonists. We have recently reported a novel class of 

Arg-Arg-2-Nal tripeptidomimetic CXCR4 antagonists,20 which were based on the 

synthetically accessible bicyclic scaffold A (3,6,8-trisubstituted 4,7-dioxo-1-thia-5,8-diaza-

bicyclo[4.4.0]decane, Figure 1B).21 Our prototype compounds 3a and 3b (Figure 1C) were 

shown to have EC50 values of 64 µM and 80 µM, respectively,20 and in the current study we 

have investigated the immediate SAR of these hit compounds by synthesizing close analogues 

with varying length of the three side chains and different aromatic moieties in the R3-side 

chain.  
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Figure 1. Structures of (A) the cyclic pentapeptide CXCR4 antagonists 1 and 2 reported by Fujii et al.18; (B) the 

bicyclic scaffold A employed for our tripeptidomimetic CXCR4 antagonists; (C) the active tripeptidomimetic hit 

compounds 3a and 3b20; (D) the inactive analogues 4 and 5 containing an amide bond in the R1-side chain.20 
 

2. Results and discussion 

2.1. Design and SAR – Our prototype hit compounds 3a and 3b contain Arg-side chains in 

R1 and R2 and a 2-naphthyl group with an ethylene spacer in R3 (Figure 1C). Analogues with 

an amide group in the R1 side chain can be conveniently synthesized by employing 

appropriately protected Cys residues as building blocks; however, since we previously found 

4 and 5 (Figure 1D) to be inactive,20 this strategy was abandoned. Instead, our synthetic 

strategy for the target compounds 6–12 in the current work (Table 1) was based on a racemic 

building block for introduction of the R1-side chain (see Chemistry below), giving both the 

(3R,6S,9aS) and the (3S,6S,9aR) diastereoisomer (a and b, respectively). The antagonistic 

potency of 6–12 on human CXCR4 was determined by a functional assay as previously 

described.22  
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First, compounds with two (6a and 6b) and four carbon atoms (7a and 7b) in the R1 side 

chain were synthesized in order to determine the importance of side chain length. However, 

none of these four analogues showed biological activity, demonstrating that 

contraction/elongation of the R1 side chain is unfavourable.  

 

The length of the R2 side chain was then increased by one carbon atom (8a and 8b), but this 

elongation resulted in loss of biologic activity. Compounds 9a and 9b, where a shorter R1 side 

chain was incorporated to compensate the longer R2 side chain, were also included; however, 

these compounds were similarly inactive.   

 

Next, the R3 side chain spacer was shortened to one carbon atom (10a/10b and 11a/11b). 

Neither diastereoisomers of 10 or 11 were separable by preparative RP-HPLC, thus both were 

tested as the respective diastereomeric mixtures. Compound 10a,b did not show biological 

activity; however, the C-1 bromine-substituted analogue 11a,b had an EC50 value of 61 µM. 

The bromine was introduced to avoid a suspected Pictet-Spengler type side reaction in the 

synthesis of these analogues (see Chemistry below), and since this substitution simultaneously 

affects the steric, electronic, and hydrophobic properties of the aromatic moiety, it is difficult 

to isolate the exact cause of the difference in activity between 10 and 11. Still, the fact that 

11a,b is equipotent with 3b indicates that there is room for further optimization of the R3-side 

chain. 

 

Finally, we included 12a and 12b, which are the 1-substituted isomers of 10a and 10b. 

Compounds 12a and 12b were also tested as a mixture of diastereoisomers and did not show 

biological activity. 
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Table 1. Structures of compounds 3 and 6-12 and antagonistic potency on human CXCR4. 

 
 

Compd m 
(R1) 

n 
(R2) R3 log EC50 ± 

SEM EC50 (µM) 

3aa 
3ba 3 3 

 
−4.20 ± 0.12 
−4.10 ± 0.31 

64 
80 

6a 
6b 2 3  

> −4 
> −4 

>100 
>100 

7a 
7b 4 3  

> −4 
> −4 

>100 
>100 

8a 
8b 3 4  

> −4 
> −4 

>100 
>100 

9a 
9b 2 4  

> −4 
> −4 

>100 
>100 

10a, 10bb 3 3  > −4 >100 

11a, 11bb 3 3 
 

−4.21 ± 0.02 61 

12a, 12bb 3 3 
 

> −4 >100 

a Known compounds; biological data taken from Zachariassen et al.20; b Inseparable diastereoisomers, 
tested as the diastereomeric mixture. 

 

2.2. Chemistry – All target compounds in this study are based on the 6,6-fused bicyclic ring 

system of scaffold A (Scheme 1), which can be prepared from linear precursor C. Synthesis 

of the linear precursors requires the coupling of three building blocks (D – F) bearing each of 

the side chains. Treatment of the linear precursor C with a TFA cocktail liberates the 

aldehyde from the dimethyl acetal, which is then attacked by the amide nitrogen to form the 

N-acyliminium ion B. Finally, nucleophilic attack by the thiol results in the formation of the 

bicyclic ring system.  
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Scheme 1. Retrosynthetic strategy for synthesis of the bicylic scaffold A. 

 

For the synthesis of 6a,b – 9a,b the required secondary amine 14 carrying the R3 side chain 

was prepared by alkylation of primary amine 13 using bromoacetaldehyde dimethyl acetal in 

DMF (Scheme 2). 

 

 
Scheme 2. Synthesis of 14. Reagents and conditions: (a) BrCH2CH(OMe)2, K2CO3, DMF, 80 °C (52%). 

 

Towards the synthesis of bicycles 10a,b, 11a,b and 12a,b secondary amines 18-20 were 

prepared from the appropriate aldehydes 15-17 by reductive amination through reaction with 

2,2-dimethoxyethylamine followed by reduction with NaBH4 (Scheme 3). 

 
Scheme 3. Reductive aminations. Reagents and conditions: (b) i) NH2CH2CH(OMe)2, 90-100 °C; ii) NaBH4, rt 

(44-87%). 

 

The different building blocks bearing the R1 side chain were prepared starting from Boc-

protected lactams 21-23 (Scheme 4). α-Methylenation through release of trifluoroacetate23 

gave Michael acceptors 24-26, which after reaction with Ph3CSH using Et3N as base gave the 

racemic Michael products 27-29 in good yields. Subsequent hydrolysis with LiOH gave the 

racemic carboxylic acids 30-32. 
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Scheme 4. Synthesis of carboxylic acid building blocks. Reagents and conditions: (a) 1. CF3CO2CH2CF3, 

LiHMDS, 20 – 30 minutes, rt; 2. (CH2O)n, toluene, 80 °C, 2 h (41 – 57% over 2 steps); (b) Ph3CSH, Et3N, 

CH2Cl2, rt, 23 – 44 h (39 – 59%); (c) 1 M aq LiOH, THF, rt, 1 – 3 h (64 – 81%). 

 

The linear precursor were prepared by coupling the secondary amines 14, 18, 19 and 20 with 

Fmoc-Arg(Pbf)-OH, Fmoc-Orn(Boc)-OH or Fmoc-Lys(Boc)-OH to give coupling products 

33-38 (Scheme 5). Next, the Fmoc-group was removed using diethylamine and the free 

amines were coupled with the racemic carboxylic acids 30, 31 or 32 to yield the linear 

precursors 39-45 as inseparable diastereoisomeric mixtures. Further, treatment with a mixture 

of TFA, thioanisole and water lead to global deprotection and formation of the bicyclic ring 

system.24 Finally, the R1 side chain amines (also R2 for 40 and 41) were guanidinylated to 

give the final crude products.  

 
Scheme 5. Synthesis of bicycles. Reagents and conditions: (a) Fmoc-Arg(Pbf)-OH, Fmoc-Orn(Boc)-OH or 

Fmoc-Lys(Boc)-OH, HATU, DIPEA, CH2Cl2 or DMF, rt (70-85%); (b) Et2NH, CH2Cl2, rt; (c) HATU or HBTU, 

DIPEA, CH2Cl2, rt (17%-75% over two steps); (d) TFA/thioanisole/H2O, rt; (e) 1H-pyrazole-1-carboxamidene x 

HCl, DIPEA, DMF (6-31% over 2 steps). 

 

All final compounds were purified by RP-HPLC, however the diastereoisomers of 10, 11 and 

12 proved for all practical purposes to be inseparable. For 6-9, the two diastereoisomers that 

were formed were separable by RP-HPLC and analysis of the purified compounds by NMR 

spectroscopy clearly showed that they were single diastereoisomers. As the stereochemistry at 

C6 was fixed through incorporation of appropriately protected (S)-Arg, (S)-Orn or (S)-Lys 

(Scheme 5), the configuration at C3 and C9a (see Tables 1 and S1) could be determined by 

the 2D 1H ROESY experiment as described previously.20, 25 For all compounds that were 
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isolated as single diastereoisomers, strong cross-peaks between H3 and H9a were observed.  

Further, for the diastereoisomer that displayed the longest retention time of the pairs, strong 

cross-peaks between H9a and Hb/Hγ of the R2 side-chain were always observed (see Table S1 

for further details). These findings indicate that all compounds have the same configurations 

as reported for hit compounds 3a and 3b,20 and that the (3R,6S,9aS) diastereoisomer (6a-9a) 

always eluted first and the (3S,6S,9aR) diastereoisomer (6b-9b) always eluted last from the 

C18-column for the separable diastereoisomeric pairs. 

 

The bromine of 11a,b was originally introduced as a protecting group as we observed a side 

reaction in an attempted synthesis of bicycle 47 (Scheme 6). 

 
Scheme 6. Attempted synthesis of 47. 

 

In our attempted synthesis of compound 47 (see SI for experimental details), compound 48 

was instead the only product that could be isolated in pure form. Inspection of the 1H NMR 

spectrum of the isolated compound quickly revealed that it was not the desired product as the 

signals in the aromatic region integrated to 6 protons instead of 7. The combined information 

obtained from the 2D 1H-13C HMBC and HSQC spectra revealed the presence of four 

quaternary carbon signals in the aromatic region. The structure of 48 was elucidated by 

extensive use of 2D NMR. Thus, it would seem that after formation of the N-acyliminium ion 

B (Scheme 1), the cyclization can take two different paths; either the thiol attacks the carbon 

atom in the double bond to yield the desired cyclization product,21 or an aromatic substitution 

reaction, i.e. a Pictet Spengler-type reaction, takes place.26 The 2D 1H-1H ROESY spectrum 

of 48 revealed no ROE between the bridge-head proton and the R2 side chain, thus the 

nucleophilic attack on the acyliminium ion has occurred from the same side as the R2 side 

chain. 

