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The influence of birth weight and length on bone mineral density and content in 

adolescence. The Tromsø Study, Fit Futures. 

Purpose: The influence of birth weight and length on bone mineral density and content later in 

life is unclear, especially in adolescence. This study evaluated the impact of birth weight and 

length on bone mineral density and content among adolescents. 

Methods: We included 961 participants from the population-based Fit Future study (2010-

2011). Dual-energy X-ray absorptiometry (DXA) was used to measure bone mineral density 

(BMD) and bone mineral content (BMC) at femoral neck (FN), total hip (TH) and total body 

(TB). BMD and BMC measures were linked with birth weight and length ascertained from the 

Medical Birth Registry of Norway. Linear regression models were used to investigate the 

influence of birth parameters on BMD and BMC.  

Results: Birth weight was positively associated with BMD-TB and BMC at all sites among 

girls; standardized β coefficients [95% CI] were 0.11 [0.01, 0.20] for BMD-TB and 0.15 

[0.06, 0.24], 0.18 [0.09, 0.28] and 0.29 [0.20, 0.38] for BMC-FN, TH and TB, respectively. In 

boys, birth weight was positively associated with BMC at all sites with estimates of 0.10 

[0.01, 0.19], 0.12 [0.03, 0.21] and 0.15 [0.07, 0.24] for FN, TH and TB, respectively. 

Corresponding analyses using birth length as exposure gave significantly positive associations 

with BMC at all sites in both sexes. The significant positive association between birth weight 
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and BMC-TB in girls, and birth length and BMC-TB in boys remained after multivariable 

adjustment.  

Conclusions: We found a positive association between birth size and BMC in adolescence. 

However, this association was attenuated after adjustment for weight, height and physical 

activity during adolescence. 

Key Words: Birth weight, DXA, Osteoporosis, Humans, Bone Density 

Introduction 

Osteoporotic fractures are a major health issue worldwide [1, 2]. Traditional public health 

policies have aimed at reducing risk factors associated with bone mass losses during 

adulthood to prevent osteoporotic fractures in later life [3]. An alternative strategy for 

prevention of osteoporotic fractures is to focus on optimizing peak bone mass (PBM) [4]. 

PBM is the result of numerous factors that influence the development of the skeleton. Genetic 

[5, 6] as well as several environmental and lifestyle factors contribute with varying impact. 

Evidence suggests that optimization of PBM in early-life may reduce later risk of osteoporosis 

[7, 8]. 

Several studies have shown an effect of various early-life exposures, resulting in changed risk 

of various diseases later in life [9-12]. Prematurity and uteroplacental insufficiency, both with 

low birth weight as proxy and with subsequent rapid growth, have been shown to be 

independently associated with low bone mineral parameters [13]. 

The association of birth weight with bone mineral density and content at different ages is 

conflicting; some studies have shown positive associations between birth weight and bone 

mineral density (BMD) in pre-pubertal individuals [14, 15]. Similarly, positive associations 

have been observed between birth weight and bone mineral content (BMC) in young adults, 

postmenopausal women and elderly [16, 17]. However, inverse associations between birth 
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weight and bone mineral density and content have also been reported in pre-pubertal children 

[11] and young adults [18]. A recent meta-analysis concludes that the association between 

birth weight on BMD and BMC are positive in children and stronger with BMC as outcome, 

while there is lack of evidence concerning adolescents [19]. 

To our knowledge, only a few studies have investigated the association of birth length with 

later BMD and BMC [14, 20]. Birth length has been reported to significantly contribute to 

BMD at all measured sites at age 8 [14]. Furthermore, a one standard deviation unit increase 

in birth length has been identified as significantly increasing the risk of experiencing a pre-

pubertal fracture [20]. Whether similar associations might be found in an adolescent 

population has yet to be investigated. Both length and weight increase during growth, 

dependent of lifestyle factors and with different timing in boys and girls, with dramatic spurts 

in adolescence. Hence, the element of size dependency of bone mass is important when 

interpreting results in age groups that are still growing [4] and when assessing the predictive 

value of birth parameters on BMD and BMC. 

The aim of this study was therefore to investigate the influence of birth weight and birth 

length on BMD and BMC in an adolescent cohort, stratified by sex and controlling for weight, 

height and physical activity during adolescence. 

Methods 

Study population and design: The Tromsø Study, Fit Futures  

In 2010-2011, an expansion of the Tromsø Study, the Fit Futures (FF1), invited all first year 

upper secondary school students in Tromsø and more rural neighboring municipalities to a 

health survey among adolescents. The invited cohort comprised 1117 adolescents and 1038 

(508 girls and 530 boys) attended the survey (93%). The cohort characteristics have been 

described in detail previously [21, 22]. The present investigation includes participants aged 
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15-18 years of age (n = 961). All participants gave written informed consent. In addition, 

participants younger than 16 years had to bring written consent from a parent or guardian. 

Examinations were performed in a well-established research unit at the University Hospital of 

North Norway by trained and dedicated research technicians. Data from the FF1 cohort were 

linked to the Medical Birth Registry of Norway (MBRN), a compulsory registry of all births 

in Norway [23]. The registry is run and managed by The Norwegian Institute of Public 

Health, and includes information on maternal health, pregnancy, delivery and the newborn. 

Complete data were obtained in 765 participants (360 girls and 405 boys). The study was 

approved by The Norwegian Data Protection Authority (reference number 2009/1282) and by 

The Regional Committee of Medical and Health Research Ethics (reference number 

2011/1702/REKnord). 

Measurements 

Bone mineral parameters were measured by dual-energy X-ray absorptiometry (DXA; GE 

Lunar prodigy, Lunar Corporation, Madison, Wisconsin, USA), using encore pediatric 

software. The same device was used throughout the entire study. The densitometer coefficient 

of variation (CV) has been estimated at 1.72 % for femoral neck and 1.17 % for total hip [24]. 

The outcomes in this study were BMD and BMC measured as g/cm2 and g, respectively, at 

femoral neck (FN), total hip (TH) and total body (TB). Height and weight were measured to 

the nearest 0.1 cm and 0.1 kg on the Jenix DS 102 Stadiometer (Dong Sahn Jenix, Seoul, 

Korea) according to standardized procedures in the Tromsø Study. Birth length (cm), birth 

weight (g) and gestational age (GA) in weeks were collected from the MBRN. 

Questionnaires 

Information on perceived intensity of physical activity (PA) was collected in electronic self-

reporting questionnaires at the study site by using the Health Behavior in Schoolchildren 
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(HBSC) questionnaires [25]. The following questions were used in the present study: “If you 

are actively doing sports or physical activity outside school, how hard do you find the sports 

you are doing?” The individual answers were initially categorized into “not hard at all” (1), “a 

bit hard” (2), “quite hard” (3), “very hard” (4), and “extremely hard” (5), The answers were 

recoded into three groups: Not hard (1-2), quite hard (3-4) and hard (5-6) and used as a 

categorical variable in the analysis. We collected sexual maturation information through the 

same electronic self-reporting questionnaire. Girls were asked: “If you have started 

menstruating, how old were you when you had your first menstruation?” We categorized 

answers into “early” (<12.5 years), “intermediate” (12.5-13.9 years), or “late” (>14 years). 

We asked boys according to Pubertal Development Scale (PDS) [26]. Self-rated secondary 

sexual characteristics (growth spurt, pubic hair growth, changes in voice and facial hair) were 

reported on a scale from 1 (have not begun) to 4 (complete). We summarized the score and 

divided by 4. A final score <2 was categorized as “have not begun, 2-2.9 as “barely started”, 

3- 3.9 as “underway” and 4 as “complete”.    

Statistics 

Continuous baseline characteristics (mean and standard deviation) were analyzed by 

independent samples t-test for differences of means. Bivariate correlation coefficients of bone 

mineral parameters with birth weight, birth length, age, weight and height at FF screening and 

PA were assessed with Pearson’s r. Likewise, we assessed correlation between GA and birth 

length and weight. Further analyses were stratified by sex. Exposure and outcome variables 

were converted to standard deviation (STD) scores (z-scores) based on the distribution of the 

samples. Residual analyses were performed to check for normal distribution, linearity, 

homogeneity of variance and outliers. No assumptions were considered violated. Simple 

linear regressions were performed with birth weight and birth length as exposure variables, 

while BMD and BMC at FN, TH and TB were the outcomes. Multiple linear regression with 
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four different models were performed, in accordance with the proposal from Lucas et al [27]. 