In order to avoid the Pictet-Spengler product, bromine was introduced in the 1-position of the 

naphthalene group by starting with 1-bromo-2-naphthaldehyde (16) when preparing the 

building block bearing the R3 side chain (Scheme 3). We envisioned that the bromine could 
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be removed from the cyclized product by treatment with hydrogen gas in the presence of 

Pd/C.27 The protection of the naphthalene proved however to be unnecessary, as the 

cyclization pathway was found to be highly dependent on the nature of the R1 side chain (see 

SI for details) and cyclization of linear precursors 43, which contains a naphth-2-ylmethyl R3 

side chain and a three carbon spacer in the R1 side chain, gave the desired bicycles as the 

major products (Scheme 7). Similar chemoselectivity was observed when the R1 side chain 

was omitted (see SI for details), indicating that the electron withdrawing ammonium 

substituent (or Boc-protected amine if Boc deprotection is slower than cyclization) of the N-

acyliminium ion formed from 46 (Scheme 6) decreases the nucleophilicity of the thiol. 

 

 
Scheme 7. Successful cyclization. Reagents and conditions: (a) TFA/thioanisole/H2O (90:5:5) 

 

3. Conclusions 

In summary, we have investigated close analogues of our earlier reported hit compounds 

based on a tripeptidomimetic scaffold for CXCR4 antagonists by varying the spacer length for 

the three side chains. Our results suggests that a three-carbon spacer is optimal for both of the 

guanidine carrying side chains, while the aromatic group in the R3 position can still be 

optimized. Interestingly, we found that a side reaction of analogues carrying a naphth-2-

ylmethyl substituent through a Pictet-Spengler like cyclization reaction was dependent on the 

nature of the R1 substituent. Finally, introducing bromine in position 1 on the naphtha-2-

ylmethyl moiety gave a mixture of inseparable diastereoisomers with an EC50 of 61 µM 

against wild-type CXCR4, thus the antagonistic activity of these tripeptidomimetics seems to 

be amenable to changes on the aromatic moiety. 

 

4. Experimental 

4.1. Chemistry - All reagents and starting materials were purchased from Sigma-Aldrich and 

used as delivered unless otherwise stated. Boc-protected lactam 22 was prepared following a 

literature procedure.28 Anhydrous toluene and THF were obtained from an anhydrous solvent 

delivery system (SDS-800 from mBraun) at the Department of Chemistry, University of 
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Bergen. CH2Cl2 was dried over molecular sieves. For analysis by thin layer chromatography, 

aluminium sheets coated with Merck KGaA silica gel (60 F254) were used. The TLC plates 

were visualized using either ultraviolet light or by immersion in a solution of 2% ninhydrin in 

ethanol supplemented with 10 drops of concentrated sulphuric acid pr 100 mL solution, 

followed by heating. Purification by flash column chromatography was performed on Merck 

KGaA Kieselgel (230 – 400 mesh). All final compounds were purified by semi-preparative 

RP-HPLC eluting with mixtures of acetonitrile and H2O (both containing 0.1% TFA). 

Fractions of equal purity were pooled and lyophilized. All tested compounds were analysed 

by RP-HPLC and found to be of > 95% purity (sum of isomers for inseparable 

diastereoisomers).  

 

4.1.1. 2,2-Dimethoxy-N-(2-(naphthalen-2-yl)ethyl)ethan-1-amine (14) 

To a stirring solution of 2-(naphthalen-2-yl)ethan-1-amine (0.39 g, 2.28 mmol) in anhydrous 

DMF (10 mL), K2CO3 (0.32 g, 2.34 mmol) and bromoacetaldehyde dimethyl acetal (0.38 mL, 

3.33 mmol) were added and the resulting suspension was then heated at 80 °C for 26 h. The 

reaction was quenched with H2O (20 mL), extracted with EtOAc (3 x 20 mL), washed with 

brine (20 mL) and dried over MgSO4. The solvent was removed under reduced pressure to 

give the crude product as an orange oil (475 mg). The crude product was purified by flash 

column chromatography on silica gel (EtOAc/MeOH 9:1) to give the title compound as a 

yellow oil (307 mg, 52%). Rf (EtOAc/MeOH 9:1) = 0.15; 1H NMR (400 MHz, CDCl3) δ = 

7.82-7.75 (m, 3H), 7.65 (s, 1H), 7.48 – 7.40 (m, 2H), 7.34 (dd, J = 8.4, 1.7, 1H), 4.48 (t, J = 

5.5, 1H), 3.35 (s, 6H), 2.99 (s, 4H), 2.80 (d, J = 5.5, 2H), 2.17 (bs, 1H); 13C NMR (101 MHz, 

CDCl3): δ = 137.3, 133.7, 132.2, 128.2, 127.7, 127.5, 127.3, 127.1, 126.1, 125.4, 103.8, 54.2, 

51.2, 51.1, 36.5; HRMS (ESI): m/z [M + H]+ calcd for C16H22NO2: 260.1651; found: 

260.1651. 

 

4.1.2. 2,2-Dimethoxy-N-(naphthalen-2-ylmethyl)ethan-1-amine (18) 

A mixture of 2-naphthaldehyde (845 mg, 5.4 mmol) and aminoacetaldehyde dimethyl acetal 

(0.6 mL, 5.5 mmol) was heated at 100 °C for 20 min and then cooled to room temperature. 

The reaction mixture was then diluted with EtOH (4 mL) and NaBH4 (207 mg, 5.5 mmol) was 

added in small portions to the stirring mixture. The reaction mixture was stirred for 22 h 

before the EtOH was removed and the residue was portioned between H2O (10 mL) and 

EtOAc (40 mL). The organic phase was washed with H2O (2 x 10 mL), dried over MgSO4, 

filtered and concentrated to give the crude product as yellow oil (1.262 g). Purification by 
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flash column chromatography on silica gel (EtOAc/MeOH 92.5:7.5) gave the title compound 

as yellow oil (893 mg, 67%). Rf (EtOAc/MeOH 92.5:7.5) = 0.31; 1H NMR (400 MHz, 

CDCl3): δ = 7.83 – 7.74 (m, 4H), 7.47 – 7.40 (m, 3H), 4.50 (t, J = 5.5, 1H), 3.97 (s, 2H), 3.36 

(s, 6H), 2.79 (d, J = 5.5, 2H); 13C NMR (100 MHz, CDCl3): δ = 137.6, 133.5, 132.7, 128.1, 

127.7, 127.7, 126.6, 126.5, 126.0, 125.6, 104.0, 54.0, 54.0, 50.6; HRMS (ESI): m/z [M + H]+ 

calcd for C15H20NO2: 246.1494; found: 246.1497. 

 

4.1.3. N-((1-Bromonaphthalen-2-yl)methyl)-2,2-dimethoxyethan-1-amine (19) 

The title compound was prepared from 1-bromo-2-naphthaldehyde (202 mg, 0.9 mmol) 

following the protocol described for 18 above. The crude product (yellowish oil, 243 mg) was 

purified by flash column chromatography on silica gel (EtOAc) to give the title compound as 

yellowish oil (124 mg, 44%). Rf (EtOAc) = 0.27; 1H NMR (400 MHz, CDCl3) δ = 8.33 (dd, 

8.5, 1H), 7.85 – 7.76 (m, 2H), 7.62 – 7.56 (m, 1H), 7.55 – 7.48 (m, 2H), 4.52 (t, J = 5.5, 1H), 

4.14 (s, 2H), 3.37 (s, 6H), 2.80 (d, J = 5.5, 2H), 1.80 (bs, 1H); 13C NMR (100 MHz, CDCl3) δ 

= 137.4, 134.0, 132.6, 128.2, 127.8, 127.7, 127.5, 127.3, 126.4, 124.0, 103.9, 54.7, 54.0, 50.4; 

HRMS (ESI): m/z [M + H]+ calcd for C15H19O2N79Br: 324.0599; found: 324.0599; HRMS 

(ESI): m/z [M + Na]+ calcd for C15H18O2N79BrNa: 346.0419; found: 346.0415.  

 

4.1.4. 2,2-Dimethoxy-N-(naphthalene-1-ylmethyl)ethanamine (20) 

The title compound was prepared from 1-naphthaldehyde (0.55 mL, 4.0 mmol) following the 

protocol described for 18 above, except that the temperature in the first step was 90 °C. The 

crude product (red/brown oil, 855 mg, 87%) was used without further purification. Rf 

(EtOAc) = 0.23; 1H NMR (400 MHz, CDCl3) δ = 8.12 (d, J = 8.3, 1H), 7.89 – 7.70 (m, 2H), 

7.55 – 7.36 (m, 4H), 4.51 (t, J = 5.5, 1H), 4.25 (s, 2H), 3.35 (s, 6H), 2.86 (d, J = 5.5, 2H), 

1.62 (s, 1H); 13C NMR (101 MHz, CDCl3) δ = 135.9, 134.1, 132.0, 128.9, 128.0, 126.3, 

126.2, 125.8, 125.6, 123.8, 104.1, 54.1, 51.7, 51.2; HRMS (ESI): m/z [M + H]+ calcd for 

C15H20NO2: 246.1489; found: 246.1493. 

 

4.1.5. tert-Butyl 3-methylene-2-oxopyrrolidene-1-carboxylate (24) 

A solution of 21 (0.27 mL, 1.58 mmol) in dry THF (7 mL) was transferred to a stirring 

solution of LiHMDS (1 M in THF, 3.24 mL, 3.24 mmol) at 0 °C via cannulation. The reaction 

mixture was allowed to warm up to room temperature over 38 minutes before 2,2,2-

trifluoroethyl trifluoroacetate (0.40 mL, 2.99 mmol) was added. Stirring was continued for 

additional 20 minutes at room temperature before the reaction was quenched with saturated 
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NH4Cl (25 mL) and extracted with EtOAc (3 x 30 mL). The combined organic phases were 

dried over MgSO4, filtered and concentrated to yield a dark yellow oil (305 mg). The oil was 

dissolved in dry toluene (24 mL) and paraformaldehyde (1.18 g, 40.3 mmol) and K2CO3 (472 

mg, 3.41 mmol) were added to the solution. The reaction mixture was heated at 108 °C for 2 h 

before quenched with saturated NH4Cl (40 mL) and extracted with EtOAc (3 x 30 mL), dried 

over MgSO4, filtered and concentrated to give the crude product as yellow oil (312 mg). 

Purification by flash column chromatography on silica gel (hexanes/EtOAc 2:1) gave the title 

compound (178 mg, 57%). Rf (hexanes/EtOAc 2:1) = 0.25; 1H NMR (400 MHz, CDCl3): δ = 

6.19 (t, J = 2.8, 1H), 5.48 (t, J = 2.5, 1H), 3.73 (t, J = 7.3, 2H), 2.78 – 2.72 (m, 2H), 1.55 (s, 

9H); 13C NMR (101 MHz, CDCl3): δ = 166.6, 151.0, 139.2, 120.0, 83.2, 43.1, 28.2, 23.3; 

HRMS (ESI): m/z [M + Na]+ calcd for C10H15NO3Na: 220.0950; found: 220.0949; m/z [2M + 

Na]2+ calcd C20H30N2O6Na: 417.2002; found: 417.2025. 

 

4.1.6. tert-Butyl 3-methylene-2-oxopiperidine-1-carboxylate (25) 

The title compound was prepared from 22 (933 mg, 4.7 mmol) following the protocol 

described for 24 above, except that stirring in the second step was carried out at 80 °C for 2 h 

(instead of 108 °C for 2 h). The crude product (yellow oil, 568 mg) was purified by flash 

column chromatography on silica gel (hexanes/EtOAc 4:1) to give the title compound as 

colorless oil (404 mg, 41%). Rf = (hexanes/EtOAc 4:1) = 0.26. Analytical data were in 

accordance with those reported previously.20 

 

4.1.7. tert-Butyl 3-methylene-2-oxoazepane-1-carboxylate (26) 

The title compound was prepared from 23 (0.30 mL, 1.4 mmol) following the protocol 

described for 24 above, except that stirring in the second step was carried out at 80 °C for 2 h 

(instead of 108 °C for 2 h). The crude product (yellow oil, 0.3674 g) was purified by flash 

column chromatography on silica gel (Hexane/EtOAc 1:1) to give the title product as 

colorless oil (301 mg, 57%). Rf = (hexanes/EtOAc 1:1) = 0.64; 1H NMR (400 MHz, CDCl3) δ 

5.77 (d, J = 1.3, 1H), 5.39 (d, J = 1.3, 1H), 3.71 – 3.64 (m, 2H), 2.47 – 2.39 (m, 2H), 1.85 – 

1.61 (m, 4H), 1.53 (s, 9H); 13C NMR (100 MHz, CDCl3): 172.6, 152.8, 147.3, 123.3, 82.7, 

46.1, 32.6, 29.2, 28.19, 28.15; HRMS (ESI): m/z [M + H]+ calcd for C12H20O3N: 226.1443; 

found: 226.1441. 

 

4.1.8. tert-Butyl 2-oxo-3-((tritylthio)methyl)pyrrolidine-1-carboxylate (27) 
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To a stirring solution of 24 (251 mg, 1.27 mmol) in dry CH2Cl2 (20 mL) was added Et3N (0.4 

mL, 2.87 mmol) and triphenylmethanethiol (705 mg, 2.55 mmol). The reaction mixture was 

stirred for 24 h at room temperature before it was washed with H2O (20 mL). The solvent was 

removed under reduced pressure to yield the crude product as yellow oil (1.26 g). Purification 

by flash column chromatography on silica gel (hexanes/EtOAc 4:1) gave the title compound 

as white foam (237 mg, 39%). Rf (hexanes/EtOAc 4:1) = 0.24; 1H NMR (400 MHz, CDCl3): δ 

= 7.44 – 7.39 (m, 6H), 7.31 – 7.25 (m, 6H), 7.23 – 7.18 (m, 3H), 3.63 (ddd, J = 11.1, 8.6, 2.3, 

1H), 3.49 – 3.41 (m, 1H), 2.78 (dd, J = 12.1, 4.0, 1H), 2.45 – 2.34 (m, 1H), 2.20 (dd, J = 12.0, 

10.4, 1H), 2.14 – 2.05 (m, 1H), 1.49 (s, 9H); 13C NMR (125 MHz, CDCl3): δ = 172.9, 149.4, 

143.7, 128.7, 127.1, 125.9, 82.1, 66.0, 43.4, 42.4, 31.7, 27.2, 23.1; HRMS (ESI): m/z = 

[M+Na]+ calcd for C29H31NO3SNa: 496.1922; found: 496.1933. 

 

4.1.9. tert-Butyl 2-oxo-3-(tritylthiomethyl)piperidine-1-carboxylate (28) 

The title compound was prepared from 25 (379 mg, 1.8 mmol) following the protocol 

described for 27 above (44 h reaction time). The crude product (yellow oil, 1.52 g) was 

purified by flash column chromatography on silica gel (hexanes/EtOAc 4:1) to give the title 

compound as transparent oil (348 mg, 40%). Rf (hexanes/EtOAc 4:1) = 0.32. Analytical data 

were in accordance with those reported previously.20 

 

4.1.10. tert-Butyl 2-oxo-3-((tritylthio)methyl)azepane-1-carboxylate (29) 

The title compound was prepared from 23 (301 mg, 1.3 mmol) following the protocol 

described for 27 above (26 h reaction time). The crude product (1.03 g) was purified by flash 

column chromatography on silica gel (hexanes/EtOAc 8.5:1.5) to give the title compound as 

white foam (398 mg, 59%). Rf (hexanes/EtOAc 8.5:1.5) = 0.26; 1H NMR (400 MHz, CDCl3): 

δ = 7.51 – 7.45 (m, 6H), 7.31 – 7.24 (m, 6H), 7.22 – 7.17 (m, 3H), 4.12 – 4.03 (m, 1H), 2.96 – 

2.82 (m, 2H), 2.21 (dd, J = 13.7, 7.5, 1H), 1.80 – 1.66 (m, 3H), 1.60 – 1.52 (m, 1H), 1.49 (s, 

9H), 1.39 – 1.17 (m, 3H); 13C NMR (151 MHz, CDCl3): δ = 175.8, 153.2, 145.0, 129.8, 

128.0, 126.7, 83.0, 67.0, 46.2, 45.1, 34.2, 30.0, 28.3, 28.2, 28.1; HRMS (ESI): m/z [M + Na]+ 

calcd for C31H35NO3SNa: 524.2235; found: 524.2237.   

 

4.1.11. 4-((tert-Butoxycarbonyl)amino)-2-((tritylthio)methyl)butanoic acid (30) 

To a solution of 27 (237 mg, 0.50 mmol) in THF (10 mL) was added aqueous LiOH (1 M, 3.0 

mL, 3.0 mmol) and the resulting mixture was stirred at room temperature for 5 h. The solvent 

was removed under reduced pressure and the aqueous residue was acidified to pH 4 with 10% 
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citric acid. The mixture was extracted with CH2Cl2 (20 mL and 3 x 20 mL), washed with 

brine (30 mL), dried over MgSO4, filtered and concentrated to give the crude product (209 

mg). The crude product was purified by flash column chromatography on silica gel 

(CH2Cl2/MeOH 95:5) gave the title compound as white foam (156 mg, 64%). Rf 

(CH2Cl2/MeOH 95:5) = 0.23; 1H NMR (400 MHz, CDCl3): δ = 7.43 – 7.39 (m, 6H), 7.31 – 

7.25 (m, 6H), 7.23 – 7.18 (m, 3H), 4.56 (bs, 1H), 3.02 – 2.91 (m, 2H), 2.69 – 2.58 (m, 1H), 

2.26 – 2.18 (m, 1H), 2.07 – 1.98 (m, 1H), 1.75 – 1.49 (m, 2H), 1.42 (s, 9H); 13C NMR (100 

MHz, CDCl3): δ = 178.7, 156.4, 144.7, 129.7, 128.1, 126.9, 79.8, 67.1, 42.8, 38.3, 33.4, 32.3, 

28.5; HRMS (ESI): m/z [M + Na]+ calcd for C29H33NO4SNa: 514.2028; found: 514.2027. 

 

4.1.12. 5-(tert-Butoxycarbonylamino)-2-((tritylthio)methyl)pentanoic acid (31) 

The title compound was prepared from lactam 28 (348 mg, 0.7 mmol) following the protocol 

described for 30 above (3 h reaction time). The crude product (yellow foam, 326 mg) was 

purified by flash column chromatography on silica gel (CH2Cl2/MeOH 95:5) to give the title 

compound as yellow oil (245 mg, 68%). Rf (CH2Cl2/MeOH 95:5) = 0.30. Analytical data 

were in accordance with those reported previously.20 

 

4.1.13. 6-(tert-Butoxycarbonylamino)-2-(tritylthiomethyl)hexanoic acid (32) 

The title compound was prepared from lactam 29 (364 mg, 0.73 mmol) following the protocol 

described for 30 above, except the reaction time was 1.5 h and the pH was adjusted to ~ 3 

(instead of 4) during the aqueous work-up. The crude product (yellow oil, 369 mg) was 

purified by flash column chromatography on silica gel (CH2Cl2/MeOH 95:5) to give the title 

compound as white foam (306 mg, 81%). Rf (CH2Cl2/MeOH 95:5) = 0.31; 1H NMR (400 

MHz, CDCl3): δ = 7.43 – 7.39 (m, 6H), 7.30 – 7.24 (m, 6H), 7.22 – 7.17 (m, 3H), 4.49 (bs, 

1H), 3.05 – 2.92 (m, 2H), 2.60 (dd, J = 12.5, 8.2, 1H), 2.23 – 2.16 (m, 1H), 2.10 – 2.01 (m, 

1H), 1.43 (s, 9H), 1.40 – 1.24 (m, 4H), 1.14 – 1.02 (m, 2H); 13C NMR (150.9 MHz, CDCl3); δ 

= 179.9, 156.1, 144.7, 129.8, 128.1, 126.8, 79.3, 67.1, 45.1, 40.4, 33.1, 31.5, 29.8, 28.6, 24.2; 

HRMS (ESI): m/z [M + Na]+ calcd for C31H37NO4SNa: 542.2341; found: 542.2343.  