All models were adjusted for age and sexual maturation due to the relatively large age range 

in the cohort. Furthermore, gestational age in weeks were included in all models as a 

continuous variable to control whether potential effects of birth weight and length was 

attributable to preterm birth or intrauterine growth restriction. In addition, as intensity of 

physical activity previously has shown to be significantly positive associated to bone mass 

parameter in the cohort [22], all models were adjusted to check that potential effects were 

independent of adolescent levels of physical activity. Model 1 was used to relate size at birth 

to the outcome. Model 2 added weight and height respectively, at adolescence to model 1 to 

control for change in size, i.e. centile crossing. Model 3 added the interaction term between 

early and later weight and height to model 2. For completeness, model 4 had adolescence 

weight and length as exposure to help interpreting separate importance of birth parameters 

and adolescent anthropometrics. All regression analyses included measures of 

multicollinearity and no variance inflation factor above 10 was found.  Values of p < 0.05 

were considered statistical significant. All statistical analyses were run at the Statistical 

Package of Social Science (SPSS v.22). 

Results 

Descriptives 

At birth, boys were heavier and longer than girls (p<0.001 for both comparisons). There was 

no significant sex difference in gestational age (Table 1). In adolescence, boys were taller and 

heavier than the girls. BMD measurements were 3.2%, 4.9% and 3.2% higher in boys than in 

girls for FN, TH and TB, respectively. Corresponding values for BMC were 20.9%, 24.5% 

and 16.7% (Table 1). 

Correlations 
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In bivariate analyses, birth parameters were significantly correlated with BMD/BMC at all 

sites, except for birth weight and BMD-FN. Weight, height and PA in adolescence were 

significantly correlated with all bone mineral measurements. Weight at FF1 demonstrated the 

highest coefficients with BMD- TB and BMC-TB, whilst height at FF1 demonstrated highest 

coefficients with BMC-FN and BMC-TH (Supplementary Table 1). Furthermore, GA was 

significantly correlated with birth weight and birth length with r = 0.55 and 0.54, respectively 

(data not shown). 

Simple linear regression 

In simple linear regression, birth weight in girls was positively associated with BMD-TB z-

scores (STD [95% CI]) of 0.11 [0.01, 0.20] and BMC z-scores at all sites, 0.15 [0.06, 0.24], 

0.18 [0.09. 0.28] and 0.29 [0.20, 0.38] for FN, TH, and TB respectively. In boys, birth weight 

was significantly positively associated with BMC z-scores, with estimates of 0.10 [0.01, 

0.19], 0.12 [0.03, 0.21] and 0.15 [0.07, 0.24] for FN, TH and TB, respectively (Figure 1). 

Birth length was positively associated with BMC z-scores at all sites in both sexes (Figure 2). 

Analyses in girls displayed coefficients of 0.14 [0.05, 0.24], 0.19 [0.10, 0.29] and 0.26 [0.16, 

0.35] for FN, TH and TB, respectively, whilst the corresponding values for boys were 0.12 

[0.03, 0.21], 0.14 [0.05, 0.23] and 0.17 [0.08, 0.26]. 

Multiple linear regression 

In model 1, the positive association between birth weight and BMC-TB among the girls was 

maintained when adjusting for birth length, GA, PA, sexual maturation and age (Table 2). 

Correspondingly, for boys, the multiple regression model attenuated the associations between 

birth weight and BMC at all sites to become non-significant (Table 3). 
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Furthermore, model 1 showed no significant association between birth length and BMD or 

BMC in girls (Table 2). Boys maintained a significant positive association with 0.21 [0.05, 

0.38] STD (95%CI) increase in BMC-TB per unit increase in birth length (Table 3). 

Models 2 and 3, combining early and late weight and length and checking for interactions, 

attenuated all associations to become non-significant in both sexes. No significant interaction 

terms were found in model 3. 

In the final model, weight in adolescent girls and boys were significantly positive associated 

with both BMD and BMC at all sites (Table 2 and Table 3). Height in adolescence was 

significantly positive associated with BMC at all sites in both sexes (Table 2 and Table 3) 

Discussion 

This study focuses on the predictive value of birth weight and length on BMD and BMC 

measured in adolescents aged 15 to 18 years of age. In girls, there were significantly positive 

associations between birth weight and BMD-TB and BMC at all sites in crude models. 