 

4.1.14. General protocol A: Coupling of the R2 and R3 fragments 

To a stirring solution of the secondary amine (1.40 mmol) in dry CH2Cl2 (5 mL) was added 

Fmoc-protected amino acid (1.40 mmol), HATU (545, 1.43 mmol) and DIPEA (0.75 mL, 

4.31 mmol). The reaction mixture was stirred for 23 h before the solvent was removed and the 

residue was partitioned between H2O (10 mL) and EtOAc (10 mL). The aqueous phase was 
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extracted with EtOAc (2 x 10 mL) and the combined organic phases were washed with 1 M 

KHSO4 (20 mL), H2O (20 mL), saturated NaHCO3 (20 mL) and brine (20 mL). The organic 

phase was dried over MgSO4, filtered and concentrated to yield the crude product, which was 

purified by flash column chromatography on silica gel. 

 

4.1.15. (9H-fluoren-9-yl)methyl (S)-(1-((2,2-dimethoxyethyl)(2-(naphthalen-2-

yl)ethyl)amino)-1-oxo-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-

yl)sulfonyl)guanidino)pentan-2-yl)carbamate (33) 

The title compound was prepared from secondary amine 14 (362 mg, 1.40 mmol) and Fmoc-

Arg(Pbf)-OH (911 mg, 1.40 mmol) following general protocol A. The crude product (yellow 

foam, 1.190 g) was purified by flash column chromatography on silica gel (EtOAc/hexanes 

8:2) to give the title compound as white foam (1.060 g, 85%). Rf (EtOAc/hexanes 8:2) = 0.23; 

NMR analyses did not give useful information due to formation of rotamers; HRMS (ESI): 

m/z [M + H]+ calcd for C50H60N5O8S: 890.4163; found: 890.4163; m/z [M + Na]+ calcd for 

C50H59N5O8SNa: 912.3982; found 912.3972. 

 

4.1.16. (9H-fluoren-9-yl)methyl tert-Butyl (5-((2,2-dimethoxyethyl)(2-(naphthalen-2-

yl)ethyl)amino)-5-oxopentane-1,4-diyl)(S)-dicarbamate (34) 

The title compound was prepared from secondary amine 14 (307 mg, 1.18 mmol) and Fmoc-

Orn(Boc)-OH (539 mg, 1.19 mmol) following general protocol A. The crude product was 

purified by flash column chromatography on silica gel (EtOAc/hexane 6:4) to give the title 

compound as white foam (678 mg, 82%, retains EtOAc). Rf (EtOAc/hexane 6:4) = 0,31; 

NMR analyses did not give useful information due to formation of rotamers; HRMS (ESI): 

m/z [M + Na]+ calcd for C41H49N3O7Na: 718.3468; found: 718.3457. 

 

4.1.17. (9H-fluoren-9-yl)methyl tert-butyl (6-((2,2-dimethoxyethyl)(2-(naphthalen-2-

yl)ethyl)amino)-6-oxohexane-1,5-diyl)(S)-dicarbamate (35) 

To a stirring solution of Fmoc-Lys(Boc)-OH (551 mg, 1.2 mmol) in anhydrous DMF (2.3 

mL) was added HATU (447 mg, 1.2 mmol) and DIPEA (0.21 mL,  1.2 mmol). The reaction 

mixture was stirred for 30 min at room temperature. Secondary amine 14 (305 mg, 1.2 mmol) 

in anhydrous DMF (1.5 mL) was added and the reaction mixture was stirred for 20 h at room 

temperature. The solvent was removed and the aqueous work-up was carried out as described 

for general protocol A. The crude product (890 mg) was purified by flash column 

chromatography on silica gel (EtOAc/hexanes 8.5:1.5) to give the title compound as pale 
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yellow foam (678 mg, 71%). Rf (EtOAc/hexanes 8.5:1.5) = 0.58; NMR analyses did not give 

useful information due to formation of rotamers; HRMS (ESI): m/z [M + Na]+ calcd for 

C42H51N3O7Na: 732.3625; found: 732.3627. 

 

4.1.18. (9H-Fluoren-9-yl)methyl (S)-(1-((2,2-dimethoxyethyl)(naphthalen-2-ylmethyl)amino)-

1-oxo-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-

yl)carbamate (36) 

The title compound was prepared from secondary amine 18 (847 mg, 3.45 mmol) and Fmoc-

Arg(Pbf)-OH (2.29 g, 3.53 mmol) following general protocol A (17 h reaction time). The 

crude product (yellow foam, 3.68 g) was purified by flash column chromatography on silica 

gel (EtOAc/hexanes 9:1) to give the title compound as white foam (2.110 g, 70%). Rf 

(EtOAc/hexanes 9:1) = 0.39; NMR analyses did not give useful information due to formation 

of rotamers; HRMS (ESI): m/z [M + H] calcd for C49H58N5O8S: 876.4006; found: 876.4008. 

 

4.1.19. (9H-fluoren-9-yl)methyl (S)-(1-(((1-bromonaphthalen-2-yl)methyl)(2,2-

dimethoxyethyl)amino)-1-oxo-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-

yl)sulfonyl)guanidino)pentan-2-yl)carbamate (37) 

The title compound was prepared from secondary amine 19 (99 mg, 0.3 mmol) and Fmoc-

Arg(Pbf)-OH (414 mg, 0.6 mmol) following general protocol A. The crude product 

(yellowish foam, 485 mg) was purified by flash column chromatography on silica gel 

(EtOAc/hexanes, 77:23) to give the title compound as white foam (214 mg, 77%). Rf 

(EtOAc/hexanes 8:2) = 0.38; NMR analyses did not give useful information due to formation 

of rotamers; HRMS (ESI): m/z [M + H]+ calcd for C49H57O8N5BrS: 954.3111; found: 

954.3113; HRMS (ESI): m/z [M + Na]+ calcd for C49H56O8N5BrSNa: 978.2910; found: 

978.2925. 

 

4.1.20. (9H-fluoren-9-yl)methyl (S)-(1-((2,2-dimethoxyethyl)(naphthalen-1-ylmethyl)amino)-

1-oxo-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-

yl)carbamate (38) 

HATU (411 mg, 1.1 mmol) and DIPEA (0.19 mL, 1.1 mmol) were added to a stirred solution 

of Fmoc-Arg(Pbf)-OH (636 mg, 1.0 mmol) in dry DMF (3 mL) under an argon atmosphere. 

The mixture was stirred for 30 minutes at room temperature before secondary amine 20 (265 

mg, 1.1 mmol) in dry DMF (2 mL) was added drop wise to the reaction mixture, and stirring 

continued for 16 hr. The reaction mixture was partitioned between H2O (10 mL) and EtOAc 
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(10 mL), and the organic phase was further washed with H2O (2 x 15 mL) and saturated 

NaCl, dried over MgSO4, filtered and concentrated to give the crude product. Purification by 

flash column chromatography (EtOAc/hexanes 4:1) gave the title compound as white foam 

(545 mg, 64%, retains EtOAc). Rf (EtOAc/hexanes 4:1) = 0.24; NMR analyses did not give 

useful information due to formation of rotamers; HRMS (ESI): m/z [M + Na]+ calcd for 

C49H57N5O8SNa: 898.3826; found: 898.3823. 

 

4.1.21. General protocol B: Fmoc-deprotection 

To a stirring solution of the Fmoc-protected amine (0.06 M in CH2Cl2) was added Et2NH (50 

equiv) and the resulting mixture was stirred at room temperature for 2-3 h (monitored by 

TLC). The solvent was removed under reduced pressure and the residue was used in the next 

step without purification. 

 

4.1.22. General protocol C: Formation of linear precursors 

To a stirring solution the carboxylic acid carrying the R1 side chain (0.31 mmol) in dry 

CH2Cl2 (2 ml) was added HATU (128 mg, 0.34 mmol) and DIPEA (0.15 ml, 0.86 mmol). The 

reaction mixture was stirred at room temperature for 40 minutes. Fmoc-deprotected amine 

(see general protocol B, 0.32 mmol) in dry CH2Cl2 (12 mL) was added and the stirring 

continued for 42 h. The solvent was evaporated to give a red residue, which was partitioned 

between H2O (10 mL) and EtOAc (10 mL). The aqueous phase was extracted with EtOAc (3 

x 10 mL) and the organic phases were combined and washed with 1 M KHSO4 (20 mL), H2O 

(20 mL), saturated NaHCO3 (20 mL) and brine (20 mL). The organic phase was dried over 

MgSO4, filtered and concentrated to yield the crude product, which was purified by flash 

column chromatography on silica. 

 

4.1.23. tert-Butyl (4-(((S)-1-((2,2-dimethoxyethyl)(2-(naphthalen-2-yl)ethyl)amino)-1-oxo-5-

(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-

yl)amino)-4-oxo-3-((tritylthio)methyl)butyl)carbamate (39) 

The title compound was prepared from carboxylic acid 30 (154 mg, 0.31 mmol) and Fmoc-

deprotected amine 33 (see general protocol B, 0.32 mmol) following general protocol C. The 

crude product (red foam, 460 mg) was purified by flash column chromatography on silica gel 

(EtOAc/hexanes 8:2) to give an inseparable mixture of the two diastereoisomers of 39 (240 

mg, 67%). Rf (EtOAc/hexanes 8:2) = 0.22; NMR analyses did not give useful information due 
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to formation of rotamers; HRMS (ESI): m/z [M + H]+ calcd for C64H81N6O9S2: 1141.5506; 

found: 1141.5525; m/z [M + Na]+ calcd for C64H80N6O9S2Na: 1163.5326; found: 1163.5325. 

 

4.1.24. tert-Butyl ((4S)-4-(6-((tert-butoxycarbonyl)amino)-2-((tritylthio)methyl)hexanamido)-

5-((2,2-dimethoxyethyl)(2-(naphthalen-2-yl)ethyl)amino)-5-oxopentyl)carbamate (40) 

The title compound was prepared from carboxylic acid 32 (267 mg, 0.51 mmol) and Fmoc-

deprotected amine 34 (see general protocol B, 0.59 mmol) following general protocol C. The 

crude product (yellow solid, 676 mg) was purified by flash column chromatography on silica 

gel (EtOAc/hexane 6:4) to give an inseparable mixture of the two diastereoisomers of 40 as 

white foam (171 mg, 34%). Rf (EtOAc/hexane 6:4) = 0.29; NMR analyses did not give useful 

information due to formation of rotamers; HRMS (ESI): m/z [M + Na]+ calcd for 

C57H74N4O8SNa: 997.5125; found: 997.5123. 

 

4.1.25. tert-Butyl ((5S)-5-(5-((tert-butoxycarbonyl)amino)-2-

((tritylthio)methyl)pentanamido)-6-((2,2-dimethoxyethyl)(2-(naphthalen-2-yl)ethyl)amino)-6-

oxohexyl)carbamate (41) 

The title compound was prepared from carboxylic acid 31 (244 mg, 0.48 mmol) and Fmoc-

deprotected amine 35 (see general protocol B, 0.68 mmol) following general protocol C. The 

crude product (498 mg) was purified by flash column chromatography on silica gel 

(EtOAc/hexanes 6:4) to give an inseparable mixture of the two diastereoisomers of 41 as 

transparent oil (158 mg, 34%). Rf (EtOAc/hexanes 6:4) = 0.34; NMR analyses did not give 

useful information due to formation of rotamers; HRMS (ESI): m/z [M + Na]+ calcd for 

C57H74N4O8SNa: 997.5125; found 997.5128. 

 

4.1.26. tert-Butyl (5-(4-((tert-butoxycarbonyl)amino)-2-((tritylthio)methyl)butanamido)-6-

((2,2-dimethoxyethyl)(2-(naphthalene-2-yl)ethyl)amino)-6-oxohexyl)carbamate (42) 

The title compound was prepared from carboxylic acid 30 (325 mg, 0.48 mmol) and Fmoc-

deprotected amine 35 (see general protocol B, 0.66 mmol) following general protocol C. The 

crude product (brown oil, 352 mg) was purified by flash column chromatography on silica gel 

(EtOAc/hexanes 6:4) to give to give an inseparable mixture of the two diastereoisomers of 42 

as transparent oil (205 mg, 45 %). Rf (EtOAc/hexanes 6:4) = 0.40; NMR analyses did not give 

useful information due to formation of rotamers; HRMS (ESI): m/z [M + Na]+ calcd for 

C56H72N4O8SNa: 983.4969; found 983.4970. 
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4.1.27. tert-Butyl (5-(((S)-1-((2,2-dimethoxyethyl)(naphthalen-2-ylmethyl)amino)-1-oxo-5-

(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-

yl)amino)-5-oxo-4-((tritylthio)methyl)pentyl)carbamate (43) 

The title compound was prepared from carboxylic acid 31 (469 mg, 0.93 mmol) and Fmoc-

deprotected amine 36 (see general protocol B, 0.94 mmol) following general protocol C. The 

crude product (red foam) was purified by flash column chromatography on silica gel 

(EtOAc/hexanes 9:1) to give to give an inseparable mixture of the two diastereoisomers of 43 

as white foam (707 mg, 67%). Rf (EtOAc/hexanes 9:1) = 0.33; NMR analyses did not give 

useful information due to formation of rotamers; HRMS (ESI): m/z [M + Na]+ calcd for 

C64H80O9N6S2Na: 1163.5326; found: 1163.5325. 

 

4.1.28. tert-Butyl (5-(((S)-1-(((1-bromonaphthalen-2-yl)methyl)(2,2-dimethoxyethyl)amino)-

1-oxo-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-

yl)amino)-5-oxo-4-((tritylthio)methyl)pentyl)carbamate (44) 

The title compound was prepared from carboxylic acid 31 (112 mg, 0.22 mmol) and Fmoc-

deprotected amine 37 (see general protocol B, 0.19 mmol) following general protocol C. The 

crude product (white foam, 384 mg) was purified by flash column chromatography on silica 

gel (EtOAc/hexanes 8.5:1.5) to give an inseparable mixture of the two diastereoisomers of 44 

as white foam (114 mg, 38 %). Rf (EtOAc/hexanes 8.5:1.5) = 0.27; NMR analyses did not 

give useful information due to formation of rotamers; HRMS (ESI): m/z [M + H]+ calcd for 

C64H80BrN6O9S2: 1219.4612 and 1221.4591; found: 1219.4630 and 1221.4609.  

 

4.1.29. tert-Butyl (5-(((S)-1-((2,2-dimethoxyethyl)(naphthalen-1-ylmethyl)amino)-1-oxo-5-

(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-

yl)amino)-5-oxo-4-((tritylthio)methyl)pentyl)carbamate (45) 

The title compound was prepared from carboxylic acid 31 (87 mg, 0.17 mmol) and Fmoc-

deprotected amine 38 (see general protocol B, 0.18 mmol) following general protocol C (18 h 

reaction time), except HBTU was used as coupling reagent. The crude product was purified 

by flash column chromatography on silica gel (EtOAc/hexanes 3:1) to give to give an 

inseparable mixture of the two diastereoisomers of 45 as white foam (0.150 mg, 75%, retains 

EtOAc). Rf (EtOAc/hexanes) = 0.24; NMR analyses did not give useful information due to 

formation of rotamers; HRMS (ESI): m/z [M + Na]+ calcd for C64H80N6O9S2Na: 1163.5326; 

found: 1163.5425. 
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4.1.30. tert-Butyl ((7S,10R)-3-methoxy-5-(naphthalen-2-ylmethyl)-6,9-dioxo-7-(3-(3-

((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)propyl)-13,13,13-

triphenyl-2-oxa-12-thia-5,8-diazatridecan-10-yl)carbamate (46) 

The title compound was prepared from Boc-Cys(Trt)-OH (502 mg, 1.08 mmol) and Fmoc-

deprotected amine 36 (see general protocol B, 0.98 mmol) following general protocol C (72 h 

reaction time), except that HCTU was used as coupling reagent. The crude product (orange 

foam, 1.19 g) was purified by flash column chromatography on silica gel (EtOAc/hexanes 

9:1) to give the title compound as yellow oil (752 mg, 63%). Rf  (EtOAc/hexanes 9:1) = 0.34; 

NMR analyses did not give useful information due to formation of rotamers; HRMS (ESI): 

m/z [M + Na]+ calcd for C61H74N6O9S2Na: 1121.4856; found: 1121.4859. 

 

4.1.31. General procedure for global deprotection and cyclization 

The linear precursor was dissolved in a mixture of TFA, thioanisole and H20 (90:5:5, 100 mL 

per mmol) and the resulting mixture was stirred at room temperature for 2-4 h. The TFA was 

removed under reduced pressure and crude product was precipitated by addition of cold 

diethyl ether. The diethyl ether was removed and the residue was dried in vacuo to give the 

crude product as a white solid. 

 

4.1.32. 1-(3-((3S,6S,9aR)-3-(2-guanidinoethyl)-8-(2-(naphthalen-2-yl)ethyl)-4,7-

dioxohexahydro-2H,6H-pyrazino[2,1-b][1,3]thiazin-6-yl)propyl)guanidine (6a) 

Linear precursor 39 (240 mg, 0.21 mmol) was deprotected and cyclized following the general 

procedure. The crude product (113 mg out of 283 mg) was dissolved in dry DMF (5 mL) and 

1H-pyrazole-1-carboxamidine hydrochloride (171 mg, 1.17 mmol) and DIPEA (0.20 mL, 

1.15 mmol) were added and the mixture was stirred under inert atmosphere for 66 h during 

which the reaction was monitored by RP-HPLC. Diethyl ether (25 mL) was then added and 

the mixture was cooled at 4 °C and stirred for an additional hour, resulting in the precipitation 

of a white solid (390 mg). The crude product was purified by semi-preparative RP-HPLC to 

give the title compound as a fluffy white solid (13.0 mg, 17%). 1H NMR (600 MHz, CD3OD): 

δ = 7.85 – 7.78 (m, 3H), 7.70 (s, 1H), 7.49 – 7.43 (m, 3H), 4.85 (m, 1H), 4.68 (HSQC, 1H), 

4.17 – 4.11 (m, 1H), 3.71 – 3.60 (m, 3H), 3.23 – 3.17 (m, 3H), 3.14 – 3.05 (m, 2H), 3.00 – 

2.94 (m, 1H), 2.91 – 2.85 (m, 1H), 2.67 – 2.55 (m, 2H), 2.05 – 1.98 (m, 1H), 1.75 – 1.68 (m, 

1H), 1.67 – 1.60 (m, 1H), 1.54 – 1.46 (m, 1H), 1.33 – 1.23 (m, 2H); 13C NMR (150.9 MHz, 

CD3OD): δ = 174.1, 170.2, 158.8, 158.5, 137.2, 135.0, 133.9, 129.3, 128.7, 128.6, 128.4, 

128.4, 127.4, 126.8, 57.3, 53.7, 48.8 (HSQC), 48.6 (HSQC), 41.4, 40.5, 40.5, 34.6, 31.2, 30.7, 
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29.8, 26.3; HRMS (ESI): m/z [M + 2H]2+ calcd for C26H38N8O2S: 263.1414; found: 263.1418. 