Likewise, birth length was significantly positively associated with BMC at all sites. However, 

in multivariable regression models, birth anthropometric and lifestyle factors attenuated these 

findings, and only the association between birth weight and BMC-TB remained significant. In 

addition, when adjusting for change in size from birth and adolescence, and possible 

interactions i.e. the magnitude of change in size, all associations were attenuated. In boys, 

there were corresponding findings. Adjustment for birth anthropometrics, age and physical 

activity attenuated all this relationships, except for the association between birth length and 

BMC-TB and likewise further modeling removed significant findings. To our knowledge, this 

study is the first that focus on both birth weight and length predictions of bone health in this 

particular age group and in both sexes. 
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Both in girls and boys, there were significant positive associations between birth weight and 

BMC at all sites in crude models. In the recent systematic review and meta-analysis by 

Martìnez-Mesa et al. [19], seven studies that evaluated adolescents and young adults were 

included. All of these had birth weight as an exposure. Out of 26 independent analyses, eight 

presented positive associations with BMD and BMC measurements. Four analyses indicated 

inverse associations, although only one was significantly negative. The age range in these 

studies varied from 17-24, hence in the upper range and above the age in our cohort. Although 

the systematic review conclude that birth weight positively influence bone health later in life, 

the authors were not able to demonstrate evidence of such during adolescence. 

In 2008, Jensen et al [28] reported the findings from a longitudinal cohort examined by DXA 

at the age of 16-19 years of age. They found a positive association between birth weight and 

whole body BMC, lumbar spine BMC and lumbar spine BMD. However, when adjusting for 

height and weight at the time of DXA measurements, all associations became nonsignificant. 

Interestingly, fetal growth velocity in the study of Jensen et al. were positively associated with 

only whole body BMC, whilst weight at 1 years showed stronger positive associations with 

whole body BMC and lumbar spine BMC, compared with associations with birth weight.  

Consequently, they concluded that the association between early-life size and BMC might be 

influenced more by postnatal growth than fetal programming. Our findings are in line with the 

study of Jensen et al. Although they applied a proposal from Prentice et al [29] for correction 

of size-related artefacts in their statistical analyses, and we used models as suggested by 

Lucas et al [27], both detected no significant associations after adjustments. Some further 

differences in methodology should still be highlighted. The mean age in their cohort was 0.7 

years and 1 year older in boys and girls respectively. These differences could be crucial with 

respect to the impact of peak growth velocity on bone development. There is also a major 

difference in subjects included in the studies. The Danish study included 119 versus 765 in 
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ours. Furthermore, as bone mass acquisition varies in girls and boys during adolescence [21], 

our analyses were performed sex stratified in contrast to the study of Jensen et al. 

Sex stratification was not an issue in the study of Saito et al. [30]. They recruited 86 female 

participants among first-year university students for assessment of birth weight and growth as 

predictors of bone mineral parameters. In accordance with the Danish study [28], they found 

positive associations between birth weight and lumbar spine BMC. In addition, birth weight 

was associated with total hip BMC in a model adjusted for physical activity and current 

weight. The previous study contrasts our findings of no significant associations in birth 

weight and BMC in models controlling for both early life effects, centile size crossing (Model 

2) and interactions. Saito el al [30] also reported correlation coefficients between size and 

bone mineral parameters during growth. Interestingly, in total hip BMC, all of these were 

statistically significant, but birth weight presented the weakest coefficients. However, this was 

also the case for birth length correlations with bone mineral parameters. Again, age may 

complicate the comparison of results. Saito et al. [30] did their analyses on women from 18 to 

21 years of age. At this time in life, peak bone mass probably is reached [31], except in the 

spine, and the participants could be compared with adult subjects. 

A main purpose in the present study was to investigate associations between birth length and 

BMD/BMC. In girls and boys birth length and BMC were significantly positive associated in 

crude models. Interestingly, a study by Eide et al. [32] aimed to examine the contribution of  

birth length and birth weight on adult length and weight. They suggested that birth length 

perhaps is a better predictor of adult height and weight than birth weight. Furthermore, their 

findings pointed to that length and weight at birth contributed independently to adult stature. 

In respect to adult height, these effects were additive and therefor indicate that birth weight 

and birth length influence stature, and therefore bone mass, through different pathways. In our 

study, we observed a significantly positive association between birth weight and BMC-TB in 
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girls, adjusted for birth length, gestational age, physical activity and age. This was not found 

in boys. In contrast, birth length was positively associated with BMC-TB among boys using 

the same model. However, as further modeling attenuated these effects, one might argue that 

postnatal growth and later size is likely to be more relevant to predict bone mineral 

parameters in adolescence.  A possible explanation for the observed sex-difference is the peak 

growth velocity in adolescence [33]. A higher peak velocity and longer lasting growth spurt in 

boys could contribute to the indication of discrepancy in multivariate analyses. 