Purity = 97.9% (UV 220 nm) 

 

4.1.33. 1-(3-((3R,6S,9aS)-3-(2-guanidinoethyl)-8-(2-(naphthalen-2-yl)ethyl)-4,7-

dioxohexahydro-2H,6H-pyrazino[2,1-b][1,3]thiazin-6-yl)propyl)guanidine (6b) 

Bicycle 6b was prepared as described for 6a above. The crude product was purified by semi-

preparative RP-HPLC to give the title compound as a fluffy white solid (18.6 mg, 23%). 1H 

NMR (600 MHz, CD3OD): δ = 7.83 – 7.78 (m, 3H), 7.69 (s, 1H), 7.48 – 7.42 (m, 3H), 5.15 (t, 

J = 4.8, 1H), 4.87 (HSQC, 1H), 4.04 – 3.98 (m, 1H), 3.73 (dd, J = 13.9, 4.0, 1H), 3.62 – 3.56 

(m, 1H), 3.53 (dd, J = 14.0, 5.8, 1H), 3.24 – 3.20 (m, 2H), 3.11 – 3.07 (m, 2H), 3.06 – 2.97 

(m, 3H), 2.84 – 2.78 (m, 1H), 2.60 (t, J = 12.1, 1H), 2.03 – 1.95 (m, 1H), 1.70 – 1.63 (m, 3H), 

1.41 – 1.35 (m, 2H); 13C NMR (150.9 MHz, CD3OD); δ = 173.8, 169.3, 158.7, 158.5, 137.3, 

135.0, 133.8, 129.3, 128.7, 128.5, 128.5, 128.5, 127.2, 126.7, 56.6, 53.0, 50.7, 49.3 (HSQC), 

41.6, 41.4, 40.4, 34.4, 31.3, 30.1, 28.6, 26.2; HRMS (ESI): m/z [M + 2H]2+ calcd for 

C26H38N8O2S: 263.1414; found: 263.1419. Purity = 98.0% (UV 220 nm) 

 

4.1.34. 1-(3-((3S,6S,9aR)-3-(4-guanidinobutyl)-8-(2-(naphthalen-2-yl)ethyl)-4,7-

dioxohexahydro-2H,6H-pyrazino[2,1-b][1,3]thiazin-6-yl)propyl)guanidine (7a) 

Linear precursor 40 (134 mg, 0.14 mmol) was deprotected and cyclized following the general 

procedure. The crude product (134 mg) was dissolved in dry DMF (10 mL) and1H-pyrazole-

1-carboxamidine hydrochloride (165 mg, 1.13 mmol) and DIPEA (0.20 mL, 1.15 mmol) were 

added. The mixture was stirred under argon atmosphere for 66 h during which the reaction 

was monitored by RP-HPLC. Diethyl ether (25 mL) was then added and the mixture was 

cooled at 4 °C and stirred for an additional hour, resulting in the precipitation of a brown oil 

(157 mg). The crude product was purified by semi-preparative RP-HPLC to give the title 

compound as a white fluffy solid (8.5 mg, 16%). 1H NMR (600 MHz, CD3OD): δ = 7.86 – 

7.77 (m, 3H), 7.68 (s, 1H), 7.49 – 7.43 (m, 3H), 4.66 (p, J = 8.0, 2H), 4.09 – 4.03 (m, 1H), 

3.72 – 3.67 (m, 1H), 3.63 – 3.59 (m, 2H), 3.20 – 3.15 (m, 3H), 3.10 (t, J = 6.9, 2H), 3.02 – 

2.89 (m, 2H), 2.55 (t, J = 11.4, 1H), 2.40 – 2.34 (m, 1H), 1.88 – 1.79 (m, 1H), 1.66 – 1.56 (m, 

3H), 1.54 – 1.46 (m, 1H), 1.45 – 1.35 (m, 3H), 1.35 – 1.23 (m, 2H); 13C NMR (150.9 MHz, 

CD3OD); δ = 174.3, 170.4, 158.7, 158.5, 137.3, 134.9, 133.8, 129.3, 128.7, 128.7, 128.4, 

128.4, 127.3, 126.8, 57.1, 53.8, 49.0 (HSQC), 49.0 (HSQC), 43.1, 42.3, 41.5, 34.6, 31.3, 30.7, 

29.9, 29.9, 26.3, 25.4; HRMS (ESI): m/z [M + H]+ calcd for C28H41N8O2S: 553.3073; found: 

553.3071. Purity = 97.7% (UV 220 nm) 
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4.1.35. 1-(3-((3R,6S,9aS)-3-(4-guanidinobutyl)-8-(2-(naphthalen-2-yl)ethyl)-4,7-

dioxohexahydro-2H,6H-pyrazino[2,1-b][1,3]thiazin-6-yl)propyl)guanidine (7b) 

Bicycle 7b was prepared as described for 7a above. The crude product was purified by semi-

preparative RP-HPLC to give the title compound as a fluffy white solid (7.1 mg, 13%). 1H 

NMR (600 MHz, CD3OD): δ = 7.85 – 7.77 (m, 3H), 7.69 (s, 1H), 7.49 – 7.40 (m, 3H), 5.13 – 

5.09 (m, 1H), 4.88 (HSQC, 1H), 3.98 (p, J = 7.2, 1H), 3.67 (dd, J = 13.7, 4.0, 1H), 3.59 (p, J 

= 6.6, 1H), 3.52 (dd, J = 13.7, 6.2, 1H), 3.17 (t, J = 7.1, 2H) 3.11 – 3.01 (m, 5H), 2.74 – 2.68 

(m, 1H), 2.57 (t, J = 12.0, 1H), 1.93 – 1.86 (m, 1H), 1.72 – 1.64 (m, 2H), 1.64 – 1.55 (m, 2H), 

1.46 – 1.35 (m, 5H); 13C NMR (150.9 MHz, CD3OD); δ = 174.0, 169.4, 158.6, 158.5, 137.3, 

135.0, 133.8, 129.3, 128.7, 128.5, 128.5, 128.4, 127.2, 126.7, 56.6, 52.7, 51.2, 49.4 (HSQC), 

44.1, 42.3, 41.6, 34.7, 31.3, 30.1, 29.9, 28.3, 26.2, 25.1; HRMS (ESI): m/z [M + H]+ calcd for 

C28H41N8O2S: 553.3073; found: 553.3072. Purity = 96.3% (UV 220 nm) 

 

4.1.36. 1-(4-((3S,6S,9aR)-3-(3-guanidinopropyl)-8-(2-(naphthalen-2-yl)ethyl)-4,7-

dioxohexahydro-2H,6H-pyrazino[2,1-b][1,3]thiazin-6-yl)butyl)guanidine (8a) 

Linear precursor 41 (158 mg, 0.16 mmol) was deprotected and cyclized following the general 

procedure. The crude product (212 mg) was dissolved in dry DMF (10 mL) and 1H-pyrazole-

1-carboxamidine hydrochloride (132 mg, 0.90 mmol) and DIPEA (0.16 mL, 0.90 mmol) were 

added. The mixture was stirred for 72 h at room temperature during which the reaction was 

monitored by RP-HPLC. Diethyl ether (40 mL) was then added and the mixture was cooled to 

4 °C and stirred for an additional hour, resulting in the precipitation of a brown oil (163 mg). 

The crude product was purified by semi-preparative RP-HPLC to give the title compound as a 

white fluffy solid (5.5 mg, 9%). 1H NMR (600 MHz, CD3OD): δ = 7.86 – 7.76 (m, 3H), 7.69 

(s, 1H), 7.49 – 7.43 (m, 3H), 4.17 – 4.67 (m, 1H), 4.64 – 4.60 (m, 1H), 4.14 – 4.07 (m, 1H), 

3.69 – 3.62 (m, 1H), 3.62 – 3.57 (m, 2H), 3.20 – 3.15 (m, 3H), 3.12 – 3.07 (m, 2H), 2.92 (t, J 

= 7.2, 2H), 2.57 (t, J = 11.5, 1H), 2.41 (sx, J = 6.0, 1H), 1.87 – 1.80 (m, 1H), 1.68 – 1.57 (m, 

2H), 1.57 – 1.51 (m, 1H), 1.50 – 1.36 (m, 3H), 1.32 – 1.23 (m, 1H), 1.20 – 1.11 (m, 1H), 1.08 

– 1.00 (m, 1H); 13C NMR (150.9 MHz, CD3OD); δ = 173.9, 170.5, 158.6 (HMBC), 158.5 

(HMBC), 137.3, 134.9, 133.9, 129.3, 128.7 (2C), 128.5, 128.4, 127.3, 126.8, 57.7, 53.7, 48.9 

(HSQC), 48.8 (HSQC), 42.9, 42.4, 42.2, 34.6, 33.4, 29.9, 29.0, 28.8, 27.8, 24.1; HRMS (ESI): 

m/z [M + H]+ calcd for C28H41N8O2S: 553.3073; found: 553.3071,  m/z [M + 2H]2+ calcd for 

C28H42N8O2S: 277.1570; found: 277.1567. Purity = 95.4% (UV 220 nm) 
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4.1.37. 1-(4-((3R,6S,9aS)-3-(3-guanidinopropyl)-8-(2-(naphthalen-2-yl)ethyl)-4,7-

dioxohexahydro-2H,6H-pyrazino[2,1-b][1,3]thiazin-6-yl)butyl)guanidine (8b) 

Bicycle 8b was prepared as described for 8a above. The crude product was purified by semi-

preparative RP-HPLC to give the title compound as a fluffy white solid (10 mg, 16%). 1H 

NMR (600 MHz, CD3OD): δ = 7.84 – 7.78 (m, 3H), 7.70 (s, 1H), 7.48 – 7.41 (m, 3H), 5.16 – 

5.13 (m, 1H), 4.83 (HSQC, 1H), 4.09 – 4.02 (m, 1H), 3.71 (dd, J = 14.0, 4.0, 1H), 3.57 – 3.50 

(m, 2H), 3.18 (t, J = 7.0, 2H), 3.12 – 3.04 (m, 3H), 3.00 – 2.96 (m, 2H), 2.79 – 2.72 (m, 1H), 

2.59 (t, J = 12.1, 1H), 1.93 – 1.85 (m, 1H), 1.69 – 1.54 (m, 4H), 1.50 – 1.42 (m, 2H), 1.42 – 

1.34 (m, 1H), 1.26 – 1.18 (m, 1H), 1.17 – 1.09 (m, 1H); 13C NMR (150.9 MHz, CD3OD); δ = 

173.7, 169.6, 158.7, 158.6, 137.3, 135.0, 133.8, 129.2, 128.7, 128.5, 128.5, 128.5, 127.2, 

126.6, 57.0, 53.0, 50.7, 49.2 (HSQC), 43.6, 42.4, 42.2, 34.4, 32.8, 29.1, 28.8, 28.7, 27.5, 24.0; 

HRMS (ESI): m/z [M + H]+ calcd for C28H41N8O2S: 553.3073; found: 553.3071. Purity = 

98.1% (UV 220 nm) 

 

4.1.38. 1-(4-((3S,6S,9aR)-3-(2-guanidinoethyl)-8-(2-(naphthalene-2-yl)ethyl)-4,7-

dioxohexahydro-2H,6H-pyrazino[2,1-b][1,3]thiazine-6-yl)butyl)guanidine (9a) 

Linear precursor 42 (185 mg, 0.19 mmol) was deprotected and cyclized following the general 

procedure. The crude product (188 mg) was dissolved in dry DMF (10 mL) and 1H-pyrazole-

1-carboxamidine hydrochloride (121 mg, 0.83 mmol) and DIPEA (0.14 mL, 0.83 mmol) were 

added. The mixture was stirred for 90 h at room temperature during which the reaction was 

monitored by RP-HPLC. Diethyl ether (40 mL) was then added and the mixture was cooled to 

4 °C and stirred for an additional hour, resulting in the precipitation of a brown oil (173 mg). 