The rationale for an environmental modification during early life, strong enough to alter risk 

of osteoporosis is based on several groups of studies [34]. Detailed analyses at a population 

study level have suggested that malnutrition in utero may modify genetic influence on adult 

mineral density [35]. Physiological studies have strengthened the theory that stress during 

intrauterine life alter growth hormone and cortisol sensitivity, leading to reduced peak skeletal 

size and accelerated bone loss later [36]. Furthermore, studies of maternal health have shown 

relations to neonatal bone mass [37] and finally there is evidence that link childhood growth 

with later risk of hip fracture [38].  In our cohort the mean birth weight (standard deviation) 

was 3453 (576) g and 3601 (590) g in girls and boys, respectively. The frequency of low 

birthweight incidences (4%, data not shown), is low compared with global reports [39] and 

even when compared within industrialized countries in Europe. Thus, one might speculate 

that our cohort indicate relatively stronger environmental modifications based on adequate 

nutrition in utero, low levels of stress and good maternal health. When these predictive 

adaptive response are optimized during the phase of high developmental plasticity [40], it is 

plausible that the actual environment after birth might have a higher impact in further skeletal 

development in such a population. 

The main strengths of this study are the large sample size and population-based design in Fit 

Future, including the high attendance rate at bone mass screening. Both sexes are represented 
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and the study included participants from different municipalities. The MBRN secure robust 

registry data on birth parameters, minimizing the risk of recall bias in retrospective data 

collection.  Furthermore, the use of dedicated research technicians at the research unit at the 

University Hospital of North Norway is likely to reduce measurement errors. Some 

limitations are notable. It has been claimed that birth weight measurements are more reliable 

than length measurements [41] and that birth length measurements show less variability when 

compared with birth weight measurements. Thus, it has been discussed whether this variable 

should be treated as a discrete variable, even when measured and reported as cm [32]. 

However, for healthy newborns, any measurement error is probably random with respect to 

final height and hence bone mineral content. Total body measurements included the head in 

this survey. This may introduce measurements bias, although at a lesser level than in small 

children. Finally, nutrition can affect bone mass mineral during growth. This variable was not 

available in this study. 

In conclusions, our results demonstrate a positive association between birth weight and 

length, and BMC in adolescence. However, these associations were attenuated when adjusted 

for growth determining later size and physical activity. With respect to optimizing the genetic 

peak bone mass, further studies should consider the impact of environmental stimuli and 

lifestyle factors during growth. Especially in regions where maternal health is good and 

malnutrition is rare. 
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Mini Abstract 

The influence of birth weight and length on bone mineral parameters in adolescence is 

unclear. We found a positive association between birth size and bone mineral content, 

attenuated by lifestyle factors. This highlight the impact of environmental stimuli and lifestyle 

during growth. 

 
Compliance with ethical standards  
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Figure Captions: 
 
Figure 1. Crude associations between birth weight and bone mineral density/bone mineral 
content. The Tromsø Study, Fit Futures 
 

Figure 2. Crude associations between birth length and bone mineral density/bone mineral 
content. The Tromsø Study, Fit Futures  
 



Table 1: Characteristics and bone mineral density and bone mineral content at various anatomical sites. The 
Tromsø Study, Fit Futures 

 Girls Mean Boys Mean p 
N  (SD) n  (SD)  

Age FF1 469 16.6 (0.41) 492 16.6 (0.41) 0.237 
Height FF1 (cm) 467 164.9 (6.5) 492 176.9 (6.7) <0.001 
Weight FF1 (kg) 467 60.9 (11.5) 492 70.2 (14.4) <0.001 
Birth weight (g) 443 3454.8 (576.7) 470 3601.0 (590.0) <0.001 
Birth length (cm) 419 49.4 (2.3) 454 50.2 (2.3) <0.001 
GA (weeks) 393 39.7 (1.8) 429 39.6 (2.1) 0.226 
BMDFN (g/cm2) 459 1.066 (0.123) 485 1.100 (0.151) <0.001 
BMDTH (g/cm2) 458 1.060 (0.123) 483 1.112 (0.147) <0.001 
BMDTB (g/cm2) 466 1.142 (0.077) 490 1.178 (0,095) <0.001 
BMCFN (g) 459 4.916 (0.702) 485 5.947 (1.003) <0.001 
BMCTH (g) 458 32.03 (4.80) 483 39.79 (6.63) <0.001 
BMCTB (g) 466 2524.7 (391.4) 490 2947.2 (475.2) <0.001 
PAi 
Not hard 
Quite hard 
Hard 
Sexual maturation 
Early/complete 
Intermediated/underway 
Late/barely started 