The crude product was purified by semi-preparative RP-HPLC to give the title compound as a 

white fluffy solid (4.7 mg, 6%). 1H NMR (600 MHz, CD3OD): δ = 7.86 – 7.79 (m, 3H), 7.71 

(s, 1H), 7.50 – 7.43 (m, 3H), 4.88 (dd, J = 11.0, 4.9; 1H), 4.63 (t, J = 7.9, 1H), 4.25 – 4.18 (m, 

1H), 3.69 (dd, J = 13.8, 5.1, 1H), 3.64 – 3.55 (m, 2H), 3.23 – 3.16 (m, 3H), 3.14 – 3.04 (m, 

2H), 2.92 – 2.84 (m, 2H), 2.67 – 2.56 (m, 2H), 2.04 – 1.96 (m, 1H), 1.75 – 1.68 (m, 1H), 1.56 

– 1.49 (m, 1H), 1.47 – 1.40 (m, 1H), 1.40 – 1.32 (m, 1H), 1.25 – 1.17 (m, 1H), 1.15 – 1.07 (m, 

1H), 1.02 – 0.93 (m, 1H); 13C NMR (150.9 MHz, CD3OD); δ = 173.9, 170.4, 158.8, 158.5, 

137.2, 135.0, 133.7, 129.3, 128.7, 128.7, 128.5, 128.5, 127.3, 126.7, 57.8, 53.7, 48.6 (HSQC), 

48.6 (HSQC), 42.1, 40.5, 40.5, 34.7, 33.4, 31.2, 29.9, 29.1, 24.1; HRMS (ESI): m/z [M + H]+ 

calcd for C27H39N8O2S: 539.2917; found: 539.2920, m/z [M + 2H]2+ calcd for C27H40N8O2S: 

270.1492; found: 270.1504. Purity = 98.5% (UV 220 nm) 
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4.1.39. 1-(4-((3R,6S,9aS)-3-(2-guanidinoethyl)-8-(2-(naphthalene-2-yl)ethyl)-4,7-

dioxohexahydro-2H,6H-pyrazino[2,1-b][1,3]thiazine-6-yl)butyl)guanidine (9b) 

Bicycle 9b was prepared as described for 9a above. The crude product was purified by semi-

preparative RP-HPLC to give the title compound as a fluffy white solid (5.3 mg, 7%). 1H 

NMR (600 MHz, CD3OD): δ = 7.84 – 7.77 (m, 3H), 7.69 (s, 1H), 7.48 – 7.39 (m, 3H), 5.17 

(m, 1H), 4.84 (HSQC, 1H), 4.09 – 4.02 (m, 1H), 3.73 (dd, J = 14.0, 3.8, 1H), 3.58 – 3.49 (m, 

2H), 3.24 – 3.18 (m, 2H), 3.11 – 3.07 (m, 2H), 3.04 (dd, J = 12.1, 5.6, 1H), 2.99 – 2.94 (m, 

2H), 2.83 – 2.76 (m, 1H), 2.59 (t, J = 12.1, 1H), 2.02 – 1.94 (m, 1H), 1.71 – 1.64 (m, 1H), 

1.62 – 1.55 (m, 2H), 1.50 – 1.41 (m, 1H), 1.41 – 1.33 (m, 1H), 1.26 – 1.17 (m, 1H), 1.17 – 

1.08 (m, 1H); 13C NMR (150.9 MHz, CD3OD); δ = 173.7, 169.4, 158.7, 158.5, 137.3, 135.0, 

133.8, 129.2, 128.7, 128.5, 128.5, 128.5, 127.2, 126.7, 57.1, 53.0, 50.4, 49.2 (HSQC), 42.1, 

41.2, 40.4, 34.4, 32.8, 31.2, 29.1, 28.7, 24.0; HRMS (ESI): m/z [M + H]+ calcd for 

C27H39N8O2S: 539.2917; found: 539.2919, m/z [M + 2H]2+ calcd for C27H40N8O2S: 270.1492; 

found: 270.1493. Purity = 96.0% (UV 220 nm). 

 

4.1.40. 1,1'-(((3RS,6S,9aRS)-8-(naphthalen-2-ylmethyl)-4,7-dioxohexahydro-2H,6H-

pyrazino[2,1-b][1,3]thiazine-3,6-diyl)bis(propane-3,1-diyl))diguanidine (10a,b) 

Linear precursor 45 (123 mg, 0.11 mmol) was deprotected and cyclized following the general 

procedure. The crude product (90 mg) was dissolved in DMF (10 mL) and 1H-pyrazole-1-

carboxamidine hydrochloride (103 mg, 0.70 mmol) and DIPEA (0.1 mL, 0.57 mmol) were 

added. The mixture was stirred under argon atmosphere for 69 h during which the reaction 

was monitored by RP-HPLC. Diethyl ether (30 mL) was then added and the mixture was 

cooled at 4 °C and stirred for an additional hour, resulting in the precipitation of a brown solid 

(118 mg). The crude product was purified by semi-preparative RP-HPLC to give the title 

compound as inseparable diastereoisomers as fluffy white solid  (25.5 mg, 31%). 1H NMR 

(500 MHz, CD3OD): δ = 7.90 – 7.78 (m, 8H), 7.54 – 7.46 (m, 4H), 7.42 (dd, J = 8.5, 1.7, 2H), 

5.25 – 5.21 (m, 2H), 5.16 (dd, J = 10.9, 5.6, 1H), 5.10 (dd, J = 9.2, 6.0, 1H), 4.89 (HSQC), 

4.77 (d, J = 14.6, 1H), 4.67 (d, J = 14.6, 1H), 3.81 – 3.63 (m, 4H), 3.26 (HSQC), 3.19 (q, J = 

7.5, 4H), 3.05 (dd, J = 11.7, 5.1, 1H), 2.84 – 2.69 (m, 3H), 2.64 (t, J = 11.4, 1H), 2.04 – 1.85 

(m, 6H), 1.77 – 1.59 (m, 8H), 1.59 – 1.45 (m, 2H); 13C NMR (150.9 MHz, CD3OD); δ = 

174.5, 173.9, 170.8, 169.7, 158.7, 158.6, 134.87, 134.85, 134,80, 134.6, 134.5 (2C), 130.0, 

129.8, 128.84, 128.82, 128.74, 128.72, 128.6, 128.5, 127.6, 127.5, 127.4, 127.3, 127.1, 126.8, 

57.3, 56.8, 54.1, 52.9, 51.2, 50.9, 50.0, 47.7, 43.8, 42.9, 42.2, 42.38, 41.8, 41.7, 31.0, 30.3, 
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30.0, 28.9, 28.8, 28.4, 27.7, 27.4, 26.7, 26.5; HRMS (ESI): m/z [M + H]+ calcd for 

C26H37N8O2S: 525.2760; found: 525.2764. Purity = 95% (sum of diastereoisomers, UV 220). 

 

4.1.41. 1,1'-(((3RS,6S,9aRS)-8-((1-bromonaphthalen-2-yl)methyl)-4,7-dioxohexahydro-

2H,6H-pyrazino[2,1-b][1,3]thiazine-3,6-diyl)bis(propane-3,1-diyl))diguanidine (11a,b) 

Linear precursor 44 (112 mg, 0.1 mmol) was deprotected and cyclized following the general 

procedure. The crude product (31 mg out of 33 mg) was dissolved in dry DMF (3 mL) and 

1H-pyrazole-1-carboxamidine hydrochloride (32 mg, 0.2 mmol) and DIPEA (0.2 mL, 1.2 

mmol) were added and stirring continued for 72 h (monitored by RP-HPLC) under inert 

atmosphere at room temperature. Diethyl ether (25 mL) was added to the mixture and stirring 

continued up to one additional hour on ice/water bath. The crude product precipitated as a 

white solid. The solvent was removed to give the crude product as a white sticky material (31 

mg). The crude product was purified by semi-preparative RP-HPLC to give the title 

compounds as a yellowish fluffy powder (6 mg, 8 %). 1H NMR (600 MHz, CD3OD): δ = 

8.35-8.31 (m, 2H), 7.94-7.88 (m, 4H), 7.69-7.63 (m, 2H), 7.62-7.57 (m, 2H), 7.46-7.42 (m, 

2H), 5.27-5.21 (m, 2H), 5.14-5.08 (m, 2H), 5.08, 5.01 (ABq, JAB = 15.2, 2H), 4.95-4.90 (m, 

3H), 3.82-3.76 (m, 2H), 3.69 (dd, J = 13.8, 5.3, 1H), 3.65 (dd, J = 13.8, 6.4, 1H), 3.29-3.25 

(m, 4H), 3.22-3.17 (m, 4H), 3.04 (dd, J = 11.8, 5.0, 1H), 2.87-2.78 (m, 2H), 2.78-2.71 (m, 

1H), 2.66 (app t, J = 11.4, 1H), 2.07-1.98 (m, 1H), 1.98-1.90 (m, 5H), 1.78-1.60 (m, 8H), 

1.60-1.46 (m, 2H); 13C NMR (150.9 MHz, CD3OD); δ = 174.5, 173.9, 170.8, 169.8, 158.66, 