469 
151 
210 
108 
461 
187 
172 
102 

 
32.2% 
44.8% 
23.0% 

 
40.6% 
37.3% 
22.1% 

492 
175 
189 
128 
387 
33 
285 
69 

 
35.6% 
38.4% 
26.0% 

 
  8.6% 
73.6% 
17.8% 

0.938 

GA: Gestational Age, BMD: Bone Mineral Density, BMC: Bone Mineral Content, FN: Femoral Neck, TH: Total 
Hip, TB: Total Body, FF1: Fit Futures 1, PAi: Physical Activity intensity. Sexual maturation in girls: menarche 
age. Categories are: early (<12.5), intermediate (12.5-13.9), and late (>14). Sexual maturation in boys: Puberty 
Development Scale. Categories are: have not begun (<2), barely started (2-2.9), underway (3-3.9) and complete 
(4). 

 



 



Table 2: Associations between birth weight/length and bone mineral density and bone mineral content in girls 15-18 years. The Tromsø Study, 
Fit Futures (n = 360) 
 BMD 

(standardized β coefficient [95% CI]) 
BMC 

(standardized β coefficient [95% CI]) 
 Femoral neck Total hip Total body Femoral neck Total hip Total body 

BW  0.04 [-0.06, 0.13]  0.05 [-0.04, 0.14]  0.11 [0.01, 0.20]  0.15 [0.06, 0.24]  0.18 [0.09, 0.28] 0.29 [0.20, 0.38] 
Model 1  0.02 [-0.17, 0.20]  0.04 [-0.14, 0.23]  0.17 [-0.01, 0.35]  0.14 [-0.04, 0.32]  0.10 [-0.08, 0,28] 0.31 [0.13, 0.49] 
Model 2 -0.11 [-0.28, 0.06] -0.09 [-0.26, 0.09] -0.02 [-0.17, 0.14] -0.04 [-0.19, 0.12] -0.08 [-0.23, 0.07] 0.07 [-0.05, 0.19] 
Model 3 
Model 4 

-0.11 [-0.28, 0.06] 
 0.40 [0.29, 0.52] 

-0.09 [-0.27, 0.08] 
 0.44 [0.32, 0.56] 

-0.02 [-0.18, 0.13] 
 0.63 [0.53, 0.73] 

-0.04 [-0.19, 0.12] 
 0.56 [0.46, 0.66] 

-0.08 [-0.23, 0.07] 
 0.56 [0.46, 0.66] 

0.06 [-0.06, 0.18] 
0.81 [0.73, 0.89] 

 
BL 

 
0.07 [-0.03, 0.16] 

 
 0.06 [-0.04, 0.16] 

 
 0.08 [-0.02, 0.18] 

 
 0.14 [0.05, 0.24] 

 
0.19 [0.10, 0.29] 

 
 0.26 [0.16, 0.35] 

Model 1 0.07 [-0.11, 0.24]  0.04 [-0.14, 0.21] -0.01 [-0.18, 0.17]  0.07 [-0.10, 0.24] 0.15 [-0.02, 0.32]  0.11 [-0.06, 0.28] 
Model 2 0.01 [-0.16, 0.18]  0.03 [-0.14, 0.20] -0.06 [-0.21, 0.10] -0.06 [-0.21, 0.09] 0.01 [-0.14, 0.16] -0.06 [-0.18, 0.06] 
Model 3 
Model 4 

0.04 [-0.15, 0.22] 
0.08 [-0.05, 0.22] 

 0.03 [-0.17, 0.22] 
-0.04 [-0.18, 0.10] 

-0.02 [-0.19, 0.15] 
 0.03 [-0.10, 0.15] 

-0.04 [-0.21, 0.13] 
 0.27 [0.15, 0.40] 

0.01 [-0.17, 0.17] 
0.33 [0.21, 0,45] 