158.65, 158.63, 135.6 (2C), 134.5, 134.3, 133.63, 133.60, 127.7, 129.6, 129.43, 129.41, 

129.1, 129.0, 128.2, 128.14, 128.11, 128.1, 127.8, 127.6, 124.8, 124.6, 57.3, 56.9, 54.1, 52.8, 

51.9, 51.8, 50.5, 48.1,  43.9, 42.9,  42.42, 42.38, 41.8, 41.7, 31.0, 30.3, 30.1, 28.93, 28.85, 

28.4, 27.7, 27.4, 26.7, 26.5; HRMS (ESI): m/z [M + H]+ calcd for C26H3679BrN8O2S: 

603.1865; found: 603.1862; m/z [M + H]+ calcd for C26H3681BrN8O2S: 605.1845; found: 

605.1853. Purity = 96.8% (sum of diastereoisomers, UV 220). 

 

4.1.42. 1,1'-(((3RS,6S,9aRS)-8-(naphthalen-1-ylmethyl)-4,7-dioxohexahydro-2H,6H-

pyrazino[2,1-b][1,3]thiazine-3,6-diyl)bis(propane-3,1-diyl))diguanidine ((12a,b) 

The linear precursor 43 (1.556 g, 1.58 mmol) was deprotected and cyclized following the 

general procedure. The crude product (718 mg out of 989 mg) was guanidinylated following 

the procedure described for 6a to give the crude product as yellow foam (821 mg). A small 

sample was purified by semi-preparative RP-HPLC to give the title compounds as a fluffy 

white solid. 1H NMR (600 MHz, CD3OD): δ = 8.12-8.07 (m, 2H), 7.96-7.87 (m, 4H), 7.56-
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7.45 (m, 8H), 5.32-5.24 (m, 2H), 5.15 (dd, J = 6.2, 4.1, 1H), 5.11 (dd, J = 9.0, 6.1, 1H), 5.06-

5.01 (m, 2H), 4.97-4.89 (m, 2H), 3.64 (dd, J = 13.8, 5.3, 1H), 3.57 (dd, J = 13.9, 4.2, 1H), 

3.50 (dd, J = 13.9, 6.3, 1H), 3.45 (dd, J = 13.8, 11.4, 1H), 3.26-3.21 (m, 5H), 3.20-3.14 (m, 

4H), 3.00 (dd, J = 12.2, 5.5, 1H), 2.79-2.70 (m, 2H), 2.67-2.58 (m, 2H), 2.01-1.81 (m, 6H), 

1.76-1.42 (m, 9H), 1.40-1.35 (m, 1H); 13C NMR (150.9 MHz, CD3OD); δ = 174.4, 173.9, 

170.2, 169.2, 158.63, 158.59, 135.56, 135.53, 133.0, 132.8, 132.5, 132.3, 130.4, 130.3, 130.1, 

130.0, 129.3, 129.2, 127.7, 127.6, 127.3, 127.2, 126.5, 126.3, 124.7, 124.6, 57.4, 56.9, 54.0, 

52.9, 49.2 (HSQC), 49.0 (HSQC), 48.8 (HSQC), 48.5 (HSQC), 48.3, 46.7, 43.8, 42.9, 42.43, 

42.38, 41.77, 41.72, 30.9, 30.2, 30.0, 28.89, 28.82, 28.4, 27.7, 27.4, 26.7, 26.5; HRMS (ESI): 

m/z [M + H]+ calcd for C26H37N8O2S: 525.2760; found: 525.2765. Purity = 97.0% (sum of 

diastereoisomers, UV 220). 

 

4.1.43. 1-(3-((3S,6S,9aR)-3-(3-aminopropyl)-8-(naphthalen-2-ylmethyl)-4,7-dioxohexahydro-

2H,6H-pyrazino[2,1-b][1,3]thiazin-6-yl)propyl)guanidine (49a,b) 

The linear precursor 43 (132 mg, 0.12 mmol) was cyclized following the general procedure to 

give 71 mg of crude product. Purification by semi-preparative RP-HPLC gave the title 

compounds as a fluffy white solid (18.9 mg, 30%). 1H NMR (600 MHz, CD3OD): δ = 7.89-

7.83 (m, 6H), 7.81 (d, J = 9.1, 2H), 7.53-7.47 (m, 4H), 7.42 (d, J = 8.3, 2H), 5.25-5.22 (m, 

1H), 5.17 (dd, J = 10.9, 5.3, 1H), 5.09 (dd, J = 8.1, 6.6, 1H), 4.93-4.87 (m, 3H), 4.77 (d, J = 

14.4, 1H), 4.67 (d, J = 14.6, 1H), 3.82-3.63 (m, 4H), 3.30-3.22 (m, 5H), 3.05 (dd, J = 12.0, 

5.1, 1H), 2.97-2.91 (m, 4H), 2.85-2.79 (m, 2H), 2.73 (t, J = 11.9, 1H), 2.65 (t, J = 11.5, 1H), 

2.04-1.87 (m, 6H), 1.83-1.67 (m, 8H), 1.60-1.48 (m, 2H); 13C NMR (150.9 MHz, CD3OD); δ 

= 174.6, 174.1, 171.0, 169.9, 158.96, 158.92, 135.2, 135.14, 135.09, 134.9, 134.80, 134.79, 

130.3, 130.1, 129.15, 129.13, 129.03, 129.01, 128.9, 128.8, 127.9, 127.8,  127.7, 127.6, 127.5, 

127.1, 57.6, 57.1, 54.4, 53.3, 51.5, 51.2, 50.3, 48.0, 43.9, 43.1, 42.1, 42.0, 40.9, 40.8, 31.3, 

30.7, 30.3, 28.9, 28.8, 28.7, 27.0, 26.78, 26.77, 26.4;  HRMS (ESI): m/z [M + H]+ calcd for 

C25H35N6O2S: 483.2542; found: 483.2545. 

 

4.1.44. 1-(3-((1R,3S)-2-(L-cysteinyl)-4-oxo-1,3,4,6-tetrahydro-2H-1,5-methanonaphtho[1,2-

f][1,4]diazocin-3-yl)propyl)guanidine (48) 

Linear precursor 46 (74 mg, 0.91 mmol) was cyclized following the general procedure to give 

80 mg of crude product. Purification by semi-preparative RP-HPLC gave the title compound 

as a fluffy white solid (1.62 mg, 4%). 1H NMR (600 MHz, CD3OD): δ = 8.23 (d, J = 8.6, 1H), 

7.84 (d, J = 7.9, 1H), 7.82 (d, J = 8.6, 1H), 7.61-7.57 (m, 1H), 7.52-7.48 (m, 1H), 7.26 (d, J = 
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8.5, 1H), 5.24 (d, J = 18.3, 1H), 4.98 (dd, J = 7.8, 5.4, 1H), 4.86 (overlap with residual water, 

1H), 4.42 (d, J = 18.3, 1H), 3.95 (dd, J = 14.7, 1.7, 1H), 3.76 (dd, J = 12.1, 4.2, 1H), 3.70 (dd, 

J = 14.7, 1.7, 1H), 3.54 (dd, J = 14.3, 4.2, 1H), 3.31 (overlap with solvent peak, 1H), 3.18 (dd, 

J = 14.3, 12.1, 1H), 2.11-2.06 (m, 1H), 1.82-1.71 (m, 3H); 13C NMR (150.9 MHz, CD3OD); δ 

= 172.1, 169.3, 158.6, 134.1, 132.2, 132.0, 130.3, 129.6, 128.7, 127.8, 127.0, 125.3, 124.5, 

55.4, 50.7, 48.1, 46.8, 46.2, 42.2, 37.8, 29.4, 26.1; HRMS (ESI): m/z [M + H]+ calcd for 

C22H29N6O2S: 441.2073; found: 441.2070. 

 

4.2. Biology - COS-7 cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with Glutamax (1% glutamine), supplemented with 10% FBS, 180U/ml 

penicillin and 45µg/ml streptomycin in a 10% CO2/90% humidified atmosphere. The cells 

were transfected by the calcium phosphate precipitation method, where plasmid DNA (10 µg 

of receptor cDNA and 15 µg of the chimeric Gαi signal-converting G protein Gαδ6qi4myr) was 

mixed with TE buffer (10 mM Tris-HCl, 2 mM Na2EDTA, pH 7.5) and 30 µl CaCl2 (2 M). 

This mixture was added to 240 µl HEPES buffered saline (280 mM NaCl, 50 mM HEPES, 

1.5 mM Na2HPO4, pH 7.2). The mixture was allowed to stand for 45 minutes at room 

temperature for precipitation. Together with 150 µl chloroquine (2 mg/ml), it was thereafter 

added to 5 ml culture media to the 6 × 106 COS-7 cells seeded the day before. The 

transfection was stopped after 5 hours by replacing the culture media, and the cells were 

incubated overnight. 

 

The scintillation proximity-based inositol-phosphate accumulation assay (SPA-IP) was used 

to measure the potency of the potential antagonists. One day after transfection, the COS-7 

cells were seeded in wells (35,000 cells/well) and were incubated for 24 hours with Myo-[2-
3H(N)]-inositol (5 µl/ml) in 100 µl of culture media per well in 96-well plate. The subsequent 

day, the cells were washed twice in Hank’s balanced salt solution (HBSS, Invitrogen, U.K.) 

and incubated for 90 minutes in HBSS supplemented with 10 mM LiCl at 37 °C in the 

presence of the potential antagonists and CXCL12. Amounts of CXCL12 added induced up to 

80% of full receptor activation. Cell lysis was induced by addition of 40 µl formic acid (10 

mM) to each well, followed by incubation on ice for 30 minutes. For quantification of 

[3H]inositol-phosphates in the formic acid cell lysates, 80 µl of a Ysi-poly-D-Lys coated SPA 

bead suspension (12.5 µg/µl in H2O, PerkinElmer) were added to 35 µl cell lysates in a Pico-

Plate-96 white plate. The plates were sealed, agitated for 30 minutes and centrifuged (5 

minutes, 1500 rpm). The SPA beads were allowed to settle and react with the extract for 8 
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hours before the radioactivity was measured in a Packard Top Count NXTTM scintillation 

counter (PerkinElmer, MA, USA). All determinations were made in duplicate.  
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