-0.02 [-0.15, 0,11] 
 0.37 [0.28, 0.46] 

BW: Birth Weight, BL: Birth Length, BMD: Bone Mineral Density, BMC: Bone Mineral Content, CI: Confidence Interval. 
All models are adjusted for Gestational age, Physical Activity intensity, Pubertal status and age at BMD and BMC screening. 
Model 1: Adjusted for BL or BW. 
Model 2: Adjusted for Model 1 + Adolescence Height (AH) or Adolescence Weight (AW). 
Model 3: Model 2 + interaction terms (BW∙AW, BL∙AH). 
Model 4: Adjusted for AW or AL 
No significant interaction terms in model 3 
P<0.05 in bold, P<0.001 in italic bold. 
 



Table 3: Association between birth weight/length and bone mineral density and bone mineral content in boys 15-18 years. The Tromsø Study, Fit 
Futures (n = 405) 
 BMD 

(standardized β coefficient [95% CI]) 
BMC 

(standardized β coefficient [95% CI]) 
 Femoral neck Total hip Total body Femoral neck Total hip Total body 

BW  0.04 [-0.05, 0.14]  0.05 [-0.04, 0.14]  0.04 [-0.05, 0.13]  0.10 [0.01, 0.19]  0.12 [0.03, 0.21]  0.15 [0.07, 0.24] 
Model 1 -0.09 [-0.08, 0.25] -0.10 [-0.26, 0.07] -0.06 [-0.21, 0.10] -0.04 [-0.20, 0.11] -0.02 [-0.18, 0.14]  0.01 [-0.15, 0.16] 
Model 2 -0.13 [-0.28, 0.01] -0.14 [-0.28, 0.01] -0.11 [-0.24, 0.02] -0.09 [-0.22, 0.05] -0.07 [-0.20, 0.06] -0.07 [-0.16, 0.03] 
Model 3 
Model 4 
 

-0.13 [-0.27, 0.02] 
 0.35 [0.26, 0.44] 
 

-0.14 [-0.28, 0.01] 
 0.35 [0.26, 0.43] 

-0.13 [-0.26, 0.01] 
 0.48 [0.40, 0.56] 

-0.09 [-0.23, 0.05] 
 0.37 [0.29, 0.45] 

-0.07 [-0.20, 0.07] 
 0.39 [0.31, 0.47] 

-0.06 [-0.16, 0.04] 
 0.57 [0.51, 0.63] 

BL  0.06 [-0.03, 0.15]  0.07 [-0.02, 0.17]  0.05 [-0.04, 0.14]  0.12 [0.03, 0.21]  0.14 [0.05, 0.23]  0.17 [0.08, 0.26] 
Model 1  0.09 [-0.08, 0.25]  0.10 [-0.07, 0.26]  0.09 [-0.07, 0.25]  0.14 [-0.02, 0.30]  0.13 [-0.04, 0.29]  0.21 [0.05, 0.38] 
Model 2 -0.02 [-0.17, 0.14]  0.03 [-0.12, 0.19] -0.02 [-0.16, 0.12] -0.03 [-0.17, 0.12] -0.05 [-0.19, 0.09] -0.02 [-0.12, 0.09] 
Model 3 
Model 4 

 0.01 [-0.18, 0.18] 
 0.10 [-0.03, 0.22] 

 0.05 [-0.13, 0.23] 
-0.02 [-0.14, 0.11] 

 0.02 [-0.14, 0.18] 
 0.07 [-0.04, 0.18] 

-0.01 [-0.17, 0.16] 
 0.28 [0.17, 0.39] 

-0.05 [-0.22, 0.11] 
 0.29 [0.18, 0.40] 

-0.02 [-0.14, 0.10] 
 0.41 [0.32, 0.49] 

BW: Birth Weight, BL: Birth Length, BMD: Bone Mineral Density, BMC: Bone Mineral Content, CI: Confidence Interval. 
All models are adjusted for Gestational age, Physical Activity intensity, Pubertal status and age at BMD and BMC screening. 
Model 1: Adjusted for BL or BW. 
Model 2: Adjusted for Model 1 + Adolescence Height (AH) or Adolescence Weight (AW). 
Model 3: Model 2 + interaction terms (BW∙AW, BL∙AH). 
Model 4: Adjusted for AW or AL 
No significant interaction terms in model 3 
P<0.05 in bold, P<0.001 in italic bold. 
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